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FReMI – A MIDDLEWARE TO HANDLE MOLECULAR DOCKING 

SIMULATIONS OF FULLY-FLEXIBLE RECEPTOR MODELS IN HPC 

ENVIRONMENTS 

 

 

 

ABSTRACT 

 

 

Molecular docking simulations of Fully-Flexible Protein Receptor (FFR) models are coming of age. 

However, they are computer intensive and their sequential execution can became an unfeasible task. 

This study presents a middleware, called Flexible Receptor Middleware (FReMI), to assist in faster 

docking simulations of flexible receptors. FReMI handles intensive tasks and data of totally fully-

flexible receptor models in virtual screening and, provides the interoperability between a Web Fully-

flexible Docking Workflow (W-FReDoW) and two different High Performance Computing (HPC) 

environments. FReMI uses internet protocols to communicate with W-FReDoW which helps to 

reduce the FFR model dimension with a data pattern. Also it sends tasks of docking simulations to 

execute in a HPC of dedicated cluster and; an alternative model of virtual cluster built on Amazon’s 

Elastic Compute Cloud (EC2). The results are the FReMI conceptual architecture and two sets of 

experiments from execution of the FReMI. The first set reports the experiments performed with 

FReMI using a sample of snapshots from a FFR model on both HPC environments. The second one 

describes the experiments, on the complete data set, performed with FReMI and W-FReDoW shared 

execution in a MPI cluster environment on Amazon EC2 instances only. The last set of experiments 

results shows a reduction of the FFR model dimensionality, transforming it into a Reduced Fully-

Flexible Receptor (RFFR) model, by discarding the non-promising conformations generated by W-

FReDoW. It also reduces the total execution time to between 10-30% of that of FReMI’s only 

execution, which, in turn, decreased near 94% with respect to the serial execution. 

 

 

Keywords: Middleware, Cluster, Amazon EC2, Molecular Docking Simulations. 

 



FReMI – UM MIDDLEWARE PARA EXECUTAR SIMULAÇÕES DE 

DOCAGEM MOLECULAR DE MODELOS DE RECEPTORES 

TOTALMENTE FLEXÍVEIS EM AMBIENTES DE ALTO DESEMPENHO 

 

 

RESUMO 

 

Simulações de docagem molecular de modelos de receptores totalmente flexíveis (Fully-Flexible 

Receptor - FFR) estão se tornando cada vez mais frequentes. Entretanto, tais simulações exigem alto 

nível de processamento e sua execução sequencial pode se tornar uma tarefa impraticável. Este 

trabalho apresenta um middleware, chamado Middleware de Receptores Flexível (Flexible Receptor 

Middleware – FReMI), que auxilia a reduzir o tempo total de execução nas simulações de docagem 

molecular de receptores totalmente flexíveis. FReMI manipula uma quantidade intensiva de dados e 

tarefas para executar a triagem virtual de modelos de receptores totalmente flexíveis, e provê 

interoperabilidade entre o web workflow de docagem de receptores flexíveis (Web Fully-flexible 

Docking Workflow - W-FReDoW) e dois diferentes ambientes de alto desempenho (High 

Performance Computing – HPC). FReMI utiliza protocolos de internet para comunicar com o W-

FReDoW , o qual auxilia na redução da dimensão do modelo FFR por meio de um padrão de dados. 

Além disso, FReMI envia tarefas de simulações de docagem para serem executadas em um cluster 

dedicado e também em um alternativo modelo de cluster virtual construído por meio de nuvens de 

computadores elásticos da Amazon (Amazon’s Elastic Compute Cloud – EC2). Os resultados 

apresentam uma arquitetura conceitual do FReMI e dois conjuntos de experimentos a partir da 

execução do FReMI. O primeiro conjunto relatou os experimentos realizados com FReMI, usando 

uma amostra de snapshots a partir de um modelo FFR e os dois ambientes HPC. O segundo conjunto 

descreveu os experimentos, com um conjunto de dados completo, executando FReMI e W-FReDoW 

apenas em um ambiente de cluster MPI construído com as instâncias da Amazon EC2. Os resultados 

do último conjunto de experimentos apresentaram uma redução na dimensionalidade do modelo FFR, 

transformando ele um modelo de receptor flexível totalmente reduzido (Reduced Fully-Flexible 

Receptor Model – RFFR), por meio do descarte de conformações não promissoras identificadas pelo 

W-FReDoW. Além disso, a redução do tempo total de execução do FReMI com o W-FReDoW foi 

entre 10 a 30% a partir da execução separada do FReMI, e de aproximadamente 94% do FReMI a 

partir da sua respectiva execução sequencial. 

 

 

Palavras-Chave: Middleware, Cluster, Amazon EC2, Simulações de docagem molecular. 
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1. INTRODUCTION  

 

Large scale scientific experiments have had an ever increasing demand for high performance 

distributed computing. This typical scenario is found in bioinformatics, which needs to perform 

computer modelling and simulation on data varying from DNA sequence to protein structure to 

protein-ligand interactions. It produces sets of data flow that are processed by an iterative sequence of 

tasks, software or services [COU10]. 

Rational Drug Design (RDD) constitutes one of the earliest medical applications of 

bioinformatics [LUS01]. RDD aims to transform biologically active compounds into suitable drugs 

[KAP08]. In silico molecular docking simulation is one the main steps of RDD. It is used to identify 

and optimize drug candidates by computationally examining and modelling molecular interactions 

between ligands or small molecules and a target protein or receptor [KAP08]. The best ligand 

orientation and conformation inside the binding pocket is computed in terms of an estimated Free 

Energy of Bind (FEB) by a software, for instance, AutoDock4.2 [MOR09]. In order to mimic the 

natural, in vitro and in vivo, behaviour of ligands and receptors, their plasticity or flexibility should be 

treated in an explicit manner [MAC10b]. 

Generally, molecular docking algorithms consider receptors as rigid bodies; however, receptors 

are inherently flexible in the cellular environment [MAC10b]. A major approach to incorporate the 

explicit flexibility of receptors in molecular docking simulations is by means of snapshots derived 

from a molecular dynamics simulation [6] trajectory of the receptor (reviewed by [ALO06]). The 

resulting receptor model is called a Fully-Flexible Receptor (FFR) model. Organizing and handling 

the execution and analysis of molecular docking simulations of FFR models and flexible ligands are 

not trivial tasks. The dimension of the FFR model can become a limiting step because, instead of 

performing docking simulations in a single, rigid receptor conformation, we must do it for all n 

conformations that make up the FFR model [MAC10b]. n can vary from hundreds to thousands to 

millions of conformations. Therefore, the high computing cost involved in using FFR models to 

perform practical virtual screening of thousands or millions of ligands may turn it unfeasible. For this 

reason, we have been developing methods [MAC10b] to simplify or reduce the FFR model 

dimensionality. We dubbed this simpler representation of a FFR model a Reduced Fully-Flexible 

Receptor (RFFR) model. A RFFR model is achieved by eliminating redundancy in the FFR model 

through clustering its set of conformations, thus generating subsets which should contain the most 

promising conformations [MAC10b]. 

At present, to develop a RFFR, we still need to perform thousands, and in the near future, this 

number should grow to hundreds of thousands of molecular docking simulations of a particular target 

receptor modelled as a FFR model. However, the sequential execution of docking simulations of FFR 

models by software, such as AutoDock4.2 [MOR09], is computationally very expensive [MAC10b], 

hence demanding days, weeks, or even months of CPU time. As a result, to make use of parallel 
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processing is paramount to enhance the performance of the high-throughput molecular docking 

simulations of FFR models and molecule database, minimizing docking CPU time without lowering 

the quality of the RFFR models produced. 

The present study aims to contribute to the reduction of the overall execution time of molecular 

docking simulations of FFR models using parallel programming algorithms to perform such 

experiments in HPC environments. Additionally, a careful selection of a set of conformations 

[HUB10] has been used to eliminate non-promising conformations which, in turn, allows a 

simplification of the FFR model dimensionality, generating an RFFR model, and permits docking 

simulations of flexible receptors even faster. To this end, the middleware called FReMI (Flexible 

Receptor Middleware) was built to provide communication between the Web Fully-flexible Docking 

Workflow (W-FReDoW) and two different HPC environments; a local cluster infrastructure and a 

virtual cluster on cloud computing. 

Cloud computing is a new and promising trend for delivering information technology services 

as computing utilities [BUY09]. It offers software as a service by means of companies such as 

Amazon Web Services (AWS) [AWS12]. These commercial tool packages, which assure high 

scalability and support ubiquitous access [BUY09] by service companies, have increased the interest 

of the scientific community. Web services companies provide customers with storage and CPU power 

on an on-demand basis, and allows researchers to dynamically build their own environments and 

access them from anywhere in the world at any time. 

This dissertation presents two results: The FReMI conceptual architecture and the experimental 

results. The FReMI conceptual architecture was created to show the functions and data used to handle 

the many tasks within middleware, and its interoperability features with W-FReDoW and HPC 

environments. The experimental results, which are obtained from FReMI execution, constitutes of two 

set of experiments. The first set reports the experiments performed with FReMI using a sample of 

snapshots from a FFR model on two HPC environments; the Atlântica cluster and the virtual MPI 

cluster on Amazon EC2. The second one described the experiments, on the complete data set, 

performed with FReMI and W-FReDoW shared execution in a MPI cluster environment on Amazon 

EC2 instances only. The experimental results showed that W-FReDoW reduced the total execution 

time to between 10-30% of that of FReMI´s only execution, which, in turn, decreased near 94 % with 

respect to the serial execution time. 

 

1.1 Motivation  

 

Demand for the pharmaceutical industry in marketing drugs with minimum toxic side effects is 

growing potential as new diseases are surfacing. According to PricewaterhouseCoopers, due to the 

growth and aging of population, the global market for medicines is growing. Nevertheless, the 

production of new drugs still is a complex and challenging process, since in addition to spending a 
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long time, requires large investments in technology resources. Currently, new computational tools and 

methodologies are being developed to improve the RDD process at different stages. One these 

enhancements include the incorporation of protein flexibility in the molecular docking process 

[ALO06]. The search for methods that reduce the computational time involved in the molecular 

docking process, and to investigate accurately chemical and biological information about ligands and 

receptors is extremely important to identify and advance the RDD process [KAP08]. 

Thus, the major motivation of this study is to increase the computing speed and efficiency of 

the large scale molecular docking experiments, reducing the number of conformations of the FFR 

model and increasing the number of simulations performed simultaneously by multi-core and/or 

multi-processors. Hence, a heuristic function is used to distribute tasks which are executed in parallel 

by HPC environments in order to execute molecular docking simulations only for conformations that 

present to be most promising gradually during the interactions of the ligand-receptor complex.  

For the above reasons, the contribution of this study is to connect software components which 

allow a set of services runs multiple processes on one or more machines providing the interoperability 

between them through FReMI middleware. As a consequence, reduce excessive runtime during large-

scale virtual screening jobs as well as streamline the RDD process. 

 

1.2 Objectives 

 

1.2.1 Main Objective 

 

The main objective of this study is to develop a middleware to handle many tasks and provide 

the interoperability between web servers and high performance environments for parallelizing 

massively molecular docking simulations of subgroups of conformations from FFR models. 

Consequently, future molecular docking experiments, with different ligands, will not use all the 

conformations that make up a FFR model, but instead, only those which are significantly more 

promising. Thus, the total time spent in the molecular docking experiments for each FFR model can 

be considerably reduced, and new ever great virtual libraries can be exploited more effectively.  

 

1.2.2 Specific Objectives 

 

The specific objectives of this dissertation are: 

 To develop a heuristic function to create balanced tasks queues according to the priorities of 

different subsets of conformations of FFR models. This function sorts the placing of a 

fraction proportional of snapshots in the task queue in order of its importance belonging to 

each group of snapshots active. 
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 To define a parallel programming model that is able to distribute of a huge amount of tasks 

along the multi-processing nodes belonging to the HPC environments. 

 To apply communication protocol and files pattern to achieve the acknowledgment of data 

sending and receiving between FReMI middleware and W-FReDoW web environment. 

 To execute molecular docking simulations of a snapshots sample from FFR model on 

FReMI middleware. For executing this experiment the development is separated into two 

parts. First, perform the snapshots sample in FReMI using a dedicated cluster and a virtual 

cluster on Amazon EC2, then compare the performance between them. Second, perform the 

W-FReDoW and FReMI shared execution using a complete snapshots data set from a FFR 

model. 

 

1.3 Research Methodology  

 

The following are activities performed during the development of this dissertation. 

- A study on molecular docking simulations of FFR models to undertake information about 

the problem in study and the works which have been done by group research of the LABIO-

PUCRS (Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas da 

Pontifícia Universidade Católica do Rio Grande do Sul). Also, the review of the literature to 

identify relevant aspects about parallel execution and middleware. 

- Design of the FReMI conceptual architecture to model the data and control streams inside 

and outside of the middleware proposed.  

- Development of FReMI with its procedures and the heuristic functions used to handle the 

snapshots will be process by HPC environments. 

- Execution of a sample of snapshots using only FReMI in a dedicated cluster, and afterward 

in a virtual cluster on Amazon EC2 to compare the performance.  

- Execution of a complete FFR model, with 3,100 snapshots, using FReMI and also W-

FReDoW on Amazon EC2. Firstly, FReMI executes all the snapshots without W-FReDoW 

to discover the spent time to execute all the conformations in several processes. 

Subsequently FReMI and W-FReDoW was executed together with the purpose of reduce the 

execution time result of the first simulation. 

 

1.4 Dissertation Overview 

 

This dissertation is organized in eight sections as follows: 

- Chapter 2 introduces the major bioinformatics and computing concepts necessary for a 

better comprehension of this dissertation. It starts with an overview of the RDD process and 
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molecular docking simulations, and close with explanation of the approach used to consider 

the explicit flexibility of receptors based on the MD simulations  

- Chapter 3 describes the basic aspects of parallel computers used to execute the molecular 

docking simulations in this study. It starts with a summary of computing hardware based on 

multi-core and multi-processor machines. After that, an overview about on Cloud 

Computing and Amazon Web Services, focussing on those services relevant to FReMI 

execution. 

- In Chapter 4 is described the materials and methods used during the development of this 

dissertation in order to build and execute FReMI. It is divided into three parts. Firstly, the 

main tools employed by this study: AutoDock4.2, Atlântica local cluster, Amazon EC2 

cluster. After, the the data mining techniques [MAC10a] [MAC11a] [MAC11c] to cluster 

the snapshots with similarities features from a FFR model; the P-SaMI data pattern 

[HUB10] to to achieve the RFFR model by means of selecting of promising snapshots; and 

W-FReDoW to execute P-SaMI and prepare the AutoDock4.2 input files. Finally, the MPI 

[MPI09] and OpenMP [OMP11] libraries used on C programming language to make the 

hybrid parallel programming model as well as the XML and HTTP POST internet 

communication protocols used to link W-FReDoW and FReMI execution. 

- Chapter 5 presents the first result of this dissertation, i.e., the FReMI conceptual 

architecture. It includes the representation of this architecture and the detailed specification 

of every function with the data and control flows. Also, it reports the W-FReDoW functions 

that are able to provide communication with FReMI.  

- Chapter 6 presents the second set of results of this dissertation. Two sets of experiments are 

performed using the FReMI conceptual architecture defined in Chapter 5. The first set 

reports the experiments with FReMI using a sample of snapshots data set from a FFR model 

on two HPC environments. The second one describes the experiments, on the complete data 

set, performed with FReMI and W-FReDoW shared execution in a virtual cluster on 

Amazon EC2 only.  

- Chapter 7 reports related works. These works are associated with the current approaches 

used to accelerate the AutoDock4.2 execution. 

- Chapter 8 summarizes the conclusions of the study which have led to this dissertation. 

Additionally, it draws the main contributions and gives some directions for future work.  
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2. BACKGROUND 

 

This chapter introduces the major bioinformatics and computing concepts necessary for a better 

comprehension of this dissertation.  It starts with an overview of the RDD process and molecular 

docking simulations, and close with explanation of the approach used to consider the explicit 

flexibility of receptors based on the MD simulations.   

 

2.1 Rational Drug Design (RDD) and Molecular Docking 

 

According to Stoddard et al. [STO93] RDD refers to the systematic exploration of the three-

dimensional (3-D) structure of a receptor in order to find potential ligands that might bind to the target 

with high affinity and specificity. This process involves a set of four steps which are described by 

Kuntz [KUN92] and outlined below. 

1. The first step consists in finding the macromolecule of pharmacological importance or target 

receptor (protein, DNA, RNA or others) [MAN09]. Experimental 3-D structures of proteins 

are found, for instance, in structural databases such as the Protein Data Bank (PDB) 

[BER00]. Computational analysis of these target receptors may reveal possible binding sites.  

2. Based on the possible binding sites found in the first step, a set of ligands is selected that can 

fit into this binding region or pocket in the receptor. Usually, the ligands are found in 

databases of compounds like ZINC [IRW05]. The different conformations and orientations 

that each ligand can fit into a receptor binding pocket are simulated in this step by docking 

software. 

3. The ligands that bind successfully to the receptor binding pocket and which are able to 

inhibit or enhance its activity, depending on the objective of the project of drug design, are 

bought or synthesized, and then experimentally tested. 

4. Based on the experimental results, the manufacture of a new drug is conducted or the RDD 

process returns to step 1. 

 

One of the most important steps of the RRD process is the in silico molecular docking 

simulation in step 2. Molecular docking simulations can be assessed in vitro. However, assaying a 

target receptor against a database, like ZINC [IRW05] which holds more than 23 millions of 

compounds, does not constitute a rational approach [ALO06]. Hence docking simulations are used for 

lead compound discovery, typically by computationally screening a large database of organic 

molecules for putative ligands that fit into a binding site [WEI04]. 

Molecular docking simulations sample hundreds of thousands of orientations and 

conformations of a ligand inside the protein binding site and evaluate the free energy of binding 

(FEB), and rank the orientations/conformations according to their scores [HUA07]. The majority of 
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molecular docking methods treat the ligands as flexible, but the receptors are treated as rigid 

molecules [MAC11c].  

For computing the quality of the fit between receptors and ligands, the docking algorithms rank 

the best docking results in terms of the estimated Free Energy of Binding (FEB) and the Root Mean 

Squared Deviation (RMSD). Thus, the more effective ligand-receptor association is evidenced by 

docking algorithms when the FEB (in kcal/mol) is more negative and the RMSD is close to zero Å (in 

the cases where the final docked position is known). Over 60 types of software currently investigate 

different methods to find the best fit between a receptor and possible ligands [PLE11]. Some 

examples are AutoDock [MOR09], DOCK [LAN09], GOLD [JON97], and FlexE [CLA01]. Figure 

2.1 illustrates a molecular docking process. 

 

Figure 2.1: 3-D Representation of the molecular docking process. The protein receptor, with 

secondary structures represented by ribbons and a transparent molecular surface, is coloured grey. The 

TCL ligand is in sticks. The initial position of the ligand is in cyan and two different positions along a 

docking simulation are shown in green and magenta. The protein receptor is the enzyme Enoyl-

Reductase or InhA (PDB ID: 1P45) from Mycobacterium tuberculosis [KUO03]. 

 

However, proteins are inherently flexible systems and this flexibility is frequently essential to 

determine their functions [COZ08]. According to Plewczynski et al. [PLE11] only 60% of the best 

docking algorithms correctly predict the pose of ligands when a single, rigid receptor conformation is 

considered. Therefore, realistic docking simulations need to take into account the molecular 

flexibility, for both receptor and ligand, since in many cases the key-lock model does not work well 

and the induced-fit model is more appropriate [WON08]. 
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Nonetheless, to consider the plasticity or flexibility of a receptor and ligand in docking 

simulations is still challenging. Therefore, new computational approaches are being developed to 

simulate flexible receptors [MAC10b] [MAC11c]. 

 

2.1.1 Approach to Consider the Explicit Flexibility of Receptors  

 

Several approaches have been used to consider the explicit flexibility of receptors (reviewed by 

Alonso et al. [ALO06], Cozzini et al. [COZ08], Teodoro et al. [TEO03] and Totrov et al. [TOT08]). 

The employment of many receptor structures [COZ08] is becoming common place in the simulation 

of the natural, in vivo and in vitro, behaviour of flexible receptors. In this approach an ensemble of 

receptor conformations or snapshots derived from a MD simulation trajectory (reviewed by [ALO06]) 

are used to incorporate the explicit flexibility of receptors in the molecular docking simulations. 

According to Alonso et al. [ALO06] MD simulations are extremely important to understand the 

dynamic behaviour of proteins at different timescales, from fast internal motions to slow 

conformational changes or even protein folding processes. The result of a MD simulation is a series of 

instant conformations of the protein receptor along the simulation time scale. These conformations are 

also often called snapshots. Figure 2.2 illustrates the flexibility of a receptor derived from a MD 

simulations trajectory. 

 

Figure 2.2: Flexibility of the InhA enzyme from Mycobacterium tuberculosis [PDB ID: 1P45]. 

Superposition of different InhA conformations, represented as ribbons, along a MD simulation. The 

initial conformation of the simulation is the experimental crystal structure [PDB ID: 1P45] and is 

coloured in black. Two other conformations or snapshots were taken from the MD simulation at 1,000 

ps (grey) and 3,000 ps (light grey). The dashed rectangle highlights the most flexible regions of this 

receptor.  
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The execution of MD simulations is computationally expensive. However, because of the high 

level of accuracy in the modelling process [TEO03], it is the best method for identifying from crystal 

structures of proteins alternative binding forms otherwise not apparent from the rigid picture 

[ALO06]. Furthermore, Cozzini et al. [COZ08] states that among all the available approaches to treat 

the explicit flexibility of a receptor, the MD technique is the most affordable and accessible method to 

produce many protein conformations at reasonable cost. 

This study models the explicit flexibility of a receptor by using a set of conformations derived 

from its MD simulation. Such a receptor has been named a Fully-Flexible Receptor (FFR) model 

[MAC10b] [MAC11c]. For each conformation in the FFR model, a docking simulation is executed 

and analysed [MAC10b].  

The dimensionality of a FFR model is determined by the length of the simulation and how often 

snapshots are saved during the simulation. New techniques have been developed by Machado et al. 

[MAC10b] and Hübler [HUB10] to simplify or reduce the size of the FFR model. This new 

representation of the receptor is called the Reduced Fully-Flexible Receptor (RFFR) model. 
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3. PARALLEL COMPUTERS 

 

This chapter describes basic concepts of parallel computers used to execute the molecular 

docking simulations in this study. It starts with a summary of computing hardware based on multi-

core and multi-processor machines. After that, an overview about cluster environment as a popular 

architecture formed by commodity computers will be given. Finally, a brief description about the new 

trend in virtual HPC cluster using Amazon’s Elastic Computing Cloud (EC2) will be presented. 

 

3.1 Architecture and Taxonomy of Parallel Computers 

 

Parallel computing has become widely used to execute simultaneously instructions that require 

significant resources. Parallel computational structures must provide hardware and software support 

to use multiple processors and work on the same task with different data. Initially it is important to 

know how the processors and memory are organized, how machines are interconnected and then 

determinate which distributed system should be used to manage these hardware resources through 

software concepts [TAN10]. Such resources include sharing of CPUs, memories, peripheral devices, 

networks and data.  

There are several different classifications of parallel programming models. The most common 

representation is based on a number of data and instruction streams or operations [FLY72]. Still 

according to Flynn [FLY72] there are four different categories to classify the computer architecture 

and their taxonomy.  

1. SISD (Single Instruction Single Data). This model defines the traditional von Neumann 

computer where a processor executes only a data stream. 

2. SIMD (Single Instruction Multiple Data). In this representation each processor executes the 

same program. 

3. MISD (Multiple Instruction Single Data). This model defines systems where multiple 

programs operate on the same data. 

4. MIMD (Multiple Instruction Multiple Data). This model executes multiple programs on 

multiple data. This classification involves parallel computer architectures which typically 

are known as clusters. 

 

MIMD identify the supercomputers which combine high processing capacity with intensive 

calculation tasks. It is classified in two groups: loosely-coupled and tightly-coupled machines 

[TAN02]. The loosely-coupled machines are heterogeneous multicomputer known as computational 

grid [BUY00] [FOR06]. The tightly-coupled machines are homogeneous multicomputer known as 

cluster which is the machines used to perform the molecular docking simulations using the 

middleware proposed in this work.  
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In the early years, MIMD supercomputers executed only one process per computer. Nowadays, 

in the Symmetric Multiprocessing (SMP) machines, each computer contains multiple processors or 

multi-cores. SMP machines treat the cores as separate processors improving significantly the 

performance of massive computational workload [TAN02].  

In this study, the used HPC environments are clusters that consist of two or more SMP 

machines or nodes linked by an interconnect network. The major infrastructure and operations of this 

kind of machines will be discussed in the next section. 

 

3.2 HPC Cluster Environments 

 

The first cluster computing model was developed in the 1960s by IBM as an alternative for 

connecting large mainframes [BUY99]. Only in the 1980s new cluster trends started to emerge as 

conventional parallel and distributed platforms. In the beginning these machines were called high-

performance microprocessors, followed by high-speed networks, most recently supercomputers and at 

present they are dubbed High Performance Computers (HPC) [BUY99][BUY00]. Currently, clusters 

have been widely used for research and development of science, engineering, bioinformatics, 

commerce and industry applications that demand high performance computing. To meet the 

requirements of these areas a greater number of supercomputers have been emerged with power and 

advance architectures, such as Fujitsu at RIKEN Advanced Institute for Computational Science at 

Japan, Jaguar at the Ridge National Laboratory and Pleiades at the NASA/Ames Research Center. 

These computers are listed among the top 10 fastest supercomputers in the world (TOP 500 

supercomputer sites [TOP11]).  

The high availability of commodity high-performance microprocessors and high-speed 

networks, combined with scalability to perform the shared functions as a single system, are making 

clusters an attractive platform for parallel processing leading to low-cost commodity supercomputing 

[BUY99]. Clusters can aggregate processing capacity based on a huge number of computers called 

workstations, nodes or hosts. For example, Figure 3.1 shows a typical architecture of a cluster with 

four workstations and an interconnection network to support communication between them. Each 

node provides an assisted system to manage the operations and communications between the 

workstations used. Such systems provide services as core/thread coordination, inter-process 

communication, and device handling. According to Buyya [BUY99] the main features of a cluster 

operation system are:  

- Manageability to administrate the local and remote resources. 

- Stability to support failures with system recovery. 

- Performance to guarantee efficiency for all types of operations. 

- Extensibility to provide integration of cluster-specific extensions. 

- Scalability to scale the resources without impact on performance.  
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- Support between user and system administrator. 

- Heterogeneity over multiple architectures that have heterogeneous hardware components. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Cluster architecture. Cluster Interconnection Network links the software and hardware 

communication among the workstations (Adapted from [BUY99]). 

 

The main advantages of using clusters are their low cost and high performance. This naturally 

means that their benefits and capacity are greater if compared to the isolated components because 

each node has inferior configuration; otherwise, the union of these nodes allow a significant increase 

in performance. Furthermore, clusters include nodes with low-latency interconnections aiming at 

gains in performance. Other advantage refers to high accessibility; it means that when a machine of 

the pool fails tasks can be reallocated to other nodes without losing performance. Thus, the loss of a 

machine does not affect the cluster operation.  

There are several metrics to measure the cluster performance during an execution. The metrics 

take into account factors such as hardware availability and software to support operational system, file 

system, communication protocol and network interface. In summary, there are two key features used 

to measure the capabilities and potential performance of clusters: network and application 

performance. Analysis of network is based on bandwidth
1
 and latency

2
 in the interconnection. 

Analysis of an application relies on the speedup and efficiency. The former is an estimate of how 

faster is the parallel version of the application compared to its sequential version. The latter identifies 

if the nodes were well-used during execution of an application. 

In order to achieve a desired level of performance with the metrics mentioned above, parallel 

software must follow some parallel programming models to avoid overhead and idle processors, in 

other words, carry on synchronisation among processors towards improving the computational load 

balance and reducing the communication time [TRE00]. Hence, parallel programming allows dividing 

a computational workload into several separate processes which are concurrently executed by 

different processors to solve a common task. This approach requires setting the granularity and 

                                                           
1
 Bandwidth: is the amount of data that can be passed along a network in a given period of time. 

 
2
 Latency: time to prepare and transmit data from a source node to a destination node. 
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communication of the HPC environment [TRE00]. Granularity is the relative size of the units of 

computation that execute in parallel (coarseness or fineness of task division). Communication is the 

way that separate units of computation exchange data and synchronise their activity. 

The cluster approach is used in two types of HPC environments employed to execute the 

molecular docking simulations in this study. The first one is a cluster of commodity computers 

connected by a fast network. The second one is a virtual cluster built on Amazon EC2. The 

specifications and configurations of each HPC environment will be provided in Chapter 4, Sections 

4.1.2 and 4.1.3.  

However, because the Amazon EC2 entails a new concept of HPC environment on cloud 

computing, the next section gives a description of its main features. 

 

3.3 Amazon’s Elastic Computing Cloud – EC2 

 

Before starting to explain the AWS, the commercial product used in this study to execute the 

molecular docking simulations on a Cloud, it is very important to present some overall concepts to 

understanding how cloud computing works. 

Cloud computing are been defined in several manners by different authors. However, each 

definition is modelled according to particular aspects present in the hardware and software services 

which are largely provided over the Internet by cloud computing applications.  

Foster et al. [FOS05] claim that cloud computing is a large-scale distributed computing 

paradigm that is driven by economies of scale, in which a pool of abstracted, virtualized, dynamically-

scalable, managed computing power, storage, platforms, and services are delivered on demand to 

external customers over the internet. Buyya et al. [BUY09] point out that clouds are designed to 

provide services to external users; providers need to be compensated for sharing their resources and 

capabilities. Armbrust et al. [ARM10] states, in terms of trade, that cloud computing is a long-held 

dream of computing as a utility, because it has the potential to transform a large part of the IT 

industry, making software even more attractive as a service and shaping the way IT hardware is 

designed and purchased.  

All the definitions converge to the same goal which is to provide computational resources when 

and where you need them, offering accessibility to use multiples clouds, scalability to launch large 

number of instances by virtual machine (VM) support, flash memory and schedule VMs [ARM10]. 

Users or brokers acting on their behalf submit service requests from suitable businesses and negotiate 

with them to achieve ideal service contracts [BUY09]. Amazon, Google, Salesfores, IBM, Microsoft 

and Sun Microsystems are examples of these business companies which offer data center for hosting 

cloud computing applications. These industries describe their products as an infrastructure and 

platform services. According to Armbrust et al. [ARM10], software as a service is used to identify the 

application delivered over the internet. Thus, each cloud platform provides its technologies and 
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infrastructure for supplying software as a service for consumers and enterprises to access on demand 

regardless of time and location [BUY09]. 

Amazon Web Services is a suite of web services made available by Amazon that allow 

developers to access and build on the company’s technology platform [MUR08]. It shares the work 

burden between multiple components as a service pool in the World Wide Web by means of 

Infrastructure as a Service (IaaS). IaaS is the term typified by the AWS cloud to identify the on-

demand access to its compute infrastructure [MUR08]. Application administrators request as many 

servers as necessary to meet the scalability needs of their application.  

AWS is a public cloud which offers set of web services to anyone on the internet by means of 

pay-as-you-go tax [MUR08]. The most important services it provides are [AWS12]: 

- Amazon Simple Storage Service (S3). This service provides to the users the ability to store 

large amounts of data reliably and with high availability. Also it allows building, 

maintaining and backing-up the storage system. 

- Amazon Elastic Compute Cloud (EC2). This service is being extensively used to run Virtual 

Machines (VM) multiple on demands [MUR08]. It provide as many computers as you need 

to process your data in a large number of physical computers. 

- Amazon Simple Queue Service (SQS). This service provides a reliable, scalable queuing 

service between EC2 instances. 

- Amazon Simple DB. This service provides many of facilities of relational databases, and 

provides a web services interface to the system. 

 

AWS provides several services which are useful for scientific applications; however in this 

study only Amazon’s EC2 and S3 services have been extensively used and explored. For this reason, 

the features of both services will be presented in detail. Further information about the other services 

can be found in [MUR08] and Amazon Web Services web site [AWS12]. 

Amazon’s Simple Storage Service (S3) is a data model which allows users to store unlimited 

amounts of data by means of two kinds of storage resources: objects and buckets. More precisely, data 

and metadata are stored in objects while buckets are containers that can hold an infinite number of 

objects [MUR08]. Furthermore, with the purpose of manipulating the storage resources S3 uses 

protocols such as SOAP
3
, REST [FIE00] and Bit Torrent P2P [POU05] which permit the users to read 

and write data on Amazon S3. It also supplies access control mechanisms to keep the information 

private or public. The public information gives accessibility to anyone on the internet via normal web 

browsers by standard Universal Resource Identifiers (URIs). For example, the alternative domain 

name used to download the objects is http://s3.amazonaws.com/bucket-name/object-name 

                                                           
3
 http://www.w3.org/TR/soap. 
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Although the online storage service is priced according to the geographical location, S3 account 

holders are billed monthly for their usage of service considering three key aspects. First, the volume 

of data transferred to or from S3, second the storage space consumed and finally, the number of 

Application Programming Interface (API) request operations that have been performed on each 

account. According to Amazon Web Services [AWS12] the storage price on Amazon S3 

infrastructure ranges between $0.12 and $0.15 per GB per month whereas the data transfer is $ 0.12 

per month. However, to calculate the price for data storage in S3 it is necessary to know the location 

and also the amount of data used during the executions due to various policies to determine the 

charges. 

Amazon’s Elastic Compute Cloud (EC2) provides a virtual computing environment based on 

demand to run applications [BUY09] [MUR08]. The virtual computing environment holds one or 

more virtual machines which allow installing and configuring the pool of servers for handling 

computing tasks as a root user on Linux machines. Each virtual machine can be launched from 

prepared servers created by third parties or set up an EC2 server to work as the user’s want, i.e. the 

users install their own software and configure their own environment. Thus, the user can start as many 

virtual servers as necessary to perform a task, increase or decrease the number of servers as demand 

rises and falls, and stop them all when the tasks is finished [MUR08]. Furthermore, the user pay only 

for the computing service you use.  

The EC2 service comprises three key components [MUR08]:  

- Instances. The instances are the virtual machine which run in the EC2 environment and 

perform computing tasks that would typically be done by physical servers. 

- Environment. The instances run in the EC2 environment, which provides contextual data, 

configurable access control, and other information that the instances need to do their work. 

- Amazon Machine Images (AMIs). The AMI is used to launch a machine image as the boot 

disk for the instances. They are files that capture a full snapshot of an EC2 instance at a 

point in time, containing its applications, libraries, and even its data  associated 

configuration settings or select from a library of globally available AMIs [BUY09]. 

 

Each EC2 virtual machine instance launched is based on Xen virtualisation technology 

[BAR03]. This engine allows one physical computer to be shared by several virtual computers each of 

which hosts different operating systems. Hence, the EC2 Compute Unit is used to provide a baseline 

guide to the computing capacity expected from an EC2 instance. As a reference point, an instance is a 

rating of 1 EC2 compute unit to provide the same CPU capacity as a physical machine with a 1.0 to 

1.2 GHz 2007 Opteron or 2007 Xeon processor [MUR08]. Thus, the use of VMs gives rise to further 

challenges such as the intelligent allocation of physical resources for managing competing resource 

demands of the users [BUY09].  
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Amazon standardises the services available into five different types of instances with different 

levels of performance and resourcing [MUR08]. The configuration and tier of each instance are 

showed in Table 3.1. Where are illustrated the variations of virtual cores, the amount of RAM, 

whether it is a 32-bit or 64-bit architecture, how much storage is available, and the prices, which are 

charges on an hourly basis. The prices are based on Amazon Web Services web site [AWS12] to the 

region used to execute the simulations in this study, i.e., US East Region. 

Table 3.1: Specification of five instances types on Amazon EC2 [AWS12].  

Type  #cores RAM Bits Storage (hard disk) Price (per hour) 

m1.small 1 1.7 GB 32 160 GB $0.085 

m1.large 2 7.5 GB 64 850 GB $0.34 

m1.xlarge 4 15 GB 64 1690 GB $0.68 

c1.medium 2 1.7 GB 32 350 GB $0.17 

c1.xlarge 8 7 GB 64 1690 GB $0.68 

 

The Amazon EC2 instance type is chosen when an AMI is launched. The AMI captures the root 

file system of an instance in a series of files [MUR08]. It means that when an instance is launched it 

starts the boot from the software, the configuration settings and the data that were stored in the AMI. 

Each AMI is stored on Amazon’s S3 service and needs to be registered with EC2 to give an AMI ID 

that is used to start a server instance at any time. Basically an AMI is a snapshot of the instance at the 

point of creation. Thus, each time a new instance of the created AMI is started it will have the same 

state from which it was created [MUR08]. Furthermore, after the AMI is launched it gives a DNS 

address, which can be accessed by the users using SSH command to manage the virtual server, i.e. 

running the applications, install the needed software, configuring the environment or even creating a 

new AMI. 

Amazon EC2 also contains a secondary storage volume which is associated in its instances. 

This storage space exists only while the instance is active and is called Elastic Block Store (EBS). 

Amazon EBS volumes are off-instance storage which persists independently from the life of an 

instance; likewise, when an instance is terminated the EBS volume terminates too [HAZ08] 

[AWS12]. An EBS is provided as a block device which the user may format with an appropriate file 

system. For example, in this study, all the input and output files resulting from the FReMI execution 

are stored in a shared file directory in a block device of the EBS data volume inside the EC2 instance. 

According to Amazon Web Services web site [AWS12] the costs to use the EBS volume 

storage is charged by the amount of allocation until it is released. Thus, a rate of $ 0.10 per allocated 

GB per month and $ 0.10 per 1 million I/O requests is charged by each EBS volume active in the 

instance. 

The key objective to make use of cloud computing in the FReMI execution is to compare the 

performance, the usability and the costs take in a local cluster infrastructure and a virtual cluster 

environment on Amazon EC2. Thus, from a comparative study of this metrics verifies the benefits 
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undertaken in each cluster environment through execution in parallel of molecular docking 

simulations of conformations subsets of the FFR model on FReMI.  
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4. MATERIALS AND METHODS 

 

This chapter presents all the materials and methods used to develop this study. It is divided into 

three sections. The first section describes the software used to execute the molecular docking 

simulations and the HPC environments used in the parallel execution of FReMI’s tasks. The following 

section presents an overview of the approach used to generate the different groups of snapshots which 

has given rise to all the data used in this dissertation and the data pattern applied within W-FReDoW 

to reduce the dimension of the FFR model. The last section explains the implementation of FReMI. It 

includes the parallel programming paradigm to execute simultaneously the molecular docking 

simulations on clusters and the communication protocols used to give communication between 

FReMI and W-FReDoW. 

 

4.1 Hardware and Software 

 

The AutoDock4.2 software used to perform molecular docking simulations of the FFR model 

and the MPI high performance environments used to execute the parallel docking jobs are presented 

in this section. 

 

4.1.1 AutoDock4.2  

 

AutoDock, a non-commercial open-source software, has been widely used to perform virtual 

screening of a huge database of potential ligands against a variety of receptors. It has been 

successfully applied to design new inhibitors or bioactive compounds and, consequently, to improve 

the RDD efforts. 

AutoDock4.2 employs a stochastic search algorithm that generates random conformations of 

receptor and ligand [MOR10]. It has an empirical force-field-based scoring function that incorporates 

a set of atom types and charges to estimate free energies of binding (FEB) [MOR09]. The main steps 

to perform molecular docking simulations between a target molecule and a ligand with AutoDock4.2 

are illustrated in Figure 4.1 and summarized below. 

 

 

Figure 4.1: Steps in the AutoDock4.2 sequential execution. The function name and the output files are 

represented in each step to execute a single molecular docking simulation with AutoDock4.2.  
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1. Preparation of ligand and receptor files (steps 1 and 2 in Figure 4.1). In this step, from a 

coordinate files, generally in PDB format, it is possible to insert the polar hydrogen atoms, 

partial charges and atom types [MOR10]. Furthermore, the torsions degree can be selected 

to limit the flexibility of the ligand. After all configured, a PDBQT file is created for both 

receptor, and ligand.  

2. Configuration grid and docking files (steps 3 and 4 in Figure 4.1). After ligand and receptor 

files created, the grid and docking files are prepared. Each file contains parameters that are 

specified in this stage to execute the third and fourth steps. A GPF file is generated to 

execute autogrid and a DPF file is generated to execute autodock.  

3. Autogrid execution (step 5 in Figure 4.1). For each atom type present in the ligand that is 

being docked a grid maps are calculated by autogrid [MOR10]. This step is essential 

because, besides this pre-calculation to be the autodock input parameters, it helps to make 

the docking computations fast. To run autogrid it is necessary a grid parameter file (GPF 

extension) which specifies some parameters, for instance the grid point spacing, the grid 

centre, and the name of output files written during the grid calculation [MOR10]. The grid 

output files are a log file with grid calculation, and other information about the coordinates 

and specifications to create a grid box. The amount of grid map files depends on the number 

of atom types in each small molecule or ligand. 

4. Autodock execution (step 6 in Figure 4.1). Finally, autodock is executed by one of the 

search methods. The docked conformations and FEB results are independently generated by 

the search algorithm employed to perform a number of receptor and ligand interactions. The 

algorithms used by Audodock4 are Lamarckian Genetic Algorithm (LGA) [MOR98], 

Genetic Algorithm [MOR98] and Simulated Annealing [GOO96]. These search algorithms 

have a parameter for determining the amount of runs (number of evaluations) that will be 

used to identify ligands by ranking the relative binding energy of small molecules [MOR10]. 

There are several parameters to improve the docking performance. However, different 

values can be selected depending upon the search approach chosen. Besides the input 

parameters to specify the docking calculation, the grid maps and a ligand files are also 

specified in input file (DPF extension) to execute docking simulations. At the end of the 

execution, an output file (DLG extension) is produced with final docked coordinates, final 

binding energies, such as RMSD and FEB, and other values which belong to each evaluation 

executed.  

The third and fourth steps above are a limitation of AutoDock4.2 because of the high 

computational cost required to perform several docked conformations by means of a stochastic search 

function. Furthermore, AutoDock4.2 is originally designed to execute in a single core machine. The 

total time spent to execute autogrid and autodock of only one snapshot of the FFR model and one 

ligand in a CPU with 2.13 GHz and 2GB RAM is around 3 minutes. However, the number of 
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conformations a FFR model can have may reach thousands to hundreds of thousands to millions of 

conformations. The high computational cost involved in performing practical virtual screening of a 

FFR model against a library of thousands to millions of thousands of ligands, the ZINC Database 

[IRW05] is an example, may be it impractical. For these reasons, this study constitutes an attempt to 

make docking simulation of a FFR model against a ligand, and in the future a library of ligands, a 

viable step in the RDD process. For that, we make intense use of parallel architectures on MPI cluster 

environments which simultaneously control and execute molecular docking. 

 

4.1.2 Atlântica Cluster 

 

Atlântica cluster is one of the two HPC architectures used to execute massively parallel 

molecular docking simulations of a FFR model. It consists of 10 nodes connected by a fast network 

system. Each node contains two CPUs Intel Xeon Quad-Core E5520 2.27GHZ with Hyper-Threading 

and 16GB of RAM, aggregating 16 cores per node (16 hardware threads running on 8 physical cores, 

2 threads per core) and 160 cores in total. The cluster is connected by two gigabit Ethernet network; 

one for communication between nodes and another for management. The Atlântica cluster is hosted in 

the “Laboratório de Alto Desempenho da PUCRS” (LAD)
4
. LAD supplies high performance 

computational resources for the academic community and research groups at PUCRS.  

The cluster provides several software and hardware resources necessary to execute parallel 

programs in a secure and usable manner. It uses Torque
5
 to manage the allocation and control of the 

access to the nodes through queues monitored by job-scheduling policies. To allocate one or more 

nodes with this control it is necessary to provide information about the type of parallel execution to be 

processed, e.g.; the number of nodes allocated, allocation time, access mode (exclusive or not 

exclusive) and amount of cores/threads.  

Figure 4.2 shows the Atlântica cluster network architecture where the nodes are represented as 

Atlântica machines from 1 to 10. The server machine called Marfim gives local access to the cluster. 

Marfim is also located in LAD and runs as an image to the hosts of the Atlântica cluster. It provides 

all the needed support for preparing and controlling executions in the cluster, such as the file system 

operations, the libraries to compile and execute the parallel applications. 

 

                                                           
4
 http://www.pucrs.br/ideia/lad. 

5
 http://www.adaptivecomputing.com/products/torque.php. 
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Figure 4.2: Atlântica cluster’s network architecture. The users access the Marfim server that provides 

access up to 10 machines from the Atlântica cluster. 

 

The Atlântica cluster includes a multi-core processor architecture to leverage the performance 

of large-scale executions and optimize applications by means of distribution of workloads. Taking 

advantage of the parallel processing power of a cluster may likely increase the execution of molecular 

docking simulations of FFR models by FReMI. 

 

4.1.3 HPC on Amazon EC2 Instances  

 

Another HPC architecture used in this study to execute FReMI’s tasks in parallel is a virtual 

cluster built with Amazon EC2 instances. The AMI used as base is ami-da0cf8b3
6
 with Ubuntu 10.04 

Server 64-bit and 6 different instance types with different features. Only a High-CPU extra large 

instance (c1.xlarge) was prepared and configured to create a new instance which was used to execute 

FReMI. Due to the sharing of instances by more than one user, Amazon EC2 provides a basic 

measure of processing to identify different types of physical machines. A rating of one EC2 compute 

unit is a unit of CPU performance where the CPU capacity corresponds to 1.0 - 1.2 GHz 2007 

Opteron or 2007 Xeon processor [MUT08]. Amazon’s EC2 c1.xlarge instance has 8 virtual cores with 

2.5 EC2 compute units each, 7 GB of RAM and 1,690 GB of local instance storage. 

After launching the instance the internal and external dynamic network addresses are assigned 

by the EC2 environment [MUT08] to allow access using SSH in each instance. Furthermore, the 

virtual machines can be configured by the user to install and run software as root user. Afterwards, 

users can create a new image from the AMI base and launch instances of their own AMI over the 

                                                           
6
 http://aws.amazon.com/amis/4348. 
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internet and interact with them. This is the approach used in this study to create an MPI cluster pool 

on Amazon EC2 and subsequently to execute FReMI. The steps necessary to construct this MPI 

cluster environment are described below. 

1. Launch an instance from base image (ami-da0cf8b3). 

2. Prepare the base instance. In this step all essential software to run the FReMI middleware 

are installed. The data files for the scientific experiment, as well as the program files used to 

execute FReMI, are stored. The software installed in this machine were: GCC 4.6.2 

[STA10], MPICH2 [MPI09], libxml [XML03] and libcurl [CUR11] libraries, AutoDock4.2 

[MOR09] package and network configuration tools.  

3. Create a new image from step 1. At this time, the new AMI is created with the same 

software and data of the original AMI, but with a different AMI identification. 

4. Launch instances from image created on Step 3. In this step it is started as many instances as 

necessary to execute tasks in parallel. 

5. Prepare MPI Cluster Environment. An MPI cluster pool must be configured with the 

launched instances. In this regard, a ring of multiprocessor daemons are activated to provide 

communication among the instances. Additionally, a Network File System (NFS) is created 

to share the same file directory system amongst all virtual machines. 

6. Finally, execute the FReMI middleware on Amazon instances. 

 

The data files are stored on Amazon Elastic Block Store (EBS). EBS provides block level 

storage volumes for use with Amazon EC2 instances. Amazon EBS volumes are off-instance storage 

that persists independently from the life of an instance [AWS12]. This means that if the instance is 

rebooted EBS will keep the stored data. However, if the instance is terminated the EBS storage 

volume terminates too. Figure 4.3 shows the cluster pool created on Amazon EC2’s instances where 

the same files directory is shared by NFS among the instances to store all input and output files used 

during run time of FReMI. In this pool, all data are stored on EBS of the master machine and all the 

instances have permission to read and write in this shared directory. All data is kept stored in the 

shared directory even if a slave instance terminates. However, if the master instance terminates all 

data are lost because the master instance EBS volume terminates at the same time. Thus, the S3cmd
7
 

source code and package is used to replicate the most important information from Amazon EC2 to 

Amazon S3 bucket
8
. 

                                                           
7
 S3cmd is an open source project available under GNU Public License v2 and free for commercial and private 

use. It is a command line tool for uploading, retrieving and managing data in Amazon’s S3. S3cmd is available 

at http://s3tools.org/s3cmd. 
8
 Bucket is the space to store data on Amazon S3. Each bucket is identified with a unique bucket name. 
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Figure 4.3 MPI cluster environment created to execute FReMI on Amazon EC2. The remote station 

represents the machine outside Amazon EC2 used to connect the MPI Master Instance by an SSH 

connection. The MPI Master Instance is the machine that manages the MPI slaves during the FReMI 

execution. It also holds the FReMI source code and the I/O files stored on the Amazon Elastic Block 

Store (EBS). All instances may access EBS through NFS. 

 

Although Amazon provides a range of command-line utilities for bundling and controlling EC2 

images and instances, there are several tools and software packages that have been developed to aid 

the use of AWS. This study used the EC2 command line tools
9
 to manage the instances, such as 

manipulating security groups, launching and terminating instances. In addition, Elastic Fox [AEF11] 

and S3Fox [ASF11] extensions are employed to control EC2 and S3 using a GUI instead of command 

line. Both are extensions of Mozilla Firefox web browser and can provide access through this tool. 

Figure 4.4 shows Elastic Fox at work. It allows the user to control AMIs, launch, monitor and 

terminate instances. Figure 4.5 illustrates the use of S3Fox which, besides transferring data between 

S3 and the local machine, it also allows creating buckets, deleting files, and setting permissions. 

 

                                                           
9
 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351. 
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Figure 4.4: Elastic Fox interface showing five running virtual machines and their features. This 

interface also allows launching, rebooting and terminating the running images. 

 

 

Figure 4.5: S3 Fox interface. The right box shows the files inside the S3 bucket. The left box shows 

the file on the local machine. This interface allows transferring files to and from Amazon’s S3. 

 

4.2 Methodology Applied to Build the RFFR Model  

  

The snapshots of the FFR model used in this study (see Section 2.1.1) are derived from a MD 

simulation trajectory of the receptor. Even though this approach is considered the best to mimic the 

natural behavior of ligands and receptors [ALO06], its dimension or size may become a limiting step. 

Moreover, the high computing cost involved could also turn it unfeasible to perform practical virtual 
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screening of such a receptor model. For these reasons, new methods have been developed to assist in 

the simplification or reduction of a FFR model to a RFFR model. The primary rationale of this 

approach is to eliminate redundancy in the FFR model through clustering of its constituent 

conformations [MAC10b]. This is followed by the generation of subgroups with the most promising 

conformations via the P-SaMI algorithm [HUB10]. FReMI was developed to aid in this task and its 

results are expected to support faster execution of molecular docking simulations in more realistic 

virtual screening experiments. To achieve this FReMI relies on data derived from the following 

approaches: 

1. Data mining techniques to achieve the groups of snapshots [MAC10b], [MAC11a] and 

[MAC11c].  

2. The Self-adapting Multiple Instances Partner (P-SaMI) to classify and prioritize the different 

groups of snapshots [HUB10].  

3. The W-FReDoW web environment which uses P-SaMI and prepare the docking input files 

[DEP11]. 

 

4.2.1 Snapshots Clustering of a FFR Model 

 

The group of snapshots used in this study was generated using clustering algorithms developed 

by Machado [MAC11a]. In this approach the author executes 10 clustering algorithms with different 

similarity functions over the FFR model to find patterns that define groups of similar conformations 

[MAC10b]. The process of knowledge discovery in database is used to analyze the FFR molecular 

docking data stored on FReDD (Flexible Receptor Docking Database) [WIN09]. FReDD database 

stores receptors and docking experiments results to discovery interesting information under a FFR 

model. It includes, but is not limited to, the best FEB and RMSD of each snapshot calculated with 

AutoDock3.0.5 [GOO96]. 

Machado [MAC11a] used, as a rigid receptor, the crystal structure of the InhA enzyme from 

Mycobacterium tuberculosis [DES95] (PDB ID: 1ENY). The FFR model of InhA was derived from 

its MD simulation trajectory [COH11] [SCH05]. Four different ligands were employed in her docking 

experiments, specifically: nicotinamide adenine dinucleotide (NADH) [DES95], triclosan (TCL) 

[KUO03], pentacyano(isoniazid)ferrate(II) (PIF) [OLI04], and ethionamide (ETH) [WAN07]. The 

following rule emerged as a result of this study: if a snapshot is associated with a docking with 

significantly negative FEB and small RMSD values, for a unique ligand, it is possible that this 

snapshot will interact favorably with structurally similar ligands [MAC11a].  

According to Machado et al. [MAC11c] the groups of snapshots, which were related to 

different classes of FEB values, are useful to identify the most promising receptors conformations, 

and also the ones that can be discarded for docking simulations, considering ligands with similar 
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characteristics. As a consequence of this approach, the groups of snapshots are post processing using 

the P-SaMI data pattern to select the receptor conformations and reduce the complexity of the FFR 

model [HUB10] [MAC11c]. The next section presents a detailed description of the P-SaMI data 

pattern and its application in the processing of a FFR model to a RFFR model by FReMI. 

 

4.2.2 Prioritization of the Subgroups of Snapshots – P-SaMI  

 

The P-SaMI data pattern was employed in the identification of the most promising 

conformations in the different groups of snapshot of a FFR model identified by Machado [MAC11a]. 

P-SaMI is the acronym for Pattern-Self-adaptive Multiple Instances – a data pattern for scientific 

workflows developed by Hübler [HUB10]. The purpose of this approach is to define a pattern which 

is able to dynamically perform the selection of the FFR receptor’s conformations with the aim of 

producing a RFFR model. As a consequence of this reduction, one can eliminate the exhaustive 

execution of dockings simulations of a FFR model without affecting its quality [HUB10][MAC10b]. 

The preliminary step of P-SaMI [HUB10] is to capture the clustering of snapshots 

independently of the similarity function used [MAC11a]. Next, it tags the data as follows: the 

snapshot identifier, the group identifier to which the snapshot belongs, the subgroup identifier, and its 

status and processing priority. A subgroup is a percentage sample of a group. The subdivision of the 

groups in to subgroups is performed before and during the execution of docking simulations for the 

status of the subgroups can vary while their snapshots are being processed. As defined by Hübler 

[HUB10] the status can be active (A), finalized (F), discarded (D) and changed priority (P). Only 

snapshots belonging to the subgroups with status “A” are processed. P-SaMI also uses the minimum 

quantity of conformations to be processed and the percentage of the sampling that make each 

subgroup, which are defined by user. 

The docking simulation execution of each snapshot begins after splitting the conformations 

within each group into subgroups (Figure 4.6). The outcome is the “Docking Result”. These results 

contain the best FEB value for each snapshot. Afterwards, P-SaMI uses some evaluation criteria, e.g., 

FEB’s averages and standard deviations, to analyse the results and to determine the status and priority 

of the snapshots waiting to be processed. The status and priority are attributed to each subgroup. Thus, 

if the “Docking Results” of a subgroup present an acceptable FEB value (the more negative the better) 

then that subgroup is credited with a high priority. Conversely, the subgroup has its priority reduced 

or its status changed to “D”. In the latter case, the snapshots waiting to be processed are discarded; 

unless all the snapshots of that subgroup have already been processed (status “F”). The status 

information is paramount to decide whether a snapshot will be processed or not. 
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Figure 4.6: Model of P-SaMI data pattern execution. Clustered snapshots [MAC11a] are divided into 

subgroups using the P-SaMI data pattern in W-FReDoW. Molecular docking simulations are executed 

on these subgroups. P-SaMI analyses the docking results, based on some evaluation criteria, to select 

promising conformations from subgroup of snapshots. 

 

Hübler [HUB11] organized the subgroups’ priorities in three levels: high (3), intermediate (2) 

and low (1). The subgroups of snapshots with high priority are processed before that ones have low 

priority. Thus, the snapshots that gradually present high-quality results during docking execution are 

considered by P-SaMI as promising conformations. Consequently, its subgroups receive high priority 

and more processors to execute docking in parallel. On the other hand, the subgroups of unpromising 

snapshots receive low priority and fewer processors. 

From P-SaMI it is possible to make use of groups of conformations [MAC11a] and classify the 

clustered snapshots in different conformation levels (most or less promising). In this sense, different 

snapshots – within the same group – with highly similarity can be classified under a classification 

criterion most stable and deterministic if they are processed by molecular docking simulations 

[HUB10]. For example, let consider two different subgroups: subgroup 01 (SG01) and subgroup 02 

(SG02). If 20% of processed snapshots of the SG01 presents a constancy of poor results in molecular 

docking simulations, this group may be discarded (status D) or has its priority reduced (low [1] or 

intermediate [2]). On the other hand, if the SG02 with the same percentage of snapshots processed 

presents a gradual increase on the results, it is possible to suggest that this group contains promising 

conformations, and consequently it will have increased priority and the percentage of snapshots that 

will be processed. Furthermore, if the SG01 has not shown good results, the last group may use the 

processes which had been reserved for G01 before changing its level. Hence, selection of the most 
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promising conformations can reduce the total execution time in the docking experiments, and, 

consequently, accelerate the RDD efforts [HUB10] [MAC10b]. 

The goal for using P-SaMI [HUB10] in this study is to make full use of its pattern data to help 

FReMI improves the performance in the molecular dockings simulations using a FFR model. The 

main suggested future works by Hübler [HUB10] are: develop a scientific workflow component 

which manipulates snapshots data to identify promising snapshots and; make use of a HPC 

environment to execute the molecular docking experiments. Both suggestions are being developed in 

a parallel and cooperative way. The workflow, developed as a web server environment, is the research 

theme of another M.Sc. student in the same working group. The middleware to handle molecular 

docking simulations in HPC environments is presented in this dissertation. The web server is called 

W-FReDoW and its main functions to work with FReMI will be explained in the next section.  

 

4.2.3 W-FReDoW: A Web Server to Prepare Files for Molecular Docking Simulations and to Analyse 

Docking Results of a FFR Model 

 

Even though FReMI is capable to work on its own, it also includes functionalities that allow 

interaction with W-FReDoW.  

Figure 4.7 summarizes the W-FReDoW workflow environment. W-FReDoW is a web server 

built in parallel with FReMI to aid in the reduction of the execution time of molecular docking 

simulations of FFR models. Its central role is to select promising snapshots subgroups from a FFR 

model by means of the P-SaMI data pattern. In addition to that W-FReDoW includes two components 

and a database that stores the docking results and gives provenance about the snapshots during 

execution time.  

- The Client layer represents the web interface that integrates W-FReDoW and FReMI 

executions. It performs three  activities: 1) configuration of molecular docking, P-SaMI and 

FReMI parameters; 2) initialize the W-FReDoW and FReMI execution and; 3) analyse the 

docking results. 

- The Molecular Docking component executes the pre-docking steps required for 

AutoDock4.2 (steps 1 to 4 in Figure 4.1). Its activities must be executed before or during the 

execution time. 

- The P-SaMI component implements the P-SaMI data pattern. It will be detailed in Chapter 

5. 

- The FReDD Extension represents the database used to provide provenance about data 

generated by the components described above. This database is an extension of FReDD 

[WIN09]. 
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Figure 4.7: Client and W-FReDoW conceptual architecture. The client layer represents the steps 

performed by scientist before and after the execution. Molecular docking holds the functions prepare 

the snapshots to be executed on FReMI. P-SaMI represents the functions to send, analyse and store 

the docking files. FReDD Extension is the database to keep the W-FReDoW provenance. 

 

4.3 Methods Used to Develop FReMI  

 

The C programming language was used to develop the FReMI middleware due to the low-level 

access to memory, the flexibility to support a number of different functions from the central library 

and portability. This section presents the C libraries used to develop FReMI. It outlines the MPI and 

OpenMP functions for the parallel tasks and the functions to establish the communication with W-

FReDoW via internet. 

 

4.3.1 The MPI Parallel Program Model  

 

Message-Parsing Interface (MPI) is a parallel programming paradigm used to move data from 

the address space of one process to that of another process through cooperative operations on each 

process [MPI09]. MPI provides an API to establish communication characteristics between nodes by 
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specification of operations through message transfer. Furthermore it can be accessed in C, C++, 

Fortran-77 and Fortran-95. The MPI used in this work is MPICH2 version 1.2.1. 

The main advantages for using an MPI model are portability, efficiency and ease of use. A MPI 

programming model is the correct paradigm to use for all levels of parallelism available in the 

application and that the application topology can be mapped efficiently according to the hardware 

topology [RAB09]. For instance, exploit the master-slave paradigm under HPC machines. It also can 

be used by MIMD programs providing features that improve performance on scalable parallel 

computers with inter-processor communication hardware [MPI09]. MPI is the appropriate parallel 

programming model used in different cluster environments for establishing safe communication and 

for supplying high portability. For example, it is used in virtual machines launched by EC2 instances 

and the dedicated machines in the cluster Atlântica.  

 

4.3.2 The OpenMP Parallel Program Model  

 

OpenMP Multi-Processing (or only OpenMP) is an API to exploit the parallelism on shared 

memory architectures though parallel programming models which simultaneously execute multiple 

threads. It is based on library routines, environment variables and a set of compiler directives which 

expand the C, C++ and FORTRAN support languages [OMP11] [SMI01]. There are several 

compilers that support the OpenMP API, and as MPI, these compilers include their command line 

option which allows interpretation of all OpenMP directives.  

In contrast to MPI, which only sends a message to two or more machines and wait for a process 

to receive it and to execute the tasks, OpenMP offers a more efficient parallelisation strategy within a 

node through fork-join model of parallel execution [OMP11] [SMI01]. Although this API only runs 

on shared memory machines, the communication is implicit and it is relatively easy to implement 

OpenMP applications [SMI01]. The key reason for using OpenMP in this study is to take advantage 

of the SMP nodes that make the HPC environments. Making use of inter-node multi-threads on 

Cluster OpenMP is important to enhance the performance of automated molecular docking 

simulations with FReMI. 

 

4.3.3 The Hybrid MPI-OpenMP Programming Model 

 

Hybrid MPI-OpenMP programming exploits the explicit inter-node communication through 

message passing on distributed systems and the high performance of SMP’s shared memory among 

threads by an implicit synchronization state. According to Rabenseifner et al. [RAB09] the hybrid 

MPI-OpenMP enforces the domain decomposition to be two-level algorithm. On MPI level, a coarse-

gained domain decomposition is performed. Parallelization on OpenMP level implies a second level 

domain decomposition. This model closely maps to the architecture of an SMP cluster, the 
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parallelisation occurring between the SMP nodes and the OpenMP parallelisation within the nodes. 

[SMI01] 

The most important advantage of using a hybrid MPI-OpenMP programming model is that 

introducing MPI into OpenMP not only is able to reduce the amount of data to be communicated and 

the total number of MPI calls, but also improve the load balancing while maintaining a high level of 

parallelism. Further, this model has the potential to exploit the scheduling of the effective parallelism, 

with distributed memory programming for the coarser grain parallelism and shared memory 

programming for the finer-grained [SMI01].  

The master-slave paradigm [BAN04] is used to allocate a large number of independent, equal-

size tasks to a HPC environment. In this concept a specific node, referred to as the master, holds a 

large collection of independent, identical tasks to be allocated on the cluster. The master node needs 

to decide which tasks to perform itself, and how many tasks to forward to each of its neighbours 

[BAN04]. These neighbours are named slaves and, in contrast to the master, which needs to execute 

and handles all the tasks, it only executes the jobs received from a master node. For example, Figure 

4.8 shows the communication and the workload among the nodes used in a master-slave programming 

concept. Bidirectional arrows from and to the master node send the workload to the slaves and receive 

a return when they are idle or complete their works through message transfer (MPI). Unidirectional 

arrows indicate the amount of cores, only four in this example, per node for distributing the tasks for 

parallel execution using OpenMP programming scheme. 

 

 

Figure 4.8: Schematic representation of a hierarchical hybrid MPI-OpenMP programming model. 

Bidirectional arrows show the MPI programming scheme using the master-slave paradigm. 

Unidirectional arrows illustrate the number of OpenMP cores to be used in the parallel execution of a 

workload on each SMP node. 
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According to Rabenseifner [RAB09] a hybrid MPI-OpenMP programming model employs 

multi-threaded MPI processes to distribute the tasks in a standard dynamic load balancing. Thus, the 

implementation of the hybrid parallel programming model in this study aims to reach a high level of 

workload balancing, using a tasks’ distributing algorithm based on the master-slave paradigm of HPC 

environments. To achieve this objective the following steps are performed. First, MPI functions are 

used to send a message from the master to the slave nodes in the cluster pool. Second, the slaves 

receive the message and the information about the amount of tasks that need to be executed using 

thread parallelism inside each SMP node, including the master node. Third, inside each SMP node, 

the allocating of the tasks is performed by OpenMP and one task is executed for each processor. 

Finally, if all processors from a specific SMP node finish the executing of its tasks, it sends a message 

to master node notifying that it is idle and more work must be sent. In this stage, if there are more 

tasks to be executed the process starts again, else a “MPI end message” is sent to communicate to 

every other node to stop execution.  

 

4.3.4 XML Files 

 

The dataset’s logical structure of the different groups of snapshots of a FFR model is specified 

in a physical file system via a subset schema in Extensible Markup Language (XML). XML is a 

markup language that allows the creation of documents with data arranged hierarchically in a tagged 

layout. Element tags render XML documents inherently usable for storing and sharing textual 

information with structural/semantic annotations [XML03]. Furthermore, it is able to integrate with 

other languages, interconnect with different databases and communicate with clients and servers on 

internet and intranet networks. Independently of the computational infrastructure or operational 

system that the FReMI is located, the XML file is able to store, manipulate and recognize the 

information representing a FFR model.  

Libxml2 [XML03] is the library supported by the C programming language and used in this 

study to handle XML files. This library includes functions that allow creating, reading and writing a 

metalanguage to design markup languages. FReMI uses two XML files for handling the molecular 

docking executions. One file identifies the groups of snapshots. The other states the priority and status 

of the groups of snapshots which are updated by P-SaMI through the w-FReDoW web server. The 

structure and specifications of such files are presented in more details in Sections 5.1.2 and 5.1.3.  

 

4.3.5 Communication Protocols 

 

FReMI uses the Hypertext Transfer Protocol (HTTP) to set up communication with w-

FReDoW (as shown in Section 4.2.3). The Representational State Transfer (REST) [FIE00], similar to 

that adopted by sites, e.g., Facebook and Google, is used to sign REST requests and communicate 
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representations of resources. REST is the web architecture style used in software engineering to 

specify the communication model using HTTP calls between distributed software. 

According to Fielding [FIE00] one of the mains goals of REST is to support the introduction of 

versioning requirements and rules for extending each of the HTTP protocols. POST is one of the 

protocols supported by HTTP and is also used in this work. HTTP POST sends the processed docking 

results from FReMI to the W-FReDoW web server. The functions of libcurl library [LIB11] were 

used to call the HTTP POST protocol through C programming language. Libcurl is free and is part of 

the curl package which has command line tool for transferring data with URL syntax. HTTP POST 

function was implemented with version 7.23.0. 
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5 RESULTS 1 – FReMI CONCEPTUAL ARCHITECTURE 

 

This chapter describes the first result of this dissertation. It presents the conceptual architecture 

of the FReMI middleware used to obtain the experimental results (Chapter 6).  

As mentioned in the Introduction, the foremost objective of this study is to develop a 

middleware to assist in the high performance massively parallel execution of molecular docking 

simulations of subgroups of FFR models’ conformations. To achieve this goal, a middleware called 

FReMI was developed. FReMI is able to distribute, control and monitor the execution of subgroups of 

snapshots of FFR models in two different HPC environments. It provides resources to interact with a 

web server through internet communication protocols. These protocols allow FReMI to receive and 

send messages in run time using the REST services and the FTP network protocol (outlined in Section 

4.3.5). Thus, beyond handling tasks to decrease the time in the molecular docking executions in HPC 

environments, it also simplifies or reduces the FFR model dimensionality by generating a RFFR 

model. 

FReMI uses the Many-Task Computing (MTC) [RAI10] paradigm to address the problem of 

executing multiple parallel tasks in multiple processors. MTC is a traditional technique used by the 

scientific community to denote a model of loosely coupled computations in which large volumes of 

data are exchanged among tasks via files, databases or XML documents, or by a combination of these 

[RAI10]. Moreover, MTC is an efficient approach to share multiple tasks and manage the scalability 

and granularity on different computing paradigms as in HPC environments. Figure 5.1 details the 

FReMI conceptual architecture and its interaction with the W-FReDoW web server. 

A preliminary conceptual architecture of FReMI and W-FReDoW was published earlier as an 

LNBI-LNCS extended abstract on the 2011Brazilian Symposium on Bioinformatics [DEP11]. The 

purpose of the MTC environment remains unchanged, however, the architecture has changed 

somehow in order to better accommodate the proper execution and analyses of molecular docking 

simulations of FFR model in HPC environments. 

 FReMI handles large volumes of data and controls the distribution of tasks in the parallel 

execution mode by HPC environments. Its five components were designed to deal with both large 

scale task’s distribution and data handling. The single components are Start and the HPC 

Environment. Start begins the execution of FReMI. HPC Environment denotes the two clusters used 

in this study: Atlântica and the virtual cluster on Amazon EC2 (outlined in Sections 4.1.2 and 4.1.3 

respectively). 
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Figure 5.1: Conceptual architecture of FReMI and its interactions. The two left boxes show the tasks 

to be executed by a user on the web server, which sends and receives messages to and from FReMI 

(right-hand box) via internet communication protocols. The HPC Environment represents the MPI 

Clusters on Amazon EC2 and LAD’s Atlântica. The W-FReDoW Repository, FReMI Workspace, and 

FReMI Execution are detailed in the text below. 

 

As shown in Figure 5.1, the remaining components are distributed in three sets: W-FReDoW 

Repository, FReMI Workspace and FReMI Execution. The first two sets comprise the file system 

used to store data during FReMI execution. The last one is the most important for it synchronizes all 

the functions performed by the other FReMI components. The next sections will detail them. 

 

5.1 W-FReDoW Repository 

 

The W-FReDoW Repository contains the Input/Update Files. The Repository directory stores 

the files sent from W-FReDoW through the SFTP network protocol. It consists of: input files to 

execute the autogrid4 and autodock4 applications; one control file to identify the status and priorities 

of the subgroups and their snapshots; and update files to change the priority and status of the 

subgroups of snapshots whenever needed. The next subsections describe these files and how they are 

handled in the Repository directory by FReMI. 

 

5.1.1 Input Files 

 

The contents of the input files for autogrid4 and autodock4 programs have been outlined 

separately in Section 4.1.1. These files are created by W-FReDoW in which, for each snapshot of the 

FFR model, one PDBQT, GPF and DPF files are used to execute one molecular docking simulation 
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with a single ligand. For example, to execute an experiment with a FFR model, composed of 3,100 

snapshots, W-FReDoW creates: 3,100 PDBQT receptor files; 3,100 GPF files; 3,100 DPF files, and 

one PDBQT file for the ligand. As a result, a total of 9,301 files are received by the Input/Update 

Files Component for the execution of this experiment.  

The input files of a whole experiment, like the one shown above, are sent to FReMI before 

starting its execution. Otherwise, file transfer during FReMI execution, would turn it very expensive 

because PDBQT files are usually large, of the order of 300 Kbytes each.  For the FFR model example 

above it would total approximately 1.0 GB.  For each snapshot the GPF and DPF files have together 

only 4.2 KB.  

FFR models are becoming ever large [ALO06] [COZ08]. Currently we have FFR models with 

over 40,000 PDBQT files [COS11]. Thus, to avoid long waiting times to transfer files, the model is 

placed in the W-FReDoW Repository before running the application. 

 

5.1.2 Control File 

 

The different subgroups of snapshots generated by data mining techniques [MAC11a] are 

stored in the control file called “groupSnap.xml”. In this file each tag represents a data parameter that 

identifies the grouping structure of the snapshots [MAC11a] and their settings according to P-SaMI 

[HUB10]. Figure 5.2 shows part of a sample file with three root tags described as: 

- experiment: identifies each molecular docking simulation of a FFR model. The experiment 

identification (id) is a unique number created and controlled by W-FReDoW for each new 

simulation. This tag includes different subgroups of snapshots. 

- subgroup: specify the information of the subgroups. The idSubgroup tag identifies the key 

number of each subgroup. The stat tag denotes whether a subgroup of snapshots is active 

(A), finalized (F) or discarded (D) and the priority tag indicates how much promising are the 

snapshots belonging to that subgroup, in a 1 to 3 priority scale, as defined by PSaMI 

[HUB10]. 

- snapshot: contains information about the snapshots. The idSnap tag represents the key 

number of each snapshot. The status tag denotes whether the snapshot is waiting to be 

processed (P) or has been processed by the HPC environment (Q). 

For each docking simulation, with one FFR model and a single ligand, a new XML control file 

is created by W-FReDoW and sent to FReMI. This XML file is essential because FReMI Execution 

components (see Figure 5.1) use it to create the queues of tasks and maintain FReMI with the 

subgroups of snapshots updated according to P-SaMI parameters.  
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Figure 5.2: Fragment of a XML file that creates a queue of tasks. This file stores the groups of 

snapshots generated by data mining techniques [MAC11c] and its parameters according to P-SaMI 

[HUB10].  

 

 

5.1.3 Update Files 

 

When the status and priority of a subgroup of snapshots change during the execution time, 

update files are sent from W-FReDoW to FReMI. As shown in the conceptual architecture (see Figure 

5.1) the Data Analyzer component represents the functions that create these files by means of the P-

SaMI data pattern.  It worth remembering that P-SaMI is able to select the most promising snapshots 

of FFR models from the docking results and some specified evaluation criteria. These analyses are 

conducted in W-FReDoW and the result is a parameters’ set which are used to classify the snapshots 

to be processed in the HPC environments. The P-SaMI results are XML files sent to FReMI by SFTP. 

Figure 5.3 illustrates the structure of these files and their physical representations. 

 

 
(a) 

 
(b) 

Figure 5.3: Fragments of XML files to update the parameters of the subgroups of snapshots. (a) File 

to update the priority of the subgroups. It contains a tag with the subgroup identification, e.g. G1L1, 

and a tag with the new priority. (b) File used to identify if a subgroup of snapshot should be 

discarded or not. As the previous XML file, there are the subgroup identification (G2L2), but 

instead of the priority tag, the start tag is used to identify which subgroup should be discarded. 
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The update files are used by FReMI to handle the queue of tasks. The priority determines how 

many processors in the cluster are allocated to each subgroup. The status, according to the P-SaMI 

pattern, indicates which snapshots should be discarded. Therefore, to keep FReMI updated, one XML 

file is dispatched any time P-SaMI makes a modification on the priority and/or status of subgroups of 

snapshots. Then, FReMI updates these information in the control file (groupSnaps.xml). 

 

5.2 FReMI Workspace 

 

The FReMI Workspace represents the directory structure used to store the huge volume of data 

manipulated to execute the molecular docking simulations of FFR models. To control the input, 

output, temp, and control FReMI data files a workspace model was created (Figure 5.4). The job and 

parameter directories store the input files for the execution of the autogrid4 and autodock4. The result 

and temp directories store the output files from the executions in the HPC environment. Except the 

XML file, all other files stored in this workspace are read and generated by autogrid4 and autodock4 

program. In summary, the workspace contains the following files: 

- job: store the snapshot files from FFR models (PDBQT format) and the XML control file 

(grupoSnap.xml).  

- pending: store snapshot files that are waiting to enter the queue of tasks.  

- queue: store snapshot files that have been processed by the HPC environment.  

- parameter: store the ligand files (PDBQT format), and the input parameter files to execute 

autogrid4 (GPF format) and autodock4 (DPF format).  

- result: store output files from autodock4 (DLG format).  

- temp: store temporary files generated during FReMI run time. 

 

 

Figure 5.4: Directory structure in FReMI’ workspace. Project is the root directory; job, parameter, 

result and temp are its sub-directories; pending and queue are job’s sub-directories. 
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The input files placed in the W-FReDoW Repository are transferred during FReMI’s execution 

time to its workspace by the Parser/Transfer Component inside the FReMI Execution set of 

components (Figure 5.1). This component is described next. 

 

5.3 FReMI Execution 

 

FReMI Execution constitutes the most important set of components of FReMI. It contains every 

procedure invoked to run the middleware and controls. The source code of FReMI was written in the 

C programming language whose libraries are used to run tasks in parallel, read/write XML files, and 

send the docking results to W-FReDoW.  

Figure 5.5 shows in detail the data flow control in the FReMI Execution components. Its main 

operations are performed by three different components, namely:  

- Create Queue. It holds the heuristic function to create queues of balanced tasks. The 

heuristic function uses the priorities of the different subgroups of snapshots and evaluates 

which of them must be in or left out of the queues of tasks. 

- Parser/Transfer. It transfers the input files from W-FReDoW Repository to FReMI’s 

workspace and updates the XML control files. 

- Dispatcher/Monitor. It distributes the parallel execution of tasks in both HPC environments 

used in this study. Also, it executes the HTTP POST function to send the docking results to 

W-FReDoW. 

 

5.3.1 The Create Queue Component 

 

The three main functions of Create Queue are: 

1) Read the “groupSnap.xml” file (Section 5.1.2) to obtain the priorities of the subgroups and 

their snapshots.  

2) Apply the heuristic function to compute the amount of snapshots to be active. 

3) Create balanced queues of tasks to be processed in the HPC environment. 

 

The HPC environments employed in this study are multiprocessing clusters for large scale 

executions. In this context, more than one task may be processed in each node. Each task or job is the 

sequential execution of the autogrid4 and autodock4 programs of only one snapshot of the FFR model 

with a single ligand. 
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Figure 5.5: Scheme of the FReMI Execution implementation. The Create Queue, Parser/Transfer and 

Dispatcher Monitor components include the main functions executed by FReMI. 

 

The queue of tasks is built based in the content of the XML control file which contains the 

heuristic function’s parameters to produce the balanced queues during the FReMI execution time. The 

full execution of a molecular docking simulation of a FFR model, called “an experiment” in this 

project, requires creating and sending several queues of tasks to the HPC environment. 

The heuristic function calculates the maximum number of snapshots than can be supported by 

each queue. The amount of nodes or machines (N) and the amount of tasks (T) that will be processed 

per node are used to obtain the queue size (Q) with the following equation: 

                      (1) 

Afterwards, the amount of snapshots per subgroup is calculated in order to achieve the balanced 

distribution of tasks in every queue created.  A balanced queue contains one or more snapshots of an 

active subgroup. From the subgroups’ priorities, it is possible to determine the percentage of 

snapshots to be included in the queues of tasks. Thus, subgroups with higher priority are queued first 

than those with lower priority. Equation (2) below is used to calculate the amount of snapshots for a 

balanced queue. 

        
  

   
 
   

               (2) 

   is the amount of snapshots of subgroup g placed in the queue.   is the queue size from 

Equation (1).    is the priority of the subgroup g, and n is the total number of subgroups. From 

Equation (2) one queue of balanced tasks (      ) is created with the following equation: 
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        (3) 

 

 

5.3.2 Parser/Transfer Component 

 

The Parser/Transfer component handles and organizes the files sent from W-FReDoW to the 

W-FReDoW Repository. These file are further transferred to FReMI Workspace by means of the 

transfer_file function (Figure 5.5). Additionally, this function parses autogrid4 and autodock4 input 

files in order to recognize the files’ directory structure. The get_files function is always called before 

creating a new queue and, when necessary, to verify and update the parameters of the subgroups of 

snapshots.  

 

5.3.3 Dispatcher/Monitor Component 

 

The functions of the Dispatcher/Monitor component are invoked to distribute tasks among the 

processors/cores of an MPI Cluster environment based on master-slave paradigm. The Slave Function 

only runs the tasks while the Master Function, aside from running tasks, also performs other two 

functions: the distribute_tasks function which is called when a node/machine asks more work and; the 

request_queue function which is called when the queue of tasks is empty. 

 

This chapter showed the conceptual architecture that was implemented to execute the molecular 

docking simulations of FFR models. Chapter 6 shows the results obtained from FReMI execution on 

two HPC environments: the Atlântica cluster and virtual cluster on Amazon EC2.  
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6 RESULTS 2 – EXPERIMENTAL RESULTS 

 

 

This chapter presents the second set of results of this dissertation. Two sets of experiments are 

performed using the FReMI conceptual architecture defined in Chapter 5. Section 6.1 reports the 

experiments performed with FReMI using a sample of snapshots from a FFR model on two HPC 

environments; the Atlântica cluster and the virtual cluster using EC2 instances from AWS. Section 6.2 

describes the experiments, on the complete data set, performed with FReMI and W-FReDoW shared 

execution in a MPI cluster environment on Amazon EC2 instances only. 

 

6.1 Experiment 1 – FReMI Performance on Atlântica and Amazon EC2 HPC Environment 

 

The primary goal of this set of experiments is to find the best MPI/OpenMP implementation to 

execute parallel molecular docking simulations using only a small data set composed of a sample of 

snapshots from a FFR model. This data is called Dataset 1. It has the following attributes: 

- Receptor: the first 126 snapshots from the InhA FFR model [MAC11b]. 

- Ligand: Triclosan (TCL400) [KUO03]. 

 

FReMI executes molecular docking simulations with the AutoDock4.2 [MOR09] package. For 

that, it must prepare input files for each snapshot of the FFR model. All input files were parameterized 

as follow: 

1. Receptor preparation. A PDBQT file for each snapshot from the FFR model was generated 

using Kollman charges. 

2. Ligand preparation 1. The TCL ligand was initially positioned in the region close to its 

protein binding pocket. TCL contains two rotatable bonds. 

3. Ligand preparation 2. The TCL ligand was also prepared but using the coordinates of the 

experimental structure (PDB ID: 1P45).  This is the ideal position and orientation of the 

ligand that is expected from docking simulations. It is called a reference ligand position. 

4. Grid preparation. For each snapshot a grid parameter file (GPF) was created with box 

dimensions of 100 Å x 60 Å x 60 Å. The other parameters maintained the default values. 

5. Docking preparation. The LGA search method and its standard parameters were selected as 

follow: a population size of 150 individuals, a maximum of 250,000 energy evaluations, 

27,000 generations. The number of runs was set to 25 LGA runs. A docking parameter file 

(DPF) was generated for each snapshot from the FFR model. 

 

In these first set of experiments the clustering of conformations created by [MAC11a] and the 

P-SaMI data pattern are not used. Instead, these features were simulated.  FReMI uses clustering of 
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snapshots randomly selected (identified by “groupSnap.xml”). The P-SaMI simulation consists in 

setting priorities to subgroups, however, it does not discard neither changes the priorities of subgroups 

during the FReMI execution. This is so because there is no updating by P-SaMI in this set of 

experiments. Hence, to run these set of experiments, the first 126 snapshots of the FFR model were 

separated into 4 subgroups with 31, 32, 31 and 32 snapshots each. The priorities ranged from 1 to 3 

for each subgroup. 

According to equation (1) outlined in Section 5.3 the number of tasks executed per node (Tnode) 

can be set before starting FReMI’s execution. Tnode is one of the factors that determine the size of the 

tasks’ queue (Q). To process Dataset 1, Tnode was set to either 8 or 16. Speedup and efficiency are the 

metrics used to investigate the performance on the HPC environments used by FReMI. Speedup is 

S(n) = T1/T(n) and efficiency is E(n) = S(n)/n, where T(n) is the time to run with n cores. T1 is the 

run time for the sequential execution of the experiments (in a single core). 

 

The experiments are composed of three distinct simulations. 

- Simulation 1: FReMI execution of Dataset 1 on Atlântica and Amazon EC2 clusters. Tnode was 

8 and the number of processors in each node was 8. Table 6.1 shows the scalability and 

performance results for this simulation.  

- Simulation 2: FReMI execution on Dataset 1 on Atlântica and Amazon EC2 clusters. Tnode 

was 16 and the number of processors in each node was 8. Table 6.2 shows the scalability and 

performance results for this simulation.  

- Simulation 3: FReMI execution on Dataset 1 on Atlântica cluster only. Tnode was 16 and the 

number of processors in each node was 16. Table 6.3 shows the scalability results for this 

simulation. 

 

 

As shown in Table 6.1 FReMI scales well, in both HPC environments, when compared to the 

sequential execution. However, in most cases, the efficiency and speedup on the Atlântica cluster are 

better. This result can be explained by the fact that Atlântica’s machines are connected by 

interconnection network and they are positioned in the same physical place. Conversely, Amazon EC2 

machines are connected by virtual private network connection and its virtual machines are located in 

multiple locations in Northern Virginia (US East Cost) [AWS12].  This may explain the decline of 

performance (Figure 6.1) in Amazon EC2 since FReMI requires high-throughput of message 

exchange. This message exchange is intrinsic to the master-slave paradigm of MPI. 
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Table 6.1: Scalability of Simulation 1 for Dataset 1 on Atlântica and EC2 clusters. In both clusters 

every node, using 8 cores in each, receives 8 tasks for parallel execution. 

 

  Atlântica Cluster Amazon EC2 Cluster 

Cores Nodes Time (min.) S(n) E(n) Time (min.) S(n) E(n) 

1 1 287.24 1.00 1.00 220.63 1.00 1.00 

8 1 37.77 7.61 1.09 33.37 6.61 0.94 

16 2 21.76 13.20 0.88 20.27 10.89 0.73 

24 3 16.78 17.11 0.74 16.82 13.12 0.57 

32 4 16.62 17.28 0.56 14.43 15.29 0.49 

40 5 11.85 24.24 0.62 12.78 17.26 0.44 

48 6 11.67 24.62 0.52 12.32 17.91 0.38 

56 7 11.33 25.34 0.53 12.18 18.12 0.33 

64 8 - - - 10.21 21.61 0.34 

 

Simulation 2 differs from Simulation 1 only in the number of tasks executed, but its scalability 

(Table 6.2) and performance (Figure 6.1) are, in most cases, inferior in the Atlântica cluster. This 

performance loss can be understood in the following way: in Simulation 1 the nodes on Atlântica 

were used in the exclusive mode, i.e., despite that only 8 cores were used to execute the tasks, all 16 

cores were allocated per node. On the other hand, in Simulation 2 the nodes were used in the shared 

mode, in which only 8 cores were allocated per node. Hence, it is possible that the remaining nodes 

were busy. 

 

Table 6.2: Scalability of Simulation 2 for Dataset 1 on Atlântica and EC2 clusters. In both clusters 

every node, using 8 cores in each, receives 16 tasks for parallel execution. 

 

  Atlântica Cluster Amazon EC2 Cluster 

Cores Nodes Time (min.) S(n) E(n) Time (min.) S(n) E(n) 

1 1 287.24 1.00 1.00 220.63 1.00 1.00 

8 1 38.67 7.43 1.06 32.93 6.70 0.96 

16 2 24.74 11.61 0.77 18.98 11.62 0.77 

24 3 17.89 16.06 0.70 17.66 12.50 0.54 

32 4 18.17 15.81 0.51 12.83 17.19 0.55 

40 5 13.91 20.66 0.53 12.17 18.13 0.46 

48 6 14.94 19.22 0.41 8.78 25.14 0.53 

56 7 10.59 27.13 0.57 4.52 48.80 0.89 

64 8 - - - 4.33 50.92 0.81 

 

On the Amazon EC2, especially with more than 40 cores, the gain in performance is substantial 

with increasing number of tasks (Tnode). For example, with 48 processors executing 8 parallel tasks per 

machine, EC2 takes 8.78 minutes to execute Dataset 1 while Atlântica takes 14.94 minutes (Table 

6.2). For this case study Amazon EC2 outperforms Atlântica (Figure 6.1). It is worth remembering 

that the data set used in these simulations is only a sample (126 snapshots) of the much larger, 

complete data set, which describes a FFR model. Therefore, the EC2 configuration bestows itself as a 

very attractive HPC solution for executing molecular docking simulations on the complete data set. 
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Figure 6.1: Comparative performance of the Atlântica and Amazon EC2 clusters for Simulations 1 

and 2, respectively. The x axis is the number of MPI slave processes used; the y axis shows the 

efficiency of parallelization. 

 

Overall, Simulation 3 shows motivating results for the total time execution. However, the 

speedup and the efficiency are unappealing. Specially, if compared to the others simulations.  

Comparing Simulation 3 with the others, Atlântica does not scale or gain much performance 

when all the processors of each node are used (Table 6.3). This is surprising because it is expected 

that, by doubling the number of parallel tasks per node, the performance should increase. For instance, 

when 4 nodes were used, the efficiency obtained was 56% and 53% for the Simulations 1 and 2, 

respectively, and only 40% for Simulation 3. The performance reduction happens because the Intel 

Hyper-threading technology, which allows one core on the processor to appear like 2 cores to the 

operation system, was fully exploited inside the Altântica’s nodes for Simulation 3. Hence, 2 tasks 

threads running on a single core do not have to be threads of the same process. Consequently, 

increasing the number of parallel tasks per node in Altântica does not provide improvements to the 

FReMI’s performance.  

 

Table 6.3: Scalability of Simulation 3 for Dataset 1 on Atlântica cluster. Each node receives 16 tasks 

that run in parallel in 16 cores. 

 

Cores Nodes Time (min) S(n) E(n) 

1 1 287.24 1.00 1.00 

16 1 30.57  9.40 0.63 

32 2 17.58 16.34 0.53 

48 3 11.67 24.62 0.52 

64 4 11.33 25.34 0.40 

80 5 7.53 38.13 0.48 

96 6 7.67 37.47 0.39 
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6.1.1 Final Considerations about Experiment 1  

 

The main goal of this section was to find the best MPI/OpenMP implementation to execute 

FReMI. Three different configurations for every simulation were investigated. Simulations 1 and 2 

used two HPC environments to compare their results. Simulation 3 (Table 6.3) demonstrates that 

gains in performance on the Atlântica cluster are obtained only if 8 tasks are executed in parallel per 

node. From this result, the Simulation 2 results (Table 6.2) evidenced that increasing the number of 

tasks per node (Tnode) and using 8 cores per node is a promising approach to reduce the total execution 

time and enhance the performance in both HPC environments. Amazon EC2 cluster boosted the 

performance (4.52 minutes and 89% of efficiency) using 7 instances with 8 cores each (Figure 6.1 and 

Table 6.2). 

It is clear from the results above that Amazon EC2 is the best choice for executing molecular 

docking simulations of a FFR model using FReMI. The only disadvantage is the cost of the operations 

on AWS. For example, Simulation 1, with only 126 snapshots, cost around US$20.00. For the 

complete FFR model against one ligand the cost was US$ 251.60 (See Experiment 2 below). For ten 

similar ligands the cost would be US$ 2,516.00. If one intends to employ this model in virtual 

screening of large libraries of drug-like molecules, such as the ZINC database [IRW05], with more 

than 23 million of molecules, the cost would be prohibitive. 

In fact, the cost- effectiveness of the EC2 and S3 depends on overall usage patterns [BUY09] 

between the providers and consumers. To take advantage of AWS, it is necessary to control the 

supply and demand of cloud resources to achieve a trade-off between cost and computer power 

[MUR08].  

For all these reasons, the best way to integrate the FReMI and W-FReDoW execution was to 

make use of a virtual cluster on Amazon EC2 instances. This service is able to support the storage and 

the internet communication protocols to keep the controlled sharing of both applications without 

restrictions or performance loss. As a result, an MPI environment within the Amazon EC2 instances 

was built (see Section 4.1.3) to perform the second set of experiments, namely Experiment 2, with the 

FReMI and W-FReDoW shared execution. The results obtained are described in the next section. 

 

6.2 Experiment 2 – Integration of W-FReDoW with FReMI Execution on Amazon EC2 MPI 

Cluster 

 

The main goal of this set of experiments is to reduce the dimensionality of the FFR model, 

transforming it into a RFFR model, by discarding the non-promising conformations generated by W-

FReDoW. Thus, the integration of W-FReDoW with FReMI execution on Amazon EC2 MPI cluster 

may allow practical use of totally fully-flexible receptor models in virtual screening.  

In this experiment Dataset 2 was used. It has the following attributes: 
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- Receptor: the first 3,100 snapshots from the InhA FFR model [MAC11b]. 

- Ligand: Triclosan (TCL400) [KUO03]. 

 

Unless stated otherwise, all Autodock4.2’s parameters are identical to those of Dataset 1.  

Dataset 2 was processed by FReMI and W-FReDoW using three different types of clustering of 

conformations of the FFR model [MAC11a]. Hence, there are three different XML control files 

(groupSnap.xml) sent by W-FReDoW to FReMI. Following the P-SaMI data pattern, for every cluster 

of snapshots, four docking simulations are executed. For each simulation the quality of the receptor 

model is evaluated only after 30%, 40%, 50%, and 70 % of the snapshots, in each subgroup of the 

clusters, have been docked. Then, Experiment 2 involves a total of 12 simulations. 

Before starting Experiment 2 a study to validate the proper scalability to obtain a satisfactory 

performance under FReMI and W-FReDoW shared execution was conducted. Only FReMI with 

Dataset 2 was executed on Amazon EC2 MPI cluster using 56 cores (this number of processors gave 

the best scalability in Experiment 1). In this test Tnode = 32. This set up surprisingly resulted in only 

28% efficiency against the 89% efficiency found in Experiment 1. Other scalabilities, ranging from 32 

to 64 cores, were tested. Then the best efficiency, of 41 %, was found for 40 cores.  

FReMI took 5 hours and 40 minutes to execute Dataset 2 on Amazon EC2. Hence, based on 

these analyses, the best configuration to run the Dataset 2 was:  

- 40 cores = 5 c1.xlarge EC2 Amazon instances with 8 cores each and; 

- 32 tasks per instance (Tnode = 32, Q = 160). 

 

Table 6.4 summarizes the results of Experiment 2. According to Hübler [HUB10] the 

processing of the smallest subgroups of snapshots produces the maximum performance gain because 

the analysis is performed with minimum amount of snapshots. In addition, she claims in her 

conclusions that the earlier the analyses start, the larger is the quantity of unpromising snapshots that 

should be recognized and discarded. The results of this experiment corroborates Hubler’s hypothesis 

(see boldface numbers in column 5). 

The total execution time spent in the serial molecular docking simulations using Dataset 2 was 

around 4 days. As a mentioned above, the FReMI only execution of Dataset 2, using the same EC2 

configuration of Experiment 2, reduced the execution time to 5 hours and 40 minutes. When FReMI 

and W-FReDoW are integrated in a shared execution, the total execution time was further reduced by 

30%, i.e., down to 3 hours and 55 minutes for all subgroups that began the analysis with 30% of the 

processed snapshots (Table 6.4). Overall the execution time is reduced about 10-30% (Figure 6.2).  
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Table 6.4: Results of the simulations executed in Experiment 2 using three different types of 

clustering of conformations of the FFR model [MAC11a]. Column 1 identifies the three different 

types of clustering. Column 2 specifies the percentage of processed snapshots after which P-SaMI 

analysis [HUB10] of the model quality starts. Column 3 displays the total execution time for each 

simulation. Columns 4 and 5 display the amount of snapshots docked and discarded, respectively. 

 

Clustering Start Analysis of Model 

Quality (%) 

Total Time Docked Snapshots  Discarded Snapshots  

01 30.00 03:59:30 2,249 851 

 40.00 04:13:00 2,407 693 

 50.00 04:28:00 2,495 605 

 70.00 04:59:40 2,891 281 

02 30.00 03:54.30 2,210 890 

 40.00 04:16:00 2,423 677 

 50.00 04:40:00 2,512 586 

 70.00 04:57:40 2,868 232 

03 30.00 03:56:30 2,264 836 

 40.00 04:13:00 2,377 723 

 50.00 04:38:00 2,537 563 

 70.00 04:58:40 2,818 282 

 

 

Column 4 contains more than the docked snapshots in each row. The docked snapshots are 

actually examples of a RFFR model obtained from the integrated FReMI and W-FReDoW execution 

of a FFR model in an HPC environment. 

 

 

Figure 6.2: Performance gain versus P-SaMI analysis using three clustering of snapshots on FReMI 

and W-FReDoW shared execution. Percentage of reduced time is calculated from the FReMI only 

execution. Percentage of snapshots processed by P-SaMI analysis is the amount of docking results 

that P-SaMI utilizes to start the analysis on the subgroup of snapshots in each cluster. 
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Finally, Experiment 2 with W-FReDoW reduced the total execution time to between 10-30% of 

that of FReMI´s only execution, which, in turn, decreased near 94 % with respect to the serial 

execution time. Clearly, the integration of the FReMI middleware, based on the MTC paradigm, with 

the W-FReDoW webApp is a promising strategy to tackle the problem of molecular docking 

simulation that employs FFR models. It reduces the dimension of such models allowing the reduction 

of the overall execution time from months to days and possibly to hours. This is especially valuable 

for routine virtual screening of libraries with over millions of ligands. 

 

6.2.1 Discussion of Experiment 2 

 

The most significant advantage of shared resources is the guaranteed access time of the 

resources wherever you are and whenever you need. There is no competition or restrictions for access 

to the machines. However, it is necessary to pay for as many computing nodes as needed, which are 

charged at an hourly rate. The rate is calculated for what and when the resources are being used, e.g. if 

you do not need compute time, you do not need to pay [HAZ08].  

The only drawback is that the hard disks associated with EC2 instances, called EBS by 

Amazon, do not have an existence beyond the instance’s life-time. This means that the user data must 

be copied back and forth between S3 and EC2. Although this take a little work to get going, it is easy 

to do with open source tools. Also, the fast interconnect between S3 and EC2 allows efficient file 

transfer. 

The only practical problem experienced during the integrated execution of FReMI and W-

FReDoW was with the internet connection, which sometimes became very unstable. However, this is 

not an issue since W-FReDoW is capable of restarting an execution from where it stopped. For 

instance, during the Experiment 2 simulations the connection dropped only twice.  

The total bill for the work done on S3 and EC2 to conclude the Experiment 2 results was 

approximately US$ 251.60 calculated from 370 hours of use of 5 c1.xlarge instances, i.e. 74 hours for 

each instance. No charge is applied to the S3 services since the total use was within the monthly 

global free tier. The cost and time taken to learn about cloud computing and run the first test 

simulations are not being computed.  
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7. RELATED WORKS 

 

There are some methods in the literature that propose to perform virtual screening of small 

molecules using molecular docking on dedicated HPC clusters. However, three features distinguish 

FReMI from the other works, namely: 

1. The utilization of a FFR model rather than a rigid receptor model. 

2. The methodology applied to achieve the RFFR model with the FReMI and W-FReDoW 

shared execution. 

3. The creation of a virtual cluster environment to execute FReMI on the Amazon Cloud 

Computing using the hybrid MPI-OpenMP programming model. 

 

In addition, FReMI includes more than one computational technique that works in cooperation 

to achieve the RFFR model, such as HPC environments, cloud computing, internet communication 

protocol and also the methodology employed to handle data sets before and during molecular docking 

simulations in parallel (see Chapter 5). For these reasons, the middleware presented in this study has 

few similarities with the current state of the art. 

FReDoWS [MAC10a] is the only tool found in the literature that executes molecular docking 

simulations including the explicit receptor flexibility and its snapshots generated by MD simulations 

trajectories of the receptor. It automates molecular docking simulations of a FFR model using 

AutoDock3.0.5 and a scientific workflow. Additionally, FReDoWS intends to accelerate virtual 

screening of ligands with a snapshot selection function which reduces the dimension of FFR models.  

There are a number of software that performs virtual screening of small molecules against rigid 

receptors on local HPC environments using AutoDock4.2. Most of them use the number of ligands to 

distribute the tasks along the processors. For instance, DOVIS 2.0 [JIA08] uses a dedicated HPC 

Linux cluster to execute virtual screening where ligands are uniformly distributed on each CPU. The 

pre-docking steps required for docking with AutoDock4.2 are performed in Linux systems by a 

Graphical User Interface (GUI).  VSDocker 2.0 [PRA10] and Mola [ABR10] are other examples of 

such systems. The main difference between them and DOVIS 2.0 is that VSDocker 2.0 works on 

multiprocessor computing clusters and multiprocessor workstations operated by a Windows HPC 

Server; it also has a console application for Microsoft Windows platforms. Mola uses AutoDock4.2 

[MOR09] and AutoDock Vina to execute the virtual screening of small molecules on non-dedicated 

compute clusters.  

Another approach used to enhance the performance of docking simulations of rigid receptors is 

the reduction of network I/O traffic files during the loading of grid maps at the beginning of each 

docking simulation. This methodology was used in DOVIS 2.0 [JIA08], Autodock4.lga.MPI [COL11] 

and mpAD4 [NOR11]. They observed one potential decrease in I/O traffic files when keeping the grid 

maps in memory, i.e., for each node of the computer cluster only one grid map is loaded by the master 
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server. Autodock4.lag.MPI only uses the MPI library to distribute the jobs, while mpAD4 use a 

multilevel parallelization where MPI is used to distribute the jobs across the nodes and the OpenMP 

parallelization to execute the LGA inside of each node. Nevertheless, this approach can not to be used 

in FReMI, due to the explicit receptor flexibility, in which, for each snapshot, a new atom coordinate 

is assumed. It means that for each snapshot from FFR models autogrid4 and autodock4 must be 

executed.  

Hydra [COU10] is a middleware which provides the linking between Scientific Workflow 

Management Systems (SWfMS) and the HPC environment for distributing tasks. It explores the data 

parallelism on three fragmentation scenarios to find regions of similarity between biological 

sequences using the BLAST software. Hydra holds a set of components to be included on the 

workflow specification of any SWfMS to control parallelism of activities following the MTC 

paradigm [COU10]. Using Hydra, the MTC parallelism strategy can be registered, reused, and 

provenance may be uniformly gathered during execution of workflows. MTC is the concept borrowed 

by FReMI to distribute the tasks along the HPC processors. Finally, while Hydra was built to perform 

large-scale sequence comparison, FReMI is focused on treating the problem of molecular docking 

simulation of FFR models. 
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8. FINAL CONSIDERATIONS 

 

In silico molecular docking simulations is an integral part current drug design efforts. The 

amount of these docking executions has been increased due to the several parameters and input data 

that have been used with the purpose of mimic the natural behaviour of ligands and receptors, 

especially those considering the explicit plasticity and flexibility of FFR models and flexible ligands 

[MAC10b]. Furthermore, these simulations are computer intensive and their sequential execution is 

an unfeasible task. For this reason, this dissertation presented a study on the use of parallel 

programming techniques, focussing on MPI cluster environments, applied to the optimization of CPU 

time of molecular docking simulations of FFR models. Based on this research, “FReMI: a middleware 

to handle many tasks of FFR models in HPC environments” has been built and tested. The results are 

very encouraging. 

Chapter 2 described the theoretical principles for the understanding the problem at study. It 

provided explanations of molecular docking as one step of RDD, focussing on receptors of flexibility 

types and the approach used in this dissertation to consider its plasticity and elasticity. Chapter 3 and 

4 show the materials and methods used for the development this study. Chapter 3 presented a revision 

about parallel programming, HPC environments and cloud computing on Amazon EC2. It purposes is 

to provide a better comprehension of the resources used and methodology explained in Chapter4 and 

used to build FReMI.  

Chapter 5 and 6 present the results obtained during the development of this dissertation. The 

conceptual architecture, showed in Chapter 5, was created to enrichment the understanding between 

FReMI and its bridges the gap with the others applications. From FReMI conceptual architecture 

implementation the experimental results were generated and presented on Chapter 6. At the beginning 

a sample of snapshots from FFR model in study, called Dataset 1, was executed on FReMI and both 

HPC environments; Atlântica cluster and Amazon EC2 instances. The performance results show few 

differences between them; however, by means of an evaluation at the end of this section was 

identified several benefit using Amazon EC2 instead, Atlântica cluster. Based on this conclusion, 

Chapter 6 presents the FReMI and W-FReDoW shared execution with a MPI cluster on Amazon EC2. 

This chapter showed that using the “pay-as-you-go” AWS facilities [MUR08] the premium to 

complete various experiments in shorter elapsed time is a good option when time becomes more limit 

than money. Therefore, the foremost contribution on chapter 6 was the time reduction in the 

molecular docking simulations execution FReMI and W-FReDoW with the Dataset 2 (FFR model 

with 3,100 snapshots) on Amazon EC2 MPI cluster. The results show that the overall execution time 

reduced from days to hours with the FReMI execution, after than with the FReMI and W-FReDoW 

mutual execution it was achieve, from the FReMI total execution time, further 30% performance gain. 

Chapter 7 showed the state of art associated with this study; highlighting the key contributions 

this dissertation compared with the currently scientific community works. 
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8.1 Main Contributions 

 

The main contributions of this Dissertation to the addressed problems are: 

- The heuristic function developed to handle the tasks executed in HPC environments. This 

function sorts the placing of a proportional fraction of snapshots in each queue of tasks 

according to the priorities of their subgroups during the execution time.  

- The parallel algorithm developed to distribute tasks in large scale, using the master-slave 

programming paradigm and improve the scalability among the nodes with MPI library. The 

hybrid MPI-OpenMP programming model to obtain the high level of parallelism outside and 

inside of every node used for the HPC environments.  

- The FReMI conceptual architecture proposed to identify the FReMI functions and its 

interoperability with the others application servers. It was built with a set of components 

which represents the different stages with their activities and several arrows that supplies the 

operations direction inside and outside FReMI. Furthermore, the conceptual architecture 

extends its components to represent the main functions of the W-FReDoW that support a 

cooperation execution with FReMI and the arrows that evidence the communication internet 

protocols employed between these both applications.  

- The total time reduction shown in the experimental results. FReMI could scale to a large 

number of cores in order to process large amounts of computational that would otherwise 

not have been possible by a compute inside of laboratory. Reducing the molecular docking 

simulations run-time of the FFR model from 4 days to 5 hours and 40 minutes is an 

attractive solution. Especially, because it allows the use of news trajectories of FFR models 

even greater and the exploration of large libraries of ligands than would otherwise not have 

been possible. 

- The reduction of the FFR model dimensionality to achieve the RFFR model. FReMI and W-

FReDoW shared execution can perform the gradual elimination of unpromising 

conformations to assist in the high performance of massively parallel execution of docking 

simulations of flexible receptors. Where FReMI will not use all the conformations that make 

up a FFR model, but instead, only those which are significantly more promising.  

 

8.2 Future Works 

 

FReMI was tested with only a ligand and a FFR model containing 3,100 conformations 

generated by a MD simulation. MD simulations are now running on the tens to hundreds of 

nanoseconds. This could produce FFR models with up to 200.000 snapshots! FReMI should be tested 
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with such models. Additionally, it would be interesting to make use of others ligands by means of 

exploration of virtual libraries of compounds such as ZINC [IRW05]. 

More research is needed to improve FReMI’s performance even further on MPI EC2 instances. 

It was observed that, for Dataset 2 execution in 48 processors, there was a significant raise in total 

execution time possible due to some core becoming idle. A future study should concentrate on 

investigating the hybrid MPI-OpenMP programming model and the master-slave paradigm in order to 

limit or eliminate this idleness. This would make possible future FReMI experiments with larger FFR 

models with different ligands. 

Finally, FReMI and W-FReDoW communication protocols still need improvement. A 

significant delay in updating subgroups’ status was observed when FReMI received the updating files. 

While some snapshots were still being processed by FReMI, W-FReDoW had already discarded them. 
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