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ABSTRACT 

In a world of insatiable demand for data, in a limited spectrum environment, wireless 

communications are increasingly operating under dynamic conditions, not only regarding 

information traffic parameters but also regarding the time varying conditions on the 

propagation channel that conveys the information between the transmitter (TX) and the 

receiver (RX). In this context, TX and RX need dynamically to adapt its operational parameters 

in order to obtain maximum data transmission efficiency. Smart antennas and beamforming 

techniques have an essential role on this dynamic operational environment. Such antennas are 

arranged on arrays and are based on adaptive systems, making them capable of generating any 

radiation pattern when the array comprises a sufficient number of electromagnetic irradiators. 

This thesis proposes the implementation of a novel beamforming technique, based on a 

complex radial basis function artificial neural network which presents phase transmittance 

between the input nodes and the output node (PT-RBF).  The PT-RBF is capable of adaptively 

adjusting the radiation pattern of a smart antenna through a learning process based on the 

steepest descent algorithm. The proposed beamforming technique presents significantly 

superior results when compared with state-of-the-art algorithms presented in literature, making 

it possible to operate communication links under static scenarios on self-organizing wireless 

networks, and in dynamic scenarios with access in motion, both with multiple interferences, 

thus maximizing the throughput and the spectrum efficiency. 

 

Keywords: Beamforming, RBF, Smart Antenna, Phased-Transmittance Radial Basis Function  
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RESUMO 

Em um mundo de crescente demanda por dados e com um espectro limitado, sistemas 

de comunicações sem fio operam cada vez mais em condições dinâmicas, não apenas em 

relação às informações de tráfego, mas também em relação às condições variáveis no canal de 

propagação que transmite as informações entre transmissor (TX) e o receptor (RX). Neste 

contexto, TX e RX precisam adaptar dinamicamente seus parâmetros operacionais em prol da 

máxima eficiência na transmissão de dados. Antenas inteligentes e técnicas de beamforming 

desempenham um papel fundamental neste ambiente operacional dinâmico. Distribuídas em 

arranjos e com operação alicerçada em sistemas adaptativos, tais antenas podem gerar qualquer 

diagrama de irradiação quando utilizados um número suficiente de irradiadores 

eletromagnéticos. Este trabalho propõe a implementação de uma nova técnica de beamforming 

baseada em uma rede neural artificial de base radial complexa com transmitância de fase (PT-

RBF) entre os nós de entrada e saída da rede. A PT-RBF é capaz de ajustar de forma adaptativa 

o diagrama de irradiação de uma antena inteligente através de aprendizado baseado no 

algoritmo steepest descent. A nova técnica de beamforming proposta apresenta resultados 

significativamente superiores em comparação com o estado da arte, possibilitando links de 

comunicação em cenários estáticos em redes auto organizáveis e em cenários dinâmicos em 

acessos em movimento, ambos com múltiplas interferências, maximizando assim o throughput 

de dados e a eficiência do uso do espectro. 

 

Palavras-chave: Beamforming, RBF, Smart Antennas, Phase Transmittance Radial Basis 

Function 
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1 INTRODUCTION 

Antennas and adaptive processes are as old as the physiological processes of simple life 

forms of our planet. Maybe the first antenna concept was extracted from the animals – some 

don’t have eyes, ears or tongue, but have light sensors that forms images, vibration sensors that 

translates sounds, air or small particles, motion sensors in order to find food, among other 

examples. Not rarely, physiological processes for reception and transmission of information 

observed in nature have been mimicked into cutting-edge technological applications. Certain 

families of ophidians, for example, collect information through electromagnetic sensors in the 

infrared frequency range, called pit organs. These sensors are located at both sides of the head, 

towards the back and  they work as two antennas, combined to the cognitive-neural ophidian 

system, allowing it to set up an adaptive guiding system and establish the route of the moving 

prey through its radiated heat -  a techique that has been adopted in defense systems based on 

thermal target signatures.  

Another equally interesting example is the gastropod orientation system. In order to 

locomote toward an odor source, an animal must first detect the scent concentration gradient 

produced by the source. Then there are two possible ways of moving up the gradient. In the 

first method, the animal senses the direction of the gradient by simultaneously sampling the 

environment at two or more places using an array of olfactory organs (tentacles, or antennas). 

In the second method, the neural-cognitive system of the animal uses temporal integration 

rather than spatial integration, making successive assessments of the chemical concentration 

and comparing the concentration determined at one moment with that determined at a 

subsequent time.  If the neural-cognitive system of the animal senses that the concentration is 

increasing, then it will continue moving in the same direction; otherwise, if the concentrarion 

is decreasing, it will chance its direction (GUTIÉRREZ; MARCO, 2009). 

The first method demands from the gastropods an intelligent distribution of its antennas. 

The signal present in the environment impinges on each antenna array element and the spatial 

distribution, the separation and the size of each element give the gastropods the ability of 

finding the most suitable boresight (main lobe direction of a antenna). Thus, the gastropod 

performs a sensoring method in order to obtain direction of arrival (DOA) estimates of the 

desired signal. 

However, the second method demands from the gastropods an iterative process of 

sampling and comparing the samples which, in turn, accomplish by the animal’s neural 

network. Although the gastropods do not exactly have a brain, its neural-cognitive system is 

incorporated as a nervous system composed by nervous nodes that cluster the neurons 
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responsible for this decision making. At each instant, a sample of the environment is obtaind 

and compared with a sample obtained at a subsequent time. Such comparison generates an error 

which indicates to the gastropod how close the odor source is. Therefore, these animals can 

adapt its behaviour and store information in its neural-cognitive system. 

The gastropods’ orientation system is a great example of adaptive processing for 

determining the DOA through a neural network, artificial or not, based on the information 

coming from the sensor antennas. 

Ahead the current trends on telecommunication area, towards an increasing demand for 

services and data, man try to develop its technology by understanding how nature work. The 

need for a system capable of focusing its radiation pattern adaptively and conveniently at some 

points of interest is quite high once it makes the process of transmitting and receiving more 

efficient and independent from other possible simultaneous links. To make full use of the RF 

spectrum resource and improve system performance and channel capacity, intelligent antenna 

technology has been widely introduced to mobile communication. Radar, sonar, seismology, 

radio astronomy, speech, and biomedicine, besides wireless communications are some 

examples of its applications. Systems like 5g and internet of things (IoT) are being developed 

including principles of intelligent antennas. 

Two classic problems solved by intelligent antennas techniques are the DOA estimation 

and the beamforming. The goal of DOA is to estimate the directions of the signals from the 

desired users as well as the directions of interference signals. The results of DOA estimation 

are used to adjust the weights of an adaptive beamformer so that the radiated power is 

maximized towards the desired users, and radiation nulls are placed in the directions of 

interference signals. Hence, adaptive antenna array technology enables the antenna 

characteristics to be dynamically altered aiming to improve the system performance, steering 

the energy to an interest direction and minimizing the interference caused by other users under 

static or dynamic scenarios. 

Beamforming is a well-known interference-suppression technique as military systems 

have been using such concepts for a while. Beamforming techniques result an efficient use of 

spectrum resources allowing multiple simultaneous transmissions using the same frequency 

without mutual interference, enabling an abundant spectrum reuse even when high intensity 

signals are needed at the receivers of network users located in a bad propagation environment. 

By suppressing radiation in directions into which there is no user receivers, and boosting 

radiation in specific directions of interest, beamforming techniques not only increases the 

coverage range area but also reduce the necessary transmitter power consumption. It also 
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allows to establish multipath links, in which the signals of each respective path are spatially 

combined in order to maximize the signal-interference ratio (HAGHIGHI; HOSSEIN, 2016). 

Finally, once the beamforming suppresses interference and noise, it also increases the 

throughput at the network nodes (which is limited by interference from neighboring nodes), 

particularly for higher order modulations. 

As adaptive beamforming is basically an adaptation problem, Artificial Neural 

Networks (ANN) are an method to perform this procedure since they are based on non-linear 

adaptive filter theory and, just as the biological neural-cognitive system, have the capacity to 

assume and store knowledge from data analysis obtained in its operational environment, 

learning through the information from a desired approximation. Also, ANNs can handle non-

linear behavior of physical quantities, being able to grasp the underlying random process of the 

data environment, presenting an extreme flexible and powerful performance over dynamic 

scenarios, learning fast from complex patterns and adapting itself equally quick.  

Many algorithms have been proposed to solve the adaptive problem of beamforming. 

In (GODARA, 2009), a comprehensive overview of  beamforming schemes and several 

adaptive algorithms are presented. A complete overview of neural methods applied to the 

adaptive beamforming problem is given by  (DU et al., 2002). Beamforming can be 

implemented by the Sample Matrix Inversion algorithm  (VAN TREES, 2002) method. 

However, in practical case, when dealing with a large array, matrix inversion is 

computationally expensive and mostly not implementable. (YUANJIAN; XIAOHUI, 2016) 

showed that the variable weights of a beamforming can be adjusted by a simple adaptive 

technique based on the least-mean-squares (LMS) algorithm. It showed a fast convergence rate 

and good tracking accuracy but the LMS algorithm uses a noisy estimate of the required 

gradient to adaptively estimate the weights of an optimal antenna array. Although the LMS 

approach performs well at linear scenarios, the estimation of weights is not accurate for non-

linear scenarios. In (ZOOGHBY; CHRISTODOULOU; GEORGIOPOULOS, 1998), a Radial 

Basis Function (RBF) network is used in the computation of the optimum weights of a fast-

tracking system, used to constantly track the users. The radiation pattern of the antenna is then 

adapted to place multiple narrow beams in the direction of desired users and nulls into the 

direction of interfering sources. In all these neural network methods, real valued networks are 

used. However, as will be shown in section 2.3, the beamformer must deal with complex-

valued signals in order to be able to handle the phase information of an electromagnetic wave. 

In (HAYKIN, 2013), a Complex-valued Radial Basis Function (C-RBF) Network is used for 

non-linear beamforming in multiple antenna aided communication systems that employ 
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complex-valued quadrature phase shift keying modulation scheme. However, in the complex-

valued RBF methods, the activation function is mapped on a real domain. As a result, despite 

the weights and centers being complex-valued, the response of each hidden neuron remains 

real-valued, and, thus, the hidden neurons do not effectively transmit the phase of the complex-

valued signal from the input nodes to the output nodes.  In (SAVITHA; SURESH; 

SUNDARARAJAN, 2009) a Fully Complex-valued Radial Basis Function (FC-RBF) network, 

using a hyperbolic secant activation function has been proposed. The FC-RBF has been applied 

on adaptive beamforming over a Uniform Linear Array (ULA) of 5 elements, presenting good 

results and a fast convergence rate for many scenarios, however, it fails on highly noisy 

scenarios. 

In this context, this dissertation proposes a novel beamforming approach based on a 

Phase-Transmittance Radial Basis Function (PT-RBF) ANN. Different from most solutions 

available in literature, the PT-RBF ANN is able to handle data represented by complex numbers 

with no phase information loss on the neuron’s transmittances. The PT-RBF is considered a 

curve fitting network for complex-values (LOSS et al., 2007). The proposed PT-RBF ANN 

beamforming is a non-blind algorithm that determines the channel response by a training 

sequence or pilot signal and adjusts the weights of the adaptive process according to certain 

criteria. Thus, the PT-RBF ANN process the desired and the measured values of the impinging 

signal and performs the adaptive control of the radiation pattern and demodulation process.  

Hence, the proposed solution adaptively controls the spatial distribution of the irradiated energy 

from the antenna array, or the spatial distribution of the received electrical field when the array 

is used as a receiving antenna, maximizing the electrical field magnitude at certain directions 

of interest and minimizing or even nulling the electrical field at other certain directions where 

there is no interest on receiving energy.  

The main advantage of the proposed beamformer based on the PT-RBF ANN over other 

solutions found in literature based on ANNs, is its characteristic of minimizing the phase 

invariance issue. Since it does not strictly rely on the Euclidean distance between the input 

vector and the center vectors, it enables the transference of module and phase information from 

input to output. This is an important feature of the PT-RBF ANN, since all wireless mobile 

operation relies on carrier phase recovery, adaptive beamforming and further adaptive 

equalization of the complex valued modulation IQ symbols (LOSS et al., 2007) . 

The proposed beamformer has been evaluated with an antenna array of six half-

wavelength (𝜆 2⁄ ) dipoles distributed along a circle at the plane xy. The Uniform Circular Array 

(UCA) distribution provides a good control of the boresight lobe according to the spherical 
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coordinate 𝜙 , making possible to aim the radiation pattern boresight of the array to any 

direction of the azimuth 𝜙. 

The proposed beamformer has been developed in Matlab (MATHWORKS, 2016) and 

the results are compared to the state of the art beamforming algorithms. The performance has 

been evaluated over different static and dynamic scenarios. The metrics used to evaluate the 

proposed approach are: (1) the interference suppression capability measured by the signal to 

interference ratio (SIR), (2) the SER (Symbol Error Rate) resultant from the demodulation 

process and (3) the MSEA (Mean Square Error Average) of the ANN. Simulations show that 

the proposed approach presents significantly superior results in terms of energy radiation 

steering and suppression and demodulation accuracy over low SIR (Signal to Interference 

Ratio) scenarios. 

The rest of this dissertation is organized as follows. Section 0 brings forward concepts 

and analytical definitions used to implement the beamforming algorithm proposed in this 

thesis. The theoretical framework starts with Section 2.1, where the concept of antenna is 

developed and explored, so we can convert variations in propagating electromagnetic waves to 

and from conducted electrical signals. Section 2.2 allows us to travel both ways from the analog 

world of electrical signals to the digital world of bits. Section 2.3 is responsible for the main 

concept of this thesis, which is to focus all the energy transmitted and received on a link 

communication in order to maximize its performance and Section 2.4 transforms all the 

previous concepts into an intelligent system. Finally, Section 3 is where the author of this thesis 

presents the proposal for the new beamforming algorithm and Section 4 is where the results 

are shown and explained. Section 5 is then the closure, and some final remarks and an overview 

is presented. This Section is also directed to those who would like to continue this study and 

go even further than the author. 
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2 THEORETICAL FRAMEWORK 

The purpose of Section 0 is to provide a description of the concepts needed in this thesis, 

providing an overview of the main contributions in the area as well. Sections 2.1, 2.2, and 2.3 

consist of a brief of the major elements necessary to build this work, making it possible to 

follow the development of the proposed technology. As this work aims on the algorithm 

implementation, Section 2.4 develops the math behind the ANNs responsible for solving the 

beamforming problem. It should also be mentioned that parts of the theoretical framework 

presented in this section are based on the available literature, that include submitted journal 

manuscripts, books, technical reports, and conference papers, which are properly identified in 

the REFERENCES section. The material presented in Section  0 establish the basis in order to 

provide a better understanding of the state of the art, so the contributions of this thesis can be 

better interpreted in Sections 3, 4 and 5. 

 

2.1 ANTENNAS 

Basically, an antenna can be viewed as a matching network that takes the power from 

a transmission line with specific characteristic impedance and matches it to the free space 

impedance (377𝛺).  As previously mentioned, work on antennas started many years ago based 

on natural behavior of animals and based on the interest of demonstrating the existence of 

electromagnetic radiation. In 1889, a German called Heinrich Rudolf Hertz (1857 - 1894) built 

a system to produce and detect radio waves. Between 1893 and 1894, the Brazilian Roberto 

Landell de Moura, in São Paulo, transmitted human voice over 8km using electromagnetic 

waves. However, it is traditionally assigned to the Italian Guglielmo Marconi the invention of 

radio, which, in 1894, managed to ring a bell at the other side of a room by pressing a telegraph 

button. 

The IEEE Standard Definitions of Terms for Antennas (IEEE, 2013) defines the 

antenna as “a means for radiating or receiving radio waves.” In other words, an antenna is 

actually a transformer that transforms electrical signals, i.e. voltage and currents from a 

transmission line, into electromagnetic waves, i.e. electric and magnetic fields, or vice versa. 

A satellite dish antenna, for example, receives the radio wave from a satellite and transforms it 

into electrical signals, which are further processed. Our eyes may be viewed as another example 

of antennas. In this case, the wave is not a radio wave but an optical wave, another form of 

electromagnetic wave, which has much higher frequencies. 
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In this work, a receiving antenna array is employed in the beamforming system 

proposed. However, whatever is said about reception is also true for transmission. The subject 

of antennas is about how to design a suitable device which will be well matched with its feed 

line and radiate/receive the radio waves in an efficient and desired manner. The next sections 

will cover some design steps in order to achieve the desired array later used along with the 

ANN to perform the beamforming algorithm. First, the geometry of the dipole is defined, and 

the radiation intensity is calculated. Then a simple circuit model of the dipole is introduced, 

the coupling between elements are discussed and some parameters of this model are calculated. 

Finally, the dipole is used as a receiving antenna and expressions for the induced voltage from 

an incident electromagnetic (EM) wave are obtained. 

 

2.1.1The Dipole Element 

The dipole antenna is one of the most important, cheap, simple and commonly used 

types of RF antenna. It is widely used on its own, but it is also incorporated into many other 

RF antenna designs where it forms the radiating or driven element for the overall antenna. Its 

shape is of a form of a cylinder, built in electrically conductive material in a way that a time 

variant electric current spatial spread along the cylinder is associated to an EM field in the 

space that encircles the dipole. If an external voltage generator forces a current in the dipole so 

that the surrounding EM field is consequence of this current, then it is said that the dipole is a 

transmitter. If there is an EM field at the dipole’s neighborhood so that a current is induced in 

the dipole because of the EM field around it, then it is said that the dipole is a receiver. 

An EM wave field defined in any region of space ℝ3 where the electrical field 𝐸 and 

magnetic field 𝐻 both vary with time and space, thus establishing a region into with electrical 

field 𝐸 waves and magnetic field 𝐸 waves are able to propagate. Any wavefront in an EM wave 

field carries a true power that is proportional to the product 𝐸 × 𝐻∗  in the wavefront 

coordinates. This true power causes the EM wave to be radiated by the transmitter antenna, 

conveying information between the transmitter antenna and the receiver antenna. Figure 1 

shows a transmitting dipole antenna and the EM vectors associated. Most practical dipoles have 

a physical size of half wavelength (𝜆 2⁄ ) , in order to optimize the compromise between 

radiation efficiency and dipole size. 

The time variant electrical current spatially spread along the dipole’s conductive 

cylinder is associated to the EM field in the space that encircles the dipole through Maxwell’s 

equations, shown at Table 1. 
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Table 1 – Maxwell’s equations 

Source: (AUTHOR, 2018) 

 

where 𝜀 is the electrical permittivity of the medium [𝐹 𝑚⁄ ], 𝜇 is the magnetic permeability of 

the medium [𝐻 𝑚⁄ ], 𝜌 stands for electric charge density [𝐶 𝑚3⁄ ], σ is the conductivity of the 

medium [℧], and 𝐽 and  𝐽𝐷  are the conduction current density and the displacement current 

density respectively. 

By interpreting equations of Table 1, it is possible to see that the EM radiation process 

involves a periodic chain reaction where originally a time variant conduction current 𝐽 

generates a time variant magnetic field 𝐻 on its proximity, which generates a time variant 

electric field 𝐸 on its proximity, which in turn generates a time variant magnetic field 𝐻 on its 

proximity and so on so forth in a way that, step by step, an EM wave keeps propagating in the 

space that encircles the time variant current  𝐽 which originated the chain reaction. 

From these equations that Maxwell wisely interpreted and organized, it is possible to 

infer more precisely the radiation process of an EM wave. By energizing a radiating conductor, 

as the one in Figure 1, with an excitation voltage 𝑉(𝑡), a current 𝐼(𝑡) manifests as consequence 

and flows through the conductor with a conduction current density 𝐽. If the applied excitation 

voltage is a steady state sinusoid in the time domain,  𝐽, 𝐽𝐷 , 𝐸 and 𝐻 will also exhibit a steady 

state sinusoidal time variation. Also, if the conductor diameter 𝑑 is much smaller than its length  

ℓ,  𝐽 will exhibit a sinusoidal variation along the conductor length. In this work we assume 

steady state sinusoidal excitation. In this context, the EM radiation process can be summarized 

as follows:  

I. The flow of the sinusoidal current inside the conductor imposes an acceleration to its free 

electrical charges, in a way that a non-zero electric charge density 𝜌 varies along the 

conductor. 
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II.The sum of all electrical charges inside the radiator volume 𝑉 generate an electrical field 

𝐸𝜌  in each point of the imaginary surface 𝑆 which wraps the radiator external surface 

(Eq.(2.1)). 

III.Simultaneously, a magnetic field 𝐻𝐽   is generated as consequence of the conduction 

current density 𝐽 , in other words, as a consequence of the sum of all 

conduction/displacement current lines that pass through 𝑆 (Eq.(2.3)). 

IV.If 𝐽 varies over the time, necessarily a magnetic field 𝐻𝐽 generated by 𝐽 also varies over 

time.  The sum of the temporal variation of the lines of 𝐻𝐽 that pass through 𝑆 induces a 

perturbation that gives origin to an electric field 𝐸𝐻, also variant over time (Eq.(2.2)). 

V. This new 𝐸𝐻 sums with 𝐸𝜌 giving rise to an electrical field 𝐸 which, in turn, gives rise to 

a displacement current density 𝐽𝐷. 

VI.Once again, just as in III, a magnetic field 𝐻𝐷 is generated as consequence of 𝐽𝐷 Eq.(2.3). 

VII.Finally, just as in IV, an electric field 𝐸𝐻  is generated as a consequence of the time 

variation of 𝐻𝐷. 

From Eq.(2.2), it is possible to see that the partial time derivative of 𝐻 gives origin to a 

spatial variation for each Cartesian component of 𝐸 as a result of the vector product between 

𝐸 and the Nabla ∇ operator.  The vector product between 𝐸 and the Nabla ∇ operator in Eq. 

(2.2) also establishes that the fields 𝐸 e 𝐻 will always be perpendicular in all points of the space 

ℝ3. Similarly, from Eq.(2.3), the partial time derivative of 𝐸 gives origin to a spatial variation 

for each Cartesian component of 𝐻 as a result of the vector product between 𝐻 and the Nabla 

∇  operator.  The vector product between 𝐸  and the Nabla ∇  operator in Eq. (2.3) also 

establishes that the fields 𝐻 e 𝐸 will always be perpendicular in all points of the space ℝ3.  

This chain of processes in which a time varying magnetic field 𝐻 generates a time 

varying spatial variation of electric field 𝐸 , followed by the time varying electric field 𝐸 

generating a time varying spatial variation of magnetic field 𝐻, followed by the time varying 

magnetic field 𝐻 generating a time varying spatial variation of electric field 𝐸, and so on ad 

infinitum, is the overall radiation process of an electromagnetic wave (SADIKU, 2018). 

Thus, the analysis of a transmitter antenna basically consists of determining the values 

of 𝐸  and 𝐻  that encircles the antenna as a consequence of the time variant current spatial 

distribution that flows through the antenna conductive structure. Similarly, the analysis of a 

receiver antenna basically consists in determining the time variant current spatial distribution 



27 

that flows in the antenna conductive structure as a consequence of the 𝐸 and 𝐻 fields at the 

antenna neighborhood. 

 

Figure 1 – For the analysis of the dipole and the irradiated fields, the spherical coordinate system is more 

convenient, where (𝑟, 𝜃, 𝜙) are the orthogonal unit vectors that defines ℝ3  

 

Source: (DE CASTRO; FRANCO, 2005). 

 

From Maxwell’s equations shown at Table 1, for the specific case of a dipole with a 

length ℓ,  operating under sinusoidal steady state with maximum instantaneous current 𝐼0 

flowing in the dipole cylinder, the relation between 𝐸 and 𝐻 at a point 𝑝(𝑟, 𝜃, 𝜙) in the space 

that encircles the dipole and the spatial distribution of the time variant current are given by Eq. 

(2.4) and (2.5).  These equations are derived by using vector potentials and can be found in 

many antenna textbooks (BALANIS, 2016). 
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where 𝐸𝜃 is the component of 𝐸 along the unit vector of direction 𝜃 of the spherical coordinate 

system and 𝐻𝜙  is the component of 𝐻 along the unit vector of direction 𝜙 of the spherical 

coordinate system. In Eq. (2.4), 𝐼0 [𝐴] is the current phasor representing the phase and the 

maximum instantaneous magnitude of the current that flows through the cylinder of the dipole, 

𝑟[𝑚] is the distance between the dipole and the point 𝑝(𝑟, 𝜃, 𝜙) where  𝐸𝜃 and 𝐻𝜙 are being 

determined, 𝐿 [𝑚] is the dipole length, 𝛽 [𝑟𝑎𝑑 𝑚⁄ ] is the wave propagation constant, 𝜆[𝑚] is 

the wavelength and 𝑍0[Ω] is the free space impedance. Equations  (2.4) and (2.5) are valid for  
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𝑟 > 10𝜆, i.e., point 𝑝(𝑟, 𝜃, 𝜙) must lie in the dipole farfield region (DE CASTRO; FRANCO, 

2005). 

 

2.1.1.1 Radiation Pattern 

One of the most important characteristics of an antenna is the directional properties of 

the radiated energy, i.e. the radiation intensity pattern which is obtained from the radiated field 

of the antenna (SVANTESSON, 1999). In order to calculate the radiated field, the current 

distribution must be known. Given a voltage 𝑉(𝑡) = 𝑉0cos (2𝜋𝑓𝑡) applied to the dipole, where 

𝑉0 is the instantaneous voltage and 𝑓 is the voltage frequency, the resulting current is therefore, 

𝐼(𝑡) = 𝑉0cos (2𝜋𝑓𝑡 + 𝜙) 𝑅⁄  . The current distribution along the axis 𝑧′ of the dipole can be 

approximated by 

 ( )' '

0 sin
2

L
I z zI z

  
= −  

  
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where −𝐿 2⁄ ≤ 𝑧′ ≤ 𝐿 2⁄  , 𝐿 is the dipole length and 𝛽 is the propagation constant.  

The radiation pattern 𝐹(𝜃, 𝜙)  is the value of 𝐸𝜃  from Eq. (2.4) normalized by its 

maximum value obtained in all possible directions (𝜃, 𝜙)  of space ℝ3 . The normalized 

𝐸𝜃(𝜃, 𝜙) 3D surface is the dipole’s radiation diagram 𝐹(𝜃, 𝜙) plot. It is used to analyze the 

spatial magnitude distribution of field 𝐸𝜃. An important spatial parameter of any antenna is the 

boresight direction (𝜃𝑏 , 𝜙𝑏) , which is the direction in the 𝐹(𝜃, 𝜙)  plot that occurs the 

maximum 𝐸𝜃 magnitude.    

Eq. (2.4) is independent of angle 𝜙, i.e., it is valid for  0° < 𝜙 ≤ 360°. Thus, for the 

specific case of a cylindrical dipole in the z axis, the 3D surface 𝐹(𝜃, 𝜙) reduces to the surface 

𝐹(𝜃) defined by the ratio between  𝐸𝜃 and the maximum value 𝐸𝜃 𝑚á𝑥 , with angle 𝜃 varying 

in the range 0° < 𝜃 ≤ 180°: 
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 =   (2.7) 

Since Eq. (2.7) is valid for  0° < 𝜙 ≤ 360°, the magnitude of the radiation pattern 𝐹(𝜃) 

is omni-directional, i.e., it is non-directional in the azimuth plane, although being directional 

in the elevation plane. Figure 2 shows half of the radiation pattern 3D surface for a thin dipole 

of length 𝜆 2⁄ , aligned with the z-axis and with center of the dipole located in the origin of the 

Cartesian coordinate axes.    
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Figure 2 – Radiation pattern of a half wavelength dipole  

 

Source: (SVANTESSON, 1999). 

 

Most dipole antennas are cylindrical, with length 𝜆 2⁄  and with cylinder diameter being 

much smaller than its length. Thus, for an excitation voltage 𝑉(𝑡) = 𝑉0cos (2𝜋𝑓𝑡 + 𝜙)  applied 

at the dipole center, the spatial distribution of the current along the dipole cylinder will be 

sinusoidal with maximum magnitude at the center of the dipole and zero magnitude at the 

dipole ends.  It is important to note that the radiated field depends directly on the current and 

not directly on the applied voltage, so, in order to perform a transmitting beamformer, a control 

over the current on each dipole of the array is necessary. 

 

2.1.2 Dipole Array 

Until now, a single dipole element has been discussed and fundamental properties have 

been introduced. In this section, several dipoles are assembled together in an array of dipoles, 

also known as a phased array. Figure 3 shows the effects of using a different number of 

elements for a linear array of half have dipoles parallel to the 𝑧 axis and distributed along the 

𝑦 axis. Each dipole is spaced from each other by a distance of  𝜆 4⁄  . 
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Figure 3 – Radiation pattern of a linear dipole array with (a) 1 dipole; (b) 2 dipoles; (c) 3 dipoles; (d) 4 dipoles 

  

(a)       (b) 

  

 

 

(c)     (d) 

Source: (AUTHOR, 2018). 

 

Just as a Fourier series, which makes possible to form any wave shape in a period by 

only summing a sufficient number of magnitudes and phases of sines and cosines functions, an 

antenna array can form any radiation pattern by summing the individual electric field of each 

individual element (dipole). The principle of the phased array is to synthesize a specified 

electric field across an aperture. In this work, the individual antennas are spaced by 𝑠 =  𝜆 4⁄ , 

or a quarter wavelength apart. Adding a phase shift to the signal received or transmitted by 

each antenna in an array allows the superimposed signals of all individual antennas to act as 

the signal of a single antenna with performance vastly different from the individual antennas 

in the array.  

By arraying 𝐾 antennas, it is possible to achieve a series of results: 
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I. The signal resulting from a receiving array is the properly combined signals from all 

individual antennas, and so, the resulting signal presents a greater magnitude than any 

individual signal. 

II.Due to the same superposition principle, the radiation pattern of a transmitting array can 

be much narrower than the radiation pattern of any individual antenna of the array. 

III.The direction of the peak sensitivity of a receiving array can be altered without 

mechanically re-positioning the individual antenna elements. For an array with a combiner 

able to deal with the signal magnitude and phase (electronically variable phase shifters), it 

is possible to alter the beam direction according to the combined gains and phase shifts. 

Same is valid for a transmitting array, for which the magnitude and phase of each 

individual current is controlled. 

IV.For a single antenna, if the mechanical positioning system fails, it is not possible to point 

to anything except to the boresight of the antenna. For an antenna array, if one antenna 

element fails, all the rest continue to work, and the collective pattern is modified slightly. 

V. For airborne applications the weight of a phased array is less than that of a comparable 

rapidly-steerable, mechanically gimbaled, single antenna. 

VI.A very large mechanically steered antenna may be replaced with a collection of less 

expensive smaller antennas without losing resolution. 

VII.By using the wide range of control provided by the phase shifters, it is possible to 

synthesize multiple beam responses if desired.  

VIII. Individual antenna performs the same even when surrounded by other antennas when 

considering the mutual coupling between the elements. In this case, the array design must 

consider such influences of mutual coupling. 

In other words, individually, each kth dipole of the array exhibits a specific radiation 

pattern. However, an array with a sufficient number of 𝐾 dipoles, where the kth array dipole, 

𝑘 = 1,… , 𝐾 is located at coordinates (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) and fed by the current phasor  𝐼𝑘, generates 

an interference pattern given by the sum of all 𝐾 fields in each point 𝑝(𝑟, 𝜃, 𝜙) of space ℝ3, 

allowing to set up any desired radiation diagram just by tuning the modules and phases of the 

currents 𝐼𝑘. 

The parameters of a dipole array that affect the generated wave interference pattern are 

the center coordinates (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) of each kth dipole and the magnitude and phase of the current 

𝐼𝑘 that feed the respective kth dipole. In this context, from (2.4), the field 𝐸𝜃 at a point 𝑝(𝑟, 𝜃, 𝜙) 

of the farfield zone become a superposition of individual electric fields 𝐸𝜃 of the individual 

dipoles of the array. Such superposition of individual electric fields 𝐸𝜃, results in equation (2.8). 
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where 𝑥𝑘, 𝑦𝑘 e 𝑧𝑘 are the cartesian coordinates of the kth array element and 𝜃, 𝜙 e 𝑟 are the 

spherical coordinates of point 𝑝. 

 Therefore, given the magnitudes and phases of the currents 𝐼𝑘 , 𝑘 = 1,… , 𝐾, in a array 

of 𝐾 dipoles parallel to the z axis, each kth dipole center located at coordinates (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) , Eq. 

(2.8) determines the radiation pattern 𝐹(𝜃, 𝜙) for the  𝐸𝜃 electrical field component. 

The spatial distribution of the elements of an antenna array can be spherical, linear, 

rectangular, hexagonal, planar, concentric, cylindrical or can be of arbitrary geometry. In this 

work we adopt a Uniform Circular Array (UCA) with six half-wave dipoles parallel to the z 

axis, which is a classic and popular array for azimuthal steering (IOANNIDES; BALANIS, 

2005). It is a phased array whose main lobe can be electrically steerable by controlling 

magnitude and phase of the dipoles current. The six dipoles are equally spaced around a circle 

of radius 𝑠, as shown in Figure 4. 

 

Figure 4 – Architecture of a six elements UCA 

  

Source: (AUTHOR, 2018). 

 

In Figure 4, the dipoles center lies in the xy-plane of the xyz coordinate system, whose 

origin lies at the center of the circle of radius 𝑠. The azimuth angle is defined as the angle, in 

the xy-plane, from the x-axis toward the y-axis. The elevation angle is defined as the angle from 

the xy-plane toward the z-axis. Elevation angles for all array elements are zero, (IOANNIDES; 

BALANIS, 2005). The center coordinates (𝑥𝑘 , 𝑦𝑘, 𝑧𝑘) of each kth dipole of the UCA, 𝑘 =

1, … , 𝐾 , with 𝐾 = 6, can be summarized in the matrix form by Eq. (2.9). 
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where, in this case of a six elements UCA, 𝛼 = 60° is the angle between the dipoles. 

 

2.1.2.1 Mutual Coupling and Circuit Model 

In the majority of transmitting or receiving dipole arrays, each dipole lies in the near 

field region of all other dipoles. Thus, in the near field region, each dipole is magnetically 

coupled to all other dipoles, resulting in a mutual impedance between each pair of dipoles. 

Therefore, the radiation pattern for both transmitting or receiving dipole arrays is affected by 

the mutual coupling. Lets analyze the mutual coupling for a receiving dipole array. The analysis 

is also valid for transmitting arrays, with minor adaptations, as we shall see.     

If an EM wave impinges upon a dipole array from the (𝜃, 𝜙) direction, the wave will 

reach each dipole at different instants of time. By measuring the induced voltages on each 𝑘 =

1, … , 𝐾 dipole of the array, the DOA can be estimated using these time instants, assuming a 

signal of known frequency. However, the total induced voltage on each dipole will generate a 

current on the dipole, which in turn radiates an EM field, which affects the surrounding dipoles, 

inducing additional voltages. The induced voltage at dipole 𝑘 , 𝑉𝑖𝑛𝑑𝑘
, consists of a direct 

induced voltage from the wave 𝑉𝑤𝑎𝑣𝑒𝑘
 and a voltage induced from the neighboring dipoles due 

to the mutual impedance coupling (SVANTESSON, 2001), as further shown in Eq. (2.15).  

Figure 5 represent the circuit of dipole k. The applied voltage is denoted  𝑉𝑔, which is 

zero, since it is a receiving array. The induced voltage  𝑉𝑖𝑛𝑑 is the total voltage (considering 

the mutual coupling to the other dipoles) over the dipole k.  𝑍𝑇  is the network terminating 

impedance, usually 50Ω (given the commercial standard).  𝑍𝐴 is the dipole self-impedance, 

determined without any other dipoles in the neighborhood, so that there is no nearfield coupling 

as a consequence of the mutual impedance. There will be as many circuits identical to the 

circuit of Figure 5 as there are dipoles in the receiving/transmitting array. The dipole self-

impedance 𝑍𝐴 is mostly calculated on the literature (KUN-CHOU LEE; TAH-HSIUNG CHU, 

1995) using the concept of induced Electro-Motive Force (EMF). The derivation for the self-

impedance can be found in most antenna handbooks like (POZAR, 2012). 
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Figure 5 – Schematic diagram of a terminating or generating network and antenna and equivalent circuit 

 

Source: (AUTHOR, 2018). 

 

Another classical method for the determination of the self-impedance 𝑍𝐴 of each dipole 

in an  array is the Pocklington method (POCKLINGTON, 1897), which establishes  that the 

real part of 𝑍𝐴   can be found by integrating the real part of the Poynting vector 𝑆  over a 

spherical surface on the farfield region. Note that this is just the law of conservation of energy 

being followed - “In a closed system, i.e., a system isolated from its surroundings, the total 

energy of the system is conserved.” The imaginary part of 𝑍𝐴  is found by integrating the 

imaginary part of 𝑆 over a surface that closely wraps the volume of the dipole, keeping an 

infinitesimal distance from the closed surface that delimits the volume.  

There are several other methods for the determination of the self-impedance of dipoles  

that can be found in classic antennas textbooks (STUTZMAN; GARY, 2013). 

 As for the mutual coupling, each dipole couples its magnetic field to all other dipoles 

in the nearfield region, which results in a mutual impedance between each pair of dipoles in 

the array.  The current in dipole j induces a voltage in the other dipole k which is proportional 

to the mutual impedance 𝑍𝑘𝑗 between dipole j and dipole k. Thus, the resulting current in each 

dipole is dependent upon the voltages induced by the currents in all other dipoles, therefore, 

affecting the radiation pattern for both transmitting or receiving dipole arrays. Thus, it is 

important to account for the coupling correctly. A known coupling can even increase the 

performance of DOA estimation if compensated correctly.  

For a transmitting array, each dipole k in the array is connected to a voltage source 𝑉𝑔. 

This voltage gives rise to a current which in turn results in an EM field that propagates, as 

described in Section 2.1.1 according to Maxwell equations. But the magnetic field from other 

dipoles will induce a respective voltage in dipole k as a result of the respective mutual 

impedance, similarly to the receiving array analysis. The dipoles are thus mutually coupled, 

and the mutual impedances must be taken into account in order to correctly determine the 

radiation pattern. 
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Considering 𝑍𝑘𝑘 as the self-impedance of dipole 𝐷𝑘 of the array and considering 𝑍𝑘𝑗 as 

the mutual impedance between dipoles 𝑗 and 𝑘 , with  𝑘 = 1,… , 𝐾 and 𝑗 = 1, … , 𝐾, Eq. (2.10) 

defines mutual impedance 𝑍𝑘𝑗 as the ratio between the induced voltage 𝑉𝑘𝑗 at dipole k due to a 

current in dipole 𝑗, as follows: 

 kj

kj

j

V
Z

I
=   (2.10) 

Since all dipoles in the UCA have the same length and size, it is possible to write:  

 
kj jk mZ Z Z= =   (2.11) 

where 𝑉𝑘𝑗 is the voltage appearing at the terminals of dipole 𝐷𝑘 due to a current 𝐼𝑗 in dipole 𝐷𝑗 . 

One precise analytical method for determining the mutual impedance between two 

symmetric dipoles was developed by (SCHELKUNOFF, 1955) and is known as the method of 

the biconical antenna perturbation. By expanding the unknown electromagnetic fields of a 

coupled system in terms of the known modes of an uncoupled system, Schelkunoff obtained a 

set of generalized telegrapher equations directly from Maxwell equations. The coupling 

coefficients are determined unambiguously once the modes of the uncoupled system are 

defined. The coupled mode theory remains an approximate, yet insightful and often accurate 

mathematical description of electromagnetic oscillation and wave propagation in a coupled 

system. 

The mutual impedance 𝑍𝑘𝑗  between two generic antennas has an analytical solution 

that usually presents a high complexity, if not intractable. For the simple case of two finite thin 

dipoles placed side by side, an approximate result for the mutual impedance 𝑍𝑚 can be found 

by the method of induced EMF force as follows: 

 mZ R jX= +   (2.12) 
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A more detailed approach of this mutual impedance technique can be found in 

(BALANIS, 2016 ). 
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Thus, as a consequence of the self and mutual impedances, the induced voltage in dipole 

k is given by (see  

Figure 5): 

 
k kind wave j kj

j k

V V I Z


= −   (2.15) 

where 𝑍𝑘𝑗 = 𝑍𝑚  is the impedance between dipoles 𝑗  and 𝑘 . This equation shows that the 

voltage that drives the current of the dipole k is the direct voltage that results from the impingent 

wave minus the voltages that the respective current in other dipoles induce in dipole k due to 

the nearfield mutual coupling. 

The direct voltage induced from the wave 𝑉𝑤𝑎𝑣𝑒𝑘
 can be derived in a similar manner as 

to the mutual impedance determination, but using the incident E field, and can be determines  

by   Eq. (2.16) (SVANTESSON, 2001). 

 𝑉𝑤𝑎𝑣𝑒𝑘
=

𝜌𝐸0𝑘
𝜆

𝜋𝑠𝑖𝑛(
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2
)
[
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2
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2
)

𝑠𝑖𝑛𝜃
] (2.16) 

where 𝐸0𝑘
 is the field strength at dipole 𝑘 and 𝜌 is the polarization mismatch factor. 

Using the circuit model in  

Figure 5, Eq. (2.17) for 𝑉𝑤𝑎𝑣𝑒𝑘
 is obtained 

 ( )
kwave k A T j kj

j k

V I Z Z I Z


= + +    (2.17) 

Eq. (2.16) and (2.17) along with the circuit model from  

Figure 5 form a system of equations, from which the received or measured voltage over 

𝑍𝑇 can be obtained according to Eq. (2.18). 
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where 𝐸0  is the magnitude and phase of the instantaneous electrical field phasor, 𝐶  is the 

mutual impedance coupling matrix given by Eq. (2.19), and 𝐻(𝜃, 𝜙) corresponds to the spatial 

response of the dipole 𝑘 given by Eq. (2.20). 

𝐶 and 𝐻(𝜃, 𝜙) can be found and deduced in many textbooks like (BALANIS, 2016). In 

Eq. (2.18), the time delay between each dipole becomes a simple phase shift and it is 

represented by the term in square brackets, also known as the geometrical array factor. 
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where 𝐼 stands for the identity matrix and 𝑍 stands for the mutual impedance matrix. 

𝑍 is a matrix with all the self-impedances in the diagonal elements and the mutual 

impedances in the remaining elements, as shown in Eq. (2.21). 
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When using an UCA of 𝐾 antenna elements, 𝐾 different voltages will be measured. 

These voltages can be shown in Eq. (2.22) on a vector form. 

 𝑉𝑖𝑛𝑑(𝑡) =

[
 
 
 
𝑉𝑖𝑛𝑑1

(𝑡)

𝑉𝑖𝑛𝑑2
(𝑡)

⋮
𝑉𝑖𝑛𝑑𝐾

(𝑡)]
 
 
 

=

[
 
 
 
𝐻1(𝜃, 𝜙)𝑒𝑗𝛽𝑑(𝑚,1)

𝐻2(𝜃, 𝜙)𝑒𝑗𝛽𝑑(𝑚,2)

⋮
𝐻𝐾(𝜃, 𝜙)𝑒𝑗𝛽𝑑(𝑚,𝐾)]

 
 
 

𝐸0(𝑡) = 𝛷(𝜃, 𝜙)𝐸0(𝑡) (2.22) 

where 𝑑  is the distance from the phase reference plane to the center of dipole 𝑘, and finally, 

vector 𝛷 models the spatial response of the array due to an incident EM wave from (𝜃, 𝜙) 

direction. The phase reference plane contains the point p(0,0,0) located at the origin of the 

Cartesian axes and it is perpendicular to the line between the center of dipole 𝑘 and point 

p(0,0,0). 

 Vector 𝛷 is fundamentally important for this thesis. It is the geometrical array factor 

combined with the array response and is known as steering vector. Eq. (2.22) can finally be 

expressed by Eq. (2.23). 

 𝑉𝑇 = 𝐶𝛷(𝜃, 𝜙)𝐸0(𝑡) (2.23) 

The concept of steering vector is further discussed in Section 2.3. 

 

2.2 MODULATION 

Modulation is the process of transforming a signal into a more suitable form so it can 

be transmitted over a particular channel (PROAKIS; SALEHI, 2001). 

Usually, modulation involves two waveforms, a modulating signal that represents the 

message to be transmitted and a sinusoidal carrier signal with a specific frequency 𝑓𝑐 . The 

purpose of the modulation process is to shift the information bearing message signal whose 
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spectrum is centered around the frequency zero, called the baseband signal, to a signal whose 

spectrum centered around the carrier frequency 𝑓𝑐. A modulator is an important stage of any 

transmitter for wireless communication systems. The output signal of the modulator, referred 

to as the modulated signal, is fed into the antenna for the transmission of the modulated EM 

wave across the communication channel. The resulting modulated EM wave thereby carries 

the message information. It is generally required that modulation be a reversible operation, so 

the message can be retrieved by the complementary process of demodulation in the receiver. 

Shifting the message spectrum to the carrier frequency 𝑓𝑐  is necessary because many 

channels, both wired and wireless, can convey only a narrow range of frequencies centered in 

some frequency. Also, the size of the antenna is proportional to the wavelength  𝜆 = 𝑐 𝑓𝑐⁄  of 

the sinusoidal carrier wave of frequency 𝑓𝑐. Therefore, a carrier frequency 𝑓𝑐  much higher than 

the center frequency of the message signal spectrum, or the baseband signal, is also required to 

keep the size of the antenna at an acceptable limit. Finally, for digital message cases, the 

message signal is a block of discrete samples over time. Thus, it is necessary to represent these 

blocks under a continuous time signal by means of a modulation process, so that the 

transmission can be performed over the communication channel.  

As an example, incidentally, humans act as a modulator whenever they speak. The 

transmission of voice through air is accomplished by generating carrier tones in the vocal cords 

and modulating these tones with muscular actions of the oral cavity. Thus, what the ear hears 

as speech is a modulated acoustic wave similar to an Amplitude Modulation (AM) signal 

(FARUQUE, 2017). 

The information to be transmitted can be either analog or digital, where the carrier is a 

high frequency sinusoidal waveform. For digital signals, as the one used in this thesis, there 

are several modulation techniques available. The three main digital modulation techniques are 

the Amplitude shift keying (ASK), the Frequency shift keying (FSK) and the Phase shift keying 

(PSK). With the exception of audio broadcasting that still use analog Amplitude Modulation 

(AM) and Frequency Modulation (FM), most modern communications systems use digital 

modulation.  The advantages of digital modulation include: 

I. Energy efficiency: better audio or video quality with the same or lower power 

consumption; 

II. Bandwidth efficiency: more users can be supported in the same bandwidth; 

III. Flexibility: digital modulation can transmit both data and digitized waveforms of any type; 

IV. Security: data can be effectively encrypted. 
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Modern communication devices are implemented using digital signal processing (DSP) 

techniques both at the transmitter and at the receiver. The DSP algorithms at the receiver 

present a higher computational complexity than the algorithms at the transmitter.  Any digital 

receiver has an analog radiofrequency (RF) front end with a low noise amplifier (LNA) and a 

mixer, which convert the analog received RF signal to an intermediate frequency (IF). Then an 

A/D converter samples and digitizes the IF signal, followed by a digital downconverter which 

brings the digital IF signal spectrum to the baseband. The baseband signal is then processed by 

a DSP processor to recover the original transmitted data. A reverse process is performed at the 

digital transmitter. 

When any device at the analog RF front end is not linear, it generates multiple 

intermodulation products spread not only in the modulated signal spectrum band (i.e., in-band) 

but also in the adjacent spectrum bands.  The intermodulation products of third and fifth order 

are particularly insidious since they are responsible for the in-band interference, which interfere 

with the desired signal causing distortion and increasing the receiver bit error rate (BER). 

A largely adopted parameter to characterize the non-linear relationship between input 

and output of an analog RF device is the intercept point (IPn) (LI et al., 2012). Determining the 

IPn of third (IP3) and fifth (IP5) order are enough to characterize the operation dynamic range 

of such devices since the third order intermodulation products and the fifth order 

intermodulation products cause significant in-band interference, i.e., distorting the modulated 

signal. The others high order intermodulation products vanish rapidly in the off-band spectrum 

and can be neglected. 

This thesis adopts the Quadrature Amplitude Modulation (QAM), since it is quite usual 

in wideband wireless systems. Specifically, in order to simulate a real information 

transmission, we adopt a 16-QAM digital modulation, which is described in the next section. 

 

2.2.1  Quadrature Amplitude Modulation 16QAM 

16-QAM controls the amplitude of two sinusoidal carriers of frequency 𝑓𝑐 with phase 

shift of 90° between them, so that the sum of the amplitude modulated in-phase carrier with 

the amplitude modulated quadrature carrier results in a sinusoidal modulated output signal of 

frequency 𝑓𝑐  with amplitudes and phases that are a function of the input message. The 

modulating signal (input message) is a four bits binary word, with two of the bits controlling 

the amplitude of the in-phase carrier and with the other two bits controlling the amplitude of 

the quadrature carrier (HANZO; WEBB; KELLER, 2000). 
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It is interesting to note that the emerging fifth generation (5G) wireless access network, 

aiming at providing ubiquitous and high data rate connectivity, is envisaged to deploy large 

number of base stations with higher density and smaller sizes, where inter-cell interference 

(ICI) becomes a critical problem. Derivations of the QAM modulation have been shown to 

reduce the ICI at the cell edge therefore achieve a higher transmission rate for cell edge users 

(WU et al., 2016).  

The in-phase carrier is denoted 𝐼 signal, and the quadrature carrier is denoted 𝑄 signal. 

Mathematically, the in-phase carrier can be represented by a cosine waveform, and the 

quadrature carrier can be represented by a sine waveform. 

Thus, QAM is expressed by an alphabet set of 𝐼 and 𝑄 symbols, called IQ symbols. The 

IQ symbols represent the different discrete levels of amplitude and phase shifts. Figure 6 shows 

the mapping between each binary 4-bit word and the in-phase (I) and quadrature (Q) 

components of each one of the 16 IQ symbols. This graphic representation of the mapping 

shown in Figure 6 is called the constellation of the digital modulation. As 𝑀 = 16 symbols are 

used in 16-QAM, each symbol can express a binary word of log2 𝑀 = 4 bits. In order to 

minimize the error probability of the demodulation process, the most usual way is to use the 

Gray code, mapping the neighborhood symbols of the QAM constellation with binary words 

different only by 𝑛 = 1 bit.  

 

Figure 6 – 16QAM constellation, which is the 𝐼𝑄 symbols’ graph. This constellation shows 12 possible phases 

and 3 possible amplitudes. 

 

Source: (AUTHOR, 2018). 

 

 A QAM modulator has mainly 4 stages: 

I. Mapping: A block of 𝑛 bits is transformed on a complex representation with magnitude 

and phase corresponding to a symbol, as presented in Figure 6; 
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II.Filtering: The complex baseband I and Q signals are filtered by a low-pass filter which 

performs the spectral containment of both signals. The low-pass filter, called shaping filter 

(WU et al., 2016), smooths the edge of the I and Q pulses in the time domain, minimizing 

the spectral spurious components intrinsically generated by the abrupt transition of the 

pulse’s edges; 

III.Multiplying (up-conversion): Both, real I and imaginary Q signals, are multiplied by a 

carrier with angular frequency 𝜔𝑐 = 2𝜋𝑓𝑐; 

IV.Adding: Both signals are then added, resulting on the modulated signal 𝑥(𝑡). 

 
𝑥(𝑡) = [∑ 𝑅𝑒{𝑎𝑚(𝑘𝑇)}√2𝑔(𝑡 − 𝑘𝑇)

∞

𝑘=−∞
] 𝑐𝑜𝑠(𝜔𝑐𝑡)

− [∑ 𝐼𝑚{𝑎𝑚(𝑘𝑇)}√2𝑔(𝑡 − 𝑘𝑇)
∞

𝑘=−∞
] 𝑠𝑖𝑛(𝜔𝑐𝑡)

 (2.24) 

where 𝑅𝑒{∙} and 𝐼𝑚{∙} return the real and imaginary part of the argument  {∙} respectively,    

𝑎𝑚 = 𝑅𝑒{𝑎𝑚} + 𝐼𝑚{𝑎𝑚} = I𝑚 + 𝑗𝑄𝑚 is the complex value of the  𝑚th IQ symbol, 𝑘 is the 

time index for the discrete sequence of IQ symbols, 𝑇 is the IQ symbol duration and  𝑔(∙) is 

the shaping filter impulse response. 

The terms in square brackets represent the convolution between the shaping filter 

impulse response 𝑔(𝑡) with the sequence of pulses 𝑎𝑚. Note, from Eq. (2.24), that the in-phase 

carrier represented by the cosine waveform with amplitude proportional to 𝑅𝑒{𝑎𝑚}, and the 

quadrature carrier represented by the sine waveform with amplitude proportional to 𝐼𝑚{𝑎𝑚} 

are subtracted from each other (or added with a minus signal multiplying the quadrature 

carrier). It can be shown, by simple trigonometric relationships, that the resulting modulated 

signal 𝑥(𝑡) is a cosine waveform of frequency 𝜔𝑐 = 2𝜋𝑓𝑐, with amplitude given by |𝑎𝑚| =

√(I𝑚)2   + (𝑄𝑚)2    and with phase given by ∡{𝑎𝑚} = atan (
𝑄𝑚

𝐼𝑚
)  (HANZO; WEBB; 

KELLER, 2000). 

The modulated signal 𝑥(𝑡) is then transmitted across the transmission channel, being   

corrupted by additive Gaussian noise. The noise in the channel adds to the real and imaginary 

part of the transmitted symbol so that each received IQ symbol differs from the original 

transmitted one that was picked up from the reference constellation as a function of the input 

binary word.   However, if the noise power is small compared to the signal power, there is a 

high probability of the received symbols to be close to the constellation reference symbols and 

a Gaussian cluster of received symbols are formed around the reference symbols, as shown in 

Figure 7 
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Figure 7 – 16QAM constellation with a random level of additive noise  

 

Source: (AUTHOR, 2018). 

 

Higher constellation densities (higher number of IQ symbols) allow the increasing of 

the data throughput, since more bits are sent per transmitted IQ symbol. On the other hand, 

denser constellations are more sensitive to noise and interference, since the constellation 

symbols are closer to each other and a small shift in the symbol phase or in the symbol 

amplitude can push the symbol into a decision region which is adjacent to the region respective 

to the original transmitted IQ symbol, which may increase the BER to unacceptable levels. A 

decision region respective to a specific IQ symbol is any of the squares delimited by the red 

lines in  

Figure 7, with the IQ symbol located at the center of the square.  

64 QAM and 256 QAM are often used in digital cable television and cable modem 

applications. Note that a coaxial cable is a wired channel with a much lower noise level than 

the noise level in a wireless channel. In the UK, 16 QAM and 64 QAM are currently used for 

digital terrestrial television using Digital Video Broadcasting. In the US, 64 QAM and 256 

QAM are mandatory modulation schemes for digital cable as standardized by the Society of 

Cable Telecommunications Engineers (SCTE). 

 

2.3 BEAMFORMING 

Beamforming is a technique largely adopted for the precise beam steering of smart 

antennas. Deployed at the base station of the existing wireless infrastructure, smart antennas 

can bring outstanding system capacity improvement, particularly in urban and densely 

populated areas, providing an efficient reuse of frequency.  This unique feature has been made 

feasible through the impressive advances in the field of digital signal processing in the past few 

http://www.scte.org/
http://www.scte.org/
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years, which enable smart antennas to dynamically tune out interference while focusing on the 

intended user. Nevertheless, the development of AI, as described in Section 2.4, grants the 

beamforming to go even further, allowing self-optimizing networks (SON) to adapt to different 

scenarios, without any human intervention. 

With the direction-finding ability of smart antennas, value-added services, such as 

position location services for an emergency call, fraud detection, intelligent transportation 

systems, law enforcement, accident reporting, etc., have been developed and improved 

(BLAUNSTEIN; CHRISTODOULOU, 2014; IOANNIDES; BALANIS, 2005). Smart 

antennas are also deployed in ad hoc networks, mobile networks or wireless local-area 

networks (WLANs), for example, with mobile terminals (notebooks, PDAs, etc.) in a wireless 

network. The direction-finding ability supports the design of the packet-routing protocol, 

which decides the way packets are relayed. The beamforming or interference-suppression 

ability makes possible to increase the throughput at the network nodes, which is limited by 

interference from neighboring nodes. 

Mobile users, for example, continue to demonstrate an insatiable demand for data. The 

next decade will experience the full impact of next generation 5G cellular networks with gigabit 

throughput, low-latency, and connectivity to billions of devices (IoT). The explosive demand 

for wireless access will surpass the data transfer capacity of existing broadband links. The 

transition from analog to digital communications marks the boundary between 1G and 2G. 3G 

introduced CDMA techniques for significant spectral efficiency gains. 4G LTE is nearly at the 

theoretical limits of wireless resource utilization, leaving little room for significant network 

improvement where frequency and time are the only free dimensions. Beamforming techniques 

will open space for these improvements for 5G. Figure 8 express such scenario (HAGHIGHI; 

HOSSEIN, 2016).   

 

Figure 8 – Mobile technology evolution. 

 

Source: (BLACK, 2016). 
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The wireless world is working feverishly to open a new degree of freedom (space) so 

the network capacity and the performance for all the services mentioned before can grow 

explosively. Actively leveraging the spatial dimension is frequently called Space Division 

Multiple Access (SDMA). 

As the very name suggests, beamforming is an algorithm that aims to establish high 

intensity radiation lobes in the radiation pattern of an antenna array at directions (𝜃, 𝜙) which 

it is desirable “illuminate” by means of the EM radiation of the array. A beamforming system 

also minimize the EM radiation intensity at directions (𝜃, 𝜙) in which is desirable “to leave at 

dark” (POZAR, 2012). This SDMA process performed by the beamformer maximizes the 

signal intensity at the desired reception points, spatially separating the signal of system users 

so that one does not interfere in each other, allowing multiple transmissions sharing the same 

frequency. The outcome is the rise of the signal to noise ratio (SNR), allowing more bits per 

Hertz to be transmitted until reaching the Shannon’s limit. This approach can be applied to 

wireless links of all kinds. 

Different algorithms have been proposed for the estimation of the directions of arrival 

(DOAs) of signals arriving at the array (SVANTESSON, 1999), and several adaptive 

techniques (BLAUNSTEIN; CHRISTODOULOU, 2014) have been examined for shaping the 

radiation pattern under different constraints imposed by the wireless environment. A key 

component of smart antenna technology is the adaptive beamforming, which simultaneously 

places the maximum beam lobe on the antenna radiation pattern towards the intended user or 

signal of interest, and ideally places nulls toward directions of interfering signals or signals that 

are not of interest. In this work, it is proposed an adaptive beamforming for an uniform circular 

array. The performance of the proposed algorithm built upon a uniform circular array is 

compared with three others beamforming algorithms which are references in the literature, 

already mentioned in the previous sections. 

Current cellular and some internet systems utilize antennas that form static 60 to 90-

degree sector beams to spread energy. By contrast, beamforming permits a more focused 

communications protocol between base station and user, as illustrates Figure 9. Highly 

directive beamforming enhances the SIR (signal-to-interference ratio) of the communication 

channel. Signal strength is increased by focusing power at the intended receiver. Furthermore, 

beamforming hardens the channel by suppressing multipath components. Interference and 

noise are reduced by minimizing the angular field of view. Interfering signals from other 

channel systems outside the main beam are attenuated by beamforming. Wireless operators can 

benefit from the SIR improvement in three ways: increase of coverage range, increase of 
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throughput by using higher order modulation schema (16 QAM to 64 QAM), and/or reduced 

transmit power. Beamforming preserves the spectral orthogonality of the sector and allows 

multiple concurrent transmissions using the same frequency without interference as shown in 

Figure 9, thus allowing for abundant spectrum reuse with higher intensity signals delivered to 

both stationary and mobile users. 

 

Figure 9 – Basestation with no beamforming (low gain, low capacity, low spectral efficiency) and basestation  

with beamforming (maximized throughput, increased spectral efficiency) 

 

 

Source: (BLACK, 2016). 

In a dynamic scenario, wireless operators can continuously reuse the same band of 

spectrum, at the same time, within a given spatial region or refocus the beam of one 

underutilized cell site reaching out to provide extra capacity to another cell site that is saturated 

or impaired (BLACK, 2016). In 4G networks, for example, optimal coverage patterns for a cell 

are rarely sector-shaped and never static due to urban canyons, commuter traffic and special 

events. Dynamic beamforming allows a mobile operator to manipulate the shape of coverage 

in azimuth and elevation and to reposition it electronically. This is crucial for small cells, which 

are often mounted on municipal furniture that can twist and sway in the wind. 

The beamforming algorithm employs a set with M sensors of field 𝐸𝜃, each sensor being 

a receiving dipole with polarization lined up to the 𝐸𝜃 direction. These sensors are spatially 

distributed and located at fixed coordinates at which is desired specific values of 𝐸𝜃 , 

representing a way of informing the beamforming algorithm about the values of the 𝐸𝜃 field 

radiated by the array into direction (𝜃𝑚, 𝜙𝑚) of each 𝑚th sensor. The 𝐸𝜃 field value measured 

by each 𝑚 th sensor at direction (𝜃𝑚, 𝜙𝑚)   is compared with the desired 𝐸𝜃  at direction 

(𝜃𝑚, 𝜙𝑚) so that the resulting error signal can be processed by the adaptive beamformer 

algorithm. Note that the M sensors are in the farfield region of the array, i.e, they are spatially 

distributed in points over a spherical surface of radius 𝑟 > 10𝜆 in whose center is found the 

array. For simulation purposes, the values of the 𝐸𝜃 field radiated by the array into direction 

(𝜃𝑚, 𝜙𝑚)  of each 𝑚 th sensor are given by the radiation pattern 𝐹(𝜃𝑚, 𝜙𝑚)  calculated at 
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direction (𝜃𝑚, 𝜙𝑚)  for each 𝑚 th sensor. The radiation pattern 𝐹(𝜃𝑚, 𝜙𝑚)  is obtained by 

normalizing Eq. (2.8) by the term 
60

𝑟
𝑒𝑗(𝜔𝑡−𝛽𝑟+

𝜋

2
)
, resulting on Eq. (2.25).  
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The distance 𝑑 in the direction (𝜃𝑚, 𝜙𝑚) of the 𝑚th sensor that separate the 𝑘th dipole 

located at coordinates (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) from the plane ψ of zero phase is given by Eq. (2.26). 

 ( ) ( ) ( ) ( ) ( ) ( )( ), sin cos sin sin cosk m m k m m k md m k x y z    = + +   (2.26) 

The plane ψ of zero phase is the plane that contains the origin of the Cartesian system 

being perpendicular to the unit vector that defines the direction of the radius 𝑟 that starts at the 

origin of the Cartesian system and points at the direction (𝜃𝑚, 𝜙𝑚) of the 𝑚th sensor. The plane 

ψ defines the geometric phase reference for the beamforming algorithm.  

From Eq. (2.25), let (2.27) be the relative intensity of the radiated 𝐸𝜃 field by a single 

dipole of the array and measured at the coordinates of the 𝑚th sensor. 

 

cos cos cos

sin

m

m

m

L L
 

 




    
−        =  

 
  

  (2.27) 

From these definitions, the radiation diagram 𝐹𝑚 value, at the corresponding direction 

(𝜃𝑚, 𝜙𝑚) of the 𝑚th sensor is given by 
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where 
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is the phasor that represents the magnitude and phase of the EM wave radiated by the 𝑘th dipole 

and that propagates along direction (𝜃𝑚, 𝜙𝑚) over the vector radius 𝑟 at the direction of the 

𝑚th sensor. 𝐼 = [𝐼1, 𝐼2, ⋯ , 𝐼𝐾]𝑇 is the vector which defines the corresponding currents of the 𝐾 

dipoles. Φ𝑚 = [χ𝑚𝑒𝑗
2𝜋

𝜆
𝑑(𝑚,1) , χ𝑚𝑒𝑗

2𝜋

𝜆
𝑑(𝑚,2), ⋯ , χ𝑚𝑒𝑗

2𝜋

𝜆
𝑑(𝑚,𝐾)]𝑇 is named the steering vector, 

a vector whose each component expresses the respective magnitude and phase of the EM wave 

radiated by the 𝑘th dipole along the direction (𝜃𝑚, 𝜙𝑚) of the propagation path, at the end of 
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which the wave impinges the 𝑚 th sensor, where 𝑚 = 1,… ,𝑀  and , 𝑘 = 1,… , 𝐾 . (DE 

CASTRO; FRANCO, 2005). 

The beamforming algorithm iteratively adjusts the current phasors  𝐼 = [𝐼1, 𝐼2, ⋯ , 𝐼𝐾]𝑇 

in Eq. (2.28). Given a set of 𝑀  steering vectors Φ𝑚 , each one referring to the direction 

(𝜃𝑚, 𝜙𝑚) of the 𝑚th sensor, Eq. (2.28) yields a set of 𝑀 values of normalized 𝐸𝜃 field, i.e., it 

yields a set of 𝑀 values for  𝐹𝑚  , 𝑚 = 1,… ,𝑀 . When operating in real time, the set of 𝑀 

normalized values of the 𝐸𝜃 field are respective measured by the 𝑀 dipoles sensors. Then, for 

each iteration 𝑛, are calculated 𝑀 errors, each one obtained by the difference between the 

desired  𝐹𝑚 at the 𝑚th sensor position and the  𝐹𝑚 value obtained from Eq. (2.28) (or measured) 

at discrete time instant 𝑛. This error is then used to iteratively, iteration by iteration, to tune up 

the current phasors of vector 𝐼. After a sufficient number of iterations, the error is minimized, 

and the process converges when, finally, the components of the vector 𝐼 = [𝐼1, 𝐼2, ⋯ , 𝐼𝐾]𝑇 are 

settled.  

Cutting edge technology have just started exploring beamforming technology. On the 

other hand, much have been developed and published about it. Furthermore, with the advent of 

ANNs being employed for adaptive beamforming, an issue that turns out to be important is the 

selection of the appropriate ANN and the appropriate activation function for it. In this work we 

adopt a complex valued RBF ANN with phase transmittance between input nodes and output.   

The Least Mean Square (LMS), a well-known algorithm based on the adaptive filtering 

proposed by (WIDROW; HOFF, 1960) showed that the variable weights of a linear combiner 

can be automatically adjusted by a simple adaptive technique, and (YUANJIAN; XIAOHUI, 

2016) tested this algorithm and some variations for the beamforming problem. The Complex-

Valued Radial Basis Function (C-RBF) was proposed by (HAYKIN, 2013) and used by 

(CHEN et al., 2008) for non-linear beamforming in multiple antenna aided communication 

systems that employ complex-valued quadrature phase shift keying modulation scheme. The 

Fully Complex-Valued Radial Basis Function was proposed and used by (SAVITHA; 

SURESH; SUNDARARAJAN, 2009) to solve an adaptive beamforming problem with 

symmetric steering and nulling. Finally, (LOSS et al., 2007) presented the Phase Transmittance 

Radial Basis Function (PT-RBF) with phase transmittance between the input and output nodes 

for the context of channel equalization on quadrature digital modulation. The next section 

analytically describes each one of the referred state-of-the-art algorithms, so that they can be 

implemented in order to assess their performances. 

An analytical description of each ANN type is given in sections 2.4.2, 2.4.4, 2.4.5 and 

2.4.6 in order to fairly evaluate and compare different beamforming algorithms, since their 
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authors publishes the results under different scenarios. Different scenarios mean different 

antennas array architecture, different number of impinging signals to suppress or steer, 

different complexity problems the ANNs must solve, which leads to different training sets, 

different learning rates and different number of neurons. On the other hand, some important 

assumptions can be withdrawn from the referred papers. 

It will be seen in section 2.4.2, that a simple adaptive filtering architecture can solve the 

beamforming problem. In (YUANJIAN; XIAOHUI, 2016), an ULA of 𝑘 = 9 elements spaced 

by 𝑠 = λ  performs the beamforming for a desired signal located at 𝜙 = 15°  and two 

interference signals located at 𝜙 = 45°  and 75°  with SIR  = 10𝑑𝐵  and 3𝑑𝐵  respectively. 

However, the LMS algorithm uses a noisy estimate of the required gradient to adaptively 

estimate the weights of an optimal antenna array. Hence the estimation of weights is not 

accurate. It also fails to solve more complex problems, since its architecture cannot handle non-

linearity and it is real-valued, while, as will be shown in section 2.4, the beamformer must deal 

with complex-valued signals 

Also, it will be seen in section 2.4.4 that a partially complex network can also solve the 

beamforming problem. In (CHEN et al., 2008), an ULA of 𝑘 = 3 elements spaced by 𝑠 = 1 𝜆⁄  

was employed to support four QPSK users located at 𝜙 = 15°, 340°, 45° and 290° with equal 

power and a SIR varying from 0𝑑𝐵 to 20𝑑𝐵. For each SNR scenarios, a training data set 

consisting of 𝑁 = 600 samples was adopted. However, in these methods of partially complex-

valued, the activation function maps the synapses between the neurons on a real domain. As a 

result, despite the weights and centers being complex-valued, the response of the hidden neuron 

remains real-valued, and therefore, does not transmit the complex-valued signal between the 

input and the output nodes effectively, losing information. 

In section 2.4.5 it will be seen that a fully complex-valued network using an 𝑠𝑒𝑐ℎ 

activation function has been proposed and tested to solve the beamforming problem. In 

(SAVITHA; SURESH; SUNDARARAJAN, 2009), an ULA of 𝑘 = 5 elements spaced by 𝑠 =

𝜆 2⁄  was trained to look at desired signals coming from 𝜙 = 30° and 330°, and to suppress 

interferences from 𝜙 = 15° and 345°  with SNR = 50𝑑𝐵. A training data set consisting of 

𝑁 = 250 samples was adopted. A fully complex-valued network preserves the magnitude and 

phase information of complex-valued signals, and so, it performs approximations and 

classifications of complex-valued signals better than real and imaginary split complex 

networks. However, although presenting a fast convergence rate and a good performance result, 

this network fails over high noisy scenarios. 
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2.4 NEURAL NETWORK 

Artificial neural networks (ANN) are one of the main tools used in machine learning. 

As their name suggests, they are brain inspired systems which are intended to replicate the way 

that humans process information. Thus, an ANN is capable of learning, inferring and decision 

making, inspired in the human brain. In the same way that people learn from experience in their 

lives, neural networks require data to learn. In most cases, the more data can be given to a 

neural network, the more accurate it will become. Just as humans, it can be understood as any 

task someone do over and over. Over time, this someone gradually get more efficient and make 

fewer mistakes.  

The exact behavior of the human brain is still a mystery. Yet, some aspects of this 

amazing processor are known. In particular, the most basic element of the human brain is a 

specific type of cell that, unlike the rest of the body, does not appear to regenerate. Because 

this type of cell is the only part of the body that is not slowly replaced, it is assumed that these 

cells are what provides humans with abilities to remember, think, and apply previous 

experiences to every action. These cells, around 100 billion of them, are known as neurons. 

Each of these neurons can connect with up to 200,000 other neurons, although 1,000 to 10,000 

is typical. By understanding how elements of our brain works is easy to understand the 

mathematical model hereafter presented.  

ANNs are then composed by neurons. As any other biological cell, the neuron is 

covered by a thin cell membrane responsible for the electrical operation of the nerve cell. The 

neuron has a cell body, called soma, which is the center of the metabolic processes of the nerve 

cell. Various structures extend from the cell body. These include many short, branching 

structures, known as dendrites, and a separate structure that is typically longer than the 

dendrites, known as the axon, as shown in Figure 10. 

 

Figure 10 – Neuron biological model 

 

Source: (AUTHOR, 2018). 
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Basically, neurons have three functions. The first two neuronal functions (receiving and 

processing incoming information) generally take place in the dendrites and cell body. Incoming 

signals can be excitatory, which means they tend to make the neuron to fire up, generating an 

electrical impulse. Or can be inhibitory, which means that they tend to keep the neuron in an 

idle state (SOLOMON, 2015). 

A single neuron may have more than one set of dendrites and may receive many 

thousands of input signals. Whether or not a neuron is excited into firing up an impulse, it 

depends on the sum of all of the excitatory and inhibitory signals it receives. If the neuron does 

fire up, the nerve impulse, or action potential, is conducted down the axon. The axon terminals 

are finally responsible for making connections to target cells. 

Neuron-to-neuron connections are made onto the dendrites and cell bodies of other 

neurons. These connections, known as synapses, are the structures through which the 

information is carried from the first neuron to the target neuron. Figure 11shows where the 

synapses take place. 

 

Figure 11 Neuron`s connection biological model 

 

Source: (AUTHOR, 2018). 

 

The information is transmitted in the form of neurotransmitters. When an action 

potential travels down an axon and reaches the axon terminal, it triggers the release of 

neurotransmitter from the first neuron. Neurotransmitter molecules cross the synapse and bind 

to membrane receptors on the target neuron, conveying an excitatory or inhibitory signal. Thus, 

the third basic neuronal function, which is communicating information to target cells, is carried 

out by the axon. 

Basically, a biological neuron receives inputs from other sources, combines them in 

some way, performs a generally non-linear operation, and then outputs the result. The artificial 

analogy of the biological neuron must do the same. Figure 12 shows the diagram of an artificial 
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neuron. It is possible to tell apart: The dendrites, which receives the data provided to the 

network in the form of a vector 𝑢; the soma, where the process information takes place, known 

as the activation function 𝜑 on the artificial models; the synapses, in a form of synaptic weights 

vector 𝑤; and the axon, where the finished computations of the network are placed for use in a 

form of an output signal 𝑦. 

Figure 12 - Neuron artificial model. Because our knowledge of neurons is incomplete and our computing power is limited, our 

models are necessarily gross idealizations of real networks of neurons 

 

Source: (AUTHOR, 2018) 

 

Although an ANN processes a number much smaller of neurons than the biological 

neural network, the digital gates of an ANN works up to six orders of magnitudes faster than 

the biological neuron. In mathematical terms, a neuron can be described as (2.30). 
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By using a set of artificial neurons like the one shown in Figure 12, an ANN can be 

built. In the ANN model, layers are connected by transmittances called synaptic weights. As 

the information flows through the model, the synaptic weights and the parameters that define 

the activation function 𝜑 are used to store knowledge. These are the only free parameters that 

an ANN can modify in order to adapt and to reach a desired goal. The procedure responsible 

to the process of reaching the goal is known as the Learning Algorithm. 

The design of an ANN includes the way the neurons are connected and the way the free 

parameters are adjusted. The ANN performance is deeply related to the learning algorithm used 

to train the network. It is also important how the interneuron connections are arranged, and the 

nature of the connections which determine the network structure. But, basically, the way that 

the connections are adjusted or trained to achieve a desired overall behavior of the network is 

governed by its learning algorithm. There are multiple types of ANN, each one with their own 

specific use, cases and levels of complexity. The most basic type of ANN is known as 

feedforward, in which information travels in only one direction, from input to output. 

https://en.wikipedia.org/wiki/Feedforward_neural_network
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An interesting type of ANN is the recurrent neural network, in which data can flow in 

multiple directions. These neural networks possess greater learning abilities and are widely 

employed for more complex tasks such as learning handwriting or language recognition 

(YANG; ZHANG; FU, 2016). 

There are also convolutional neural networks, Boltzmann machine networks, Hopfield 

networks, and a variety of others (HAYKIN, 2009). Picking the right network for a task 

depends on the data that will be used to train it, and the specific problem that is desirable to 

solve. In some cases, it may be desirable to use multiple approaches, such as would be the case 

with a challenging task like voice recognition. 

Broadly speaking, all these networks are designed for spotting patterns in data. Specific 

tasks could include classification (classifying data sets into predefined classes), clustering 

(classifying data into different undefined categories), and prediction (using past events to guess 

future ones, like the prediction of time series for stock market and for financial market). The 

old school digital signal processing (DSP) do routine things well, like keeping ledgers or 

performing complex math. But DSP have trouble recognizing even simple patterns, let alone 

generalizing those patterns of the past into actions of the future. 

While ANNs have been around since the 1940s, it is only in the last several decades 

when they have become a major part of Artificial Intelligence (AI). This is due to the 

introduction of a technique called backpropagation, presented on Section 2.4.1, which allows 

networks to adjust their hidden layers of neurons in a learning process that fits the outcome to 

the desired one (CASTRO; CASTRO, 2005; HAYKIN, 2009). Finally, an ANN can learn by 

three distinct means: with a tutor, without a tutor and with a judge. The algorithm proposed in 

this thesis makes use of the tutor, thus its learning process is called supervised learning (or non-

blind). 

 

2.4.1   Supervised Learning Process and 

Backpropagation 

A supervised learning-based ANN is an ANN that has a knowledge of the environment, 

with that knowledge being represented by a set of input-output examples. The environment is, 

however, unknown to the neural network of interest. It has two modes of operation: the training 

mode and the execution mode.  

In the training mode, the neurons are iteratively trained to fire up (or not) for particular 

input value patterns defined in the ANN training set. Each input value patterns and the 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://cs231n.github.io/convolutional-networks/
https://en.wikipedia.org/wiki/Boltzmann_machine
https://en.wikipedia.org/wiki/Hopfield_network
https://en.wikipedia.org/wiki/Hopfield_network
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corresponding desired values at the ANN output nodes is stored in the training set (TS) as a 

vector. The set of vectors stored in the TS must be representative of the numerical mapping 

problem to be solved, mapping which is usually analytically unknown. At iteration n the nth 

vector of the TS containing a specific input values pattern and the corresponding desired values 

at the ANN output nodes is processed by the learning algorithm, so that an instant error is 

obtained from the difference between the desired values (stored in the TS) at the output nodes 

of the ANN and the resulting values at the output nodes of the ANN at iteration n. The learning 

algorithm uses the obtained instant error at iteration n to adjust the ANN free parameters aiming 

to reduce the instant error at the next iteration n+1. The training process goes on, iteration by 

iteration, until the instant error for all training vectors stored in the TS are sufficiently small, 

situation in which the ANN is said to be trained. Once trained, the ANN can now operate in 

the execution mode.     

 In the execution mode, when a taught input pattern is detected at the input nodes, the 

ANN yields the corresponding learnt output value. If a particular input pattern does not belong 

to the taught list of input patterns specified in the TS, the ANN tries to infer a proper output 

based on the extrapolation of the underlying stochastic process learnt from the TS. This is the 

reason the ANN training set must be thoroughly representative of the numerical mapping 

problem to be solved, mapping which is usually analytically unknown. 

One of the simplest supervised learning processes is the adaptive process of a single 

linear neuron operating as an adaptive filter (HAYKIN, 2013). The classical problem to be 

solved with adaptive filtering is to determine, with a single linear neuron, the model that rules 

the behavior of an unknown dynamic system Γ. The neuron operates under the influence of an 

algorithm 𝐴 which controls the necessary adjustments to the synaptic weights 𝑤 so, as the 

adjustments succeed, the output of the neuron proceed towards the output of the system Γ. 

Filtering consists in two processes, the filtering itself and adapting. 

Adaptive filtering involves two signals. An output 𝑦, which is a consequence of an input 

vector 𝑢, and an error 𝑒, which is a consequence of the comparation between the output 𝑦 and 

a desired output ϒ (a target that the network must mimic). 

Adapting involves the adjustments of the synaptic weights 𝑤 by means of an algorithm 

𝐴, having the error 𝑒 as base. 

 e y=  −   (2.31) 

These two processes combined describes the feedback loop of a neuron. In the training 

mode, once all vectors 𝑢  from the TS have been applied to the neuron input nodes, it is said 

that an epoch have passed. The two processes repeat over and over until the error 𝑒  gets 
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sufficiently small. The most famous algorithm for the feedback loop is known as 

backpropagation. Its popularity is because its relative simplicity and the fact that it is a powerful 

device to store information on the synaptic weights 𝑤 (HAYKIN, 2013). 

In order to measure how efficient the process of filtering is and in order to determine 

the iterative adjustment of the synaptic weights 𝑤 it is useful to define a function 𝐽, known as 

cost function, which states how unfit is the neuron when approximating its output 𝑦 to 𝑑. 

 In a similar manner to the single neuron adaptive filtering, the main goal of an ANN is 

to minimize the cost function 𝐽. In this thesis, the algorithm responsible for that is the Steepest 

Descent (SD), which presents low computational complexity (HAYKIN, 2009). 

 In the SD algorithm, the successive adjustments on the synaptic weights 𝑤 are in the 

direction of the steepest descent of the surface 𝑆 generated by the values of the cost function 𝐽. 

Since 𝐽  depends directly on 𝑤 , i.e., 𝐽 = 𝐽(𝑤), surface 𝑆  will have as many dimensions as 

synaptic weights 𝑤 on the input layer of the network. Thus, the problem of minimizing 𝐽 has 

turned to a simple “find the minimum of a surface 𝑆”, as shows Figure 13. 

 

Figure 13 - Cost function  𝑱(𝒙, 𝒚) for a 𝑴-dimensional domain ℝ𝑴, 𝑴 = 𝟐 

 

Source: (AUTHOR, 2018). 

 

Mathematically, the minimum of the surface can be found by applying the gradient 

vector to the surface, i.e.,  𝛻𝐽(𝑤), and taking a step to the opposite direction. Thus, the 

algorithm SD can be expressed as 

 ( )( 1) ( ) ( )w n w n J w n+ = −    (2.32) 

where 𝜇 is the learning rate and 𝑛 is any discrete time instant of the adjustment process. 

When 𝜇 is small, the transient response of the algorithm is overdamped, in that the 

trajectory traced by 𝑤(𝑛) follows a smooth path in the 𝑤-plane, as illustrated in Figure 13. 

When 𝜇 is large, the transient response of the algorithm is underdamped, in that the trajectory 
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of 𝑤(𝑛) follows a zigzagging (oscillatory) path. When 𝜇 exceeds a certain critical value, the 

algorithm becomes unstable (i.e., it diverges). 

𝛻𝐽(𝑤) is the gradient vector of the cost function 𝐽. Note that the gradient 𝛻 always 

points to the direction of largest increase of the function (in this case, function 𝐽(𝑤(𝑛))), and  

has a magnitude equal to the maximum rate of increase at the point in which gradient 𝛻 is 

determined.  
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To minimize 𝐽(𝑤) , the process is started with an initial guess denoted by 𝑤(0) , 

generating a sequence of weight vectors 𝑤(1), 𝑤(2), … , such that the cost function 𝐽 of Eq. 

(2.31) is reduced at each iteration of the algorithm. Figure 13 shows two vectors (blue arrows) 

determined at two respective distinct points in the surface of the cost function 𝐽(𝑤(𝑛)) = 

𝐽(𝑥, 𝑦). Note that the arrows point to the opposite direction of the steepest variation of the 

surface defined by function 𝐽(𝑤(𝑛))  = 𝐽(𝑥, 𝑦) , or, equivalently, point to the opposite 

direction of the gradient vector 𝛻𝐽(𝑤) . The SD algorithm aims at the minimization of 𝐽(𝑤(𝑛)) 

in order to reach the global minimum at the blue “x” in Figure 13. Since the gradient 𝛻𝐽(𝑤) 

represents the direction of the steepest slope at the point it is determined, the SD algorithm 

iteratively takes a step backwards on the opposite direction as shown by the blue arrows in 

order to fulfill the goal to reach the global minimum at the blue “x”. 

In conclusion, it is necessary to essentially ask the ANN a large amount of questions 

and provide it with answers. This is a field called supervised learning. With enough examples 

of question answer pairs, the calculations and values stored at each neuron and synapse are 

slowly adjusted. When it is wrong, an error is calculated and the values at each neuron and 

synapse are propagated backwards through the ANN for the next epoch using backpropagation. 

This process takes a plenty of examples. Once an entire epoch is completed, then 

backpropagation is applied. Finally, once trained, the network shall be able to, once received 

any input that had never been part of the TS, to return an output close enough to what would 

be expected of the unknown process’ scope. 

 

2.4.2  Least Mean Square 

The Least Mean Square (LMS) algorithm is the simplest (and for most problems, the 

fastest) way to minimize the error of an ANN. Because of that, it is considered the leading 

algorithm in ANN and in this thesis, it is used as a reference to the novel algorithm proposed.  

https://en.wikipedia.org/wiki/Direction_(geometry)
https://en.wikipedia.org/wiki/Magnitude_(mathematics)
https://en.wikipedia.org/wiki/Direction_(geometry)
https://en.wikipedia.org/wiki/Direction_(geometry)
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LMS are a class of adaptive filter used to mimic a desired filter process by finding the 

filter coefficients, or weights 𝑤, that relate to producing the least mean square of the error 

signal (difference between the desired and the actual signal). It is a stochastic gradient descent 

method in that the filter is only adapted based on the error at the current time. The adaptive 

filtering model can be described by a signal-flow graph of Figure 14.  

 

Figure 14 – Signal-flow graph of LMS adaptive model for a system 

 

Source: (AUTHOR, 2018). 

 

The activation function 𝜑 on LMS is linear, so it can be considered equal to 1. Any 

other number would represent just a gain. Based on the neurons model of Eq. (2.30), the output 

signal of the LMS is given by Eq. (2.34). It is possible to see in this equation the linearity of 

the activation function. 
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y n w n u n u n w n
=

= =   (2.34) 

where the superscript 𝑇 denotes the transpose operation. 

The LMS’s main characteristic is to minimize the cost function 𝐽 of Eq. (2.35).  

 ( )( ) ( )21

2
J w n e n=  (2.35) 

 In order to find the direction of greatest increase of the function 𝐽, the gradient vector  

𝛻 is applied on Eq. (2.35) by varying 𝐽(𝑤(𝑛)) in response to an infinitesimal variation in 

coordinate 𝑤(𝑛), and the following Eq. (2.36) is obtained. 
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  (2.36) 

Bringing back Eq. (2.31) into Eq. (2.34) and since ϒ does not depend on 𝑤(𝑛),  it is 

possible to reach Eq. (2.37). 

https://en.wikipedia.org/wiki/Adaptive_filter
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Direction_(geometry)
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Applying Eq. (2.37) on Eq. (2.36), it is possible to reach Eq. (2.38). 

 ( )( ) ( ) ( )J w n e n u n = −   (2.38) 

And finally, replacing Eq. (2.38) into Eq. (2.32) for 𝑤(𝑛 + 1), comes Eq. (2.39). 

 ( ) ( ) ( ) ( )1w n w n e n u n+ = +   (2.39) 

This final equation defines the process of adjusting the synaptic weights 𝑤 of a linear 

neuron in order to minimize 𝐽. The greatest advantage of the LMS algorithm is that it does not 

need to know the correlation matrix 𝑅 and the cross-correlation vector 𝑝, in contrast to the SD 

algorithm (based on the Wiener filter deduction, but not mentioned in this thesis). This feature 

of the LMS algorithm is important from a practical perspective. 

In consequence, on LMS, the vector 𝑤  follows a random path in the process of 

minimizing 𝐽 (and for this reason, the LMS algorithm is sometimes referred to as a gradient 

descent algorithm), different from the SD algorithm of Figure 13. 

In the SD algorithm, the weight vector 𝑤(𝑛) follows a well-defined trajectory in the 

𝐽(𝑥, 𝑦, 𝑧) 𝑀-dimensional space ℝ𝑀 for a prescribed 𝜇. It is also noteworthy that the inverse of 

the learning rate parameter 𝜇 acts as a measure of the memory of the LMS algorithm: The 

smaller 𝜇, the longer the memory span over which the LMS algorithm remembers past data. 

Consequently, when 𝜇 is small, the LMS’s accuracy is higher, but the convergence rate is 

slower (HAYKIN, 2013) . As the number of iterations in the LMS algorithm approaches 

infinity, it performs a random walk (Brownian motion) towards the solution. 

The LMS, or gradient descent algorithm, plays a major role in the ANN algorithms 

further presented. 

 

2.4.3  Radial Basis Function 

The Radial Basis Function (RBF) ANN uses a non-linear model for its neuron (the 

activation function 𝜑 is non-linear, as later explored in this section). RBFs are supervised 

ANNs, and are considered universal approximators. Such combination of learning algorithms 

plus universality results in an attractive mix with many interesting theorems as ingredients. 

The universal approximation theorem states that a feed-forward network with a single 

hidden layer containing a finite number of  neurons, can approximate continuous functions on 

compact subsets of ℝ𝑀, under mild assumptions on the activation function. The higher the 

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Continuous_functions
https://en.wikipedia.org/wiki/Compact_space
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number of hidden neurons, more improved is the approximation. The theorem thus states that 

neural networks with a single hidden layer can be used to approximate any continuous function 

to any desired precision. Figure 15 shows a simple approximation example. For every possible 

input 𝑥 , there is always a neural network to output the value 𝑦 = 𝑓(𝑥)  (or some close 

approximation), no matter the 𝑥 to approximate. 

 

Figure 15 – Orange line is the function 𝑦 = 𝑥3 + 𝑥2 − 𝑥 − 1. Blue line is an example of function approximation 

 

Source: Adapted from (NIELSEN, 2015). 

 

Therefore, using an universal approximator and introducing non linearity via an 

activation function allows to approximate almost any function (FORTUNER, 2017; 

WINKLER, 2017). 

After understanding what an approximator does, it is now possible to define the ANN 

used in this thesis. The RBF is an ANN that transforms the problem into a 𝑛-dimensional space 

ℝ𝑛  in a non-linear manner (usually 𝑛  is quite high). The high dimensional space is a 

multidimensional plot of the output as a function of the input. Bringing up another theorem: 

“A complex pattern classification problem cast in a high dimensional space nonlinearly is more 

likely to be linearly separable than in a low-dimension space” (COVER, 1965). In other words, 

once there are linearly separable patterns, the classification problem is relatively easy to solve. 

Figure 16 illustrates the pattern separation by different complexity methods. 

Figure 16 - Three examples of φ-separable dichotomies of different sets of five points in two dimensions: linearly separable 

dichotomy; spherically separable dichotomy; quadrically separable dichotomy 

 

Source: (HAYKIN, 2013). 

 



59 

The RBF is a multilayer ANN with a single hidden layer, where each neuron in the 

hidden layer operates as a computational kernel, providing a set of functions that constitute an 

arbitrary basis for the input vectors when they are expanded into the hidden space. These 

kernels are radial basis functions, with a compact domain, and are responsible to apply a non-

linear transformation from the input space to the hidden space. Basically, each kernel computes 

the distance between the nth input data vector 𝑢(𝑛) and its own center vector 𝑡𝑘.The input layer 

is made up of source nodes that connect the network to its environment. These source nodes 

can be connected, for example, to the outputs of an array of transducers or any other source of 

information representative of the numerical mapping problem to be solved. The output layer 

combines the kernels output 𝜑𝑘 through a linear combiner, as shown in Figure 17. 

 

 

Figure 17 – RBF ANN architecture 

 

Source: (AUTHOR, 2018). 

 

 The RBF learning process is divided in two phases, the training and the generalization. 

The training phase constitutes the optimization of a fitting procedure from the surface 

𝐽, based on known data in the form of vectors 𝑢 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑀]𝑇, presented to the network 

as input output examples. As 𝑀 is the dimension of the vector 𝑢, and as every vector can be 

seen as a coordinate on a 𝑀-dimensional space ℝ𝑀, the input data 𝑢 can also be seen as a point 

in this 𝑀-dimensional space ℝ𝑀. The TS presented to an ANN can be organized as a matrix 

composed by a collection of vectors 𝑢 , in other words, a matrix full of points in the 𝑀-

dimensional space ℝ𝑀. Each one of these points partially describes an unknown process. It is 

desired that the ANN represents each one of these unknown processes as better as possible. 
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The generalization phase is where interpolation between the data points are performed 

along the constrained surface generated by the fitting procedure as the optimum approximation 

to the true surface. The interpolation is done between points in order to estimates the value of 

a function for intermediate values between the set of known data. Figure 18 illustrates the 

interpolation process of a 2-dimensional function from a random set of samples. 

 

Figure 18 – Example of data interpolation 

 

Source: (AUTHOR, 2018) 

 

Another important issue in this context is the multivariable interpolation. According to 

Davis theorem of 1963, “Given a set of 𝑁 different points and a corresponding set of 𝑁 real 

numbers, it is possible to find a function that satisfies the interpolation condition where the 

strict interpolating surface is constrained to pass through all the training data points”. Finally, 

Micchelli covers in his theorem of 1986 a large class of radial-basis functions broadly used in 

RBF ANNs to perform the interpolation, like multiquadric, inverse multiquadric and gaussian 

functions. These are all continuous functions bell shaped over a compact domain with limited 

radius ζ in order to make feasible the interpolation and the extrapolation of numerical values 

through linear combination. Each shape has a better performance on different scenarios. The 

main difference on the three RBF ANNs models lately presented in the next sections is the 

radial basis function adopted in the ANN hidden layer. 

 This thesis adopts a Gaussian function for the real and imaginary parts of complex 

valued radial basis functions (kernels whose output is 𝜑𝑘 in Figure 17) in the hidden layer of 

the network.  

 The Gaussian function is defined by Eq. (2.41). Note that it is a localized function, i.e.  

φ(ζ) ⇾ 0 as ζ ⇾  ∞. For each vector 𝑢 with size 𝐾 presented to the network, 𝐾signals are 

sent towards every single neuron at the hidden layer. Each neuron (kernel) with transmittance 

φ(ζ) return values between 0 and 1. The higher the neurone output the higher the neuron 

activation. Thus, each neuron transmittance φ(ζ) is also the neuron activation function.  
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where 𝜎 is the standard deviation parameter which represents how large is the basis of the bell 

shaped Gaussian kernel. 

 The input data points 𝑢 in the 𝑀-dimensional space ℝ𝑀 form clusters in the space ℝ𝑀 

in a greater or lesser extent. The center vector 𝑡𝑘 of each bell-shaped activation function  𝜑𝑘 is 

also located somewhere in the  𝑀 -dimensional space ℝ𝑀 . Each center vector 𝑡𝑘  is a free 

parameter of the RBF ANN to be adjusted during the training phase. Note that the closer the 

coordinates of each center vector 𝑡𝑘 are of the coordinates of a cluster of input data 𝑢, the better 

the approximation performance of the RBF ANN. Note also that the distance between the 

coordinates of each center vector 𝑡𝑘 and the coordinates of an input data vector 𝑢 is given by  

 𝜁 = ‖𝑢 − 𝑡𝑘‖ (2.42) 

where ‖. ‖ is the Euclidian operator, defined by 
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 The standard deviation 𝜎 of the kth Gaussian kernel 𝜑𝑘 controls the reach radius (the 

width of the domain) of the corresponding bell-shaped activation function.  In the context of 

an RBF ANN, 𝜎 defines the average Euclidian distance (average radius) that measures the data 

spreading represented by the kernel φ𝑘(ζ) around its center 𝑡𝑘. The standard deviation 𝜎 is 

also a free parameter of the RBF ANN to be adjusted during the training phase. 

The data which an RBF ANN represent are, therefore, expanded with reference to a 

finite set of activation functions 𝜑𝑘, 𝑘 = 1,2⋯𝐾 , where 𝐾 is chosen based on the universally 

approximation theory (the higher the number of neurons on the hidden layer, the higher the 

precision on the approximation). Each one of these 𝐾 functions are centered in a particular 

coordinate 𝑡𝑘 at the multidimensional space ℝ𝑀 which contains the set of the input vectors  𝑢. 

Thus, the activation function 𝜑𝑘  of the kth neuron, with center at coordinates 𝑡𝑘 , and with 

standard deviation 𝜎𝑘 , is specifically given by 
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Note that Eq. (2.44) can be interpreted as a Probability Density Function (PDF) in the 

context of the data clustering technique called Gaussian Mixture Model (GMM) (BISHOP, 

2006; DIAZ-ROZO; BIELZA; LARRANAGA, 2018; LI et al., 2018). 

Thus, the set of input vectors 𝑢 is represented by the set of 𝐾 kernels 𝜑(𝑡𝑘, 𝜎𝑘
2, 𝑢), 𝑘 =

1,2⋯𝐾 , with the kth kernel output being weighted by the respective ANN synaptic weight 𝑤𝑘. 

The synaptic weight is the memory of the RBF ANN since it stores information during the state 



62 

transitions over the learning process. The learning process is an iterative process, which means 

that it will repeat over and over again along time. Each time it repeats it is called an epoch. 

Each epoch consists of the randomly ordered presentation of all data vectors 𝑢(𝑛) stored in the 

TS to the RBF input nodes. In other words, each vector 𝑢 belonging to the TS is randomly and 

periodically presented to the RBF input. 

 The output 𝑦  is the outcome of all 𝐾  neurons activation functions (kernels) and is 

obtained through the sum of all activation functions φ𝑘  weighted by the corresponding 

synaptic weights 𝑤𝑘. For each iteration 𝑛, in which the 𝑛th vector 𝑢(𝑛) of the TS is presented 

to the RBF input nodes, the RBF yields the output 𝑦(𝑛) 
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=    (2.45) 

 Simultaneously, for each iteration 𝑛, whereby the 𝑛th vector 𝑢 of the TS is presented to 

the RBF input nodes, there is a desired value Υ(𝑛) for the output 𝑦(𝑛). In other words, the 

training is performed with a set of “question and answer” pairs. At each iteration 𝑛, the RBF 

output 𝑦(𝑛) is compared to the desired output Υ(𝑛) and an error 𝑒(𝑛) is obtained by  

 
( ) ( ) ( )e n n y n=  −

  (2.46) 

The SD algorithm uses the obtained instant error 𝑒(𝑛) at iteration n to update the RBF 

ANN free parameters aiming to reduce the instant error at the next iteration n+1. The training 

process goes on, iteration by iteration, comprising an integer number of epochs, until the instant 

error for all training vectors stored in the TS are sufficiently small, situation in which the ANN 

is said to be trained, or, equivalently, the process of minimization of the cost function 𝐽 has 

achieved convergence. The SD updating equations for the RBF ANN free parameters are 

presented in the next sections. 

 The effectiveness of the process of minimization of function 𝐽 is assessed by the Mean 

Square Error Average (MSEA), given by Eq. (2.47). 
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where 𝑁 is the number of the last training vectors 𝑢(𝑛) presented to the ANN input nodes, 

being 𝑁 such that it comprises an integer number of epochs  

When the MSEA reaches an acceptable small value, the ANN learning process is said 

to have converged and the ANN is fit to be used as an approximation of the process represented 

by the TS. 
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The last stage on defining an RBF ANN consists of determining the SD updating 

equations for the RBF ANN. As each one of the ANNs presented in the next sections are 

defined by different update equations, these will be explored in their own sections. 

As already mentioned before in the context of curve approximation algorithms, the 

dimension of the RBF ANN hidden layer is directly related to the ANN capacity to approximate 

a smooth input-output mapping.  The higher the number 𝐾 of kernels in the  RBF hidden layer, 

the higher the approximation accuracy (MHASKAR, 1996; NIYOGI; GIROSI, 1996). The 

number 𝐾 of neurons in the hidden layer of any ANN is arbitrary and it usually determined by 

performance tests of the ANN network (HAYKIN, 2013). The higher the 𝐾, the better the 

output approximation. Nevertheless, 𝐾 can be also determined by the proposed number of 

clusters which the set of input vectors 𝑢 forms. 

The only way to infer this knowledge is to use a clustering algorithm. Several clustering 

algorithms are available in literature, like the popular K-means algorithm (KANUNGO et al., 

2002). Besides inferring an approximation for the number 𝐾 of kernels with respective centers 

a coordinate 𝑡𝑘, the clustering algorithm allows to infer another important parameter: a good 

approximation for the standard deviation 𝜎 initialization, given by 
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where 𝑑𝑡 𝑚𝑎𝑥 is the maximum distance between the radial basis centers 𝑡𝑘 of the RBF ANN. 

Most other ANN has multiple hidden layers where each layer is responsible for a 

characteristic of the information being processed, just as the biological neural network. The 

RBF has a different approach, in fact, it is classified as an ANN only because it behaves as a 

curve fitting (approximation) problem in a high-dimensional space. In summary, for an RBF 

ANN, learning is equivalent to finding a surface in a multidimensional space that provides a 

best fit to the training data set, with criterion for best fit being measured in some statistical 

sense (in this work, the MSEA analysis). Correspondingly, generalization is equivalent to the 

use of this multidimensional surface to interpolate and extrapolate the test data set (HAYKIN, 

2009). 

As this work handles with module and phase representative of phasors of EM waves, 

the data are all complex physical quantities. Bearing it in mind, the RBF network must be able 

to handle complex numbers on the best possible way. Therefore, the RBFs chosen to implement 

the algorithm proposed in this thesis are all complex networks and their respective update rules 

for the free parameters 𝑡, 𝜎 and 𝑤, based on the LMS algorithm (gradient descent), will be 

described in the next sections. 
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2.4.4  C-RBF 

One of the first RBF network to consider problems with complex values was published 

by (HAYKIN, 2013), named Complex-valued Radial Basis Function (C-RBF). 

Complex-valued RBF networks are the extensions of real valued RBF networks for 

operating on complex-valued signals. The C-RBF network has 𝑀  input nodes, 𝐾  hidden 

neurons, and 𝑂 output neurons. The input nodes convey the input signals to all 𝐾 neurons in 

the hidden layer. The neurons in the hidden layer employ the Gaussian activation function of 

Eq. (2.44). Each hidden neuron estimates the localized response for a given input. Finally, the 

𝑂 neurons in the output layer use the weighted sum of the hidden layer responses to generate 

the complex-value output 𝑦 of Eq. (2.45). Figure 17 shows the architecture for a complex-

valued RBF ANN with one single output 𝑦. The selection of a complex-valued RBF is in fact 

the same as that for a real-valued RBF, with some minor modifications. As complex quantities 

will be handled by the network, the centers of the activation functions 𝜑 and the output weights 

𝑤 are complex-valued, however, the response of the hidden neurons remains real-valued. 

This section presents the gradient descent-based update rules for the C-RBF (CASTRO; 

CASTRO, 2005; HAYKIN, 2013).Gradient descent based update rule for 𝑤𝑘(𝑛 + 1)  

For convenience, the update Eq. (2.32) through the gradient descent is repeated above.  

 ( ) ( ) ( )( )1 ww n w n J w n+ = −    (2.49) 

The cost function 𝐽 is given by Eq. (2.35) and the error equation is given by Eq. (2.31)

. From Eq. (2.49), in order to determine 𝑤(𝑛 + 1), it is necessary to find 𝛻𝐽, so we write 
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 Substituting Eq. (2.51) into Eq. (2.30), it is possible to write 
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Which can be expanded into 
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As the desired output ϒ does not depend on the synaptic weights 𝑤, and the derivative 

of 𝜕 𝜕𝑤𝑘⁄  will only exist for the current neuron 𝑘, then it is possible to write 
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Substituting Eq. (2.54) into Eq. (2.50), it is possible to find 
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Finally, replacing Eq. (2.55) into Eq. (2.49), it is possible to obtain the update equation 

for the kth synaptic weight, given by 

 ( ) ( ) ( )( ) ( ) ( ) ( )1k k w k w kw n w n y w n e n n   + = −  − − = +   (2.56) 

The gradient descent-based update rule for the kth kernel center 𝑡𝑘(𝑛 + 1) is obtained 

as follows. Similarly to the Eq. (2.32) , the gradient descent update rule for each 𝑡𝑘 center is  

 ( ) ( )( )1 ( ) tt n t n J t n+ = −    (2.57) 

Just as for the synaptic weights, the cost function 𝐽 is given by Eq. (2.35) and the error 

equation is given by Eq. (2.31). From Eq. (2.57), in order to determine 𝑡(𝑛 + 1), it is necessary 

to find 𝛻𝐽, so we write 
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where 
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 Eq. (2.44), gives the expression for the activation function 𝜑. Substituting Eq. (2.44) 

into Eq. (2.59), it is possible to write 
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By expanding the summation, it is possible to write 

 ( ) ( )
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−−   

−−   
   
   

 −
 −
 
 

 
   

 − =  −  − − − −
  
  

  (2.61) 

As the desired output ϒ does not depend on the radial basis centers 𝑡𝑘 , and the 

derivative of 𝜕 𝜕𝑡𝑘⁄  will only exist for the current neuron 𝑘, then it is possible to write 
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  (2.62) 

Replacing Eq. (2.62) into Eq. (2.58), comes 
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  (2.63) 

Finally, replacing Eq. (2.63) into Eq. (2.57), it is possible to obtain the update equation 

for the radial basis centers, given by 

 ( ) ( ) ( ) ( ) ( ) 2
1 2

2

k
k k t k k

k

u t
t n t n w n e n n 



−
+ = +   (2.64) 

The gradient descent-based update rule for the kth Gaussian kernel variance 𝜎𝑘
2(𝑛 + 1) 

is obtained as follows. Similarly to the Eq. (2.32) , the gradient descent update rule for each 

variance 𝜎𝑘
2  is given by  

 ( ) ( ) ( )( )1n n J n   + = −    (2.65) 

where 𝜎2 = 𝛼 , for convenience.  

Just as for the synaptic weights, the cost function 𝐽 is given by Eq. (2.35) and the error 

equation is given by Eq. (2.31). From Eq. (2.65), in order to determine 𝛼(𝑛 + 1), it is necessary 

to find 𝛻𝐽, so we write 

 ( )
21

2
k

k k

J
J y

 

 
 = =  −

 
  (2.66) 

where 

 ( ) ( )
2

1

2
K

k k

kk k

y y w 
  =

   
 − =  −  − 

   
   (2.67) 

 Eq. (2.44) gives the expression for the activation function 𝜑. Substituting Eq. (2.44) 

into Eq. (2.67), it is possible to write 

 ( ) ( )

2
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k

k

u t
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kk k

y y w e


 

 −
 −
 
 

=

 
   

 − =  −  −
  
  

   (2.68) 

By expanding the summation, it is possible to write 
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  (2.69) 

As the desired output ϒ does not depend on the variances 𝛼𝑘, and the derivative of 

𝜕 𝜕𝛼𝑘⁄  will only exist for the current neuron 𝑘, then it is possible to write 
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  (2.70) 

As 
𝜕

𝜕𝑥
𝑒

(−
𝑐

𝑥
)
=

𝑐

𝑥2 𝑒
(−

𝑐

𝑥
)
, Eq. (2.70) can be re-written as 
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  (2.71) 

Replacing Eq. (2.71) into Eq. (2.66), comes 
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  (2.72) 

Finally, replacing Eq. (2.72) into Eq. (2.65), it is possible to obtain 
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  (2.73) 

And considering that 𝑒(𝑛) = ϒ(𝑛) − 𝑦(𝑛) and 𝛼𝑘 = 𝜎𝑘
2, the update equation for the 

variance is given by 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

( )( )

2

2 2

2
2

k

k k k k

k

u n t n
n n e n w n n

n
   



−
= +   (2.74) 

Moreover, during the RBF ANN training phase, the real part of the error is used to 

update the real part of the network parameters and the imaginary part of the error is used to 

update the imaginary part of the network parameters. Nevertheless, the gradients used are not 

a true representation of the gradient of the target function and hence, will not approximate 

phase accurately, as explained in (SAVITHA; SURESH; SUNDARARAJAN, 2009). 

From Eq. (2.56), (2.64) and (2.74) one can note that though the centers and weights of 

the CRBF network are all complex-valued, the response of the hidden neuron is real-valued, 
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and hence, does not transmit the phase of the complex-valued input signal to the output 

neurons. This affects the phase approximation ability of the network. Besides, it may also be 

observed from the same equations, the gradients use the Real and Imaginary components of 

the complex-valued error and the output weights to update the free parameters of the network. 

This does not capture the correlation between the real-imaginary components of the complex-

valued gradient. Hence, the gradient thus derived, is not a true representation of the true 

complex-valued gradient. This is also due to the fact that the responses at the hidden neurons 

are real-valued. 

 

2.4.5  FC-RBF 

The Fully Complex-Radial Basis Function (FC-RBF) is able to process complex values 

keeping phase information. 

Like the C-RBF network, the FC-RBF network has one input layer, one hidden layer 

and one output layer. The architecture of FC-RBF network is also given by Figure 17. As can 

be observed from the figure, the network has 𝑀 input nodes, 𝐾 hidden neurons and 𝑂 output 

neurons. The input nodes convey the input signals to all 𝐾 neurons in the hidden layer. The 

main difference here is that, at the hidden layer, the localized responses of the inputs are 

computed with a non-linear fully complex-valued activation function 𝜑 . In the article 

(SURESH; SUNDARARAJAN; SAVITHA, 2013) the activation function 𝜑𝑘  for the kth 

hidden neuron is a hyperbolic secant “sech()” function, as follows 

 ( ) ( )( ), , sech
T

k k k kk t u u t  = −   (2.75) 

where the superscript 𝑇 is the transpose operator and 𝜎  is a vector with 𝑀  elements, each 

element corresponding to the complex scaling factor applied to each dimension of the 𝑀th 

dimensional complex valued input data space 𝑢. Note that each one of the 𝑀 complex-valued 

scaling factor in vector 𝜎  plays a role similar to the deviation 𝜎2 in the C-RBF Gaussian 

function. 

The complex-valued 𝑠𝑒𝑐ℎ satisfies the desirable properties of activation functions 𝜑 

for an RBF ANN. It is analytic and bounded almost everywhere, pretty much similar to the 

Gaussian activation function of Eq. (2.44). The small difference in its shape (that defines how 

the network approximates its radial basis centers 𝑡 to the input data 𝑢) is the fundamental 

difference on the network.  
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Figure 19 – Gaussian and sech activation functions 

 

Source: (AUTHOR, 2018). 

As this ANN is fully complex, the first important difference is on how the output 𝑦(𝑛) 

of Eq. (2.30) is written. Eq. (2.76) express this difference 
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 


  (2.76) 

This section presents the gradient descent based update rules for the FC-RBF 

(SURESH; SUNDARARAJAN; SAVITHA, 2013). As this ANN is fully complex, the second 

important difference is on how the cost function 𝐽 of Eq. (2.35) is written. Eq. (2.77) express 

that difference. 

 ( ) ( ) ( ) ( )2 *1 1

2 2
J n e n e n e n= =   (2.77) 

The error 𝑒(𝑛) is still given by Eq. (2.31), except this time both 𝑦 and 𝛶 are complex 

values. 

Similarly to the Eq. (2.32) , the gradient descent update rule for the kth synapses vector 

𝑤𝑘(𝑛 + 1) is given by  

 ( ) ( ) ( )( )1 ww n w n J w n+ = −    (2.78) 

The cost function 𝐽 is given by (2.77) and the error equation is given by Eq. (2.31).  

From Eq. (2.78), in order to determine 𝑤(𝑛 + 1), it is necessary to find 𝛻𝐽, so it is possible to 

write 
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  (2.79) 

Using the chain rule, the derivative of the cost function with respect to the 

real part of 𝑤𝑘 is given by 
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  (2.80) 

And the derivative of the cost function with respect to the imaginary part of 𝑤𝑘 is given 

by 
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Defining Re{𝑒(𝑛)} = −𝜕𝐽 𝜕⁄ Re{𝑦}  and Im{𝑒(𝑛)} = −𝜕𝐽 𝜕⁄ Im{𝑦}  and using the 

following partial derivatives obtained from Eq. (2.76), it is possible to write 
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  (2.82) 

From all Eqs. (2.82) the gradient of the error can be written as 
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  (2.83) 

where the superscript * is the complex-conjugate operator. 

Finally, replacing Eq. (2.83) into Eq, (2.78), it is possible to obtain the update equation 

to the synaptic weight, given by 

 ( ) ( ) ( )*1k k w kw n w n e n + = +   (2.84) 

Similarly to the Eq. (2.32), the gradient descent update rule for the kth kernel scaling 

factor vector 𝜎𝑘(𝑛 + 1) is given by  
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 ( ) ( ) ( )( )1 tn n J n   + = −    (2.85) 

Similarly, the update for the scaling factor 𝜎  requires the gradient of the real cost 

function 𝐽 with respect to the real and imaginary components of 𝜎 is given by Eq. (2.86). Let 

𝑝𝑘 + 𝑗𝑞𝑘 = 𝜎𝑘(𝑢 − 𝑡𝑘) 
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where the derivative of the cost function with respect to the real part of 𝜎 is given by 
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  (2.87) 

And the derivative of the cost function with respect to the imaginary part of 𝜎 is given 

by 
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  (2.88) 

Identifying the partial derivatives of Eq. (2.87) and (2.88), and from Eq. (2.82), (2.76) 

and from the Cauchy-Riemann equation (ALPAY, 2016) that states the following relation 

𝑓𝑎
′(𝑧) = Re{𝑓𝑎} = −𝑗Im{𝑓𝑎}, leads to 

 ( ) ( )( )( )
* ** ' T

k k kk a

k

J
e n w f u t u t




= − −


  (2.89) 

where 𝑓𝑎
′∗ is the complex-conjugate of the derivative of the function 𝑓𝑎. 

And hence 
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 ( ) ( ) ( ) ( )( )( )
* ** '1

T

k k k k kk an n e n w f u t u t   + = + − −   (2.90) 

Similarly to the Eq. (2.32), the gradient descent update rule for the kth kernel center 

𝑡𝑘(𝑛 + 1)  is given by  

 ( ) ( ) ( )( )1 wt n t n J t n+ = −    (2.91) 

Similar derivation for the update of the radial basis centers 𝑡 follows to 
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Where the derivative of the cost function with respect to the real part of 𝑡𝑘 is given by 

Eq. (2.93). 
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  (2.93) 

And the derivative of the cost function with respect to the imaginary part of 𝑡𝑘 is given 

by Eq. (2.94). 
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  (2.94) 

Identifying the partial derivatives of Eq. (2.93) and (2.94), and from Eq. (2.82) and 

from the Cauchy-Riemann equation that states the following relation 𝑓𝑎
′(𝑧) = Re{𝑓𝑎} =

−𝑗Im{𝑓𝑎}, leads to Eq. (2.95). 

 ( ) ( ) ( ) ( )( )
* ** '1

T

k k k k kt k at n t n e n w f u t  + = − −   (2.95) 
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Thus, the complex-valued gradient update rule for the three free parameters (𝑡, 𝑤, 𝜎) of 

the ANN FC-RBF have been summarized as Eq. (2.84), (2.90) and (2.95). 

 

2.4.6  PT-RBF 

Developing efficient neural network algorithms for function approximation, 

classification and array signal processing requires a fully complex-valued networks, capable of 

handling complex-valued inputs with complex-valued weights and thresholds, where not only 

the free parameters but the output 𝑦(𝑛)  and the instantaneous error 𝑒(𝑛) , are complex 

numbers. The Phase Transmittance Radial Basis Function (PT-RBF) is another ANN fully 

complex RBF of this kind. It was proposed by (LOSS et al., 2007) in order to perform the 

process of channel equalization on quadrature digital modulation systems over wireless 

communications. This thesis proposes the use of an ANN PT-RBF suitable to process the 

complex valued information necessary for adaptive beamforming algorithms. When compared 

to the ordinary C-RBF, The PT-RBF allows operations with fully complex numbers on the 

activation functions and on the update equations. When compared to the FC-RBF, the PT-RBF 

operates with a different kernel (a Gaussian one). The activation function 𝜑 used in the 𝑘th 

hidden neuron of the PT-RBF, described by Eq. (2.96), is also fully complex, and although it 

has the real and imaginary part separated, both parts consider each other. 
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      
   = +   (2.96) 

And once again, just like for the FC-RBF in Eq. (2.76), the output 𝑦 of the ANN can be 

written as 

 
𝑦 = ∑ 𝑤𝑘𝜑𝑘 = ∑ (𝑅𝑒{𝑤𝑘} + 𝑗𝐼𝑚{𝑤𝑘})

𝐾

𝑘=1

𝐾

𝑘=1
(𝑅𝑒{𝜑𝑘} + 𝑗𝐼𝑚{𝜑𝑘})

= ∑ (𝑅𝑒{𝑤𝑘}𝑅𝑒{𝜑𝑘} − 𝑗𝐼𝑚{𝑤𝑘}𝐼𝑚{𝜑𝑘}) + 𝑗
𝐾

𝑘=1
(𝑅𝑒{𝑤𝑘}𝐼𝑚{𝜑𝑘} + 𝑗𝐼𝑚{𝑤𝑘}𝑅𝑒{𝜑𝑘})

 (2.97) 

In order to use this algorithm in a beamforming context, it is necessary to go over each 

part. This section presents the gradient descent-based update rules for the PT-RBF (LOSS et 

al., 2007). 

Remembering from Eq. (2.35), the cost function 𝐽 can be written as 

 ( ) ( )21

2
J n e n=   (2.35) 

Once again, the error 𝑒(𝑛) is still given by Eq. (2.31) and both 𝑦 and 𝛶 are complex 

values. 
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Similarly to the Eq. (2.32), the gradient descent update rule for the kth synapses vector 

𝑤𝑘(𝑛 + 1) is given by  

 ( ) ( ) ( )( )1 ww n w n J w n+ = −    (2.98) 

The cost function 𝐽 is given by (2.35) and the error equation is given by Eq. (2.31). 

From Eq. (2.98), in order to determine 𝑤(𝑛 + 1), it is necessary to find 𝛻𝐽, so it is possible to 

write 
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  (2.99) 

Using the chain rule, the derivative of the cost function with respect to the 

real part of 𝑤𝑘 is given by 
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Substituting Eq. (2.97) and (2.31) into Eq. (2.100), it is possible to write 
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As the desired output y does not depend on the synaptic weights 𝑤, and the derivative 

of 𝜕 𝜕𝑤𝑘⁄  will only exist for the current neuron 𝑘, then it is possible to expand Eq. (2.101) into 
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 (2.102) 

Now, the derivative of the cost function with respect to the imaginary part of 𝑤𝑘 using 

the chain rule is given by 
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Substituting Eq. (2.97) and (2.31) into Eq. (2.100), it is possible to write 
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As the desired output ϒ does not depend on the synaptic weights 𝑤, and the derivative 

of 𝜕 𝜕𝑤𝑘⁄  will only exist for the current neuron 𝑘, then it is possible to expand Eq. (2.104) to 
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Finally, replacing both Eq. (2.102) and (2.105) which are the derivatives of the real and 

imaginary error 𝑒 of the cost function 𝐽 of Eq. (2.35) into Eq. (2.99), it is possible to find 

 
( )  ( )  ( )  ( ) 

( )  ( )  ( )  ( ) 

Re Re Im Im

             Im Re Re Im

k k k

k k

J e n n e n n

j e n n e n n

 

 

  = − + 

 − − 

  (2.106) 

but  
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 It is possible then to rewrite Eq. (2.106) as 

 ( ) ( )*

k kJ e n n =   (2.108) 

Finally, replacing Eq. (2.108) into Eq. (2.98), it is possible to obtain the update equation 

to the synaptic weight, given by 

 ( ) ( ) ( ) ( )*1k k w kw n w n e n n + = −   (2.109) 

Similarly to the Eq. (2.32), the gradient descent update rule for the kth kernel center 

𝑡𝑘(𝑛 + 1) is given by  

 

 ( ) ( ) ( )( )1 tt n t n J t n+ = −    (2.110) 

Similar derivation for the update of the radial basis centers 𝑡 follows to 
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In order to solve Eq. (2.111), it is necessary to find its two derivatives of the cost 

function 𝐽 with respect to the real and imaginary part of the radial basis center 𝑡𝑘. As the Cost 

function 𝐽 is written as a function of the output 𝑦, it is then necessary to find its two derivatives 

of the output 𝑦 with respect to the real and imaginary part of the radial basis center 𝑡𝑘. 

Using the chain rule on Eq. (2.111), the derivative of the cost function 𝐽 with respect to 

the real part of 𝑡𝑘 is given by: 
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Where is evident the need for the derivative of the output function 𝑦 with respect to the 

real part of the radial basis center 𝑡𝑘.  

Using the chain rule again on Eq. (2.111), the derivative of the cost function 𝐽 with 

respect to the imaginary part of 𝑡𝑘 is given by: 
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Where it is again evident the need for the derivative of the output function 𝑦 with 

respect to the imaginary part of the radial basis center 𝑡𝑘. 

Now, considering (2.97) and (2.31), the derivatives of the cost function 𝐽 with respect 

to the real and imaginary part of 𝑡𝑘 can be written as following 
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Moving forward, ìn order to solve Eq. (2.111), the four derivatives of the output 𝑦 with 

respect to the radial basis center 𝑡𝑘 must derived. 

Derivatives of the output 𝑦 with respect to the real part of the radial basis center 𝑡𝑘 on 
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Derivatives of the output 𝑦 with respect to the imanigary part of the radial basis center 

𝑡𝑘 on 
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Formulating Eq. (2.114) with Eq. (2.116) and (2.117) 
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And similarly, formulating Eq. (2.115) with Eq. (2.118) and (2.119) 
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Continuing on solving Eq. (2.111), considering Eq. (2.120) and (2.121), it is then 

possible to write 
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 (2.122) 

Finally, writing Eq. (2.122) into Eq. (2.110), it is possible to obtain the update equation 

to the radial basis center 𝑡𝑘, given by 

 

( ) ( ) ( ) 
( )  ( ) 

( ) 

( )  ( ) 

( )  ( ) 

( ) 
( )  ( ) 

( ) 

( )  ( ) 

( )  ( ) 

2

2

Re ReRe Re
1 2 Re

Re Im Im

Re ImIm Im
             Im

Im Im Re

kk

k k t k

k k

kk

k

k k

w n e nu n t n
t n t n n

n w n e n

w n e nu n t n
j n

n w n e n

 





  −
 + = + 
 +  

 − 
 + 
 −  

(2.123) 

Similarly to the Eq. (2.32), the gradient descent update rule for the kth Gaussian kernel 

variance 𝜎𝑘
2(𝑛 + 1) is given by  

 ( ) ( ) ( )( )1n n J n   + = −    (2.124) 

where 𝜎2 = 𝛼 , for convenience.  

Similar derivation for the update of the radial basis centers 𝑡 follows to 

 
   Re Im

k

k k k

J J J
J j

  

  
 = = +

  
  (2.125) 

In order to solve Eq. (2.125), it is necessary to find its two derivatives of the cost 

function 𝐽 with respect to the real and imaginary part of 𝛼. As the Cost function 𝐽 is written as 
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a function of the output 𝑦, it is then necessary to find its two derivatives of the output 𝑦 with 

respect to the real and imaginary part of 𝛼. 

Using the chain rule on Eq. (2.125), the derivative of the cost function 𝐽 with respect to 

the real part of 𝛼𝑘 is given by 
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  (2.126) 

Where is evident the need for the derivative of the output function 𝑦 with respect to the 

real part of 𝛼.  

Using the chain rule again on Eq. (2.125), the derivative of the cost function 𝐽 with 

respect to the imaginary part of 𝛼𝑘 is given by 
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Where it is again evident the need for the derivative of the output function 𝑦 with 

respect to the imaginary part of 𝛼. 

Now, considering Eq. (2.97) and (2.31), the derivatives of the cost function 𝐽 with 

respect to the real and imaginary part of 𝛼𝑘 can be written as following 

 
( )    ( )

 

 
   ( )

 

 
2 Re Im

2 Re Re 2 Im Im
Re Re Rek k k

y y
y y y

  

 
 − = −  − −  −

  
  (2.128) 

 
( )    ( )

 

 
   ( )

 

 
2 Re Im

2 Re Re 2 Im Im
Im Im Imk k k

y y
y y y

  

 
 − = −  − −  −

  
  (2.129) 

Moving forward, just as the derivations for the radial basis center 𝑡, in order to solve 

Eq. (2.125), the four derivatives of the output 𝑦 with respect to 𝛼𝑘 must derived. 

Derivatives of the output 𝑦 with respect to the real part of 𝛼𝑘 on 
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Derivatives of the output 𝑦 with respect to the imanigary part of the radial basis center 

𝑡𝑘 on 
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Formulating Eq. (2.128) with Eq. (2.130) and (2.131)  
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And similarly, formulating Eq. (2.129) with Eq. (2.132) and (2.133) 

 
( )

 
   ( )

 
     ( )      ( )

2

2

Im

Im Im
2Im Im Re Re Re Im Im

Im

k

k

k kk k k

k

y

u t
w u t w u t







 −



−
 = − − − 

  (2.135) 

Continuing on solving (2.125), considering Eq. (2.134) and (2.135), it is then possible 

to write 
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  (2.136) 

Finally, writing Eq. (2.136) into Eq. (2.124), and considering that 𝛼𝑘 = 𝜎𝑘
2 , it is 

possible to obtain the update equation to the radial basis center 𝜎𝑘
2, given by 
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 (2.137) 

Thus, the complex-valued gradient update rule for the three free parameters (𝑡, 𝑤, 𝜎) of 

the ANN FC-RBF have been summarized as Eq. (2.109), (2.123) and (2.137). 

Once all the fundaments for this thesis have been presented, it is time to implement the 

proposed algorithm. The following section shows the implementation of all ANNs presented 

to the beamforming problem and bring foward the parallel between them through simulation. 
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3 PROPOSAL 

This thesis proposes a new beamforming solution based on the PT-RBF ANN  (LOSS 

et al., 2007), to handle static and dynamic wireless operational scenarios. As the PT-RBF has 

phase transmittance between the input and output nodes, it presents characteristics that 

empower its performance when compared with RBF ANNs whose activation function is based 

solely on the Euclidean norm, thus minimizing the phase invariance problem. The phase 

transmittance between the input and output nodes of the PT-RBF ANN allows the beamforming 

algorithm to suppress energy radiation coming from interfering sources and to demodulate the 

received signal with higher gain and lower SER. 

We compare the performance of the PT-RBF based beamforming algorithm with state 

of the art beamformers under the same operational scenarios. The heuristic followed to assess 

and to test the proposed PT-RBF based beamformer is detailed in this section. Furthermore, it 

is also applicable to all other state-of-the-art ANNs. For convenience, some equations will be 

brought back. 

The results are gathered over distinct static and dynamic operational scenarios. The test 

heuristic starts by setting the DOA of the desired signal and the DOAs of the interfering signals, 

so establishing the operational scenario. All these signals impinge the antenna array from 

distinct DOA angles. Then, each scenario is exposed to three levels of SIR (low = -10dB, 

medium = 10dB and high = 35dB), with the SIR expressing the relationship between the desired 

signal power and the interference signals power. For each SIR level, non-linear distortion in 

the analog RF front end of the RX is also introduced, and white Gaussian noise is added to the 

received signal (AWGN). 

The assessment of the comparative results is based on the polar diagram of the array 

gain, showing the gain curve in 𝑑𝐵 as a function of the DOA bearing angle. The polar diagram 

also includes the DOA of the desired signal and the DOAs of the interfering signals.  It is 

expected that, ideally, the beamforming algorithm be able to establishes a polar diagram of the 

array gain such that the gain curve presents nulls in the bearing angles of the DOA of the 

interfering signals and presents a high gain lobe in the bearing angle of the DOA of the desired 

signal.  

The assessment of the comparative results is also based on MSEA plot versus discrete 

time index, in order to show the comparison of the ANNs convergence rate. The assessment 

also uses the plot of the received desired signal symbol set in order to show the conformity 

with respect to the reference constellation symbols. 
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The DOA angle 𝜙 of each signal that impinges the array varies in a dynamic operational 

scenario, since TXs and RX are moving with respect to each other. Therefore, it is possible to 

estimate how a RBF ANN based beamformer is able to follow varying DOAs as a result of 

high speed mobile operation. 

This section is organized in three parts: Section 3.1 describes the array architecture and 

the physical construction of the antenna used to evaluate the proposed beamformer, Section 3.2 

describes the beamforming architecture and the proposed algorithm construction and finally, 

Section 3.3 presents the criteria used to evaluate the results of this work. 

 

3.1 ARRAY ARCHITECTURE 

Figure 20 presents the UCA, a six dipoles antenna array. Each dipole has a load 

impedance of 𝑍𝑇 = 50𝛺, a length of 𝐿 = 𝜆 2⁄  and are spaced between each other by a distance 

of 𝑠 = 𝜆 4⁄ . The UCA arrangement allows to sweep over the spherical coordinate angle 𝜙, so 

that it is easy to point the boresight lobe to any direction on the plane 𝑥𝑦. 

As the current trends on wireless telecommunication area are the 5G mobile network 

and the IoT service, and as the spectrum allocation for 5G in Brazil is still being investigated, 

the frequency chosen to model this thesis is based on the IoT service 𝑓 = 850𝑀𝐻𝑧. For this 

frequency, the dipoles length is 𝐿 = 17,634𝑐𝑚 and the distance between each other dipole is 

𝑠 = 8,817𝑐𝑚. 

 

Figure 20 – UCA’s architecture. Drawn and simulated in CST Microwave Studio 

 

Source: (AUTHOR, 2018). 
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As explained in Section 2.1.2.1, the self and mutual impedances of the array must be 

known so the correct voltage on each element can be further calculated. Following the 

procedures on the mentioned section, the following impedance matrix is obtained 

𝑍 =

[
 
 
 
 
 

78.424 + j45.545 46.9401 − j32.6392 −0.791 − j41.3825 −14.4422 − j34.4374 −0.791 − j41.3825 46.9401 − 32.6392i
46.9401 − j32.6392 78.424 + j45.545 46.9401 − j32.6392 −0.791 − j41.3825 −14.4422 − j34.4374 −0.791 − 41.3825i
−0.791 − j41.3825 46.9401 − j32.6392 78.424 + j45.545 46.9401 − j32.6392 −0.791 − j41.3825 −14.4422 − 34.4374i

−14.4422 − j34.4374 −0.791 − j41.3825 46.9401 − j32.6392 78.424 + j45.545 46.9401 − j32.6392 −0.791 − 41.3825i
−0.791 − j41.3825 −14.4422 − j34.4374 −0.791 − j41.3825 46.9401 − j32.6392 78.424 + j45.545 46.9401 − 32.6392i
46.9401 − j32.6392 −0.791 − j41.3825 −14.4422 − j34.4374 −0.791 − j41.3825 46.9401 − j32.6392 78.424 + 45.545i ]

 
 
 
 
 

 

where the self-impedance of each dipole is 𝑍[1,1] = 78.424 + 𝑗45  and where the mutual 

impedance between dipoles 𝑖 and 𝑗 is given by  𝑍[𝑖, 𝑗]. All matrix elements are expressed in 

ohms (). 

With the mutual impedance matrix 𝑍, the coupling matrix 𝐶 can be calculated, followed 

by normalized response of an individual dipole to the incident wave 𝐻(𝜃, 𝜙) and finally, the 

received voltage 𝑉𝑇 over 𝑍𝑇. 

As the UCA has 6 dipoles, then vector 𝑉𝑇 in Eq. (2.18) has 6 components, each one 

representing the signal received by each respective dipole. As we shall see in the next section, 

these 6 voltages from 𝑉𝑇  are associated to the vector 𝑢  which represents the 𝑀 = 6 input 

nodes of the RBF ANN: 

  1 2, , ,
T

Mu u u u=   (2.138) 

 

3.2 BEAMFORMER IMPLEMENTATION 

PROCEDURES 

The sequence of procedures executed by the beamforming algorithm can be 

summarized by the high-level flow chart of Figure 21 for the static scenario.  

A desired received signal and some interference received signals impinge the UCA of 

6 dipoles. The 6 resulting analog voltage signals at the terminals of each dipole are determined 

by Eq. (2.18), each signal being a component of vector 𝑉𝑇.   

Note that each one of the 6 received signals is firstly sampled by the respective ADC, 

and then it is down-converted and demodulated by the respective RX. Thus, at discrete time n, 

vector 𝑉𝑇 actually stores 6 complex valued samples of the respective 6 down-converted and 

demodulated baseband sequences, each sample corresponding to the IQ symbol of the digital 

modulation that has been received at instant n by the respective dipole of the UCA.    

 Each baseband sequence is then distorted by a non-linear function which emulates the 

non-linear transmittance of the respective receiver analog RF front end. Next, these distorted 
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sequences are assigned to the components of vector 𝑢, which represent the 𝑀 = 6 input nodes 

of the RBF ANN. The RBF ANN is then trained with the TS represented by the set of vectors 

𝑢. For each vector 𝑢 at the RBF ANN input nodes there is a reference IQ symbol as desired 

output. After training, the RBF ANN based beamformer is (ideally) able to generalize, yielding 

a radiation pattern with nulls in the bearing angle of the interference signals and a constellation 

of received IQ symbols from the desired signal that free of interfering signals distortion. The 

flow chart presented in Figure 21 summarizes the high-level procedure adopted for static 

scenarios. 

 

Figure 21 – High level flow chart 

 

Source: (AUTHOR, 2018). 

 

 For dynamic scenarios the procedure follows the pseudocode of Table 2.  

 

 

Table 2 – Dynamic PT-RBF Beamforming Pseudocode 

Step INICIALIZATION 

1 Define array distribution 
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𝑋𝑌𝑍 =

[
 
 
 
 
 

𝑠 0 0
𝑠 cos (𝛼) 𝑠 sin(𝛼) 0

−𝑠 cos (𝛼) 𝑠 sin(𝛼) 0
−𝑠 0 0

−𝑠 cos (𝛼) −𝑠 sin(𝛼) 0
𝑠 cos (𝛼) −𝑠 sin(𝛼) 0]

 
 
 
 
 

 

2 Calculate self and mutual impedances of the array elements based upon The Perturbed 

Biconical Method by Schelkunoff 

𝑍 = 𝑍𝑠𝑐ℎ𝑒𝑙𝑘𝑢𝑛𝑜𝑓𝑓(𝑟𝑎𝑑𝑖𝑢𝑠, 𝜆, 𝑙𝑒𝑛𝑔𝑡ℎ) 

3 Calculate coupling matrix 

𝐶 =
𝑍𝑇 + 𝑍𝐴

𝑍 + 𝑍𝑇𝐼
 

4 Calculate Steering vectors between the K array elements and 𝑚 = 360 points of the 𝜙 

coordinate 

Φ = {
cos (

𝐿
𝜆

𝜋 cos 𝜃𝑚) − 𝑐𝑜𝑠 (
𝜋𝐿
𝜆

)

sin 𝜃𝑚
} 𝑒

𝑗
2𝜋
𝜆

(𝑥𝑘 sin𝜃𝑚 cos𝜃𝑚+ 𝑦𝑘 sin𝜃𝑚 sin𝜙𝑚+𝑧𝑘 cos𝜃𝑚)
 

5 Define training set size 

𝑁 

6 Define number of neurons 

𝐾 

7 Define learning rates 

𝜇𝑤, 𝜇𝜎 , 𝜇𝑡 

8 Initialize synaptic weights 

𝑤 = 𝑧𝑒𝑟𝑜𝑠[𝐾] 

𝑡 =
𝑟𝑎𝑛𝑑[𝐾, 𝐾]

max (𝑟𝑎𝑛𝑑[𝐾, 𝐾])
 

𝜎2 =
𝑚𝑎𝑥(‖𝑡[𝐾, 𝐾]‖2)

𝑚𝑎𝑥{𝑚𝑎𝑥(‖𝑡[𝐾, 𝐾]‖2)}
 

10 Define number X of desired and interfering signals that will impinge on the array 

𝑛 𝐷. 𝑆. = 𝑋 

𝑛 𝐼. 𝑆. = 𝑋 

11 Define sequence of desired and interfering signals 16QAM 

𝐷. 𝑆 =
𝑟𝑎𝑛𝑑(𝐼𝑄 𝑠𝑦𝑚𝑏𝑜𝑙𝑠)

𝑚𝑎𝑥{𝑟𝑎𝑛𝑑(𝐼𝑄 𝑠𝑦𝑚𝑏𝑜𝑙𝑠)}
 

𝐼. 𝑆 =
𝑟𝑎𝑛𝑑(𝐼𝑄 𝑠𝑦𝑚𝑏𝑜𝑙𝑠)

𝑚𝑎𝑥{𝑟𝑎𝑛𝑑(𝐼𝑄 𝑠𝑦𝑚𝑏𝑜𝑙𝑠)}
 

12 Define pilot signal reference to the PT-RBF 

𝑟𝑒𝑓 =  𝐷. 𝑆[1: 𝑁] 
13 Define which impinging signal has its DOA varying 

𝐷. 𝑆.← {𝐷𝑂𝐴 varying, DOA 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡} 
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𝐼. 𝑆.← {𝐷𝑂𝐴 varying, DOA 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡} 
14 Define the DOA variation 

∆ 𝐷𝑂𝐴
= ±1º shift on the 𝜙 coordinate of the impinging signal every R 𝐼𝑄 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 received 

15 Define number of 𝐼𝑄 symbols received for a DOA variation 

𝑅 = 4000 

16 Detect impinging signal over the array 

 

Step TRAINING 

17 Calculate the voltage upon the array given the impinging signal at instant n considering 

the magnitude and phase of the instantaneous electrical field phasor 𝐸0(𝑛) normalized to 1. 

𝑉(𝑛) = Φ𝐸0(𝑛) 

18 Add a non-linearity to the previous voltage 

𝑉(𝑛) = 𝑉(𝑛) − 0.1𝑉(𝑛)3 − 0.05𝑉(𝑛)5 

 

19 Insert the voltage as input data to the PT-RBF 

𝑢(𝑛) = 𝑉(𝑛) 

20 Calculate the activation function of each neuron 𝑘 at instant 𝑛 

𝜑𝑘(𝑛) = 𝑒
(

−1

𝑅𝑒{𝜎𝑘
2}

‖𝑅𝑒{𝑢(𝑛)}−𝑅𝑒{𝑡𝑘(𝑛)}‖
2
)
+ 𝑗 𝑒

(
−1

𝐼𝑚{𝜎𝑘
2}

‖𝐼𝑚{𝑢(𝑛)}−𝐼𝑚{𝑡𝑘(𝑛)}‖
2
)
 

21 Calculate PT-RBF output 

𝑦(𝑛) = ∑ 𝑤𝑘𝜑𝑘

𝐾

𝑘=1

 

22 Calculate PT-RBF error 

𝑒(𝑛) = 𝑟𝑒𝑓(𝑛) − 𝑦(𝑛) 

23 Update free parameters based on the error 

𝑤𝑘(𝑛 + 1) = 𝑤𝑘(𝑛) + 𝜇𝑤𝑒(𝑛)𝜑𝑘
∗(𝑛) 

𝑡𝑘(𝑛 + 1) = 𝑡𝑘 + 𝜇𝑡 {𝑅𝑒{𝜑𝑘(𝑛)}
[𝑅𝑒{𝑢(𝑛)} − 𝑅𝑒{𝑡𝑘(𝑛)}]

𝑅𝑒{𝜎2(𝑛)}
(

𝑅𝑒{𝑤𝑘(𝑛)}𝑅𝑒{𝑒(𝑛)}

+𝐼𝑚{𝑤𝑘(𝑛)}𝐼𝑚{𝑒(𝑛)}
) 

−𝐼𝑚{𝜑𝑘(𝑛)}
𝐼𝑚{𝑢(𝑛)} − 𝐼𝑚{𝑡𝑘(𝑛)}]

𝐼𝑚{𝜎2(𝑛)}
(

𝑅𝑒{𝑤𝑘(𝑛)}𝐼𝑚{𝑒(𝑛)}

−𝐼𝑚{𝑤𝑘(𝑛)}𝑅𝑒{𝑒(𝑛)}
)} 

𝜎𝑘
2(𝑛 + 1) = 𝜎𝑘

2(𝑛)

+ 𝜇𝜎 {|𝑅𝑒{𝑢(𝑛)} − 𝑅𝑒{𝑡𝑘(𝑛)}|
2 𝑅𝑒{𝜑𝑘(𝑛)}

𝑅𝑒{𝜎𝑘
2(𝑛)}2

(
𝑅𝑒{𝑤𝑘(𝑛)}𝑅𝑒{𝑒(𝑛)}

+𝐼𝑚{𝑤𝑘(𝑛)}𝐼𝑚{𝑒(𝑛)}
) 

+𝑗 |𝐼𝑚{𝑢(𝑛)} − 𝐼𝑚{𝑡𝑘(𝑛)}|
2 𝐼𝑚{𝜑𝑘(𝑛)}

𝐼𝑚{𝜎𝑘
2(𝑛)}2

(
𝑅𝑒{𝑤𝑘(𝑛)}𝐼𝑚{𝑒(𝑛)}

−𝐼𝑚{𝑤𝑘(𝑛)}𝑅𝑒{𝑒(𝑛)}
)} 

24 If n < N, go back to step 17, otherwise, go further to step 25 
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Step GENERALIZATION 

25 Calculate the voltage upon the array given the impinging signal at instant n considering 

the magnitude and phase of the instantaneous electrical field phasor 𝐸0(𝑛) 

𝑉(𝑛) = Φ𝐸0(𝑛) 

26 Add a non-linearity to the previous voltage 

𝑉(𝑛) = 𝑉(𝑛) − 0.1𝑉(𝑛)3 − 0.05𝑉(𝑛)5 

27 Insert the voltage as input data to the PT-RBF 

𝑢(𝑛) = 𝑉(𝑛) 

28 Calculate the activation function of each neuron 𝑘 at instant 𝑛 

𝜑𝑘(𝑛) = 𝑒
(

−1

𝑅𝑒{𝜎𝑘
2}

‖𝑅𝑒{𝑢(𝑛)}−𝑅𝑒{𝑡𝑘(𝑛)}‖
2
)
+ 𝑗 𝑒

(
−1

𝐼𝑚{𝜎𝑘
2}

‖𝐼𝑚{𝑢(𝑛)}−𝐼𝑚{𝑡𝑘(𝑛)}‖
2
)
 

29 Calculate signal demodulation through the PT-RBF output  

𝐼𝑄 𝑠𝑦𝑚𝑏𝑜𝑙𝑠(𝑛) = 𝑦(𝑛) = ∑ 𝑤𝑘𝜑𝑘

𝐾

𝑘=1

 

30 Insert the Steering Vectors as input data to the PT-RBF 

𝑢(𝑛) = 𝛷(𝑛) 

31 Calculate the activation function of each neuron 𝑘 at instant 𝑛 

𝜑𝑘(𝑛) = 𝑒
(

−1

𝑅𝑒{𝜎𝑘
2}

‖𝑅𝑒{𝑢(𝑛)}−𝑅𝑒{𝑡𝑘(𝑛)}‖
2
)
+ 𝑗 𝑒

(
−1

𝐼𝑚{𝜎𝑘
2}

‖𝐼𝑚{𝑢(𝑛)}−𝐼𝑚{𝑡𝑘(𝑛)}‖
2
)
 

32 Calculate the radiation pattern through the PT-RBF output  

𝐹(𝑛) = 𝑦(𝑛) = ∑ 𝑤𝑘𝜑𝑘

𝐾

𝑘=1

 

33 If DOA doesn’t change (n < R), go back to step 25. Otherwise, if DOA changes (n = R) 

go back to step 16.  

Source: (AUTHOR, 2018) 

 

3.2.1  Input data 

In order to approximate a real-world operating scenario, the desired signal and the 

interfering signals are generated from a stream of random bits, which are transformed into 𝐼𝑄 

symbols of a 16QAM digital modulation. Additive white Gaussian noise (AWGN) has been 

added to the desired signal to obtain a 35𝑑𝐵  of Signal to Noise Ratio (SNR). Some 

interferences have also been simulated as pure WGN (no information modulated, just random 

noise). Furthermore, all received signals are distorted by a non-linear function which emulates 

the non-linear transmittance intrinsic to a real-world receiver analog RF front end. The non-

linear transmittance is given in terms of the third order and fifth order intermodulation spurious, 
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intercept points IP3 and IP5 (LI et al., 2012; POZAR, 2012), and represented by the following 

polynomial: 

 

 𝑂𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 = 𝐼𝑛𝑝𝑆𝑖𝑔𝑛𝑎𝑙 − 0.1𝐼𝑛𝑝𝑆𝑖𝑔𝑛𝑎𝑙3  −  0.05𝐼𝑛𝑝𝑆𝑖𝑔𝑛𝑎𝑙5                          (2.139) 

 

Figure 22 characterizes the non-linear transmittance expressed by Eq. (2.139) in terms 

of the intercept points IP3 and IP5 for the third order and fifth order intermodulation spurious. 

It is important to consider these nonlinearity parameters because the intermodulation 

interference caused by them cannot be solved with a simple filter as these frequencies are close 

to the carrier frequency and this is a realistic operational condition since linear front ends do 

not exist on real world. 

 

Figure 22– Nonlinear Distortion 

 

Source: (AUTHOR, 2018). 

 

Note that 𝑂𝐼𝑃3 is 12.19 dB above 𝑂𝑃1dB and that 𝑂𝐼𝑃5 is 8.45 dB above 𝑂𝑃1dB, which 

characterizes a considerably non-linear RF front-end, possibly approximating the distortion 

levels of a jamming situation in the RX. 

As 𝑀 is the dimension of the vector 𝑢, the input data 𝑢 can be seen as a point in this 𝑀-

dimensional space ℂ𝑀 . The TS presented to the RBF ANN can be organized as a matrix 

composed by a collection of vectors 𝑢 , in other words, a matrix full of points in the 𝑀-

dimensional space ℂ𝑀. Each one of these points partially describes an unknown process to be 

represented by the RBF ANN. 
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The training data set is composed by 𝑁 vectors 𝑢, which can vary for each scenario. 

The higher the complexity of the scenario (low SIR, high number of signals to null, to beam 

and moving signals), the higher 𝑁 must be in order to the ANN to be able to reach a minimum 

error based on the MSEA criterion. 

Once defined the number 𝑁 of training vectors 𝑢, it is necessary to provide the ANN 

with the desired output 𝛶 to the nth input vector 𝑢. The desired output 𝛶 is the transmitted 

symbol of the 16QAM constellation normalized by the factor (1 √10⁄ ), so the maximum 

energy per symbol never exceeds 1. Such normalization speeds up the convergence of the ANN 

training process.  

 

3.2.2  Training Mode 

The proposed RBF ANN based beamformer employs a reference (=desired) signal to 

estimate the ANN free parameters (𝑡𝑘, 𝑤𝑘, 𝜎𝑘
2) as shown in Figure 23. The array output (ANN 

input) 𝑢(𝑛) = [𝑢1(𝑛), 𝑢2(𝑛)⋯𝑢6(𝑛)]  is processed by the non-linear mapping 𝜑𝑘(𝑛) of the 

𝐾  neurons in the ANN hidden layer, whose outputs are linearly combined by the 𝑤𝑘(𝑛) 

weights yielding output 𝑦(𝑛). The output 𝑦(𝑛) is subtracted from the reference (=desired) 

output  𝛶(𝑛) to generate the error signal 𝑒(𝑛), which is used to control the free parameters 

update. The parameters are iteratively adjusted such that the MSEA between the RBF ANN 

output and the reference signal is minimized. 

Each discrete time instant n the input data vector 𝑢 feeds the RBF ANN, all 𝑀 elements 

are distributed to all 𝐾 neurons. The number of neurons is chosen experimentally based upon 

a process of best fit, where multiple processes are performed with different parameters. The 

best result (faster convergence, lowest error), is chosen as the best fit and its neuron number is 

set as 𝐾. 
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Figure 23 - Proposed ANN architecture 

 

Source: (AUTHOR, 2018) 

 

 The diagram of Figure 23 expresses the training process for all three RBF ANN 

compared in this thesis: PT-RBF (here proposed for beamforming), C-RBF and FC-RBF. 

The number 𝐾 of neurons for each RBF ANN, obtained experimentally as discussed above, 

is:  

I. PT-RBF:  𝐾 = 16 

II. C-RBF: 𝐾 = 11 

III. FC-RBF: 𝐾 = 22  

IV. The LMS algorithm, as shown in Figure 14, has a number 𝐾 = 6 of neurons, which is 

equal to the size of the input vector 𝑢. 

The performance of any RBF ANN depends largely on the activation function adopted, 

the number of neurons in the hidden layer, the learning rate parameters and the initialization of 

the weights and radial basis centers. 

For the initialization of the radial basis centers 𝑡𝑘 , it is usual to run a clustering 

algorithm, so it can get as close as possible to the optimum position on the 𝑀-dimensional 

space ℂ𝑀 (KANUNGO et al., 2002). However, as this process hasn’t shown the best result, 

thus, in this work real and imaginary parts of each component of vector  𝑡𝑘   have been 

initialized randomly, on the range [−1,1]. For the parameter 𝜎𝑘
2, which define the radius of 
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influence of the kernel 𝜑𝑘, a good initialization approach is to find the largest distance between 

all the kernel centers 𝑡𝑘, so that the radius of influence of all kernels 𝜑𝑘 can encompass the 

maximum number of data points distributed in  ℂ𝑀. The synaptic weights 𝑤𝑘 are all initialized 

with 0 + 𝑗0,  so they can gradually change as the RBF ANN learns. 

The next step on the initialization of the RBF ANN is to define the learning rate of each 

free parameter (𝜇𝑡, 𝜇𝑤 , 𝜇𝜎). Again, the experimental best fit process is employed and the best 

result for a set of trials is chosen. Figure 24 (b) to (d) shows such process for the PT-RBF, 

where each set of test of the learning rates has 20  elements and goes from 8 × 10−1  to 

1 × 10−5 and the test set for the number of neurons goes from 𝐾 = 2 to 𝐾 = 20. These tests 

were performed by calculating the residual error (MSEA) for different PT-RBF ANN 

configurations. It is possible to see, from Figure 24, that the beginning of the training is 

characterized by a high MSEA. As the PT-RBF ANN “learns” (as the training vectors 𝑢(𝑛) =

[𝑢1(𝑛), 𝑢2(𝑛)⋯𝑢6(𝑛)]  are presented to the ANN input nodes as discrete time index n 

increases), the residual MSEA decreases. The lower the MSEA, more precisely the PT-RBF 

ANN will approximate 𝑦  from 𝛶 . From Figure 24 a, 11 neurons were chosen since they 

performed an acceptable result (a low residual error and a fast convergence rate) with fewer 

neurons. It is also possible to see that, with 20 neurons, the ANN presents a lower residual 

error, but with a cost of a much higher computational performance. The same method of choice 

was applied to find the best learning rate parameters on Figure 24 b, c and d. 

 

Figure 24 - Best fit test for: (a) number of neurons; (b) variance learning step 𝝁𝝈; (c) radial basis center learning 

rate 𝝁𝒕; (d) synaptic weight learning step 𝝁𝒘. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Source: (AUTHOR, 2018). 

 

 From Figure 24, Table 3 shows the best learning rates experimentally found for the PT-

RBF operating in the context of the beamforming algorithm and operating under specific 
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scenarios. These experimental best fit processes, in which the best result for a set of trials is 

chosen, were also conducted for the beamformers based upon the algorithms C-RBF, FC-RBF 

and LMS for the same operational scenarios. 

 

Table 3 – Learning rate constants 

 C-RBF FC-RBF PT-RBF LMS 

𝝁𝒘 6 × 10−2 1 × 10−1 6 × 10−1 1 × 10−1 

𝝁𝒕 1 × 10−3 1 × 10−4 4× 10−3 

𝝁𝝈 1 × 10−3 6 × 10−1 8 × 10−5 

Source: (AUTHOR, 2018) 

 

After the initialization procedures, the training process goes on so that the free 

parameters are iteratively adjusted. Consequently, the MSEA between the RBF ANN output 

sequence 𝑦(𝑛) and the reference training sequence 𝛶(𝑛) is minimized, as described before. 

  For the PT-RBF, at each iteration n, the activation function 𝜑𝑘(𝑛) determines the 

Euclidian distance between the input data vectors 𝑢(𝑛) = [𝑢1(𝑛), 𝑢2(𝑛)⋯𝑢𝑀(𝑛)] in the 𝑀-

dimensional space ℂ𝑀  and each center vector 𝑡𝑘(𝑛), distance that is mapped through two 

Gaussian functions, one real and another imaginary, as follows.  

 ( )
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      
   = +   (2.96) 

It is possible to see the influence of the free parameters over the activation function. 

Once the neurons have been activated, their individual values are weighted by the synaptic 

weights 𝑤𝑘. As in the biological model, every neuron must be weighted in order to consider a 

degree of importance of that neuron over the overall network answer. Following the diagram 

of Figure 23 , the ANN then sums all the neurons output and bring forth the network output 

𝑦(𝑛). This output is tested with the reference output ϒ(𝑛) already provided to the ANN (the 

first 𝑁 16QAM symbols of the desired signal) by a simple subtraction. The difference, or the 

error 𝑒(𝑛), is finally responsible to feed the update equation of the free parameters, once again, 

repeated below for convenience. 

 ( ) ( ) ( ) ( )*1k k w kw n w n e n n + = −   (2.109) 
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 The free parameters, responsible for storing the knowledge, are adjusted over the 𝑁 

training data vectors.  

The PT-RBF training process can be compiled and comprehended as follows. 

I. The learning process is iterative, in other words, it runs by interactions. A training will 

have 𝑁  iteractions, where 𝑁  is the number of questions/answers pairs provided to the 

ANN. The higher the 𝑁, more specialist the network will be; 

II. At iteration 𝑛, a set of input data 𝑢(𝑛) that partially represent an unknown process is 

presented to the ANN. The desired output ϒ(𝑛) is also presented to the ANN. It is expected 

the ANN to return an output 𝑦(𝑛) as close as possible from ϒ(𝑛); 

III. The dimension 𝑀 of the input data set 𝑢 defines the dimension of the radial basis centers 

𝑡 . Both 𝑢  and 𝑡  are points in a 𝑀 -dimensional space ℂ𝑀  and the ANN goal is to 

approximate its center from the input data, in order to best represent them; 

IV.  The real and imaginary parts of each component of vector  𝑡𝑘  are initialized randomly, 

on the range [−1,1]. The variances 𝜎𝑘
2 are initialized with the largest distance between all 

the kernel centers 𝑡𝑘. The synaptic weights 𝑤𝑘 are all initialized with 0 + 𝑗0.   

V. The ANN will have 𝐾 activation functions (𝐾 neurons), where 𝐾 is a number set by the 

network architect upon the experimental best-fit performance test. Usually, the higher 𝐾 

is, more faithful the ANN will approximate its output 𝑦(𝑛) to the desired output ϒ(𝑛) at a 

higher computational cost; 

VI. A given input data vector 𝑢(𝑛) feeds commonly all activation functions 𝜑𝑘; 

VII. The activation functions are fired. Each activation function 𝜑𝑘 is defined by a PDF of a 

Gaussian function with radius equal to the deviation pattern given by the variance 𝜎2 and 
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module equal to the Euclidian distance between the input data 𝑢(𝑛) and the radial basis 

center  𝑡𝑘(𝑛), of its respective neuron; 

VIII. The result of each activation function 𝜑𝑘  is then weighted by a value called synaptic 

weight 𝑤𝑘. Such value defines how important (on the approximation process) is the result 

of 𝜑𝑘; 

IX. Then, the PT-RBF sums all Gaussians weighted from all neurons, creating a new PDF 

composed by multiples Gaussians between the input data 𝑢(𝑛) and its respective radial 

basis center 𝑡𝑘(𝑛) by using the Euclidian distance; 

X. Finally, the result of this last sum is the network’s output 𝑦(𝑛), and shall be as close as 

possible to the reference output ϒ(𝑛), which has already been presented to the network. 

XI. A convergence test is performed, subtracting the reference output ϒ(𝑛) from the ANN 

output 𝑦(𝑛). The resultant difference is the error 𝑒(𝑛); 

XII. A threshold ℇ for the MSEA (an acceptable error) is defined; 

XIII.  If the error MSEA(𝑛) is lower than the threshold ℇ, then the ANN is said to be trained. 

Otherwise, the error 𝑒(𝑛) feeds back the free parameters (𝑡𝑘, 𝑤𝑘, 𝜎𝑘
2) update equations; 

XIV. The current iteration (𝑛) ends and a new iteration (𝑛 + 1) starts with the same steps 

adopted for the last one, until the ANN convergence; 

XV. The convergence process can take many iteration processes, depending on the complexity 

of the function to approximate. 

 

3.2.3  Execution Mode  

The execution mode can be summarized in only one single step: 

I. On execution, the free parameters (𝑡𝑘, 𝑤𝑘, 𝜎𝑘
2 ) are already adjusted, and the process 

consists of presenting the new input data vector 𝑢 to the ANN, vector that has not been 

presented to the ANN before, and computing the ANN ouput y. 

On proper initialization, configuration and training, the ANN RBF is able to generalize 

the learning process, so that the beamformer will be able to demodulate the received desired 

signal and to set up an optimum radiation pattern for the given operational scenario of the UCA 

array. 
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3.3 ASSESMENT CRITERIA  

The performance comparison between the beamforming solutions is based on the 

resulting radiation diagram, on the resulting constellation of the received IQ symbols and on 

the plot of the MSEA versus discrete time. 

  Ideally, the resulting radiation diagram should present nulls on the bearing angles of 

the interfering signals and should present a high gain lobe on the bearing angle of the desired 

signal. Likewise, ideally, the constellation of the received IQ symbols should be minimally 

dispersed around the 16-QAM reference symbols in order to minimize the SER. Also, the 

MSEA curve should ideally drop in the shortest possible time interval, attaining the lowest 

possible value after convergence of the adaptive process.  

The convergence occurs when the average error reaches a value small enough 𝑒(𝑛) ⇾

ℇ. Within the context of function regression, MSEA indicates the proximity that a regression 

line is from a set of points. Specifically, the MSEA computes the distances (errors) from the 

points to the regression line raised to the 2nd power. However, as the error at the PT-RBF ANN 

output is a complex value, the magnitude operator must be previously applied, as shown once 

again 

 ( ) ( )
2

1

1 N

n

MSEA d n y n
N =

= −   (2.47) 

For all LMS and RBF networks simulated in Matlab, a threshold of 10−4 has been set 

for the end of the training process. Different ANNs and different operating scenarios demand 

a different number 𝑁 of training data IQ symbols in order reach a specific threshold. Figure 25 

shows how each simulated ANN performs in order to reach a threshold of 10−4 on a scenario 

with one desired signal at 𝜙 = 30° and one interference of pure WGN with 5𝑑𝐵𝑊 (SIR =

35𝑑𝐵) of power at 𝜙 = 210°. The non-linearity at the RF front end was not included, so that 

this represents an ideal operational situation since a practical RF front end will always present 

some degree of non-linearity. 

 

 

 

 

 

 

 

  



97 

Figure 25 – MSEA's performances 
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(b) 
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Source: (AUTHOR, 2018). 

In the ideal operational situation in which the RF front end is free of non-linearity, from 

(b), it is already possible to infer that the C-RBF requires much more training data in order to 

reach the same MSEA threshold. This behavior is seen in all simulations and makes this 

network the slowest one. From (d), it is possible to infer that LMS needed less training data to 

reach the lower error level. From (c), it is possible to infer that the FC-RBF has a fast 

convergence at the beginning of the training, which is great for a dynamic system. Finally, 

from (a), it is possible to infer that the PT-RBF has performed the SD algorithm more smoothly, 

finding fewer local minima.  

For a visual interpretation of the MSEA’s behavior, Figure 26 shows the performance 

of the proposed algorithm for the same scenario described for Figure 25. One can see that 

Figure 26 (a), (b) and (c) reached the threshold of  10−1 with around 67 𝐼𝑄 symbols, Figure 26 

(d), (e) and (f) reached the threshold of  20−2 with around 2400 𝐼𝑄 symbols and Figure 26 (g), 

(h) and (i) reached the threshold of  10−3 with around 7500 𝐼𝑄 symbols. The 𝐼𝑄 symbols are 

presented to the ANN as input data 𝑢. 
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Figure 26 – MSEA, beamformer and demodulation performance for the following thresholds: (a), (b) and (c) 70 input training 

data, (d), (e) and (f) 2500 input training data and (g) (h) and (i) 8000 input training data 
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Source: (AUTHOR, 2018). 
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 Note from the MSEA curve in Figure 26(g) that there are three distinct phases separated 

by the read lines. In the first phase, initially the MSEA is high and the slope of the MSEA curve 

is small. As the training advances and the cost function is minimized by the SD algorithm, the 

slope of the MSEA curve becomes negative so that the MSEA is reduced along time in a rate 

that is proportional to the absolute value of the curve negative slope. By the end of the training, 

the third phase, the slope of the MSEA curve becomes small again, indicating the ANN 

convergence (ready to start the execution).  In the execution, new input data 𝑢 (new IQ symbols 

which haven’t been part of the TS) are applied to the already trained PT-RBF ANN, with the 

free parameters (𝑡, 𝑤, 𝜎2) already stabilized around its values after the SD convergence. Note 

the ANN generalization capability on the execution, since new input IQ symbols which haven’t 

been part of the TS are fed to the ANN inputs, and, even so, the ANN is able to infer a proper 

output based on the extrapolation of the underlying stochastic process learnt from the TS. 
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4 PERFORMANCE EVALUATION 

This section presents the performance of the proposed PT-RBF beamforming solution. 

Simulation results are compared with the results of other beamforming techniques proposed in 

literature (FC-RBF, C-RBF, LMS). The proposed beamforming is evaluated in static and 

dynamic scenarios. In static scenarios, the signal of interest and the interfering signals do not 

change the DOA during the whole simulation.  In dynamic scenarios, the interfering or desired 

signal moves around the receiving UCA.  

For each scenario, the following performance parameters are evaluated:  

I. The radiation pattern given a desired signal (D.S) and one or more interfering signal (I.S); 

II. The demodulated D.S SER; 

Also, for some scenarios: 

III. The beamforming convergence rate through the analysis of the MSEA curve. 

Apart from the simulations presented in this Chapter, further simulations are found in 

Appendix B. 

 

4.1 STATIC SCENARIOS 

At static scenarios, the proposed beamformer has been evaluated for different SIR levels 

with and without non-linearity (NL) at the front end. Also, different DOAs, symmetric and 

asymmetric around a reference bearing angle, have been analyzed. Table 4 presents the 

evaluated static scenarios. 

 

Table 4 – Summary of static scenarios. 

Scenario N° I.S. I.S. DOA D.S. DOA D.S. SNR SIR NL 

1 1 270° 1° 35dB -10dB yes 

2 1 270° 1° ∞ 35dB yes 

3 2 150°,300° 30° 35dB 35dB no 

4 2 150°,300° 30° 35dB 10dB yes 

5 3 150°,210°,270° 90° ∞ -10dB yes 

6 3 150°,210°,270° 90° ∞ -10dB no 

7 9 60°,90°,120°,150°,180°, 

210°,240°,270°,300°,330° 

1° ∞ -10dB no 

Source: (AUTHOR, 2018). 

 

The results of each scenario are organized in five graphics, which present: 
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I. The comparison of the radiation diagram obtained after the convergence of the four 

beamforming algorithms (PT-RBF, C-RBF, FC-RBS and LMS); 

II. The individual radiation diagram obtained with each beamforming approach; 

III. The received symbol constellation at the beamforming output;  

IV.The MSEA curve of each beamforming approach; 

V. A table summarizing the scenario results. 

It is important to notice that all radiation diagrams in dB are normalized to a maximum 

received intensity of 0𝑑𝐵𝜇 𝑉 𝑚⁄  , since the purpose is to express gain and not field strength. 

Besides, as the radiation pattern diagram has a logarithm scale, it might look different from the 

overall graphic with all networks to the individual performances because the minimum value 

varies. Nevertheless, they represent the same outcome. 

 

4.1.1  Scenario 1 

The first evaluated static scenario has the desired user signal coming from the bearing 

angle  𝜙 = 1° and one interference signal coming from 𝜙 = 270°. WGN was added to the 

desired signal so that SNR = 35𝑑𝐵. The relation between the power of the desired signal and 

the power of the interfering signal is given by SIR = −10𝑑𝐵 . Finally, the non-linearity 

expressed by Eq (2.140)  is introduced at the RF front end  in order to implement a  more 

realistic simulation. It is possible to see, from Figure 27 (a), that the PT-RBF presented the 

highest attenuation of the interference signal. Note from Figure 27 (b) – (i) that, except the FC-

RBF, all others beamformers yielded zero SER. Thus, from Figure 27, it is possible to infer 

that PT-RBF presented superior performance in this very low SIR (= high interference power) 

non-linear scenario in comparison to the other evaluated solutions. 
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Figure 27 – Static case 1. (a) Radiation pattern diagram comparing all beamformers gains, (b) radiation pattern 

diagram for PT-RBF beamformer and (c) 16QAM constellation presenting the gain and SER respectively for PT-

RBF beamformer, (d) radiation pattern diagram and (e) 16QAM constellation presenting the gain and SER 

respectively for C-RBF beamformer, (f) radiation pattern diagram and (g) 16QAM constellation presenting the 

gain and SER respectively for FC-RBF beamformer, (h) radiation pattern diagram and (i) 16QAM constellation 

presenting the gain and SER respectively for LMS beamformer. 

 
(a) 

  



106 

 
(b) 

 

 
(c) 



107 

 
(d) 

 

 
(e) 



108 

 
(f) 

 

 
(g) 



109 

 
(h) 
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Source: (AUTHOR, 2018).  
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Table 5 – Summary of static case 1 

D.S. DOA @ 𝟏° Gain [dB] 

PT-RBF C-RBF FC-RBF LMS 

I.S. DOA @ 𝟐𝟕𝟎° −22.9 −8.6 −9.9 −10 

 

SER 𝟎 𝟎 𝟐. 𝟓 . 𝟏𝟎−𝟓 𝟎 

Source: (AUTHOR, 2018). 

 

4.1.2  Scenario 2 

Scenario 2 has the desired user signal coming from the bearing angle 𝜙 = 1° and one 

interference signal coming from 𝜙 = 210°. There is no WGN added to the desired signal, so 

that SNR = ∞. The relation between the power of the desired signal and the power of the 

interfering signal is given by SIR = 35𝑑𝐵. Finally, the non-linearity expressed by Eq (2.141)  

is introduced at the RF front end  in order to implement a  more realistic simulation. It is 

possible to see, from Figure 28 (a), that the C-RBF has presented the highest attenuation of the 

interference signal. All other beamformers had a very similar response. Note from Figure 28 

(b) – (i) that the FC-RBF beamformer was the only one that presented symbol errors on 

demodulation. All other beamformers yielded zero SER. Note from Figure 28 that the C-RBF 

performed better in this moderate SIR (moderate interference power) non-linear scenario. The 

proposed PT-RBF performed similarly to the FC-RBF and to the LMS, presenting zero SER 

and gains at the I.S DOA of −10.6𝑑𝐵,−10.4𝑑𝐵 and −11.3𝑑𝐵 respectively.  
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Figure 28 – Static case 2. (a) Radiation pattern diagram comparing all beamformers gains, (b) radiation pattern 

diagram for PT-RBF beamformer and (c) 16QAM constellation presenting the gain and SER respectively for PT-

RBF beamformer, (d) radiation pattern diagram and (e) 16QAM constellation presenting the gain and SER 

respectively for C-RBF beamformer, (f) radiation pattern diagram and (g) 16QAM constellation presenting the 

gain and SER respectively for FC-RBF beamformer, (h) radiation pattern diagram and (i) 16QAM constellation 

presenting the gain and SER respectively for LMS beamformer. 
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 (i) 

Source: (AUTHOR, 2018). 

 

 

 

 

 

 

  



116 

Table 6 - Summary of static case 2 

D.S. DOA @ 𝟏° Gain [dB] 

PT-RBF C-RBF FC-RBF LMS 

I.S. DOA @ 𝟐𝟏𝟎° −10.6 −18.5 −10.4 −11.3 

 

SER 𝟎 𝟎 𝟏. 𝟖𝟕 . 𝟏𝟎−𝟓 𝟎 

Source: (AUTHOR, 2018). 

 

4.1.3  Scenario 3 

Scenario 3 has the desired user signal coming from the bearing angle 𝜙 = 30° and two 

interfering signals coming from 𝜙 = 150° and 300°. WGN is added to the desired signal so 

that SNR = 35𝑑𝐵.  The relation between the power of the desired signal and the power of each 

interfering signal is given by SIR = 35𝑑𝐵. In this scenario, the non-linearity at the front end 

was not introduced. It is possible to see, from Figure 29 (a), that the C-RBF and the FC-RBF 

have similar performance yielding the highest attenuation of the interference signals. However, 

from Figure 29 (b) – (i), it is possible to see that, although C-RBF and FC-RBF yielded good 

attenuation of the interference signals, they fail on demodulating the received IQ symbols, 

presenting a SER = 0.265 and 0.00003 respectively. The PT-RBF and the LMS resulted zero 

SER, with the LMS presenting the received IQ symbols minimally dispersed around the 16-

QAM reference symbols. Thus, from Figure 29, it is possible to infer that LMS performs better 

in a moderate SIR linear scenario.  
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Figure 29 – Static case 3. (a) Radiation pattern diagram comparing all beamformers gains, (b) radiation pattern 

diagram for PT-RBF beamformer and (c) 16QAM constellation presenting the gain and SER respectively for PT-

RBF beamformer, (d) radiation pattern diagram and (e) 16QAM constellation presenting the gain and SER 

respectively for C-RBF beamformer, (f) radiation pattern diagram and (g) 16QAM constellation presenting the 

gain and SER respectively for FC-RBF beamformer, (h) radiation pattern diagram and (i) 16QAM constellation 

presenting the gain and SER respectively for LMS beamformer. 
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Source: (AUTHOR, 2018). 
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Table 7 – Summary of static case 3 

D.S. DOA @ 𝟑𝟎° Gain [dB] 

PT-RBF C-RBF FC-RBF LMS 

I.S. DOA @ 𝟏𝟓𝟎° −10.1 −19 −12 −9.5 

I.S. DOA @ 𝟑𝟎𝟎° −9.5 −11.5 −11.3 −8.5 

 

SER 𝟎 𝟎. 𝟐𝟔𝟑𝟏𝟐 3 . 𝟏𝟎−𝟓 𝟎 

Source: (AUTHOR, 2018). 

 

4.1.4  Scenario 4 

This scenario has the desired user signal coming from the bearing angle 𝜙 = 1° and 

two interfering signals coming from 𝜙 = 150° and 300°. WGN is added to the desired signal 

so that SNR = 35𝑑𝐵.  The relation between the power of the desired signal and the power of 

each interfering signal is given by SIR = 10𝑑𝐵. Finally, the non-linearity expressed by Eq 

(2.142)  is introduced at the RF front end  in order to implement a more realistic simulation. It 

is possible to see, from Figure 30 (a), that PT-RBF has presented the highest attenuation of the 

interference signals. Note from Figure 30 (b) – (i) that the C-RBF was the only beamformer 

that presented a non-zero SER. All other beamformers yielded zero SER. Thus, from Figure 

30, it is possible to infer that the PT-RBF performs better in a low SIR and non-linear scenario. 
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Figure 30 – Static case 4. (a) Radiation pattern diagram comparing all beamformers gains, (b) radiation pattern 

diagram for PT-RBF beamformer and (c) 16QAM constellation presenting the gain and SER respectively for PT-

RBF beamformer, (d) radiation pattern diagram and (e) 16QAM constellation presenting the gain and SER 

respectively for C-RBF beamformer, (f) radiation pattern diagram and (g) 16QAM constellation presenting the 

gain and SER respectively for FC-RBF beamformer, (h) radiation pattern diagram and (i) 16QAM constellation 

presenting the gain and SER respectively for LMS beamformer. 
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Source: (AUTHOR, 2018). 
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Table 8 – Summary of static case 4 

D.S. DOA @ 𝟑𝟎° Gain [dB] 

PT-RBF C-RBF FC-RBF LMS 

I.S. DOA @ 𝟏𝟓𝟎° −11.5 −10.4 −10.2 −9.5 

I.S. DOA @ 𝟑𝟎𝟎° −15.1 −11.5 −8.6 −8.5 

 

SER 𝟎 𝟎. 𝟓𝟖𝟓𝟒𝟒 𝟎 𝟎 

Source: (AUTHOR, 2018). 

 

4.1.5  Scenario 5 

Scenario 5 has the desired user signal coming from the bearing angle 𝜙 = 91° and three 

interfering signals coming from 𝜙 = 151°, 211° and 271°. No WGN is added to the desired 

signal so that SNR = ∞.  The relation between the power of the desired signal and the power 

of each interfering signal is given by SIR = −10𝑑𝐵. The non-linearity expressed by Eq (2.143)  

is introduced at the RF front end  in order to implement a more realistic simulation. It is possible 

to see, from Figure 31 (a), that PT-RBF has presented the highest attenuation of the interference 

signals. From Figure 31 (b) – (m), it is possible to infer that, given the very low SIR, all 

beamformers yielded non-zero SER. Note also from the MSEA plots in Figure 31 that the LMS, 

the FC-RBF, the PT-RBF and the C-RBF beamformers took respectively 𝑁 =

2000, 7000, 10000  and 25000  discrete time instants until convergence is achieved. This 

MSEA behavior has been observed in all simulations, with the LMS presenting the fastest 

convergence rate and the C-RBF presenting the slowest convergence rate. Note also from 

Figure 31 that the PT-RBF performs better in this very low SIR non-linear operating scenario, 

yielding the lowest SER = 0.0009.  
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Figure 31 – Static case 5. (a) Radiation pattern diagram comparing all beamformers gains, (b) radiation pattern 

diagram, (c) 16QAM constellation and (d) residual error curve presenting the gain, SER and MSEA respectively 

for PT-RBF beamformer. (e) radiation pattern diagram, (f) 16QAM constellation, (g) residual error curve 

presenting the gain, SER and MSEA respectively for C-RBF beamformer, (h) radiation pattern diagram, (i) 

16QAM constellation and (j) residual error curve presenting the gain, SER and MSEA respectively for FC-RBF 

beamformer, (k) radiation pattern diagram, (l) 16QAM constellation and (m) residual error curve presenting the 

gain, SER and MSEA respectively for LMS beamformer. 
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Source: (AUTHOR, 2018). 

 

Table 9 – Summary of static case 5 

D.S. DOA @ 𝟗𝟏° Gain [dB] 

PT-RBF C-RBF FC-RBF LMS 

I.S. DOA @ 𝟏𝟓𝟏° −10.4 −7.5 −8.6 −8.5 

I.S. DOA @ 𝟐𝟏𝟏° −16.6 −11.7 −12.7 −9.9 

I.S. DOA @ 𝟐𝟕𝟏° −10.4 −10.9 −9.7 −11 

 

SER 𝟗 . 𝟏𝟎−𝟒 𝟎. 𝟏𝟑𝟏𝟒 𝟎. 𝟎𝟐𝟔𝟏𝟒𝟑 0.686 

Source: (AUTHOR, 2018). 

 

4.1.6  Scenario 6 

Scenario 6 has the desired user signal coming from the bearing angle 𝜙 = 91° and three 

interfering signals coming from 𝜙 = 151°, 211° and 271°. T No WGN is added to the desired 

signal so that SNR = ∞. The relation between the power of the desired signal and the power 

of each interfering signal is given by SIR = −10𝑑𝐵. In this scenario, the non-linearity at the 

front end was not introduced. It is possible to see, from Figure 32 (a), that all beamformers 

presented similar attenuation of the interference signals. From Figure 32 (b) – (m), however, 

we see that the only beamformers capable of demodulating without symbol error is the LMS 

and the PT-RBF. Therefore, from Figure 32, it is possible to infer that the LMS and the PT-

RBF performs better in this linear very low SIR scenario. 
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Figure 32 – Static case 6. (a) Radiation pattern diagram comparing all beamformers gains, (b) radiation pattern 

diagram, (c) 16QAM constellation and (d) residual error curve presenting the gain, SER and MSEA respectively 

for PT-RBF beamformer. (e) radiation pattern diagram, (f) 16QAM constellation, (g) residual error curve 

presenting the gain, SER and MSEA respectively for C-RBF beamformer, (h) radiation pattern diagram, (i) 

16QAM constellation and (j) residual error curve presenting the gain, SER and MSEA respectively for FC-RBF 

beamformer, (k) radiation pattern diagram, (l) 16QAM constellation and (m) residual error curve presenting the 

gain, SER and MSEA respectively for LMS beamformer. 
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Source: (AUTHOR, 2018). 

 

Table 10 – Summary of static case 6 

D.S. DOA @ 𝟗𝟏° Gain [dB] 

 PT-RBF C-RBF FC-RBF LMS 

I.S. DOA @ 𝟏𝟓𝟏° −17.1 −8.3 −6.9 −8.2 

I.S. DOA @ 𝟐𝟏𝟏° −11.1 −13.5 −12 −13.7 

I.S. DOA @ 𝟐𝟕𝟏° −7.2 −10.7 −8.2 −9.7 

 

SER 𝟎 𝟑. 𝟎𝟑 . 𝟏𝟎−𝟓 𝟒. 𝟔𝟕 . 𝟏𝟎−𝟑 𝟎 

Source: (AUTHOR, 2018). 

 

4.1.7  Scenario 7 

Scenario 7 has the desired user signal coming from the bearing angle 𝜙 = 1° and nine 

interfering signals coming from 𝜙 = 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°  and 

330°. No WGN is added to the desired signal so that SNR = ∞.  The relation between the 

power of the desired signal and the power of each interfering signal is given by SIR = −10𝑑𝐵. 

In this scenario the nonlinearity at the front end was not introduced. It is possible to see, from 

Figure 33 (a), that PT-RBF has presented the highest attenuation of the interference signals. 

Note from Figure 33 (b) – (m) that the PT-RBF is the only beamformer capable of 

demodulating the received desired signal with zero SER. Thus, note from Figure 33, that the 

PT-RBF performs better in a linear scenario with very low SIR and a significant number of 

interfering signals. 
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Figure 33 – Static case 7. (a) Radiation pattern diagram comparing all beamformers gains, (b) radiation pattern 

diagram, (c) 16QAM constellation and (d) residual error curve presenting the gain, SER and MSEA respectively 

for PT-RBF beamformer. (e) radiation pattern diagram, (f) 16QAM constellation, (g) residual error curve 

presenting the gain, SER and MSEA respectively for C-RBF beamformer, (h) radiation pattern diagram, (i) 

16QAM constellation and (j) residual error curve presenting the gain, SER and MSEA respectively for FC-RBF 

beamformer, (k) radiation pattern diagram, (l) 16QAM constellation and (m) residual error curve presenting the 

gain, SER and MSEA respectively for LMS beamformer. 

 

 
(a) 

  



148 

 
(b) 

 

 
(c) 

 



149 

 
(d) 

  



150 

 
(e) 

 
(f) 

 



151 

 
(g) 

  



152 

 
(h) 

 

 
(i) 

 



153 

 
(j) 

  



154 

 
(k) 

 

 
(l) 

 



155 

 
(m) 

Source: (AUTHOR, 2018). 

 

Table 11 – Summary of static case 7 

D.S. DOA @ 𝟏° Gain [dB] 

PT-RBF C-RBF FC-RBF LMS 

I.S. DOA @ 𝟔𝟎° −6 −7 −7.5 −6.4 

I.S. DOA @ 𝟗𝟎° −16.2 −8.5 −9.1 −10.5 

I.S. DOA @ 12𝟎° −15.4 −8.8 −10 −8.3 

I.S. DOA @ 15𝟎° −11.2 −6.4 −9.8 −3.1 

I.S. DOA @ 18𝟎° −12 −5.2 −8.7 −5.3 

I.S. DOA @ 𝟐𝟏𝟎° −14.3 −7 −10 −9.1 

I.S. DOA @ 𝟐𝟒𝟎° −12.7 −8.6 −9.7 −2.7 

I.S. DOA @ 𝟐𝟕𝟎° −14.8 −8 −9 −2.3 

I.S. DOA @ 30𝟎° −12.7 −5.7 −7.2 −6.6 

 

SER 𝟎 𝟎. 𝟓𝟗𝟐𝟕 𝟒. 𝟒𝟓𝟒𝟓 . 𝟏𝟎−𝟑 𝟏𝟑𝟔𝟔𝟕 . 𝟏𝟎−𝟐 

Source: (AUTHOR, 2018). 

 

4.1.8  Summary of Static Scenarios  

For non-linear low SIR (high interference power) operating scenarios, as the scenarios 

of Figure 27 and Figure 31, the PT-RBF has presented the best overall performance by 

suppressing the interfering signals, pointing the radiation diagram main lobe to the incoming 

desired signal and yielding the lowest SER over all other beamformers. Such scenarios 

approach the operational scenarios that new multiuser technologies (5G, IoT, etc) are expected 
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to operate with. Given the high number of users, these new technologies operate in a highly 

polluted electromagnetic environment, plenty of severe interfering signals. Thus, the proposed 

algorithm is an effective innovation for next generation beamforming problem.   

As for the convergence speed, Figure 31 and Figure 32 also illustrate the MSEA for 

each beamformer. Note that the LMS is the fastest algorithm (as expected, given its linear 

approach), followed by the FC-RBF, by the PT-RBF and finally, by the C-RBF. 

For linear low SIR scenarios, the PT-RBF also presented a better performance on 

energy focusing and symbol demodulation, as can be seen in Figure 33. For moderate SIR 

linear scenarios, Figure 29 shows that the LMS algorithm has a better performance, 

demodulating the signal with no error, presenting less dispersive constellations at the 

beamformer output. However, it is important to note that perfectly linear scenarios are really 

rare on real world. 

In the presence of non-linearity, the LMS fast convergence is hampered. Figure 31 

shows an example of a low SIR non-linear scenario and Figure 32 shows a low SIR linear 

scenario. In the non-linear case the LMS yields a significantly dispersed constellation. The 

nulls and main lobe on the radiation pattern are not well defined in comparison to the PT-RBF. 

Figure 27 and Figure 28 shows a low SIR case and a moderate SIR case respectively. 

Note that, for moderate SIR cases, although the C-RBF has a reasonable SER performance, it 

yields a better suppression of the interfering signals and a better-defined main lobe on the 

radiation diagram. Nevertheless, it was observed in all simulations that the C-RBF has the 

slowest convergence rate. 

On the other hand, for low SIR cases, the C-RBF cannot converge to the proposed 

MSEA threshold and its SER is higher than all other beamformers. For low SIR cases, the FC-

RBF algorithm performs well on interference suppressing and on main lobe pointing, 

presenting a high convergence rate. However, the FC-RBF cannot handle the identification of 

the 𝐼𝑄 symbols on the constellation diagram, yielding a higher SER. Despite the FC-RBF to 

converge faster than the PT-RBF, in non-linear scenarios with a high level of interference, the 

PT-RBF has an overall better performance on interference suppressing and on main lobe 

definition, presenting the lowest SER over all other beamformers.  

In conclusion, the PT-RBF based beamformer was the only algorithm that presented 

satisfactory and uniform performance in all scenarios. The PT-RBF performance is overcome 

by some other solution in specific scenarios, however, none of the other solutions presented 

satisfactory and uniform performance in all evaluated scenarios. 
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The gains and SERs of each mentioned scenario can be seen on Tables 5, 6, 7, 8, 9 and 

10. 

4.2 DYNAMIC SCENARIOS 

The dynamic scenario implementation follows the general procedure of Table 2 in 

Section 3.2 and considers that the signals that impinge over the receiving UCA are originated 

at a moving TX with respect to a static UCA. The movement of the TX is represented by a non-

constant DOA of the desired signal, or a non-constant DOA of the interfering signal. If both 

the TX and the receiving UCA are moving, we still can consider the UCA as static and assume 

that the TX moves with respect the static UCA with a velocity given by the relative velocity 

between the TX and the UCA. For simplicity, it is considered that the TX moves circularly 

around the UCA in the xy plane with a uniform speed 𝑣, so that the DOA of the impinging 

signal varies in the range  1° < 𝜙 < 360°. 

One of the most demanding challenges in the context of wireless networks are 

encountered in the dynamic operation scenario of wireless networks for CAS (Close Air 

Support) military operations (AWARE-; TRACKING, 2016; BRUCE R. PIRNIE et al., [s.d.]; 

CHEN et al., 2008; DARPA, [s.d.]; KOPP, 2010) 

In this context, let’s assume an operating scenario in which two aircrafts exchange 

tactical data via a wireless mesh network in a highly jammed environment and that the IQ 

symbol rate of the digital modulation is 1.0 Msymbol/s. Aircraft A transmits the desired signal 

to the Aircraft B, which houses the receiving UCA. The desired signal is jammed by the 

interfering signal of the TX of the opposing force (possibly the jammer of another aircraft or 

of a ground station). Both TX (Aircraft A) and the receiving UCA (Aircraft B) are moving in 

high speed, so the UCA can be considered static and the TX can be considered as moving with 

respect to the UCA with a velocity given by the relative velocity between the TX (Aircraft A) 

and the UCA (Aircraft B). Let’s assume, as an approximation of a real scenario, the relative 

velocity between the TX (Aircraft A) and the UCA (Aircraft B) is approximately 𝑣 = 850 knot 

and that the TX (Aircraft A) moves circularly around the UCA (Aircraft B) in the xy plane with 

a radius 𝑟= 100m, so that the DOA of the impinging signal varies in the range  1° < 𝜙 < 360°. 

This operational scenario defines a DOA angular rate  
𝑑𝜙

𝑑𝑡
 of  1° per the time lapse of 4000 IQ 

symbols or, equivalently, a DOA angular rate of    
𝑑𝜙

𝑑𝑡
 = 250 

°

𝑠
 .  

In this framework, the dynamic scenarios are summarized in Table 12. Note that a linear 

front end was only considered in the dynamic scenario 1. All other scenarios represent more 

realistic and severe conditions, which include non-linearity at the receiver front end. As seen 
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in the previous section, the LMS can’t handle non-linearity at the RF front end. Thus, the LMS 

beamformer results are presented only for the dynamic scenario 1, which is a linear scenario. 

For dynamic non-linear scenarios 2, 3 and 4, the LMS yielded a received symbol constellation 

with a high dispersion level (similar to the Figure 31(i) of Scenario 5 in previous section 4.1.5), 

resulting in SER > 0.5. Such high SER indicates that the LMS failed for all these dynamic non-

linear scenarios.   

 

Table 12 - Summary of the dynamic scenarios. 

Scenario I.S. DOA D.S. DOA SIR NL 

1 170° 1° to 360° -10dB no 

2a 

2b 

270° 

1° to 360° 

1° to 360° 

90° 

35dB 

35dB 

yes 

yes 

3 270° 1° to 360° 10dB yes 

4a 

4b 

270° 

1° to 360° 

1° to 360° 

90° 

-10dB 

-10dB 

yes 

yes 

Source: (AUTHOR, 2018). 

The results are shown in terms of the polar plot of the SER curve for each beamforming 

as a function of the DOA angle 𝜙 of the desired/interfering signal, with 𝜙 varying in the range 

1° <  𝜙 < 360°, as shown by Figure 34 (a), and for a DOA angular rate of 
𝑑𝜙

𝑑𝑡
= 250

°

𝑠
. 

For the sake of clarity, the results are also shown in terms of the rectangular plot of the 

SER curve for each beamforming as a function of the DOA angle 𝜙 of the D.S., as shown by 

Figure 34 (b). 

 

4.2.1  Scenario 1 

The first evaluated dynamic scenario has the D.S. DOA varying in the range 1° < 𝜙 < 

360° and one static I.S. with DOA angle  𝜙 = 170°. The relation between the power of the 

D.S. and the power of the I.S. is given by SIR = −10𝑑𝐵. The receiver front end is linear. It is 

possible to see, from Figure 34, that the PT-RBF and the LMS beamformer yield a better 

isolation from the I.S, since their respective SERs are high only when the D.S. and the I.S. are 

located in the same DOA. Notice from Figure 34 (a), that the LMS presents a high SER over a 

smaller angular range of the D.S. DOA in comparison to the PT-RBF which presents a slightly 

larger angular range of the D.S. DOA that corresponds to the same high SER. From Figure 34 

(b), it is possible to notice that LMS has a higher residual SER than the PT-RBF, which makes 

the PT-RBF more reliable. In this scenario, the other networks failed to converge and to follow 

the varying D.S. DOA as a consequence of the very low SIR. Thus, the LMS performs better 
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in linear very low SIR scenarios. Same behavior is observed for the LMS in moderate SIR 

linear scenarios 

 

Figure 34 – Dynamic case 1  

 

(a) 

 
(b) 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 

 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 
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4.2.2  Scenario 2 

In this dynamic scenario the relation between the power of the D.S. and the power of 

the I.S. is given by SIR = 35𝑑𝐵. The non-linearity expressed by Eq (2.144)  is introduced at 

the RF front end  in order to implement a more realistic simulation.   

The operational conditions in terms of D.S. and I.S. are:   

I. Figure 35 and Figure 36 (see row 2a of Table 12): D.S. DOA varying in the range 1° <

𝜙 < 360° and a stationary I.S. DOA at 𝜙 = 270°; 

II. Figure 37 (see row 2b of Table 12):  D.S. DOA stationary at 𝜙 = 90° and I.S. DOA 

varying in the range 1° < 𝜙 < 360°. 

Note in Figure 35 and in Figure 37 that the C-RBF beamformer presents SER > 0.5 

along a larger angular range of the varying DOA, not being able to isolate the D.S from the I.S 

in this angular range. Note also that the FC-RBF beamformer presents a SER > 0.5 only over 

a smaller angular range of the varying DOA, thus performing better in this very low SIR non-

linear dynamic scenario. 

 

Figure 35  – Dynamic case example performance 

 

 

(a) 

SER curve for each beamformer for 16-QAM modulation and AWGN channel 
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(b) 

Source: (AUTHOR, 2018). 

 

Figure 36 – Dynamic case 2a 

 

 

(a) 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 

 

SER curve for each beamformer for 16-QAM modulation and AWGN channel 
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(b) 

Source: (AUTHOR, 2018). 

 

Table 13 – Summary of dynamic case 1 for SER performance relative to the varying D.S. DOA and the stationary 

I.S. DOA at 𝜙 = 270° 

DOA 

SER 

PT-RBF C-RBF FC-RBF 

D.S. @ 20° 0 7.939698e-01 1.005025e-01 

D.S. @ 40° 2.512563e-03 1.783920e-01 0 

D.S. @ 60° 5.025126e-03 2.512563e-03 0 

D.S. @ 80° 0 0 5.527638e-02 

D.S. @ 100° 5.025126e-03 7.060302e-01 2.512563e-03 

D.S. @ 120° 5.025126e-03 9.045226e-01 0 

D.S. @ 140° 4.874372e-01 8.919598e-01 0 

D.S. @ 160° 2.512563e-03 8.492462e-01 0 

D.S. @ 180° 2.512563e-03 8.090452e-01 5.025126e-03 

D.S. @ 200° 5.025126e-03 5.778894e-02 0 

D.S. @ 220° 7.512563e-01 0 0 

D.S. @ 240° 4.296482e-01 3.090452e-01 0 

D.S. @ 260° 8.969849e-01 8.894472e-01 1.080402e-01 

D.S. @ 280° 9.045226e-01 9.371859e-01 1.507538e-02 

D.S. @ 300° 7.135678e-01 9.698492e-01 0 

D.S. @ 320° 0 9.145729e-01 0 

D.S. @ 340° 0 8.391960e-01 0 

D.S. @ 360° 2.512563e-03 7.713568e-01 0 

Source: (AUTHOR, 2018). 

 
  

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 
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Table 14 – Summary of dynamic case 1 for gain performance relative to the varying D.S. DOA and the stationary 

I.S. DOA at 𝜙 = 270° 

DOA 

Electric Field Strength [dB] 

PT-RBF C-RBF FC-RBF 

D.S. @ 20° -6.877313e+00 -1.367491e+01 -8.373341e+00 

D.S. @ 40° -6.181504e+00 -1.810273e+01 -9.956139e+00 

D.S. @ 60° -6.181504e+00 -2.366600e+01 -8.959150e+00 

D.S. @ 80° -7.697863e+00 -2.826316e+01 -1.069834e+01 

D.S. @ 100° -8.067933e+00 -1.180232e+01 -1.119299e+01 

D.S. @ 120° -7.223531e+00 -8.441693e+00 -7.684838e+00 

D.S. @ 140° -6.685709e+00 -7.128674e+00 -4.246069e+00 

D.S. @ 160° -4.501440e+00 -4.271749e+00 -1.569562e+00 

D.S. @ 180° -3.986757e+00 -5.484926e+00 -1.315858e+00 

D.S. @ 200° -2.942710e+00 -5.674915e+00 -7.593159e-01 

D.S. @ 220° 2.091105e+00 -5.641567e+00 -9.312603e-01 

D.S. @ 240° -2.411940e+00 -6.422948e+00 -1.083138e+00 

D.S. @ 260° -5.418204e+00 -7.727672e+00 -1.629417e+00 

D.S. @ 280° -3.389932e+00 -1.061945e+01 -2.098566e+01 

D.S. @ 300° -3.509452e+00 -4.114691e+00 -2.795604e+01 

D.S. @ 320° -4.676069e+00 -5.615469e+00 -2.391013e+01 

D.S. @ 340° -4.280646e+00 -7.248593e+00 -2.420425e+01 

D.S. @ 360° -2.915954e+00 -6.933852e+00 -3.455894e+01 

 

Average -4.71E+00 -1.00E+01 -1.11E+01 

Source: (AUTHOR, 2018). 

 

Figure 37 – Dynamic case 2b 

  

 

(a) 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 

 



164 

 

(b) 

Source: (AUTHOR, 2018). 

 
Table 15 – Summary of dynamic case 4 for SER performance relative to the stationary D.S. DOA at 𝜙 = 90° and 

the varying I.S. DOA  

DOA 

SER 

PT-RBF C-RBF FC-RBF 

I.S. @ 20° 2.512563e-03 7.738693e-01 0 

I.S. @ 40° 7.537688e-03 9.296482e-01 1.633166e-01 

I.S. @ 60° 1.005025e-02 8.718593e-01 0 

I.S. @ 80° 2.512563e-03 8.115578e-01 0 

I.S. @ 100° 6.030151e-02 8.417085e-01 0 

I.S. @ 120° 8.944724e-01 8.718593e-01 9.120603e-01 

I.S. @ 140° 8.844221e-01 9.346734e-01 0 

I.S. @ 160° 0 9.120603e-01 0 

I.S. @ 180° 2.512563e-03 7.160804e-01 0 

I.S. @ 200° 0 6.080402e-01 0 

I.S. @ 220° 0 8.140704e-01 0 

I.S. @ 240° 0 4.974874e-01 0 

I.S. @ 260° 0 6.557789e-01 0 

I.S. @ 280° 2.512563e-03 4.221106e-01 0 

I.S. @ 300° 7.537688e-03 4.773869e-01 0 

I.S. @ 320° 2.512563e-03 4.447236e-01 0 

I.S. @ 340° 0 7.788945e-01 0 

I.S. @ 360° 0 3.793970e-01 0 

Source: (AUTHOR, 2018). 

 
  

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 
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Table 16 – Summary of dynamic case 4 for gain performance relative to the stationary D.S. DOA at 𝜙 = 90° and 

the varying I.S. DOA 

DOA 

Electric Field Strength [dB] 

PT-RBF C-RBF FC-RBF 

I.S. @ 20° -7.725741e+00 -9.679569e+00 -1.606977e+00 

I.S. @ 40° -9.522216e+00 -8.532491e+00 -8.233090e+00 

I.S. @ 60° -9.538507e+00 -1.263406e+01 -9.998363e+00 

I.S. @ 80° -5.637271e+00 -5.594768e+00 -1.089866e+01 

I.S. @ 100° -1.221045e+01 -1.164342e+01 -1.368665e+01 

I.S. @ 120° -1.041854e+01 -1.474614e+01 -1.100067e+01 

I.S. @ 140° -1.026047e+01 -7.021735e+00 -1.379547e+01 

I.S. @ 160° -9.950636e+00 -6.438903e+00 -1.782669e+01 

I.S. @ 180° -1.561892e+01 -6.560060e+00 -1.038638e+01 

I.S. @ 200° -1.925637e+00 -2.440484e+00 -2.907011e+01 

I.S. @ 220° -8.689752e+00 -3.422606e-01 -1.806978e+01 

I.S. @ 240° -9.228414e+00 -5.056951e+00 -1.482441e+01 

I.S. @ 260° -1.196496e+01 -8.364223e+00 -1.299227e+01 

I.S. @ 280° -3.227717e+01 -7.114682e+00 -1.145319e+01 

I.S. @ 300° -1.256369e+01 -1.353599e+01 -1.148091e+01 

I.S. @ 320° -8.369845e+00 -7.864740e+00 -1.293155e+01 

I.S. @ 340° -7.055841e+00 -6.628043e+00 -1.631702e+01 

I.S. @ 360° -7.139694e+00 -6.558158e+00 -1.380562e+01 

 

Average -1.06e+01 -7.82e+00 -1.32e+01 

Source: (AUTHOR, 2018). 

  

4.2.3  Scenario 3 

In this dynamic scenario the relation between the power of the D.S. and the power of 

the I.S. is given by SIR = 10𝑑𝐵. The non-linearity expressed by Eq (2.145)  is introduced at 

the RF front end  in order to implement a  realistic simulation.   

I. The operational condition in terms of D.S. and I.S. is:  Figure 38: D.S. DOA varying in the 

range 1° < 𝜙 < 360° and a stationary I.S. DOA at 𝜙 = 270°. 

Note in Figure 38 that the C-RBF beamformer presents SER > 0.5 along a larger angular 

range of the varying DOA, not being able to isolate the D.S from the I.S in this angular range. 

Note also that both PT-RBF and FC-RBF beamformer present a SER > 0.5 only over a smaller 

angular range of the varying DOA, thus performing better in this low SIR non-linear dynamic 

scenario. Specifically note in Figure 38 (b) that the PT-RBF has a higher residual SER in the 
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range 1° < 𝜙 < 360°. However, the FC-RBF shows more spikes of high SER outside the 

interference angular zone 

 

Figure 38 – Dynamic case 3 

 

 
(a) 

 

 

(b) 

Source: (AUTHOR, 2018). 

 
Table 17 – Summary of dynamic case 2 for SER performance relative to the varying D.S. DOA and the stationary 

I.S. DOA at 𝜙 = 270° 

DOA 

SER 

PT-RBF C-RBF FC-RBF 

D.S. @ 20° 7.788945e-02 8.567839e-01 5.025126e-03 

D.S. @ 40° 7.537688e-03 1.507538e-02 0 

D.S. @ 60° 2.512563e-03 0 0 

D.S. @ 80° 2.512563e-03 7.537688e-03 5.025126e-03 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 

 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 
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D.S. @ 100° 2.512563e-03 5.226131e-01 0 

D.S. @ 120° 5.025126e-03 8.467337e-01 1.256281e-02 

D.S. @ 140° 2.512563e-03 8.894472e-01 0 

D.S. @ 160° 1.256281e-02 8.743719e-01 0 

D.S. @ 180° 1.758794e-02 7.236181e-01 2.512563e-03 

D.S. @ 200° 7.537688e-03 0 2.512563e-03 

D.S. @ 220° 1.507538e-02 5.025126e-03 0 

D.S. @ 240° 2.512563e-02 5.075377e-01 0 

D.S. @ 260° 7.361809e-01 8.291457e-01 0 

D.S. @ 280° 9.346734e-01 9.321608e-01 9.346734e-01 

D.S. @ 300° 8.919598e-01 9.673367e-01 7.386935e-01 

D.S. @ 320° 3.768844e-02 9.296482e-01 5.954774e-01 

D.S. @ 340° 3.517588e-02 7.638191e-01 0 

D.S. @ 360° 3.517588e-02 7.185930e-01 2.512563e-03 

Source: (AUTHOR, 2018). 

 

Table 18 – Summary of dynamic case 2 for gain performance relative to the varying D.S. DOA and the stationary 

I.S. DOA at 𝜙 = 270° 

DOA 

Electric Field Strength [dB] 

PT-RBF C-RBF FC-RBF 

D.S. @ 20° -9.395371e+00 -2.402690e+01 -1.038062e+01 

D.S. @ 40° -9.597881e+00 -2.066167e+01 -1.194914e+01 

D.S. @ 60° -8.130699e+00 -2.502196e+01 -1.579953e+01 

D.S. @ 80° -6.947941e+00 -2.232902e+01 -2.301815e+01 

D.S. @ 100° -4.908692e+00 -1.606819e+01 -4.413900e+01 

D.S. @ 120° -3.561117e+00 -8.272529e+00 -1.307676e+01 

D.S. @ 140° -2.327531e+00 -5.677650e+00 -1.247065e+01 

D.S. @ 160° -1.663094e+00 -8.719291e+00 -4.901814e+01 

D.S. @ 180° -1.848336e+00 -5.206581e+00 -1.209449e+00 

D.S. @ 200° -1.858923e+00 -5.586549e+00 -1.459911e-01 

D.S. @ 220° -2.309702e+00 -5.869049e+00 -5.699030e+00 

D.S. @ 240° -2.873681e+00 -5.867065e+00 -3.953419e+01 

D.S. @ 260° -4.071306e+00 -6.234586e+00 -3.830678e+01 

D.S. @ 280° -4.317314e+00 -1.034033e+01 -1.742199e+01 

D.S. @ 300° -2.200940e+00 -5.840143e+00 -3.659269e+01 

D.S. @ 320° -8.663505e+00 -8.967178e+00 -2.125631e+01 

D.S. @ 340° -6.121685e+00 -7.565683e+00 -3.468598e+01 

D.S. @ 360° -7.171596e+00 -7.916176e+00 -1.370737e+01 

 

Average -4.89E+00 -1.11E+01 -2.16E+01 

Source: (AUTHOR, 2018). 
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4.2.4  Scenario 4 

In this dynamic scenario the relation between the power of the D.S. and the power of 

the I.S. is given by SIR = −10𝑑𝐵. The non-linearity expressed by Eq (2.146) is introduced at 

the RF front end in order to implement a more realistic simulation.   

The operational conditions in terms of D.S. and I.S. are:   

I. Figure 39: D.S. DOA varying in the range 1° < 𝜙 < 360° and a stationary I.S. 

DOA at 𝜙 = 270°; 

II. Figure 40: D.S. DOA varying in the range 1° < 𝜙 < 360° and a stationary I.S. 

DOA at 𝜙 = 270°; 

III. Figure 41:  I.S. DOA varying in the range 1° < 𝜙 < 360° and a stationary D.S. 

DOA at 𝜙 = 90°. 

Note in Figures 39, 40 and 41that the C-RBF and the FC-RBF beamformers presents 

SER > 0.5 along a larger angular range of the varying DOA, not being able to isolate the D.S 

from the I.S in this angular range. Note also that the PT-RBF beamformer presents a SER > 

0.5 only over a smaller angular range of the varying DOA comparing to the other beamformers, 

thus performing better in this very low SIR non-linear dynamic scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



169 

Figure 39 – Dynamic case 4 example 

SER performance over 360° variation on ϕ on a non-linear scenario with low SIR 

Main signal moving around the array and interference impinging from 𝜙 = 270° 
 

 

 (a) 

 
(b) 

Source: (AUTHOR, 2018) 

 

 

 

 

  

SER curve for each beamformer for 16-QAM modulation and AWGN channel 

 

SER curve for each beamformer for 16-QAM modulation and AWGN channel 
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Figure 40 – Dynamic case 4: 1 interference at 270° & 1 moving desired signal 

Non-linearity added on the front end. 

 

 

 (a) 

 

(b) 

Source: (AUTHOR, 2018). 

 

Table 19 – Summary of dynamic case 3 for SER performance relative to the varying D.S. DOA and the stationary 

I.S. DOA at 𝜙 = 270° 

DOA 

SER 

PT-RBF C-RBF FC-RBF 

D.S. @ 20° 7.537688e-03 8.542714e-01 5.979899e-01 

D.S. @ 40° 2.512563e-03 2.361809e-01 6.055276e-01 

D.S. @ 60° 2.512563e-03 2.512563e-03 7.060302e-01 

D.S. @ 80° 0 4.271357e-02 5.653266e-01 

D.S. @ 100° 1.256281e-02 5.326633e-01 0 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 

 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 
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D.S. @ 120° 7.537688e-03 8.190955e-01 5.025126e-03 

D.S. @ 140° 0 8.819095e-01 5.025126e-03 

D.S. @ 160° 5.025126e-03 8.366834e-01 6.005025e-01 

D.S. @ 180° 5.025126e-03 5.226131e-01 6.482412e-01 

D.S. @ 200° 2.763819e-02 2.512563e-03 9.396985e-01 

D.S. @ 220° 3.266332e-02 1.758794e-02 9.396985e-01 

D.S. @ 240° 2.261307e-02 4.120603e-01 9.246231e-01 

D.S. @ 260° 7.437186e-01 7.763819e-01 : 9.547739e-01 

D.S. @ 280° 9.045226e-01 9.648241e-01 9.346734e-01 

D.S. @ 300° 7.989950e-01 9.798995e-01 9.522613e-01 

D.S. @ 320° 2.512563e-03 9.221106e-01 9.321608e-01 

D.S. @ 340° 7.537688e-03 7.939698e-01 9.095477e-01 

D.S. @ 360° 1.005025e-02 7.663317e-01 9.623116e-01 

Source: (AUTHOR, 2018). 

 

Table 20 – Summary of dynamic case 3 for gain performance relative to the varying D.S. DOA and the stationary 

I.S. DOA at 𝜙 = 270° 

DOA 

Electric Field Strength [dB] 

PT-RBF C-RBF FC-RBF 

D.S. @ 20° -9.293696e+00 -2.990623e+01 -7.288000e+00 

D.S. @ 40° -7.659862e+00 -2.577442e+01 -3.707812e+00 

D.S. @ 60° -6.694569e+00 -2.659082e+01 -4.975148e+00 

D.S. @ 80° -6.047070e+00 -2.853064e+01 -1.942162e+01 

D.S. @ 100° -4.056004e+00 -1.770678e+01 -2.155988e+01 

D.S. @ 120° -2.440175e+00 -1.166392e+01 -3.335533e+01 

D.S. @ 140° -1.876166e+00 -7.736798e+00 -3.983197e+01 

D.S. @ 160° -1.024554e+00 -4.187546e+00 -2.008144e+01 

D.S. @ 180° -1.797481e+00 -5.291249e+00 -4.416581e+01 

D.S. @ 200° -3.789623e+00 -5.579686e+00 -1.068180e+00 

D.S. @ 220° -5.132653e+00 -6.074186e+00 -1.095994e+00 

D.S. @ 240° -5.494058e+00 -5.777771e+00 -1.149550e+00 

D.S. @ 260° -7.654779e+00 -5.709359e+00 -1.277008e+00 

D.S. @ 280° -6.656713e+00 -8.825583e+00 -1.240542e+00 

D.S. @ 300° -1.127285e+01 -1.255308e+01 -1.260519e+00 

D.S. @ 320° -7.002743e+00 -7.293321e+00 -1.296944e+00 

D.S. @ 340° -7.859370e+00 -7.191911e+00 -1.264195e+00 

D.S. @ 360° -8.758862e+00 -9.254261e+00 -1.319732e+00 

 

Average -5.81E+00 -1.25E+01 -1.14E+01 

Source: (AUTHOR, 2018). 
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Figure 41 – Dynamic case 4: 1 moving interferences & 1 desired signal at 90° 

Non-linearity added on the front end. 

 

 

(a) 

 

 

 

(b) 

Source: (AUTHOR, 2018). 

 
Table 21 – Summary of dynamic case 5 for SER performance relative to the stationary D.S. DOA at 𝜙 = 90° and 

the varying I.S. DOA  

DOA 

SER 

PT-RBF C-RBF FC-RBF 

I.S. @ 20° 1.758794e-02 -1.514478e+01 7.286432e-01 

I.S. @ 40° 5.025126e-03 -7.360742e+00 1.758794e-02 

I.S. @ 60° 2.261307e-02 -7.155615e+00 0 

I.S. @ 80° 1.859296e-01 -9.358594e+00 1.507538e-02 

I.S. @ 100° 9.371859e-01 -1.185892e+01 9.120603e-01 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 

 

SER curve for each beamformer for 16-QAM modulation and AWGN 

channel 
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I.S. @ 120° 9.271357e-01 -4.426984e+00 2.085427e-01 

I.S. @ 140° 2.437186e-01 -6.447938e+00 7.336683e-01 

I.S. @ 160° 3.266332e-02 -3.298882e+00 6.934673e-01 

I.S. @ 180° 1.005025e-02 -5.567844e+00 9.346734e-01 

I.S. @ 200° 2.261307e-02 -8.514257e+00 9.321608e-01 

I.S. @ 220° 1.005025e-02 -1.783105e+01 9.120603e-01 

I.S. @ 240° 1.507538e-02 -1.651852e+01 9.422111e-01 

I.S. @ 260° 7.537688e-03 6.180905e-01 9.070352e-01 

I.S. @ 280° 2.010050e-02 5.100503e-01 7.512563e-01 

I.S. @ 300° 1.507538e-02 2.839196e-01 5.979899e-01 

I.S. @ 320° 2.261307e-02 4.246231e-01 6.582915e-01 

I.S. @ 340° 3.517588e-02 6.934673e-01 6.482412e-01 

I.S. @ 360° 1.005025e-02 8.090452e-01 6.281407e-01 

Source: (AUTHOR, 2018). 

 

Table 22 – Summary of dynamic case 5 for gain performance relative to the stationary D.S. DOA at 𝜙 = 90° and 

the varying I.S. DOA 

DOA 

Electric Field Strength [dB] 

PT-RBF C-RBF FC-RBF 

I.S. @ 20° -1.169052e+01 -1.246813e+01 -4.026603e+00 

I.S. @ 40° -1.080302e+01 -1.344394e+01 -7.768834e+00 

I.S. @ 60° -7.107378e+00 -9.210507e+00 -1.194063e+01 

I.S. @ 80° -4.887604e+00 -6.816877e+00 -2.043980e+01 

I.S. @ 100° -1.864843e+01 9.271357e-01 -8.027247e+00 

I.S. @ 120° -1.403257e+01 8.743719e-01 -7.304055e+00 

I.S. @ 140° -1.705383e+01 8.140704e-01 -7.949298e+00 

I.S. @ 160° -1.979587e+01 8.316583e-01 -7.594112e+00 

I.S. @ 180° -1.528136e+01 9.170854e-01 -1.459609e+01 

I.S. @ 200° -7.300080e+00 9.422111e-01 -3.253233e+01 

I.S. @ 220° -6.216366e+00 9.422111e-01 -2.343960e+01 

I.S. @ 240° -7.872151e+00 8.969849e-01 -2.393313e+01 

I.S. @ 260° -1.118034e+01 7.814070e-01 -2.343762e+01 

I.S. @ 280° -2.136617e+01 7.361809e-01 -2.162928e+01 

I.S. @ 300° -1.580750e+01 6.155779e-01 -2.122316e+01 

I.S. @ 320° -1.177968e+01 7.939698e-01 -1.107852e+01 

I.S. @ 340° -9.390392e+00 -8.929682e+00 -3.583003e+00 

I.S. @ 360° -9.509514e+00 -8.267338e+00 -4.292567e-01 

 

Average -1.22e+01 -2.73e+00 -1.39e+01 

Source: (AUTHOR, 2018). 
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4.2.5   Summary of Dynamic Scenarios 

As expected, on dynamic operation, the beamforming algorithms performed similarly 

to the static system. The PT-RBF based beamforming performed better under non-linear very 

low SIR scenarios, yielding a small residual SER and precisely pointing the boresight lobe of 

the UCA to the D.S. DOA for both situations of varying D.S. DOA and varying I.S. (jammer 

signal) DOA. 

On linear operational scenario – which is a rare operational condition of nowadays 

crowded spectrum, full of interfering or even jamming signals – the LMS based beamforming 

had a better overall performance as for the boresight lobe pointing, as for the I.S. isolation and 

as for the SER. As the LMS has a faster convergence rate, it is more suitable than all other 

beamformers for dynamic linear operational conditions, regardless the SIR level. On the other 

hand, the LMS performance significantly decreases on non-linear scenarios. As consequence, 

the isolation between desired signal and interferences is low and the algorithm finds some 

trouble to follow the dynamic operation and presents a delayed behavior on adapting the 

radiation pattern. Figure 34 illustrates the SER performance under linear operation for all 

beamformers with the DOA varying in the range 1° < 𝜙 < 360° . It is possible to see the 

LMS’s better performance for the referred linear scenario.  

The C-RBF based beamforming, which performed well on low power interference static 

scenarios, proved not suitable to perform over dynamic operations. This is because the C-RBF 

is the ANN with slowest convergence, which needs a much higher number of training samples 

𝑁 to reach a fair MSEA threshold. 

For the FC-RBF based beamforming, it has been seen that, over a moderate SIR 

scenario, it presents the best overall performance. As it has the fastest convergence rate among 

the RBFs, the FC-RBF can follow the moving signal and reaching a satisfactory MSEA 

threshold rapidly enough so the isolation between desired signal and interferences are high 

enough to allow the QAM de-mapper to correctly identify all transmitted IQ symbols. 

However, once again, over a very low SIR scenario, the FC-RBF is still able to null 

interferences and to point the UCA boresight lobe to the interest point, but it is unable to recover 

the transmitted 𝐼𝑄 symbols. Figure 35 and Figure 39 illustrate the SER performance between 

the three non-linear Radial Basis beamformers for a non-linear moderate SIR and very low SIR 

environment respectively. 

In conclusion, just like for static scenarios, the PT-RBF based beamformer was the only 

algorithm that presented satisfactory performance in all moving scenarios, keeping uniform 



175 

performance, even if overcome by some other solution in specific scenarios. However, none of 

the other solutions presented satisfactory performance in all evaluated scenarios. 
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5 FINAL REMARKS 

5.1 CONCLUSIONS 

This thesis proposed a novel beamforming technique based on the PT-RBF ANN 

which, different from most ANN found in literature, has a characteristic of avoiding the phase 

invariance issue. It started by a small gastropod performing every single process lately explored 

in the state of the art section. Hopefully, this analogy served the purpose of instigating the 

reader to go through all sections of this work and realize that all cutting-edge technology on 

telecommunications are nothing more than an attempt to mimic the communication system of 

the simplest life forms around us. 

A beamformer aims the beam to the desired signal direction and mitigates impairments 

from interfering signal sources, which may adversely affect the communication system 

performance. The main functional features of the PT-RBF based beamforming method can be 

summarized as follows: (1) it increases coverage range, (2) it increases throughput at network 

nodes, (3) it reduces transmission power, (4) it allows multipath links, (5) it allows multiple 

concurrent transmissions using the same frequency, (6) it allows an efficient use of the 

spectrum resource.  

A six half-wavelength (𝜆 2⁄ ) dipole UCA has been used to evaluate the proposed PT-

RBF beamforming. It provides a good control of the boresight lobe according to the spherical 

coordinate 𝜙, making it possible to aim the radiation pattern boresight of the array to any 

direction of azimuth 𝜙. The number of dipoles was chosen in order to improve the overall 

system performance without drastically increasing the computational complexity. The adopted 

frequency 𝑓 = 850𝑀𝐻𝑧  lies near on center of the UHF band, where a great number of wireless 

systems operate. 

The beamformer architecture in Section 3 and Appendix A was built in order to assess 

the PT-RBF ANN and to train it over a realistic scenario. 

The performance of the PT-RBF based beamforming has been compared to the state-

of-the-art solutions over several static and dynamic scenarios through simulations using 

16QAM modulation and comparing the gain performance, the symbol error rate and the ANN 

convergence rate. The algorithms were tested under linear and non-linear scenarios, with 

moderate (35dB), low (10dB) and very low (-10dB) SIR levels for both static and dynamic 

operating conditions, with SIR= -10dB representing a tactical jamming scenario.  

For static non-linear scenarios, although the C-RBF presented the slowest convergence 

rate, it had a better performance on moderate SIR cases. For dynamic non-linear scenarios, the 
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C-RBF proved to be useless and the FC-RBF, which has the fastest convergence rate between 

the non-linear networks, had the best performance on moderate SIR cases. 

Nevertheless, for both static and dynamic systems, operating on a very low SIR 

environment, the FC-RBF cannot reach a satisfactory MSEA threshold. The proposed PT-RBF 

beamformer has presented significant results when compared with the state-of-the-art 

solutions, making possible to operate communication links under static scenarios on self-

organizing networks and in dynamic scenarios with access in motion, both with multiple 

interferences, thus maximizing the throughput and the spectrum efficiency. 

The proposed approach is robust over static and dynamic low SIR scenarios, in the 

sense that the beamforming architecture presents a higher gain between desired and interfering 

signals and can demodulate with a lower SER, given the state-of-the-art architectures. 

Nevertheless, the proposed algorithm performed reasonably well for all other simpler 

scenarios. Finally, it is important to note that sometimes the proposed beamforming doesn’t 

create a high gain between boresight and null, but always guarantee a zero or a low SER. 

In conclusion, the novel non-blind PT-RBF beamformer proposed in this thesis 

achieved both a lower SER and a higher isolation between desired and interfering signals with 

a fast convergence rate for the most critical scenarios, including tactical jamming scenarios 

with SIR= -10dB. Also, different from the state-of-the-art beamformers, the PT-RBF based 

beamformer was the only algorithm that presented satisfactory performance in all scenarios, 

keeping uniform performance, even if overcome by some other solution in specific scenarios. 

These results validate the effectiveness of the proposed approach architecture for static and 

dynamic beamforming. 

 

5.2 FUTURE WORK 

For those who felt challenged by this work, there are several ideas that might contribute 

for a better performance of a PT-RBF beamforming. Some additional techniques found in 

literature like a mathematical approach for an optimum learning rate 𝜇 definition proposed by 

(KIM, 2010) could improve the presented performance. 

Also, a fuzzy controller proposed by (CHEN et al., 2010) or a neuro-fuzzy system 

proposed by (ABIYEV; AL-SHANABLEH, 2006) could be implemented in order to control 

the PT-RBF beamforming leaning rates (𝜇𝑤, 𝜇𝑡 and 𝜇𝜎). The current implementation needs the 

human intervention and decision to set these parameters and does not allow them to be changed 

along the training process. A controlled leaning rate could therefore improve even more the 

presented performance. 
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Finally, a metacognitive learning framework, proposed by (SAVITHA; SURESH; 

SUNDARARAJAN, 2012), which could regulate the PT-RBF learning process might also 

enhance its performance. In every epoch, when a sample is presented, the metacognitive 

component decides what to learn, when to learn, and how to learn based on the knowledge 

acquired by the ANN and the new information contained in the sample. 
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APPENDIX A – BEAMFORMING ALGORITHM FULL 

FLOW CHART 

Figure 42 – Full flow chart algorithm for static scenarios 
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Figure 43 – Full flow chart algorithm for dynamic scenarios 
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APPENDIX B – FURTHER SIMULATIONS RESULTS 

Figure 44 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 300°, no NL, no noise on D.S, SIR = 10𝑑𝐵 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Source: (AUTHOR, 2018). 
 
 

Figure 45 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 30°, no NL, no noise on D.S, SIR = 10𝑑𝐵 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Source: (AUTHOR, 2018). 
 

Figure 46 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 300°, with NL, noise at D.S 35𝑑𝐵, SIR = 35𝑑𝐵 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Source: (AUTHOR, 2018). 
 

 

Figure 47 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 270°, no NL, noise at D.S 35𝑑𝐵, SIR = 35𝑑𝐵 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Source: (AUTHOR, 2018). 
 
 
 
 

Figure 48 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 270°, with NL, noise at D.S = 35𝑑𝐵, SIR = 10𝑑𝐵 
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(a) 

 
(b) 

 
(c) 
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(d) 

 

 
(e) 

Source: (AUTHOR, 2018). 
 
Figure 49 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 60°, 90°, 120°, 150°, 180°, 210°, 240°, 300°, no NL, no 

noise at D.S, SIR = −10𝑑𝐵 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Source: (AUTHOR, 2018). 
 

Figure 50 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 60°, 90°, 120°, 150°, 180°, 210°, 240°, 300°, with NL, 

no noise at D.S, SIR = −10𝑑𝐵 
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(a) 

 
(b) 

 

 
(c) 
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(d) 

 
(e) 

Source: (AUTHOR, 2018). 
 

 
Figure 51 – Static scenario, D.S. DOA @ 𝜙 = 1°, I.S. DOA @ 𝜙 = 60°, 90°, 120°, 150°, 180°, 210°, 240°, 300°, no NL, no 

noise at D.S, SIR = 10𝑑𝐵 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

 
(e) 

Source: (AUTHOR, 2018). 
 

 



 

 


