
A transparent code offloading technique for
Android devices

Rômulo Reis de Oliveira, Nı́colas Meira da Silva Schirmer, Mateus Machry and Tiago Coelho Ferreto
School of Computer Science

Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
Email: {romulo.reis, nicolas.schimer, mateus.machry}@acad.pucrs.br, tiago.ferreto@pucrs.br

Abstract—The integration of cloud computing and mobile
devices, known as Mobile Cloud Computing (MCC), allows the
adoption of code offloading techniques for improving compute
intensive applications’ performance and minimize the energy
consumed by mobile devices. In this paper we propose a new
technique that transparently includes code offloading capabil-
ities to Android devices. It allows all the applications on the
device to benefit from it without requiring the Android system
recompilation or any modification in the application source code.
We evaluated our proposal using a face detection application in
different devices, in which the computation-intensive method is
executed in a remote server in a local network. Results show
gains up to 70% in terms of performance.

Keywords-component—Mobile Cloud Computing; Code of-
floading; Cloud Computing; Android; Face detection

I. INTRODUCTION

Mobility is a relevant characteristic of modern computing
environments. Spreading faster than PCs and being able to
support a large number of different applications, mobile de-
vices such as phones and tablets are becoming the primary
means for accessing the Internet. Despite being resource-poor,
mobile devices are expected to offer the same performance and
functionality as desktops. However, compute intensive applica-
tions that require powerful processors, abundant memory and
long-lasting battery life such as, speech and image recognition,
natural language processing and 3D games, are not likely to be
suitable in this context. Therefore, mobile devices still cannot
replace the traditional desktops, due to the limited CPU speed,
memory, storage and battery capacity.

Since server processors are more powerful than mobile ones
[13], Mobile Cloud Computing (MCC) has emerged as a way
to overcome such constraints on mobile devices. It aims to
provide unlimited resources on demand as a service in a trans-
parent way to the user. In this context, code offloading [14],
[21], [27], [11], [12] enables the mobile devices to dispatch
local computation to more resource-rich computers, which can
be the cloud infrastructure, a remote server or a cloudlet [24].
This feature can speed up the application execution and also
minimize the use of the battery, memory and local storage.
It can also give the user the impression of augmented local
resources. Google Photos [15] and Apple iOS’s Siri [8] are
examples of applications that benefit from code offloading.

Many code offloading techniques have already been pro-
posed [10], [17], [9], [16], [18]. However, even if some of

them are user friendly, they are not developer friendly, since
they require explicit changes in the applications’ source code.

In this paper we propose a transparent code offloading tech-
nique for Android devices. Our proposal does not require any
changes in the Android system firmware or applications source
code. We use the Xposed Framework [6] to transparently
modify Android Framework methods and send tasks to be
executed remotely in a remote server or in the cloud. Since the
modification is performed on the framework layer, no changes
are required in the applications.

In order to evaluate our proposal, we implemented a pro-
totype using the Android methods for face detection. We
emulated a local cloud using a regular virtual machine running
Android-x86, which is accessed by the mobile device through
a wireless network. Results show that the proposed technique
presents significant gains in application performance, and
impacts transparently all applications that use face detection
routines.

The remainder of this paper is organized as follows. In
Section II we introduce the main technologies related to our
paper and in Section III we summarize other works related
to code offloading. Section IV outlines the design goals and
architecture requirements and prerequisites of our technique.
In Section V is explained our proof-of-concept architecture.
Methodology, tools and the evaluation are discussed in Sec-
tion VI. The results are presented in Section VII and we
conclude the paper in Section VIII.

II. BACKGROUND

Android [7] is more than just an operational system, ac-
tually, it is a software stack for mobile devices that in-
cludes an operating system, middleware, and a set of key
applications and services. This software stack consists of
distinct layers: Application, Application Framework, Android
Runtime, Hardware Abstraction Layer, Native Libraries and
Linux Kernel [19].

The most relevant layer in our proposal is the Android
Framework, which provides a set of services that are used
by applications. This framework implements the concept that
Android applications are constructed from reusable, inter-
changeable and replaceable components. Android provides
APIs in the form of Java classes, so application developers are
allowed to make use of these services in their applications [25].

978-1-5090-4372-9/17/$31.00 ©2017 IEEE 1078



The Android Framework is encapsulated together with those
layers in a ROM image. Building a custom Android ROM is
a challenge, since each vendor usually builds its own private
customized Android and the source code of these distributions
are kept in secret with all the drivers. There are some Android
open source projects that support some devices in which this
customized ROM can be installed (“flashed”) to the phone.
However, they usually have several bugs, since those projects
are not supported by the companies.

The open project Xposed Framework [6] is an alternative for
Android customization and does not require any change in the
ROM. By using root access, the Xposed Framework directly
accesses the core Android resources and utilizes them to be
able to run different modules on the device. Those modules
enables “hooking” method calls, so the developer can override
a method and even change the arguments passed by in runtime.

III. RELATED WORK

There are several research works proposing different code
offloading techniques for improving the application’s perfor-
mance and minimizing the energy usage by using resources in
the cloud [10], [17], [9], [16], [18].

MAUI [10] provides method level code offloading based
on the .NET framework and aims to save the devices’ bat-
tery and improve the application performance by dynamic
selecting which methods must be remotely executed. However,
the developer must manually annotate the methods that are
candidates for offloading as remoteable. By this way, a custom
compiler generates two separates code bases, one for the
mobile device and other the server. Three different applications
were used to evaluate MAUI’s performance, a face-recognition
application, a highly-interactive game (chess game) and a real-
time voice translator.

ThinkAir [17] also provides method level code offloading
and provides a library and compiler support to make its
adoption easier for developers, in addition to a VM manager
and a parallel processing module in the cloud. It requires the
developers to indicate methods that could be executed in the
cloud, and it focuses on minimizing energy consumption of the
mobile devices by paralleling method execution using multiple
VM images and cloud scalability by dynamic allocating VMs
on demand. An N-queens puzzle, face detection application
and a virus scan were used to evaluate its performance.

CloneCloud [9] creates a virtual copy from a device, but
more computationally powerful. It automatically selects what
methods and when they should be remotely executed, opti-
mizing the energy consumption and improving the application
performance. It also migrates the code in a transparent way
and the developer does not need to modify their application
code.

COMET [16] allows multi-threaded applications to use mul-
tiples machines. The system allows those threads to migrate
freely between machines. Built on top of the Dalvik Virtual
Machine, it implements distributed shared memory (DSM) for
minimizing the communication between machines. It used an

image editor, a turn-based game, a trip planner and a math
tool application for evaluation.

uCloud [18] explores the application’s components that are
independent from each other, but, developers must follow a
standard procedure during the application development.

Our technique provides method level code offloading for
native methods, not for a specific application method, differ-
ently from the others. Through this approach, all applications
that use those native methods may benefit from it. Besides
that, no modification in the application or customization in the
compilation process is required, saving programmer effort.

Differently from [10], [17], [9], [16], [18], in our approach,
the decision maker is the user, which can enable or disable
the remote execution anytime giving more control to the user.

IV. ARCHITECTURE AND DESIGN GOALS

Figure 1 illustrates the proposed architecture for code of-
floading. The architecture is composed of a number of physical
mobile devices as clients and a cloud server hosting VMs
instances. There is an entity (proxy) in the Android device that
modifies the behavior of a set of methods from the Android
Framework. This entity detects when a candidate method
is called and handle this call to be executed in the cloud.
Each VM runs a service, which is responsible for receiving
and replying to the requests from the mobile devices. When
an application calls an expensive method from the Android
Framework, the task is sent to be processed in the cloud
or remote server (App B). Otherwise, the method is locally
executed (App A).

Fig. 1. Proposed architecture for code offloading

The key design objectives for our proposal are:

• It must be practical and easy for users and developers to
use this technique.

• No modification in the Android system should be re-
quired, since each vendor has its own custom Android
and this code is not public.

• All applications should benefit from our approach, if they
use a method modified by the module.

• Applications should present a performance improvement
when using this technique.

1079



• The user is the decision maker, i.e., he has the control to
choose when he wants to use code offloading. However,
the technique must support the implementation of algo-
rithms that decides what, when and where to offload the
tasks.

V. PROOF-OF-CONCEPT IMPLEMENTATION

Our proof-of-concept prototype uses the open source
projects Xposed Framework and Android-x86 [1].

We used Xposed Framework since it allows to install
modules that can change method’s behavior from the system
or applications. No modification in the source code of the
Android system or its applications is required, because the
changes are done in the memory, which also makes easy to
enable or disable a module.

The Android-x86 was used for two main reasons. First,
Android was originally designed for ARM processors, how-
ever, the open source project Android-x86 has been initiated
for porting the system to x86 platform. This port eliminates
the overhead generated by the emulation, since it allows
the Android system to be installed and run directly in the
hardware of a traditional computer. This can boost application
performance, because computer hardware is more powerful.
Running Android directly in a computer hardware allows to
visualize the system by using some virtualization tools, such
as: VirtualBox [20], VMWare [26], and QEMU [5]. Second,
since Android uses the same Java application framework/SDK
in both processors, the application portability does not require
any modification in the application.

The overall proof-of-concept implementation is depicted in
Figure 2. Android VM runs an application service, which
is responsible for receiving and replying the requests from
the mobile devices, where the Xposed Framework is installed
and our custom module is enabled. This module modifies
the behavior of a predefined set of native methods from the
Android Framework, making them send the request to the
cloud. So, every time an application calls a native method that
has been modified, this method sends a request to the cloud
with the method name and parameters.

The service application, which is running in the VM in-
stance (server), uses sockets to communicate with the devices.
When a request is received, it calls the native method required
with the parameters from the request, then the service replies
to the device with the result.

Fig. 2. Prototype implementation

VI. METHODOLOGY, TOOLS AND PROTOTYPE
EVALUATION

For evaluating the performance of this architecture we
implemented a prototype and ran a set of experiments to
analyze the following metrics: execution time, network usage,
and memory usage. Profiling Android is not easy, since there
is not a unique tool that provides accurate information of
CPU, memory, energy and network usage of an application.
For profiling the network and memory we used Dalvik Debug
Monitor Server (DDMS).

The prototype has three main components: (i) Face De-
tection application, (ii) Server Application, and (iii) Xposed
Framework module. The Face Detection application uses An-
droid framework methods to detect faces in an image. This
application is executed in the smartphone and is implemented
as a regular application (there are no annotations for offload-
ing). The Server Application runs as a service application
in an Android-x86 VM to handle offloading requests from
mobile devices.The Xposed Framework module connects both
components. It modifies the behavior of the method detect
from class vision.face.FaceDetector. Instead of executing the
code to detect faces in the picture on the device, it sends a
request to the Server Application and waits for its response,
in order to get back to the application with the appropriate
result.

A class must implement the interface Serializable to enable
its objects to be sent by the network. Since the classes Frame
and SparseArray, used by face detection methods, do not
implement this interface, we had to handle this by manually
serializing those classes using the GSON library [4]. We chose
GSON, because among the few open-source projects that can
convert Java objects to JSON, most of them require that the
developer place Java annotations in the classes, which is not
possible in our context, since we do not have access to the
source code. Most of them also do not fully support the use
of Java Generics.

In the virtual machine, we used Android 6.0.1 [2] from
the Android-x86 open source project without modification in
the source code. We just created a virtual machine using
VirtualBox and installed Android. Just the server application
was installed in the Android VM. We used VirtualBox 5.1.4
for running the VM in the computer. We used two devices:
Smartphone X and Smartphone G. The smartphones, computer
and VM specifications are presented in Table I.

A wireless router ASUS model RT+-N10 (150Mbps High
Speed) was used to enable the communication between the
smartphone and the VM host.

The Xposed Framework installation requires root access,
bootloader unlocked and TWRP installed. After the Xposed
Framework installation, we installed our custom module and
enabled it. As mentioned before, the module modifies the
method detect from the class vision.face.FaceDetector. Ac-
cording to the Android official documentation [3], this method
finds faces given an image, the result is a SparseArray of faces.

In our evaluation we used 2 representative images that
vary in file size, dimension and in number of human faces

1080



TABLE I
COMPONENTS SPECIFICATIONS

Name Operational System CPU RAM Storage
Computer Ubuntu 16.04 64 bit Intel Core i7-4790 3.6 GHz 16 GB 1 TB

VM Android-x86 6.0.1 4 v. cores 6 GB 8 GB
Smartphone G Android 5.1.1 4x1.4 GHz Cortex-A53 1 GB 8 GB

Smartphone X Android 5.1.1 4x1.5 GHz Cortex-A53
4x2.0 GHz Cortex-A57 3 GB 32 GB

(Table II). The images are available online [22], [23] and are
showed in Figures 3 and 4. We used both images on two
different devices: Smartphone X and Smartphone G. Before
running each experiment, the face detection application was
killed and the device was rebooted.

We also explored two different scenarios. In the first one
(Scenario 1) we assumed that the VM has no information about
the smartphone data, so the file of the image needs to be sent
to the VM to be processed. In the second scenario (Scenario
2), we assumed there is a local copy of the smartphone
data needed by the VM for processing the method, so, the
smartphone sends a request to the VM with an identification
of the image and not the image file.

Fig. 3. Image A

For each image, we ran the face detection application three
times in each smartphone. In the first time, we used the local
computational resource of the device. Since the test was per-
formed locally, no network traffic was generated. In the second
and third time, we explored scenario 1 and 2 respectively. The
execution of the method detect was performed on the remote
Android VM hosted in a computer.

VII. RESULTS

The first metric analyzed is execution time. The comparison
of execution time for local and remote executions, in both
scenarios, can be seen in Figure 5 and 6.

For both images in scenario 1, Smartphone X took longer to
run the method remotely than to run it locally. In scenario 2,
the execution time was 29,63% faster for image A and 31,88%
faster for image B.

However, when running the method remotely using smart-
phone G, the execution time performed better in both scenarios
and images. In scenario 1 it was 40,37% faster for image

Fig. 4. Image B

A and 37,10% faster for image B compared with the local
execution time. In scenario 2, the execution time was 72,03%
faster for image A and 70,02% for image B. Smartphone G
can benefit more from code offloading because it has a less
powerful hardware than smartphone X. Scenario 2 showed the
best performance in this context.

Fig. 5. Total Execution Time

We profiled the application to get the network usage. The
result is summarized in Table III. The data transferred should
be the same for both smartphones, however, in some cases, the
number of faces can be different due to ACCURATE MODE
set in the FaceDetector in the service application. Due to
the higher capacity of the VM, we enabled the ACCU-
RATE MODE flag to increase in accuracy when executing the
method remotely. Smartphone X found 23 faces in image A
running the method locally, while running the method remotely
the application service found 24 faces in scenario 1 and 25

1081



TABLE II
IMAGE SPECIFICATIONS

Name Width x Height (px x px) Size (KB) Number of faces
Image A 640 x 450 660 29
Image B 640 x 502 73 5

TABLE III
NETWORK TRAFFIC

Smartphone X Smartphone G
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Image A Image B Image A Image B Image A Image B Image A Image B

RX (bytes) 5.412 1.543 4.729 1.127 4.812 1.165 4.729 1.127
TX (bytes) 20.580 10.892 584 376 9.534 4.616 584 376

Fig. 6. Total Execution Time

in scenario 2. Smartphone G found 22 faces in image A by
running the method locally, against 25 by running it remotely.

We also profiled the application to get the memory usage.
Figures 7 and 8 represent the application memory allocated
after the execution of the method detect. In all cases, less
memory was allocated when executing the method remotely.
Smartphone X allocated in average approximately 40% less
memory for detecting the faces from image A and in average
approximately 7,95% for image B. Smartphone G allocated in
average approximately 20,18% less memory for detecting the
faces from the image A and in 21,59% for the image B.

Fig. 7. Application Memory Usage - Smartphone X

Fig. 8. Application Memory Usage - Smartphone G

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a new technique for code
offloading, where no modification is required in the applica-
tions’ source code nor changes in the Android firmware. This
technique is transparent, practical and not intrusive for users
and developers. It also allows the user to enable or disable
the module anytime, but it is possible to implement a decision
maker in the module what was not our focus. The resources
from the cloud are more powerful and all the applications
can benefit from our technique, if they use/call the modified
methods by the module. Running a task remotely is not always
faster than locally. For improving performance, the methods
from the Android Framework must be computationally “ex-
pensive” and not require heavy data transference between the
smartphone and the cloud.

Our results showed that this technique can improve execu-
tion time for some cases and also minimize memory allocation.
We still intend to explore other methods from Android that can
benefit from our technique and analyze other metrics, such as
CPU and battery usage. Since we assumed an environment
where the server is close to the device, we also intend
to investigate the behavior of this technique using a cloud
computing infrastructure far from the device in order to verify
the impact of the communication delay. A mathematical model
for indicating when the user could benefit from our technique
is under research.

1082



ACKNOWLEDGMENT

We gratefully acknowledge Motorola mobility for its sup-
port to this research

REFERENCES

[1] Android-x86. http://www.android-x86.org/.
[2] Android-x86 - porting android to x86: Releasenote 6.0-r1. http://www.

android-x86.org/releases/releasenote-6-0-r1.
[3] Google apis for android: Facedetector. https://developers.google.com/

android/reference/com/google/android/gms/vision/face/FaceDetector.
[4] Gson. https://github.com/google/gson.
[5] Qemu. http://wiki.qemu.org/Main Page.
[6] Xposed framework. http://repo.xposed.info/.
[7] O. H. Alliance. Android open source project. https://source.android.

com/.
[8] Apple. Siri. http://www.apple.com/ios/siri/.
[9] B. Chun, S. Ihm, P. Maniatis, and M. Naik. Clonecloud: Boosting

mobile device applications through cloud clone execution. CoRR,
abs/1009.3088, 2010.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: Making smartphones last longer with
code offload. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, pages 49–62,
New York, NY, USA, 2010. ACM.

[11] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing, 13(18):1587–1611, 2013.

[12] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud computing: A
survey. Future generation computer systems, 29(1):84–106, 2013.

[13] J. Flinn. Cyber foraging: Bridging mobile and cloud computing.
Synthesis Lectures on Mobile and Pervasive Computing, 7(2):1–103,
2012.

[14] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya.
Mobile code offloading: from concept to practice and beyond. IEEE
Communications Magazine, 53(3):80–88, March 2015.

[15] Google. Google photos. https://photos.google.com/.
[16] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.

Comet: Code offload by migrating execution transparently. In Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 93–106, Berkeley, CA, USA, 2012.
USENIX Association.

[17] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Unleashing the
power of mobile cloud computing using thinkair. CoRR, abs/1105.3232,
2011.

[18] V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg, and B. S. Lee.
cloud: Towards a new paradigm of rich mobile applications. Procedia
Computer Science, 5(Complete):618–624, 2011.

[19] A. Misra and A. Dubey. Android Security: Attacks and Defenses. An
Auerbach book. CRC Press, 2016.

[20] Oracle. Virtualbox. https://www.virtualbox.org/.
[21] M. Othman, S. A. Madani, S. U. Khan, et al. A survey of mobile

cloud computing application models. IEEE Communications Surveys &
Tutorials, 16(1):393–413, 2014.

[22] Pixabay. Image a. https://pixabay.com/en/
smile-laugh-portrait-close-joy-1491429/.

[23] Pixabay. Image b. https://pixabay.com/en/
family-kids-happy-people-mother-521551/.

[24] M. Satyanarayanan, R. Schuster, M. Ebling, G. Fettweis, H. Flinck,
K. Joshi, and K. Sabnani. An open ecosystem for mobile-cloud
convergence. IEEE Communications Magazine, 53(3):63–70, 2015.

[25] N. Smyth. Android Studio 2.2 Development Essentials - Android 7
Edition:. CreateSpace Independent Publishing Platform, 2016.

[26] I. VMWare. Vmware. http://www.vmware.com/.
[27] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan. A framework

for partitioning and execution of data stream applications in mobile
cloud computing. ACM SIGMETRICS Performance Evaluation Review,
40(4):23–32, 2013.

1083



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20170330081459
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



