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Abstract—Recently, the development of Unikernels, extremely
light operating systems constructed exclusively for virtualized
environments, has emerged as another alternative to cloud
platforms. Unikernels encourage new paradigms and provision-
ing techniques, such as immutable servers and microservices.
This paper proposes an optimized architecture for Unikernels
provisioning in OpenStack. The architecture is based on OSv
Unikernels and experiments demonstrated that it can attain
satisfactory results, reducing the time of the entire deployment
workflow, from the compilation to the initialization of the
Unikernels in the compute node.

I. INTRODUCTION

The concept of immutable servers [1] has emerged as a

practice to solve problems inherent in configuration deviations

arising from systemic changes in environments [2], [3]. The

main characteristic desired in a context of immutable instances

is the agility in the reconstruction of systems in order to

guarantee a reliable state. From this point of view, any change

linked to the service or upgrade configuration implies in the

complete restoration of the system with new images, thus

avoiding the accumulation of configuration residues. Once put

into production, an instance is never altered; but replaced. This

method takes advantage of application architectures evolution

to a new paradigm, in which systems formerly composed

of a set of components allocated in dedicated machines, are

redesigned into smaller, specialized and easily maintainable

services. This microservices-based architecture [4] enhances

elasticity, portability, scalability, and fault isolation.

At the same time, lighter virtualization mechanisms are

being developed as alternatives to popular operating systems

running on hypervisors [5], for instance, Linux Containers

and Unikernels [6]. Containers, as well as traditional virtual

machines, rely on heavy images depending on the application.

In a cloud environment, these images need to be downloaded

and imported to their provisioning destination. Assuming that

an application is made up of many services, this transfer and

handling time is expected to increase when these services are

provisioned at the same time. Likewise, although Unikernels

have an extremely lightweight architecture and small image

size, they can still be impacted depending on the number of

services or instances provisioned simultaneously.

This paper proposes an optimized architecture for Uniker-

nels provisioning in OpenStack. The architecture is based on

OSv [7] and focus on reducing the provisioning time when

deploying several instances. Based on the immutable feature

of unikernels, where images are always rebuilt under the need

of changes, the compilation time and image transfer must be

included in the total provisioning time. The proposed archi-

tecture is evaluated and compared to the default OpenStack

driver.

II. UNIKERNELS PROVISIONING ARCHITECTURE

Based on the modular architecture of OpenStack, the archi-

tecture core is based on a driver for distributing Unikernels

on the cloud platform. This work involves a design to take

advantage of the main benefits of the Unikernel architecture

for accelerating the provisioning of service stacks. A Unikernel

represents an immutable appliance, which, once compiled, has

an image that is not modified on any aspect, either in terms

of service configuration, or modifications in libraries. Thus,

the reprovision of one or more services requires the complete

reconstruction of the images and their subsequent deployment

flow in the cloud, which comprises the following steps:

1) Image compilation;

2) Sending images to the storage service (Glance compo-

nent in OpenStack);

3) Copying images to destination machine (a compute

node);

4) Provisioning the new images in virtual instances;

This provisioning model presents bottleneck points depend-

ing on the available network and computing resources. With

the increase in provisioned services, there is an increased use

of the network link between the image storage service and the

computing nodes. Similarly, Unikernels require a location to

be rebuilt, which would normally be accomplished by a client

server outside the cloud. Although Unikernels produce small

size when compared to traditional images, such as Linux, the

increase in the demand for services tends to cause a gradual

increase in the consolidated size of the images that will be

provisioned. Moreover, the reconstruction of a service stack

also involves the reconstruction of these images.

From these observations, an architecture was designed based

on a version control system, with the reconstruction of the

images occurring inside the node where they are provisioned

(Figure 1).
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In this image, Glance replaces the images physical storage

by the reference to the version control repository correspond-

ing to each Unikernel. This reference is then queried by

the driver for the pull execution in case of changes. Each

computing node contains a Git server, responsible for storing

Unikernel codes (Unikernel repository). Hence, the Glance

project was modified to accept these addresses instead of the

name of the images, keeping the unique identifiers already

used by the platform (Table I).

OpenStack�

Compute Node�
Control Node�

Nova Compute�

Glance�

Unikernels 
Repository 

Unikernel� �Driver�

reference�

Unikernel01�

Unikernel02�

Unikernel03�

U
Provisioning�

Nova API�

Fig. 1: Proposed Architecture

Identifier Name
63c62fb4-3d9a-47a2-992e-26051982e865 git@10.32.45.217:/opt/git/apache-spark

101156bd-b4da-4473-b9cb-31e1c11cd314 git@10.32.45.217:/opt/git/apache-zookeeper

c8db95fc-8534-4a32-ae9a-9748988b1e90 git@10.32.45.217:/opt/git/haproxy

TABLE I: Unikernels repository references in Glance

Due to the utilization of OSv, images are based on the

QCOW2 format. Therefore, the driver extends the functionality

of libvirt Driver, already prepared for this type of image.

In this way, the optimized driver is responsible for pulling

the Unikernels code, compiling and converting to the RAW

format. Then, libvirt driver is called, resizing the image for

the chosen template and converting it back to the QCOW2

format, in the instance directory that will be provisioned.

In the event of competition in the provisioning of a single

Unikernel, a synchronization mechanism was inserted on the

method responsible for checking changes in the repository and

reconstructing the image, if necessary. This synchronization

uses the oslo concurrency library, native to OpenStack and

used to control the concurrency between threads and processes

of all platform projects.

The platform already has a native disk caching mechanism

for images copied from the Glance service. Therefore, the

images resulting from the compilation, in RAW format, are

recorded at this location for subsequent provisioning. These

images have the same unique identifier represented by a

hash, generated at runtime by the Nova API. However, the

Unikernels repositories cloned from Git, are stored in a

separate location, defined as the driver configuration parameter

(Listings 1).

The Unikernels cloned and placed in Git remain on disk

for change checks in the remote repository; the artifacts are

retained for later incremental rebuilds. Each project is stored in

a named directory with the identifier of the Glance repository,

already presented in Table I. In this way, Unikernels of the

same name, but from different sources, can be provisioned

independently.

c f g . S t r O p t ( ’ r e p o b a s e ’ ,
d e f a u l t = ’ / o p t / s t a c k / d a t a / U n i k e r n e l ’ ,
h e l p = ’ U n i k e r n e l s r ep o p a t h ’ ) ,

Listing 1: Configuration of Unikernels repository path

A. Resource isolation
To prevent the Unikernels compilation interference to the

creation of virtual instances, the driver was written with

API access to Control Groups, native in the Linux kernel.

Therefore, each compilation process is started respecting pre-

configured limits of memory and CPU. These settings are

entered as input parameters for the driver in the overall

configuration of the Nova project. (Listing 2).

c f g . S t r O p t ( ’ c o m p i l e c o r e l i m i t ’ ,
d e f a u l t =10 ,
h e l p = ’ P e r c e n t a g e o f CPU s e r v e r t o t a l

c a p a c i t y ’ ) ,
c f g . S t r O p t ( ’ compi le mem l imi t ’ ,

d e f a u l t =2000 ,
h e l p = ’Memory used f o r c o m p i l a t i o n i n

Megabytes ’ ) ,

Listing 2: Limit configuration of memory and CPU for

compilation

The hierarchy defined for the compilation is shown in

Figure 2. The stack group has recursive permission settings

for the user who owns the OpenStack processes; while the

osv subgroup was created only for the compilation processes,

inheriting the attributes of the stack group. This design allows

other subgroups to be created next to the osv group in an

independent way, since different Unikernels architectures can

be implemented and abstracted in the same driver in future

works.

�

Control Groups�

CPU�  Memory�

/stack�

/osv�

Fig. 2: Control groups hierarchy for Unikernels compilation

When started, the OpenStack nova-compute service, which

manages the virtual instances, initializes the Unikernels driver,

which in turn creates the hierarchy of control groups and

applies resource constraints set by the administrator. In order

for the OpenStack process to have authorization on the creation

of control groups, a new filter file (Unikernel.filters) has been

added next to nova, which allows the execution of operating

system commands as the root user (Listing 3).
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[ F i l t e r s ]
u s e r c g r o u p s : CommandFil ter , / u s r / l o c a l / b i n /

u s e r c g r o u p s , r o o t

Listing 3: Filter for Control Groups of creation authorization

B. Image Reconstruction

The reconstruction of the images is made by the Capstan

tool, provided by OSv to build Unikernels and test execution.

Through a YAML descriptor, parameters are passed defining

modules dependencies, configuration files, startup command

and the compiler used. Once this process is called by the

driver, its identifier (PID) is inserted into the control group of

the isolation subsystems already described. Thus, the Uniker-

nel is compiled with the desired amount of resources (Listing

4). This operation is done through the add pid to cgroup

function, which is inserted into the execute method, which in

turn encapsulates operations performed within the computing

node’s operating system.

Capstan is written in the Go language, and its code has

been modified so that instances can be compiled concurrently.

By default, OSv depends on the ZFS file system [8] for the

internal storage of configuration files and application binaries.

After the compilation step, the Unikernel image is mounted

locally so that these files are copied. This is done using the

qemu-nbd tool, which is used to manipulate QCOW2 images.

However, this process opens a socket on port 1099 for client

access. Since compiling Unikernels can occur in parallel, the

code has been changed so that each build process uses a

distinct port and there is no access conflict.

d e f a d d p i d t o c g r o u p ( ) :
p i d = os . g e t p i d ( )
s e l f . cg . add ( p i d )

u t i l s . e x e c u t e ( ’ c a p s t a n ’ , ’ b u i l d ’ , image name ,
p r e e x e c f n = a d d p i d t o c g r o u p ,
e n v v a r i a b l e s = d i c t ( e n v i r o n ,

CAPSTAN ROOT= b a s e d i r ) ,
cwd= U n i k e r n e l r e p o )

Listing 4: Resource isolation during compilation code

III. EVALUATION

In order to evaluate the proposed architecture, two use cases

were defined for the load tests:

1) Differential provisioning: Provisioning from the recon-

struction of a set of service images. With this test,

we sought to identify the efficiency in provisioning

time using the optimized driver under a Unikernels

modification scenario.

2) Provisioning with cache: Provisioning without changes

to images, using the caching mechanism of the platform.

This was intended to evaluate the overhead of the driver

developed when compared to the default driver.

In this stage of evaluation, a load composed of 10 Uniker-

nels was constructed, representing real services and with

different image sizes. Although Unikernels are recognized as

small systems, the size of its images vary according to the

size of the compiled service (Table II). This heterogeneous

provisioning was necessary to show that the sum of a large

number of services tend to impact the concurrent provisioning.

As a premise for the optimized driver, each Unikernel had its

own Git repository created and its code sent to the computing

node.

Service Image Size ID
Apache ActiveMQ 151M 1
Apache Zookeeper 140M 2

Apache Spark 368M 3
Cassandra 118M 4
HAproxy 29M 5

Service Image Size ID
Memcached 29M 6

Redis 31M 7
Solr 133M 8

Tomcat 111M 9
MySQL 36M 10

TABLE II: Used services in the experiments

For the concurrent start of independent services, the Heat [9]

service was incorporated into the Rally tool. Heat is an Open-

Stack project for orchestration of virtual instances, whereby

different images can be provisioned in parallel, simulating

an application formed by a set of services. For comparison

purposes, the tests were run with the developed driver and the

default OpenStack driver. The GNU Parallel tool[10], which

enables setting entry tasks for simultaneous execution, assisted

in the collection times that are not part of the platform’s scope.

These values refer to the time of reconstruction of the images,

the transport of these images to Glance and the modifications

of the Unikernels transferred to the Git Server.

A. Differential provisioning

This case begins with the premise of a reconstruction of

Unikernels from possible configuration changes in stacks that

are already running. Thus, all Unikernels were previously pro-

visioned at the computing node. Similarly, its images are also

already allocated in Glance for testing with the default driver.

Also based on this premise, this first experiment involves a

distinct provisioning flow for the default OpenStack driver

and the developed driver. While at the moment the Unikernels

need to be recompiled beforehand and off the platform, in

the second, the recompilation occurs during the provisioning

process started by the OpenStack API (Figure 3).

The test comprises provisioning all services concurrently. In

order to force update of the repositories, a minimal change of

configuration in each Unikernel was applied before the exe-

cutions. This change involves the exchange of a configuration

attribute for each service. In the case of redis, for example,

the client connection timeout was changed in the redis.conf

file. Figure 4 displays the results of execution.

The results showed a time saving of approximately 45

seconds of provisioning using the implemented optimization.

This represents, in total terms, an overhead of 216% of the
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Fig. 3: Comparison between the provisioning flows evaluated
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Fig. 4: Provisioning time for the service stack with the default

driver and the optimized (Unikernel)

default flow on the implemented optimization. Whereas native

provisioning requires a complete new copy of the images for

Glance and then for the computing node, the optimized driver

only copies the code changes from the local Git server. For

this reason, its provisioning is optimized inside the node.

The network consumption, in the case of the default driver,

has its impact influenced by the size of the images, whereas

in the developed driver, it has to do with the amount of

code changed. This specific test tried to show that a minimal

modification in a service does not demand a new full copy of

the image. Considering the reprovisioning of the 10 services

load, in which only one configuration item was modified per

Unikernel, it was necessary to transfer 1.2 Gigabytes of data

concurrently to the computing node. This value can be doubled

if the previous copies of the images of a client machine are

considered for Glance. On the other hand, with the optimized

driver, only the code differentials are sent to the repositories.

Because these repositories are located locally, traffic between

the image storage services (Glance) and the computing node

is eliminated (Figure 5).

B. Provisioning with cache and the Optimized driver overload

As a second experiment, we evaluated the provisioning

of services taking into account the use of images already

Fig. 5: Approximated network usage during provisioning

stored in the OpenStack cache. This test aimed to identify the

overhead of the custom driver over the default driver. Because

optimization requires a series of checks, both on repositories

and on disk, efficiency in image recreation could be affected.

In this case, we evaluated an incremental load, when the

provisioning increased from one to ten competing instances

(Figure 6).
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Driver default unikernel 

Fig. 6: Overload of optimized driver over the default driver

As expected, there is an overload in the recreation of virtual

instances. However, this overload does not show a significant

impact on total time, with an average increase of 1.5 seconds

over the default driver provisioning time. The custom driver

also proved stable and with a constant difference during the

addition of competing services.

C. Resources utilization

As a last evaluation, the CPU and memory utilization

from the computation node was collected during provisioning.

These samples were conducted using dstat tool [11] with a

margin of 5 seconds before the load startup and after finaliza-

tion. Figure 7 shows CPU usage for 60 seconds, sufficient for

initialization and removal of instances. In this first moment,

the consumption was evaluated with the optimized driver
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compiling only the differential of the Unikernels, which did

not represent some remarkable difference between the two

drivers, with a peak of approximately 16% of use. The same

was reflected in memory usage (Figure 8), with consumption

of approximately 5 GBytes at the time all instances reached

the state of execution. These results were expected, since there

were no major changes in the Unikernels codes that justified

a longer compilation time and intensive CPU.

� Default Unikernel�

�
0 10 20 30 40 50 0 10 20 30 40 50�

Elapsed Time (sec)�

0�

5�

10�

15�

Fig. 7: CPU usage (Compute node)

However, to verify the efficiency of the implementation of

CPU and memory isolation in the reconstruction of the images,

a second load was executed, forcing a complete compilation of

the Unikernels inside the node. Thus, all caches of repositories

have been removed, reproducing a scenario where the load

is instantiated for the first time. The provisioning was done

with an allocation of 12% CPU, this represents, in values,

approximately 4 virtual cores. Also 2 GB of memory was

reserved in the driver configuration. Figure 9 displays the

results.
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Fig. 8: memory usage (Compute node)

In fact, the overload can be observed at peaks around 32%,

at which time all instances are being compiled in parallel. The

same overload can be observed in the memory consumption,

around 5.6 Gbytes, evidencing an increase of approximately

600 MBytes in relation to the previous tests. This small vari-

ation of the latter is explained by the fact that the compilation
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Fig. 9: CPU and Memory utilization under stress (Compute

node)

does not need all the allocated memory. The CPU overload,

on the other hand, was fully utilized during times of increased

competition, demonstrating an increase of approximately 15%.

Still, none of the tests exceeded the resource quotas established

in the driver.

IV. RELATED WORK

Some works have been developed based on the aspects

evaluated during this research. These works can be classified

into two categories according to their study objective: (i)

Provisioning time evaluations; (ii) Optimization proposals.

In the second category are techniques for provisioning time

optimization related to caching mechanisms [12] [13] or read

and write optimizations in computing nodes [14] [15]. These

studies were concentrated in the transfer and imaging stage,

proving that phase represents the major factor of latency during

the provisioning of virtual machines. However, this research

has more interest in the first category, in which evaluations

are performed.

Another evaluation [16] compared the provisioning time

in three public cloud providers: Amazon EC2, Azure and

Rackspace. This work considered the following analysis vari-

ables: Provisioning Time, the authors investigated the relation-

ship between the provisioning time and the time of day when

virtual machines are requested; Image Size, the results of the

research showed that this was the biggest impact factor in

the provisioning time, presenting a linear degradation as the

image size increased; Templates Resources, public providers

offer different types of resource instances in the form of

templates. Thus, the authors investigated the performance of

provisioning in this regard; Location, in this test, there was a

similarity between almost all regions, except for the case of

Amazon, which demonstrated a greater time in the new regions

established during the research; Concurrency, This experiment

was performed with simultaneous provisioning, starting from

one to 16 virtual machines in the Azure and EC2 providers.

Razavi etal. [17] made a scalability assessment in the cloud,

but focused on the OpenNebula platform. In this research,

the authors investigated the behavior of the platforms in their

default configuration and suggested optimizations, making
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performance comparisons. The optimizations were applied on

the following aspects: Scheduling, the authors used a load of

512 virtual machines and identified that the largest bottleneck

point was in the scheduler configuration. Thus, they reduced

the consumption scheduling interval queue from 30 to 1

second, increasing the number of machines provisioned in each

interval to 1024; Caching, the authors note that OpenNebula,

by default, does not cache shared images via the NFS protocol.

As a workaround, the KVM disk-caching policy was enabled,

causing the average provisioning time to be reduced by half.

However, the variations between virtual machine provisioning

increased, which was not later investigated; Parallelism, The

amount of threads allocated to the provisioning drivers has

been increased from 10 to 32; Code, The authors identified a

number of optimization points in the platform code. The first,

regarding the consumption of objects between the components.

Thus, they changed the way of transferring requests with a

horizontal thread service model. The second was the change

the access way to host nodes by the platform. SSH communi-

cation over persistent TCP sockets was replaced. The authors

also modified the method of requesting new virtual machines,

previously serialized, for a parallel service.

In [18], there was an evaluation between the platforms

Eucalyptus and OpenNebula with the public cloud provider

Amazon EC2. Among the many evaluations, the authors

investigated the provisioning time of 1,2,4,8 and 16 virtual

machines using the same image. In this work, the provisioning

time was investigated considering the following variations of

OpenNebula image storage: NFS Eager, Lazy NFS, LocalDisk

Eager and Lazy LocalDisk in comparison with Eucalyptus.

Using only one virtual machine, the Eucalyptus platform

presented the worst performance and the variation NFS Lazy

was the best. From 2 to 4 virtual machines the NFS Lazy

has begun to deteriorate, while LocalDisk and Eucalyptus

have remained constant. The latest evaluation, over 4 virtual

machines, showed the worst performance for OpenNebula with

NFS Eager. In this scenario, there was also a degradation in

the LocalDisk Eager and Eucalyptus times. In this case, the

authors infer that the times were impacted by the disc writing

contention exerted by the 4 host nodes used in the tests.

In [19], the authors evaluate a set of performance factors

on virtual machines and containers, among them the system

startup latency. In the paper there was no use of a cloud

platform, but the direct provisioning on the KVM and LXC

drivers. The research applied only the startup times of the two

virtualization systems. In one of them the complete initial-

ization of one virtual machine, in another, from a checkpoint

restore. In both cases, a container on LXC achieved better

performance. This was the only study that mentioned the use

of library-based systems, although it did not make any kind

of evaluation.

V. CONCLUSIONS

This paper presents an optimized architecture for provision-

ing OSv-based Unikernels in OpenStack. It was noticed that

the solution presented satisfactory results, reducing the time

of the entire deployment flow, from the compilation to the

initialization of the Unikernels in the compute node. It was also

noted that the implementation of memory isolation and CPU

through control groups was successful, presenting overloading

expected within the node.
As future work, we intend to extend the architecture with

the following contributions:

• Compilation: Generalization of compilation methods,

allowing that architectures written in other languages to

be provisioned in the same way;

• Abstraction layer:A modular driver that allows not only

OSv provisioning, but other Unikernels architectures for

new evaluations;

• Driver isolation: Implementation of an independent

Nova project dedicated to Unikernels provisioning and

serving as a practical contribution to the OpenStack

project.
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