
FTSProc: a Process to Alleviate the Challenges of
Projects that Use the Follow-the-Sun Strategy

Estevão Ricardo Hess

Computer Science School
PUCRS

Porto Alegre, Brazil
estevao.hess@acad.pucrs.br

Jorge Luis Nicolas Audy
Computer Science School

PUCRS
Porto Alegre, Brazil

audy@pucrs.br

Abstract — Searching for competitive advantages as low coast
and productivity gains, organizations choose to distribute their
software development to other countries with more affordable
production costs. Increasingly, projects are being developed in
geographically distributed environments, featuring the
distributed software development. However, the challenges
inherent in this software development environment are
significant. Among these challenges is the time zone difference,
which can also be tackled as an advantage, through the use of the
follow-the-sun development. However, the follow-the-sun
strategy presents some challenges, mainly alongside the
handoffs. Therefore, this experimental research focuses to
present a development process to alleviate the challenges found
in project that uses this strategy, focusing in the development
phase from the SDLC. Yet, it performs an experiment to
evaluate the created process’ efficiency. In this experimental
process it was found evidences the created process actually
alleviate the challenges found in the follow-the-sun strategy.

Keywords - Global Software Development; Development
Process; Follow-the-Sun.

I. INTRODUCTION
Global software development (GSD) is becoming a trend

for companies that aim to keep competitive in the software
development industry. GSD is also referenced as Global
Software Engineering (GSE) or Distributed Software
Development (DSD), and can be defined as software
development with teams spread among different geographical
locations [1]. It is characterized when one or more individuals
involved in the project are physically distant from another [2].
In GSD one of the main characteristics is the time zone
differences between development centers [3].

According to several studies [4, 5, 6] the time zone
difference is difficult to manage. However, this difference can
also be used as an advantage and not only as a disadvantage [7,
4, 8, 9, 10, 6]. In this sense, emerge the Follow-the-Sun (FTS)
concept of.

The FTS approach utilizes distributed team members
spread across time zones to achieve a single project outcome
[11]. The main objective of FTS is to reduce the time-to-
market in GSD environments [12].

FTS is an important research area. However, it is relatively
understudied within Software Engineering [7]. The success
cases in the industry using FTS are insufficient [10]. Carmel,

Espinosa and Dubinsky [7] claim that there is few documented
success cases in industry. Thus, aiming alleviate the challenges
presented in the FTS strategy, this paper shows a proposal
process to be used during the development phase of the SDLC.
This process focuses in the handoff process between the team
that finishes its day work and the team that is beginning its
day. The Process was named FTSProc and it was created
based in the Composite Personae presented by [15] and the
process called 24hr Design and Development, presented by
[13]. It also uses the Test-driven development (TDD)
technique. Using the created process, this research also
presents an experiment used to validate the proposed process.
The findings during the experimental process brought
evidences that a project that uses the FTSProc is more efficient
then a project that does not use it.

To achieve these objectives, this paper is structured as
follow: in the Section 2 it is presented the related works used
during this research. In Section 3, it is presented the proposed
process, named FTSProc. In the Section 4, the whole
experimental process is shown, including the definition,
objective, execution and a result discussion. Finally, the
Section 5 presents the conclusions gathered during this study,
including its limitations and future works.

II. RELATED WORK
The literature lacks studies related to the FTS strategy. The

publications that present ways to use the FTS strategy are still
scarce. However, some studies that deal with a theme similar
to the theme showed in this study, i.e., ways to alleviate
challenges during the work handoff are described below.

The work proposed by Lindemann et al. [13] shows ways
to speed up a project development. To accomplish this, the
authors distributed teams across different time zones, and
made use of the FTS strategy. They created a handoff process
from one site to another. This process consisted of allocating
thirty minutes (the team finishing the shift and that is starting)
to prepare information to be used during the handoff. At this
simultaneously work moment, all the artifacts are delivered, as
well as any relevant information to continue the work. This
communication is done synchronously, using conference calls.
Right after that, the team that started the work day, held a
brainstorm, where the current work state is discussed. Based
on the work that still needs be done, tasks are allocated to all
resources within the team. Towards the end of the day, this

2012 IEEE Seventh International Conference on Global Software Engineering

978-0-7695-4787-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICGSE.2012.27

56

process is repeated. This cycle ends when all the requirements
are all developed.

The work published by Taweel et al. [14] presents the

results of an experiment to evaluate the feasibility of using a
sequential process of collaborative software engineering for
distributed environments in different time zones. In this
experiment was developed a calculator with simple functions.
The project was divided into three phases: set-up, where the
work to be developed was presented with all the requirements
for all teams, along with the distribution of work and the
deadline for completion; execution, which occurred the
implementation using distributed teams; finishing, where the
data gathered from the experiment were collected. The
evaluated process was based on sending e-mails between the
teams with the current status of the project, containing all
information relating to the work. The study shows that,
although dealing only with simple tasks, the results
demonstrate the feasibility of such kind of process.

The work presented by Denny et al. [15] introduces the
concept of Composite Personae (CP). This concept shows how
distributed teams can work as one virtual team. For that, the
authors state that it is important to have a cohesive team,
spread across different time zones. Thus, the work can be
passed from one site to another, and the same is continued. All
work is based on handoff, where a team finishes its work day
and another begins. However, some problems may occur
during this transfer. Therefore, this paper shows a simple way
to handoff the work. This transition is based on stand-up
meetings, coming from the Scrum methodology. Reaching the
end of a work day, developers must add their results to the
code repository and fill out an automated form called handoff
tool. This form should answer three basic questions of a stand-
up meeting:

i. What have you done since last meeting?

ii. What are you planning to do until next meeting?

iii. Is there any impediments or blocker?

After completing this information, the work is considered
delivered to the next team. The next site begins its work day
collecting the information provided by the previous site and
defining what should be done, using as main reference, the
answers to the questions i, ii and iii. This work highlights the
importance of having staff equivalent in all distributed sites.
This equivalence is not related to the number of resources at
each site, but in deliverability and troubleshooting capabilities.

Denny et al. [16] present a process of knowledge transfer,
created especially for the knowledge factory concept usage in
distributed environments. This process was created based on
the Personal Software Process (PSP) [24]. This process is
designed to facilitate the knowledge transfer from one team to
another at the end of each day (handoff). This work also shows
some ways to facilitate the work understanding among
distributed teams. One of these ways is through the Test-
Driven Development technique (TDD). According to the
authors, TDD indicates the use of automated unit testing for
defect reduction and quality control. In this technique, the test
cases are written in order to validate that all requirements are

implemented correctly. The test cases become a documented
record of understanding the requirement and the solution to
achieve them [16].

The main difference between the related works and this
study is when and how the work transfer should be performed.
The proposed process is focused exclusively on the
development phase of SDLC, since according to [17], it is not
recommended to use the FTS strategy in one single way in all
phases of the SDLC. While the related works are not focused
on a single phase. Another important difference is the work
proposed by [14] where the tasks that each distributed center
will develop are defined a priori, instead of treating the entire
team as a single virtual team. Thus, the development center
that starts the work does not continue the work where it was
left off from previous site, but only develop different features
in parallel.

III. FTSPROC
FTSProc was the name given to the proposed process. It

aims to mitigate the challenges of coordination,
synchronization and communication during the handoffs in the
development phase of SDLC. In this sense, the main
objectives of this process are:

a. When a team starts a working day (shift), it should
simply have the perception of the work that must be developed
and the work already done by previous development center.

b. Avoid the needed for synchronous communication
between distributed teams.

c. Ensure that the handoff from a development center to
another occurs without problems, and that the work can be
continued from the point where the previous development
center left off.

This kind of processes is still insufficient in the literature.
However, some studies show that this kind of process should
be "light" [16, 14], it means that should not cause an overhead
on a typical work day [16].

The proposed process is based on the Composite Persona
(CP) presented by [15] and the process called 24hr Design and
Development, presented by [13].

Regardless the FTSProc acts only during the development
phase, some pre-conditions from the previous phases
(requirements definition and design) support the process:

1. Requirements definition: this phase has as output
artifact, the documentation with the requirements of the system
to be developed. For the proper functioning of the process it is
important that requirements are defined as specifically as
possible [18], preferably using the concept of User Stories
[19], which splits a requirement in small features to reduce the
complexity of each task [13, 15], that usually are developed in
a single work day. It is important that the User Stories have
well-defined acceptance criteria. It facilitates the
understanding of the requirements and according to [14], is
critical that the whole development team has full
understanding of the work to be performed.

57

2. Design: the artifacts that this phase will produce are
directly related on how the features will be implemented. The
diagrams needed for the system understanding, as well as the
class and activities diagrams are some output examples in this
phase. Furthermore, based on acceptance criteria of each
requirement from the previous phase, unit tests should be
created, and then use the Test-Driven development technique
(TDD). The TDD technique usage is still related to
maintaining a documented understanding of the requirement
and the solution to be used to develop them [16,18]. Yet,
according to [20] before the implementation begins, the TDD
can act as part of the specification and, upon the application
completion, the TDD becomes the knowledge of how the
application was developed [20].

In addition to these pre-conditions, during the process two
artifacts developed for FTSProc will be used, as follows:

Artifact 1:

Hand-off form: represents the current work state and
should be filled with information about the work. All
necessary information is contained in this artifact. This
information is required to the next shift start from the point
where the previous team left off.

Artifact 2:

Unit test Report: all unit tests that are not covered will be
in this report. The importance of this artifact is to assist on
planning a work day (shift), as can be seen in step 2 of
FTSProc.

Figure 1. FTSProc: Proposed Process

As shown in Figure 1, the development phase starts at this
point. Steps 1, 2, 3, 4 and 5 illustrated in this figure represent a
single shift (a work day) for each development team. This
process is iterative and these five steps will be repeated every
shift, for each distributed development team [13, 18]. Each
step can be described as follows:

1. Shift Start:

This state represents the beginning of a shift for each team.
The following steps are part of this state:

i. The development center that is starting its shift
downloads the latest source code.

ii. Generates a report with the covered tests and not
covered ones. If a unit test is "passing", it means that this
acceptance criterion is already covered, and it is not necessary
to work on it anymore. This report is represented by the
FTSProc Artifact 2.

iii. Generates a report with all information provided by
the team who worked on the previous shift. This report is
based on stand-up meetings, coming from the Scrum
methodology [15, 18]. Each developer whom worked on each
shift must complete this form (Artifact A). Therefore, this
report is composed by all the information given by all
developers.

2. Brainstorming:

After reviewing the information provided by the previous
site, the team that is starting its shift should do a planning
meeting to assign the tasks (daily schedule). This assignment
should consider the report with information regarding the
previous shift, as well as the result from the unit tests report
provided by the previous site [15, 13, 16]. After performing
this planning, this step of the process is finished. At this point,
all the developers who are starting a shift, already know the
point where the previous team left off and how the work
should be continued.

3. Coding:

This step represents the requirements implementation
phase, following the assignments agreed during the
brainstorm. At this stage, the team focuses on the feature
development. It is the longest stage of the process because it is
where project development is actually done. When the work is
finished, every developer must follow to the next state to
continue the process.

4. Check-in:

After finishing the implementation, each team member
must perform the check-in of the work done during the day,
providing all necessary information to the next team to
continue the work where it was left off. After performing the
check-in and ensure that the latest source code is in the
repository, this step is finished.

5. Hand-off form:

Towards the end of the day, each team member must take
time to fill out the hand-off form (Artifact 1 of the FTSProc),
with all the necessary information to the next site. This form is
based on the stand-up meetings format, coming from the
scrum and will be used to formalize the hand-off. The
following information should be added [14, 15, 18, 13]:

i. What has been done during the last period?

ii. How the work should be continued?

iii. Is there any obstacle blocking the team?

iv. What unit tests have been covered during this shift?

This state represents the end of a shift. At this point, new
acceptance criteria are covered by the work done, the latest
source code is in the repository and the documentation
required for the next team that will start its work is available.

58

Once all activities carried out in the process, the handoff is
completed [7, 12, 14,13].

These steps are repeated until all acceptance criteria are
met, i.e., all tests created during the design phase (TDD) are
covered. After achieving all the acceptance criteria ends the
development phase and the whole feature have been
implemented [13, 18].

IV. THE EXPERIMENTAL PROCESS
After finalizing the transfer process proposal, it was

necessary to carry out an experiment to assess whether the
FTSProc met its goals. For this, the objective of the
experiment was to compare two projects, one called Adhoc
and another named FTSProc. The project Adhoc was used as
control, because it did not use a defined process, only made
use of the FTS strategy. While the project FTSProc used the
proposed process. The requirements to be implemented were
the same in both projects. These requirements were composed
of a simple mathematical system. This scenario was chosen
because of its ease, and probably known to all participants.
The experiment was divided into five steps, as follow:

1. Definition

In this phase was used the Goal Question Metric (GQM)
approach [21] which defines objectives (conceptual level) to
establish questions (operational level) and then identify
metrics (quantitative level). In the experiment context this
approach assists the objectives definition phase [22].

The overall objective of this experiment is to investigate
which approach is more efficient in projects that use the FTS
approach: using the FTSProc or without use this process (as
known as Adhoc) and thus, identify which approach allows
delivering the highest number of requirements implemented in
a given time interval.

To achieve the objective of this study sought to answer the
following question: "Projects that uses the FTSProc has the
same efficiency then adhoc projects carried out in a distributed
environment?". The metric associated with this question
corresponds to the efficiency of the method, calculated from
the sum of the requirements correctly implemented by the
participants in each of the two approaches. In this study were
defined as correct requirement those with the following
characteristics:

• Requirement developed in the Java language,
accordingly to the system description, provided to the
experiment participants;

• Each requirement has several acceptance criteria,
where for the calculation criteria are:

o All acceptance criteria are covered, the
requirement is completely implemented;

o Any acceptance criteria is not covered, the
requirement is partially implemented;

2. Planning

During the planning phase, was defined the experiment
participants’ needed skills, how would be simulated the work

shifts, the definition of hypotheses and definition of
requirements to be implemented.

The Participants for this experimental process were
Computer Science Master Students from PUCRS University,
along with professionals from the PUCRS’ technological park
(TECNOPUC). We selected eight participants, and they were
divided into two teams, which would hold the two projects:
Adhoc e FTSProc. Within each of these teams, the four
participants were re-divided, to simulate two different
development centers. The Figure 2 bellow illustrates this
division:

Figure 2. Team distribution

To perform the work shifts, we chose to simulate a time
difference of more than 8 hours, i.e., no period of work
concurrently. To do so, due the simplicity of the tasks to be
performed, and the experience and availability of participants,
each work shift (a day of work) were simulated in twenty
minutes. During the experiment, it was performed two work
shift for each team. It should be noted that these settings were
used in the same way for both projects: Adhoc and FTSProc.

Regarding the experiment hypotheses, the following was
defined:

• Null Hypothesis (H0): The efficiency of a project that
uses the FTSProc is equal than a project developed in
an adhoc way.

o H0: � ������	�
��
��� = � ������	������

• Alternative Hypothesis (H1): The efficiency of a
project that uses the FTSProc is greater than a project
developed in an adhoc way.

o H1: � ������	�
��
��� > � ������	������

• Alternative Hypothesis (H2): The efficiency of a
project that uses the FTSProc is smaller than a project
developed in an adhoc way.

o H2: � ������	�
��
��� < � ������	������

The requirements to be implemented were the same in both
projects. These requirements were composed of a simple
mathematical system. This system were composed by several
small requirements, for example: sum of values, values
subtraction, division, multiplication, factorial, square root,
volume of a sphere, volume of a cube, area of a sphere, area of
a cube, etc [13]. These requirements were described in detailed

59

document provided to the participants during the experiment
execution. This document also contained all the information
related to the acceptance criteria for each requirement. Both
projects received the same requirements document.

3. Execution

At this phase, the researcher provided the requirements that
should be implemented, along with all the necessary
instructions for the experiment execution. With all these
materials, each team analyzed the requirements for 5 minutes
and started the implementation. The time available to each
project, adhoc and FTSProc, were 20 minutes for each shift.

At the end of the execution phase, the teams have provided
all the source code developed during execution of the
experiment along with the data of each handoff collected
through the developed support tool. At this stage, no
unforeseen happened and Table 1 and Table 2 shows the time
spent to complete this step for each project:

o FTSProc project

TABLE I. NEEDED TIME FOR FTSPROC PROJECT.

Activity Start time End Time Total Time

Requirements analysis 18:05 18:10 5 Minutes

Shift 1 18:12 18:32 20 Minutes

Shift 2 18:40 19:00 20 Minutes

Shift 3 19:06 19:26 20 Minutes

Shift 4 19:27 19:34 7 Minutes

o Adhoc project

TABLE II. NEEDED TIME FOR ADHOC PROJECT.

Activity Start time End Time Total Time

Requirements analysis 17:52 17:57 5 Minutes

Shift 1 18:02 18:22 20 Minutes

Shift 2 18:22 18:42 20 Minutes

Shift 3 18:45 19:05 20 Minutes

Shift 4 19:06 19:26 20 Minutes

4. Data analysis

As there was no evidence that the usage of the proposed
process would result in a productivity gain, the main research
method used was the experiment with quantitative approach.
However, due to the number of participants not allow the use
of a statistical analysis, the study was supplemented with a
quantitative analysis to achieve the results of the experiment.

A. Quantitative analysis
The most important result coming from the experiment is

directly related to the amount of requirements developed by

the teams in each approach. This result will be used to verify
the proposed hypothesis regarding the efficiency of the
FTSProc. Table 3 shows the results obtained regarding the
number of requirements correctly and partially implemented in
each project.

TABLE III. IMPLEMENTED REQUIREMENTS.

Implemented requirements FTSProc Adhoc

Correctly 12 4

Partially 0 8

Not implemented 0 0

Total 12 12

Analyzing the results in Table 3, it can be seen that the
efficiency of the team using FTSProc is greater than the team
that carried out the project on an adhoc way. The team that
used the FTSProc implemented a greater number of correct
requirements than the adhoc project team. In addition, the team
that used the FTSProc obtained a higher rate of work correctly
done (amount of correct requirements *100/amount of defined
requirements):

• The team that used the FTSProc delivered 100% (12)
of the requirements correctly implemented, based in
the 12 requirements.

• The team that did not use the FTSProce, i.e., the adhoc
project had 33,3% (4) of the requirements correctly
implemented and 66,6% (8) of the requirements
partially implemented, based in the 12 requirements.

Importantly, as can be seen in Table 1, the team that used
the FTSProc needed only three shifts and seven minutes of the
fourth shift, to ensure that all requirements were implemented
correctly. Meanwhile, another team used all four full shifts, to
complete only 4 requirements correctly.

With these results it is seen that the correct amount of
requirements delivered rate is higher when using the FTSProc
for running distributed projects using the FTS strategy. These
data provide evidence for accepting the alternative hypothesis
H1 (“The efficiency of a project that uses the FTSProc is
greater than a project developed in an adhoc way.”).

B. Qualitative Analysis
At the end of the experiment execution, the Researcher

requested to participants to respond a questionnaire regarding
their perceptions about the method they used: FTSProc or
adhoc. For each question applied to the two groups, we sought
to compare the participants’ perceptions in the two approaches.
The results obtained in this step are shown in the following
tables, where, for each question it is shown the count of
positive and negative responses to each teams. Right after, it is
presented an analysis of these results.

60

• The work handoff from one center to another occurred
in an appropriate way?

 FTSProc Adhoc
Yes 4 3
No 0 1

Total 4 4

• At the beginning of each shift, you could see directly
how the work should be continued?

 FTSProc Adhoc

Yes 4 0
No 0 4

Total 4 4

• Do you believe that the work handoff from a
development center to another led to a significant
work overhead?

 FTSProc Adhoc

Yes 0 1
No 4 3

Total 4 4

It is noted that, in the participants’ perception, the work
handoff from one center to another happened in an appropriate
way in both approaches. However, it is clear that the
identification of the point where the work should be continued
was not directly in the adhoc team. But in the team that used
the FTSProc, this identification was facilitated. This result is
consistent with one of the objectives of the proposed process,
which is to facilitate the identification of the point where the
work should be continued. Finally, we can identify that in the
perception of the participants, the overhead caused by the
FTSProc usage was not significant. These findings are
consistent with the literature, which shows that this kind of
process should be "light", i.e., cannot cause a large increase in
the workload (overhead) in a typical working day [16, 14].

Additionally, other questions were applied to all
participants for the identification of positives, negatives and
improvement opportunities for both approaches.

The strengths in relation to the adhoc method cited by the
participants of the experiment include the low complexity of
the tasks, since the requirements of the experiment were
created for this purpose. Another positive point mentioned was
how the participants attempted to show the other team for the
current state of work. To do that, the participants used
comments in the source code and in the code repository for
each check-in.

For the negative points mentioned related to the adhoc
method showed especially problems that the lack of a process
can cause. Among these problems, lack of awareness of where
the work had stopped on the previous shift and how this
should be continued were the most cited by participants. It

should be noted that these points are consistent with literature.
The main problems highlighted by the literature are related to
the challenges of coordination, synchronization and
communication, especially during the work handoff from one
development center to another [7, 9, 10]. The FTSProc try to
alleviate these challenges.

Suggestions for improvements listed by the participants
that use the adhoc show the necessity of using a standard
process for the work handoff, like the FTSProc. Yet, the TDD
technique usage was cited as a possible facilitator for the
synchronization between the teams.

The strengths cited by the participants who used the
FTSProc are directly related to how the process was created,
i.e., the usage of clear requirements, TDD usage and the three
questions used as a basis for the work handoff.

As expected at the beginning of the experiment, there were
few negative points raised by the FTSProc project participants,
if compared with the adhoc project and are not related to work
synchronization or coordination. One raised point is related to
the vocabulary. As the three questions were answered with text
there might happen understanding and interpretation problems
between the different development centers. This was the only
negative point raised by the participants in the FTSProc
project.

Just a suggestion for improving FTSProc was cited and is
not directly related to the process, but the used tools. This
suggestion refers to the use of an automatic work check-in
tool. Thus, if some of the participants of the previous shift did
not do the check-in, this tool would avoid the next shift to start
without the latest source code in the repository.

5. Results Discussion

After presenting the results and the evidence for the
confirmation of the H1 hypothesis, which shows that the
efficiency of a project that uses the FTSProc is greater than a
project developed in an adhoc way, this section presents other
factors that corroborate to this result.

Analyzing the qualitative results, we found that the
advantage of the FTSProc lies in the fact that the FTSProc
team realizes clearly and quickly how the work should be
continued. Thus, the time for this identification is smaller than
the adhoc team, resulting in a greater time for requirements
development during each working day (shift). This advantage
is due two main factors related to the FTSProc: usage of TDD
and the main three questions that the process proposed.

The usage of the TDD is effective since the adhoc project
implemented 8 requirements partially, i.e., some acceptance
criteria were not covered. In a real project, these problems
would be identified later, only in a testing phase. Due the
adhoc team did not use TDD, they had to implement the
feature as well as create tests for that. In this sense, the lack of
this technique also affects the time required for
implementation. While the FTSProc team had unit tests to
ensure the requirements were properly implemented, the adhoc
team invested much of its time creating and running the tests.
Another factor that the TDD technique helps is on the work
progress perception, since verify the tests that are already

61

covered and which ones still need to be worked facilitates the
understanding of the work progress, i.e., how close are the
project to finalize all the requirements. For this reason, during
the experiment, in just seven minutes of the fourth shift, the
FTSProc team found that all the work had been done, and
there was no more work to be continued.

The three main questions that the process proposed ((i)
What have you done since last meeting?, (ii) What are you
planning to do until next meeting?, (iii) Is there any
impediments or blocker?) also assisted teams on identifying
where the work should continue. Easily, the participants
checked the answers provided by the previous center and
quickly knew what had been implemented. After reading this,
the point to start the development was confirmed with the unit
testing execution and, based on that, the tasks were distributed
inside the team. Thus, in a short time, the team started the
development work.

While the FTSProc team quickly and directly identified
how the work should be continued, in contrast, the adhoc team
did not have this perception. To identify the point that the
work should be continued, the adhoc team needed to analyze
the source code created or modified by the previous team,
which spends a long time. Since there was no time to work
simultaneously for the work handoff and there was no support
tool, the adhoc team used comments in the source code and in
the repository check-ins to report what had been
accomplished. However, since there was not a defined
structure to pass this information and not even an obligation,
were not all participants that used this feature and, the ones
who used, did not follow a standardized pattern. At the end of
the experiment, these comments were cited as positive points.
Once again, this is consistent with what the FTSProc proposed
to facilitate the work handoff, using the three questions.

Analyzing the drawbacks raised out by the teams, it is
possible to note that the adhoc project indicated several
problems. Among these problems, most of them are generated
by the lack of a standard handoff process form one center to
another. It is possible to note that several issues raised by the
adhoc team were not identified in the FTSProc team. This fact
is a further evidence that the created process, indeed facilitates
the work handoff. Yet, when analyzing the improvements
suggestions to the team that did not use the FTSProc was
verified that there are indications to use techniques and
practices that the FTSProc already uses, such as: unit tests,
test-driven development (TDD), a standard way to report what
has been done and the definition of a task synchronization
system.

Analyzing the negative points rose in the FTSProc team it
is noted that there are just some few points, and they are not
related to the process itself, but to difficulties found in any
software project, even those that are not developed in a
distributed environment. One of the points raised is the fact
that there is not a standardized vocabulary. In this case, there
may happen interpretation problems, since the questions are
answered through free text. Another point raised shows that
problems generated affect the team as a whole. In this regard,
it is noted that this problem is related to the fact that the work

is continued shift after shift, i.e., a defects generated and not
fixed moves to the next site.

This qualitative analysis allowed us to identify that the
FTSProc had several strengths, such as the usage of the three
questions that are the base of this process as well as the usage
of TDD. Moreover, the analysis of the experiment results and
the questionnaire applied to the participants showed evidences
of the greater efficiency of projects that use FTSProc then the
adhoc projects.

However, since this is an exploratory study on a new
research theme, it cannot be considered a final work in this
area. Therefore, despite the favorable results found, during this
research some limitations were identified, such as the lack of
an experiment with a greater number of participants enabling a
statistical analysis. Also, during this study were identified
some future work, like the needed to expand this research to
other phases of the software development life cycle. The next
session presents detailed information about on these
limitations and future studies.

V. CONCLUSIONS
In this research was presented a handoff process proposal

to projects that use the FTS strategy. The objectives of the
proposed process in this work are focused on reducing the
challenges posed by FTS strategy. To evaluate the proposed
process, an experiment was conducted, which demonstrated
that the FTSProc actually achieves its goals, i.e., alleviates the
challenges present in projects that use the strategy FTS.

A. Contributions
The contributions of this study are located in two main

dimensions: for the theory and for the market:

For the theory area, the major contribution of this research
was the creation of a process for the work handoff during the
development phase. As shown, the process was proposed with
data from the literature. After running the experiment and
analyzed its results, we found that the process was indeed
effective. This point is another important contribution to the
theory, since while the literature does not present a specific
process for the development phase, this study proposed a
process, performed an experiment, and pointed evidences of
the effectiveness of the proposed process.

For the market, currently searching for competitive
advantages such as cost reduction and productivity gains,
companies are using offshore operations. Thus, this work can
contribute to increasing the productivity gain, since the created
process facilitates the use of the FTS strategy for the
development phase, thus decreasing the time spent during the
this phase of SDLC. Therefore, the proposed process is a
starting point for organizations that work in distributed
environment could begin the usage of the FTS strategy. Also,
besides the process, the developed support tool is also
considered another contribution to the practical point of view,
since it offers a huge number of important features.

B. Limitation
The first limitation identified in this research is related to

the process evaluation used. In the experimental process, due

62

some schedule constraints, the number of participants able to
join the experiment was low (8 people). Therefore, it was an
impediment to use statistical methods to verify the hypothesis,
opting then by a qualitative interpretation to analyze the
results. This interpretation presented evidences of the greater
efficiency of the project that used the FTSProc, but not
allowed to obtain conclusions with a significant confidence
level, what could be achieve through experiments with
statistical analysis of the results

Moreover, as this work limitation, is considered the
specific generalization of the experiment due the fact that the
scope of the project was fictitious and created by the
researcher. Also, there are the issues related to application of
an experimental research method, as the subjective influence
of the researcher or the participants in the results.

The support tool created for the FTSProc is still a
prototype and therefore can be considered one of the
limitations of this research. Despite being implemented all
requirements planned, before using the tool in a real
environment, it would be necessary to review aspects of
usability, performance and reliability of the tool.

C. Future Studies
The experiment results interpretation showed evidences

favorable to projects that use the FTSProc strategy,
demonstrating that it is more efficient for distributed projects
that use the FTS strategy then adhoc projects, commonly used
in the companies. This way, with the purpose of substantiating
the evidence presented by experimental method, as a future
study, it is suggested the experiment replication with a larger
number of participants to evaluate the FTSProc, which allows
a significant statistical validation for obtaining conclusions on
the hypotheses.

Yet, it is important to carry out a study case to evaluate the
use of the process created in a real environment, using a
project and a real team in a company that uses the distributed
software development. Thus, it will be possible to verify the
behavior of the process in this kind of environment. So, it is
possible to prove the results found in this study, through a
controlled experiment, are equivalent in a real environment.

Finally, studies aiming to expand this process to other
phases of the SDLC are relevant. Thus, other phases might be
contemplated with a process to facilitate the FTS strategy
usage. Focusing on specific phases based on different
approaches, at the end might be possible to create a process
comprised by several sub-processes, which contemplate all
phases of SDLC. Thus, the entire software project could be
accomplished using the FTS strategy and therefore, reducing
the time of construction in all phases of a project.

ACKNOWLEDGMENT
The authors are funded by the PDTI program, financed by

Dell Computers of Brazil Ltd. (Law 8.248/91).

REFERENCES
[1] Jabangwe, R., Nurdiani. I., “Global Software Development Challenges

and Mitigation Strategies: A Systematic Review and Survey Results”.
Master´s program in Software Engineering, Blekinge Institute of
Technology, OM/School of Computing, 2010.

[2] Prikladnicki , R. , Audy J., “Process models in the practice of
distributed software development: A systematic review of the
literature”. Inf. Softw. Technol. Pp. 779-791, August 2010.

[3] Lane, M.; Ågerfalk P., “Suitability of Particular Software Development
Roles to Global Software Development”. 3rd IEEE International
Conference on Global Software Engineering, 2008.

[4] Holmstrom, H., Conchuir, E. O., Agerfalk, P. J., Fitzgerald, B., “Global
Software Development Challenges: A Case Study on Temporal,
Geographical and Socio-Cultural Distance”. Proceedings of the IEEE
international conference on Global Software Engineering (ICGSE '06).
IEEE Computer Society, Washington, DC, USA, pp. 3-11, 2006.

[5] Herbsleb, J. D., Grinter, R. E., „Architectures, coordination, and
distance: Conway's law and beyond”. Software, IEEE , vol.16, no.5, pp.
63-70, 1999.

[6] Treinen, J. J., Miller-Frost, S. L. „Following the Sun: Case Studies in
Global Software Development.: IBM Systems Journal”, Volume 45,
Number 4, 2006.

[7] Carmel, E., Espinosa, A., Dubinsky, Y. “Follow The Sun Software
Development: New Perspectives, Conceptual Foundation, and
Exploratory Field Study”. 42nd Hawaii International Conference on
System Sciences, Proceedings, 2009.

[8] Lings B., Lundell B., Ågerfalk P. J., Fitzgerald B., ”A reference model
for successful Distributed Development of Software Systems”. ICGSE
2007. IEEE International Conference on, pp. 130-139, 2007.

[9] Setamanit, S. O., Wakeland, W., Raffo, D., “Improving Global
Software Development Project Performance Using Simulation”.
Management of Engineering and Technology, Portland International
Center, pp. 2458-2466, 2007.

[10] Solingen, van R., Valkema, M., ”The Impact of Number of Sites in a
Follow the Sun Setting on the Actual and Perceived Working Speed and
Accuracy: A Controlled Experiment”. Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on , pp.165-174,
2010.

[11] A. Cameron, “A Novel Approach to Distributed Concurrent Software
Development using a Follow-the- Sun Technique”, Unpublished EDS
working paper, 2004.

[12] Carmel, E.; Espinosa, J. Alberto; Dubinsky, Y. "Follow the Sun
Workflow in Global Software Development”, Journal of Management
Information Systems Vol. 27 No. 1, pp. 17 – 38, 2010.

[13] Fadel, G., Lindemann, U., Anderl, R.; “Multi-National Around the
Clock Collaborative Senior Design Project”, Invited paper, Honorable
mention at the ASME Curriculum Innovations Award 2000.

[14] Taweel, Adel, Brereton, Pearl: Developing Software Across Time
Zones: An Exploratory Empirical Study. Informatica (Slovenia) 26(3):
2002.

[15] Denny, Nathan, Mani, Shivram, Sheshu Nadella, Ravi, Swaminathan,
Manish, Samdal, Jamie: Hybrid Offshoring: Composite Personae and
Evolving Collaboration Technologies. IRMJ 21(1): 89-104, 2008.

[16] Denny, Nathan, Crk, Igor, Nadella, Ravi Sheshu and Gupta, Amar,
Agile Software Processes for the 24-Hour Knowledge Factory
Environment (February 27, 2009).

[17] Carmel, E.; Espinosa, A., “I'm Working While They're Sleeping: Time
Zone Separation Challenges and Solutions.” Estados Unidos: Nedder
Stream Press, 2011. 188 p.

[18] Gupta, A., Mattarelli, E., Seshasai, S., Broschak, J., “Use of
collaborative technologies and knowledge sharing in co-located and
distributed teams: Towards the 24-h knowledge factory”. The Journal of
Strategic Information Systems, Volume 18, pp. 147-161, 2009.

[19] Haugen, N.C.; , "An empirical study of using planning poker for user
story estimation," Agile Conference, 2006 , vol., no., pp.9 pp.-34, 23-28
July 2006.

[20] Meszaros, Gerard, XUnit Test Patterns: Refactoring Test Code, Prentice
Hall PTR, Upper Saddle River, NJ, 2006.

63

[21] Basili, V. R.; Caldiera, G.; Rombach, H. D. “The Goal Question Metric
Approach: Encyclopedia of Software Engineering”. Nova Iorque:
Wiley- Interscience, 1994, 578 p.

[22] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M. C.; Regnell, B.;
Wesslén, A. “Experimentation in Software Engineering: An
introduction”. Kluwer Academic Publishers, 2000, 204 p.

[23] A. Gupta, S. Seshasai, and R. Aron, "Research Commentary: Toward
the 24-Hour Knowledge Factory - A Prognosis of Practice and a Call
for Concerted Research" (November 19, 2006). Eller College
Management Working Paper No. 1038-06 Available at SSRN:
http://ssrn.com/abstract=946012

[24] Humphrey, W. S. (1995) "Introducing the personal software process",
Annals Of Software Engineering volume 1, 1995.

64

