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Abstract—The technological advance of mobile devices, net-
works and cloud technologies progressed and reduced their
access costs to the whole human population. Besides that, mobile
devices are still limited in the battery capacity, storage, and
connectivity. An efficient way to manage their resources is to
make the applications self-adaptive and context-aware using the
MAPE-K loop model. However, even this method can add a
considerable processing cost to their devices. This paper proposes
to reduce such costs by applying the computational offloading
technique into the classical MAPE-K loop. In this way, we
analyzed it based on literature evidence to find a suitable process
that allows offloading to remote and cloud servers. The results
through experimentation on the proposed model show that there
is a substantial performance increasing in the planning activity
remote executions compared to the local ones, what is also
affected by the distance from the servers.

Index Terms—Autonomic Computing; MAPE-K; Code Off-
loading; Mobile Cloud Computing

I. INTRODUCTION

Nowadays, the execution of parallel applications and back-
ground services, both with access to high-speed networks and
sensors, have been feasible to most of the new generations
of mobile devices. These factors are contributing to more
complex and highly distributed applications being studied and
built in both, industry and academy.

Despite these technological advances in mobile devices, the
ubiquity and sophistication of new applications are leading
them towards the limits of performance, storage, and energy
usage [1]. Especially concerning the battery lifetime improve-
ment, both processor and network speeds increased coarsely
one thousand fold since 2001, but typical rechargeable battery
energy density has only doubled in the same period [2]. As
most of the mobile device operations depend on its energy
capacity, a naive usage of the available resources can quickly
drain its energy. A context-aware software may drive efficient
resource management in these situations.

Even when we achieve an efficient management through
context-awareness, as the system complexity grows, the human
effort to deal with system tasks (i.e., configuration, execution,
and maintenance) and the error-prone also grow. It may esca-
late until it is virtually impossible for users and administrators
manually manage the entire system [3], [4]. A way to reduce
this human effort is making it a self-adaptive software (SAS).

A SAS aims to find better runtime configurations in re-
sponse to environmental changes [5]. This type of software

usually follows the autonomic computing reference model,
which, according to Kephart and Chess [6], it conceptually
separates the managed elements from the engine that performs
the management, also known as the autonomic manager. The
managers use an optimization process to provide an efficient
decision making. However, such process is also affected by
the growth of system complexity, what can be very costly for
resource-limited devices executing real-time adaptations.

For a better understanding of the problem, let be consider
the results presented by Pascual et al. [7]. They have executed
experiments in a smartphone LG Nexus 5 to optimize the
metrics of battery, memory, and usability by applying the
algorithms PAES [8] and NSGA-II [9]. The goal was to
analyze the optimization process. Their results showed that
the average time range from 2 to 5 seconds when considering
small benchmarks of feature models. Though, when consider-
ing a larger benchmark of feature model (i.e., 500 features),
the average time reached approximately 32 seconds.

How can we reduce the computational time and resource
cost of this process on mobile devices? In the self-adaptive
literature, many approaches exist aiming to make the optimiza-
tion process less costly. However, to the best of our knowledge,
the computational offloading approach was not used to reduce
the cost in autonomic managers for mobile devices.

The Mobile Cloud Computing (MCC) research field has
shown results in the reduction of processing time and energy
usage in mobile devices for processing-intensive applications
through of offloading functions to an external computer with
higher processing capacity (e.g., cloud, cloudlet) [10]. To
exhibit its advantage, Ha et al. [11] demonstrate experiments in
ideal conditions for two intensive functions using a mobile de-
vice Samsung Galaxy S2. To augmented reality functions were
measured the average energy usage of 1.1 J (Joule) offloading
to a Cloudlet, 3.1 J to the closest Amazon computational cloud,
and 3.3 J executing only in the mobile device. For face recog-
nition functions a more significant difference was measured
considering the average energy usage: 5.4 J offloading to a
Cloudlet, 6.6 J to the closest Amazon computational cloud,
and 16.4 J executing only in the device.

These two functions are typically used as specific parts of
applications, and they can affect the overhaul performance of
the whole application if not offloaded. Similarly, the before
mentioned optimization process can cost a substantial process-
ing time and battery to its mobile device, and it is a part of the
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MAPE-K’s planning activity. Thus, it is intuitive to infer that
this process also can be remotely executed to use less local
resources and time. Although, would be advantageous offload
the optimization process of the autonomic manager?

To answer such a question, in the present work we propose
an extension of the MAPE-K architecture aiming to verify the
viability of the offloading technique applied on the autonomic
manager optimization process. As our focus is to evaluate it
in ideal conditions, we do not approach the decision-making
module to offload in this paper in a dynamically way.

For that, the paper is organized as follows. In Section
2 reviews the background of offloading and self-adaptive
systems. Section 3 discusses the related works that treat the
space complexity from the planning activity. Section 4 presents
an offloading model incorporated into the autonomic manager
model. Section 5 shows the proof-of-concept, preliminary
experiments; as well the results discussion. Section 6 discusses
the conclusion and future works.

II. BACKGROUND

In this section the basics of Self-Adaptation and Mobile
Cloud Computing are addressed, both are used to compose
the approach presented in Section 4.

A. Self-Adaptive Systems
Self-adaptive systems (SAS), also referred to as autonomic

computing, is the research area that seeks to treat the growth
of system complexity by making them monitoring itself and
the operational environment, taking appropriate actions when
circumstances change [6], [4]. The model usually separate
the managed elements from the autonomic managers, which
perform the management.

Each autonomic manager allows adaptation through four
activities/steps: monitor, analyze, plan and execute, all of them
with access to a knowledge base. These activities and the
knowledge base comprise an adaptation control loop model
known as MAPE-K. In the monitoring activity, elements
collect relevant data via sensors to reflect the current state
of the observable system, including the managed elements.
In the analyzing activity, states are monitored and evaluated;
if undesired states are detected, one or more new (desired)
target states are specified. The planning activity decides the
necessary steps to adapt, moving the software towards the
desired state; it usually is done through techniques of planning
and optimization. The execution activity performs the decided
adaptation actions into the managed element through actuators
or effectors [12].

B. Mobile Cloud Computing and Mobile Edge Computing
Mobile Cloud Computing is the research area that integrates

the cloud computing technology with mobile devices to make
them resource-full regarding computation power, memory,
storage, energy and context awareness [13]. For this purpose,
the MCC uses computational offloading operations to migrate
resource-intensive functions from mobile devices to more
resource-rich computers located in the cloud [14].

In this way, a process is expected to perform better in the
cloud infrastructure than a mobile device. However, the net-
work access delay between the device and the cloud has also

to be taken into consideration, since the cloud infrastructure
can often be physically far from the device, and further it is,
longer is the access delay.

Mobile Edge Computing (MEC) is an emerging paradigm
that brings substantial computing and storage resources at the
edge of the network, close to mobile devices or sensors, what
allows lower latency times for operations as a computational
offloading compared to those performed on cloud servers [15].
These closer computers are variously referred in the literature
as cloudlets, micro datacenters, or fog nodes [15].

However, not all functions have advantages to being of-
floaded into external computers. Even those who do it, the
variations in the operating environment are recommended to
be considered by them. Otherwise, they can lead to poorer per-
formance than local executions. Some examples of unfavorable
conditions are: (1) when the device does not have the network
connection, and (2) when the latency is higher than the local
execution time. For these reasons, an engine is usually used to
evaluate the conditions and decide whether is or not favorable
to execute the offload operation [10].

III. RELATED WORK

The MAPE-K planning activity performs the generation
of configurations for decision making. Ideally, an optimal
configuration generated by an exact algorithm would be the
best; nevertheless, it is a practice only for small scales of
P problems. In larger scales, when it considers all possible
combinations of actions and functional requirements, the num-
ber of configurations can become quite large; which makes it
unfeasible to evaluate all of them at runtime. As it is an NP-
hard problem, it requires heuristic approaches to achieve near-
optimal results at runtime [16], [17]. Table I presents these
approaches found in the literature of self-adaptive systems. We
selected these works by their relevance to the research field
of SAS and their similarity with the subject of this paper.

For reducing the number of possible combinations, the
works [21], and [23] use plans entirely defined in development
time. At runtime time, they make decisions by using action
policies, which also must be previously defined. Differently,
Rouvoy et al. [18] reduce the configuration space by chosen
a subset of all possible combinations of development time,
which is evaluated in real time through a utility function.
However, to ensure that such set comprises the optimal values
according to the defined objectives and all the possible context
changes that can occur in real time tend to become harder
to identify in development time as the space of possible
configurations increases.

The works [19], [27], [20], and [22] use a method partially
at runtime. Saller et al. [19] reduce the spatial complexity of
the possible configurations and contexts by using development
time steps based on the results of runtime steps aiming to
apply algorithms closer to the exact ones. Alfrez et al. [22]
use semantic logic rules refined on development time to restrict
the range of configurations for selection at runtime. Similarly,
Rosa et al. [20] use off-line steps to analyze the performance
of the rules, excluding those who does not reach the goal.
Although, at runtime, they allow to chose the performance
evaluation of all rules against the context changes by brute
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TABLE I
RELATED WORKS

Approach Year Generation of Configuration Analysis Technique Optimization Mechanism
[18] 2009 Development time Utility function Brute search and heuristic
[19] 2013 Partially at development time Cost function Reduction of space configuration
[20] 2013 Partially at development time Rules (Action policies) Brute force to optimization and objective function
[17] 2013 Runtime Utility function Prediction through stochastic algorithms and heuristic search
[21] 2014 Development time Rules (Action policies) Without support
[22] 2014 Partially at development time Rules (Action policies) Objective function by using constraint logic
[23] 2014 Development time Rules (Action policies) Without support
[24] 2015 Runtime Utility function Genetic algorithm (DAGAME)
[7] 2015 Runtime Multi-objective function Multi-objective evolutionary algorithms

[25] 2015 Runtime Utility function Discrete swarm particle
[1] 2016 Runtime Cost/benefit function Prediction through stochastic algorithms and reinforcement learning

[26] 2017 Runtime Rules and utility functions Reinforcement learning and case base reasoning

force or by using heuristic search, which executes until the
first rule achieves the goal.

Despite the previous methods being alternatives from the
full generation of configurations at development time, the par-
tial generation also can be a time-consuming task, since it still
requires human participation. Furthermore, it is still difficult to
predict which configurations will include the optimum values
based on the defined objectives and all the possibilities of
context changes.

Otherwise, the works [17], [7], [24], [25], [26], and [1]
generate the configurations at runtime, once specified the
environment model. All of them use heuristics to find appro-
ximations of the optimal configurations, avoiding the needed
for human participation in the adaptation policy refinement.
To evaluate their environment, they perform, in the analysis
activity, functions to express quality values in the form of
fitness, cost, or utility, allowing the search for better results.

Specifically, the works [17], [7], [25], [26], and [1] use those
functions to solve multi-objective problems by looking for se-
lected configurations that meet non-functional requirements of
many resources at runtime. However, these types of solutions
tend to have scalability issues due to the growth of goals and
actions, which is especially worrying in resource-contained
devices such as mobile devices.

Although these works tried to make a complete optimization
and configuration generation in the planning phase, the smart-
phone has resource limits to execute such techniques, what
restrict their possibilities of applications. As we mentioned in
the introduction, the computational offloading technique can
increase the performance of resource-intensive functions, and
it can be an alternative to overcome the resource limitation.
However, to the best of our knowledge, none of the related
works tried to apply it aiming to improve the time performance
of the planning phase. Then, to expand the perspective of
these works, we propose in the next section a novel model
to explore the new possibilities and limitations of applying
such technique.

IV. MODEL

Figure 1 illustrates the proposed model based on the MAPE-
K loop. To distinguish the classical model from the one
proposed in this section, we use the term phase instead of
activity. The process starts at the monitoring phase, which
collects contexts from the environment and managed elements,

generating events. The analysis phase processes such events,
firstly, to identify if any reconfiguration criteria are satisfied,
stopping the process if no adaptation is needed. Otherwise,
it decides whether the computational offloading criteria is
satisfied. It results in two possible planning executions: (1)
when not satisfied, the planning phase is executed locally at
the host device, otherwise, (2) the planning is offloaded to
a remote server. In both cases, a selected configuration is
sent to the device’s execution engine to apply the required
changes at the managed elements. All these steps have access
to a knowledge base, which contains all previous loaded
environment models and information that are used to assist
the runtime reconfigurations.

From the aforementioned process, it is important to high-
light that the alterations added to MAPE-K loop focus on the
analysis and planning activities. Thus, all other activities per-
formed in the classic model, and their variations that preserve
the original purpose, can be adapted for the context presented
by this paper. On the other hand, despite the knowledge base
being unaltered in our proposed model, in its implementation,
its information still needs to be evaluated and replicated in
the remote server related to the planning phase to reduce data
transported by the network in runtime. Sections IV-A and IV-B
present the proposed modifications in more detail.

A. Offloading decision process
The offload decision process was added to the analysis

activity of the original MAPE-K loop, right after an adaptation
request occurs - i.e., in the “Is offloading criteria satisfied” box
from Figure 1. It is particularly relevant to be considered on
the model because not all situations benefit from perform-
ing a computational offloading. For example, the unstable
bandwidth of wireless networks and intermittent connections
can reduce the gains derived from using offloading what can
lead to worse execution times compared to local executions
[10]. Also, the heterogeneity of devices and cloud servers is a
significant matter of concern to the decision process, once it
is available in the market hardware from low-cost to the more
expensive and high-technological.

In this way, for real-world applications, there is no doubt
that the context-awareness is needed to ensure a better
decision-making process [1]. However, proposing a state of
the art decision process requires its own research and ex-
perimentation, as it is found in the survey of Bhattacharya
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Fig. 1. Proposed general model of the autonomic manager with computational offloading support

and De [10]. Thus, since our contribution is to validate
the proposed model and evaluate the computational (code)
offloading technique performance of the optimization process
of the MAPE-K planning activity in ideal conditions, for the
sake of our evaluation, a naive approach is used. That is, when
the offloading feature is enabled, it will always perform the
offloading process; otherwise, it will perform the local process.

B. Optimization Process

At the planning phase, some of the previously mentioned
related works apply an optimization mechanism at runtime to
achieve better configuration plans. Among them, the works
[17], [7], [25], and [1] use the optimization functions to solve
multi-objective problems by looking for selected configura-
tions that meet non-functional requirements of many resources
at runtime. However, these types of solutions tend to have
scalability issues due to the growth of goals and actions, which
is a matter of concern in resource-contained devices.

To address this issue, we propose the use of the computa-
tional offloading technique in the planning activity optimiza-
tion process for configuration generation, which is the most
resource-intensive process from such model. This affirmation
is based on the result times presented in Pascual et al. [7] that
ranged roughly from 2 to 32 seconds according to the feature
model used in the performance evaluation.

To better understand our approach, Figure 2 illustrates
the proposed modification for offloading the optimization
mechanism presented by Pascual et al. [7], which uses
Multi-Objective Evolutionary Algorithms (MOEA). As before-
mentioned, the analysis phase has to choose between local
(light gray) and remote (dark gray) execution. Both pro-
cesses need parameters to execute and generate a set of valid
and optimal Feature Model (FM) configurations considering
multiple objectives. The set is evaluated by the autonomic
manager’s decision-making process to find an appropriated
configuration to the adaptation. It is executed locally to allow
a more flexible decision-making process. Thus, applications
can prioritize different objectives depending on their current
contexts. For example, if the device is running on low battery
power, the application can prioritize the configuration that
best saves device’s energy. Otherwise, if such device is fully
charged, it is likely to choose a balanced configuration from
the result set. Once the configuration has been selected, the

Autonomic Manager’s
Execution Phase

Autonomic Manager’s Planning Phase

Optimization 
Process

By MOEA

Decision 
Making

Set of Valid 
and optimal FM 
configurations

Set of Valid 
and optimal 
FM configurations

Selected 
configuration

Local 
Execution

Remote Server
Remote

Execution Optimization 
Process

By MOEA

Fig. 2. Example of autonomic manager planning phase with offload support

Autonomic Manager’s Execution phase can reconfigure the
managed elements.

The main difference from remote execution to the local
one is that it requires data transportation to execute the
optimization process and return its results to the mobile device
for decision-making. Thus, evaluating the data dependence
of the offloaded algorithm can lead to better performance,
because some of the required data may already be located
on the server at the time of the computational offloading.

To illustrate it with more detail, Algorithm 1 presents the
NSGA-II pseudocode with the Fix operation added by [7]
in the original version of the algorithm [9] to avoid that
configurations violate the FM constraints by fixing them. Such
algorithm requires at least the specification of the parameters
psize, pcrossover, pmutation and evalmax. Psize determines
the size of the population; the pcrossover is the reference
to which crossover method is going be used; pmutation
indicates which mutation method is applied to the populations,
and evalmax determines the maximum number of evaluated
generations. They all are integer parameters and do not add
much data to network transport; so they can be transported on
the fly to the server.

In the case of [7], an FM must be specified to generate a
new solution (line 4), select new configurations (line 13), and
perform Fix operations (lines 5 and 16). Since FMs usually
do not change at runtime, they can be previously located on
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Algorithm 1 NSGA-II with the fix operator proposed by [7].

Require: psize, pcrossover, pmutation, evalmax
Ensure: PF (a set of non dominated solutions)

1: P = ∅
2: evaluations = 0
3: for i = 1 to Psize/2 do
4: s = NewSolution()
5: s = Fix(s)
6: EvaluateFitness()
7: evaluations = evaluations+ 1
8: P = P + s
9: end for

10: while evaluations < evalmax do
11: PO = ∅
12: for i = 1 to psize/2 do
13: parents = Selection(P)
14: offspring = Crossover(parents, pcrossover)
15: offspring = Mutation(offspring, pmutation)
16: offspring = Fix(offspring)
17: EvaluateFitness(offspring)
18: evaluations = evaluations+ 1
19: PO = PO + offspring
20: end for
21: P = P ∪ PO
22: RankingAndCrowdingDistance(P )
23: end while
24: PF = BestFront(P )

the server at development time. Thus, just the identification
can be transported at runtime instead of a whole model. For
the fitness evaluation of the configurations (lines 6 and 17),
a fitness function is required for each FM. These functions
can also be previously loaded on the server; however, in the
applications that need to change them at runtime, a better
strategy is to upload them from the device.

All the aforementioned FMs as well the cross-tree con-
straints used in the Fix operations are located on the knowl-
edge base and are used in both the remote server and the local
device. These models are examples of parts of the knowledge
base that after evaluated can be replicated into the remote
server to reduce data sent by the network in real time.

Finally, in the case of the autonomic manager optimization,
the current configuration is usually used as initial population
for the algorithm. This occurs to challenge the current config-
uration, what add more chances to get better results than the
already obtained. In this way, the current configuration can
also be transported to the server at runtime to replace the new
configuration at line 4.

V. ENVIRONMENT SETUP

A. Implementation and infrastructure

The model was implemented as an extension from MO-
DAGAME1 proposed by Pascual et al. [7]. The MO-DAGAME
is a framework based on the JMetal framework with the
focus on Dynamic Software Product Lines problems using

1http://caosd.lcc.uma.es/projects/famware/tools.htm

feature models. The available Android code was extended to
support both offload and local execution in mobile devices.
The available source code to desktop was extended to act as
an offload server built using the Java language, receiving by
socket connections the input data in JSON (JavaScript Object
Notation) format. The extended codes are available in our
repository on github2 under the GPLv3 license.

The infrastructure used in the experiments is composed of
smartphones and servers connected by a dedicated D-Link
DIR-615:T1 wireless router. Table II shows the specifications
of the smartphones, labored by letters A and B. Their hardware
and software differences are used to reduce the evaluation
bias, and they are not proper to compare themselves. It is also
important to note that our focus is comparing their processing
time with those from the remote servers.

As remote servers to process the offloading operations, we
used two computers with the OS Ubuntu 16.04 64 bits. The
first computer is a virtual machine F2 of the nearest Microsoft
Azure Cloud service (CS), located in the South of Brazil. The
second computer is a dedicated remote server used to simulate
an environment of Mobile Edge Computing, which we label
as Edge Server (ES). Table III detail their hardware.

B. Algorithms and data input
The algorithms and the data described in this section are

based on those presented in [7]. Each line informs the FM
name, the number of features and the number of possible
configuration results. For the evaluation, we selected nine
feature models, as showed in Table IV. From 1 to 8 are
real-world feature models, including FMs specifics for mobile
devices (5, 7 and 8). However, the FM 9 is one of the
benchmarks randomly generated from SPLOT3 and include
more features than those found in the other FMs.

For the evaluation, each FM uses three optimization objec-
tives as attributes. By considering them, the framework should:
maximize the usability, minimize the battery consumption
and minimize memory usage. Each of them can assume the
following values:

• Usability measures, among others, how easy and satisfy-
ing to use is the application. It takes real values between
0 and 10, according to a normal distribution;

• The Battery consumption introduced by the feature, mea-
sured in milliamps. It takes real values between 10.0 and
20.0 according to a normal distribution;

• The Memory footprint, in megabytes, introduced by the
feature. It takes real values between 0.0 and 10.0 accor-
ding to a normal distribution.

As they do not change at runtime, both FM and its objective
functions are available on the server and the mobile device
in development time. In this way, they are loaded without
the need of data transportation to perform the optimiza-
tion process. For the evaluation, we chose the two faster
Multi-objective Evolutionary Algorithms from MO-DAGAME
framework to mobile devices presented by Pascual et al. [7]:
(1) Nondominated Sorting Genetic Algorithm II (NSGA-II)
[9]; (2) Pareto Archived Evolution Strategy (PAES) [8].

2https://github.com/gaborges/MO-DAGAME-Offload
3http://www.splot-research.org/
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TABLE II
SPECIFICATION OF THE SMARTPHONES USED IN THE EXPERIMENTS

Label Model Operational System CPU RAM
Smartphone A Moto E2 (2015) Android 5.1.1 Quad-Core 1.2 GHz ARM Cortex-A7 1 GB
Smartphone B Moto G5 Plus (2017) Android 7.1 Octa-Core 2.0 GHz ARM Cortex-A53 2 GB

TABLE III
SERVERS’ HARDWARE SPECIFICATION

Label CPU RAM Storage
Cloud Server (CS) 2 cores of a Intel Xeon E5-2673 v3, 2.4 GHz (3.2 GHz Intel Turbo Boost) 4GB SSD (Solid-State Drive) 32GB
Edge Server (ES) Intel Core i5-4460 with 4 cores, 3.2 GHz (3.4 GHz Intel Turbo Boost) 16GB HD (Hard-Disk) 1TB

TABLE IV
FEATURE MODELS FOR EVALUATION

Name Features Possible Configurations
1 x264 17 2048
2 Wget 17 8192
3 Berkeley DB Memory 19 3840
4 Sensor Network 27 19152
5 Mobile Game 33 9198
6 Tank War 37 1,741,824
7 Mobile Media 43 2,128,896
8 Mobile Visit Guide 51 33,800,000
9 SPLOT-3CNF-500 500 3.779e15

Furthermore, in order to improve the quality and reliability
of the solutions generated by these MOEAs, we also have
applied a seeding technique used by [7], which in our approach
works as follows:

1) A valid configuration (the seed), which includes around
50% of the features in the FM, is pre-computed for each
FM. They are initially located into the mobile device,
however, when an offloading operation is performed, the
respective FM seed is transported to the server;

2) The initial population is filled using the seed: (a) A
mutation is introduced in the seed. (b) The resulting
configuration is repaired using the fix operator. (c) The
fixed configuration is added to the initial population.

We applied the following parameters for all algorithms. The
Single-Point Crossover parameter for executing the crossover
operator, with a crossover probability of 0.8. The BitFlip
Mutation operator with a probability of 0.1 was applied for the
mutation. The number of allowed fitness evaluations is 5000,
and the population size is 100. Specifically to the PAES, the
parameter of archive size is 100, and the bisections are 5.

As the objective of this paper is not tuning the values to
improve the performance of particular algorithms and FMs,
we compare the local and remote executions using default
parameter values.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results from the
modification of the planning phase and discuss the limitations
of the proposed model. Table V shows the average execution
time results in milliseconds, where each line represents the
combination of the mobile devices (MD) with an algorithm
executed locally, in the CS or in the ES. The columns from 1 to
9 represent the evaluated feature model. The average execution

Local Cloud RS

Smartphone A
Smartphone B

0
10

00
20

00
30

00

840.5

119.4 122 61.9 54.4

3169.2

Fig. 3. Summary of the average execution times in milliseconds from the
FM 2 using the algorithm NSGA-II

time was calculated using the function “summarize” from the
R language based on 100 independent runs.

As expected, in the evaluation that only considers the local
execution, the high-technological smartphone B has better
performance than the low-cost smartphone A.

By considering the local execution results, it is possible to
note that the algorithm NSGA-II has better processing times
in most cases than the algorithm PAES for the used FMs.
Despite this, they are both slow when compared to the remote
execution times. As they are the fastest algorithms from the
MO-DAGAME benchmark [7], we can infer that the remaining
ones can have a speed up when offloaded.

In both cases, the remote executions show performance
improvement. For the sake of argument, we selected the
fastest local average execution times from Table V using the
algorithm NSGA-II, which belongs to the FM2. Figure 3
summarizes them with the corresponding CS and ES execution
times. When we compare these local results to the results from
the CS, we measure a speedup of 6.88 times to smartphone B
and 26.54 times to smartphone A. On another hand, When we
compare the same local times to those of the ES, we measure
a speedup of 15.44 times to smartphone B and 51.17 times to
smartphone A. This happens because both remote servers have
more processing capacity and fewer limitations on storage and
memory than both smartphones.

Besides the heterogeneity of hardware, software, and ma-
nufacture among the smartphones used in the experiment,
the results showed that they present a similar behavior when
offloading to a remote server. That is, all offloading processing
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TABLE V
AVERAGE TIME OF THE EXPERIMENT’S RESULTS IN MILLISECONDS (MS)

MD Execution 1 2 3 4 5 6 7 8 9 Algorithm
A Local 3192.49 3169.26 3429.43 3961.05 4329.04 4625.00 5124.90 5615.28 55395.39 NSGA-II
B Local 851.21 840.50 904.05 1076.99 1177.04 1262.14 1417.94 1563.32 19368.03 NSGA-II
A CS 142.39 119.40 125.58 147.87 164.32 171.33 195.51 195.73 1836.23 NSGA-II
B CS 140.93 122.04 149.91 149.15 165.90 175.85 200.86 211.39 1842.20 NSGA-II
A ES 88.98 61.93 64.18 94.83 79.57 101.83 116.16 120.25 1524.06 NSGA-II
B ES 66.46 54.43 61.02 78.54 96.49 100.98 118.34 118.47 1529.62 NSGA-II
A Local 3699.99 4722.11 3463.69 5904.09 5045.67 5107.39 5243.13 6266.90 52906.77 PAES
B Local 1325.22 1775.04 1173.59 2096.18 1709.73 1743.49 1736.89 2029.93 18152.89 PAES
A CS 244.87 226.55 168.87 272.04 232.31 235.56 246.70 283.50 1797.98 PAES
B CS 198.10 215.85 189.59 260.51 231.74 249.51 240.56 261.34 1789.46 PAES
A ES 109.83 117.28 85.70 163.09 136.89 138.34 153.86 168.73 1416.34 PAES
B ES 100.84 118.38 91.72 151.15 139.46 137.11 146.98 155.94 1402.85 PAES

TABLE VI
AVERAGE LATENCY TIME OF OFFLOADING OPERATIONS IN MS

FMs Minimum Average Maximum SD Target
1-8 62.20 88.79 5110.71 99.11 Cloud
9 124.98 268.05 5335.07 215.48 Cloud

1-8 5.92 17.29 3173.31 50.48 ES
9 14.42 110.96 3221.49 176.34 ES

times to the same remote servers among all experiments have
fewer execution time variations when compared to local ones.
It happens because the hardware in the servers is always the
same to all smartphones. In this way, we can infer that the
processing capacity of each server plus the network latency
time define most of the offloading execution time.

The latency time is a relevant information about the com-
parison among the remote servers, which is the network delay
time caused by the distance between end-to-end pairs. For
the CS, it is higher than for the ES because the CS is more
centered and far away from the requester than the ES. For
more detail, see Table VI, which shows the minimum, average,
maximum and standard deviation (SD) of the latency time,
analyzed by the method summarize from the language R. We
separated the processed sets in two group of FMs, 1-8 and 9.
Once the FM 9 has far more data from its current state to send
by the network than the others, merge all of them would add
bias to the evaluation. The results confirm the expected lower
latency of the ES experiments due to its closer distance from
the smartphones.

However, there is still a difference in the execution times
between both servers that are greater than the latency time. It
can be explained by the difference of hardware among them,
where the ES can processing 3.4 GHz and the CS 3.2 GHz
by using the Turbo Boost Technology. Also, as the ES is not
virtualized, it does not add the virtualization overhead in its
times as the CS does. As the process of optimization was
executed in memory, the difference of SSD in the CS does
not seem to have influenced in the processing time.

A. Discussion and Limitations

As general guidelines, the results presented in this paper
show that the proposed model exhibits a performance increase
in ideal conditions when performing the offloading operations.
These results validate our model, nevertheless, it is necessary

to highlight that this is the first model witch explores such
technique to decentralize the adaptation logic of the MAPE-
K model, so further investigations are needed to find the
possibilities of derived models, frameworks, and middleware.
In time, it will benefit the resource usage management in
resource-constrained devices as we can find in the pervasive
and mobile environment.

Considering the offloading technique, the latency time
added to the response times can lead to worse response times
when an offloaded function has to communicate often to obtain
the desired result. It is particularly worrying for far away
servers as can be found in some cloud computing scenarios.
The ideal situation is that the needed data, such as the user
profile history, should be transported to the server before its
offloading operation. In these scenarios, we can use the moni-
toring pattern presented in [28], which is easier to implement
in cloud servers due to its centered characteristic. However,
the implementation in the MEC server needs a more complex
deployment due to its restricted coverage and decentralized
nature, which leads to the need for mobility management of
the monitored data to perform offloading operations. Thus,
experiments are required to evaluate the cost of transporting
this data using such pattern in both cases.

We achieved positive results due to some facts: the optimiza-
tion process of the Planning activity being a computational-
intensive function, that - after the analysis in the Section
IV-B - can be remotely executed without intermediate data
dependencies, and it was implemented (and deployed) in an
ideal environment to offloading operations. Unfortunately, the
real-world is far from always being a perfect environment to
offload. However, we needed to consider it to validate the
problem and the model before being justifiable the usage
of a more sophisticated decision-making mechanism on it.
As explained in the Section IV-A, it was not the focus
of this paper, also because it requires proper research and
experimentation.

The scalability of the offloading operations on the server
side is also a major topic to be evaluated in future research.
The reason for this happens because there are conditions in
the real-world environment that both of our remote servers
do not always will show better time results than the local
ones. For example, multiple concurrent clients can access the
same server, overloading it and increasing the response time.
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Also, if this server is capable of processing different types
of offloading operations, even if they focus on using other
resources (i.e., CPU, memory, i/o,...), they still can interfere
in the others offloading operations.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a modification of the MAPE-
K loop architecture to support the computational offloading
technique for resource-poor devices, such as smartphones,
tablets and the Internet of Thing devices. To evaluate this
approach, we extended the framework and benchmark MO-
DAGAME to allow computational offloading to cloud and
remote servers.

Through experiments in ideal conditions, we have veri-
fied the viability of this technique applied to the autonomic
manager’s optimization process. The gathered results showed
that there is a significant performance improvement by using
the proposed approach in both ES and cloud servers. We
also confirmed the low-latency characteristic of the ES over
the cloud with similar processing capacity, which can benefit
latency-sensitive applications.

The proposed model opens new possibilities to explore
combinations of the self-adaptation processes and computa-
tional offloading techniques to reduce the resource usage on
resource-poor devices. In future works, we intend to evaluate
the scalability support of the approach in the cloud computing
and MEC environments, as well as consider the concurrency
with other applications. The mobility is also a significant
concern, specifically to MEC. We also intend to seek out
a more efficient and context-aware decision-making process,
which is a real-world requirement for resource management.
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