
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Submitted in partial fulfillment of the
requirements for the degree of
Master of Science in Computer
Science at Pontifícia Universidade
Católica do Rio Grande do Sul.

Advisor: Prof. Fernando Gehm Moraes

Porto Alegre, Brazil

January, 2012

REDUCTION OF ENERGY CONSUMPTION IN
MPSOCS THROUGH A DYNAMIC FREQUENCY

SCALING TECHNIQUE

THIAGO RAUPP DA ROSA

R788r Rosa, Thiago Raupp da

Reduction of Energy Consumption in MPSOCS through a

Dynamic Frequency Scaling Technique / Thiago Raupp da Rosa. –

Porto Alegre, 2012.

85 f.

Diss. (Mestrado) – Fac. de Informática, PUCRS.

Orientador: Prof. Dr. Fernando Gehm Moraes.

1. Informática. 2. Multiprocessadores. 3. Arquitetura de

computador. I. Moraes, Fernando Gehm. II. Título.

CDD 004.35

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

AGRADECIMENTOS

O espaço reservado aos agradecimentos acaba tornando-se pequeno quando se relembra

tudo que aconteceu ao longo dos 2 anos de mestrado. Muitas pessoas me ajudaram durante esse

período que, por alguns meses no início e no fim, não foi de dedicação exclusiva. Além das pessoas,

também recebi a ajuda de Deus, que sempre me deu forças e não me deixava abater quando as

coisas não iam bem. Tenho certeza que além Dele, meu pai, a quem dedico essa Dissertação,

também esteve cuidando de mim lá de cima.

O agradecimento mais especial vai para as pessoas que estiveram mais próximas de mim

durante esses 2 anos. À minha mãe, Maria Glória, e à minha irmã Rafaela, obrigado por fazerem

tudo por mim, por me apoiarem em todos os momentos e sempre ajudar quando eu mais

precisava. À minha namorada, Vivian, obrigado pela paciência, carinho, amor e principalmente

compreensão. Saiba que sempre estarei contigo quando precisares. Ao meu tio Nilton e minha tia

Marta, que além de tios e vizinhos, são como pai e mãe pra mim, me aconselhando, apoiando em

todas as situações, dando carona, emprestando leite quando falta aqui em casa, etc... :-) Muito

obrigado também a todos os outro familiares, por estarem sempre unidos e formarem uma família

tão bonita quanto a nossa.

Gostaria também de agradecer aos professores do PPGCC e avaliadores que me ajudaram a

crescer pessoal, profissional e cientificamente, dentre eles, Ney Calazans, Alexandre Amory, César

Marcon e Marcelo Lubaszewski. Além desses, um agradecimento especial ao meu orientador

Fernando Moraes, que me atura desde 2006, quando era bolsista de iniciação científica. Muito

obrigado por todos esses anos de aprendizado, por todos os conselhos e também por me

“descolar” uma bolsa de doutorado na França. Espero que ainda possamos trabalhar juntos por

vários anos.

Agradeço também a todos os amigos e colegas de laboratório que de certa forma

contribuíram para a realização deste trabalho. Ao longo dos 6 anos trabalhando no GAPH, recebi

ajuda de todos os membros, por isso não citarei nomes, pois a lista seria longa. Por isso, todos que

trabalharam comigo sintam-se agradecidos, de bolsistas IC a doutorandos. Entretanto, não

poderia deixar de citar os dois bolsistas que me ajudaram no início e fim do mestrado, Douglas

Cardoso e Vivian Larréa, muito obrigado por toda a ajuda que foi de grande valia. Também não

poderia deixar de citar os dois amigos que me ajudaram com a revisão do texto: Leticia Moreira e

Luciano Ost, sem vocês essa dissertação com certeza seria em português, muitíssimo obrigado.

Agradeço também aos colegas e amigos do CI-Brasil, os quais seguraram a barra com deadlines e

trabalhos quando eu não pude estar presente, sem vocês ou eu não teria dissertação ou não teria

bolsa, muito obrigado.

Por fim, gostaria de agradecer ao CNPq e a DELL, por financiarem o projeto ao qual esse

trabalho está inserido.

A todos, de coração, muitíssimo obrigado.

REDUÇÃO DO CONSUMO DE ENERGIA EM MPSOCS BASEADOS EM

NOC ATRAVÉS DA TÉCNICA DE ESCALONAMENTO DINÂMICO DE

FREQUÊNCIA

RESUMO

MPSoCs baseados em NoC têm sido empregados em sistemas embarcados devido ao seu

alto desempenho, atingido através do uso de múltiplos elementos de processamento (PEs).

Entretanto, a especificação da funcionalidade, agregada a especificação de requisitos de consumo

de energia em aplicações móveis, pode comprometer o processo de projeto em termos de tempo

e/ou custo. Dessa forma, a utilização de técnicas para gerenciamento de consumo de energia é

essencial. Além disso, aplicações que possuam carga de trabalho dinâmica podem realizar esse

gerenciamento dinamicamente. A utilização de técnicas para escalonamento dinâmico de tensão e

frequência (DVFS) mostrou-se adequada para a redução do consumo de energia em sistemas

computacionais. No entanto, devido à evolução da tecnologia, a variação mínima de tensão é

menor, e o tempo de resposta elevado dos métodos de DVFS pode tornar esta técnica inadequada

em tecnologias DSM (deep sub-micron). Como alternativa, a utilização de técnicas para

escalonamento dinâmico de frequência (DFS) pode prover uma boa relação custo-benefício entre

economia e consumo de energia.

O presente trabalho apresenta um esquema de escalonamento dinâmico de frequência

distribuído auto-adaptável para MPSoCs baseados em NoC. Ambos os elementos do MPSoC (NoC

e PEs) possuem um esquema específico. O esquema para os PEs leva em consideração as cargas de

computação e comunicação do mesmo. Na NoC, o esquema é controlado através de informações

provenientes do pacote que trafega na rede e da atividade do roteador. Além disso, um módulo

para geração local de relógio é apresentado, o qual é responsável por prover o sinal de relógio

para PEs e roteadores da NoC. O esquema de geração do sinal de relógio é simples, baseado em

roubo de ciclo de um sinal de relógio global. Este ainda fornece uma ampla variedade de

frequências, induz baixo custo adicional de área e consumo e responde rapidamente a uma nova

configuração.

Para avaliar o esquema proposto, aplicações sintéticas e reais foram simuladas. Os

resultados mostram que a redução no número de instruções executadas é de até 65% (28% em

média), com um custo adicional de no máximo 14% no tempo de execução (9% em média). Em

relação à dissipação de potência, os resultados mostram que a redução é de até 52% nos PEs (23%

em média) e de até 76% na NoC (71% em média). O overhead de consumo apresentado pelo

esquema dos PEs é de 3% e pelo esquema da NoC é de 10%.

Palavras-Chave: DFS, DVFS, MPSoC, NoC, gerenciamento de consumo, redução do consumo de

energia.

REDUCTION OF ENERGY CONSUMPTION IN MPSOCS THROUGH

DYNAMIC FREQUENCY SCALING TECHNIQUE

ABSTRACT

NoC-based MPSoCs are employed in several embedded systems due to the high

performance, achieved by using multiple processing elements (PEs). However, power and energy

restrictions, especially in mobile applications, may render the design of MPSoCs over-constrained.

Thus, the use of power management techniques is mandatory. Moreover, due to the high

variability present in application workloads executed by these devices, this management must be

performed dynamically. The use of traditional dynamic voltage and frequency scaling (DVFS)

techniques proved to be useful in several scenarios to save energy. Nonetheless, due to

technology scaling that limits the voltage variation and to the slow response of DVFS schemes, the

use of such technique may become inadequate in newer DSM technology nodes. As alternative,

the use of dynamic frequency scaling (DFS) may provide a good trade-off between power savings

and power overhead.

This work proposes a self-adaptable distributed DFS scheme for NoC-Based MPSoCs. Both

NoC and PEs have an individual frequency control scheme. The DFS scheme for PEs takes into

account the PE computation and communication loads to dynamically change the operating

frequency. In the NoC, a DFS controller uses packet information and router activity to decide the

router operating frequency. Also, the clock generation module is designed to provide a clock signal

to PEs and NoC routers. The clock generation method is simple, based on local selective clock

gating of a single global clock, provides a wide range of generated clocks, induces low area and

power overheads and presents small response time.

Synthetic and real applications were used to evaluate the proposed scheme. Results show

that the number of executed instructions can be reduced by 65% (28% in average), with an

execution time overhead up to only 14% (9% in average). The consequent power dissipation

reduction in PEs reaches up to 52% (23% in average) and in the NoC up to 76% (71% in average).

The power overhead induced by the proposed scheme is around 3% in PEs and around 10% in the

NoC.

Keywords: DFS, DVFS, MPSoC, NoC, power management, power reduction.

LIST OF FIGURES

FIGURE 1 – NEGATIVE FEEDBACK CONTROL DVFS SCHEME. .. 21

FIGURE 2 – POURSHAGHAGHI AND DE GYVEZ [POU09] DVFS CONFIGURATION. .. 22

FIGURE 3 – MULTIPLE PRIORITIES SCENARIO IN HERMES-GLP. .. 24

FIGURE 4 – SCENARIO WITH TRAFFIC CONGESTION. (A) FREQBOOST TECHNIQUE IS APPLIED. (B) NEIGHBORS OF ROUTER

D WITH LOW CONGESTION IN ITS RESPECTIVE PORTS BACK TO THE ORIGINAL FREQUENCY. 25

FIGURE 5 – ARCHITECTURAL VIEW OF DISTRIBUTED DVFS ON NOCS WITH MULTIPLE VOLTAGE SUPPLY NETWORKS

[YIN09]. ... 26

FIGURE 6 – INTERVALS IK AND IK+1 AT MAXIMUM FREQUENCY WITH TASK MIGRATION WITHIN EACH INTERVAL. 28

FIGURE 7 – [GLI09] ALGORITHM EVALUATES THE SYSTEM WORKLOAD IN EACH RFI TO DYNAMICALLY CHANGE THE

OPERATING FREQUENCY. .. 28

FIGURE 8 – HEMPS BLOCK DIAGRAM. .. 33

FIGURE 9 – PLASMA-IP PROCESSING ELEMENT. .. 34

FIGURE 10 – PROPOSED HEMPS ARCHITECTURE FOR DFS. ... 36

FIGURE 11 – EXAMPLE OF THE PROPOSED CLOCK GENERATION PROCESS. SIGNAL CLOCK_I IS THE REFERENCE CLOCK AND

CLOCK_O IS THE OUTPUT OF THE CLOCK GENERATOR.. 37

FIGURE 12 – CLOCK GENERATION MODULE. ... 38

FIGURE 13 – ROUTER-PE GALS INTERFACE AND THE PE DFS CONTROLLER. .. 40

FIGURE 14 – DFS CONTROLLER INTERFACE. ... 40

FIGURE 15 – RESOURCE SHARING PROBLEM IN MULTITASK EXECUTION. ... 44

FIGURE 16 – MICROKERNEL SCHEDULER FOR MULTITASK EXECUTION WITH DFS. ... 44

FIGURE 17 – DISTRIBUTED AND CENTRALIZED STRATEGIES FOR HERMES ROUTER ARCHITECTURE WITH DFS. 45

FIGURE 18 – COMPARISONS BETWEEN CENTRALIZED AND DISTRIBUTED DFS STRATEGIES. (A) FOUR TRAFFICS AT HIGH

FREQUENCIES INJECTED IN THE ROUTER; (B) TWO TRAFFICS AT LOW FREQUENCIES INJECTED IN THE ROUTER. 46

FIGURE 19 – ROUTER DFS CONTROLLER STRUCTURE. ... 47

FIGURE 20 – HERMES PACKET WITH FREQUENCY INFORMATION. ... 47

FIGURE 21 – PROPOSED FREQUENCY SWITCHING MECHANISM FOR THE HERMES ROUTER. 48

FIGURE 22 – CALIBRATION SCENARIO WITH SAME READING AND WRITING CLOCKS. .. 49

FIGURE 23 – CALIBRATION SCENARIO WITH READING CLOCK HIGHER THAN WRITING CLOCK. 50

FIGURE 24 – CALIBRATION SCENARIO WITH WRITING CLOCK HIGHER THAN READING CLOCK. 50

FIGURE 25 – COMMUNICATION TASK GRAPH. ... 51

FIGURE 26 – PIPELINE_6 APPLICATION TASK GRAPH. .. 52

FIGURE 27 – MPEG PARTIAL FILTER APPLICATION TASK GRAPH. .. 52

FIGURE 28 – JPEG DECODING TASK GRAPH. ... 52

FIGURE 29 – FOX ALGORITHM FOR MATRIX MULTIPLICATION TASK GRAPH. ... 53

FIGURE 30 – VOPD TASK GRAPH... 53

FIGURE 31 – COMMUNICATION APPLICATION TASKS FREQUENCY BEHAVIOR. (1) WORKER AS THE SLOWEST TASK AND

THE CONSUMER AS FASTEST TASK. (2) WORKER AS THE FASTEST TASK AND CONSUMER AS THE SLOWEST TASK. (3)

PRODUCERS AS THE SLOWEST TASKS AND WORKER AS THE FASTEST TASK. ... 56

FIGURE 32 – PIPELINE WITH 6 TASKS APPLICATION FREQUENCY BEHAVIOR FOR SCENARIO 1. ALL TASKS HAVE THE SAME

WORKLOAD. .. 57

FIGURE 33 – PIPELINE WITH 6 TASKS APPLICATION FREQUENCY BEHAVIOR FOR SCENARIO 2. TASKS HAVE DIFFERENT

WORKLOAD. .. 57

FIGURE 34 – PES AND NOC POWER DISSIPATION COMPARISON FOR 6 TASKS PIPELINE APPLICATION. 59

FIGURE 35 – FREQUENCY BEHAVIOR OF MPEG APPLICATION TASKS. .. 60

FIGURE 36 – PES AND NOC POWER DISSIPATION COMPARISON FOR MPEG APPLICATION. 61

FIGURE 37 - PES AND NOC POWER DISSIPATION COMPARISON FOR FOX 3X3 APPLICATION. 63

FIGURE 38 – FREQUENCY BEHAVIOR OF VOPD APPLICATION TASKS. .. 64

FIGURE 39 – PES AND NOC POWER DISSIPATION COMPARISON FOR VOPD APPLICATION. 65

FIGURE 40 – MACRO TASK MAPPING. ... 67

FIGURE 41 – 6 TASKS PIPELINE APPLICATION FREQUENCY BEHAVIOR FOR MULTITASK EXECUTION. MACRO TASK MAPPING

WITH THE SAME COMPUTATION WORKLOAD FOR ALL TASKS. .. 68

FIGURE 42 – 6 TASKS PIPELINE APPLICATION FREQUENCY BEHAVIOR FOR MULTITASK EXECUTION. MACRO TASK MAPPING

WITH VARIED COMPUTATION WORKLOAD FOR EACH TASK. .. 68

FIGURE 43 – ISOLATED TASK MAPPING. ... 68

FIGURE 44 – 6 TASKS PIPELINE APPLICATION FREQUENCY BEHAVIOR FOR MULTITASK EXECUTION. ISOLATED TASK

MAPPING WITH THE SAME COMPUTATION WORKLOAD FOR ALL TASKS. ... 69

FIGURE 45 – 6 TASKS PIPELINE APPLICATION FREQUENCY BEHAVIOR FOR MULTITASK EXECUTION. ISOLATED TASK

MAPPING WITH VARIED COMPUTATION WORKLOAD FOR EACH TASK. ... 69

FIGURE 46 – TASK MAPPING FOR THE EVALUATED SCENARIOS OF MPEG APPLICATION IN MULTITASK EXECUTION. 70

FIGURE 47 – FREQUENCY BEHAVIOR OF MPEG APPLICATION TASKS IN THE FIRST SCENARIO OF MULTITASK EXECUTION.

 .. 71

FIGURE 48 – FREQUENCY BEHAVIOR OF MPEG APPLICATION TASKS IN THE SECOND SCENARIO OF MULTITASK EXECUTION.

 .. 71

FIGURE 49 – FREQUENCY BEHAVIOR OF MPEG AND COMMUNICATION APPLICATIONS TASKS IN THE THIRD SCENARIO OF

MULTITASK EXECUTION. ... 72

FIGURE 50 – PES AND NOC POWER DISSIPATION COMPARISON FOR MPEG AND COMMUNICATION APPLICATIONS IN

MULTITASK EXECUTION. ... 73

FIGURE 51 – FREQUENCY BEHAVIOR OF VOPD APPLICATION TASKS IN MULTITASK EXECUTION. 74

LIST OF TABLES

TABLE 1 – MICROPROCESSORS DVFS SCHEMES COMPARISON. ... 24

TABLE 2 – COMPARISON OF DVFS TECHNIQUES FOR NOCS.. 27

TABLE 3 – SYSTEM OPERATION MODES IN [BEI08]. ... 30

TABLE 4 – DVFS TECHNIQUES COMPARISON FOR NOC-BASED MPSOCS. ... 30

TABLE 5 – AVAILABLE SERVICES IN HEMPS MPSOC. ... 35

TABLE 6 – POSSIBLE MONITORED PARAMETER SCENARIOS AND ACTIONS. ... 39

TABLE 7 – DFS CONTROLLER BEHAVIOR (↓/↑ MEAN DECREASE/INCREASE ONE FREQUENCY STEP, ↑↑ MEANS

INCREASE TWO FREQUENCY STEPS, = MEANS KEEP FREQUENCY UNCHANGED AND - DENOTES DON’T CARE

CONDITIONS). .. 41

TABLE 8 – EVALUATED SCENARIOS FOR COMMUNICATION APPLICATION. ‘+’ REPRESENTS THE DATA PROCESSING RATE.

 .. 55

TABLE 9 – COMMUNICATION APPLICATION RESULTS. .. 56

TABLE 10 – EVALUATED SCENARIOS FOR 6 TASKS PIPELINE APPLICATION. ‘+’ REPRESENTS THE DATA PROCESSING RATE.

 .. 57

TABLE 11 – PIPELINE WITH 6 TASKS RESULTS. ... 58

TABLE 12 – PIPELINE WITH 6 TASKS POWER CONSUMPTION FOR SCENARIO 2. ... 59

TABLE 13 – NUMBER OF EXECUTED INSTRUCTIONS AND EXECUTION TIME RESULTS FOR MPEG APPLICATION. 60

TABLE 14 – POWER DISSIPATION RESULTS FOR MPEG APPLICATION WITH AND WITHOUT THE PROPOSED DFS SCHEME.

 .. 60

TABLE 15 – NUMBER OF EXECUTED INSTRUCTIONS AND EXECUTION TIME RESULTS FOR JPEG APPLICATION. 62

TABLE 16 – NUMBER OF EXECUTED INSTRUCTIONS AND EXECUTION TIME RESULTS FOR FOX 3X3 APPLICATION. 62

TABLE 17 – POWER DISSIPATION RESULTS FOR FOX 3X3 APPLICATION WITH AND WITHOUT THE PROPOSED DFS SCHEME.

 .. 63

TABLE 18 – NUMBER OF EXECUTED INSTRUCTIONS AND EXECUTION TIME RESULTS FOR VOPD APPLICATION. 65

TABLE 19 – POWER DISSIPATION RESULTS FOR THE VOPD APPLICATION WITH AND WITHOUT THE PROPOSED DFS

SCHEME. .. 65

TABLE 20 – NUMBER OF EXECUTED INSTRUCTIONS AND EXECUTION TIME RESULTS FOR THE EVALUATED SCENARIOS OF 6

TASKS PIPELINE APPLICATION IN MULTITASK EXECUTION. ... 69

TABLE 21 – NUMBER OF EXECUTED INSTRUCTIONS AND EXECUTION TIME RESULTS FOR THE EVALUATED SCENARIOS OF

MPEG APPLICATION IN MULTITASK EXECUTION. .. 72

TABLE 22 – POWER DISSIPATION RESULTS FOR THE THIRD SCENARIO OF MPEG APPLICATION IN MULTITASK EXECUTION,

WITH AND WITHOUT THE PROPOSED DFS SCHEME. ... 73

TABLE 23 – NUMBER OF EXECUTED INSTRUCTIONS AND EXECUTION TIME RESULTS FOR VOPD APPLICATION IN

MULTITASK EXECUTION. ... 74

TABLE 24 – ANGULAR COEFFICIENTS FOR BUFFER POWER EQUATION. ... 82

TABLE 25 – LINEAR COEFFICIENTS FOR BUFFER POWER EQUATION. .. 82

TABLE 26 – ANGULAR COEFFICIENTS FOR SWITCH CONTROL POWER EQUATION. .. 83

TABLE 27 – LINEAR COEFFICIENTS FOR SWITCH CONTROL POWER EQUATION. ... 83

TABLE 28 – ANGULAR COEFFICIENTS FOR CROSSBAR POWER EQUATION. ... 84

TABLE 29 – LINEAR COEFFICIENTS FOR CROSSBAR POWER EQUATION. ... 84

TABLE 30 – ROUTER DFS CONTROLLER POWER DISSIPATION FOR DIFFERENT OUTPUT CLOCKS. 85

LIST OF ACRONYMS

ASIC Application-Specific Integrated Circuit

CMOS Complementary Metal-Oxide Semiconductor

CPU Central Processing Unit

DC-DC Direct Current – Direct Current

DFS Dynamic Frequency Scaling

DFT Design for Testability

DMA Direct Memory Access

DPM Dynamic Power Management

DSM Deep Sub-micron

DVFS Dynamic Voltage and Frequency Scaling

FIFO First-In First-Out

FL Fuzzy Logic

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GALS Globally Asynchronous, Locally Synchronous

HeMPS Hermes Multiprocessor System

IP Intellectual Property

JPEG Joint Photographic Experts Group

LUT Look-up Table

MPEG Moving Pictures Expert Group

MPSoC Multiprocessor System-on-Chip

NI Network Interface

NoC Network-on-Chip

OS Operating System

PE Processing Element

PID Proportional–Integral–Derivative

PLL Phase-Locked Loop

PM Power Manager

PMU Power Management Unit

RAM Random-Access Memory

RFI Recompute Frequency Interval

RTOS Real Time Operating System

SoC System-on-Chip

VFI Voltage-Frequency Island

VHDL Very High Speed Integrated Circuits (VHSIC) Hardware Description
Language

VOPD Video Object Plane Decoder

CONTENTS

1 INTRODUCTION ...17

1.1 DYNAMIC POWER MANAGEMENT ...18

1.2 DFS AND DVFS ..18

1.3 GOALS...19

1.4 DOCUMENT OUTLINE ...20

2 RELATED WORK ...21

2.1 DVFS IN MICROPROCESSORS ...21

2.2 DVFS IN NOCS ...24

2.3 DVFS IN NOC-BASED MPSOCS..27

2.4 DVFS IN BUS-BASED MPSOCS ...30

2.5 CONCLUSION ..32

3 SYSTEM ARCHITECTURE ...33

3.1 ORIGINAL HEMPS ARCHITECTURE...33

3.1.1 Hermes NoC ..33

3.1.2 Plasma-IP ...34

3.2 HEMPS ARCHITECTURE WITH SUPPORT FOR DFS ...35

4 DFS AT THE PROCESSOR LEVEL ..37

4.1 CLOCK GENERATION ...37

4.2 PROCESSING ELEMENT DFS CONTROLLING SCHEME ..39

4.3 MULTITASK SUPPORT ...43

5 DFS AT THE NOC LEVEL ..45

5.1 ARCHITECTURAL EXPLORATION ...45

5.2 ROUTER DFS CONTROLLING SCHEME ...47

5.3 CALIBRATION ..49

6 EXPERIMENTAL RESULTS ...51

6.1 EXPERIMENTAL SETUP ..51

6.1.1 Processing Element Evaluation..54

6.1.2 NoC Evaluation ...54

6.2 MONO-TASK EXECUTION ..55

6.2.1 Communication ..55

6.2.2 Pipeline with 6 Tasks ...57

6.2.3 MPEG ...59

6.2.4 JPEG ...61

6.2.5 FOX 3x3 ..62

6.2.6 VOPD ..63

6.2.7 Mono Task Final Remarks ...66

6.3 MULTI-TASK EXECUTION ...67

6.3.1 Pipeline with 6 Tasks ...67

6.3.2 MPEG ...70

6.3.3 VOPD ..73

6.3.4 Multi Task Final Remarks ..74

7 CONCLUSION AND FUTURE WORKS ...76

7.1 FUTURE WORKS ..77

REFERENCES ...78

APPENDIX A – CALIBRATION DATA FOR ROUTER MODULES ..82

17

1 INTRODUCTION

The continuous advance of CMOS technology has enabled the design of high complexity

systems. Nowadays, a chip may contain several IPs (Intellectual Property), presenting different

functionalities, being called a SoC (System-on-Chip). When a massive computing power is needed,

several processors may be employed together, composing an MPSoC (Multiprocessor System-on-

Chip). These systems need an interconnection infrastructure to allow modules to communicate.

Networks-on-chip (NoCs) are an attractive solution for on-chip communication, providing flexibility

and scalability [LEE07] [SHA08]. Thus, NoC-based MPSoCs can provide massive computing power

on a single chip, while executing several applications in parallel.

However, high performance systems usually require elevated energy consumption. Indeed,

some devices, such as smartphones and tablets, need high performance to deliver multiple

services and simultaneously provide several alternative functionalities, while meeting a given

power or energy constraint imposed by battery autonomy limitations. Moreover, drawbacks such

as increasing leakage current and power density keeps getting worse at each technology node.

Furthermore, battery technology does not keep up with the increasing power consumption in

complex designs. Hence, designers have to select the best trade-off between performance and

energy consumption for the set of applications the system will execute [BEN00].

To achieve a good trade-off between performance and energy consumption, a common way

to design systems is to meet minimum performance constraints for a given set of applications, and

then, achieve the desired power or energy consumption through some power reduction technique.

The energy consumption in systems implemented using CMOS technology is related to the

operating frequency, supplied voltage, load capacitance and switching activity. Most techniques

rely on controlling the supplied voltage and operation frequency, which can significantly reduce

energy consumption.

Still, devices need to deliver the maximum achievable performance when requested.

However, this performance is required only in some intervals. Thus, at some point of execution,

the system can adjust its operating conditions to consume less energy. The ability of tuning system

performance according to the required performance is the key to achieve an energy-efficient

system [BEN00]. Controlling the device operating conditions to reduce power consumption is

called power management. It can be guided by workload characteristics extracted at design time

or at runtime. An effective power management using design time data needs an encompassing

design space exploration, requiring a significant amount of time in complex designs. Also,

manufacturing process variability and circuit aging may lead to malfunction in this kind of

methodology. On the other hand, a dynamic power management, which monitors the workload at

runtime, may provide better results for systems with high workload variability, which is present in

most modern systems.

18

1.1 DYNAMIC POWER MANAGEMENT

Dynamic power management (DPM) is employed to reconfigure an electronic system to

provide required services and performance levels with a minimum number of active components

and/or a minimum load on such components [BEN98] [LOR98]. DPM comprises a set of techniques

and/or mechanisms to build energy-efficient environments. This is done by turning off or reducing

the performance of given system components, which are not fully explored. There are two main

premises for the applicability of DPM: (i) the system and its components present non-uniform

workloads during operation and (ii) it is possible to predict, with certain level of accuracy, the

oscillation in the workload.

DPM mechanisms differ according to the element aggregation level (e.g., component,

system, network) where DPM is applied, as well as on its physical realization style (e.g., timer,

hard-wired controller, software routine) [BEN00]. The agent responsible for taking the decisions is

called power manager (PM). Usually, decisions are based on a set of parameters or rules, often

called policy. An example of policy is the one used in mobile devices. In this kind of device, some

parts can be turned off due to low workload or after a given inactivity time.

Nevertheless, the way the system employs the DPM, the use of dynamic reconfiguration and

the chosen policy may present significant impact in the overall power consumption. Thus, the

design of an efficient PMs is decisive for maximizing power saving.

1.2 DFS AND DVFS

Controlling two main parameters can reduce energy consumption in CMOS circuits: the

supplied voltage and the operating frequency. The latter has a linear impact on energy

consumption, and a given frequency can only be sustained with some minimum voltage supply. On

the other hand, voltage has a quadratic impact on energy consumption. Accordingly, this is the

most used factor to reduce energy consumption. Controlling these two variables at runtime is the

basis of the Dynamic Voltage and Frequency Scaling (DVFS) techniques. As an alternative, it is

possible to control only the operating frequency (Dynamic Frequency Scaling – DFS). DFS is an

interesting solution when the area overhead added by the voltage control unit becomes a problem,

when the design needs a simple and very fast switch between operation modes, or when there are

no hardware mechanisms to support voltage switching, like in most current FPGA devices.

DVFS and DFS techniques can be controlled by hardware components alone, by software

algorithms, or by some hybrid hardware-software configuration. When using a pure hardware

control, sensors and dedicated monitors can collect information of hardware (e.g temperature,

throughput, latency), providing it to the power manager. On the other hand, the operating system

(OS) or the microkernel is the main engine for pure software control. In this case, the OS has to

process all the available data, working as power manager, informing the hardware the desired

voltage and/or frequency. Using a mixed approach, the hardware may collect information and

provide it to the software, which only becomes responsible for processing control data. This

approach presents a small hardware overhead (the hardware does not need to process any data)

19

while providing more accurate information to the software, which processes the data and informs

the hardware the actions to be taken. Moreover, the control scheme can be centralized or

distributed. A centralized scheme uses global data to take decisions, while distributed schemes use

only local data.

On NoC-based MPSoCs, the DVFS scheme can be introduced into the processing element

(PE), in the NoC router or in both. Introducing a DVFS scheme on only one component of the

MPSoC may not exploit all potential of power savings. Indeed, most approaches couple the

processing element with the router, dealing with it as a single module. Ideally, to explore

maximum power savings, the router and processing element should be managed individually,

according to their own specific characteristics.

As a drawback of DVFS, the scaling of technology may result in problems like worsening

manufacturing process variations. These variations can result in nominally correct DVFS schemes

failing to meet frequency or power targets [GAR09] [HEB09]. Therefore, DVFS techniques must

cope with design variability in nanoscale technologies to guarantee correct system behavior. In

addition, the most recent technologies (45nm and below) are restricting the supply voltage scaling

margins, which is the key component behind power savings through DVFS [CHA11]. Thus,

designing the system to work at a fixed supply voltage, coupled to a DFS method may be an option

to efficiently manage energy consumption in DSM technologies.

1.3 GOALS

The main objective of the present work is to propose and to evaluate a new DFS technique,

targeting power dissipation reduction in NoC-Based MPSoCs. The proposed technique is designed

to be applied to both processing elements and NoC router in separate, which are the main

components of NoC-Based MPSoCs. In processing elements, control is based on tasks workload

and individual tasks communication load. In the router, control acts according to packet

information and router activity.

The specific goals of the present work include:

 Adjust the communication interface between processor and router to the GALS paradigm;

 Design a clock generation scheme to provide different clock frequencies to the modules

(PEs and routers);

 Define a set of rules to guide the DFS controlling scheme behavior in the PE;

 Adapt NoC routers to communicate using different frequencies;

 Design a mechanism for frequency switching in the NoC;

 Implement a set of benchmarks to be executed in the HeMPS Platform;

 Propose a policy to handle DFS with multitask execution;

 Evaluate the proposed techniques considering the power dissipation and reduction in the

number of executed instructions, which can be used as energy consumption metric in

higher abstraction levels.

20

1.4 DOCUMENT OUTLINE

The remainder of this document is organized as follows. Chapter 2 reviews the state of the

art, classifying it according to the system level where the DFS, or DVFS techniques are applied. This

Chapter also compares the reviewed approaches with the proposed technique. Chapter 3

describes the target NoC-MPSoC architecture and the required modifications to enable the

proposed DFS technique. Next, in Chapter 4, the processor control scheme, multitask handling

policy and the local clock generation module are presented. Chapter 5 describes the NoC router

control scheme and the proposed adaptation of the work [GUI08], as well. The experimental setup

and evaluation of the proposed technique is depicted in Chapter 6. Finally, conclusions and future

works are described in Chapter 7.

21

2 RELATED WORK

This Chapter surveys the state-of-the-art in Dynamic Voltage and Frequency Scaling

techniques according to the system level that it is applied. As mentioned before, DVFS can be

applied in any of main elements of NoC-Based MPSoCs (processors and routers). The following

Sections discuss DVFS techniques applied to both elements of NoC-Based MPSoCs independently,

as well as to the entire system, also covering other architecture types. Lastly, the present work is

positioned with regard to the works presented in this Chapter.

2.1 DVFS IN MICROPROCESSORS

DVFS techniques in microprocessors are a well-known method to reduce power

consumption. Currently, a significant portion of commercial processors can operate at multiple

levels of voltage and frequency. In these processors, a key factor that determines if the voltage

and/or frequency have to be scaled up or down is the workload. Basically, when the processor is in

idle state, i.e. not executing any job or task, voltage and frequency can be scaled down. At the

moment some task is scheduled, the operating voltage and frequency are scaled up.

[SHA09] et al. present a feedback control algorithm that uses DVFS for power savings in

processors, depicted in Figure 1. The main idea of the algorithm is to keep the processor operating

at its maximum processing capacity (maximum utilization), meeting application constraints while

saving as much power as possible. The algorithm is implemented in software and depends on

continuous online measurement of the CPU load and a specific hardware to adjust the operation

voltage and frequency. The negative feedback loop reduces the processor voltage and frequency

when the CPU is not fully utilized. When the application requires higher performance, the

controller increases operating voltage and frequency.

Figure 1 – Negative feedback control DVFS scheme.

The CPU load is measured using a task called IDLE. This task is scheduled when there is no

task for the processor to execute. Therefore, it is possible to measure the CPU utilization (load) by

calculating how much time the IDLE task executes in a given sampling period. If the amount of

time that the IDLE task is executed is greater than zero, it means that the processor load is less

than 100%. However, it cannot detect if the processor is over utilized, since the value of 100% may

denote either full or overload utilization.

22

With this information, the algorithm is capable of choosing a suitable voltage-frequency pair.

Still, the algorithm follows some rules. If the chosen voltage and/or frequency are not available,

e.g. the system only provides three different levels and chosen pair is between two of the

available levels, the applied voltage and frequency will be the closest available pair in the system

with voltage and frequency higher than the chosen pair. Also, if performance has to be increased,

voltage is increased before frequency and vice-versa, in case of decrease in performance. Lastly,

when the utilization is at 100%, voltage and frequency are always increased, due to the

uncertainty in the measurement, which cannot state if the processor utilization is at 100% or at a

higher value. Using this algorithm, the Authors presented power savings between 5% and 24% in

an architecture that allows only frequency scaling, for real and synthetic workloads. In addition,

the Authors claim that using the proposed scheme in a system that allows voltage scaling can

present greater power savings.

Similarly, Pourshaghaghi and de Gyvez [POU09] present an adaptive framework for DVFS in

processors that work with different application workloads. Voltage scaling decisions are made by a

fuzzy logic (FL) block, based on workload variations. Since there is a strong correlation between

supply current and workload [BEN99], the proposed scheme is based on monitoring the supply

current of the processor and its variations. The objective of using the variations of the supply

current is to predict the variations in the workload, making the controller act beforehand. Figure 2

shows the configuration of the scheme proposed in [POU09]. The current sensors are responsible

for measuring the supply current used by the processor and providing the values for the FL

controller and the module Derivative, which calculates variations on the supply current. The FL

controller is composed by three main blocks: (i) a fuzzification block, responsible for converting a

quantified numerical or a control variable into a qualitative value (membership functions); (ii) a

fuzzy engine, containing a set of if-then rules that gather the knowledge needed to successfully

control the output; and (iii) a deffuzzification block, that converts the resulting fuzzy set into a

number to be sent as a control signal. After calculating the voltage and frequency values, the

controller acts over the hardware, which commands the circuit operation. In this work there is no

mention about the hardware used for voltage and frequency switching. However, the Authors

suggest that a DC-DC converter can be used for voltage switching and a look-up-table (LUT) can be

used to choose a frequency within a pre-defined set.

Figure 2 – Pourshaghaghi and de Gyvez [POU09] DVFS configuration.

23

Results show that the fuzzy controller can track the supply current better than a PID

controller, especially when the supply current presents high variability. When the supply current

varies, compared to the supply current used to calibrate the PID controller, the PID coefficients are

not optimal anymore and new coefficients need to be calculated. Moreover, the fuzzy logic

controller can work on-line to track all workload (supply-current) circumstances with higher speed

and smaller error.

Shu and Li [SHU10] et al. propose a DVFS controlling scheme based on the current processor

temperature, thermal state, and tasks characteristics. The goal is to minimize total energy

consumption taking into account the temperature, due to the fact that the leakage power has an

exponential dependence on temperature, and the decrease in the size of devices makes the

leakage current increases, especially in DSM technologies.

The proposed scheme relies on a platform that provides a Performance Monitor Unit (PMU)

and on-chip temperature sensors. The algorithm is implemented in software and the set of tasks is

modeled with periodic and aperiodic tasks. Information like number of executed instructions, data

and instruction cache misses and number of cycles to execute a given task is used by the algorithm.

The used system has two modes: active and sleep. The time to change from one mode to another

is non-negligible, although the time to switch from one voltage (frequency) level to another is

negligible. The thermal state of the system is calculated through the current temperature, power

dissipation in a fixed period, ambient temperature and electrical characteristics of the circuit. Then,

based on the collected information, the algorithm finds the optimal operating frequency that fits

the parameter values provided (temperature and performance loss).

Results show the amount of energy savings are highly impacted by the actual available

voltage-frequency pairs on chip, the performance requirement and the application execution time.

In the worst case, where performance loss is 5%, the proposed algorithm saves up to 8% of energy,

while in the best case, where performance loss is 20%, the amount of energy savings reaches 37%.

On average, the total energy saving achieves 21.6%.

Table 1 summarizes the characteristics of the studied works that present solutions for DVFS

in microprocessors. The main difference is between the Shu and Li work and the other two. While

in [SHU10] the aim is to reduce power by meeting a given performance loss and temperature, the

others aim to reduce power dissipation simply based on the workload. The algorithm proposed in

[SHU10] works with a restricted number of tasks and fits better in systems where applications to

executed are well defined, while the other two approaches cover systems that cannot predict the

applications that will execute and present high variability in the workload. Also, the scheme

proposed in [SHA09] and [POU09] are simpler to implement and may use hardware or software

structures. A common point between all works is that there is no concern about implementation

of the specific hardware support for DVFS. [SHA09] and [SHU10] used a platform which provides

frequency scaling support, while [POU09] compared the output of the FL controller to a PID

controller.

24

Table 1 – Microprocessors DVFS schemes comparison.

Author Monitoring Parameter Implementation Hardware Support

Shalan and El-Sissy [SHA09] CPU Utilization Software Native

Pourshaghaghi and de Gyvez
[POU09]

CPU Supply Current Hardware
Proposed, not
Implemented

Shu and Li [SHU10]
Tasks characteristics,

Temperature, Thermal State
Software Native

2.2 DVFS IN NOCS

The router is the main component of a NoC. In the studied works the routers are treated

independently, i.e. each router has an individual DVFS controlling scheme or algorithm. This

approach is interesting due to the fact that hardly ever all routers of the NoC will be operating at

the same time, making it possible that inactive routers have its voltage and frequency decreased.

Pontes et al. [PON08] use flow priority to control the operating frequency of the routers in

the Hermes-GLP NoC. Besides DFS, the Authors also use a clock-gating technique to help in power

reduction when there is no activity in the router. A module called clock control is responsible for

deciding the operating frequency of the router or applying clock gating. This module receives

information from the input ports to take the decisions. Only active ports are taken into account to

determine the router frequency. Figure 3 shows an example of execution.

00

01

02

10

11

12

20

21

22

(a)

00

01

02

10

11

12

20

21

22

(b)

00

01

02

10

11

12

20

21

22

(c)

00

01

02

10

11

12

20

21

22

(d)

Figure 3 – Multiple priorities scenario in Hermes-GLP.

In Figure 3(a), the NoC routes a flow of low priority. Next (Figure 3(b)), a flow of higher

priority is introduced in the network, making the clock control increase the frequency of the router

which is routing both flows (router 11), in order to meet the requirements of the higher priority

flow. Later, when the flow of higher priority ends (Figure 3(c)), the central router goes back to the

lower frequency and the clocks of routers 21 and 01 are gated. Finally, after the first flow is

finished, all routers have their clocks gated (Figure 3(d)). Results show the proposed scheme

reduces significantly the activation rate of the router when compared to the Hermes-G router

25

[PON08], with negligible increase in latency. Even without power or energy evaluation, the

Authors affirm the scheme allows a significant reduction in power consumption due to the

reduction in the activation rate of the routers.

Another way to control the operating frequency is by monitoring the communication load of

each router, as done in [MIS09], [YIN09], [OGR08], [OGR09] and [GAR10]. Mishra et al. [MIS09]

propose an algorithm for DVFS based in the occupation of queues. The Authors present three

techniques to dynamically change the operating frequency of routers. The first technique is called

FreqBoost, which consists in operating the whole system at a higher frequency and decrease the

frequency of routers that are generating congestion in the network, as illustrated in Figure 4.

Figure 4 – Scenario with traffic congestion. (a) FreqBoost technique is applied. (b) Neighbors of router D
with low congestion in its respective ports back to the original frequency.

In Figure 4(a) the central router (D) is congested. Ports east, south and north are almost full,

being fed by routers E, C and B, respectively. First, router D informs its neighbors that it is

congested. Then, the routers C and E verify they are not overloaded and can decrease their

frequency, reducing the congestion in router D. However, router B verifies that it is congested and

cannot decrease its frequency. In Figure 4(b) router D informs routers C and B that their respective

ports are not congested anymore, making them return to the original frequency while router E

keeps its frequency down.

The second technique is called FreqThrtl and consists in operating the system at higher

frequencies only when the possibility of congestion is verified. When the congestion is detected,

the router has its frequency increased and the routers that are generating the congestion have

their frequency reduced. This technique presented reduction in energy consumption, while the

technique FreqBoost presented reduction in latency. Then, a third technique is proposed by

coupling both techniques previously mentioned, called FreqTune. This technique exploits the

benefits of the other two, presenting reduction in energy consumption and better performance.

Similarly, Yin et al. [YIN09] present an algorithm for DVFS based on the buffers load of each

router. In this work, a bisynchronous FIFO [PAN07] is used to connect each neighbor router, which

synchronizes the communication between routers of different clock domains. Then, the load of

26

each router is measured by the average occupation of the buffers inside the router and connected

FIFOs, being called local load. The algorithm uses the local load value to dynamically adjust the

supply voltage by comparing it with threshold values defined by the application. Additionally, a

scalable DVFS architecture is proposed (Figure 5).

Figure 5 – Architectural view of distributed DVFS on NoCs with multiple voltage supply networks [YIN09].

The proposed architecture works with multiple voltage supply networks and power selection

transistors. By using this architecture, the number of voltage levels is restricted, due to the

manufacturing feasibility. However, the area and power overhead are negligible when compared

to voltage regulators, despite the speed for switching from one level to another. Results show a

reduction in energy consumption between 45% and 60%, for synthetic traffic patterns although

they do not consider the energy overhead added by FIFOs. The router energy overhead induced by

the FIFO ranges from 25% to 31%. Nevertheless, the Authors affirm that using the proposed

technique energy benefits are considerable when compared to static voltage setting.

Likewise, in [OGR08], [OGR09] and [GAR10] it is presented a feedback control that acts over

queues occupation. The NoC is divided in Voltage-Frequency Islands (VFIs), and the

communication between the routers is done via bisynchronous mixed-voltage queues. In [OGR08]

and [OGR09] the Authors use a state-space matrix, which contains the occupation of each queue

in the system. The state-space is modeled into an equation and used by the controller to

dynamically change the frequency of the island. However, the limitation of this method relies on

the number of queues that can be controlled. Using this controlling scheme, it is possible to

control, in the best case, a number of queues equal to the number of VFIs. Experiments showed a

reduction of 40% in energy for a hardware MPEG-2 encoder design.

Garg et. al. [GAR10] use the feedback control presented in [OGR08] and [OGR09] to design a

new control, called custom feedback, which provides similar performance, while consuming less

27

area. The Authors divide the controllers between fully-centralized and fully-decentralized controls.

The fully-centralized control (FC) presents a performance better than the fully-decentralized (FD).

However, the fully-decentralized control presents an implementation cost significantly smaller,

especially when the system is large, leading to a prohibitive design of global communication.

To efficiently explore the design space between FC and FD control strategies, the Custom

Feedback control (CF) is proposed. The CF control is a mix of both FC and FD strategies. In this

controlling scheme, the controller uses the information of some queues of the system, instead of

using all of them, as it happens for FC. By using the information of some queues of system, the CF

control presents a small overhead in implementation cost when compared to the FD, and around

the same power saving, when compared to the FC.

Table 2 summarizes the characteristics of the studied works that present solutions for DVFS

in NoCs. The main difference is related to the monitoring parameter used by Pontes et. al.

[PON08]. Instead of designing a specific controlling scheme, the packet defines the frequency in

which the routers will operate. On the other hand, Mishra, Yin, Ogras and Garg provide a generic

solution, at cost of area and power overheads. Ogras and Garg et. al. presented a software

implementation of the algorithm, though it is said it can be easily implemented in hardware. Only

Mishra et. al. presented a hardware implementation for voltage and frequency scaling, while

Ogras and Garg et. al. used existing FPGA components to enable frequency scaling, not using

voltage scaling. Generally the approaches can be divided into guided by application requirements

([PON08]) and guided by current workload scenario ([MIS09][YIN09][OGR08][OGR09][GAR10]).

Table 2 – Comparison of DVFS techniques for NoCs.

Author Monitoring Parameter Implementation Hardware Support

Pontes [PON08] Flow Priority Hardware Not Implemented

Mishra [MIS09] Queues Occupation Hardware Implemented in ASIC

Yin [YIN09] Queues Occupation Hardware
Proposed, not
Implemented

Ogras and Garg
[OGR08][OGR09][GAR10]

Queues Occupation Software Partially Implemented

2.3 DVFS IN NOC-BASED MPSOCS

A NoC-Based MPSoC is generally composed by a set of processing element, which each of

usually contains a processor and some peripherals, and a network-on-chip (NoC). Therefore, to

apply DVFS in MPSoCs the designer has to take into account some characteristics that do not

appear in mono-processor architectures such as task communication by message exchanging,

network congestion and several services provided by the architecture.

Gligor et. al. [GLI09] propose a task migration aware DVFS algorithm. The algorithm

identifies processor workloads and calculates the frequency needed by the tasks to finish

execution before the next deadline. The system workload is estimated by dividing the number of

clock cycles the system was active during a given time interval, by the total number of cycles

available at the maximum frequency in this time interval. However, processors without useful

28

work only at part of the interval may lead to erroneous analysis when a task is migrated within this

interval. To overcome this problem, time intervals are divided in subintervals. At each subinterval

the frequency is recomputed using the information of non-idle processors. Thus, if a task is

migrated within this time interval to a previously idle processor, the computation in subintervals

can handle the new configuration of the system. Figure 6 illustrates a system workload in two time

intervals without frequency scaling.

Figure 6 – Intervals Ik and Ik+1 at maximum frequency with task migration within each interval.

In this example, the calculated system workload is around 33% in the interval Ik. However,

setting the frequency at 33% for the entire next interval (Ik+1) is not a good solution, because not

all processors have useful work to execute during the next interval. For example, idle periods

caused by a blockage and task migration costs may interfere in the total system workload. In

Figure 7 it is shown how the proposed algorithm works, acting in the subintervals, represented by

the dotted lines and called Recompute Frequency Interval (RFI). The operating frequency is

defined by the remaining time the task has to finish and how much work needs to be processed.

The Authors used a cycle accurate simulation platform to present the results and claim that the

energy savings can achieve 55%, but there are no details on how this value is obtained.

Figure 7 – [GLI09] algorithm evaluates the system workload in each RFI to dynamically change the
operating frequency.

Another characteristic present in MPSoCs is the concept of composability. Composability is a

term used to refer to a property that the behavior of an application is not affected by the absence

or presence of other application(s) executing in the same system. Goossens et. al. [GOO10]

present a composable and predictable power management through a composable DVFS hardware.

The Authors propose an architecture that uses an existing DVFS hardware to build composable

29

and predictable SoCs running multiple applications. The DVFS scheme is controlled by an RTOS.

The execution is divided in system time slices, composed by the task time slice and the RTOS time

slice. Composability is achieved by making the system time slice constant, giving to the tasks of

different applications the same amount of execution time, and by programming DVFS operations

at precise points in the future.

As done by the Authors of [GLI09], the difference between the remaining budget and

remaining work defines the operating frequency for a given task. This means that without slack a

task would run at maximum frequency. Otherwise, a lower frequency can be used. Yet, a slack left

by a given task can only be used by another task of the same application, to guarantee

composability. Results show a reduction of 42% in energy consumption when the technique is

compared to only clock-gating idle slices, and a reduction of 68% when compared to no power

management in processing elements. No mention about NoC power management is made in this

work.

Puschini et al. [PUS08] [PUS09] propose an approach for frequency tuning based on game

theory, which considers the state of other processing elements in the MPSoC to compute the

decisions. Game theory is a branch of applied mathematics that studies interactions among

rational individuals or decision makers. A game is a scenario with several players interacting by

actions and consequences. Each action taken by a given player results in consequences or

outcomes. Still, each action has as objective to maximize the outcome of a player. The outcome of

a player is calculated by a function, in this work called objective function, and represented by a

score: the higher the score is, the closer it is to the optimal point. In addition, the function that

computes the score of a player must consider not only the player’s choices, but the choices of

other players as well. Accordingly, some system variables, e.g. latency, energy, temperature, were

mathematically modeled to be used in an objective function. In the context of these works, a

player is represented by a processing element, which targets to achieve the optimum utility

(score) value. In [PUS08] the objective is to reach a state where the whole system is in a restricted

range of temperature, by changing the frequency of each processing element. In this case, the

variables modeled to be used in the objective function were task synchronization and temperature.

Results show that the temperature profile was optimized without loss of task synchronization, and

the performance of the algorithm is equivalent when compared to an off-line method. In [PUS09]

the goal is to optimize energy consumption, scaling the frequency with no latency penalties.

Latency and energy were modeled and used in the objective function. Results show reductions

between 10% and 25% in energy, compared to nominal frequency assignment, with no latency

penalty.

Differently from the previously revised works, Beigné et. al [BEI08] propose a DVFS

architecture that can be controlled at system level. There are six modes that can be used by each

IP unit, composed by a processor and peripherals, in the system, detailed in Table 3. According to

application requirements, the software developer can either use an explicit way to program each

IP unit using the HIGH, LOW, IDLE, OFF modes; or use an implicit way to program each IP for a pre-

determined average “VCORE” value using the HOPPING mode. In the explicit way, the software must

30

configure at real time the appropriate mode, while in the implicit way, the pre-programmed VCORE

value is fully managed by hardware.

Table 3 – System operation modes in [BEI08].

Mode Description

INIT At reset, the unit is at VHIGH with no clock

HIGH The unit is supplied by VHIGH voltage

LOW The unit is supplied by VLOW voltage

HOPPING The unit is automatically switched between VHIGH and VLOW voltages, for DVFS

IDLE
The unit is idle, keeping the current state at VLOW voltage, for reduced leakage
power

OFF
The unit is switched OFF, without saving the current state, for minimal leakage
power

Table 4 summarizes the characteristics of the studied works that present solutions for DVFS

in NoC-Based MPSoCs. All works present solutions for DVFS only in the processing element.

However, Puschini and Beigné et al. use an asynchronous NoC in the MPSoC. Apart from Beigné et

al., the controlling algorithm is related to the task characteristics, similarly to the techniques

presented in Section 2.1.

Also, most of the works do not implement the hardware support needed for DVFS. Puschini

et al. use a platform that already supports DVFS. Goossens et al. implement a frequency scaling

mechanism in FPGA, but do not use voltage scaling, while Gligor et al use a simulation platform to

generate the results.

Table 4 – DVFS techniques comparison for NoC-Based MPSoCs.

Author Monitoring Parameter Implementation Hardware Support Memory
Architecture

Gligor et al. [GLI09] Task Slack Software Not Implemented Shared

Goossens et al.
[GOO10]

Task Slack Hardware
Partially

Implemented
Shared

Puschini et al.
[PUS08] [PUS09]

Task Synchronization, Latency,
Temperature

Software Native Distributed

Beigné et al.
[BEI08]

- Hardware Implemented Distributed

2.4 DVFS IN BUS-BASED MPSOCS

A bus-based MPSoC is composed by several processing elements, interconnected by a bus.

The main difference to NoC-Based MPSoCs is the impossibility of parallel communications, being a

non-scalable solution as processor counting increases. However, this kind of architecture is a good

solution for MPSoCs with few processing elements. Works that address this kind of architecture

for DVFS aims only the processing element as the component to control.

In the architecture used by Alimonda et. al. [ALI06] [ALI09] each processor has an output

queue, responsible for storing messages for target processor(s). The Authors propose a non-linear

31

feedback control approach for DVFS in data-flow applications. A data-flow application is composed

by a set of tasks, organized as a pipeline. A process is called producer when it provides data to

another process. A worker is a process that receives data from a given process and delivers it, with

modification or not, to another process. Finally, a process is called consumer when it only receives

data from another process. A significant portion of multimedia applications can be modeled as a

pipeline.

In the same way it is done in most works presented in Section 2.2, the idea is to keep a

constant queue occupation between a consumer and a producer process. The controller acts upon

the queue occupation and the error between the current and desired occupation. Also, the

interval between each evaluation and the desired queue occupation are configurable. Moreover,

besides controlling the queue occupation, the goal is to avoid frequent frequency changes, due to

the substantial energy consumed in switching frequencies and the computation delay introduced

by this action.

In [ALI06] the controller is presented and a test case with one producer, three workers and

one consumer is performed. Results show that the developed strategy consumes 50% less energy

compared to the ON-OFF controller, which simply shuts down the processors that have empty or

full conditions in queues. In [ALI09] two real applications were evaluated. The results were

compared against the Vertigo policy [FLA02], a frequency-setting algorithm, and some energy

saving is obtained, without a specified quantitative value. The main result is that using a variable

to trigger the controller evaluation, e.g. number of messages stored in the buffer, provides better

performance in energy saving and ease of tuning.

Similarly to [GLI09] and [GOO10], Liu et. al. [LIU09] propose an algorithm based in tasks

slacks. However, differently from the other approaches that stretch each task execution time in

order to occupy the entire deadline period of the application, the latter presents a two-phase

DVFS algorithm. The first phase consists in applying the DVFS algorithm to compute a new

frequency/voltage pair, based on the critical path of the task graph. After the first DVFS algorithm

runs, the task graph is unrolled, exploiting the remaining task’s slack to stretch the whole

execution time. Then, with the unrolled task graph, the DVFS algorithm is applied again, resulting

in a new voltage/frequency level for each processor. Using this algorithm, the Authors show

energy savings of 25% in average, reaching approximately 41% for the best case, compared with

previous similar approaches.

Basically, Alimonda et. al. presents a generic solution for a wide set of applications, while Liu

et. al. propose an algorithm that is based on the characteristics of the tasks that will be executed.

However, the first approach does not work in architectures which use blocking communication

primitives instead of queues, while the second approach cannot be implemented in systems that

execute a large number of applications or generic environments, where there is no knowledge of

what application will be executed first.

32

2.5 CONCLUSION

Several works addressing DVFS for different architectures were studied. Generally, the

adopted DVFS scheme is driven mostly by the architecture where it will be applied. In mono-

processor architectures most works use the processor workload to define the operating frequency

([SHA09][POU09]). However, this is not a good solution for multi-processor architectures, because

it expresses only the local state, not considering the effects of communication with other

processors.

Another monitoring parameter used in several architectures to control the DVFS scheme is

the task slack ([SHU10][GLI09][GOO10][LIU09]). Even being similar to a workload computation,

some characteristics need to be known prior to execution. These approaches become prohibitive

since all the applications should be completely characterized at design time. Nevertheless, the

work proposed by Goossens et. al. [GOO10] may present constant frequency switching if two tasks

with different characteristics (e.g. CPU intensive and communication intensive) are executing in

the same processor, leading to undesirable behavior.

On the other hand, using the queue loads in the architecture to control the DVFS

([MIS09][YIN09][OGR08][OGR09][GAR10][ALI06][ALI09]) makes the applications transparent to the

controlling scheme. This solution is more generic and may fit better with several different

architectures. By monitoring the queues occupancy of a distributed system, it is possible to

observe not only the local state, but also the relation of the PE with its communicating modules.

Another way is to provide power management mechanism to a higher abstraction level

([PON08][BEI08]), leaving the power management to the programmer.

As it is not the focus of the studied works, only few mentioned or showed an

implementation of the hardware support for DVFS. Also, most of them did not take into account

the overhead added by the voltage-frequency switching.

Since the focus of this work is to propose a DFS technique for NoC-Based MPSoCs, the design

of the hardware support for DFS is done as a proof of concept. Nonetheless, it is synthesized using

a standard cell library and considered in power evaluation. This hardware targets fast frequency

switching and low area overhead. A solution that could be adopted is presented in [TSC07], which

also provides fast frequency switching. However, the Authors use two extra PLLs in the proposed

scheme, inducing large area and power overheads.

Regarding to the proposed technique, the monitoring parameters were chosen according to

the target architecture, based in the works presented in this Chapter. Differently from most of the

presented works, the target platform employs distributed memory and message exchanging

mechanism for task communication. Thus, the set of monitoring parameters differs from those in

revised works. As presented, CPU utilization and communication load are used in most works, but

always alone. In the target architecture, using only one of them turns the controlling scheme sub-

optimal, as presented in next Chapters. Therefore, both monitoring parameters must be

considered to design an efficient scheme. Nevertheless, schemes are proposed for controlling the

PE and NoC, covering the entire MPSoC structure, which do not appear in any studied work.

33

3 SYSTEM ARCHITECTURE

This Chapter presents the target architecture of this work and the modifications performed

on it to enable the proposed DFS scheme. The target architecture is the Hermes Multiprocessor

System-on-Chip (HeMPS) MPSoC [WOS07] [CAR09], which will be described in Section 3.1. Section

3.2 details the adaptations and modifications performed in the modules of HeMPS to enable the

DFS.

3.1 ORIGINAL HEMPS ARCHITECTURE

HeMPS is a homogenous NoC-Based MPSoC, which is composed by two main modules: (i)

Plasma-IPs (the PEs) and (ii) the Hermes NoC [MOR04]. Figure 8 shows an instance of size 2 by 2 of

HeMPS. Each PE includes the following modules: (i) a 32-bit Plasma processor [RHO09]; (ii) a local

memory (RAM); (iii) a DMA module; (iv) a network interface (NI). Two types of PEs are used: slave

and master. Slave-PEs (Plasma-IP SL) are responsible for executing application tasks, while the

single Master-PE (Plasma-IP MP) is responsible for managing task mapping and system debug. The

task repository is an external memory, responsible for storing all the object codes of applications

that will eventually be executed. The following subsections detail each of the HeMPS main

modules.

HeMPS
Hermes NoC

Router

Router

Router

Router

Plasma-IP

SL

Plasma-IP

SL

Plasma-IP

MP

N
e

tw
o

rk

In
te

rf
a

c
e

Plasma-IP SL

PLASMA

DMA

R
A

M

T
a

s
k

R
e

p
o

s
it
o

ry

Figure 8 – HeMPS Block diagram.

3.1.1 HERMES NOC

Hermes is a 2D mesh NoC used to interconnect PEs of the HeMPS MPSoC. A NoC was chosen

as interconnection architecture due to the several advantages that it provides to MPSoC designs,

e.g. scalability and parallel communication [WOS07]. Hermes uses packet switching and wormhole

routing mechanisms, where each router is responsible for calculating the next destination of each

packet (packet switching), sending it flit by flit (wormhole routing). Moreover, Hermes uses credit-

based flow control, where data is transmitted only when the router signs availability to receive it.

The employed routing algorithm is the XY, which routes the packet first in horizontal direction, and

then in the vertical direction.

Each router is composed by up to 5 input buffers, an arbiter and a crossbar. Input buffers are

responsible for storing incoming flits from other routers (East, West, North and South ports) and

the IP module connected to the router (Local port). After the first flit of the packet is received

34

(header flit), the input buffer request access to the arbiter and waits the acknowledgement. The

arbiter is responsible for managing requests from input ports using a Round-Robin policy, which

serves requests in a cyclic order with no priority, and routes the packet. When a request is served,

the crossbar connects the output of the input buffer to the chosen output port.

3.1.2 PLASMA-IP

The Plasma-IP is the PE of HeMPS, and its block diagram is presented in Figure 9. The Plasma

CPU [RHO09] is the processor of the PE. The local RAM is a dual-port memory, responsible for

storing the object code of the microkernel and the applications tasks. It is divided into pages of

16KB or 32KB, being the first page allocated for the microkernel and the remaining for the

applications tasks. The size of the memory is configurable in the HeMPS Platform [CAR09],

although, in this work the memory size is fixed in 64KB. The DMA module is responsible for

transferring the task object code received from the NoC to the memory of a Slave-PE and

messages to/from the NoC from/to the local memory. The Network Interface (NI) module is

responsible for interfacing PE and NoC, sending and receiving packets. Also, the NI informs the PE

its address in the system and interrupts the processor when a new message is available. Memory-

Mapped Registers are used to make hardware information available to the microkernel.

Additionally, the Master-PE contains the Repository Access block, which is used to read data from

the task repository.

Plasma

CPU

mem_addres

mem_data_w

mem_data_r

From/To

NoC

Memory-

Mapped

Registers

Dual-Port

RAM

A address B

A data_write B

A data_read B

Repository Access (Master Only)

data_read

data_valid

read_req

address

data_read_reg

mem_ddr_access

dma_mem_addr_ddr

dma_mem_ddr_read_req

DMA

mem_address

mem_data_write

mem_data_read

mem_ddr_access

dma_mem_addr_ddr

dma_mem_ddr_read_req

data_valid

data_read

data_write

R
E

G

Network

Interface (NI)

data_read

data_write

From/To

Task

Repository

Figure 9 – Plasma-IP Processing Element.

HeMPS uses a distributed memory architecture. The communication between the tasks is

made through message exchanging. Two primitives to send and receive data are available,

respectively called Send() and Receive(). The Send() primitive is non-blocking, i.e. the processor

continues the task execution after a Send(). On the other hand, the Receive() primitive is blocking,

i.e. the task which executed the primitive is preempted if the message is not available, and

scheduled again only after the message is available in the PE. To implement this mechanism, each

35

microkernel contains a vector, named pipe, which contains the messages to exchange between

the tasks. Additionally, services were created to favor task communication and control application

execution. Table 5 describes the available services. The service code is the first field of the NoC

packet payload delivered to the PE, notifying the microkernel about the action to be taken.

Table 5 – Available services in HeMPS MPSoC.

Service Hexadecimal Code Description

REQUEST_MESSAGE 0x00000010 Request of a message.

DELIVER_MESSAGE 0x00000020 Delivery of a message previously requested.

NO_MESSAGE 0x00000030
Information that requested message does not
exist.

TASK_ALLOCATION 0x00000040 A task to be allocated in the PE.

ALLOCATED_TASK 0x00000050
Information that a given task was allocated in a
remote processor.

REQUEST_TASK 0x00000060 Request of allocation of a given task.

TERMINATED_TASK 0x00000070
Information that a given task finished its
execution.

DEALLOCATED_TASK 0x00000080
Information that a given task finished its
execution and can be deallocated.

FINISHED_ALLOCATION 0x00000090
Information that master PE finished the initial
task allocation.

DEBUG_MESSAGE 0x00000100 Message containing debug information.

3.2 HEMPS ARCHITECTURE WITH SUPPORT FOR DFS

Figure 10 presents the proposed architecture to enable DFS in HeMPS. The first difference

between the proposed architecture and the reviewed works (Chapter 2) is that the DFS is applied

to both PE and routers. Also, as it is shown, the controlling scheme is individualized, as is the local

clock generation, inserted into each PE and each router. The second difference is the set of

monitoring parameters used to control the proposed DFS scheme, where, as explained in Chapters

4 and 5, is better suited to distributed system.

The performed adaptations are highlighted in Figure 10. The first modification was the

replacement of existing router input FIFOs by bisynchronous FIFOs (GALS FIFO), depicted in Figure

10(a) as red rectangles. A synchronization scheme is needed to avoid metastability [RAB03], since

modules working at different frequencies and in different clock domains will communicate with

each other. A FIFO was chosen as synchronization scheme due to the high throughput and low

latency provided by it [CHE00] [PAN07].

Figure 10(b) and Figure 10(c) depict the different DFS controller types. Figure 10(b)

represents the DFS controller of the PE and the clock generation module, which is described in

Chapter 4. Figure 10(c) represents the router controller, described in Chapter 5. Figure 10(d)

displays the replacement of the NI input FIFO by a bisynchronous FIFO. Also, the NI was modified

to make available the operating frequency of a remote processor to the PE controller using

information extracted from the NoC packet. Moreover, several memory-mapped registers were

included in the PE, although this is not shown in Figure 10. Besides hardware modifications, the

36

microkernel was modified to monitor CPU utilization and pipe occupation, storing these values

into new memory-mapped registers. These modifications will be described in Section 4.2.

HeMPS Hermes NoC

Plasma-IP

SL

Plasma-IP

SL

Plasma-IP

MPT
a

s
k

R
e

p
o

s
it
o

ry

Plasma-IP SL

N
e

tw
o

rk

In
te

rf
a

c
e PLASMA

DMA

R
A

M

DFS Controller

Router Router

RouterRouter

DFS

Controller

CLK Gen

DFS

Controller

CLK Gen

DFS

Controller

CLK Gen

DFS

Controller

CLK Gen

CLK

Gen

RouterRouter

DFS Controller

CLK

Gen

Router

DFS

Controller

CLK Gen
N

e
tw

o
rk

In
te

rf
a

c
e PLASMA

DMA

R
A

M

(a) (b) (c) (d)

Figure 10 – Proposed HeMPS Architecture for DFS.

It is important to highlight that each individual clock generation module receives the system

clock as reference, generating a new clock from it. The benefit of such approach is that the global

clock has to feed only the clock generation modules, significantly reducing the global clock load,

and hence simplifying the clock tree generation and its power consumption, which is responsible

for at least 40% of the power consumption in present MPSoCs. The global system clock is called in

the following Chapters Reference Frequency.

37

4 DFS AT THE PROCESSOR LEVEL

This Chapter presents the proposed DFS scheme for the HeMPS PE, which is the first

contribution of this work. The DFS controller computes the communication load and CPU

utilization level according to values provided by the microkernel. The controller uses such values

to define the frequency of each PE. The controller always operates at the reference frequency,

which is the highest frequency in the system, and provides the computed frequency to the PE. The

provided frequency is generated by a clock generation module, detailed in Section 4.1. Section 4.2

presents the controlling scheme, responsible for computing the PE frequency. Finally, Section 4.3

explains the proposed policy to adapt the controlling scheme for multitask execution.

4.1 CLOCK GENERATION

The clock generation module is the same for both PE and router DFS controllers. This

module is responsible for generating the local clock, using the reference clock as input. The

objective of designing this module is not to propose a new clock generation technique, but to

provide a mechanism in hardware to enable the proposed DFS scheme and evaluate its impact on

the results. The principle of the clock generation process is to achieve clock division by simply

omitting selected cycles of the reference clock, as Figure 11 illustrates: for example, inputs num_i

and den_i are natural numbers 2 and 5, respectively. This corresponds to setting the frequency of

the clock generator to two-fifths (40%) of the reference clock. In other words, for each den_i

reference clock cycles, num_i cycles are propagated to the output clock.

Frequencies are obtained by changing num_i and den_i values, with some defined

exceptions (den_i=0 is not an acceptable value, num_i=0 corresponds to a clock gating action and

the constraint num_i ≤ den_i must be respected). Before changing the num_i and den_i values, the

restart_i signal must be asserted to momentarily stop the output clock and reinitialize internal

registers. After releasing restart_i, the new frequency, defined by the modified values of num_i

and den_i appears at the output.

2

5

1

10

clock_i

num_i

den_i

restart_i

clock_o

Figure 11 – Example of the proposed clock generation process. Signal clock_i is the reference clock and
clock_o is the output of the clock generator.

This clock generation scheme translates into a simple logic that can multiply the reference

clock frequency by selected values distributed inside the closed interval [0,1]. The amount of

distinct values is dictated by the range of values assignable to num_i and den_i, which defines the

size of internal registers used to store them. This clock generation scheme can be classified as

ratiochronous [CHA09], since any relation between two frequencies used in the system is a

rational number. In the scheme, if all clock edges of all clocks can always be kept in phase with the

38

corresponding edge of the reference clock, the system can simply dispense with the use of

synchronizers. Although this would clearly improve performance of the system, since

synchronization overhead would be eliminated, this may have a strong impact on clock

distribution control, and is ignored here to keep clock generators very simple.

Figure 12 presents the block diagram of the clock generation module. The module has only

one output (clock_o), which is the clock used by PEs or routers. The inputs num_i and den_i are

used to configure the clock generator, and the input restart_i is used to reset the counters

count_num and count_den. As in the discussed example, num_i represents the numerator of the

fraction that multiplies the reference clock, while den_i is the denominator of the fraction. A signal

called enable is generated to stop or release the output clock. For the sake of simplicity, a simple

AND cell is used to gate the clock in this work. Still, a clock gating cell (GCLK in Figure 12) can be

used to avoid the need to design a special cell, since several standard cell libraries include clock

gating cells.

clock_o

restart_i

clock_i

reset_i

den_i

x3

x4

x5

u1

x2

x1

f(x1...xn)

count_num

count_den
num_i

clock buffer

enable
GCLK

Figure 12 – Clock generation module.

The main advantages of this clock generation module are the low area overhead and a large

set of generated frequencies. For example, for num_i and den_i being 4-bit values the module

takes 107 cells for a 65nm standard cell library from ST Microelectronics. In this same example,

120 different fractions can be obtained. Although several of these correspond to a same frequency

(e.g. 1/1, 2/2, etc) still a large number of distinct frequencies can be produced with only 4 bits for

num_i and den_i (71 different frequencies in this example). In addition, the clock output is always

stable, contrary to what happens in standard DFS methods, where the time required to stabilize a

new frequency can be relevant. The proposed module is also glitch free by construction.

The main drawbacks of the approach are how to couple it with voltage scaling and the need

to design the critical paths of all modules in the system to support the reference clock frequency.

As Figure 11 exemplifies, for any generated frequency, the duration of one clock period will be the

same as that of the reference frequency clock period, making voltage scaling prohibitive.

Nevertheless, the clock generation module can be modified to generate frequencies with 50% of

duty cycle, and extended to cope with voltage scaling by using a power supply control, as

presented e.g. in [MEI05]. Also, for DFT purposes, it is necessary to make the output clock

observable and controllable. This can be achieved by including signals such as scan input and scan

enable in the module. However, as mentioned, the clock generation module was designed only to

enable DFS in HeMPS, and was kept simple for the lowest possible area overhead.

39

4.2 PROCESSING ELEMENT DFS CONTROLLING SCHEME

Figure 13 presents the architecture proposed for a HeMPS PE with DFS. Initially, the NoC-

processor interface needs to be modified to work according to the GALS paradigm. This is achieved

by adapting the existing local buffer in the NoC and network interface to work as a bisynchronous

FIFO, and introducing two-flop synchronizers into control signals. The NoC-processor interface

contains two buffers (GALS FIFOs), one in the router, to receive data from the NI, and another in

the NI to receive data from the NoC. In this work, it is proposed a DFS scheme only for slave PEs.

The Master-PE always works at the reference frequency to avoid creating a bottleneck in the

system. Still, a scheme using a specific controlling metric for the Master-PE can be implemented as

future work.

The metrics chosen for the DFS scheme are the PE communication load and the CPU

utilization. Contrary to most of the works presented in Chapter 2, monitoring only the

communication load or only the CPU utilization does not work for the targeted MPSoC. Monitoring

only the communication load might present problems when the pipe has few or no messages

stored. According to the works that used this metric, the frequency should be increased in this

case. However, if the task is blocked, e.g. waiting for a message from other task, and the pipe has

low occupation the frequency can be kept or even decreased (scenario 4 in Table 6). Similarly,

monitoring only the CPU utilization might cause problems when it is near 100%. According to the

works that used this metric, the frequency should be increased in this case. However, with high

CPU utilization and high pipe occupation (scenario 1 in Table 6) the frequency does not need to be

increased, since the messages are being produced at a higher rate than they are being consumed.

The same reasoning can be used for the other 2 scenarios in Table 6. In scenario 2, high pipe

utilization and low CPU utilization means that, even at low processing rate, the message producing

rate is higher than the message consuming rate, leading to decrease the operating frequency. In

scenario 3, two actions can be taken: (i) increase frequency if the processor is near of 100%

utilization to avoid pipe reaches empty state and (ii) keep the current frequency if the processor is

not near of 100% utilization, i.e. the processor still not fully utilized at the current frequency.

Therefore, monitoring these two parameters is mandatory for efficient control.

Table 6 – Possible monitored parameter scenarios and actions.

 CPU Utilization

High Low

Communication
Load

High Decrease Frequency (1) Decrease Frequency (2)

Low Increase/Keep Frequency (3) Decrease/Keep Frequency (4)

40

DFS Controller

NI

FIFO

FIFO

FIFO G
A
LS

FIFO

G
ALS

FIFO

Slave-PE

PLASMA

DMA

R
A

M

FIFO

Clock

Generation

synchronizers

FSM

reference

freq

num

den

restart

Router

Figure 13 – Router-PE GALS interface and the PE DFS controller.

Figure 14 shows the DFS controller interface. It uses the following input signals:

 pipe_ocup and req_msg related to the communication load, represent the number of

messages stored in the pipe (an integer value), and a notification of a request for a

message not yet produced by the processor (a Boolean value).

 not_scheduled (Boolean value): when true, only the microkernel is running, meaning that

no task is being executed; when false, at least one task is being executed. The DFS

controller may define CPU utilization by counting how many clock cycles this signal is

asserted in a sampling period.

 msg_transfer (Boolean value), dma_active (Boolean value), rem_freq (two integer values):

set of signals used to increase the processor frequency, if necessary, when transmitting a

data packet.

DFS Controller

clock_plasma_oClock

Generation

not_scheduled_i

clock_i

reset_i

req_msg_i

pipe_ocup_i

Synchronizers FSM
2

msg_transfer_i

dma_active_i

rem_freq_i

8

Frequency Information
num_o

den_o

Figure 14 – DFS Controller Interface.

As the DFS controller works at the reference frequency and the processor at a different

frequency, a synchronization scheme between them is necessary. This synchronization is carried

out in the block Synchronizers (Figure 14). The controller uses the Clock Generation module,

detailed in Section 4.1, to provide the processor frequency. The FSM represented in Figure 14

corresponds to the behavior detailed in Table 7. The role of the FSM is to choose the PE frequency

based on the communication load and CPU utilization. The frequency is chosen by evaluating the

following information:

41

 Pending message requests from other tasks. This situation takes place when the processor

is not producing data to the consumer task (req_msg = 1). This information is related to the

communication load.

 Pipe occupation. If the pipe has a high occupation, the processor is certainly producing

messages at a higher rate than the consumer tasks can consume, while the inverse

scenario means a lack of produced messages. Upper and lower parameterizable thresholds,

determined by the designer, define the high and low occupation states, respectively.

Occupation between these values defines an operational state. This information is related

to the communication load.

 CPU utilization. When the utilization is low, the CPU is not executing any task

(not_scheduled= 1) or all tasks are blocked, e.g., waiting message(s) from other tasks.

When the utilization is high, tasks are using the processor at the maximum rate. Two

parameterizable thresholds, determined by the designer, define high, low and operational

CPU utilization states.

The first monitoring parameter evaluated is the presence of pending message requests. Next,

the controller evaluates the pipe occupation and CPU utilization, respectively. As Table 7 denotes,

the controller is guided mainly by the communication load, leading the tasks to produce and

consume data at a uniform rate, with no penalties for the overall application performance. The

CPU utilization parameter prevents the controller from increasing the frequency in situations

where the communication load could normally denote an increase in the frequency, e.g. actions 3

and 6 of Table 7. Also, the parameterizable thresholds of CPU utilization define the reactivity of

the controller, i.e. depending on the values, the controller reacts faster or slower.

Table 7 – DFS Controller behavior (↓/↑ mean decrease/increase one frequency step, ↑↑ means
increase two frequency steps, = means keep frequency unchanged and - denotes don’t care conditions).

Action in
frequency

Pending
Message

Current Pipe
Occupation

Previous Pipe
Occupation

CPU Utilization

1 - ↓ 0 high - -

2 - ↓ 0 operational low -

3 - ↓ 0 low - low

4 - = 0 operational operational -

5 - = 0 low - operational

6 - = 1 - - low

7 - ↑↑ 1 - - operat./high

8 - ↑ 0 low - high

9 - ↑ 0 operational high -

Frequency decreases in three situations: (i) the pipe is almost full (action 1 of Table 7); (ii)

the pipe occupation is increasing, i.e. in the previous evaluation its state was low and the present

state is operational (action 2). In situations (i) and (ii) the processor is producing messages at

higher rate than they are being consumed; (iii) the pipe occupation is almost empty and the CPU

usage is low, meaning that even at a lower frequency the data in the pipe is being consumed

(action 3).

42

Frequency increases in three situations: (i) existence of pending messages with operational

or high CPU utilization (action 7) – the clock generator increases the frequency in two steps; (ii)

the pipe is almost empty and the CPU has high utilization (action 8); (iii) the pipe occupation is

dropping, e.g. in the previous evaluation its state was high and the present state it is operational

(action 9). In these three situations, the frequency is increased to avoid the remote task wait for

long periods to receive the requested message, penalizing the application performance. Still, in

situation (i), when the message was already requested and not produced yet, the increasing is

even higher to produce the requested message as soon as possible.

The period between consecutive evaluations is also parameterizable by the designer. In this

work, the evaluation period corresponds to four time slices. A time slice is a fixed time interval,

defined in the microkernel, in which the system executes a given task. Other values for evaluation

period were evaluated, but higher values (e.g. 8 and 16) lead to slow responses by the controller

since less evaluations will occur in the same period of time, while smaller values (e.g. 1 and 2) may

turn the controller unstable, i.e. the frequency changes too much, even when is not needed.

When an evaluation is triggered, the controller stores the values generated by the

microkernel (current pipe occupation and CPU utilization) and evaluates the monitoring

parameters. Similarly to [SHA09], the values of pipe occupation and CPU utilization used by the

controller are an average of the current and previous values. By using an average value, the

controller changes the frequency smoothly in the presence of high variations in the pipe

occupation and CPU utilization.

Also, the DFS controller implements a communication mechanism to balance power

consumption and performance. It takes into account that a consumer processor must receive the

data in a frequency that is not inferior to its operating frequency. Thus, if the producer processor

is operating at higher frequency than the consumer processor, the message can be sent at a lower

frequency to save power. On the other hand, if the producer is operating at a lower frequency

than the consumer, its frequency should be temporally increased to avoid penalizing the

consumer performance. The set of signals {msg_transfer, dma_active, rem_freq} are responsible

for accomplishing this action.

The reception of a packet with REQUEST_MESSAGE service asserts the signal msg_transfer. This

packet contains, among other fields, the frequency of the PE requesting data. This frequency is

coded in the signal rem_freq (remote frequency). According to this, the following situations may

occur:

 If rem_freq is lower than the PE frequency, the PE frequency does not need to be changed.

The packet is sent through the NoC with the rem_freq coded in it.

 If rem_freq is higher than the PE frequency and there is data in the pipe, the PE frequency

is set to the rem_freq during the transmission of the DELIVER_MESSAGE packet. The PE

frequency returns to the original frequency monitoring the dma_active signal. When this

signal returns to zero, it means the DELIVER_MESSAGE transmission has finished.

 If rem_freq is higher than the PE frequency and there is no data in the pipe, the rules of the

FSM are used. In this case, it is highly probable that the FSM will apply rule 7, increasing by

43

two steps the processor frequency, to produce data faster to the consumer.

All other control packets (as REQUEST_MESSAGE, REQUEST_TASK, TASK_ALLOCATION, etc) are

injected into the NoC at the maximum frequency, making such packets available to the target

processor as soon as possible.

4.3 MULTITASK SUPPORT

One of the main characteristics of the target MPSoC is the support to multitask execution.

The number of tasks that a PE can execute is defined by the available amount of RAM memory and

by the page size. Although each task has an individual memory address space, the communication

pipe is located in the microkernel page, being shared by all tasks under execution in the PE. Also,

the microkernel scheduler uses the Round Robin algorithm, evenly sharing CPU time among all

tasks. However, sharing the resources (CPU and pipe) used to generate the DFS monitoring

parameters may lead to incorrect analysis of the information required to adjust the frequency.

Therefore, it is necessary a mechanism to ensure the correct management of resources and at the

same time leading the DFS controller to act properly.

In [GOO10], the proposed algorithm saves the task context when the task is preempted.

Later, when the task is scheduled again, the frequency in which it was operating before being

preempted is retrieved and used. Thus, for each task executing in the processor, the controller

may change the operating frequency. However, this approach may present problems when several

tasks with different characteristics are being executed in the same processor. In this case, at each

time slice, the processor may have its frequency drastically changed, e.g. from the highest to the

lowest available frequency. Moreover, if voltage scaling is used, the time to perform such

switching requires high stabilization periods, which becomes prohibitive in some systems. Thus,

the controlling scheme must adjust the processor to operate in a frequency which satisfies the

requirements of all tasks being executed, switching the frequency the less often the possible.

Using the proposed DFS approach in a multitask environment with no adaptations may

present undesirable results, depending in the characteristics of the tasks being executed. Figure 15

illustrates a scenario that leads to undesirable behavior of the original approach. The horizontal

bar represents the pipe, the vertical bar inside the CPU block represents the CPU utilization and

the circles represent tasks A and B. Initially, the pipe is empty and the CPU is idle (Figure 15(a)).

Next, Task A is scheduled. It is assumed this task presents low computation workload and high

communication workload. Thus, the CPU utilization barely increases, while the pipe becomes

almost full (Figure 15(b)). Later, Task A is preempted and Task B is scheduled. It is assumed Task B

presents high computation workload and low communication workload. Accordingly, the CPU

utilization increases to the maximum, and the pipe remains with the same occupation (Figure

15(c)). Then, Task A is rescheduled, producing new messages and filling the pipe (Figure 15(d)).

After, Task B is rescheduled, producing its first message. However, the pipe is full, and Task B

writing is blocked (Figure 15(e)).

44

P ip e

C P U

T a s k A T a s k B

P ip e

C P U

T a s k A T a s k B

(a) (b)

P ip e

C P U

T a s k AT a s k B

P ip e

C P U

T a s k A T a s k B

(c) (d)

P ip e

C P U

T a s k AT a s k B

(e)

Figure 15 – Resource sharing problem in multitask execution.

Considering this scenario, the proposed scheme should decrease the operating frequency

when the pipe becomes almost full, as in Figure 15(b), and decrease one more step when it

becomes full, as in Figure 15(e). However, the frequency should be kept or increased, due to the

high computation workload of Task B. Thus, if the frequency is decreased, the application that

contains Task B will present a severe performance penalty. Therefore, besides monitoring pipe

occupation, it is necessary to control the amount of resources used by each task.

Initially, a monitoring scheme was implemented in hardware to inform the controller the

pipe occupation of the running task. However, the set of rules needed to implement the multitask

policy in hardware could increase the controller complexity significantly. Thus, a simple solution in

software was adopted to overcome this difficulty. Since the cause of the problem is the sharing in

resources used by the DFS controller, it was decided to limit the amount of resources that a given

task can use. Regarding CPU utilization, no modifications are needed, since the Round Robin

provides the same amount of time for each task to execute, and the tasks are preempted in case

of blocking. On the other hand, the pipe utilization needs to be controlled. To avoid the use of the

entire pipe by a single task, the microkernel scheduler was modified to also take into account the

pipe occupation of the task to be scheduled. Thus, the task is scheduled only if it is using a given

number or fewer positions in the pipe. Figure 16 shows the scheduler pseudocode, which handles

the task scheduling.

Figure 16 – Microkernel scheduler for multitask execution with DFS.

Nevertheless, the new conditions are used only when there is more than one task running in

the processor, i.e. in mono task execution the task can use the entire pipe if needed. With this

modification, the DFS controller is able to adjust the PE frequency also in multitasking scenarios.

45

5 DFS AT THE NOC LEVEL

This Chapter presents the proposed architecture and controlling scheme for DFS at the NoC

level, representing the second contribution of this work. First, a brief discussion about the router

architecture is carried out in Section 5.1. Section 5.2 describes the modifications performed in the

Hermes router to enable DFS and its controlling mechanism. Finally, Section 5.3 presents the

calibration phase of the method proposed by Guindani et. al. [GUI08] in the DFS-enabled router.

5.1 ARCHITECTURAL EXPLORATION

Designing a router that may work at multiple frequencies and communicate with neighbor

routers working at different frequencies requires adaptations on all input/output buffers. The

same way it was done in Section 4.2, all input buffers (east, west, north and south) of the router

have to be replaced by bisynchronous FIFOs to synchronize router communication. In addition, it is

necessary to modify the router arbiter, which is responsible for requesting frequency changes.

Two strategies were evaluated for the router architecture with DFS: distributed and

centralized. Figure 17 illustrates each strategy, where continuous lines represent the originally

existing connections, and dashed lines represent connections created to support DFS.

Router

Arbiter

DFS

DFSDFS

DFS

DFS
GALS

FIFO

GALS

FIFO

GALS

FIFO

GALS

FIFO

GALS

FIFO

Router

GALS

FIFO

GALS

FIFO

GALS

FIFO

GALS

FIFO

Arbiter

DFS
clock

GALS

FIFO

clock

clockclock

clock

clock

(a) (b)

Figure 17 – Distributed and centralized strategies for Hermes router architecture with DFS.

In the distributed strategy (Figure 17(a)) it is necessary to control each input buffer

independently. This strategy is more flexible, enabling different packets to be sent at different

frequencies. However, it requires one frequency controller and one clock generation module per

buffer, increasing area and power. Thus, the decision to use this strategy needs to be based in the

tradeoff between power overhead and power savings. On the other hand, the centralized strategy

(Figure 17(b)) induces lower power and area overhead, while decreasing flexibility. In this strategy,

the optimal energy saving cannot be achieved, due to the need of using the highest requested

frequency when two or more packets are being switched simultaneously. Nevertheless, if only one

packet is being switched, the router will operate at some frequency that is not the minimum,

leading the buffers that are not being used to operate at this frequency as well. In both strategies

46

it is assumed that when there is no activity in the router, the controller sets the frequency to the

minimum possible value.

To evaluate both strategies, an early analysis was performed with two traffic scenarios using

the data collected in Section 5.3 (Figure 18). The NoC configuration is the same used in HeMPS,

with 16-bit flit size and 16-position buffers. Router utilization is calculated by dividing the time that

the router is active, by the total time needed to switch all flows. In the first scenario (Figure 18(a))

four traffics were injected through a router with 5 input ports in parallel. Each traffic was injected

at a different frequency (400MHz, 240MHz, 160MHz and 100MHz). In this scenario, during the

time that the router is active, it operates at 60% of the time at 400MHz, 25% at 240MHz, 8% at

160MHz and 7% at 100MHz. In the second scenario (Figure 18(b)) two traffics were injected in

parallel, being one traffic injected at 240MHz and the other at 100MHz. In this scenario, during the

activity time, the router operates 35% at 240MHz and 65% at 100MHz.

(a) (b)

Figure 18 – Comparisons between centralized and distributed DFS strategies. (a) Four traffics at high
frequencies injected in the router; (b) Two traffics at low frequencies injected in the router.

According to Figure 18, the distributed strategy may present better energy savings in

scenarios that utilize large NoC bandwidth. Considering a scenario that presents several traffics

passing through a router, with different frequencies and at a high injection rate (Figure 18(a)), e.g.

hotspot scenario, the DFS controller sets the frequency of its respective buffer to the frequency

required by the packets. Nevertheless, due to the high injection rate, each buffer will operate at

the configured frequency most of the time. Thus, the power overhead induced by the controllers

in this strategy may become lower than the power overhead in a centralized strategy, which would

set the frequency of all buffers to the maximum required frequency.

However, scenarios presenting low bandwidth utilization and few packets being routed

(Figure 18(b)) make the distributed strategy less attractive than the centralized. As Figure 18(b)

shows, router utilization in the second scenario must be greater than in the first scenario (Figure

18(a)) to justify the use of a distributed strategy. In these scenarios, the mechanism that verifies te

inactivity in the router would make it operate at the minimum possible frequency most of the time.

As the traffic presents low bandwidth utilization, the router will operate at higher frequencies only

for short periods, quickly returning to the lowest frequency. Therefore, in these scenarios, it is

more attractive to use a centralized strategy, which induces lower area and power overheads than

a decentralized one.

47

Notably, most distributed applications running at MPSoCs are not able to generate traffics

that may exceed 20% of the maximum bandwidth [KAO11]. Thus, it is not realistic to say that a

scenario encouraging the use of the distributed strategy may occur in a substantial number of

applications. Moreover, a large number of applications can be expressed as a data pipeline, e.g.

video and audio applications [ALI06]. Tasks of this kind are mostly CPU-intensive, characterizing a

scenario with low bandwidth utilization, since the sending of two consecutive packets is separated

typically by a large period of time. Thus, this work chooses to use the centralized strategy in the

router architecture with DFS support.

5.2 ROUTER DFS CONTROLLING SCHEME

The router DFS controller (Figure 19) is responsible for defining the router frequency and

putting it in a low power mode in case of inactivity. It receives the frequency and activity

information from each input buffer and the control signals from the arbiter (clk_change, activity,

header, selection, ack_header), to set the required operating frequency of the router (clk_r).

NORTH

GALS FIFO

DFS Controller

Arbiter

SOUTH

GALS FIFO

W
E

S
T

G
A

L
S

 F
IF

O E
A

S
T

G
A

L
S

 F
IF

O

LOCAL

GALS FIFO

he
ad

er

ac
k_

he
ad

er

header

ack_header
header

ack_header

h
e

a
d

e
r

a
c
k
_
h

e
a

d
e

r

h
e

a
d

e
r

a
c
k
_
h

e
a

d
e

r

clk_change

ack_header

sel

synch

clk_r
num, den

activity

header

num, den

activity

header

num, den

activity

header

num, den

activity

header

num, den

activity

header

clk_r

clk_r

clk_r

clk_r

clk_r

clk_r

Figure 19 – Router DFS controller structure.

Frequency values are obtained from the packets sent through the NoC, which carry in the

header field the frequency value that it needs to be transmitted (Figure 20). This value is an 8-bit

array, 4-bits for numerator and 4-bits for denominator, of the required frequency level. This field

was designed to cope with the clock generation module presented in Section 4.1.

Num Size Payload...TargetDen

4 bits 4 bits 8 bits 16 bits

1st Flit 2nd Flit

Figure 20 – Hermes packet with frequency information.

When the packet is received, the FSM in the input buffer extracts the frequency information

and provides it to the DFS controller (Figure 21(a)). Next, the buffer sends a routing request to the

48

arbiter and starts waiting for the arbiter acknowledgement (Figure 21(b)). When the arbiter

receives the routing request, it sends a frequency switching request to the DFS Controller

(clk_change_i), and starts waiting the clock synchronization signal from the DFS Controller

(synch_o) (Figure 21(c)). Then, using the information provided by all buffers and the frequency

switching request, the DFS Controller checks from which port the routing request was made, and

stops the provided clock (Figure 21(d)).

The decision of changing the frequency is made by comparing the frequency required by the

requesting input buffer with the current router frequency, i.e. when two or more flows are passing

through the router, the controller will always select the highest frequency, avoiding loss of

performance in the network. If the required frequency is lower than the current frequency, the

controller only informs the arbiter that the clock is synchronized, without changing the frequency.

If the required frequency is higher than the current frequency, the controller replaces the values

of numerator and denominator of the clock generation module and, after releasing the restart

signal of clock generation module, informs the arbiter that the clock is synchronized (Figure 21(e)).

Lastly, the arbiter sends the acknowledgment to the input buffer and routes the packet (Figure

21(f)).

NORTH

GALS FIFO

DFS

Controller

Arbiter

SOUTH

GALS FIFO

W
E

S
T

G
A

L
S

 F
IF

O E
A

S
T

G
A

L
S

 F
IF

O

LOCAL

GALS FIFO

num = 1

den = 2

clock_o

(a)

NORTH

GALS FIFO

DFS

Controller

Arbiter

SOUTH

GALS FIFO

W
E

S
T

G
A

L
S

 F
IF

O

 E
A

S
T

G
A

L
S

 F
IF

O

LOCAL

GALS FIFO

reqack

clock_o

(b)

NORTH

GALS FIFO

DFS

Controller

Arbiter

SOUTH

GALS FIFO

W
E

S
T

G
A

L
S

 F
IF

O

 E
A

S
T

G
A

L
S

 F
IF

O

LOCAL

GALS FIFO

clk_change_i

clk_synch_o

clock_o

(c)

NORTH

GALS FIFO

DFS

Controller

Arbiter

SOUTH

GALS FIFO

W
E

S
T

G
A

L
S

 F
IF

O

 E
A

S
T

G
A

L
S

 F
IF

O

LOCAL

GALS FIFO

clock_o

(d)

NORTH

GALS FIFO

DFS

Controller

Arbiter

SOUTH

GALS FIFO

W
E

S
T

G
A

L
S

 F
IF

O

 E
A

S
T

G
A

L
S

 F
IF

O

LOCAL

GALS FIFO

clk_synch_o

clock_o

(e)

NORTH

GALS FIFO

DFS

Controller

Arbiter

SOUTH

GALS FIFO

W
E

S
T

G
A

L
S

 F
IF

O

 E
A

S
T

G
A

L
S

 F
IF

O

LOCAL

GALS FIFO

clock_o

ack

(f)

Figure 21 – Proposed frequency switching mechanism for the Hermes router.

Additionally, when no traffic is being switched through the router, it must decrease its

frequency to the minimum available value. To implement this mechanism, it is necessary to

monitor router activity. This is achieved by monitoring the buffer occupation and packet

receptions. The inactivity comes from empty buffers and no packet reception in all router ports.

Also, after finishing a packet transmission, the buffer resets the values of numerator and

49

denominator to the minimum available frequency. This must be done to avoid the router from

stalling its operating frequency after finishing the transmission of high frequency packets.

5.3 CALIBRATION

Since commercial tools may take several hours to estimate the power dissipation of complex

systems, Guindani et. al. [GUI08] propose a higher abstraction level method to estimate power

dissipation which presents small errors compared to power estimation commercial tools while

providing results fast. This method is composed by two main phases: calibration and evaluation. In

the calibration phase, a flow with controlled rate is injected in the router, and the power

evaluation is performed by a commercial tool. This process is repeated for several injection rates,

and an equation relating power and injection rate is obtained. Each module of the router (buffer,

arbiter and crossbar) has an equation. Later, in the evaluation phase, the NoC is monitored and

the injection rate of each router is extracted. Finally, these injection rates are used in the

equations obtained in the calibration phase to calculate the total power dissipation of the

simulated scenario.

Using the method proposed in [GUI08], the router with the proposed DFS controlling

scheme was calibrated to provide information for fast power evaluation. However, the power

dissipation is directly related to the operating frequency. Thus, only a single equation for each

module of the router is not adequate to characterize the proposed architecture in terms of power.

Since the router handles two different clocks (transmission clock and reception clock), there are n2

different operating configurations, where n represents the number of available frequencies. Figure

22, Figure 23 and Figure 24 show the three possible cases that may occur during writing and

reading actions. All three cases adopt as reference the writing and reading frequencies in the West

(W) buffer.

Figure 22 shows a scenario where the writing clock of the buffer will be the same as the

reading clock, since the flow being injected in the West buffer has higher frequency than the flow

injected in East (E) buffer.

Router

10

Router

20

Router

11

Router

21

60MHz
60MHz

60MHz

Router

00

Router

01

10MHz
WE

S

N L

Figure 22 – Calibration scenario with same reading and writing clocks.

Figure 23 presents a scenario where the reading clock has a higher frequency than the

writing clock. This situation arises when there is a traffic with higher injection rate being switched

in the same router. In this case, the traffic being injected at the West buffer has lower frequency

50

than the traffic being injected at the East buffer. In this scenario, the power dissipation of East and

West buffers is different, since the East buffer is being written and read at 100MHz and the West

buffer is being written at 60MHz and read at 100MHz.

Router

10

Router

20

Router

11

Router

21

60MHz
100MHz

100MHz

Router

00

Router

01

100MHz

Figure 23 – Calibration scenario with reading clock higher than writing clock.

Figure 24 presents the last scenario. This is a special case, where the reading clock has lower

frequency than the writing clock. This may occur due to neighbor routers working at higher

frequency, sending their transmission clocks even when no traffic is being sent. However, this

situation only occurs when the buffer is not receiving any data, i.e. injection rate equal to 0.

Therefore, in cases where the writing clock has higher frequency than the reading clock the power

dissipation is fixed.

Router

10

Router

20

Router

11

Router

21

100MHz

60MHz

60MHz

Router

00

Router

01

60MHz 100MHz

Figure 24 – Calibration scenario with writing clock higher than reading clock.

The calibration process was performed for nine frequency levels, which will be detailed in

Section 6.1. For each router sub-block (buffer, switch control, crossbar and DFS controller), a

matrix of size 9x9 was generated to store the equation coefficients according to the possible

frequency levels. The matrices are presented in Appendix A.

51

6 EXPERIMENTAL RESULTS

This Chapter describes the experimental setup (Section 6.1) and the results obtained for

monotask (Section 6.2) and multitask execution (Section 6.3) in the reference MPSoC, with the

proposed DFS scheme in both PE and NoC. Sections 6.2 and 6.3 are divided into other sections

containing the performed evaluations for synthetic and real applications. Each application used a

different platform configuration, which will be detailed within its section. The gains obtained in

PEs are evaluated in terms of the reduction in the number of executed instructions and power

consumption. The gains in the NoC are obtained by measuring its power consumption. Also, it is

compared, for each application, the power consumption relation between the PE and the NoC

router.

6.1 EXPERIMENTAL SETUP

A set of six applications was evaluated in the proposed architecture: (i) Communication; (ii)

Pipeline with 6 tasks – pipeline_6; (iii) MPEG partial filter; (iv) JPEG decoding; (v) matrix

multiplication; (vi) Video object plane decoder (VOPD). Applications (i) and (ii) are synthetic, while

the applications (iii), (iv), (v) and (vi) are real.

Figure 25 shows the task graph of application (i). The application has two tasks which only

produce data, being called producers (tasks A and B), one task which consumes the data produced

by the producers and provides it to another task, being called worker (task C) and a task which

only consumes data, being called consumer (task D). Each task executes a configurable loop to

emulate a given processing load. Three scenarios were evaluated with different emulated

processing loads for the tasks in each one of them.

A

B

C D

Figure 25 – Communication task graph.

Figure 26 depicts the application (ii) – pipeline_6. Task A is the only producer, task F is the

only consumer, and the other tasks (B, C, D and E) are workers. Similarly to application (i), each

task executes a configurable loop to emulate a processing workload. Two scenarios were

evaluated for mono-task execution: scenario 1 configures all tasks with the same workload;

scenario 2 configures the tasks according to three different workloads. For multi-task execution

each scenario was evaluated using two different task mappings. The configuration details and

results are shown in Section 6.2.2 for mono-task execution and in Section 6.3.1 for multi-task

execution.

52

A B C D E F

Figure 26 – Pipeline_6 application task graph.

Figure 27 presents the task graph of application (iii). In this application, iVLC is a CPU-

intensive task. Tasks iQuant and iDCT are CPU-intensive, but present less processing workload

than iVLC. Tasks Start and Print are used to initialize the system and to print the results,

respectively. In this test case, 200 frames were transmitted. For multi-task execution, this

application was simulated along with application (i) to simulate a disturbance. Section 6.2.3

presents the results for mono-task execution, while Section 0 presents the results for multi-task

execution.

Start iVLC iDCT iQuant Print

Figure 27 – MPEG partial filter application task graph.

Application (iv) task graph is depicted in Figure 28. Task1 is responsible for reading the

image attributes, sending it to task3, and processing an image block, sending it to task2. Task2

receives the processed block from task1 and applies an inverse discrete cosine transform (iDCT)

before sending it to task3. Finally, task3 performs the color conversion of the blocks received from

task2 based in the information received from task1, generating the final image. In this test case,

the image is decoded three times. The results are presented in Section 6.2.4.

task1 task2 task3

Figure 28 – JPEG decoding task graph.

Application (v) task graph is presented in Figure 29. It is composed by 10 tasks, being one

caller Master, which divides the matrix in submatrices, sending it to 9 slaves. The algorithm starts

with the Master Task sending the sub matrices to all of the slaves. The slave tasks apply the Fox

algorithm [FOX11], exchanging messages among them. The result is sent back to the Master task

after computation finishes. To increase the computation time of each task, each slave repeats the

multiplication process 25 times. This is performed to allow the DFS controller to evaluate and act

over the system, since in the original algorithm each slave task quickly finishes its computation. In

this test case a matrix of 11 rows and 11 columns (11x11) was used to carry out the evaluation.

The results are shown in Section 6.2.5.

53

Master

T21 T22

T00 T01 T02

T20

T11 T12T10

To all

From all

Figure 29 – Fox algorithm for matrix multiplication task graph.

Application (vi) is a benchmark in the multimedia field and its task graph is showed in Figure

30. The application is composed by 12 tasks. Two tasks represent memory elements (Stripe-Mem

and VOP-Mem), i.e. no computation is performed by these tasks. A loop was included for each task

to perform a computation, since the available application for use models only the communication

workload. The duration of the loop is configured for each task according to its respective

complexity [VAN02]. The results are presented in Section 6.2.6 for mono-task execution and in

Section 6.3.3 for multi-task execution.

VLD iScan ACDC

Stripe-Mem

iDCT2

UpSample

iQuantRun

ARM

VOP-Mem

VOP-RecPAD

Figure 30 – VOPD task graph.

Nine levels compose the set of available frequencies for all experiments. Increasing or

decreasing the frequency in one or two steps means increasing or decreasing the frequency in

one/two levels according to the available values. In this work, the maximum available frequency

54

was set at 100MHz, while the minimum value is 6,67MHz. The other available values are 90%, 75%,

60%, 50%, 40%, 25% and 10% of the maximum frequency.

6.1.1 PROCESSING ELEMENT EVALUATION

Three parameters were used to carry out the evaluations for the PEs: (i) number of executed

instructions, (ii) total power dissipation and (iii) total execution time. Since a task uses a fixed

number of instructions to finish its execution, the reduction or increase in the number of executed

instructions comes from the difference that the CPU schedules the idle task, i.e. the lesser the

processor executes the idle task, the less instructions will be executed and vice-versa. The

evaluation in the number of executed instructions is performed by simulating the entire system

using and not using the proposed DFS scheme. In these simulations, the NoC, NI, DMA and DFS

controller are described in VHDL, while the Plasma CPU and the RAM memory are modeled in

SystemC.

Likewise, the evaluation of power dissipation was performed by simulating the system using

and not using the proposed DFS scheme. However, to estimate the power dissipation it was

necessary to synthesize the PE with and without the DFS scheme, using a standard cell library.

Thus, the generated netlist is used in the simulation to annotate the circuit switching activity. Then,

both files (netlist and switching activity) are used as input for the power estimation tool. A 65nm

standard cell library from ST Microelectronics was used to synthesize the PE in the Encounter RTL

Compiler, a logic synthesis tool from Cadence. The generated Verilog netlist was simulated using

the Incisive simulator, also from Cadence, and a tcf (toggle common format) file, containing all the

switching activity was created. Then, the Verilog netlist and tcf file are used in the Encounter RTL

Compiler for power evaluation Also, a wire load model is used to estimate wires power dissipation.

 Finally, for each scenario, two reactivity levels of DFS controller were evaluated. The

reactivity of the controller means how fast it acts over a variation in the monitoring parameters.

Lower reactivity represents slower responses in the presence of variations, while higher reactivity

represents faster responses. In the first reactivity level, lower, the controller takes into account

only the computed average CPU utilization, i.e. large variations in the last evaluated period do not

have great impact in the controller decision. In the second reactivity level, higher, the controller

takes into account the computed average and the last measured CPU utilization, i.e. variations in

the last evaluation may modify the controller decision. The total execution time, which is one of

the evaluated parameters, is directly affected by the reactivity level as shown later.

6.1.2 NOC EVALUATION

The NoC evaluation is performed only in terms of power dissipation. Similarly to the PE

power evaluation, both original and proposed architecture are synthesized, simulated with

annotated switching activity and evaluated by a commercial tool. The tools used for logic synthesis,

simulation and power evaluation are the same used for the PE. Besides the NoC size, the following

parameters are fixed for all applications: flit size equal to 16 bits and buffer size equal to 16

positions. The NoC size varies according to the evaluated benchmark.

55

6.2 MONO-TASK EXECUTION

The six applications were evaluated in a monotask execution, i.e. only one task is executed in

each PE. The applications are divided into synthetic and real. In synthetic experiments, application

(i) was evaluated only in terms of number of executed instructions, due to its similarity with

application (ii). In real experiments, application (iv) was evaluated only in terms of executed

instructions due to its different memory configuration, which will be detailed in Section 6.2.4. Yet,

as presented by [FIL09], the energy consumption of a processor is directly related to the number

of executed instructions. Thus, the evaluation in the number of executed instructions also reflects

in dissipated power. Finally, Section 6.2.7 draws conclusions for monotask executions.

6.2.1 COMMUNICATION

Each task in this application is composed by a loop that executes a sum operation over the

transmitted/received vector values and a send and/or receive primitive. The number of loop

iterations defines the task data processing rate and is configured according to each scenario, i.e.

the greater the loop the processor executes, the higher the data processing rate will be. Three

scenarios were evaluated using an MPSoC of size 2x3. Each scenario used a different loop

configuration for the tasks. Table 8 details the relation between the data processing rates for each

scenario. Figure 31 depicts the tasks frequency behavior using the second level of controller

reactivity for each scenario, since it presented better results when compared to the first reactivity

level.

Table 8 – Evaluated scenarios for Communication application. ‘+’ represents the data processing rate.

Scenario
Data processing rate

Producers Worker Consumer

1 ++ ++++ +

2 ++ + ++++

3 ++++ + ++

In scenario 1, the worker task (task C), which receives data from two producer tasks, reaches

the reference frequency, since it is the slowest task. Note that the relationship between the

worker and consumer frequency is around two (worker frequency equal to 100MHz and consumer

frequency equal to 60MHz), even if the generation rate between them is four (Table 8 - Scenario

1). The reason is that the worker receives data from 2 producers, transmitting them to the

consumer.

In scenario 2, the consumer is the slowest task, fastly reaching and staying at the reference

frequency. Also, both producers had their frequencies increased, due to pending messages

requested by the worker (the fastest task in this case). However, as the consumer consumes data

too slowly, the other three tasks had their frequencies reduced due to the high pipe occupancy (20

– 30 ms). The system achieves a steady state between 30 to 35 ms.

The third scenario stabilizes with the producers working at the reference frequency, the

consumer working around 80% of the reference frequency and the worker operating at half of the

56

reference frequency. The data processing rate relation between the three tasks explains this

behavior.

Scenario 1

Scenario 2

Scenario 3

Figure 31 – Communication application tasks frequency behavior. (1) Worker as the slowest task and the
consumer as fastest task. (2) Worker as the fastest task and consumer as the slowest task. (3) Producers

as the slowest tasks and worker as the fastest task.

Table 9 presents the number of executed instructions for each scenario, considering both

controller reactivity levels, as well as the total execution time. It is shown that increasing the

controller reactivity, the number of executed instructions is penalized, but the total execution

time is decreased. The first reactivity level reduced the average number of executed instructions

by 29.2% and penalized the average execution time in 38.37%. On the other hand, the second

reactivity level reduced the average number of executed instructions by 28.7%, but only penalized

the average execution time in 13.4%.

Table 9 – Communication application results.

Scenario

Number of executed machine instructions
(in millions)

Execution Time (ms)

Without
DFS

With DFS –
React. 1

With DFS –
React. 2

Without DFS With DFS –
React. 1

With DFS –
React. 2

1 14.65 9.09 9.37 39.50 52.54 49.20

2 13.30 9.26 9.12 36.85 48.43 40.15

3 13.61 10.96 11.06 34.77 52.40 37.11

57

6.2.2 PIPELINE WITH 6 TASKS

Two scenarios were evaluated for this application using an MPSoC of size 3x3. In the first

scenario, all tasks had the same computation workload, modeled by a configurable loop as in

application (i). In the second scenario, three computation workloads were used: low (tasks B and

E), medium (tasks A and D) and high (tasks C and F). The data processing rate for both scenarios is

presented in Table 10. Figure 32 shows the frequency behavior of each task for scenario 1, while

Figure 33 shows the frequency behavior of each task for scenario 2.

Table 10 – Evaluated scenarios for 6 tasks Pipeline application. ‘+’ represents the data processing rate.

Scenario
Data processing rata

A B C D E F

1 ++ ++ ++ ++ ++ ++

2 ++ + ++++ ++ + ++++

Figure 32 – Pipeline with 6 tasks application frequency behavior for scenario 1. All Tasks have the same

workload.

Figure 33 – Pipeline with 6 tasks application frequency behavior for scenario 2. Tasks have different

workload.

58

In scenario 1, all tasks except A and F had their frequencies increased to the reference

frequency. Since A and F have lower communication load compared to the other tasks (one send

for task A and one receive for task F, against one send and one receive for other tasks), their

frequency stabilizes at around 60% of the reference frequency. Since the data produced by task A

is always available, task B increases its frequency to the reference frequency. Similarly, tasks C, D

and E follow the same behavior. All tasks with same communication load and data processing rate

(CPU utilization) presented same frequency behavior. Thus, the DFS scheme could only change the

frequency of tasks A and F, since their communication load is smaller.

In scenario 2, the frequency is defined by the computation workload. Tasks with higher

computation workload (C and F) had their frequencies increased to the reference frequency. Task

F presented a small variation due to its lower communication load. Tasks with medium

computation workload (A and D) had their frequencies increased in the beginning of the

simulation. While task D kept the frequency around 75% of the reference frequency, task A

presents an oscillation in the beginning of the simulation. This is explained by the time that task C

needs to increase its frequency and start consuming messages from task B, which also reflects in

task A. Later, task A had its frequency stabilized around 40% of the reference frequency due to the

lower communication load, compared to task D. Tasks with low computation workload (B and E)

had their frequencies decreased to around 40% of the reference frequency, an expected behavior

since these tasks need less time to produce data.

Table 11 presents the results for both scenarios in terms of number of executed instructions

and total execution time. In scenario 1, with the same computing workload for all applications, the

savings in the number of executed instructions are small (7.6% and 4.4% for reactivity levels 1 and

2 respectively). This can be explained due to the nature of the application, which makes almost all

tasks operate at the reference frequency. The decrease in the number of executed instructions

comes from the tasks which had their frequencies reduced. The execution time increased by

13.64% for reactivity level 1 and 11.93% for reactivity level 2. On the other hand, scenario 2

presented significant savings in the number of executed instructions and a smaller execution time

overhead. The reactivity level 1 presented a reduction of 37% in the number of executed

instructions and a 4.88% increase in the execution time, while reactivity level 2 presented 34.56%

and 3.23% respectively. Again, with higher reactivity level the execution time overhead is

decreased and the number of executed instructions is increased, compared to a lower reactivity

level.

Table 11 – Pipeline with 6 tasks results.

Scenario

Number of executed machine instructions
(in millions)

Execution Time (ms)

Without
DFS

With DFS –
React. 1

With DFS –
React. 2

Without DFS With DFS –
React. 1

With DFS –
React. 2

1 20.00 18.48 19.12 41.06 46.66 45.96

2 36.00 22.69 23.56 70.03 73.45 72.29

59

Due to the simulation time required to evaluate the system, only the scenario with the

second controller reactivity level was simulated to evaluate the power consumption. Table 12

shows the obtained results. The power reduction was 20.85% for PEs and 72.58% in the NoC. It is

important to note that the power reduction in the CPUs, 32.53%, is close to the reduction in the

number of executed instructions, 34.56%.

Table 12 – Pipeline with 6 tasks power consumption for scenario 2.

Total Power (mW)

RAM CPU DFS Controller PEs NoC

With DFS 83.04 17.97 2.46 105.73 3.15

Without DFS 99.08 26.64 - 133.58 11.48

Reduction 16.19% 32.53% - 20.85% 72.58%

The total power reduction for NoC and PEs is around 25% for this scenario (5.7% by NoC and

19.3% by PEs). Also, the significant reduction in the NoC power consumption does not represent

the same percentage in the total power reduction, as it is show in Figure 34.

Figure 34 – PEs and NoC power dissipation comparison for 6 tasks pipeline application.

6.2.3 MPEG

This application was evaluated using an MPSoC of size 2x3. Using the proposed DFS scheme,

only the task with high computation workload (iVLC) had its frequency increased to the reference

frequency. The tasks Print and Start had their frequency decreased to the lowest frequency, while

tasks iDCT and iQuant oscillated between 25MHz and 40MHz, due to the lower computation

workload when compared to iVLC task. Figure 35 shows each task frequency behavior along the

time.

Table 13 shows the obtained results in terms of number of executed instructions and

execution time. The first reactivity level presented a reduction of 65.2% in the number of executed

instructions and 10.4% of execution time overhead. Yet, the second reactivity level presented a

reduction of 65.1% in the number of executed instructions and 9.4% of execution time overhead.

Thus, for this application, using the second reactivity level presented better results, since the

60

difference in the number of executed instructions is negligible and the execution time overhead is

decreased by 1%, compared to the first reactivity level.

Table 13 – Number of executed instructions and execution time results for MPEG application.

Scenario
Executed

Instructions
(in millions)

Reduction
(Instructions)

Execution Time
(ms)

Overhead
(Exec. Time)

Without DFS 37.93 - 86.24 -

With DFS – React. 1 13.20 65.2% 95.23 10.4%

With DFS – React. 2 13.23 65.1% 94.40 9.4%

Figure 35 – Frequency behavior of MPEG application tasks.

Table 14 shows the obtained results in terms of power dissipation. Since the second

reactivity level presented better results, only this scenario is evaluated in this analysis. The total

power reduction in the system was 52.28% (4.85% by NoC and 47.43% by PEs). The power

reduction in CPUs is similar to the reduction in number of executed instructions (~57% and ~65%),

however, as the RAM memory had lower power reduction (~49%) and is the module that has the

highest power dissipation, the PE presented a power reduction of 50.62%.

Table 14 – Power dissipation results for MPEG application with and without the proposed DFS scheme.

Total Power (mW)

RAM CPU DFS Controller PEs NoC

With DFS 39.04 9.05 1.77 51.17 1.61

Without DFS 76.34 21.09 - 103.63 6.98

Reduction 48.86% 57.08% - 50.62% 76.9%

Although the achieved NoC power reduction is around 77%, its contribution in the total

power reduction is only around 5%. Figure 36 shows the relation for the power consumption with

and without the proposed DFS scheme. It can be seen that the contribution of the PEs power

dissipation is much larger than the NoC contribution. Considering only the obtained power

61

reduction, the contribution of PEs power reduction is around 90% and the contribution of the NoC

is around 10%.

Figure 36 – PEs and NoC power dissipation comparison for MPEG application.

6.2.4 JPEG

This application was evaluated using an MPSoC of size 2x2. Also, the PE RAM memory has to

be modified to divide the pages into 32KB pieces each, instead of 16KB, to accommodate the

object code of task1. This modification implies changing the internal structure of the Plasma CPU,

and consequently, in synthesizing the PEs for this configuration. Thus, for the sake of simplicity,

the evaluation is performed only in terms of number of executed instructions, since the latter can

be directly related to power dissipation as shown in previous analysis.

Tasks 2 and 3 have higher computation workload when compared to task 1. Thus, tasks 2

and 3 have their frequencies increased to the reference frequency, while task 1 has its frequency

reduced to around 60% of the reference frequency. This is explained by the higher data rate

generation of task 1, which sends the processed data faster than task 2 can consume (task 1 pipe’s

becomes full). Task 2 adjusts its frequency according to the pending message requests from task 3.

In other words, the CPU utilization becomes high, since task 1 data is always available, and pipe

occupation stays between operational and low states, since task 3 is requesting data.

Consequently, after task2 reaches the reference frequency and makes the data available when it is

requested, task3 reaches the reference frequency.

Table 15 presents the results for this application. The execution time overhead, compared to

the execution with the whole system at the reference frequency is around 19% for the first level of

reactivity and around 14% for the second level. The number of executed instructions is reduced by

4% using the first level of reactivity and by 5.5% for the second level. The low reduction in the

number of executed instructions is explained by the decrease in the frequency of only one task, i.e.

only one PE can have the number of executed instructions reduced. Also, the second level of

reactivity benefits both executed instructions and execution time overhead. It is explained by the

increase in the frequencies of tasks 2 and 3 to the reference frequency faster than the first

reactivity level, making the processors that execute these tasks schedule the idle task for less time.

62

Table 15 – Number of executed instructions and execution time results for JPEG application.

Scenario
Executed

Instructions
(in millions)

Reduction
(Instructions)

Execution Time
(ms)

Overhead
(Exec. Time)

Without DFS 14.60 - 61.24 -

With DFS – React. 1 14.02 4.0% 73.14 19.4%

With DFS – React. 2 13.79 5.5% 69.90 14.1%

6.2.5 FOX 3X3

This application was evaluated using an MPSoC of size 4x3, with 9 processors executing the

slave tasks, one processor executing the Master task and one unused processor. The application

starts with the Master task sending submatrices to slave tasks. After receiving the submatrices,

slaves start processing and exchanging messages with their neighbors. Since all tasks process the

same size of submatrices, they send and receive the same amount of messages, and the CPU

utilization and communication load are the same for all processors. Thus, all processors executing

a slave task had their frequencies increased to the reference frequency. The only exception is the

processor which executes the Master task, which had its frequency decreased to the lowest level.

Table 16 presents the results in terms of number of executed instructions and execution time.

Table 16 – Number of executed instructions and execution time results for FOX 3x3 application.

Scenario
Executed

Instructions
(in millions)

Reduction
(Instructions)

Execution Time
(ms)

Overhead
(Exec. Time)

Without DFS 22.60 - 55.23 -

With DFS – React. 1 20.87 7.7% 67.53 22.3%

With DFS – React. 2 20.79 8.0% 61.05 10.5%

As the controller acts only over the Master task, the savings in the number of executed

instructions are only limited to the latter. Also, since the best case is achieved with all slave tasks

working at the reference frequency, it is impossible to obtain the same execution time and

number of executed instructions of the system without the proposed scheme, due to the delay

induced by each evaluation and the time that the controller needs to stabilize. Thus, the slave

tasks presented an overhead in the number of executed instructions around 10%, while the

Master task presented a reduction around 90%, explaining the average reductions around 8% for

both reactivity levels. The execution time overhead presented by the first reactivity level is around

22%, against 10.5% obtained when using the second reactivity level. It shows that for applications

with tasks containing the same amount of processing workload, faster responses to

63

communication workload variability present better results. Consequently, the power evaluation is

performed only for the second reactivity level, which is presented in Table 17.

Table 17 – Power dissipation results for FOX 3x3 application with and without the proposed DFS scheme.

Total Power (mW)

RAM CPU DFS Controller PEs NoC

With DFS 164.11 32.16 4.37 205.23 4.75

Without DFS 177.19 40.16 - 231.14 15.51

Reduction 7.8% 19.92% - 11.21% 69.34%

Only PEs executing some task are considered in the evaluation. The results show a reduction

of 11.2% for PEs (including the DFS controller) and 69.3% for the NoC. In this application the

power reduction is greater than the reduction in the number of executed instructions (11.21% and

8.01%). A detailed study is needed to explain this behavior, and it is left as a future work. Figure 37

presents the relation between the PEs and NoC consumption using and not using the proposed

DFS scheme. The reduction of dissipated power in the whole system was of 14.86%, being 10.50%

by PEs and 4.36% by the NoC.

Figure 37 - PEs and NoC power dissipation comparison for FOX 3x3 application.

6.2.6 VOPD

This application was evaluated in an MPSoC of size 4x4, using 12 Slave-PEs and 1 Master-PE.

The 3 remaining processors are not taken into account in the evaluations. The task mapping was

performed so that the initial tasks are the first to be allocated (VLD, ARM, and so forth), and the

final tasks (PAD, VOP-Rec and VOP-Mem) are the last allocated. Figure 38 shows the frequency

along the time for each task using the second reactivity level. The two initial tasks (VLD and ARM)

start producing messages and quickly reach the reference frequency. Since the task VLD produces

messages for a task that is subsequently allocated, it keeps its frequency around the maximum

level until the end of the application. On the other hand, the task ARM, which produces messages

for IDCT2 and PAD, fills its pipe and has its frequency decreased. Later, with all tasks allocated

64

(around 50 ms), the ARM task has its frequency increased, and all the other tasks stabilize their

frequencies according to their respective computation workload. Still, some variation can be noted

due to the fact that frequency levels are not continuous, i.e. not all frequencies are available to be

used. Thus, if a processor oscillates between 90MHz and 100MHz, for the same amount of time, it

is possible that the ideal frequency to operate would be around 95MHz.

Figure 38 – Frequency behavior of VOPD application tasks.

Table 18 presents the results in terms of number of executed instructions and execution

time. The first reactivity level reduces the number of executed instructions by 27.70% and induces

18.33% overhead in execution time, while the second level reduces by 27.30% the number of

executed instructions and induces 7.25% overhead in execution time. The significant difference in

the execution time overhead between the two reactivity levels occurs due to the quick increase in

the frequencies of tasks allocated later (IDCT2, UpSamp, VOP-Rec).

Only the second reactivity level was evaluated in terms of power dissipation. Results are

presented in Table 19. Similarly to other applications (besides application (v)), the reduction in

power dissipation is nearly the same as the reduction in number of executed instructions,

especially when only the CPUs are taken into account (27.3% and 26.6% respectively). Power

65

reduction in the NoC achieved around 75%. The relation between NoC dissipation and PEs

dissipation is depicted in Figure 39.

Table 18 – Number of executed instructions and execution time results for VOPD application.

Scenario
Executed

Instructions
(in millions)

Reduction
(Instructions)

Execution Time
(ms)

Overhead
(Exec. Time)

Without DFS 313.90 - 266.30 -

With DFS – React. 1 226.94 27.7% 315.10 18.3%

With DFS – React. 2 228.19 27.3% 285.6 7.3%

Table 19 – Power dissipation results for the VOPD application with and without the proposed DFS
scheme.

Total Power (mW)

RAM CPU DFS Controller PEs NoC

With DFS 163.52 34.55 4.92 206.98 5.48

Without DFS 219.93 45.82 - 279.31 22.18

Reduction 25.31% 26.60% - 25.89% 75.29%

 Similarly to other applications, the reduction of NoC power dissipation is a small fraction of

the total power reduction. In this application, the total power reduction for the whole system is

29.53%, being 5.54% the NoC contribution and 23.99% the PEs contribution.

Figure 39 – PEs and NoC power dissipation comparison for VOPD application.

66

6.2.7 MONO TASK FINAL REMARKS

The results for mono task execution show that the proposed DFS scheme is able to tune the

frequency of each processor in the MPSoC according to the application characteristics. Decreasing

the operating frequency of a given processor leads to decrease in power dissipation. However,

with the induced execution time overhead, application performance is penalized. Thus, a DFS

controller scheme must induce as the least possible execution time overhead, to maximize both

power and energy savings.

All the evaluated applications presented reduction in number of executed instructions and in

power dissipation. However, in some scenarios, the induced execution time overhead could

increase the final energy consumption, since energy and time are directly correlated. Still, for each

evaluated scenario, two reactivity DFS controller levels were evaluated. The first level is less

reactive, which means the responses are slower when a monitoring parameter changes. This

reactivity level presented high execution time overhead in some scenarios, e.g. 50% in application

(i), and 22% in application (v). Contrarily to this, the second reactivity level showed better

performance than the first level for all scenarios. This level is more reactive, which means the

responses are faster when a monitoring parameter changes. In other words, the second reactivity

level increases, or decreases operating frequency faster than the first one. As a drawback, this

reactivity level presents lower reduction in the number of executed instructions compared to the

first one. The second reactivity level only increased the number of executed instructions between

3.2% and 2% when compared to the first one. For these reasons, the second reactivity level was

used for power evaluations and discussing the frequency behavior in each scenario.

Considering all experiments, the reduction in the number of executed instructions ranges

from 4.4% to 65.1%, while the execution time overhead ranges from 3.2% to 14.1%.

Applications composed by tasks with similar computation and communication workload ((iv),

(v) and scenario 1 of application (ii)) present lower reduction in the number of executed

instructions and lower power savings, with higher execution time overhead, when compared to

applications with varied computation and communication workload. This is due to the fact the

controller sets the tasks frequencies to the highest level, finishing their execution as soon as

possible. Therefore, the reduction in the number of executed instructions comes from the task

with the lower computation and/or communication workload, while the initial time needed to

stabilize the system penalizes execution time.

 On the other hand, applications composed by tasks with varied computation and

communication workload provide higher flexibility for the controller. In such applications, the

reduction in the number of executed instructions and power savings ranges from 18.7% to 65.1%

and from 25% to 52%, respectively. The execution time overhead ranges from 3.2% to 9.5%. For

comparison purposes, the reduction in the number of executed instructions for applications with

similar computation and communication workload ranges only from 4.4% to 8%. Nevertheless, the

application behavior does not interfere in the NoC power savings, which was around 70% for all

applications.

67

6.3 MULTI-TASK EXECUTION

Four applications were used to evaluate multi-task execution: Communication (i) (only used

in one scenario of Section 0), Pipeline with 6 tasks (ii), MPEG (iii) and VOPD (vi). The first

evaluation is performed by four configurations of the application (ii) and presented in Section

6.3.1. Section 0 presents the results for the second evaluation, where the application (iii) is

evaluated in three configurations. The last evaluation comprises the application (vi) and is

presented in Section 6.3.3. Finally, in Section 6.3.4, conclusions are drawn about the multi-task

execution results.

6.3.1 PIPELINE WITH 6 TASKS

This application was evaluated in four different configurations. First, the tasks are mapped

forming macro tasks, as it is shown in Figure 40. The term macro task is used to define a set of

tasks mapped in a processor that is viewed as only one task by the system. For example, when task

B needs to send a message to task C, the system can write the data in the memory space reserved

for task C, avoiding the use of the NoC. Next, the computation workload of tasks are varied,

composing two configurations for the macro task mapping: (a) average, where all tasks present

the same computation workload; (b) mix, where the tasks present different computation

workloads. Also, each configuration was evaluated with both DFS controller reactivity levels. The

frequency behavior of each task for the second reactivity level is presented in Figure 41 and Figure

42 for average and mix configurations, respectively.

PE 10PE 00 - Master PE 20

PE 01 PE 11 PE 21

A B C D E

F

Figure 40 – Macro task mapping.

In the average configuration (Figure 41), processors executing two tasks had their frequency

increased to the reference frequency, while processors executing one task had their frequency

oscillating around 50% of the reference frequency, following the data generation rate imposed by

the computation workload. In the mix configuration (Figure 42) three levels of computation

workload were used: low (tasks C and E); medium (tasks A and D); high (tasks B and F).

Accordingly, the processor executing task A had its frequency oscillating between 25MHz and

40MHz, since task B consumes data more slowly compared to the average configuration. The

processor executing tasks B and C had its frequency increased to the reference frequency,

satisfying the workload of both tasks. On the other hand, the processor executing tasks D and E

oscillates between 75MHz and 100MHz, since tasks D and E present lower computation workload.

68

Finally, the processor executing task F had its frequency increased to supply the high computation

workload demanded by its task.

Figure 41 – 6 tasks pipeline application frequency behavior for multitask execution. Macro task mapping
with the same computation workload for all tasks.

Figure 42 – 6 tasks pipeline application frequency behavior for multitask execution. Macro task mapping
with varied computation workload for each task.

The other two evaluated scenarios use a task mapping that isolates the communicating tasks

in different processors, as it is shown in Figure 43. As done for the macro task mapping, the

computation workload of the tasks is varied to generate two scenario configurations, which

received the same names (average and mix). Also, both DFS controller reactivity levels were

evaluated. Figure 44 and Figure 45 present the frequency behavior for the second reactivity level

in average and mix configurations respectively.

PE 10PE 00 - Master PE 20

PE 01 PE 11 PE 21

A B E C F

D

Figure 43 – Isolated task mapping.

Figure 44 presents results similar to Figure 41. The difference is in the processor that

executes task D. Since task D presents a higher communication load compared to task F, its

processor had to increase frequency to around 60MHz to supply the demand, contrary to what

happened for task F in Figure 41. In the mix configuration, the task mapping was done in a way to

place together tasks with contrasting characteristics. Thus, tasks with high and low computation

workload were mapped in the same processor. The results are presented in Figure 45. While the

processors with two tasks had to increase their frequency to the reference frequency to supply the

demand of both tasks, the processor executing task A stabilized its frequency around 25MHz and

the processor executing task D oscillated mostly between 40MHz and 50MHz. Again, the

69

difference between the processors executing tasks A and D is due to the difference in

communication load between the tasks.

Figure 44 – 6 tasks pipeline application frequency behavior for multitask execution. Isolated task
mapping with the same computation workload for all tasks.

Figure 45 – 6 tasks pipeline application frequency behavior for multitask execution. Isolated task
mapping with varied computation workload for each task.

Table 20 presents the results in terms of executed instructions and execution time for all the

simulated scenarios.

Table 20 – Number of executed instructions and execution time results for the evaluated scenarios of 6
tasks pipeline application in multitask execution.

Config. Scenario
Executed

Instructions
(in millions)

Reduction
(Instructions)

Execution Time
(ms)

Overhead
(Exec. Time)

Macro
Average

Without DFS 25.75 - 77.57 -

With DFS – React. 1 17.41 32.39% 82.10 5.84%

With DFS – React. 2 17.42 32.35% 80.16 3.34%

Macro
Mix

Without DFS 30.73 - 90.60 -

With DFS – React. 1 21.84 28.93% 92.98 2.63%

With DFS – React. 2 22.87 25.58% 91.94 1.48%

Isolated
Average

Without DFS 25.73 - 77.81 -

With DFS – React. 1 18.84 26.78% 79.23 1.82%

With DFS – React. 2 19.30 24.99% 79.05 1.59%

Isolated
Mix

Without DFS 41.56 - 119.24 -

With DFS – React. 1 26.14 37.10% 122.36 2.62%

With DFS – React. 2 28.77 30.77% 121.86 2.20%

70

Due to the simulation time required to evaluate the system, the power dissipation analysis

was not performed for this application. However, based on data collected in Section 6.2, the

reduction in the number of executed instructions should lead to proportional power savings.

Generally, the second reactivity level induces smaller execution time overhead at the cost of a

lower reduction in the number of executed instructions. Yet, the difference between the two

reactivity levels is smaller than presented in Section 6.2. This is explained by the fact that the tasks

in this application do not drastically change their behavior during execution as it happens, for

example, in task VOP-Rec, described in Section 6.2.6. The reduction in the number of executed

instructions ranges from 25% to 37%, while the execution time overhead ranges from 1.5% to

5.8%.

6.3.2 MPEG

This application was evaluated in three different scenarios. The first scenario evaluates tasks

with similar characteristics mapped to a same processor, while the second scenario evaluates

tasks with different characteristics mapped to a same processor. The third scenario evaluates the

MPEG execution in the presence of another application in the system. The task mappings for the

first, second and third scenarios are showed in Figure 46(a), Figure 46(b) and Figure 46(c)

respectively.

PE 10PE 00 - Master PE 20

PE 01 PE 11 PE 21

iVLCiDCT iQuant

Print Start

PE 10PE 00 - Master PE 20

PE 01 PE 11 PE 21

iVLCPrint iQuant

iDCT Start

(a) (b)

PE 10PE 00 - Master PE 20

PE 01 PE 11 PE 21

iVLCD iQuant

Print Start A B

C iDCT

(c)

Figure 46 – Task mapping for the evaluated scenarios of MPEG application in multitask execution.

Figure 47 illustrates the processors frequency behavior for the first scenario with the second

DFS controller reactivity level. In this scenario, the processor executing tasks Print and Start, which

present low computation workload, barely increased its frequency. The processor executing tasks

iDCT and iQuant oscillated mostly between 40MHz and 60MHz, while the processor executing task

71

iVLC kept its frequency at the reference frequency. It shows that, even with both tasks iDCT and

iQuant being allocated in the same processor, there is no need to increase the frequency due to

the high computation workload demanded by iVLC.

Figure 47 – Frequency behavior of MPEG application tasks in the first scenario of multitask execution.

Figure 48 illustrates the processor frequency behavior for the second scenario. Again, the

processor executing task iVLC kept its frequency at the reference frequency. On the other hand,

the other two processors had their frequencies oscillating mostly between 25MHz and 50MHz. In

the processor executing tasks iDCT and Start, the policy proposed in Section 4.3 does not let task

Start occupy the entire pipe, leading task iDCT to be scheduled frequently, and making its

characteristics guide the DFS controller. Similarly, the processor executing tasks iQuant and Print is

guided by the characteristics of task iQuant, since task Print presents low computation workload

and is scheduled only when a new message is available.

Figure 48 – Frequency behavior of MPEG application tasks in the second scenario of multitask execution.

The frequency behavior of the processors for the third scenario is showed in Figure 49. The

configuration used for application (i) is the same as the one in line 3 of Table 8. The processor

executing task iVLC and the processor executing tasks Print and Start presented the same behavior

of the first scenario. The processor executing tasks iQuant and D had its frequency increased to

the reference frequency, since both tasks present a significant computation workload. The

processor executing tasks iDCT and C kept its frequency around 50MHz. As it happened in the

previous scenario, the multi task policy prevents task C, which has a high data generation rate,

from filling the pipe, scheduling task iDCT more frequently. Thus, this processor does not need to

increase the frequency to supply the demand of both tasks. Consequently, the processor executing

tasks A and B oscillates between 75MHz and 100MHz, since their consumer (task C) shares the

processor with another task.

72

Figure 49 – Frequency behavior of MPEG and Communication applications tasks in the third scenario of
multitask execution.

The reductions in the number of executed instructions and execution time overhead are

presented in Table 21. In general, the first reactivity level presented better results for this

application, compared to the second level. The second reactivity level outperforms the first level

only in the first scenario, where the execution time overhead was reduced by 2% more than the

first level and the reduction in executed instructions is very close. The other two scenarios present

very similar reduction in the number of executed instructions and execution time overhead for

both reactivity levels, with a small advantage for the first one. The reduction in the number of

executed instructions ranges from 25% to 41%, while the execution time overhead ranges from

8.6% to 12%.

Table 21 – Number of executed instructions and execution time results for the evaluated scenarios of
MPEG application in multitask execution.

Scenario Scenario
Executed

Instructions
(in millions)

Reduction
(Instructions)

Execution
Time (ms)

Overhead
(Exec. Time)

1

Without DFS 23.03 - 85.45 -
With DFS – React. 1 13.56 41.12% 95.63 11.91%
With DFS – React. 2 13.58 41.03% 91.81 8.61%

2

Without DFS 22.97 - 85.40 -
With DFS – React. 1 13.55 40.93% 93.01 8.91%
With DFS – React. 2 13.97 39.10% 93.72 9.74%

3

Without DFS 37.99 - 85.54 -
With DFS – React. 1 28.14 25.93% 95.80 11.99%
With DFS – React. 2 28.44 25.14% 94.75 10.77%

73

Table 22 present the results in terms of power dissipation for the third scenario using the

second reactivity level. Although the first level presented better results for this scenario, it was

chosen to evaluate the second level due to the small difference of performance in this scenario

and the overall performance presented in previous applications. The power reduction in PEs was

around 10%, while in the NoC it was around 65%. Similarly to Section 6.2.2, considering only the

savings in the CPUs, the reduction in the number of executed instructions is similar to the power

savings, however, the small savings in the RAM reduce the average reduction in PEs.

Table 22 – Power dissipation results for the third scenario of MPEG application in multitask execution,
with and without the proposed DFS scheme.

Total Power (mW)

RAM CPU DFS Controller PEs NoC

With DFS 75.64 16.90 2.10 96.77 2.42

Without DFS 78.50 22.87 - 107.62 7.02

Reduction 3.64% 26.12% - 10.08% 65.56%

The relation between NoC dissipation and PEs dissipation is depicted in Figure 50. Similar to

what was presented along Section 6.2, the reduction in NoC power dissipation contributes only

with a small percentage to the total power savings. The total power savings for the whole system

was 13.48%, being 9.47% from PEs and 4.01% from the NoC.

Figure 50 – PEs and NoC power dissipation comparison for MPEG and Communication applications in
multitask execution.

6.3.3 VOPD

The multitask execution of the VOPD application is performed using 7 PEs. Tasks with similar

computation workload characteristics, e.g. VOP-Mem and StripeM, are mapped to the same

processor. Figure 51 shows the frequency behavior of each processor for the second reactivity

level of the controller. Besides the processors executing tasks VOP-Mem plus StripeM and IQUANT,

all processors oscillated mostly between 90MHz and 100MHz. This is explained by the

computation workload of tasks that are placed in the same processor, which demands full

utilization most of the time. The processor executing tasks VOP-Mem and StripeM had its

frequency decreased to the lowest level, since these tasks do not perform any computation. The

oscillation in the frequency of the processor executing task IQUANT is explained by the fact that it

74

consumes data from task VOP-Mem, which shares the respective pipe with another task. Thus, in

some moments, the IQUANT task has to wait until some data is consumed by another task to have

the requested message in the pipe. Therefore, improvements in the multitask policy can still be

performed, being the target of future work.

Figure 51 – Frequency behavior of VOPD application tasks in multitask execution.

Table 23 presents the results in terms of reduction in the number of executed instructions

and execution time overhead. Since the required time to evaluate the system in terms of power

dissipation could reach an entire week, due to the application execution time, this analysis is not

done for this application. Also, the first reactivity level outperforms the second one in this

application. The reduction in the number of executed instruction is around 18% and the execution

time overhead is around 2% for the second level, while it is around 22% and less than 1%,

respectively, for the first level. This can be explained by the higher sensibility of the second level

with the monitoring parameters variations. As it can be seen in Figure 51, even the processors that

operate at the reference frequency oscillate to a lower frequency at some moments. Using the

first reactivity level, these oscillations do not appear, making processors operate at the reference

frequency during the whole simulation, consequently reducing the execution time overhead.

Table 23 – Number of executed instructions and execution time results for VOPD application in multitask
execution.

Scenario
Executed

Instructions
(in millions)

Reduction
(Instructions)

Execution Time
(ms)

Overhead
(Exec. Time)

Without DFS 299.61 - 434.14 -

With DFS – React. 1 233.11 22.2% 436.86 0.6%

With DFS – React. 2 245.12 18.2% 442.70 2.0%

6.3.4 MULTI TASK FINAL REMARKS

In most applications, the second DFS controller reactivity level presented lower execution

time overhead and reduction in the number of executed instructions than the first one. However,

for multi task execution, the difference between the results of both levels is small. The reduction

in the number of executed instructions ranges from 25% to 41%, while for the second level it

75

ranges from 18% to 41%. The execution time overhead ranges from 0.63% to 11.99% for the first

reactivity level and from 1.48% to 10.77% for the second level. This shows that in multi task

execution, changes in computation and communication workload are smooth compared to mono

task execution, since two or more tasks share the computation and communication resources. For

example, in Section 6.2.6, tasks PAD and VOP-Rec are allocated in the same PE. In Figure 38 the

task VOP-Rec drastically changes its computation workload due to the messages becoming

available at 50ms, making the controller quickly increase its frequency. However, in multitask

execution (Figure 51), task PAD produces a large variation, since it is working while task VOP-Rec is

blocked. Thus, both reactivity levels can be used to control a multi task scenario.

Finally, the NoC power dissipation was reduced by 65.5% in the evaluated scenario, against

an average of 70% in mono task execution. This shows that with more flows being sent through

the NoC, the reduction becomes lower. Still, the proposed DFS scheme for the NoC produces

significant power savings.

76

7 CONCLUSION AND FUTURE WORKS

The workload variations present in many applications may use a dynamic power

management technique to design an energy-efficient device. This Dissertation addresses the

reduction of power and energy consumption in NoC-Based MPSoCs through the DFS technique.

The contributions comprise three main topics:

 A DFS scheme for PEs of a homogeneous NoC-Based MPSoC;

 A Multitask policy to support multitask execution;

 A DFS scheme for the Hermes NoC.

The proposed DFS scheme for PEs is based on its computation and communication loads.

The DFS controller only takes into account local information to choose the suitable frequency,

characterizing a totally distributed scheme. The novelty of the solution relies on the parameters

used to control the proposed scheme, which are only used individually in most of the reviewed

works. Moreover, a clock generation module was designed to provide the clock signal for the PE.

This module uses an input clock as reference to generate an output clock with lower or equal

frequency, by omitting a programmable number of cycles of the input clock. Also, the controller

was designed with two reactivity levels, which directly affect its behavior. The results presented in

Section 6.2 shows that the DFS scheme is able to adjust the PE frequency according to the relation

between the computation/communication load of its executing task and the remaining tasks of

the application. Also, it is shown that reduction in the number of executed instructions is directly

related to power dissipation.

Next, a multitask policy is presented to enable the DFS controller to work with a PE

executing multiple tasks. Since the target MPSoC supports multitask execution, it is mandatory

that the proposed scheme handle this scenario. By executing multiple tasks in the same processor,

the concurrency for resources may lead to erroneous interpretation of the monitoring parameters.

For example, if a task presents high communication load, it can quickly fill the pipe, blocking the

writings of a second task, consequently decreasing operating frequency. The proposed policy

avoids this situation by controlling the microkernel scheduler according to the resources being

used by each task. Results in Section 6.3 show that the multitask policy enables the DFS controller

to adjust the PE frequency without any hardware modification.

The proposed DFS scheme for the routers of the Hermes NoC is guided by packet

information. In the target MPSoC, PEs are responsible for defining the frequency that the packet

must be sent through the NoC and code this information in the packet. Then, the router frequency

is adjusted according to the packets that are currently being switched. Additionally, the router DFS

controller may set the operating frequency to the lowest frequency level in case of inactivity.

Results show a reduction in the number of executed instructions from 3.2% (pipeline with 6

tasks – monotask) to 65.1% (MPEG - monotask execution) and in power dissipation from 13.5%

(MPEG-Communication – multitask execution) to 52% (MPEG – monotask execution) considering

all the evaluated applications in PEs. The difference in the number of executed instruction is

explained by the tasks behavior. When all tasks present similar behavior savings are smaller, since

77

the DFS controller tends to increase the operating frequency of all tasks to the reference

frequency, e.g. pipeline with 6 tasks in scenario 1, FOX and JPEG applications. On the other hand,

applications composed by tasks with imbalanced data processing rates present higher savings,

since the DFS controller can decrease the frequency of tasks with low data processing rate. In

average, the reduction in the number of executed instructions was 28% and in power dissipation

23%. In the NoC, power saving was 71% in average, ranging from 65.5% (MPEG-Communication –

multitask execution) to 76.9% (MPEG – monotask execution). However, this reduction only

represents around 5% of the whole system power dissipation. The power overhead induced by the

DFS controller in the PE is around 3%, while in the router it is around 10%. Moreover, the

proposed DFS schemes for PEs and NoC have a small impact in the total execution time, leading

also to significant energy savings.

7.1 FUTURE WORKS

This work is an initial effort to implement a dynamic power management technique for the

HeMPS platform. Improvements of the proposed technique can be addressed as future works.

Salehi et. al. [SAL10] present a scheme with variable evaluation period, which present better

results than a fixed evaluation period. This is showed also in [ALI09], where the buffer occupation

controls the evaluation period, leading to less frequency changes. Thus, with a variable evaluation

period, the system is evaluated only when the frequency should be changed, consequently

reducing overall switching activity and increasing power savings. Also, the proposed scheme may

be modified to work with task’s deadlines, throughput, latency and so forth. Currently, if the task

is not blocked and the produced data is consumed at equal or higher rate, the proposed scheme

tends to increase the operation frequency to the reference frequency. However, tasks can execute

at lower frequencies and still meet the required performance, e.g. if a given task deliveries the

double of the required throughput working at the reference frequency, the operation frequency

can be decreased by half of the reference frequency and the required throughput will be met. Still,

deeper study for multitask execution is needed to improve the proposed multitask policy. In this

work, the number of pipe slots that a task can use in multitask execution is fixed. However, when

working with multiple applications, this number may be controlled dynamically, according to each

application characteristic.

In addition to improvements in the proposed techniques, deeper evaluations can be

addressed as future works. In this work, the Hermes NoC was calibrated for several operation

frequencies, using the technique proposed in [GUI08]. Thus, the collected data (Appendix A) can

be used by a higher level power estimation tool to provide fast power evaluation. Also, as it was

showed, the number of executed instructions is directly related to the dissipated power, and can

be also used as a metric for power estimation at higher abstraction levels, e.g. RTL simulation. Still,

the proposed scheme may be used in more complex processors (e.g. Leon, ARM) to evaluate

power reduction in the CPU, since power dissipation in the present PE (Plasma based) is

dominated by the memory. Nevertheless, with more complex processors the NoC may be more

explored, and its contribution in total power dissipation and/or energy consumption may change.

Finally, a comparison between the proposed technique and a simple clock-gating approach and

comparisons with other DFS/DVFS techniques also comprise future works.

78

REFERENCES

[ALI06] Alimonda, A.; Carta, S.; Acquaviva, A.; Pisano, A. "Non-Linear Feedback Control for
Energy Efficient On-Chip Streaming Computation". In: International Symposium on
Industrial Embedded Systems (IES), 2006, pp. 1-8.

[ALI09] Alimonda, A.; Carta, S.; Acquaviva, A.; Pisano, A.; Benini, L. "A Feedback-Based Approach
to DVFS in Data-Flow Applcations". IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol.28, no.11, pp. 1691-1704, Nov. 2009.

[BEI08] Beigné, E.; Clermidy, S.; Miermont, P. “Dynamic Voltage and Frequency Scaling
Architecture for Units Integration within a GALS NoC”. In: Second ACM/IEEE International
Symposium on Networks-on-Chip (NoCs), 2008.

[BEN00] Benini, L.; Bogliolo, A.; De Micheli, G. "A survey of design techniques for system-level
dynamic power management". IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol.8, no.3, pp. 299-316, Jun. 2000.

[BEN98] Benini, L.; De Micheli, G. “Dynamic Power Management: Design Techniques and CAD
Tools”. Kluwer Academic Publishers, Boston, MA, 1998.

[BEN99] Benini, L.; Bogliolo, A.; Paleologo, G. A.; De Micheli, G. “Policy optimization for dynamic
power management” IEEE Transactions On Computer-Aided Design of Integrated Circuits
and Systems, vol.18, no.6, pp. 813-833, 1999.

[BUR02] Burd, T.; Brodersen, R. “Energy Efficient Microprocessor Design”. Kluwer Academic
Publishers, Boston, MA, 2002, 357p.

[CAR09] Carara, E.A.; de Oliveira, R.P.; Calazans, N.L.V.; Moraes, F.G. "HeMPS - a framework for
NoC-based MPSoC generation". In: International Symposium on Circuits and Systems
(ISCAS), 2009, pp. 1345-1348.

[CHA09] Chabloz, J.-M.; Hemani, A. "A flexible communication scheme for rationally-related clock
frequencies". In: International Conference on Computer Design (ICCD), 2009, pp. 109-
116.

[CHA11] Chakraborty, K.; Roy, S. "Topologically Homogeneous Power-Performance
Heterogeneous Multicore Systems". In: Design, Automation & Test in Europe (DATE),
2011, pp. 125-130.

[CHE00] Chelcea, T.; Nowick, S. “A low latency FIFO for mixed-clock systems”. In: Proceedings of
IEEE Computer Society Workshop on VLSI, 2000, pp. 119-126.

[FIL09] Filho, S. J. “Estimativa de Desempenho de Software e Consumo de Energia em MPSoCs”,
MSc Dissertation, FACIN, PUCRS, Brasil, March 2009, 81p.

[FLA02] Flautner, K.; Mudge, T. N. "Vertigo: Automatic performance-setting for Linux". In: USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2002, pp. 105-
116.

[FOX11] http://www.caam.rice.edu/~caam520/Topics/ParallelAlgorithms/LinearAlgebra/fox.html.
Captured in: August, 2011.

[GAR09] Garg, S.; Marculescu, D.; Marculescu, R.; Ogras, U. “Technology-driven limits on DVFS
controllability of multiple voltage-frequency island designs: A system-level perspective”.
In: 46th ACM/IEEE Design Automation Conference (DAC), 2009, pp. 818-821.

79

[GAR10] Garg, S.; Marculescu, D.; Marculescu, R. "Custom Feedback control: Enabling truly
scalable on-chip power management for MPSoCs." In: ACM/IEEE International
Symposium on Low-Power Electronics and Design (ISLPED), 2010, pp. 425-430.

[GLI09] Gligor, M.; Fournel, N.; Petrot, F. "Adaptive Dynamic Voltage and Frequency Scaling
Algorithm for Symmetric Multiprocessor Architecture". In: 12th Euromicro Conference
on Digital System Design, Architectures, Methods and Tools (DSD), 2009, pp. 613-616.

[GOO10] Goossens, K.; She, D.; Milutinovic, A.; Molnos, A. "Composable Dynamic Voltage and
Frequency Scaling and Power Management for Dataflow Applications". In: 13th
Euromicro Conference on Digital System Design, Architectures, Methods and Tools (DSD),
2010, pp. 107-114.

[GUI08] Guindani, G.; Reinbrecht, C.; da Rosa, T.; Calazans, N.; Moraes, F. “NoC Power Estimation
at the RTL Abstraction Level.” In: IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2008, pp. 475-478.

[HEB09] Herbert, S.; Marculescu, D. "Variation-aware dynamic voltage/frequency scaling". In: IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2009, pp.
301-312.

[KAO11] Kao, Y.; Yang, M.; Artan, N. S.; Chao, H. J. “CNoC: High-Radix Clos Network-on-Chip”. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no.12, pp. 1897-1910, Dec. 2011.

[LEE07] Lee, H. G.;Chang, N.;Ogras, U. Y.;Marculescu, R. “On-chip communication architecture
exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip
approaches”. ACM Transactions on Design Automation of Electronic Systems, vol.12,
no.3, pp. 1–20, Aug. 2007.

[LIU09] Liu, S.; Qiu, M. "A Discrete Dynamic Voltage and Frequency Scaling Algorithm Based on
Task Graph Unrolling for Multiprocessor System". In: International Conference on
Scalable Computing and Communications - International Conference on Embedded
Computing (SCALCOM-EMBEDDEDCOM), 2009, pp. 3-8.

[LOR98] Lorch, J.; Smith, A. “Software strategies for portable computer energy management”.
IEEE Personal Communications, vol.5, no.3, pp. 60–73, Jun. 1998.

[MEI05] Meijer, M.; de Gyvez, J.P.; Otten, R."On-chip digital power supply control for system-on-
chip applications," In: Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED), 2005. pp. 311- 314.

[MIS09] Mishra, A.K.; Das, R.; Eachempati, S.; Iyer, R.; Vijaykrishnan, N.; Das, C.R. "A Case for
Dynamic Frequency Tuning in on-chip Networks". In: 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-42), 2009, pp. 292-303.

[MOR04] Moraes, F.; Calazans, N.; Mello, A.; Mello, A.; Moller, L.; Ost, L. “HERMES: an
Infrastructure for Low Area Overhead Packet-switching Networks on Chip”. Integration
the VLSI Journal, vol.38, no.1, pp. 69-93, March 2004.

[OGR08] Ogras, U.Y.; Marculescu, R.; Marculescu, D. "Variation-adaptive feedback control for
networks-on-chip with multiple clock domains". In: 45th ACM/IEEE Design Automation
Conference (DAC), 2008, pp. 614-619.

80

[OGR09] Ogras, U.Y.; Marculescu, R.; Marculescu, D.; Jung, E. G. "Design and Management of
Voltage-Frequency Island Partitioned Networks-on-Chip". IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol.17, no.3, pp. 330-341, March 2009.

[PAN07] Panades, I.; Greiner, A. "Bi-Synchronous FIFO for Synchronous Circuit Communication
Well Suited for Network-on-Chip in GALS Architectures". In: International Symposium on
Networks-on-Chip (NoCs), 2007, pp. 83-94.

[PON08] Pontes, J.; Moreira, M.; Soares, R.; Calazans, N. “Hermes-GLP: A GALS Network on Chip
Router with Power Control Techniques”. In: IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2008, pp. 347-352.

[POU09] Pourshaghaghi, H.R.; de Gyvez, J.P. "Dynamic voltage scaling based on supply current
tracking using fuzzy Logic controller". In: International Conference on Electronics,
Circuits, and Systems (ICECS), 2009, pp. 779-782.

[PUS08] Puschini, D.; Clermidy, F.; Benoit, P.; Sassatelli, G.; Torres, L. "Temperature-Aware
Distributed Run-Time Optimization on MP-SoC Using Game Theory". In: IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2008, pp. 375-380.

[PUS09] Puschini, D.; Clermidy, F.; Benoit, P.; Sassatelli, G.; Torres, L. "Adaptive energy-aware
latency-constrained DVFS policy for MPSoC". In: IEEE SOC Conference (SOCC), 2009, pp.
89-92.

[RAB03] Rabaey, J. M.; Chandrakasan A.; Nikolic, B. “Digital Integrated Circuits a Design
Perspective”. Upper Saddle River: Pearson Education, 2003, 761p.

[RHO09] Rhoads, S. “PLASMA Processor”. Downloaded from:

 http://www.opencores.org/?do=project&who=mips, 2009.

[SAL10] Salehi, M. E.; Samadi, M.; Najibi, M.; Afzali-Kusha, A.; Pedram, M.; Fakhraie, S. M.
"Dynamic Voltage and Frequency Scheduling for Embedded Processors Considering
Power/Performance Tradeoffs". IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol.19, no.10, pp. 1931-1935, Oct. 2011.

[SHA08] Shafik, R. A.; Rosinger, P.; Al-Hashimi, B. M. “MPEG-based Performance Comparison
between Network-on-Chip and AMBA MPSoC”. In: Design and Diagnostics of Electronic
Circuits and Systems (DDECS), 2008, pp. 1-6.

[SHA09] Shalan, M.; El-Sissy, D. "Online power management using DVFS for RTOS". In: 4th
International Design and Test Workshop (IDT), 2009, pp. 1-6.

[SHU10] Shu, L.; Li, X. "Temperature-aware energy minimization technique through dynamic
voltage frequency scaling for embedded systems". In: International Conference on
Education Technology and Computer (ICETC), 2010, pp. V2-515-V2-519.

[SPA01] Sparsø, J.; Furber, S. “Principles of Asynchronous Circuit Design – A Systems Perspective”.
Kluwer Academic Publishers, 2001, 337p.

[TSC07] Tschanz, J. et. al. "Adaptative Frequency and Biasing Techniques for Tolerance to
Dynamic Temperature-Voltage Variations and Aging". In: International Solid-State
Circuits Conference (ISSCC), 2007, pp. 292-293.

[WOS07] Woszezenki, R. C. “Alocação De Tarefas E Comunicação Entre Tarefas Em MPSoCS”. MSc
Dissertation, FACIN, PUCRS, Brasil, March 2007, 121p.

81

[VAN02] van der Tol, E. B.; T. Jaspers, E. G. "Mapping of MPEG-4 Decoding on a Flexible
Architecture Platform". Proceedings of SPIE, vol.4674, pp. 1-13, Jan. 2002.

[YIN09] Yin, A. W.; Guang, L.; Nigussie, E.; Liljeberg, P.; Isoaho, J.; Tenhunen, H. "Architectural
Exploration of Per-Core DVFS for Energy-Constrained On-Chip Networks". In: Euromicro
Conference on Digital System Design: Architectures, Methods & Tools (DSD), 2009, pp.
141-146.

82

APPENDIX A – CALIBRATION DATA FOR ROUTER MODULES

The values were obtained using a 65nm standard cell library from ST Microelectronics. The

Synopsys Design Compiler tool was used for logic synthesis, Modelsim, from Mentor, was used for

functional simulation, and Synopsys PrimeTime, used for power evaluation. The values represent

angular and linear coefficients of the equation obtained by the linear regression technique [GUI08].

A.1 BUFFER

Table 24 – Angular Coefficients for buffer power equation.

Angular
Coefficient (a)

Read Clock (MHz)

6.67 10 25 40 50 60 75 90 100

W
ri

te
 C

lo
ck

 (
M

H
z)

6.67 6.92E-05 6.66E-05 6.33E-05 5.19E-05 4.92E-05 4.62E-05 4.57E-05 4.44E-05 4.42E-05

10 0 6.92E-05 2.50E-04 2.58E-04 2.60E-04 2.55E-04 2.59E-04 2.62E-04 2.49E-04

25 0 0 6.97E-05 4.85E-04 5.36E-04 5.50E-04 5.61E-04 5.73E-04 5.83E-04

40 0 0 0 6.90E-05 6.70E-04 6.57E-04 6.27E-04 6.22E-04 6.33E-04

50 0 0 0 0 6.94E-05 8.01E-04 8.36E-04 8.02E-04 7.37E-04

60 0 0 0 0 0 6.93E-05 8.73E-04 7.90E-04 7.66E-04

75 0 0 0 0 0 0 6.93E-05 8.29E-04 8.30E-04

90 0 0 0 0 0 0 0 6.98E-05 8.12E-04

100 0 0 0 0 0 0 0 0 6.90E-05

Table 25 – Linear Coefficients for buffer power equation.

Linear
Coefficient (b)

Read Clock (MHz)

6.67 10 25 40 50 60 75 90 100

W
ri

te
 C

lo
ck

 (
M

H
z)

6.67 6.32E-02 6.99E-02 8.65E-02 9.11E-02 9.16E-02 9.37E-02 9.27E-02 9.31E-02 9.41E-02

10 1.08E-04 1.18E-01 8.00E-02 8.62E-02 8.92E-02 9.33E-02 9.32E-02 9.62E-02 9.57E-02

25 1.10E-04 1.82E-04 2.35E-01 7.51E-02 7.15E-02 7.53E-02 7.47E-02 7.60E-02 7.87E-02

40 1.08E-04 1.81E-04 2.94E-04 3.53E-01 7.35E-02 8.06E-02 8.50E-02 8.59E-02 8.68E-02

50 1.09E-04 1.82E-04 2.94E-04 3.05E-04 4.71E-01 8.76E-02 8.27E-02 8.78E-02 9.53E-02

60 1.17E-04 1.95E-04 3.05E-04 3.18E-04 3.30E-04 5.89E-01 1.06E-01 1.16E-01 1.21E-01

75 1.13E-04 1.84E-04 2.97E-04 3.09E-04 3.16E-04 3.19E-04 7.07E-01 1.44E-01 1.46E-01

90 1.13E-04 1.85E-04 2.97E-04 3.08E-04 3.17E-04 3.29E-04 3.14E-04 8.24E-01 1.59E-01

100 1.08E-04 1.80E-04 2.93E-04 3.04E-04 3.14E-04 3.29E-04 3.14E-04 3.15E-04 9.43E-01

83

A.2 SWITCH CONTROL

Table 26 – Angular Coefficients for switch control power equation.

Angular

Coefficient (a)

Read Clock (MHz)

6.67 10 25 40 50 60 75 90 100

W
ri

te
 C

lo
ck

 (
M

H
z)

6.67 9.7E-06 2.8E-06 6.4E-06 5.4E-06 7.8E-06 8.4E-06 8.2E-06 7.9E-06 7.8E-06

10 0 9.8E-06 9.9E-06 2.5E-05 3.2E-05 3.3E-05 3.7E-05 4.5E-05 3.7E-05

25 0 0 9.9E-06 2.9E-05 4.5E-05 5.9E-05 6.5E-05 7.3E-05 7.7E-05

40 0 0 0 9.9E-06 5.0E-05 5.4E-05 6.1E-05 6.0E-05 6.7E-05

50 0 0 0 0 1.0E-05 6.6E-05 6.6E-05 6.7E-05 7.1E-05

60 0 0 0 0 0 9.8E-06 7.2E-05 7.1E-05 7.0E-05

75 0 0 0 0 0 0 1.0E-05 7.8E-05 7.5E-05

90 0 0 0 0 0 0 0 1.0E-05 7.2E-05

100 0 0 0 0 0 0 0 0 1.0E-05

Table 27 – Linear Coefficients for switch control power equation.

Linear

Coefficient (b)

Read Clock (MHz)

6.67 10 25 40 50 60 75 90 100

W
ri

te
 C

lo
ck

 (
M

H
z)

6.67 9.35E-03 2.51E-02 4.32E-02 4.71E-02 4.76E-02 4.99E-02 4.89E-02 4.96E-02 5.08E-02

10 5.32E-05 1.74E-02 4.28E-02 4.51E-02 4.63E-02 4.84E-02 4.82E-02 4.93E-02 4.93E-02

25 5.55E-05 6.45E-05 3.47E-02 4.52E-02 4.44E-02 4.53E-02 4.47E-02 4.49E-02 4.63E-02

40 5.37E-05 6.25E-05 7.74E-05 5.20E-02 4.48E-02 4.66E-02 4.63E-02 4.71E-02 4.72E-02

50 5.54E-05 6.43E-05 7.75E-05 7.36E-05 6.94E-02 4.69E-02 4.72E-02 4.75E-02 4.78E-02

60 6.41E-05 8.04E-05 8.84E-05 8.80E-05 8.76E-05 8.68E-02 4.86E-02 4.94E-02 5.09E-02

75 5.98E-05 6.67E-05 7.98E-05 7.72E-05 7.32E-05 6.94E-05 1.04E-01 5.13E-02 5.33E-02

90 5.97E-05 6.79E-05 8.01E-05 7.72E-05 7.37E-05 8.45E-05 6.38E-05 1.21E-01 5.37E-02

100 5.32E-05 6.20E-05 7.63E-05 7.24E-05 7.10E-05 8.42E-05 6.37E-05 6.36E-05 1.39E-01

84

A.3 CROSSBAR

Table 28 – Angular Coefficients for crossbar power equation.

Angular

Coefficient (a)

Read Clock (MHz)

6.67 10 25 40 50 60 75 90 100

W
ri

te
 C

lo
ck

 (
M

H
z)

6.67 2.85E-07 1.30E-06 1.96E-06 1.32E-06 1.04E-06 8.27E-07 7.32E-07 6.91E-07 6.17E-07

10 0 2.69E-07 2.25E-06 1.98E-06 1.97E-06 1.72E-06 1.58E-06 1.56E-06 1.36E-06

25 0 0 3.05E-07 1.86E-06 2.38E-06 2.34E-06 2.11E-06 2.05E-06 2.01E-06

40 0 0 0 3.22E-07 1.72E-06 1.82E-06 1.97E-06 1.63E-06 1.60E-06

50 0 0 0 0 3.37E-07 1.71E-06 1.72E-06 1.89E-06 2.32E-06

60 0 0 0 0 0 3.01E-07 1.51E-06 1.63E-06 1.64E-06

75 0 0 0 0 0 0 2.92E-07 1.49E-06 1.53E-06

90 0 0 0 0 0 0 0 3.12E-07 1.28E-06

100 0 0 0 0 0 0 0 0 3.11E-07

Table 29 – Linear Coefficients for crossbar power equation.

Linear

Coefficient (b)

Read Clock (MHz)

6.67 10 25 40 50 60 75 90 100

W
ri

te
 C

lo
ck

 (
M

H
z)

6.67 1.70E-05 5.20E-04 9.06E-04 8.35E-04 7.24E-04 6.99E-04 6.14E-04 5.92E-04 5.71E-04

10 7.60E-07 1.26E-05 7.09E-04 6.59E-04 5.66E-04 5.57E-04 5.31E-04 5.11E-04 4.92E-04

25 7.85E-07 9.92E-07 2.33E-05 5.27E-04 4.38E-04 4.11E-04 4.32E-04 4.22E-04 4.19E-04

40 7.64E-07 9.54E-07 1.19E-06 2.36E-05 3.97E-04 3.74E-04 3.35E-04 3.45E-04 3.57E-04

50 7.49E-07 8.28E-06 1.19E-06 9.24E-06 2.33E-05 3.77E-04 3.62E-04 3.73E-04 3.58E-04

60 8.45E-07 1.21E-06 1.40E-06 1.22E-06 1.73E-06 2.36E-05 3.63E-04 3.22E-04 3.32E-04

75 7.79E-07 9.19E-07 1.02E-05 1.01E-06 1.32E-06 9.47E-07 2.36E-05 3.51E-04 3.55E-04

90 7.64E-07 1.04E-06 1.24E-06 1.01E-06 1.33E-06 1.08E-06 8.85E-07 2.39E-05 3.56E-04

100 7.60E-07 9.47E-07 1.18E-06 9.39E-07 1.18E-06 1.08E-06 8.85E-07 7.98E-07 2.42E-05

85

A.4 DFS CONTROLLER

Since the DFS controller has only one variable parameter. which is the output clock. a

simpler table was generated to relate output frequency and power dissipation.

Table 30 – Router DFS Controller power dissipation for different output clocks.

 Output Clock (MHz)

 6.67 10 25 40 50 60 75 90 100

Power Dissipation

(mW)
0.111 0.125 0.160 0.185 0.230 0.245 0.282 0.304 0.331

	Pontifícia Universidade Católica do Rio Grande do Sul
	Faculdade de Informática
	Programa de Pós-Graduação em Ciência da Computação
	1 Introduction
	1.1 Dynamic Power Management
	1.2 DFS and DVFS
	1.3 Goals
	1.4 Document Outline

	2 Related Work
	2.1 DVFS in Microprocessors
	2.2 DVFS in NoCs
	2.3 DVFS in NoC-Based MPSoCs
	2.4 DVFS in Bus-Based MPSoCs
	2.5 Conclusion

	3 System Architecture
	3.1 Original HeMPS Architecture
	3.1.1 Hermes NoC
	3.1.2 Plasma-IP

	3.2 HeMPS Architecture with Support for DFS

	4 DFS at THE Processor Level
	4.1 Clock Generation
	4.2 Processing Element DFS Controlling Scheme
	4.3 Multitask Support

	5 DFS at the NoC Level
	5.1 Architectural Exploration
	5.2 Router DFS Controlling Scheme
	5.3 Calibration

	6 Experimental Results
	6.1 Experimental Setup
	6.1.1 Processing Element Evaluation
	6.1.2 NoC Evaluation

	6.2 Mono-Task Execution
	6.2.1 Communication
	6.2.2 Pipeline with 6 Tasks
	6.2.3 MPEG
	6.2.4 JPEG
	6.2.5 FOX 3x3
	6.2.6 VOPD
	6.2.7 Mono Task Final Remarks

	6.3 Multi-Task Execution
	6.3.1 Pipeline with 6 Tasks
	6.3.2 MPEG
	6.3.3 VOPD
	6.3.4 Multi Task Final Remarks

	7 Conclusion and Future Works
	7.1 Future Works

	References
	APPENDIX A – CALIBRATION DATA FOR ROUTER MODULES

