
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA COMPUTAÇÃO

FReMI – A MIDDLEWARE TO HANDLE

MOLECULAR DOCKING SIMULATIONS

OF FULLY-FLEXIBLE RECEPTOR MODELS

IN HPC ENVIRONMENTS

RENATA DE PARIS

Dissertation presented as partial

requirement for obtaining the master’s

degree in Computer Science from

Pontifícia Universidade Católica do Rio

Grande do Sul.

Supervisor: Prof. Dr. Osmar Norberto de Souza

Porto Alegre

2012

2

D278F De Paris, Renata

FReMI – a middleware to handle molecular docking

simulations of fully-flexible receptor models in HPC

environments / Renata De Paris. – Porto Alegre, 2012.

72 f.

Diss. (Mestrado) – Fac. de Informática, PUCRS.

Orientador: Prof. Dr. Osmar Norberto de Souza.

1. Informática. 2. Biologia Computacional. 3. Biologia

Molecular. 4. Banco de Dados. I. Souza, Osmar Norberto de.

II. Título.

CDD 005.74

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

3

DEDICATION

Of course there is no formula for

success except perhaps an unconditional

acceptance of life and what it brings.

Arthur Rubinstein

ACKNOWLEDGEMENTS

I don’t have enough words to thank all who helped me to arrive at this stage of my life.

First of all, I would like to thank my supervisor Prof. Osmar Norberto de Souza, for his support,

for his guidance and constructive criticism during these two years of my Master. With Prof. Osmar I

learn the most important principles to do research and how to appreciate it.

Special thanks are due to Prof. Duncan Ruiz for his valuable and constructive suggestions during

the planning and development of this research work. Thanks for his trust in my potential, providing

the opportunity to extend my research at the Newcastle University, Newcastle Upon Tyne, Great

Britain. My most sincere thanks!

Other special thanks are due to Prof. Aad van Moorsel and Prof. Paul Watson, whom, in the end of

2011, kindly received me in the School of Computing Science at Newcastle University through the

EU project ‘Computational Intelligence in Lifestyle-Management Infrastructure’, for their attention

and enlightening discussions. I would like to acknowledge and thank Simon Woodman for his

precious helps with Amazon EC2. And, extend my thanks to the members of the Trust and Security

and Cloud Computing Groups for their helpful discussions, especially Winai Wongthai and Francisco

Rocha for their luminous suggestions and appreciation of my work.

I would like to thank all the people who have been, in one way or another, involved in my work. I

am particularly grateful to my friend and colleague Elisângela Cohen who gave encouragement,

useful critiques. Her biology classes in LABIO were indispensable. Her comments, as well of her

husband Marcelo Cohen, on the manuscript were very helpful. Also, I would like thank my friend

Karina C. Motta Dall’Agno by her friendliness.

I want to thank my colleague Fabio Frantz for his bright collaboration and cooperation in the last

step of the experimental results which were achieved through several discussions and uncountable

weekends and holidays executing experiments. I also extend my thanks to the LABIO and GPIN

colleagues.

I would like to acknowledge the Programa de Pós-Graduação em Ciência da Computação

(PPGCC) at PUCRS and the National Research Council of Brazil (CNPq) for the M.Sc. scholarship.

Last, but not least, my most special thanks to my dear parents, Sérgio and Maria, for their

immeasurable support and example of life; my brother Cléber and his wife Nadime for their

continuous enthusiasm; and my fiancé Mateus for his personal support and unlimited patience during

the many ups and downs of this journey. Thank you ever so much for understanding my absence

during many weekends and holidays: you weren’t less important than my work!

FReMI – A MIDDLEWARE TO HANDLE MOLECULAR DOCKING

SIMULATIONS OF FULLY-FLEXIBLE RECEPTOR MODELS IN HPC

ENVIRONMENTS

ABSTRACT

Molecular docking simulations of Fully-Flexible Protein Receptor (FFR) models are coming of age.

However, they are computer intensive and their sequential execution can became an unfeasible task.

This study presents a middleware, called Flexible Receptor Middleware (FReMI), to assist in faster

docking simulations of flexible receptors. FReMI handles intensive tasks and data of totally fully-

flexible receptor models in virtual screening and, provides the interoperability between a Web Fully-

flexible Docking Workflow (W-FReDoW) and two different High Performance Computing (HPC)

environments. FReMI uses internet protocols to communicate with W-FReDoW which helps to

reduce the FFR model dimension with a data pattern. Also it sends tasks of docking simulations to

execute in a HPC of dedicated cluster and; an alternative model of virtual cluster built on Amazon’s

Elastic Compute Cloud (EC2). The results are the FReMI conceptual architecture and two sets of

experiments from execution of the FReMI. The first set reports the experiments performed with

FReMI using a sample of snapshots from a FFR model on both HPC environments. The second one

describes the experiments, on the complete data set, performed with FReMI and W-FReDoW shared

execution in a MPI cluster environment on Amazon EC2 instances only. The last set of experiments

results shows a reduction of the FFR model dimensionality, transforming it into a Reduced Fully-

Flexible Receptor (RFFR) model, by discarding the non-promising conformations generated by W-

FReDoW. It also reduces the total execution time to between 10-30% of that of FReMI’s only

execution, which, in turn, decreased near 94% with respect to the serial execution.

Keywords: Middleware, Cluster, Amazon EC2, Molecular Docking Simulations.

FReMI – UM MIDDLEWARE PARA EXECUTAR SIMULAÇÕES DE

DOCAGEM MOLECULAR DE MODELOS DE RECEPTORES

TOTALMENTE FLEXÍVEIS EM AMBIENTES DE ALTO DESEMPENHO

RESUMO

Simulações de docagem molecular de modelos de receptores totalmente flexíveis (Fully-Flexible

Receptor - FFR) estão se tornando cada vez mais frequentes. Entretanto, tais simulações exigem alto

nível de processamento e sua execução sequencial pode se tornar uma tarefa impraticável. Este

trabalho apresenta um middleware, chamado Middleware de Receptores Flexível (Flexible Receptor

Middleware – FReMI), que auxilia a reduzir o tempo total de execução nas simulações de docagem

molecular de receptores totalmente flexíveis. FReMI manipula uma quantidade intensiva de dados e

tarefas para executar a triagem virtual de modelos de receptores totalmente flexíveis, e provê

interoperabilidade entre o web workflow de docagem de receptores flexíveis (Web Fully-flexible

Docking Workflow - W-FReDoW) e dois diferentes ambientes de alto desempenho (High

Performance Computing – HPC). FReMI utiliza protocolos de internet para comunicar com o W-

FReDoW , o qual auxilia na redução da dimensão do modelo FFR por meio de um padrão de dados.

Além disso, FReMI envia tarefas de simulações de docagem para serem executadas em um cluster

dedicado e também em um alternativo modelo de cluster virtual construído por meio de nuvens de

computadores elásticos da Amazon (Amazon’s Elastic Compute Cloud – EC2). Os resultados

apresentam uma arquitetura conceitual do FReMI e dois conjuntos de experimentos a partir da

execução do FReMI. O primeiro conjunto relatou os experimentos realizados com FReMI, usando

uma amostra de snapshots a partir de um modelo FFR e os dois ambientes HPC. O segundo conjunto

descreveu os experimentos, com um conjunto de dados completo, executando FReMI e W-FReDoW

apenas em um ambiente de cluster MPI construído com as instâncias da Amazon EC2. Os resultados

do último conjunto de experimentos apresentaram uma redução na dimensionalidade do modelo FFR,

transformando ele um modelo de receptor flexível totalmente reduzido (Reduced Fully-Flexible

Receptor Model – RFFR), por meio do descarte de conformações não promissoras identificadas pelo

W-FReDoW. Além disso, a redução do tempo total de execução do FReMI com o W-FReDoW foi

entre 10 a 30% a partir da execução separada do FReMI, e de aproximadamente 94% do FReMI a

partir da sua respectiva execução sequencial.

Palavras-Chave: Middleware, Cluster, Amazon EC2, Simulações de docagem molecular.

LIST OF FIGURES

Figure 2.1 3-D Representation of the molecular docking process …………………..………….. 20

Figure 2.2 Flexibility of the InhA enzyme from Mycobacterium tuberculosis… 21

Figure 3.1 Cluster architecture ………………………………………………………………..… 25

Figure 4.1 Steps in the AutoDock4.2 sequential execution ……………...……………..………. 31

Figure 4.2 Atlântica cluster’s network architecture …………….…………………..…..………. 34

Figure 4.3 MPI cluster environment created to execute FReMI on Amazon EC2……..…….…. 36

Figure 4.4 Elastic Fox interface showing five running virtual machines and their features …..... 37

Figure 4.5 S3 Fox interface ……………………………………………………………………... 37

Figure 4.6 Model of P-SaMI data pattern execution ……………………………………………. 40

Figure 4.7 Client and W-FReDoW conceptual architecture ……………………………………. 42

Figure 4.8 Schematic representation of a hierarchical hybrid MPI-OpenMP programming

model...

44

Figure 5.1 Conceptual architecture of FReMI and its interactions ……………………………... 48

Figure 5.2 Fragment of a XML file that creates a queue of tasks ……………………………..... 50

Figure 5.3 Fragments of XML files to update the parameters of the subgroups of snapshots....... 50

Figure 5.4 Directory structure in FReMI’ workspace …………………………………….…….. 51

Figure 5.5 Scheme of the FReMI Execution implementation …………………………………... 53

Figure 6.1 Comparative performance of the Atlântica and Amazon EC2 clusters for

Simulations 1 and 2, respectively …………………………………………........……

58

Figure 6.2 Performance gain versus P-SaMI analysis using three clustering of snapshots on

FReMI and W-FReDoW shared execution.………….............................………...…..

61

LIST OF TABLES

Table 3.1 Specification of five instances types on Amazon EC2 [AWS12]. ……………….... 29

Table 6.1 Scalability of Simulation 1 for Dataset 1 on Atlântica and EC2 clusters ………..… 57

Table 6.2 Scalability of Simulation 2 for Dataset 1 on Atlântica and EC2 clusters ..………… 57

Table 6.3 Scalability of Simulation 3 for Dataset 1 on Atlântica cluster …………...……..…. 58

Table 6.4 Results of the simulations executed in Experiment 2 using three different types of

clustering of conformations of the FFR model [MAC11a]………............................

61

ABREVIATIONS

3-D Three-Dimensional

AMI Amazon Machine Image

API Application Programming Interface

AWS Amazon Web Services

CPU Central Processing Unit

EBS Elastic Block Store

EC2 Amazon Elastic Compute Cloud

ETH Ethionamide

FEB Free Energy of Binding

FReDD Flexible Receptor Docking Database

FReMI Flexible Receptor Middleware

FFR Fully-Flexible Receptor

GB Gigabyte

GUI Graphical User Interface

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

InhA Enoyl Reductase from Mycobacterium tuberculosis

LGA Lamarckian Genetic Algorithm

KB Kilobytes

MD Molecular Dynamics

MPI Message Passing Interface

MTC Many-Task Computing

NADH Nicotinamide Adenine Dinucleotide – Reduced Form

NFS Network File System

PDB Protein Data Bank

PIF Pentacyano(isoniazid)ferrate(II)

P-SaMI Self-adaptive Multiple Instances Pattern

REST Representacional State Transfer

RDD Rational Drug Design

RFFR Reduced Fully-Flexible Receptor

RMSD Root Mean Squared Deviation

S3 Amazon Simple Storage Service

SMP Symmetric Multiprocessing

11

SSH Secure Shell

SWfWS Scientific Workflow Management Systems

TCL Triclosan

TCP Transmission Control Protocol

URI Universal Resource Identifier

W-FReDoW Web-Flexible Receptor Docking Workflow

XML Extensible Markup Language

12

SUMARY

1. INTRODUCTION .. 14

1.1 Motivation ... 15

1.2 Objectives ... 16

1.2.1 Main Objective ... 16

1.2.2 Specific Objectives .. 16

1.3 Research Methodology ... 17

1.4 Dissertation Overview .. 17

2. BACKGROUND .. 19

2.1 Rational Drug Design (RDD) and Molecular Docking ... 19

2.1.1 Approach to Consider the Explicit Flexibility of Receptors .. 21

3. PARALLEL COMPUTERS ... 23

3.1 Architecture and Taxonomy of Parallel Computers .. 23

3.2 HPC Cluster Environments ... 24

3.3 Amazon’s Elastic Computing Cloud – EC2 ... 26

4. MATERIALS AND METHODS .. 31

4.1 Hardware and Software ... 31

4.1.1 AutoDock4.2 .. 31

4.1.2 Atlântica Cluster .. 33

4.1.3 HPC on Amazon EC2 Instances .. 34

4.2 Methodology Applied to Build the RFFR Model ... 37

4.2.1 Snapshots Clustering of a FFR Model ... 38

4.2.2 Prioritization of the Subgroups of Snapshots – P-SaMI .. 39

4.2.3 W-FReDoW: A Web Server to Prepare Files for Molecular Docking Simulations and to

Analyse Docking Results of a FFR Model ... 41

4.3 Methods Used to Develop FReMI .. 42

4.3.1 The MPI Parallel Program Model .. 42

4.3.2 The OpenMP Parallel Program Model ... 43

4.3.3 The Hybrid MPI-OpenMP Programming Model ... 43

4.3.4 XML Files .. 45

4.3.5 Communication Protocols .. 45

5 RESULTS 1 – FReMI CONCEPTUAL ARCHITECTURE ... 47

5.1 W-FReDoW Repository .. 48

5.1.1 Input Files .. 48

5.1.2 Control File .. 49

13

5.1.3 Update Files ... 50

5.2 FReMI Workspace .. 51

5.3 FReMI Execution .. 52

5.3.1 The Create Queue Component ... 52

5.3.2 Parser/Transfer Component ... 54

5.3.3 Dispatcher/Monitor Component .. 54

6 RESULTS 2 – EXPERIMENTAL RESULTS .. 55

6.1 Experiment 1 – FReMI Performance on Atlântica and Amazon EC2 HPC Environment 55

6.1.1 Final Considerations about Experiment 1 .. 59

6.2 Experiment 2 – Integration of W-FReDoW with FReMI Execution on Amazon EC2 MPI

Cluster ... 59

6.2.1 Discussion of Experiment 2 ... 62

7. RELATED WORKS ... 63

8. FINAL CONSIDERATIONS ... 65

8.1 Main Contributions ... 66

8.2 Future Works .. 66

REFERENCES ... 68

14

1. INTRODUCTION

Large scale scientific experiments have had an ever increasing demand for high performance

distributed computing. This typical scenario is found in bioinformatics, which needs to perform

computer modelling and simulation on data varying from DNA sequence to protein structure to

protein-ligand interactions. It produces sets of data flow that are processed by an iterative sequence of

tasks, software or services [COU10].

Rational Drug Design (RDD) constitutes one of the earliest medical applications of

bioinformatics [LUS01]. RDD aims to transform biologically active compounds into suitable drugs

[KAP08]. In silico molecular docking simulation is one the main steps of RDD. It is used to identify

and optimize drug candidates by computationally examining and modelling molecular interactions

between ligands or small molecules and a target protein or receptor [KAP08]. The best ligand

orientation and conformation inside the binding pocket is computed in terms of an estimated Free

Energy of Bind (FEB) by a software, for instance, AutoDock4.2 [MOR09]. In order to mimic the

natural, in vitro and in vivo, behaviour of ligands and receptors, their plasticity or flexibility should be

treated in an explicit manner [MAC10b].

Generally, molecular docking algorithms consider receptors as rigid bodies; however, receptors

are inherently flexible in the cellular environment [MAC10b]. A major approach to incorporate the

explicit flexibility of receptors in molecular docking simulations is by means of snapshots derived

from a molecular dynamics simulation [6] trajectory of the receptor (reviewed by [ALO06]). The

resulting receptor model is called a Fully-Flexible Receptor (FFR) model. Organizing and handling

the execution and analysis of molecular docking simulations of FFR models and flexible ligands are

not trivial tasks. The dimension of the FFR model can become a limiting step because, instead of

performing docking simulations in a single, rigid receptor conformation, we must do it for all n

conformations that make up the FFR model [MAC10b]. n can vary from hundreds to thousands to

millions of conformations. Therefore, the high computing cost involved in using FFR models to

perform practical virtual screening of thousands or millions of ligands may turn it unfeasible. For this

reason, we have been developing methods [MAC10b] to simplify or reduce the FFR model

dimensionality. We dubbed this simpler representation of a FFR model a Reduced Fully-Flexible

Receptor (RFFR) model. A RFFR model is achieved by eliminating redundancy in the FFR model

through clustering its set of conformations, thus generating subsets which should contain the most

promising conformations [MAC10b].

At present, to develop a RFFR, we still need to perform thousands, and in the near future, this

number should grow to hundreds of thousands of molecular docking simulations of a particular target

receptor modelled as a FFR model. However, the sequential execution of docking simulations of FFR

models by software, such as AutoDock4.2 [MOR09], is computationally very expensive [MAC10b],

hence demanding days, weeks, or even months of CPU time. As a result, to make use of parallel

15

processing is paramount to enhance the performance of the high-throughput molecular docking

simulations of FFR models and molecule database, minimizing docking CPU time without lowering

the quality of the RFFR models produced.

The present study aims to contribute to the reduction of the overall execution time of molecular

docking simulations of FFR models using parallel programming algorithms to perform such

experiments in HPC environments. Additionally, a careful selection of a set of conformations

[HUB10] has been used to eliminate non-promising conformations which, in turn, allows a

simplification of the FFR model dimensionality, generating an RFFR model, and permits docking

simulations of flexible receptors even faster. To this end, the middleware called FReMI (Flexible

Receptor Middleware) was built to provide communication between the Web Fully-flexible Docking

Workflow (W-FReDoW) and two different HPC environments; a local cluster infrastructure and a

virtual cluster on cloud computing.

Cloud computing is a new and promising trend for delivering information technology services

as computing utilities [BUY09]. It offers software as a service by means of companies such as

Amazon Web Services (AWS) [AWS12]. These commercial tool packages, which assure high

scalability and support ubiquitous access [BUY09] by service companies, have increased the interest

of the scientific community. Web services companies provide customers with storage and CPU power

on an on-demand basis, and allows researchers to dynamically build their own environments and

access them from anywhere in the world at any time.

This dissertation presents two results: The FReMI conceptual architecture and the experimental

results. The FReMI conceptual architecture was created to show the functions and data used to handle

the many tasks within middleware, and its interoperability features with W-FReDoW and HPC

environments. The experimental results, which are obtained from FReMI execution, constitutes of two

set of experiments. The first set reports the experiments performed with FReMI using a sample of

snapshots from a FFR model on two HPC environments; the Atlântica cluster and the virtual MPI

cluster on Amazon EC2. The second one described the experiments, on the complete data set,

performed with FReMI and W-FReDoW shared execution in a MPI cluster environment on Amazon

EC2 instances only. The experimental results showed that W-FReDoW reduced the total execution

time to between 10-30% of that of FReMI´s only execution, which, in turn, decreased near 94 % with

respect to the serial execution time.

1.1 Motivation

Demand for the pharmaceutical industry in marketing drugs with minimum toxic side effects is

growing potential as new diseases are surfacing. According to PricewaterhouseCoopers, due to the

growth and aging of population, the global market for medicines is growing. Nevertheless, the

production of new drugs still is a complex and challenging process, since in addition to spending a

16

long time, requires large investments in technology resources. Currently, new computational tools and

methodologies are being developed to improve the RDD process at different stages. One these

enhancements include the incorporation of protein flexibility in the molecular docking process

[ALO06]. The search for methods that reduce the computational time involved in the molecular

docking process, and to investigate accurately chemical and biological information about ligands and

receptors is extremely important to identify and advance the RDD process [KAP08].

Thus, the major motivation of this study is to increase the computing speed and efficiency of

the large scale molecular docking experiments, reducing the number of conformations of the FFR

model and increasing the number of simulations performed simultaneously by multi-core and/or

multi-processors. Hence, a heuristic function is used to distribute tasks which are executed in parallel

by HPC environments in order to execute molecular docking simulations only for conformations that

present to be most promising gradually during the interactions of the ligand-receptor complex.

For the above reasons, the contribution of this study is to connect software components which

allow a set of services runs multiple processes on one or more machines providing the interoperability

between them through FReMI middleware. As a consequence, reduce excessive runtime during large-

scale virtual screening jobs as well as streamline the RDD process.

1.2 Objectives

1.2.1 Main Objective

The main objective of this study is to develop a middleware to handle many tasks and provide

the interoperability between web servers and high performance environments for parallelizing

massively molecular docking simulations of subgroups of conformations from FFR models.

Consequently, future molecular docking experiments, with different ligands, will not use all the

conformations that make up a FFR model, but instead, only those which are significantly more

promising. Thus, the total time spent in the molecular docking experiments for each FFR model can

be considerably reduced, and new ever great virtual libraries can be exploited more effectively.

1.2.2 Specific Objectives

The specific objectives of this dissertation are:

 To develop a heuristic function to create balanced tasks queues according to the priorities of

different subsets of conformations of FFR models. This function sorts the placing of a

fraction proportional of snapshots in the task queue in order of its importance belonging to

each group of snapshots active.

17

 To define a parallel programming model that is able to distribute of a huge amount of tasks

along the multi-processing nodes belonging to the HPC environments.

 To apply communication protocol and files pattern to achieve the acknowledgment of data

sending and receiving between FReMI middleware and W-FReDoW web environment.

 To execute molecular docking simulations of a snapshots sample from FFR model on

FReMI middleware. For executing this experiment the development is separated into two

parts. First, perform the snapshots sample in FReMI using a dedicated cluster and a virtual

cluster on Amazon EC2, then compare the performance between them. Second, perform the

W-FReDoW and FReMI shared execution using a complete snapshots data set from a FFR

model.

1.3 Research Methodology

The following are activities performed during the development of this dissertation.

- A study on molecular docking simulations of FFR models to undertake information about

the problem in study and the works which have been done by group research of the LABIO-

PUCRS (Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas da

Pontifícia Universidade Católica do Rio Grande do Sul). Also, the review of the literature to

identify relevant aspects about parallel execution and middleware.

- Design of the FReMI conceptual architecture to model the data and control streams inside

and outside of the middleware proposed.

- Development of FReMI with its procedures and the heuristic functions used to handle the

snapshots will be process by HPC environments.

- Execution of a sample of snapshots using only FReMI in a dedicated cluster, and afterward

in a virtual cluster on Amazon EC2 to compare the performance.

- Execution of a complete FFR model, with 3,100 snapshots, using FReMI and also W-

FReDoW on Amazon EC2. Firstly, FReMI executes all the snapshots without W-FReDoW

to discover the spent time to execute all the conformations in several processes.

Subsequently FReMI and W-FReDoW was executed together with the purpose of reduce the

execution time result of the first simulation.

1.4 Dissertation Overview

This dissertation is organized in eight sections as follows:

- Chapter 2 introduces the major bioinformatics and computing concepts necessary for a

better comprehension of this dissertation. It starts with an overview of the RDD process and

18

molecular docking simulations, and close with explanation of the approach used to consider

the explicit flexibility of receptors based on the MD simulations

- Chapter 3 describes the basic aspects of parallel computers used to execute the molecular

docking simulations in this study. It starts with a summary of computing hardware based on

multi-core and multi-processor machines. After that, an overview about on Cloud

Computing and Amazon Web Services, focussing on those services relevant to FReMI

execution.

- In Chapter 4 is described the materials and methods used during the development of this

dissertation in order to build and execute FReMI. It is divided into three parts. Firstly, the

main tools employed by this study: AutoDock4.2, Atlântica local cluster, Amazon EC2

cluster. After, the the data mining techniques [MAC10a] [MAC11a] [MAC11c] to cluster

the snapshots with similarities features from a FFR model; the P-SaMI data pattern

[HUB10] to to achieve the RFFR model by means of selecting of promising snapshots; and

W-FReDoW to execute P-SaMI and prepare the AutoDock4.2 input files. Finally, the MPI

[MPI09] and OpenMP [OMP11] libraries used on C programming language to make the

hybrid parallel programming model as well as the XML and HTTP POST internet

communication protocols used to link W-FReDoW and FReMI execution.

- Chapter 5 presents the first result of this dissertation, i.e., the FReMI conceptual

architecture. It includes the representation of this architecture and the detailed specification

of every function with the data and control flows. Also, it reports the W-FReDoW functions

that are able to provide communication with FReMI.

- Chapter 6 presents the second set of results of this dissertation. Two sets of experiments are

performed using the FReMI conceptual architecture defined in Chapter 5. The first set

reports the experiments with FReMI using a sample of snapshots data set from a FFR model

on two HPC environments. The second one describes the experiments, on the complete data

set, performed with FReMI and W-FReDoW shared execution in a virtual cluster on

Amazon EC2 only.

- Chapter 7 reports related works. These works are associated with the current approaches

used to accelerate the AutoDock4.2 execution.

- Chapter 8 summarizes the conclusions of the study which have led to this dissertation.

Additionally, it draws the main contributions and gives some directions for future work.

19

2. BACKGROUND

This chapter introduces the major bioinformatics and computing concepts necessary for a better

comprehension of this dissertation. It starts with an overview of the RDD process and molecular

docking simulations, and close with explanation of the approach used to consider the explicit

flexibility of receptors based on the MD simulations.

2.1 Rational Drug Design (RDD) and Molecular Docking

According to Stoddard et al. [STO93] RDD refers to the systematic exploration of the three-

dimensional (3-D) structure of a receptor in order to find potential ligands that might bind to the target

with high affinity and specificity. This process involves a set of four steps which are described by

Kuntz [KUN92] and outlined below.

1. The first step consists in finding the macromolecule of pharmacological importance or target

receptor (protein, DNA, RNA or others) [MAN09]. Experimental 3-D structures of proteins

are found, for instance, in structural databases such as the Protein Data Bank (PDB)

[BER00]. Computational analysis of these target receptors may reveal possible binding sites.

2. Based on the possible binding sites found in the first step, a set of ligands is selected that can

fit into this binding region or pocket in the receptor. Usually, the ligands are found in

databases of compounds like ZINC [IRW05]. The different conformations and orientations

that each ligand can fit into a receptor binding pocket are simulated in this step by docking

software.

3. The ligands that bind successfully to the receptor binding pocket and which are able to

inhibit or enhance its activity, depending on the objective of the project of drug design, are

bought or synthesized, and then experimentally tested.

4. Based on the experimental results, the manufacture of a new drug is conducted or the RDD

process returns to step 1.

One of the most important steps of the RRD process is the in silico molecular docking

simulation in step 2. Molecular docking simulations can be assessed in vitro. However, assaying a

target receptor against a database, like ZINC [IRW05] which holds more than 23 millions of

compounds, does not constitute a rational approach [ALO06]. Hence docking simulations are used for

lead compound discovery, typically by computationally screening a large database of organic

molecules for putative ligands that fit into a binding site [WEI04].

Molecular docking simulations sample hundreds of thousands of orientations and

conformations of a ligand inside the protein binding site and evaluate the free energy of binding

(FEB), and rank the orientations/conformations according to their scores [HUA07]. The majority of

20

molecular docking methods treat the ligands as flexible, but the receptors are treated as rigid

molecules [MAC11c].

For computing the quality of the fit between receptors and ligands, the docking algorithms rank

the best docking results in terms of the estimated Free Energy of Binding (FEB) and the Root Mean

Squared Deviation (RMSD). Thus, the more effective ligand-receptor association is evidenced by

docking algorithms when the FEB (in kcal/mol) is more negative and the RMSD is close to zero Å (in

the cases where the final docked position is known). Over 60 types of software currently investigate

different methods to find the best fit between a receptor and possible ligands [PLE11]. Some

examples are AutoDock [MOR09], DOCK [LAN09], GOLD [JON97], and FlexE [CLA01]. Figure

2.1 illustrates a molecular docking process.

Figure 2.1: 3-D Representation of the molecular docking process. The protein receptor, with

secondary structures represented by ribbons and a transparent molecular surface, is coloured grey. The

TCL ligand is in sticks. The initial position of the ligand is in cyan and two different positions along a

docking simulation are shown in green and magenta. The protein receptor is the enzyme Enoyl-

Reductase or InhA (PDB ID: 1P45) from Mycobacterium tuberculosis [KUO03].

However, proteins are inherently flexible systems and this flexibility is frequently essential to

determine their functions [COZ08]. According to Plewczynski et al. [PLE11] only 60% of the best

docking algorithms correctly predict the pose of ligands when a single, rigid receptor conformation is

considered. Therefore, realistic docking simulations need to take into account the molecular

flexibility, for both receptor and ligand, since in many cases the key-lock model does not work well

and the induced-fit model is more appropriate [WON08].

21

Nonetheless, to consider the plasticity or flexibility of a receptor and ligand in docking

simulations is still challenging. Therefore, new computational approaches are being developed to

simulate flexible receptors [MAC10b] [MAC11c].

2.1.1 Approach to Consider the Explicit Flexibility of Receptors

Several approaches have been used to consider the explicit flexibility of receptors (reviewed by

Alonso et al. [ALO06], Cozzini et al. [COZ08], Teodoro et al. [TEO03] and Totrov et al. [TOT08]).

The employment of many receptor structures [COZ08] is becoming common place in the simulation

of the natural, in vivo and in vitro, behaviour of flexible receptors. In this approach an ensemble of

receptor conformations or snapshots derived from a MD simulation trajectory (reviewed by [ALO06])

are used to incorporate the explicit flexibility of receptors in the molecular docking simulations.

According to Alonso et al. [ALO06] MD simulations are extremely important to understand the

dynamic behaviour of proteins at different timescales, from fast internal motions to slow

conformational changes or even protein folding processes. The result of a MD simulation is a series of

instant conformations of the protein receptor along the simulation time scale. These conformations are

also often called snapshots. Figure 2.2 illustrates the flexibility of a receptor derived from a MD

simulations trajectory.

Figure 2.2: Flexibility of the InhA enzyme from Mycobacterium tuberculosis [PDB ID: 1P45].

Superposition of different InhA conformations, represented as ribbons, along a MD simulation. The

initial conformation of the simulation is the experimental crystal structure [PDB ID: 1P45] and is

coloured in black. Two other conformations or snapshots were taken from the MD simulation at 1,000

ps (grey) and 3,000 ps (light grey). The dashed rectangle highlights the most flexible regions of this

receptor.

22

The execution of MD simulations is computationally expensive. However, because of the high

level of accuracy in the modelling process [TEO03], it is the best method for identifying from crystal

structures of proteins alternative binding forms otherwise not apparent from the rigid picture

[ALO06]. Furthermore, Cozzini et al. [COZ08] states that among all the available approaches to treat

the explicit flexibility of a receptor, the MD technique is the most affordable and accessible method to

produce many protein conformations at reasonable cost.

This study models the explicit flexibility of a receptor by using a set of conformations derived

from its MD simulation. Such a receptor has been named a Fully-Flexible Receptor (FFR) model

[MAC10b] [MAC11c]. For each conformation in the FFR model, a docking simulation is executed

and analysed [MAC10b].

The dimensionality of a FFR model is determined by the length of the simulation and how often

snapshots are saved during the simulation. New techniques have been developed by Machado et al.

[MAC10b] and Hübler [HUB10] to simplify or reduce the size of the FFR model. This new

representation of the receptor is called the Reduced Fully-Flexible Receptor (RFFR) model.

23

3. PARALLEL COMPUTERS

This chapter describes basic concepts of parallel computers used to execute the molecular

docking simulations in this study. It starts with a summary of computing hardware based on multi-

core and multi-processor machines. After that, an overview about cluster environment as a popular

architecture formed by commodity computers will be given. Finally, a brief description about the new

trend in virtual HPC cluster using Amazon’s Elastic Computing Cloud (EC2) will be presented.

3.1 Architecture and Taxonomy of Parallel Computers

Parallel computing has become widely used to execute simultaneously instructions that require

significant resources. Parallel computational structures must provide hardware and software support

to use multiple processors and work on the same task with different data. Initially it is important to

know how the processors and memory are organized, how machines are interconnected and then

determinate which distributed system should be used to manage these hardware resources through

software concepts [TAN10]. Such resources include sharing of CPUs, memories, peripheral devices,

networks and data.

There are several different classifications of parallel programming models. The most common

representation is based on a number of data and instruction streams or operations [FLY72]. Still

according to Flynn [FLY72] there are four different categories to classify the computer architecture

and their taxonomy.

1. SISD (Single Instruction Single Data). This model defines the traditional von Neumann

computer where a processor executes only a data stream.

2. SIMD (Single Instruction Multiple Data). In this representation each processor executes the

same program.

3. MISD (Multiple Instruction Single Data). This model defines systems where multiple

programs operate on the same data.

4. MIMD (Multiple Instruction Multiple Data). This model executes multiple programs on

multiple data. This classification involves parallel computer architectures which typically

are known as clusters.

MIMD identify the supercomputers which combine high processing capacity with intensive

calculation tasks. It is classified in two groups: loosely-coupled and tightly-coupled machines

[TAN02]. The loosely-coupled machines are heterogeneous multicomputer known as computational

grid [BUY00] [FOR06]. The tightly-coupled machines are homogeneous multicomputer known as

cluster which is the machines used to perform the molecular docking simulations using the

middleware proposed in this work.

24

In the early years, MIMD supercomputers executed only one process per computer. Nowadays,

in the Symmetric Multiprocessing (SMP) machines, each computer contains multiple processors or

multi-cores. SMP machines treat the cores as separate processors improving significantly the

performance of massive computational workload [TAN02].

In this study, the used HPC environments are clusters that consist of two or more SMP

machines or nodes linked by an interconnect network. The major infrastructure and operations of this

kind of machines will be discussed in the next section.

3.2 HPC Cluster Environments

The first cluster computing model was developed in the 1960s by IBM as an alternative for

connecting large mainframes [BUY99]. Only in the 1980s new cluster trends started to emerge as

conventional parallel and distributed platforms. In the beginning these machines were called high-

performance microprocessors, followed by high-speed networks, most recently supercomputers and at

present they are dubbed High Performance Computers (HPC) [BUY99][BUY00]. Currently, clusters

have been widely used for research and development of science, engineering, bioinformatics,

commerce and industry applications that demand high performance computing. To meet the

requirements of these areas a greater number of supercomputers have been emerged with power and

advance architectures, such as Fujitsu at RIKEN Advanced Institute for Computational Science at

Japan, Jaguar at the Ridge National Laboratory and Pleiades at the NASA/Ames Research Center.

These computers are listed among the top 10 fastest supercomputers in the world (TOP 500

supercomputer sites [TOP11]).

The high availability of commodity high-performance microprocessors and high-speed

networks, combined with scalability to perform the shared functions as a single system, are making

clusters an attractive platform for parallel processing leading to low-cost commodity supercomputing

[BUY99]. Clusters can aggregate processing capacity based on a huge number of computers called

workstations, nodes or hosts. For example, Figure 3.1 shows a typical architecture of a cluster with

four workstations and an interconnection network to support communication between them. Each

node provides an assisted system to manage the operations and communications between the

workstations used. Such systems provide services as core/thread coordination, inter-process

communication, and device handling. According to Buyya [BUY99] the main features of a cluster

operation system are:

- Manageability to administrate the local and remote resources.

- Stability to support failures with system recovery.

- Performance to guarantee efficiency for all types of operations.

- Extensibility to provide integration of cluster-specific extensions.

- Scalability to scale the resources without impact on performance.

25

- Support between user and system administrator.

- Heterogeneity over multiple architectures that have heterogeneous hardware components.

Figure 3.1: Cluster architecture. Cluster Interconnection Network links the software and hardware

communication among the workstations (Adapted from [BUY99]).

The main advantages of using clusters are their low cost and high performance. This naturally

means that their benefits and capacity are greater if compared to the isolated components because

each node has inferior configuration; otherwise, the union of these nodes allow a significant increase

in performance. Furthermore, clusters include nodes with low-latency interconnections aiming at

gains in performance. Other advantage refers to high accessibility; it means that when a machine of

the pool fails tasks can be reallocated to other nodes without losing performance. Thus, the loss of a

machine does not affect the cluster operation.

There are several metrics to measure the cluster performance during an execution. The metrics

take into account factors such as hardware availability and software to support operational system, file

system, communication protocol and network interface. In summary, there are two key features used

to measure the capabilities and potential performance of clusters: network and application

performance. Analysis of network is based on bandwidth
1
 and latency

2
 in the interconnection.

Analysis of an application relies on the speedup and efficiency. The former is an estimate of how

faster is the parallel version of the application compared to its sequential version. The latter identifies

if the nodes were well-used during execution of an application.

In order to achieve a desired level of performance with the metrics mentioned above, parallel

software must follow some parallel programming models to avoid overhead and idle processors, in

other words, carry on synchronisation among processors towards improving the computational load

balance and reducing the communication time [TRE00]. Hence, parallel programming allows dividing

a computational workload into several separate processes which are concurrently executed by

different processors to solve a common task. This approach requires setting the granularity and

1
 Bandwidth: is the amount of data that can be passed along a network in a given period of time.

2
 Latency: time to prepare and transmit data from a source node to a destination node.

Cluster Interconnection Network

PC/Workstation

Operating System

Communication

Software

Network Interface

Hardware

PC/Workstation

Operating System

Communication

Software

Network Interface

Hardware

PC/Workstation

Operating System

 Communication

Software

 Network Interface

Hardware

PC/Workstation

Operating System

 Communication

Software

 Network Interface

Hardware

26

communication of the HPC environment [TRE00]. Granularity is the relative size of the units of

computation that execute in parallel (coarseness or fineness of task division). Communication is the

way that separate units of computation exchange data and synchronise their activity.

The cluster approach is used in two types of HPC environments employed to execute the

molecular docking simulations in this study. The first one is a cluster of commodity computers

connected by a fast network. The second one is a virtual cluster built on Amazon EC2. The

specifications and configurations of each HPC environment will be provided in Chapter 4, Sections

4.1.2 and 4.1.3.

However, because the Amazon EC2 entails a new concept of HPC environment on cloud

computing, the next section gives a description of its main features.

3.3 Amazon’s Elastic Computing Cloud – EC2

Before starting to explain the AWS, the commercial product used in this study to execute the

molecular docking simulations on a Cloud, it is very important to present some overall concepts to

understanding how cloud computing works.

Cloud computing are been defined in several manners by different authors. However, each

definition is modelled according to particular aspects present in the hardware and software services

which are largely provided over the Internet by cloud computing applications.

Foster et al. [FOS05] claim that cloud computing is a large-scale distributed computing

paradigm that is driven by economies of scale, in which a pool of abstracted, virtualized, dynamically-

scalable, managed computing power, storage, platforms, and services are delivered on demand to

external customers over the internet. Buyya et al. [BUY09] point out that clouds are designed to

provide services to external users; providers need to be compensated for sharing their resources and

capabilities. Armbrust et al. [ARM10] states, in terms of trade, that cloud computing is a long-held

dream of computing as a utility, because it has the potential to transform a large part of the IT

industry, making software even more attractive as a service and shaping the way IT hardware is

designed and purchased.

All the definitions converge to the same goal which is to provide computational resources when

and where you need them, offering accessibility to use multiples clouds, scalability to launch large

number of instances by virtual machine (VM) support, flash memory and schedule VMs [ARM10].

Users or brokers acting on their behalf submit service requests from suitable businesses and negotiate

with them to achieve ideal service contracts [BUY09]. Amazon, Google, Salesfores, IBM, Microsoft

and Sun Microsystems are examples of these business companies which offer data center for hosting

cloud computing applications. These industries describe their products as an infrastructure and

platform services. According to Armbrust et al. [ARM10], software as a service is used to identify the

application delivered over the internet. Thus, each cloud platform provides its technologies and

27

infrastructure for supplying software as a service for consumers and enterprises to access on demand

regardless of time and location [BUY09].

Amazon Web Services is a suite of web services made available by Amazon that allow

developers to access and build on the company’s technology platform [MUR08]. It shares the work

burden between multiple components as a service pool in the World Wide Web by means of

Infrastructure as a Service (IaaS). IaaS is the term typified by the AWS cloud to identify the on-

demand access to its compute infrastructure [MUR08]. Application administrators request as many

servers as necessary to meet the scalability needs of their application.

AWS is a public cloud which offers set of web services to anyone on the internet by means of

pay-as-you-go tax [MUR08]. The most important services it provides are [AWS12]:

- Amazon Simple Storage Service (S3). This service provides to the users the ability to store

large amounts of data reliably and with high availability. Also it allows building,

maintaining and backing-up the storage system.

- Amazon Elastic Compute Cloud (EC2). This service is being extensively used to run Virtual

Machines (VM) multiple on demands [MUR08]. It provide as many computers as you need

to process your data in a large number of physical computers.

- Amazon Simple Queue Service (SQS). This service provides a reliable, scalable queuing

service between EC2 instances.

- Amazon Simple DB. This service provides many of facilities of relational databases, and

provides a web services interface to the system.

AWS provides several services which are useful for scientific applications; however in this

study only Amazon’s EC2 and S3 services have been extensively used and explored. For this reason,

the features of both services will be presented in detail. Further information about the other services

can be found in [MUR08] and Amazon Web Services web site [AWS12].

Amazon’s Simple Storage Service (S3) is a data model which allows users to store unlimited

amounts of data by means of two kinds of storage resources: objects and buckets. More precisely, data

and metadata are stored in objects while buckets are containers that can hold an infinite number of

objects [MUR08]. Furthermore, with the purpose of manipulating the storage resources S3 uses

protocols such as SOAP
3
, REST [FIE00] and Bit Torrent P2P [POU05] which permit the users to read

and write data on Amazon S3. It also supplies access control mechanisms to keep the information

private or public. The public information gives accessibility to anyone on the internet via normal web

browsers by standard Universal Resource Identifiers (URIs). For example, the alternative domain

name used to download the objects is http://s3.amazonaws.com/bucket-name/object-name

3
 http://www.w3.org/TR/soap.

28

Although the online storage service is priced according to the geographical location, S3 account

holders are billed monthly for their usage of service considering three key aspects. First, the volume

of data transferred to or from S3, second the storage space consumed and finally, the number of

Application Programming Interface (API) request operations that have been performed on each

account. According to Amazon Web Services [AWS12] the storage price on Amazon S3

infrastructure ranges between $0.12 and $0.15 per GB per month whereas the data transfer is $ 0.12

per month. However, to calculate the price for data storage in S3 it is necessary to know the location

and also the amount of data used during the executions due to various policies to determine the

charges.

Amazon’s Elastic Compute Cloud (EC2) provides a virtual computing environment based on

demand to run applications [BUY09] [MUR08]. The virtual computing environment holds one or

more virtual machines which allow installing and configuring the pool of servers for handling

computing tasks as a root user on Linux machines. Each virtual machine can be launched from

prepared servers created by third parties or set up an EC2 server to work as the user’s want, i.e. the

users install their own software and configure their own environment. Thus, the user can start as many

virtual servers as necessary to perform a task, increase or decrease the number of servers as demand

rises and falls, and stop them all when the tasks is finished [MUR08]. Furthermore, the user pay only

for the computing service you use.

The EC2 service comprises three key components [MUR08]:

- Instances. The instances are the virtual machine which run in the EC2 environment and

perform computing tasks that would typically be done by physical servers.

- Environment. The instances run in the EC2 environment, which provides contextual data,

configurable access control, and other information that the instances need to do their work.

- Amazon Machine Images (AMIs). The AMI is used to launch a machine image as the boot

disk for the instances. They are files that capture a full snapshot of an EC2 instance at a

point in time, containing its applications, libraries, and even its data associated

configuration settings or select from a library of globally available AMIs [BUY09].

Each EC2 virtual machine instance launched is based on Xen virtualisation technology

[BAR03]. This engine allows one physical computer to be shared by several virtual computers each of

which hosts different operating systems. Hence, the EC2 Compute Unit is used to provide a baseline

guide to the computing capacity expected from an EC2 instance. As a reference point, an instance is a

rating of 1 EC2 compute unit to provide the same CPU capacity as a physical machine with a 1.0 to

1.2 GHz 2007 Opteron or 2007 Xeon processor [MUR08]. Thus, the use of VMs gives rise to further

challenges such as the intelligent allocation of physical resources for managing competing resource

demands of the users [BUY09].

29

Amazon standardises the services available into five different types of instances with different

levels of performance and resourcing [MUR08]. The configuration and tier of each instance are

showed in Table 3.1. Where are illustrated the variations of virtual cores, the amount of RAM,

whether it is a 32-bit or 64-bit architecture, how much storage is available, and the prices, which are

charges on an hourly basis. The prices are based on Amazon Web Services web site [AWS12] to the

region used to execute the simulations in this study, i.e., US East Region.

Table 3.1: Specification of five instances types on Amazon EC2 [AWS12].

Type #cores RAM Bits Storage (hard disk) Price (per hour)

m1.small 1 1.7 GB 32 160 GB $0.085

m1.large 2 7.5 GB 64 850 GB $0.34

m1.xlarge 4 15 GB 64 1690 GB $0.68

c1.medium 2 1.7 GB 32 350 GB $0.17

c1.xlarge 8 7 GB 64 1690 GB $0.68

The Amazon EC2 instance type is chosen when an AMI is launched. The AMI captures the root

file system of an instance in a series of files [MUR08]. It means that when an instance is launched it

starts the boot from the software, the configuration settings and the data that were stored in the AMI.

Each AMI is stored on Amazon’s S3 service and needs to be registered with EC2 to give an AMI ID

that is used to start a server instance at any time. Basically an AMI is a snapshot of the instance at the

point of creation. Thus, each time a new instance of the created AMI is started it will have the same

state from which it was created [MUR08]. Furthermore, after the AMI is launched it gives a DNS

address, which can be accessed by the users using SSH command to manage the virtual server, i.e.

running the applications, install the needed software, configuring the environment or even creating a

new AMI.

Amazon EC2 also contains a secondary storage volume which is associated in its instances.

This storage space exists only while the instance is active and is called Elastic Block Store (EBS).

Amazon EBS volumes are off-instance storage which persists independently from the life of an

instance; likewise, when an instance is terminated the EBS volume terminates too [HAZ08]

[AWS12]. An EBS is provided as a block device which the user may format with an appropriate file

system. For example, in this study, all the input and output files resulting from the FReMI execution

are stored in a shared file directory in a block device of the EBS data volume inside the EC2 instance.

According to Amazon Web Services web site [AWS12] the costs to use the EBS volume

storage is charged by the amount of allocation until it is released. Thus, a rate of $ 0.10 per allocated

GB per month and $ 0.10 per 1 million I/O requests is charged by each EBS volume active in the

instance.

The key objective to make use of cloud computing in the FReMI execution is to compare the

performance, the usability and the costs take in a local cluster infrastructure and a virtual cluster

environment on Amazon EC2. Thus, from a comparative study of this metrics verifies the benefits

30

undertaken in each cluster environment through execution in parallel of molecular docking

simulations of conformations subsets of the FFR model on FReMI.

31

4. MATERIALS AND METHODS

This chapter presents all the materials and methods used to develop this study. It is divided into

three sections. The first section describes the software used to execute the molecular docking

simulations and the HPC environments used in the parallel execution of FReMI’s tasks. The following

section presents an overview of the approach used to generate the different groups of snapshots which

has given rise to all the data used in this dissertation and the data pattern applied within W-FReDoW

to reduce the dimension of the FFR model. The last section explains the implementation of FReMI. It

includes the parallel programming paradigm to execute simultaneously the molecular docking

simulations on clusters and the communication protocols used to give communication between

FReMI and W-FReDoW.

4.1 Hardware and Software

The AutoDock4.2 software used to perform molecular docking simulations of the FFR model

and the MPI high performance environments used to execute the parallel docking jobs are presented

in this section.

4.1.1 AutoDock4.2

AutoDock, a non-commercial open-source software, has been widely used to perform virtual

screening of a huge database of potential ligands against a variety of receptors. It has been

successfully applied to design new inhibitors or bioactive compounds and, consequently, to improve

the RDD efforts.

AutoDock4.2 employs a stochastic search algorithm that generates random conformations of

receptor and ligand [MOR10]. It has an empirical force-field-based scoring function that incorporates

a set of atom types and charges to estimate free energies of binding (FEB) [MOR09]. The main steps

to perform molecular docking simulations between a target molecule and a ligand with AutoDock4.2

are illustrated in Figure 4.1 and summarized below.

Figure 4.1: Steps in the AutoDock4.2 sequential execution. The function name and the output files are

represented in each step to execute a single molecular docking simulation with AutoDock4.2.

32

1. Preparation of ligand and receptor files (steps 1 and 2 in Figure 4.1). In this step, from a

coordinate files, generally in PDB format, it is possible to insert the polar hydrogen atoms,

partial charges and atom types [MOR10]. Furthermore, the torsions degree can be selected

to limit the flexibility of the ligand. After all configured, a PDBQT file is created for both

receptor, and ligand.

2. Configuration grid and docking files (steps 3 and 4 in Figure 4.1). After ligand and receptor

files created, the grid and docking files are prepared. Each file contains parameters that are

specified in this stage to execute the third and fourth steps. A GPF file is generated to

execute autogrid and a DPF file is generated to execute autodock.

3. Autogrid execution (step 5 in Figure 4.1). For each atom type present in the ligand that is

being docked a grid maps are calculated by autogrid [MOR10]. This step is essential

because, besides this pre-calculation to be the autodock input parameters, it helps to make

the docking computations fast. To run autogrid it is necessary a grid parameter file (GPF

extension) which specifies some parameters, for instance the grid point spacing, the grid

centre, and the name of output files written during the grid calculation [MOR10]. The grid

output files are a log file with grid calculation, and other information about the coordinates

and specifications to create a grid box. The amount of grid map files depends on the number

of atom types in each small molecule or ligand.

4. Autodock execution (step 6 in Figure 4.1). Finally, autodock is executed by one of the

search methods. The docked conformations and FEB results are independently generated by

the search algorithm employed to perform a number of receptor and ligand interactions. The

algorithms used by Audodock4 are Lamarckian Genetic Algorithm (LGA) [MOR98],

Genetic Algorithm [MOR98] and Simulated Annealing [GOO96]. These search algorithms

have a parameter for determining the amount of runs (number of evaluations) that will be

used to identify ligands by ranking the relative binding energy of small molecules [MOR10].

There are several parameters to improve the docking performance. However, different

values can be selected depending upon the search approach chosen. Besides the input

parameters to specify the docking calculation, the grid maps and a ligand files are also

specified in input file (DPF extension) to execute docking simulations. At the end of the

execution, an output file (DLG extension) is produced with final docked coordinates, final

binding energies, such as RMSD and FEB, and other values which belong to each evaluation

executed.

The third and fourth steps above are a limitation of AutoDock4.2 because of the high

computational cost required to perform several docked conformations by means of a stochastic search

function. Furthermore, AutoDock4.2 is originally designed to execute in a single core machine. The

total time spent to execute autogrid and autodock of only one snapshot of the FFR model and one

ligand in a CPU with 2.13 GHz and 2GB RAM is around 3 minutes. However, the number of

33

conformations a FFR model can have may reach thousands to hundreds of thousands to millions of

conformations. The high computational cost involved in performing practical virtual screening of a

FFR model against a library of thousands to millions of thousands of ligands, the ZINC Database

[IRW05] is an example, may be it impractical. For these reasons, this study constitutes an attempt to

make docking simulation of a FFR model against a ligand, and in the future a library of ligands, a

viable step in the RDD process. For that, we make intense use of parallel architectures on MPI cluster

environments which simultaneously control and execute molecular docking.

4.1.2 Atlântica Cluster

Atlântica cluster is one of the two HPC architectures used to execute massively parallel

molecular docking simulations of a FFR model. It consists of 10 nodes connected by a fast network

system. Each node contains two CPUs Intel Xeon Quad-Core E5520 2.27GHZ with Hyper-Threading

and 16GB of RAM, aggregating 16 cores per node (16 hardware threads running on 8 physical cores,

2 threads per core) and 160 cores in total. The cluster is connected by two gigabit Ethernet network;

one for communication between nodes and another for management. The Atlântica cluster is hosted in

the “Laboratório de Alto Desempenho da PUCRS” (LAD)
4
. LAD supplies high performance

computational resources for the academic community and research groups at PUCRS.

The cluster provides several software and hardware resources necessary to execute parallel

programs in a secure and usable manner. It uses Torque
5
 to manage the allocation and control of the

access to the nodes through queues monitored by job-scheduling policies. To allocate one or more

nodes with this control it is necessary to provide information about the type of parallel execution to be

processed, e.g.; the number of nodes allocated, allocation time, access mode (exclusive or not

exclusive) and amount of cores/threads.

Figure 4.2 shows the Atlântica cluster network architecture where the nodes are represented as

Atlântica machines from 1 to 10. The server machine called Marfim gives local access to the cluster.

Marfim is also located in LAD and runs as an image to the hosts of the Atlântica cluster. It provides

all the needed support for preparing and controlling executions in the cluster, such as the file system

operations, the libraries to compile and execute the parallel applications.

4
 http://www.pucrs.br/ideia/lad.

5
 http://www.adaptivecomputing.com/products/torque.php.

34

Figure 4.2: Atlântica cluster’s network architecture. The users access the Marfim server that provides

access up to 10 machines from the Atlântica cluster.

The Atlântica cluster includes a multi-core processor architecture to leverage the performance

of large-scale executions and optimize applications by means of distribution of workloads. Taking

advantage of the parallel processing power of a cluster may likely increase the execution of molecular

docking simulations of FFR models by FReMI.

4.1.3 HPC on Amazon EC2 Instances

Another HPC architecture used in this study to execute FReMI’s tasks in parallel is a virtual

cluster built with Amazon EC2 instances. The AMI used as base is ami-da0cf8b3
6
 with Ubuntu 10.04

Server 64-bit and 6 different instance types with different features. Only a High-CPU extra large

instance (c1.xlarge) was prepared and configured to create a new instance which was used to execute

FReMI. Due to the sharing of instances by more than one user, Amazon EC2 provides a basic

measure of processing to identify different types of physical machines. A rating of one EC2 compute

unit is a unit of CPU performance where the CPU capacity corresponds to 1.0 - 1.2 GHz 2007

Opteron or 2007 Xeon processor [MUT08]. Amazon’s EC2 c1.xlarge instance has 8 virtual cores with

2.5 EC2 compute units each, 7 GB of RAM and 1,690 GB of local instance storage.

After launching the instance the internal and external dynamic network addresses are assigned

by the EC2 environment [MUT08] to allow access using SSH in each instance. Furthermore, the

virtual machines can be configured by the user to install and run software as root user. Afterwards,

users can create a new image from the AMI base and launch instances of their own AMI over the

6
 http://aws.amazon.com/amis/4348.

35

internet and interact with them. This is the approach used in this study to create an MPI cluster pool

on Amazon EC2 and subsequently to execute FReMI. The steps necessary to construct this MPI

cluster environment are described below.

1. Launch an instance from base image (ami-da0cf8b3).

2. Prepare the base instance. In this step all essential software to run the FReMI middleware

are installed. The data files for the scientific experiment, as well as the program files used to

execute FReMI, are stored. The software installed in this machine were: GCC 4.6.2

[STA10], MPICH2 [MPI09], libxml [XML03] and libcurl [CUR11] libraries, AutoDock4.2

[MOR09] package and network configuration tools.

3. Create a new image from step 1. At this time, the new AMI is created with the same

software and data of the original AMI, but with a different AMI identification.

4. Launch instances from image created on Step 3. In this step it is started as many instances as

necessary to execute tasks in parallel.

5. Prepare MPI Cluster Environment. An MPI cluster pool must be configured with the

launched instances. In this regard, a ring of multiprocessor daemons are activated to provide

communication among the instances. Additionally, a Network File System (NFS) is created

to share the same file directory system amongst all virtual machines.

6. Finally, execute the FReMI middleware on Amazon instances.

The data files are stored on Amazon Elastic Block Store (EBS). EBS provides block level

storage volumes for use with Amazon EC2 instances. Amazon EBS volumes are off-instance storage

that persists independently from the life of an instance [AWS12]. This means that if the instance is

rebooted EBS will keep the stored data. However, if the instance is terminated the EBS storage

volume terminates too. Figure 4.3 shows the cluster pool created on Amazon EC2’s instances where

the same files directory is shared by NFS among the instances to store all input and output files used

during run time of FReMI. In this pool, all data are stored on EBS of the master machine and all the

instances have permission to read and write in this shared directory. All data is kept stored in the

shared directory even if a slave instance terminates. However, if the master instance terminates all

data are lost because the master instance EBS volume terminates at the same time. Thus, the S3cmd
7

source code and package is used to replicate the most important information from Amazon EC2 to

Amazon S3 bucket
8
.

7
 S3cmd is an open source project available under GNU Public License v2 and free for commercial and private

use. It is a command line tool for uploading, retrieving and managing data in Amazon’s S3. S3cmd is available

at http://s3tools.org/s3cmd.
8
 Bucket is the space to store data on Amazon S3. Each bucket is identified with a unique bucket name.

36

Figure 4.3 MPI cluster environment created to execute FReMI on Amazon EC2. The remote station

represents the machine outside Amazon EC2 used to connect the MPI Master Instance by an SSH

connection. The MPI Master Instance is the machine that manages the MPI slaves during the FReMI

execution. It also holds the FReMI source code and the I/O files stored on the Amazon Elastic Block

Store (EBS). All instances may access EBS through NFS.

Although Amazon provides a range of command-line utilities for bundling and controlling EC2

images and instances, there are several tools and software packages that have been developed to aid

the use of AWS. This study used the EC2 command line tools
9
 to manage the instances, such as

manipulating security groups, launching and terminating instances. In addition, Elastic Fox [AEF11]

and S3Fox [ASF11] extensions are employed to control EC2 and S3 using a GUI instead of command

line. Both are extensions of Mozilla Firefox web browser and can provide access through this tool.

Figure 4.4 shows Elastic Fox at work. It allows the user to control AMIs, launch, monitor and

terminate instances. Figure 4.5 illustrates the use of S3Fox which, besides transferring data between

S3 and the local machine, it also allows creating buckets, deleting files, and setting permissions.

9
 http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351.

37

Figure 4.4: Elastic Fox interface showing five running virtual machines and their features. This

interface also allows launching, rebooting and terminating the running images.

Figure 4.5: S3 Fox interface. The right box shows the files inside the S3 bucket. The left box shows

the file on the local machine. This interface allows transferring files to and from Amazon’s S3.

4.2 Methodology Applied to Build the RFFR Model

The snapshots of the FFR model used in this study (see Section 2.1.1) are derived from a MD

simulation trajectory of the receptor. Even though this approach is considered the best to mimic the

natural behavior of ligands and receptors [ALO06], its dimension or size may become a limiting step.

Moreover, the high computing cost involved could also turn it unfeasible to perform practical virtual

38

screening of such a receptor model. For these reasons, new methods have been developed to assist in

the simplification or reduction of a FFR model to a RFFR model. The primary rationale of this

approach is to eliminate redundancy in the FFR model through clustering of its constituent

conformations [MAC10b]. This is followed by the generation of subgroups with the most promising

conformations via the P-SaMI algorithm [HUB10]. FReMI was developed to aid in this task and its

results are expected to support faster execution of molecular docking simulations in more realistic

virtual screening experiments. To achieve this FReMI relies on data derived from the following

approaches:

1. Data mining techniques to achieve the groups of snapshots [MAC10b], [MAC11a] and

[MAC11c].

2. The Self-adapting Multiple Instances Partner (P-SaMI) to classify and prioritize the different

groups of snapshots [HUB10].

3. The W-FReDoW web environment which uses P-SaMI and prepare the docking input files

[DEP11].

4.2.1 Snapshots Clustering of a FFR Model

The group of snapshots used in this study was generated using clustering algorithms developed

by Machado [MAC11a]. In this approach the author executes 10 clustering algorithms with different

similarity functions over the FFR model to find patterns that define groups of similar conformations

[MAC10b]. The process of knowledge discovery in database is used to analyze the FFR molecular

docking data stored on FReDD (Flexible Receptor Docking Database) [WIN09]. FReDD database

stores receptors and docking experiments results to discovery interesting information under a FFR

model. It includes, but is not limited to, the best FEB and RMSD of each snapshot calculated with

AutoDock3.0.5 [GOO96].

Machado [MAC11a] used, as a rigid receptor, the crystal structure of the InhA enzyme from

Mycobacterium tuberculosis [DES95] (PDB ID: 1ENY). The FFR model of InhA was derived from

its MD simulation trajectory [COH11] [SCH05]. Four different ligands were employed in her docking

experiments, specifically: nicotinamide adenine dinucleotide (NADH) [DES95], triclosan (TCL)

[KUO03], pentacyano(isoniazid)ferrate(II) (PIF) [OLI04], and ethionamide (ETH) [WAN07]. The

following rule emerged as a result of this study: if a snapshot is associated with a docking with

significantly negative FEB and small RMSD values, for a unique ligand, it is possible that this

snapshot will interact favorably with structurally similar ligands [MAC11a].

According to Machado et al. [MAC11c] the groups of snapshots, which were related to

different classes of FEB values, are useful to identify the most promising receptors conformations,

and also the ones that can be discarded for docking simulations, considering ligands with similar

39

characteristics. As a consequence of this approach, the groups of snapshots are post processing using

the P-SaMI data pattern to select the receptor conformations and reduce the complexity of the FFR

model [HUB10] [MAC11c]. The next section presents a detailed description of the P-SaMI data

pattern and its application in the processing of a FFR model to a RFFR model by FReMI.

4.2.2 Prioritization of the Subgroups of Snapshots – P-SaMI

The P-SaMI data pattern was employed in the identification of the most promising

conformations in the different groups of snapshot of a FFR model identified by Machado [MAC11a].

P-SaMI is the acronym for Pattern-Self-adaptive Multiple Instances – a data pattern for scientific

workflows developed by Hübler [HUB10]. The purpose of this approach is to define a pattern which

is able to dynamically perform the selection of the FFR receptor’s conformations with the aim of

producing a RFFR model. As a consequence of this reduction, one can eliminate the exhaustive

execution of dockings simulations of a FFR model without affecting its quality [HUB10][MAC10b].

The preliminary step of P-SaMI [HUB10] is to capture the clustering of snapshots

independently of the similarity function used [MAC11a]. Next, it tags the data as follows: the

snapshot identifier, the group identifier to which the snapshot belongs, the subgroup identifier, and its

status and processing priority. A subgroup is a percentage sample of a group. The subdivision of the

groups in to subgroups is performed before and during the execution of docking simulations for the

status of the subgroups can vary while their snapshots are being processed. As defined by Hübler

[HUB10] the status can be active (A), finalized (F), discarded (D) and changed priority (P). Only

snapshots belonging to the subgroups with status “A” are processed. P-SaMI also uses the minimum

quantity of conformations to be processed and the percentage of the sampling that make each

subgroup, which are defined by user.

The docking simulation execution of each snapshot begins after splitting the conformations

within each group into subgroups (Figure 4.6). The outcome is the “Docking Result”. These results

contain the best FEB value for each snapshot. Afterwards, P-SaMI uses some evaluation criteria, e.g.,

FEB’s averages and standard deviations, to analyse the results and to determine the status and priority

of the snapshots waiting to be processed. The status and priority are attributed to each subgroup. Thus,

if the “Docking Results” of a subgroup present an acceptable FEB value (the more negative the better)

then that subgroup is credited with a high priority. Conversely, the subgroup has its priority reduced

or its status changed to “D”. In the latter case, the snapshots waiting to be processed are discarded;

unless all the snapshots of that subgroup have already been processed (status “F”). The status

information is paramount to decide whether a snapshot will be processed or not.

40

Figure 4.6: Model of P-SaMI data pattern execution. Clustered snapshots [MAC11a] are divided into

subgroups using the P-SaMI data pattern in W-FReDoW. Molecular docking simulations are executed

on these subgroups. P-SaMI analyses the docking results, based on some evaluation criteria, to select

promising conformations from subgroup of snapshots.

Hübler [HUB11] organized the subgroups’ priorities in three levels: high (3), intermediate (2)

and low (1). The subgroups of snapshots with high priority are processed before that ones have low

priority. Thus, the snapshots that gradually present high-quality results during docking execution are

considered by P-SaMI as promising conformations. Consequently, its subgroups receive high priority

and more processors to execute docking in parallel. On the other hand, the subgroups of unpromising

snapshots receive low priority and fewer processors.

From P-SaMI it is possible to make use of groups of conformations [MAC11a] and classify the

clustered snapshots in different conformation levels (most or less promising). In this sense, different

snapshots – within the same group – with highly similarity can be classified under a classification

criterion most stable and deterministic if they are processed by molecular docking simulations

[HUB10]. For example, let consider two different subgroups: subgroup 01 (SG01) and subgroup 02

(SG02). If 20% of processed snapshots of the SG01 presents a constancy of poor results in molecular

docking simulations, this group may be discarded (status D) or has its priority reduced (low [1] or

intermediate [2]). On the other hand, if the SG02 with the same percentage of snapshots processed

presents a gradual increase on the results, it is possible to suggest that this group contains promising

conformations, and consequently it will have increased priority and the percentage of snapshots that

will be processed. Furthermore, if the SG01 has not shown good results, the last group may use the

processes which had been reserved for G01 before changing its level. Hence, selection of the most

41

promising conformations can reduce the total execution time in the docking experiments, and,

consequently, accelerate the RDD efforts [HUB10] [MAC10b].

The goal for using P-SaMI [HUB10] in this study is to make full use of its pattern data to help

FReMI improves the performance in the molecular dockings simulations using a FFR model. The

main suggested future works by Hübler [HUB10] are: develop a scientific workflow component

which manipulates snapshots data to identify promising snapshots and; make use of a HPC

environment to execute the molecular docking experiments. Both suggestions are being developed in

a parallel and cooperative way. The workflow, developed as a web server environment, is the research

theme of another M.Sc. student in the same working group. The middleware to handle molecular

docking simulations in HPC environments is presented in this dissertation. The web server is called

W-FReDoW and its main functions to work with FReMI will be explained in the next section.

4.2.3 W-FReDoW: A Web Server to Prepare Files for Molecular Docking Simulations and to Analyse

Docking Results of a FFR Model

Even though FReMI is capable to work on its own, it also includes functionalities that allow

interaction with W-FReDoW.

Figure 4.7 summarizes the W-FReDoW workflow environment. W-FReDoW is a web server

built in parallel with FReMI to aid in the reduction of the execution time of molecular docking

simulations of FFR models. Its central role is to select promising snapshots subgroups from a FFR

model by means of the P-SaMI data pattern. In addition to that W-FReDoW includes two components

and a database that stores the docking results and gives provenance about the snapshots during

execution time.

- The Client layer represents the web interface that integrates W-FReDoW and FReMI

executions. It performs three activities: 1) configuration of molecular docking, P-SaMI and

FReMI parameters; 2) initialize the W-FReDoW and FReMI execution and; 3) analyse the

docking results.

- The Molecular Docking component executes the pre-docking steps required for

AutoDock4.2 (steps 1 to 4 in Figure 4.1). Its activities must be executed before or during the

execution time.

- The P-SaMI component implements the P-SaMI data pattern. It will be detailed in Chapter

5.

- The FReDD Extension represents the database used to provide provenance about data

generated by the components described above. This database is an extension of FReDD

[WIN09].

42

Figure 4.7: Client and W-FReDoW conceptual architecture. The client layer represents the steps

performed by scientist before and after the execution. Molecular docking holds the functions prepare

the snapshots to be executed on FReMI. P-SaMI represents the functions to send, analyse and store

the docking files. FReDD Extension is the database to keep the W-FReDoW provenance.

4.3 Methods Used to Develop FReMI

The C programming language was used to develop the FReMI middleware due to the low-level

access to memory, the flexibility to support a number of different functions from the central library

and portability. This section presents the C libraries used to develop FReMI. It outlines the MPI and

OpenMP functions for the parallel tasks and the functions to establish the communication with W-

FReDoW via internet.

4.3.1 The MPI Parallel Program Model

Message-Parsing Interface (MPI) is a parallel programming paradigm used to move data from

the address space of one process to that of another process through cooperative operations on each

process [MPI09]. MPI provides an API to establish communication characteristics between nodes by

43

specification of operations through message transfer. Furthermore it can be accessed in C, C++,

Fortran-77 and Fortran-95. The MPI used in this work is MPICH2 version 1.2.1.

The main advantages for using an MPI model are portability, efficiency and ease of use. A MPI

programming model is the correct paradigm to use for all levels of parallelism available in the

application and that the application topology can be mapped efficiently according to the hardware

topology [RAB09]. For instance, exploit the master-slave paradigm under HPC machines. It also can

be used by MIMD programs providing features that improve performance on scalable parallel

computers with inter-processor communication hardware [MPI09]. MPI is the appropriate parallel

programming model used in different cluster environments for establishing safe communication and

for supplying high portability. For example, it is used in virtual machines launched by EC2 instances

and the dedicated machines in the cluster Atlântica.

4.3.2 The OpenMP Parallel Program Model

OpenMP Multi-Processing (or only OpenMP) is an API to exploit the parallelism on shared

memory architectures though parallel programming models which simultaneously execute multiple

threads. It is based on library routines, environment variables and a set of compiler directives which

expand the C, C++ and FORTRAN support languages [OMP11] [SMI01]. There are several

compilers that support the OpenMP API, and as MPI, these compilers include their command line

option which allows interpretation of all OpenMP directives.

In contrast to MPI, which only sends a message to two or more machines and wait for a process

to receive it and to execute the tasks, OpenMP offers a more efficient parallelisation strategy within a

node through fork-join model of parallel execution [OMP11] [SMI01]. Although this API only runs

on shared memory machines, the communication is implicit and it is relatively easy to implement

OpenMP applications [SMI01]. The key reason for using OpenMP in this study is to take advantage

of the SMP nodes that make the HPC environments. Making use of inter-node multi-threads on

Cluster OpenMP is important to enhance the performance of automated molecular docking

simulations with FReMI.

4.3.3 The Hybrid MPI-OpenMP Programming Model

Hybrid MPI-OpenMP programming exploits the explicit inter-node communication through

message passing on distributed systems and the high performance of SMP’s shared memory among

threads by an implicit synchronization state. According to Rabenseifner et al. [RAB09] the hybrid

MPI-OpenMP enforces the domain decomposition to be two-level algorithm. On MPI level, a coarse-

gained domain decomposition is performed. Parallelization on OpenMP level implies a second level

domain decomposition. This model closely maps to the architecture of an SMP cluster, the

44

parallelisation occurring between the SMP nodes and the OpenMP parallelisation within the nodes.

[SMI01]

The most important advantage of using a hybrid MPI-OpenMP programming model is that

introducing MPI into OpenMP not only is able to reduce the amount of data to be communicated and

the total number of MPI calls, but also improve the load balancing while maintaining a high level of

parallelism. Further, this model has the potential to exploit the scheduling of the effective parallelism,

with distributed memory programming for the coarser grain parallelism and shared memory

programming for the finer-grained [SMI01].

The master-slave paradigm [BAN04] is used to allocate a large number of independent, equal-

size tasks to a HPC environment. In this concept a specific node, referred to as the master, holds a

large collection of independent, identical tasks to be allocated on the cluster. The master node needs

to decide which tasks to perform itself, and how many tasks to forward to each of its neighbours

[BAN04]. These neighbours are named slaves and, in contrast to the master, which needs to execute

and handles all the tasks, it only executes the jobs received from a master node. For example, Figure

4.8 shows the communication and the workload among the nodes used in a master-slave programming

concept. Bidirectional arrows from and to the master node send the workload to the slaves and receive

a return when they are idle or complete their works through message transfer (MPI). Unidirectional

arrows indicate the amount of cores, only four in this example, per node for distributing the tasks for

parallel execution using OpenMP programming scheme.

Figure 4.8: Schematic representation of a hierarchical hybrid MPI-OpenMP programming model.

Bidirectional arrows show the MPI programming scheme using the master-slave paradigm.

Unidirectional arrows illustrate the number of OpenMP cores to be used in the parallel execution of a

workload on each SMP node.

45

According to Rabenseifner [RAB09] a hybrid MPI-OpenMP programming model employs

multi-threaded MPI processes to distribute the tasks in a standard dynamic load balancing. Thus, the

implementation of the hybrid parallel programming model in this study aims to reach a high level of

workload balancing, using a tasks’ distributing algorithm based on the master-slave paradigm of HPC

environments. To achieve this objective the following steps are performed. First, MPI functions are

used to send a message from the master to the slave nodes in the cluster pool. Second, the slaves

receive the message and the information about the amount of tasks that need to be executed using

thread parallelism inside each SMP node, including the master node. Third, inside each SMP node,

the allocating of the tasks is performed by OpenMP and one task is executed for each processor.

Finally, if all processors from a specific SMP node finish the executing of its tasks, it sends a message

to master node notifying that it is idle and more work must be sent. In this stage, if there are more

tasks to be executed the process starts again, else a “MPI end message” is sent to communicate to

every other node to stop execution.

4.3.4 XML Files

The dataset’s logical structure of the different groups of snapshots of a FFR model is specified

in a physical file system via a subset schema in Extensible Markup Language (XML). XML is a

markup language that allows the creation of documents with data arranged hierarchically in a tagged

layout. Element tags render XML documents inherently usable for storing and sharing textual

information with structural/semantic annotations [XML03]. Furthermore, it is able to integrate with

other languages, interconnect with different databases and communicate with clients and servers on

internet and intranet networks. Independently of the computational infrastructure or operational

system that the FReMI is located, the XML file is able to store, manipulate and recognize the

information representing a FFR model.

Libxml2 [XML03] is the library supported by the C programming language and used in this

study to handle XML files. This library includes functions that allow creating, reading and writing a

metalanguage to design markup languages. FReMI uses two XML files for handling the molecular

docking executions. One file identifies the groups of snapshots. The other states the priority and status

of the groups of snapshots which are updated by P-SaMI through the w-FReDoW web server. The

structure and specifications of such files are presented in more details in Sections 5.1.2 and 5.1.3.

4.3.5 Communication Protocols

FReMI uses the Hypertext Transfer Protocol (HTTP) to set up communication with w-

FReDoW (as shown in Section 4.2.3). The Representational State Transfer (REST) [FIE00], similar to

that adopted by sites, e.g., Facebook and Google, is used to sign REST requests and communicate

46

representations of resources. REST is the web architecture style used in software engineering to

specify the communication model using HTTP calls between distributed software.

According to Fielding [FIE00] one of the mains goals of REST is to support the introduction of

versioning requirements and rules for extending each of the HTTP protocols. POST is one of the

protocols supported by HTTP and is also used in this work. HTTP POST sends the processed docking

results from FReMI to the W-FReDoW web server. The functions of libcurl library [LIB11] were

used to call the HTTP POST protocol through C programming language. Libcurl is free and is part of

the curl package which has command line tool for transferring data with URL syntax. HTTP POST

function was implemented with version 7.23.0.

47

5 RESULTS 1 – FReMI CONCEPTUAL ARCHITECTURE

This chapter describes the first result of this dissertation. It presents the conceptual architecture

of the FReMI middleware used to obtain the experimental results (Chapter 6).

As mentioned in the Introduction, the foremost objective of this study is to develop a

middleware to assist in the high performance massively parallel execution of molecular docking

simulations of subgroups of FFR models’ conformations. To achieve this goal, a middleware called

FReMI was developed. FReMI is able to distribute, control and monitor the execution of subgroups of

snapshots of FFR models in two different HPC environments. It provides resources to interact with a

web server through internet communication protocols. These protocols allow FReMI to receive and

send messages in run time using the REST services and the FTP network protocol (outlined in Section

4.3.5). Thus, beyond handling tasks to decrease the time in the molecular docking executions in HPC

environments, it also simplifies or reduces the FFR model dimensionality by generating a RFFR

model.

FReMI uses the Many-Task Computing (MTC) [RAI10] paradigm to address the problem of

executing multiple parallel tasks in multiple processors. MTC is a traditional technique used by the

scientific community to denote a model of loosely coupled computations in which large volumes of

data are exchanged among tasks via files, databases or XML documents, or by a combination of these

[RAI10]. Moreover, MTC is an efficient approach to share multiple tasks and manage the scalability

and granularity on different computing paradigms as in HPC environments. Figure 5.1 details the

FReMI conceptual architecture and its interaction with the W-FReDoW web server.

A preliminary conceptual architecture of FReMI and W-FReDoW was published earlier as an

LNBI-LNCS extended abstract on the 2011Brazilian Symposium on Bioinformatics [DEP11]. The

purpose of the MTC environment remains unchanged, however, the architecture has changed

somehow in order to better accommodate the proper execution and analyses of molecular docking

simulations of FFR model in HPC environments.

 FReMI handles large volumes of data and controls the distribution of tasks in the parallel

execution mode by HPC environments. Its five components were designed to deal with both large

scale task’s distribution and data handling. The single components are Start and the HPC

Environment. Start begins the execution of FReMI. HPC Environment denotes the two clusters used

in this study: Atlântica and the virtual cluster on Amazon EC2 (outlined in Sections 4.1.2 and 4.1.3

respectively).

48

Figure 5.1: Conceptual architecture of FReMI and its interactions. The two left boxes show the tasks

to be executed by a user on the web server, which sends and receives messages to and from FReMI

(right-hand box) via internet communication protocols. The HPC Environment represents the MPI

Clusters on Amazon EC2 and LAD’s Atlântica. The W-FReDoW Repository, FReMI Workspace, and

FReMI Execution are detailed in the text below.

As shown in Figure 5.1, the remaining components are distributed in three sets: W-FReDoW

Repository, FReMI Workspace and FReMI Execution. The first two sets comprise the file system

used to store data during FReMI execution. The last one is the most important for it synchronizes all

the functions performed by the other FReMI components. The next sections will detail them.

5.1 W-FReDoW Repository

The W-FReDoW Repository contains the Input/Update Files. The Repository directory stores

the files sent from W-FReDoW through the SFTP network protocol. It consists of: input files to

execute the autogrid4 and autodock4 applications; one control file to identify the status and priorities

of the subgroups and their snapshots; and update files to change the priority and status of the

subgroups of snapshots whenever needed. The next subsections describe these files and how they are

handled in the Repository directory by FReMI.

5.1.1 Input Files

The contents of the input files for autogrid4 and autodock4 programs have been outlined

separately in Section 4.1.1. These files are created by W-FReDoW in which, for each snapshot of the

FFR model, one PDBQT, GPF and DPF files are used to execute one molecular docking simulation

49

with a single ligand. For example, to execute an experiment with a FFR model, composed of 3,100

snapshots, W-FReDoW creates: 3,100 PDBQT receptor files; 3,100 GPF files; 3,100 DPF files, and

one PDBQT file for the ligand. As a result, a total of 9,301 files are received by the Input/Update

Files Component for the execution of this experiment.

The input files of a whole experiment, like the one shown above, are sent to FReMI before

starting its execution. Otherwise, file transfer during FReMI execution, would turn it very expensive

because PDBQT files are usually large, of the order of 300 Kbytes each. For the FFR model example

above it would total approximately 1.0 GB. For each snapshot the GPF and DPF files have together

only 4.2 KB.

FFR models are becoming ever large [ALO06] [COZ08]. Currently we have FFR models with

over 40,000 PDBQT files [COS11]. Thus, to avoid long waiting times to transfer files, the model is

placed in the W-FReDoW Repository before running the application.

5.1.2 Control File

The different subgroups of snapshots generated by data mining techniques [MAC11a] are

stored in the control file called “groupSnap.xml”. In this file each tag represents a data parameter that

identifies the grouping structure of the snapshots [MAC11a] and their settings according to P-SaMI

[HUB10]. Figure 5.2 shows part of a sample file with three root tags described as:

- experiment: identifies each molecular docking simulation of a FFR model. The experiment

identification (id) is a unique number created and controlled by W-FReDoW for each new

simulation. This tag includes different subgroups of snapshots.

- subgroup: specify the information of the subgroups. The idSubgroup tag identifies the key

number of each subgroup. The stat tag denotes whether a subgroup of snapshots is active

(A), finalized (F) or discarded (D) and the priority tag indicates how much promising are the

snapshots belonging to that subgroup, in a 1 to 3 priority scale, as defined by PSaMI

[HUB10].

- snapshot: contains information about the snapshots. The idSnap tag represents the key

number of each snapshot. The status tag denotes whether the snapshot is waiting to be

processed (P) or has been processed by the HPC environment (Q).

For each docking simulation, with one FFR model and a single ligand, a new XML control file

is created by W-FReDoW and sent to FReMI. This XML file is essential because FReMI Execution

components (see Figure 5.1) use it to create the queues of tasks and maintain FReMI with the

subgroups of snapshots updated according to P-SaMI parameters.

50

Figure 5.2: Fragment of a XML file that creates a queue of tasks. This file stores the groups of

snapshots generated by data mining techniques [MAC11c] and its parameters according to P-SaMI

[HUB10].

5.1.3 Update Files

When the status and priority of a subgroup of snapshots change during the execution time,

update files are sent from W-FReDoW to FReMI. As shown in the conceptual architecture (see Figure

5.1) the Data Analyzer component represents the functions that create these files by means of the P-

SaMI data pattern. It worth remembering that P-SaMI is able to select the most promising snapshots

of FFR models from the docking results and some specified evaluation criteria. These analyses are

conducted in W-FReDoW and the result is a parameters’ set which are used to classify the snapshots

to be processed in the HPC environments. The P-SaMI results are XML files sent to FReMI by SFTP.

Figure 5.3 illustrates the structure of these files and their physical representations.

(a)

(b)

Figure 5.3: Fragments of XML files to update the parameters of the subgroups of snapshots. (a) File

to update the priority of the subgroups. It contains a tag with the subgroup identification, e.g. G1L1,

and a tag with the new priority. (b) File used to identify if a subgroup of snapshot should be

discarded or not. As the previous XML file, there are the subgroup identification (G2L2), but

instead of the priority tag, the start tag is used to identify which subgroup should be discarded.

51

The update files are used by FReMI to handle the queue of tasks. The priority determines how

many processors in the cluster are allocated to each subgroup. The status, according to the P-SaMI

pattern, indicates which snapshots should be discarded. Therefore, to keep FReMI updated, one XML

file is dispatched any time P-SaMI makes a modification on the priority and/or status of subgroups of

snapshots. Then, FReMI updates these information in the control file (groupSnaps.xml).

5.2 FReMI Workspace

The FReMI Workspace represents the directory structure used to store the huge volume of data

manipulated to execute the molecular docking simulations of FFR models. To control the input,

output, temp, and control FReMI data files a workspace model was created (Figure 5.4). The job and

parameter directories store the input files for the execution of the autogrid4 and autodock4. The result

and temp directories store the output files from the executions in the HPC environment. Except the

XML file, all other files stored in this workspace are read and generated by autogrid4 and autodock4

program. In summary, the workspace contains the following files:

- job: store the snapshot files from FFR models (PDBQT format) and the XML control file

(grupoSnap.xml).

- pending: store snapshot files that are waiting to enter the queue of tasks.

- queue: store snapshot files that have been processed by the HPC environment.

- parameter: store the ligand files (PDBQT format), and the input parameter files to execute

autogrid4 (GPF format) and autodock4 (DPF format).

- result: store output files from autodock4 (DLG format).

- temp: store temporary files generated during FReMI run time.

Figure 5.4: Directory structure in FReMI’ workspace. Project is the root directory; job, parameter,

result and temp are its sub-directories; pending and queue are job’s sub-directories.

52

The input files placed in the W-FReDoW Repository are transferred during FReMI’s execution

time to its workspace by the Parser/Transfer Component inside the FReMI Execution set of

components (Figure 5.1). This component is described next.

5.3 FReMI Execution

FReMI Execution constitutes the most important set of components of FReMI. It contains every

procedure invoked to run the middleware and controls. The source code of FReMI was written in the

C programming language whose libraries are used to run tasks in parallel, read/write XML files, and

send the docking results to W-FReDoW.

Figure 5.5 shows in detail the data flow control in the FReMI Execution components. Its main

operations are performed by three different components, namely:

- Create Queue. It holds the heuristic function to create queues of balanced tasks. The

heuristic function uses the priorities of the different subgroups of snapshots and evaluates

which of them must be in or left out of the queues of tasks.

- Parser/Transfer. It transfers the input files from W-FReDoW Repository to FReMI’s

workspace and updates the XML control files.

- Dispatcher/Monitor. It distributes the parallel execution of tasks in both HPC environments

used in this study. Also, it executes the HTTP POST function to send the docking results to

W-FReDoW.

5.3.1 The Create Queue Component

The three main functions of Create Queue are:

1) Read the “groupSnap.xml” file (Section 5.1.2) to obtain the priorities of the subgroups and

their snapshots.

2) Apply the heuristic function to compute the amount of snapshots to be active.

3) Create balanced queues of tasks to be processed in the HPC environment.

The HPC environments employed in this study are multiprocessing clusters for large scale

executions. In this context, more than one task may be processed in each node. Each task or job is the

sequential execution of the autogrid4 and autodock4 programs of only one snapshot of the FFR model

with a single ligand.

53

Figure 5.5: Scheme of the FReMI Execution implementation. The Create Queue, Parser/Transfer and

Dispatcher Monitor components include the main functions executed by FReMI.

The queue of tasks is built based in the content of the XML control file which contains the

heuristic function’s parameters to produce the balanced queues during the FReMI execution time. The

full execution of a molecular docking simulation of a FFR model, called “an experiment” in this

project, requires creating and sending several queues of tasks to the HPC environment.

The heuristic function calculates the maximum number of snapshots than can be supported by

each queue. The amount of nodes or machines (N) and the amount of tasks (T) that will be processed

per node are used to obtain the queue size (Q) with the following equation:

 (1)

Afterwards, the amount of snapshots per subgroup is calculated in order to achieve the balanced

distribution of tasks in every queue created. A balanced queue contains one or more snapshots of an

active subgroup. From the subgroups’ priorities, it is possible to determine the percentage of

snapshots to be included in the queues of tasks. Thus, subgroups with higher priority are queued first

than those with lower priority. Equation (2) below is used to calculate the amount of snapshots for a

balanced queue.

 (2)

 is the amount of snapshots of subgroup g placed in the queue. is the queue size from

Equation (1). is the priority of the subgroup g, and n is the total number of subgroups. From

Equation (2) one queue of balanced tasks () is created with the following equation:

54

 (3)

5.3.2 Parser/Transfer Component

The Parser/Transfer component handles and organizes the files sent from W-FReDoW to the

W-FReDoW Repository. These file are further transferred to FReMI Workspace by means of the

transfer_file function (Figure 5.5). Additionally, this function parses autogrid4 and autodock4 input

files in order to recognize the files’ directory structure. The get_files function is always called before

creating a new queue and, when necessary, to verify and update the parameters of the subgroups of

snapshots.

5.3.3 Dispatcher/Monitor Component

The functions of the Dispatcher/Monitor component are invoked to distribute tasks among the

processors/cores of an MPI Cluster environment based on master-slave paradigm. The Slave Function

only runs the tasks while the Master Function, aside from running tasks, also performs other two

functions: the distribute_tasks function which is called when a node/machine asks more work and; the

request_queue function which is called when the queue of tasks is empty.

This chapter showed the conceptual architecture that was implemented to execute the molecular

docking simulations of FFR models. Chapter 6 shows the results obtained from FReMI execution on

two HPC environments: the Atlântica cluster and virtual cluster on Amazon EC2.

55

6 RESULTS 2 – EXPERIMENTAL RESULTS

This chapter presents the second set of results of this dissertation. Two sets of experiments are

performed using the FReMI conceptual architecture defined in Chapter 5. Section 6.1 reports the

experiments performed with FReMI using a sample of snapshots from a FFR model on two HPC

environments; the Atlântica cluster and the virtual cluster using EC2 instances from AWS. Section 6.2

describes the experiments, on the complete data set, performed with FReMI and W-FReDoW shared

execution in a MPI cluster environment on Amazon EC2 instances only.

6.1 Experiment 1 – FReMI Performance on Atlântica and Amazon EC2 HPC Environment

The primary goal of this set of experiments is to find the best MPI/OpenMP implementation to

execute parallel molecular docking simulations using only a small data set composed of a sample of

snapshots from a FFR model. This data is called Dataset 1. It has the following attributes:

- Receptor: the first 126 snapshots from the InhA FFR model [MAC11b].

- Ligand: Triclosan (TCL400) [KUO03].

FReMI executes molecular docking simulations with the AutoDock4.2 [MOR09] package. For

that, it must prepare input files for each snapshot of the FFR model. All input files were parameterized

as follow:

1. Receptor preparation. A PDBQT file for each snapshot from the FFR model was generated

using Kollman charges.

2. Ligand preparation 1. The TCL ligand was initially positioned in the region close to its

protein binding pocket. TCL contains two rotatable bonds.

3. Ligand preparation 2. The TCL ligand was also prepared but using the coordinates of the

experimental structure (PDB ID: 1P45). This is the ideal position and orientation of the

ligand that is expected from docking simulations. It is called a reference ligand position.

4. Grid preparation. For each snapshot a grid parameter file (GPF) was created with box

dimensions of 100 Å x 60 Å x 60 Å. The other parameters maintained the default values.

5. Docking preparation. The LGA search method and its standard parameters were selected as

follow: a population size of 150 individuals, a maximum of 250,000 energy evaluations,

27,000 generations. The number of runs was set to 25 LGA runs. A docking parameter file

(DPF) was generated for each snapshot from the FFR model.

In these first set of experiments the clustering of conformations created by [MAC11a] and the

P-SaMI data pattern are not used. Instead, these features were simulated. FReMI uses clustering of

56

snapshots randomly selected (identified by “groupSnap.xml”). The P-SaMI simulation consists in

setting priorities to subgroups, however, it does not discard neither changes the priorities of subgroups

during the FReMI execution. This is so because there is no updating by P-SaMI in this set of

experiments. Hence, to run these set of experiments, the first 126 snapshots of the FFR model were

separated into 4 subgroups with 31, 32, 31 and 32 snapshots each. The priorities ranged from 1 to 3

for each subgroup.

According to equation (1) outlined in Section 5.3 the number of tasks executed per node (Tnode)

can be set before starting FReMI’s execution. Tnode is one of the factors that determine the size of the

tasks’ queue (Q). To process Dataset 1, Tnode was set to either 8 or 16. Speedup and efficiency are the

metrics used to investigate the performance on the HPC environments used by FReMI. Speedup is

S(n) = T1/T(n) and efficiency is E(n) = S(n)/n, where T(n) is the time to run with n cores. T1 is the

run time for the sequential execution of the experiments (in a single core).

The experiments are composed of three distinct simulations.

- Simulation 1: FReMI execution of Dataset 1 on Atlântica and Amazon EC2 clusters. Tnode was

8 and the number of processors in each node was 8. Table 6.1 shows the scalability and

performance results for this simulation.

- Simulation 2: FReMI execution on Dataset 1 on Atlântica and Amazon EC2 clusters. Tnode

was 16 and the number of processors in each node was 8. Table 6.2 shows the scalability and

performance results for this simulation.

- Simulation 3: FReMI execution on Dataset 1 on Atlântica cluster only. Tnode was 16 and the

number of processors in each node was 16. Table 6.3 shows the scalability results for this

simulation.

As shown in Table 6.1 FReMI scales well, in both HPC environments, when compared to the

sequential execution. However, in most cases, the efficiency and speedup on the Atlântica cluster are

better. This result can be explained by the fact that Atlântica’s machines are connected by

interconnection network and they are positioned in the same physical place. Conversely, Amazon EC2

machines are connected by virtual private network connection and its virtual machines are located in

multiple locations in Northern Virginia (US East Cost) [AWS12]. This may explain the decline of

performance (Figure 6.1) in Amazon EC2 since FReMI requires high-throughput of message

exchange. This message exchange is intrinsic to the master-slave paradigm of MPI.

57

Table 6.1: Scalability of Simulation 1 for Dataset 1 on Atlântica and EC2 clusters. In both clusters

every node, using 8 cores in each, receives 8 tasks for parallel execution.

 Atlântica Cluster Amazon EC2 Cluster

Cores Nodes Time (min.) S(n) E(n) Time (min.) S(n) E(n)

1 1 287.24 1.00 1.00 220.63 1.00 1.00

8 1 37.77 7.61 1.09 33.37 6.61 0.94

16 2 21.76 13.20 0.88 20.27 10.89 0.73

24 3 16.78 17.11 0.74 16.82 13.12 0.57

32 4 16.62 17.28 0.56 14.43 15.29 0.49

40 5 11.85 24.24 0.62 12.78 17.26 0.44

48 6 11.67 24.62 0.52 12.32 17.91 0.38

56 7 11.33 25.34 0.53 12.18 18.12 0.33

64 8 - - - 10.21 21.61 0.34

Simulation 2 differs from Simulation 1 only in the number of tasks executed, but its scalability

(Table 6.2) and performance (Figure 6.1) are, in most cases, inferior in the Atlântica cluster. This

performance loss can be understood in the following way: in Simulation 1 the nodes on Atlântica

were used in the exclusive mode, i.e., despite that only 8 cores were used to execute the tasks, all 16

cores were allocated per node. On the other hand, in Simulation 2 the nodes were used in the shared

mode, in which only 8 cores were allocated per node. Hence, it is possible that the remaining nodes

were busy.

Table 6.2: Scalability of Simulation 2 for Dataset 1 on Atlântica and EC2 clusters. In both clusters

every node, using 8 cores in each, receives 16 tasks for parallel execution.

 Atlântica Cluster Amazon EC2 Cluster

Cores Nodes Time (min.) S(n) E(n) Time (min.) S(n) E(n)

1 1 287.24 1.00 1.00 220.63 1.00 1.00

8 1 38.67 7.43 1.06 32.93 6.70 0.96

16 2 24.74 11.61 0.77 18.98 11.62 0.77

24 3 17.89 16.06 0.70 17.66 12.50 0.54

32 4 18.17 15.81 0.51 12.83 17.19 0.55

40 5 13.91 20.66 0.53 12.17 18.13 0.46

48 6 14.94 19.22 0.41 8.78 25.14 0.53

56 7 10.59 27.13 0.57 4.52 48.80 0.89

64 8 - - - 4.33 50.92 0.81

On the Amazon EC2, especially with more than 40 cores, the gain in performance is substantial

with increasing number of tasks (Tnode). For example, with 48 processors executing 8 parallel tasks per

machine, EC2 takes 8.78 minutes to execute Dataset 1 while Atlântica takes 14.94 minutes (Table

6.2). For this case study Amazon EC2 outperforms Atlântica (Figure 6.1). It is worth remembering

that the data set used in these simulations is only a sample (126 snapshots) of the much larger,

complete data set, which describes a FFR model. Therefore, the EC2 configuration bestows itself as a

very attractive HPC solution for executing molecular docking simulations on the complete data set.

58

Figure 6.1: Comparative performance of the Atlântica and Amazon EC2 clusters for Simulations 1

and 2, respectively. The x axis is the number of MPI slave processes used; the y axis shows the

efficiency of parallelization.

Overall, Simulation 3 shows motivating results for the total time execution. However, the

speedup and the efficiency are unappealing. Specially, if compared to the others simulations.

Comparing Simulation 3 with the others, Atlântica does not scale or gain much performance

when all the processors of each node are used (Table 6.3). This is surprising because it is expected

that, by doubling the number of parallel tasks per node, the performance should increase. For instance,

when 4 nodes were used, the efficiency obtained was 56% and 53% for the Simulations 1 and 2,

respectively, and only 40% for Simulation 3. The performance reduction happens because the Intel

Hyper-threading technology, which allows one core on the processor to appear like 2 cores to the

operation system, was fully exploited inside the Altântica’s nodes for Simulation 3. Hence, 2 tasks

threads running on a single core do not have to be threads of the same process. Consequently,

increasing the number of parallel tasks per node in Altântica does not provide improvements to the

FReMI’s performance.

Table 6.3: Scalability of Simulation 3 for Dataset 1 on Atlântica cluster. Each node receives 16 tasks

that run in parallel in 16 cores.

Cores Nodes Time (min) S(n) E(n)

1 1 287.24 1.00 1.00

16 1 30.57 9.40 0.63

32 2 17.58 16.34 0.53

48 3 11.67 24.62 0.52

64 4 11.33 25.34 0.40

80 5 7.53 38.13 0.48

96 6 7.67 37.47 0.39

59

6.1.1 Final Considerations about Experiment 1

The main goal of this section was to find the best MPI/OpenMP implementation to execute

FReMI. Three different configurations for every simulation were investigated. Simulations 1 and 2

used two HPC environments to compare their results. Simulation 3 (Table 6.3) demonstrates that

gains in performance on the Atlântica cluster are obtained only if 8 tasks are executed in parallel per

node. From this result, the Simulation 2 results (Table 6.2) evidenced that increasing the number of

tasks per node (Tnode) and using 8 cores per node is a promising approach to reduce the total execution

time and enhance the performance in both HPC environments. Amazon EC2 cluster boosted the

performance (4.52 minutes and 89% of efficiency) using 7 instances with 8 cores each (Figure 6.1 and

Table 6.2).

It is clear from the results above that Amazon EC2 is the best choice for executing molecular

docking simulations of a FFR model using FReMI. The only disadvantage is the cost of the operations

on AWS. For example, Simulation 1, with only 126 snapshots, cost around US$20.00. For the

complete FFR model against one ligand the cost was US$ 251.60 (See Experiment 2 below). For ten

similar ligands the cost would be US$ 2,516.00. If one intends to employ this model in virtual

screening of large libraries of drug-like molecules, such as the ZINC database [IRW05], with more

than 23 million of molecules, the cost would be prohibitive.

In fact, the cost- effectiveness of the EC2 and S3 depends on overall usage patterns [BUY09]

between the providers and consumers. To take advantage of AWS, it is necessary to control the

supply and demand of cloud resources to achieve a trade-off between cost and computer power

[MUR08].

For all these reasons, the best way to integrate the FReMI and W-FReDoW execution was to

make use of a virtual cluster on Amazon EC2 instances. This service is able to support the storage and

the internet communication protocols to keep the controlled sharing of both applications without

restrictions or performance loss. As a result, an MPI environment within the Amazon EC2 instances

was built (see Section 4.1.3) to perform the second set of experiments, namely Experiment 2, with the

FReMI and W-FReDoW shared execution. The results obtained are described in the next section.

6.2 Experiment 2 – Integration of W-FReDoW with FReMI Execution on Amazon EC2 MPI

Cluster

The main goal of this set of experiments is to reduce the dimensionality of the FFR model,

transforming it into a RFFR model, by discarding the non-promising conformations generated by W-

FReDoW. Thus, the integration of W-FReDoW with FReMI execution on Amazon EC2 MPI cluster

may allow practical use of totally fully-flexible receptor models in virtual screening.

In this experiment Dataset 2 was used. It has the following attributes:

60

- Receptor: the first 3,100 snapshots from the InhA FFR model [MAC11b].

- Ligand: Triclosan (TCL400) [KUO03].

Unless stated otherwise, all Autodock4.2’s parameters are identical to those of Dataset 1.

Dataset 2 was processed by FReMI and W-FReDoW using three different types of clustering of

conformations of the FFR model [MAC11a]. Hence, there are three different XML control files

(groupSnap.xml) sent by W-FReDoW to FReMI. Following the P-SaMI data pattern, for every cluster

of snapshots, four docking simulations are executed. For each simulation the quality of the receptor

model is evaluated only after 30%, 40%, 50%, and 70 % of the snapshots, in each subgroup of the

clusters, have been docked. Then, Experiment 2 involves a total of 12 simulations.

Before starting Experiment 2 a study to validate the proper scalability to obtain a satisfactory

performance under FReMI and W-FReDoW shared execution was conducted. Only FReMI with

Dataset 2 was executed on Amazon EC2 MPI cluster using 56 cores (this number of processors gave

the best scalability in Experiment 1). In this test Tnode = 32. This set up surprisingly resulted in only

28% efficiency against the 89% efficiency found in Experiment 1. Other scalabilities, ranging from 32

to 64 cores, were tested. Then the best efficiency, of 41 %, was found for 40 cores.

FReMI took 5 hours and 40 minutes to execute Dataset 2 on Amazon EC2. Hence, based on

these analyses, the best configuration to run the Dataset 2 was:

- 40 cores = 5 c1.xlarge EC2 Amazon instances with 8 cores each and;

- 32 tasks per instance (Tnode = 32, Q = 160).

Table 6.4 summarizes the results of Experiment 2. According to Hübler [HUB10] the

processing of the smallest subgroups of snapshots produces the maximum performance gain because

the analysis is performed with minimum amount of snapshots. In addition, she claims in her

conclusions that the earlier the analyses start, the larger is the quantity of unpromising snapshots that

should be recognized and discarded. The results of this experiment corroborates Hubler’s hypothesis

(see boldface numbers in column 5).

The total execution time spent in the serial molecular docking simulations using Dataset 2 was

around 4 days. As a mentioned above, the FReMI only execution of Dataset 2, using the same EC2

configuration of Experiment 2, reduced the execution time to 5 hours and 40 minutes. When FReMI

and W-FReDoW are integrated in a shared execution, the total execution time was further reduced by

30%, i.e., down to 3 hours and 55 minutes for all subgroups that began the analysis with 30% of the

processed snapshots (Table 6.4). Overall the execution time is reduced about 10-30% (Figure 6.2).

61

Table 6.4: Results of the simulations executed in Experiment 2 using three different types of

clustering of conformations of the FFR model [MAC11a]. Column 1 identifies the three different

types of clustering. Column 2 specifies the percentage of processed snapshots after which P-SaMI

analysis [HUB10] of the model quality starts. Column 3 displays the total execution time for each

simulation. Columns 4 and 5 display the amount of snapshots docked and discarded, respectively.

Clustering Start Analysis of Model

Quality (%)

Total Time Docked Snapshots Discarded Snapshots

01 30.00 03:59:30 2,249 851

 40.00 04:13:00 2,407 693

 50.00 04:28:00 2,495 605

 70.00 04:59:40 2,891 281

02 30.00 03:54.30 2,210 890

 40.00 04:16:00 2,423 677

 50.00 04:40:00 2,512 586

 70.00 04:57:40 2,868 232

03 30.00 03:56:30 2,264 836

 40.00 04:13:00 2,377 723

 50.00 04:38:00 2,537 563

 70.00 04:58:40 2,818 282

Column 4 contains more than the docked snapshots in each row. The docked snapshots are

actually examples of a RFFR model obtained from the integrated FReMI and W-FReDoW execution

of a FFR model in an HPC environment.

Figure 6.2: Performance gain versus P-SaMI analysis using three clustering of snapshots on FReMI

and W-FReDoW shared execution. Percentage of reduced time is calculated from the FReMI only

execution. Percentage of snapshots processed by P-SaMI analysis is the amount of docking results

that P-SaMI utilizes to start the analysis on the subgroup of snapshots in each cluster.

62

Finally, Experiment 2 with W-FReDoW reduced the total execution time to between 10-30% of

that of FReMI´s only execution, which, in turn, decreased near 94 % with respect to the serial

execution time. Clearly, the integration of the FReMI middleware, based on the MTC paradigm, with

the W-FReDoW webApp is a promising strategy to tackle the problem of molecular docking

simulation that employs FFR models. It reduces the dimension of such models allowing the reduction

of the overall execution time from months to days and possibly to hours. This is especially valuable

for routine virtual screening of libraries with over millions of ligands.

6.2.1 Discussion of Experiment 2

The most significant advantage of shared resources is the guaranteed access time of the

resources wherever you are and whenever you need. There is no competition or restrictions for access

to the machines. However, it is necessary to pay for as many computing nodes as needed, which are

charged at an hourly rate. The rate is calculated for what and when the resources are being used, e.g. if

you do not need compute time, you do not need to pay [HAZ08].

The only drawback is that the hard disks associated with EC2 instances, called EBS by

Amazon, do not have an existence beyond the instance’s life-time. This means that the user data must

be copied back and forth between S3 and EC2. Although this take a little work to get going, it is easy

to do with open source tools. Also, the fast interconnect between S3 and EC2 allows efficient file

transfer.

The only practical problem experienced during the integrated execution of FReMI and W-

FReDoW was with the internet connection, which sometimes became very unstable. However, this is

not an issue since W-FReDoW is capable of restarting an execution from where it stopped. For

instance, during the Experiment 2 simulations the connection dropped only twice.

The total bill for the work done on S3 and EC2 to conclude the Experiment 2 results was

approximately US$ 251.60 calculated from 370 hours of use of 5 c1.xlarge instances, i.e. 74 hours for

each instance. No charge is applied to the S3 services since the total use was within the monthly

global free tier. The cost and time taken to learn about cloud computing and run the first test

simulations are not being computed.

63

7. RELATED WORKS

There are some methods in the literature that propose to perform virtual screening of small

molecules using molecular docking on dedicated HPC clusters. However, three features distinguish

FReMI from the other works, namely:

1. The utilization of a FFR model rather than a rigid receptor model.

2. The methodology applied to achieve the RFFR model with the FReMI and W-FReDoW

shared execution.

3. The creation of a virtual cluster environment to execute FReMI on the Amazon Cloud

Computing using the hybrid MPI-OpenMP programming model.

In addition, FReMI includes more than one computational technique that works in cooperation

to achieve the RFFR model, such as HPC environments, cloud computing, internet communication

protocol and also the methodology employed to handle data sets before and during molecular docking

simulations in parallel (see Chapter 5). For these reasons, the middleware presented in this study has

few similarities with the current state of the art.

FReDoWS [MAC10a] is the only tool found in the literature that executes molecular docking

simulations including the explicit receptor flexibility and its snapshots generated by MD simulations

trajectories of the receptor. It automates molecular docking simulations of a FFR model using

AutoDock3.0.5 and a scientific workflow. Additionally, FReDoWS intends to accelerate virtual

screening of ligands with a snapshot selection function which reduces the dimension of FFR models.

There are a number of software that performs virtual screening of small molecules against rigid

receptors on local HPC environments using AutoDock4.2. Most of them use the number of ligands to

distribute the tasks along the processors. For instance, DOVIS 2.0 [JIA08] uses a dedicated HPC

Linux cluster to execute virtual screening where ligands are uniformly distributed on each CPU. The

pre-docking steps required for docking with AutoDock4.2 are performed in Linux systems by a

Graphical User Interface (GUI). VSDocker 2.0 [PRA10] and Mola [ABR10] are other examples of

such systems. The main difference between them and DOVIS 2.0 is that VSDocker 2.0 works on

multiprocessor computing clusters and multiprocessor workstations operated by a Windows HPC

Server; it also has a console application for Microsoft Windows platforms. Mola uses AutoDock4.2

[MOR09] and AutoDock Vina to execute the virtual screening of small molecules on non-dedicated

compute clusters.

Another approach used to enhance the performance of docking simulations of rigid receptors is

the reduction of network I/O traffic files during the loading of grid maps at the beginning of each

docking simulation. This methodology was used in DOVIS 2.0 [JIA08], Autodock4.lga.MPI [COL11]

and mpAD4 [NOR11]. They observed one potential decrease in I/O traffic files when keeping the grid

maps in memory, i.e., for each node of the computer cluster only one grid map is loaded by the master

64

server. Autodock4.lag.MPI only uses the MPI library to distribute the jobs, while mpAD4 use a

multilevel parallelization where MPI is used to distribute the jobs across the nodes and the OpenMP

parallelization to execute the LGA inside of each node. Nevertheless, this approach can not to be used

in FReMI, due to the explicit receptor flexibility, in which, for each snapshot, a new atom coordinate

is assumed. It means that for each snapshot from FFR models autogrid4 and autodock4 must be

executed.

Hydra [COU10] is a middleware which provides the linking between Scientific Workflow

Management Systems (SWfMS) and the HPC environment for distributing tasks. It explores the data

parallelism on three fragmentation scenarios to find regions of similarity between biological

sequences using the BLAST software. Hydra holds a set of components to be included on the

workflow specification of any SWfMS to control parallelism of activities following the MTC

paradigm [COU10]. Using Hydra, the MTC parallelism strategy can be registered, reused, and

provenance may be uniformly gathered during execution of workflows. MTC is the concept borrowed

by FReMI to distribute the tasks along the HPC processors. Finally, while Hydra was built to perform

large-scale sequence comparison, FReMI is focused on treating the problem of molecular docking

simulation of FFR models.

65

8. FINAL CONSIDERATIONS

In silico molecular docking simulations is an integral part current drug design efforts. The

amount of these docking executions has been increased due to the several parameters and input data

that have been used with the purpose of mimic the natural behaviour of ligands and receptors,

especially those considering the explicit plasticity and flexibility of FFR models and flexible ligands

[MAC10b]. Furthermore, these simulations are computer intensive and their sequential execution is

an unfeasible task. For this reason, this dissertation presented a study on the use of parallel

programming techniques, focussing on MPI cluster environments, applied to the optimization of CPU

time of molecular docking simulations of FFR models. Based on this research, “FReMI: a middleware

to handle many tasks of FFR models in HPC environments” has been built and tested. The results are

very encouraging.

Chapter 2 described the theoretical principles for the understanding the problem at study. It

provided explanations of molecular docking as one step of RDD, focussing on receptors of flexibility

types and the approach used in this dissertation to consider its plasticity and elasticity. Chapter 3 and

4 show the materials and methods used for the development this study. Chapter 3 presented a revision

about parallel programming, HPC environments and cloud computing on Amazon EC2. It purposes is

to provide a better comprehension of the resources used and methodology explained in Chapter4 and

used to build FReMI.

Chapter 5 and 6 present the results obtained during the development of this dissertation. The

conceptual architecture, showed in Chapter 5, was created to enrichment the understanding between

FReMI and its bridges the gap with the others applications. From FReMI conceptual architecture

implementation the experimental results were generated and presented on Chapter 6. At the beginning

a sample of snapshots from FFR model in study, called Dataset 1, was executed on FReMI and both

HPC environments; Atlântica cluster and Amazon EC2 instances. The performance results show few

differences between them; however, by means of an evaluation at the end of this section was

identified several benefit using Amazon EC2 instead, Atlântica cluster. Based on this conclusion,

Chapter 6 presents the FReMI and W-FReDoW shared execution with a MPI cluster on Amazon EC2.

This chapter showed that using the “pay-as-you-go” AWS facilities [MUR08] the premium to

complete various experiments in shorter elapsed time is a good option when time becomes more limit

than money. Therefore, the foremost contribution on chapter 6 was the time reduction in the

molecular docking simulations execution FReMI and W-FReDoW with the Dataset 2 (FFR model

with 3,100 snapshots) on Amazon EC2 MPI cluster. The results show that the overall execution time

reduced from days to hours with the FReMI execution, after than with the FReMI and W-FReDoW

mutual execution it was achieve, from the FReMI total execution time, further 30% performance gain.

Chapter 7 showed the state of art associated with this study; highlighting the key contributions

this dissertation compared with the currently scientific community works.

66

8.1 Main Contributions

The main contributions of this Dissertation to the addressed problems are:

- The heuristic function developed to handle the tasks executed in HPC environments. This

function sorts the placing of a proportional fraction of snapshots in each queue of tasks

according to the priorities of their subgroups during the execution time.

- The parallel algorithm developed to distribute tasks in large scale, using the master-slave

programming paradigm and improve the scalability among the nodes with MPI library. The

hybrid MPI-OpenMP programming model to obtain the high level of parallelism outside and

inside of every node used for the HPC environments.

- The FReMI conceptual architecture proposed to identify the FReMI functions and its

interoperability with the others application servers. It was built with a set of components

which represents the different stages with their activities and several arrows that supplies the

operations direction inside and outside FReMI. Furthermore, the conceptual architecture

extends its components to represent the main functions of the W-FReDoW that support a

cooperation execution with FReMI and the arrows that evidence the communication internet

protocols employed between these both applications.

- The total time reduction shown in the experimental results. FReMI could scale to a large

number of cores in order to process large amounts of computational that would otherwise

not have been possible by a compute inside of laboratory. Reducing the molecular docking

simulations run-time of the FFR model from 4 days to 5 hours and 40 minutes is an

attractive solution. Especially, because it allows the use of news trajectories of FFR models

even greater and the exploration of large libraries of ligands than would otherwise not have

been possible.

- The reduction of the FFR model dimensionality to achieve the RFFR model. FReMI and W-

FReDoW shared execution can perform the gradual elimination of unpromising

conformations to assist in the high performance of massively parallel execution of docking

simulations of flexible receptors. Where FReMI will not use all the conformations that make

up a FFR model, but instead, only those which are significantly more promising.

8.2 Future Works

FReMI was tested with only a ligand and a FFR model containing 3,100 conformations

generated by a MD simulation. MD simulations are now running on the tens to hundreds of

nanoseconds. This could produce FFR models with up to 200.000 snapshots! FReMI should be tested

67

with such models. Additionally, it would be interesting to make use of others ligands by means of

exploration of virtual libraries of compounds such as ZINC [IRW05].

More research is needed to improve FReMI’s performance even further on MPI EC2 instances.

It was observed that, for Dataset 2 execution in 48 processors, there was a significant raise in total

execution time possible due to some core becoming idle. A future study should concentrate on

investigating the hybrid MPI-OpenMP programming model and the master-slave paradigm in order to

limit or eliminate this idleness. This would make possible future FReMI experiments with larger FFR

models with different ligands.

Finally, FReMI and W-FReDoW communication protocols still need improvement. A

significant delay in updating subgroups’ status was observed when FReMI received the updating files.

While some snapshots were still being processed by FReMI, W-FReDoW had already discarded them.

68

REFERENCES

[ABR10] Abreu, R. M. V.; Froufe, H. J. C.; Queiroz, M. J. R. P.; Ferreira, I. C.F.R. “MOLA: a

bootable, self-configuring system for virtual screening using AutoDock4/Vina on

computer clusters”. Journal of Cheminformatics, vol. 2, 2010, pp. 3-6.

[AEF11] Elasticfox Getting Started Guide. “Amazon Elastic compute Cloud Elasticfox: Getting

started guide”. Available at http://aws.amazon.com/articles/1797. Accessed at

December 2011.

[ASF11] S3Fox Organizer. “Firefox Organizer for Amazon S3 and Amazon CloudFront

(S3Fox)”. Available at http://aws.amazon.com/developertools/771.

[ALO06] Alonso, H.; Bliznyuk, A. A.; Gready, J. E. “Combining docking and molecular dynamic

simulations in drug design”. Medicinal Research Reviews, vol. 26, 2006, pp. 531-568.

[AWS12] Amazon Web Services. “A suite of web services made available by Amazon.

Amazon.com company”. http:// aws.amazon.com. Accessed at January 2012.

[ARM10] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D.; Katz, R.; Konwinski, A.; Lee, G.;

Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia, M. “A View of Cloud Computing”.

Communications of the ACM, vol. 53, 2010, pp. 50-58.

[BAR03] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.;

Pratt, I.; Warfield, A. “Xen and the art of virtualization”. Proceedings of the 19
th
 ACM

Symposium on Operating System Principles, vol. 37, 2003, pp. 164-177.

[BER00] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;

Shindyalov, I. N.; Bourne, P. E. “The Protein Data Bank”. Nucleic Acids Research, vol.

28, 2000, pp. 235-242.

[BUY09] Buyya, R.; Yeo, C. S.; Venugopal, S.; Broberg, J.; Bradic, I. “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5
th

utility”. Future Generation Computer Systems, vol. 25, 2009, pp. 599-616.

[BUY99] Buyya, R. “High Performance Cluster Computing: Architectures and Systems, Volume

1”. Australia : Prentice Hall, 1999, 881p.

[CLA01] Clauβen, H.; Christian, B.; Rarey, M.; Lengauer, T. “FlexE: Efficient Molecular

Docking Considering Protein Structure Variations”. Journal of Molecular Biology, vol.

308, 2001, pp. 377-395.

[COH11] Cohen, E. M. L.; Machado, K. S.; Cohen, M.; Norberto de Souza, O. “Effect of the

explicit flexibility of the InhA enzyme from Mycobacterium tuberculosis in molecular

docking simulations”. BMC Genomics, vol. 12, 2011, pp. S7.

[COL11] Collignon, B.; Schulz, R.; Smith, J. C.; Baudry, J. “Task-Parallel Message Passing

Interface Implementation of Autdock4 for Docking of Very Large Databases of

Compounds Using High-Performance Super-Computers”. Journal of Computational

Chemistry, vol. 32, 2011, pp. 1202-1209.

[COS11] Costa, A. L. P.; Pauli, I.; Dorn, M.; Schroeder, E. K.; Zhan, C. –G; Norberto de Souza,

O. “Conformational changes in 2-trans-enoyl-ACP (CoA) Reductase (InhA) from M.

tuberculosis induced by na inorganic complex: a molecular dynamics simulation study”.

Journal of Molecular Modeling, vol. 17, 2011, PP. 10-23.

[COZ08] Cozzini, P; Kellogg G. E.; Spyrakis, F.; Abraham, D. J.; Costantino, G.; Emerson, A.;

FAnelli, F.; Gohlke, H.; Kuhn, L. A.; Morriz, G. M.; Orozco, M.; Pertinhez, T. A.;

Rizzi, M.; Sotriffer, C. A. “Target flexibility: Na emerging consideration in drug

discovery and design”. Journal of Medicinal Chemistry, vol. 51, 2008, pp. 6237-6255.

69

[COU10] Coutinho, F.; Ogasawara, E.; de Oliveira, D.; Braganholo, V.; Lima, A. A. B.; Dávila,

A. M. R.; Mattoso, M. “Data Parallelism in Bioinformatics Workflows Using Hydra”.

In: 19th ACM International Symposium on High Performance Distributed Computing,

pp. 507-515, 2010.

[CUR11] Libcurl Tutorial. “Libcurl programming tutorial”. Accessible at

http://curl.haxx.se/libcurl/c/libcurl-tutorial.html. Accessed at July 2011.

[DEP11] De Paris, R.; Frantz, F. A.; Norberto de Souza, O.; Ruiz, D. D. A. “A Conceptual Many

Tasks Computing Architecture to Execute Molecular Docking Simulations of a Fully-

Flexible Receptor Model”. Lecture Notes in Computer Science, vol. 6832, 2011, pp. 75-

78.

[DES95] Dessen, A.; Quemard, A.; Blanchard, J. S.; Jacobs, W. J.; Sacchettini, J. C. “Crystal

Structure and Function of the Isoniazid Target of Mycobacterium tuberculosis”.

Science, vol. 267, 1995, pp. 1638-1641.

[FIE00] Fielding, R. T. “Architectural Styles and the Design of Network-based Software

Architectures”. Doctoral Dissertation, University of California, Irvine, California, 2000,

162p. Available at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. Accessed

at December 2011.

[FLY72] Flynn, M. “Some computer organizations and their effectiveness”. IEEE Transactions

on Computer, vol. 21, 1972, pp. 948-960

[FOS05] Foster, I. “Globus Toolkit Version 4: Software for Service-Oriented Systems”. Lecture

Notes in Computer Science, v. 3779, 2005, pp.2-13.

[GOO96] Goodsell, D.; Morris, G.; Olson, A. “Automated Docking of Flexible Ligands:

Applications of AutoDock”. Journal of Molecular Recognition, vol. 9, 1196, pp. 1-5.

[HAZ08] Hazelhurst, S. “Scientific computing using high-performance computing: a case study

using the Amazon elastic computing cloud”. In: ACM Proceedings of the 2008 annual

research conference of the South African Institute of Computer Scientists and

Information Technologists on IT research in developing countries: riding the wave of

technology, v. 338, 2008, pp. 94-103.

[HUA07] Huang, S. Y.; Zou, X. “Ensemble docking of multiple protein structures: considering

protein structural variations in molecular docking”. Proteins, vol. 66, 2007, pp. 339-421.

[HUB10] Hübler, P. N. “P-MIA: Padrão Múltiplas Instâncias Autoadaptáveis - Um Padrão de

Dados para Workflows Científicos”. Tese de Doutorado, Programa de Pós-graduação

em Ciências da Computação, PUCRS, Porto Alegre, RS, Brasil, 2010, 179p.

[JIA08] Jiang, X.; Kumar, K.; Hu, X.; Wallqvist, A.; Reifman, J. “DOVIS 2.0: an efficient and

easy to use parallel virtual screening tool based on AutoDock 4.0”. Chemistry Central

Journal, vol. 2, 2008, pp. 12-18.

[JON97] Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. “Development and

Validation of a Genetic Algorithm for Flexible Docking”. Journal of Molecular

Biology, vol. 267, 1997, pp. 727-748.

[IRW05] Irwin, J. J.; Shoichet, B. K. “Zinc-a free database of commercially available compounds

for virtual screening”. Journal of Chemical. Information and Modeling, vol. 45, 2005,

pp. 177-182.

[KAP08] Kapetanovic, I.M. “Computer-aided drug discovery and development (CADDD): In

silico-chemico-biological approach”. Chemico-biological Interactions, vol. 17, 2008,

pp. 165-176.

[KUN92] Kuntz, I. “Structure-based strategies for drug design and discovery”. Science, vol. 257,

1992, pp. 1078-1082.

70

[KUO03] Kuo, M. R.; Morbidoni, H. R.; Alland, D.; Sneddon, S. F.; Gourlie, B. B.; Staveski, M.

M.; Leonard, M.; Gregory, J. S.; Janjigian, A. D.; Yee, C.; Musser, J. M.; Kreiswirth,

B.; Iwamoto, H.; Perozzo, R.; Jacobs, W. R.; Sacchettini, J. C.; Fidock, D. A.

“Targeting tuberculosis and malaria through Inhibition of Enoyl reductase: compound

activity and structural data”. Journal of Biological Chemistry, vol. 278, 2003, pp.

20851-20859.

[LAN09] Lang, P. T.; Brozell, S. R.; Mukherjee, S.; Pettersen, E. F.; Meng, E. C.; Thomas, V.;

Rizzo, R. C.; Case, D. A.; James, T. L.; Kuntz, I. D. “DOCK 6: Combining techniques

to model RNA-small molecule complexes”. RNA Journal, vol. 15, 2009, pp. 1219-1230.

[LUS01] Luscombe, N. M; Greenbaum, D.; Gerstein, M. “What is Bioinformatics? A Proposed

Definition and Overview of the Field”. Methods of Information in Medicine, vol. 4,

2001, pp. 346-358.

[MAC10a] Machado, K. S.; Winck, A. T.; Ruiz, D. D.; Norberto de Souza, O. “Discretization of

flexible-receptor docking data”. LNBI-LNCS Advances in Bioinformatics and

Computational Biology, vol. 6268, 2010, pp. 75-79.

[MAC10b] Machado, K. S.; Winck, A. T.; Ruiz, D. D. A.; Norberto de Souza, O. “Mining flexible-

receptor docking experiments to select promising protein receptor snapshots”. BMC

Genomics, vol. 11, 2010, pp. 1-10.

[MAC11a] Machado, K. S. “Efficient Selection of Flexible Receptor Snapshots Applied in

Molecular Docking Simulations”. Tese de Doutorado, Programa de Pós-graduação em

Ciências da Computação, PUCRS, Porto Alegre, RS, Brasil, 2011, 180p.

[MAC11b] Machado, K. S.; Schroeder, E.; Ruiz, D. D.; Cohen, E. M. L.; Norberto de Souza, O.

“FReDoWS: a method to automate molecular docking simulations with explicit receptor

flexibility and snapshots selection”. BMC Genomics, vol. 12, 2011, pp. 2-13.

[MAC11c] Machado, K. S.; Wick, A. T.; Ruiz, D. D.; Norberto de Souza, O. “Mining flexible-

receptor molecular docking data”. WIREs Data Mining and Knowledge Discovery, vol.

1, 2011, pp. 532-541.

[MAN09] Mandal, S.; Moudgil, M.; Mandal, S. K. “Rational drug design”. European Journal of

Pharmacology, vol. 625, 2009, pp. 90-100.

[MOR98] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.;

Olson, A. J. “Automated docking using a Lamarckian genetic algorithm and empirical

binding free energy function”. Journal of Computational Chemistry, vol. 19, 1998, pp.

1639-1662.

[MOR09] Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.;

Olson, A. J. “AutoDock4 and AutoDockTools4: Automated docking with selective

receptor flexibility”. Journal of Computational Chemistry, vol. 30, 2009, pp. 2785-2791.

[MOR10] Morris, G. M.; Goodsel, D. S.; Pique, M. E.; Lindstrom, W. L.; Huey, R.; Forli, S.;

Hart, W. E.; Halliday, S.; Belew, R.; Olson, A. J. “AutoDock User’s Guide –

AutoDock: User Guide: Automated Docking of Flexible Ligands to Flexible Receptors.

Version 4.2”. Department of Molecular Biology, the Scripps Research Institute, La

Jolla, USA, 2010, 49p.

[MPI09] Message Passing Interface Forum. “MPI: A Message-Passing Interface Standard –

Version 2.2”. University of Tennessee, 2009. Accessible at http://www.mpi-

forum.org/docs/mpi-2.2/mpi22-report.pdf. Accessed at December 2011.

[MUR08] Murty, J. “Programming Amazon Web Services: S3, EC2, SQS, FPQ, and Simple DB”.

United States of America : O’Reilly, 2008, 581p.

[NOR11] Norgan, A. P.; Coffman, P. K.; Kocher, J. A.; Katzmann, K. J.; Sosa, C. P. “Multilevel

Parallelization of AutoDock 4.2”. Journal of Cheminformatics, vol. 3, 2011, pp. 1-7.

71

[OLI04] Oliveira, J.; Souza, E.; Basso, L; Palaci, M.; Dietze, R.; Santos, D.; Moreira, I. “Na

inorganic iron complex that inhibits wild-type and na isoniazid-resistant mutant 2-trans-

enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis”. Chemical

Communications, vol. 3, 2004, pp. 312-313.

[OMP11] OpenMP Specifications. “OpenMP Application Program Interface – Version 3.1”.

OpenMP Architecture Review Board, 2011. Accessible at http://www.openmp.org/mp-

documents/OpenMP3.1.pdf. Accessed at December 2011.

[PLE11] Plewczynski, D.; Lazniewski, M.; Augustyniak, R.; Ginalski, K. “Can We Trust

Docking Results? Evaluation of Seven Commonly Used Programs on PDBbind

Database”. Journal of Computational Chemistry, vol. 32, 2011, pp. 742-755.

[POU05] Pouwelse, J.; Garbacki, P.; Epema, D.; Sips, H. “The Bittorent P2P File-Sharing

System: Measurements and Analysis”. Lecture Notes in Computer Science, vol. 3640,

2005, pp. 205-216.

[PRA10] Prakhov, N. D.; Chernorudskiy, A. L.; Gainullin, M. R. “VSDocker: a tool for parallel

high-throughput virtual screening using AutoDock on Windows-based computer

clusters”. Bioinformatics, vol. 26, 2010, pp. 1374-1375.

[RAB09] Rabenseifner, R.; Hager, G.; Jost, G. “Hybrid MPI/OpenMP Parallel Programming on

Clusters of Multi-Core SMP Nodes”. In: 17
th
 Euromicro International Conference on

Parallel, Distributed and Network-based Processing, 2009, pp.427-736.

[RAI10] Raicu, I.; Foster, I.; Wilde, M.; Zhang, Z.; Iskra, K.; Beckman, P.; Zhao, Y.; Szalay, A.;

Choudhary, A.; Little, P.; Moretti, C.; Chaudhary, A.; Thain, D. “Middleware support

for many-task computing”. Cluster Computing, vol. 13, 2010, pp. 291-314.

[SCH05] Schroeder, E.; Basso, L.; Santos, D.; Norberto de Souza, O. “Molecular dynamics

simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant

Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward

the understanding of NADH-InhA different affinities”. Biophys Journal, vol. 89, 2005,

pp. 876-884.

[SMI01] Smith, L.; Bull, M. “Development of mixed mode MPI / OpenMP applications”. Journal

Scientifica Programming, vol. 9, 2001, pp. 83-98.

[STA10] Stallman, R. M. “Using the GNU Compiler Collection – For GCC version 4.6.2”. GCC

Developer Community, 2010. Accessible at http://gcc.gnu.org/onlinedocs/gcc-

4.6.2/gcc.pdf. Accessed at December 2011.

[STO93] Stoddard, B.; Koshland, D. “Molecular recognition analyzed by docking simulations:

the aspartate receptor and isocitrate dehydrogenase from Escherichia coli”. Proceedings

of the National Academy of Sciences of the United States of America, vol. 90, 1993, pp.

1146–1153.

[TAN02] Tanenbaum, A. S.; van Steen, M. “Distributed Systems: Principles and Paradigms”.

United States of America : Prentice Hall, 2002, 803p.

[TEO03] Teodoro, M. L.; Kavraki, L. E. “Conformational Flexibility Models for the Receptor in

Structure Based Drug Design”. Current Pharmaceutical Design, vol. 9, 2003, pp. 1419-

1431.

[TOT08] Totrov, M.; Abagyan, R. “Flexible ligand docking to multiple receptor conformations: a

practical alternative”. Current Opinion in Structural Biology, vol. 18, 2008, pp. 178-

184.

[TRE00] Trelles, O. “On the parallelization of bioinformatics applications”. Briefings in

Bioinformatics, vol. 2, 2000, pp. 181-194.

[WAN07] Wang, F.; Langley, R.; Gulten, G.; Dover, L. G.; Besra, G. S.; Jacobs Jr., W. R.;

Sacchettini, J. C. “Mechanism of thioamide drug action against tuberculosis and

72

leprosy”. The Journal of Experimental Medicine, vol. 204, 2007, pp. 73-78.

[WEI04] Wei, B.; Weaver, L.; Ferrari, A.; Matthews, B.; Shoichet, B. “Testing a flexible-

receptor docking algorithm in a model binding site”. Journal Molecular Biological, vol.

337, 2004, pp. 1161-1182.

[WIN09] Winck, A. T; Machado, K. S.; Norberto de Souza, O.; Ruiz, D.D. “FReDD: Supporting

mining strategies through a flexible-receptor docking database”. LNBI-LNCS Advances

in Bioinformatics and Computational Biology, vol. 5676, 2009, pp. 143-146.

[WON08] Wong, C. F. “Flexible ligand-flexible protein docking in protein kinase systems.

Biochi”. Biochimica et Biophysica Acta , vol. 1784, 2007, pp. 244-251.

[XML03] The XML C parser and toolkit of Gnome. Message Passing Interface Forum. “Libxml

Tutorial”. Open Source CMS Services, 2003. Accessible at

http://xmlsoft.org/index.html. Accessed at January 2012.

