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Abstract—Current proposals of NoC-based MPSoC adopt an NI 
(Network Interface) interconnected to a DMA (Direct Memory 
Access) module to enable the communication between processors 
through the NoC. The adoption of both modules decouples 
computation from communication, and a standard interface at the 
NI provides an abstract way for designers to connect new cores. 
However, this architecture is inherited from bus-based 
architectures and can be optimized, by removing unnecessary 
interfaces, signals, and registers. This paper presents a specialized 
communication interface for NoC-based MPSoCs, called DMNI 
(Direct Memory Network Interface). The DMNI merges the 
functionalities of the DMA and the NI into a single component, 
directly connecting the NoC router with the processor memory. To 
avoid stalls in the communication, the design of the DMNI supports 
simultaneous packet reception and transmission. A simplified and 
generic programming interface exposes the DMNI services to the 
software layer. Results show a reduction in the silicon area and 
performance improvement in the packet transmission. 
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I. INTRODUCTION 
The scalability of NoCs enabled to design systems with a large 

number of PEs into a single integrated circuit. NoCs proposals started 
at the beginning of the last decade and became the most adopted 
communication infrastructure for large scale MPSoCs. Besides 
scalability, NoCs enable parallel communication between PEs, 
essential features for systems with a high density of processors. 

The design of a NoC-based MPSoC requires an NI. The goal of 
the NI is to decouple the computation from the communication, 
achieved by an interface between the processor and the NoC that 
implements the communication protocol to send and receive packets. 
Fig. 1(a) shows an MPSoC architecture. The MPSoC may be 
homogenous or heterogeneous, according to the processors’ ISA. Fig. 
1(b) presents a typical PE architecture [1]. Each PE contains a 
processor, local memory, NI, DMA, and the NoC router. The router 
is instantiated within the PE module to simplify the floorplanning and 
hence the physical synthesis. 

A DMA module was already present in the early processing 
systems. The processor programs the DMA writing in memory 
mapped registers the initial memory address and the block size to 
transfer. After programming the DMA module, the processor 
resumes the execution while the DMA transfers data to/from the 
memory. For performance reasons, DMA is broadly used at systems 
that support real-time applications [2]. 

The architecture of Fig. 1(b) is inherited from bus-based 
architectures and commonplace in NoC-based MPSoCs designs. The 
processor has interfaces with different modules (NI, DMA), and the 
software has APIs to control each one. 

The goal of this work is to merge both modules into a new one, 
named DMNI (Direct Memory Network Interface), as shown in Fig. 
1(c). The main contribution is to provide a specialized interface for 
NoC-based MPSoCs that directly connects the NoC router to the 
internal memory using a single module. The DMNI supports 
simultaneous packet reception and transmission, managed by a 
memory access arbiter. A simplified programming interface exposes 
the DMNI services to the software layer.  

An important feature of the DMNI is the access to two distinct 
memory blocks to transfer a packet. This feature is important for 
NoC-based systems because the packet header and the payload are 
distinct data structures. 
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Fig. 1 – MPSoC and PE (Processing Element) organizations.  

II. RELATED WORK 
Several works in the literature mention a design including a 

DMA and a NI [3][4]. Derin et al. [5] briefly mention an NI with 
DMA capabilities, but the work only groups the two modules, 
without an effective integration. Molnos et al. [6] mention the use of 
a DMA to send and receive data between two memories (local and 
shared) through the NoC, without design details.  

Attia et al. [7] present a pipelined NI architecture for NoCs. The 
work presents a modular design, separating the injection and 
extraction path between the IP and the network sides. The proposed 
design outperforms other works in terms of latency and power, but 
the analysis is restricted to the NoC and the NI, without evaluation a 
complete system. Chouchene et al. [8] add a low-power technique in 
the NI design of [7], using a stoppable clock technique. The NI is 
turned off when there is not data to be handled.  

Designs proposed in [9] and [10] target heterogeneous MPSoCs 
by using asynchronous communication architectures. Das et al. [11] 
propose a fault-tolerant NI to be used in SDM NoCs, with serializers 
and deserializers to support the spatial division concept. 

Kariniemi et al. [12] propose an NI aiming to reduce the 
interruption frequency in the Micronmesh MPSoC by an interrupt 
batch mechanism. The results demonstrated a throughput 
improvement with longer messages. The work assumes the use of a 
DMA to improve communication latency but without specifying 
implementation details. 

Fanfga et al. [13] propose an NI design combining a Lookup 
Table (LUT) mechanism and DMA features. The proposal is focused 
on the packet reception process. The tag segment of the LUT 
(programmed by the CPU) is compared with the tag information in 
the packet, and if matches, the address stored in the LUT can be used 
to start the DMA transfer directly. The goal, as in [12], is to reduce 
the interruption handler overhead. The Authors evaluate the latency 
to receive packets, with performance gains in larger packets. 
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 Chen et al. [14] and Ma et al. [15] employ an NI named DMC 
(Dual Microcoded Controller), targeting architectures with 
distributed shared memory organization. The DMC is a 
programmable hardware module that connects the memory, processor 
and NoC. The DMC programming is eased using a microcode 
approach within two mini-processors. One mini-processor is used to 
handle local memory requests and the other to handle remote 
memory requests, by accessing the virtual shared memory space. A 
synchronizer ensures atomic memory access between the two mini-
processors. 

Some proposals for NoC-based MPSoCs do not assume a DMA 
implementation [7][8][9][10][11], focusing only on the NI design. 
Other works separate the DMA from the NI [3][4] or lack 
implementation details [5][6][12]. Works focusing on the integration 
of both modules, either lack validation data [13] or cover specific 
implementations [14][15]. As our proposal, works [12][13][14] 
explore an NI design including a system perspective, identifying 
bottlenecks not addressed in previous works, as the cost to handle 
interruptions by the processor attached to the router NoC.  

This paper has two main contributions. The first one is to 
present a unified design interfacing the NoC router with the memory. 
The second contribution is a simple and generic API to program this 
module, simplifying the software development. 

III. COMMUNICATION MODEL 
Each processor of the MPSoC executes a simple operating 

system (µkernel) with multitasking support and a unicast 
communication API. This API is used by the µkernel to send and 
receive packets. Packets may be related to the user inter-task 
communication model (MPI or shared-memory), or to the system 
management. Fig. 2 presents the flow to send and to receive a packet 
between two different PEs.  
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Fig. 2 – Inter-PE communication flow. 

When the µkernel of the producer PE needs to send a packet, it 
calls a send_packet() function that programs the DMNI to start to 
send the packet from the memory. At the consumer side, when the 
DMNI receives a packet it interrupts the processor. The interruption 
handler calls the read_packet() that programs the DMNI to read the 
packet. Once the packet is completely received, the µkernel executes 
the actions related to the contents of the packet. For example, if the 
packet contains data to a user task ti, the packet (message in the user 
task context) is written in the ti memory space, and ti is scheduled to 
execute. The next section details the API functions, send_packet() 
and read_packet(). 

Fig. 3 details the packet and message structures. From the NoC 
point of view, the packet has a header and a payload. The packet 
header contains the target router address and the payload size. From 
the task point of view, a message contains:  
• message header: encapsulates the packet and service header (e.g. 

message reception, task mapping, request for a message);  
• message payload: optional field. It may contain for example user 

data or an object code of a task. 

Target
Address

Payload
Size

Service
Header Service	Payload	(optional)

Packet	header Packet	payload

Message	header Message	payload  
Fig. 3 – Packet and message structures. 

IV. PROPOSED DMNI DESIGN 
Fig. 4 details the DMNI architecture. The DMNI contains 3 

main modules: send, receive, and arbiter. The arbiter manages the 
memory accesses for both modules, enabling simultaneous send and 
receive operations. The µkernel controls the DMNI through memory-
mapped registers (MMRs). The DMNI design is generic because it 
enables to send and receive any type of data, not necessarily related 
to the message structure presented in Fig. 3. 
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Fig. 4 – DMNI architecture. 

A. Send Module 
This section details the process related to the producer PE (left 

side of Fig. 2). The role of the send module is to inject a packet into 
the NoC. The particular feature of this module is the possibility to 
transfer two memory blocks (message header and payload) as a single 
transfer. This feature is important because the message header and 
the payload are distinct data structures, mapped to different memory 
regions.  

Fig. 5 presents the send_packet() function provided in the DMNI 
API. It receives, respectively, the first (message header) and second 
(message payload) memory sizes and addresses. If the DMNI is 
transmitting a packet (DMNI_SEND_ACTIVE=1), the procedure stays at 
line 2 until the release of the DMNI module. At lines 3 and 4, the first 
memory block is configured. If the message has a payload, at lines 6 
and 7, the second memory block is configured. At line 8, it is written 
the operation type, i.e., read from the memory. Finally, at line 9, the 
DMNI is allowed to start the packet transmission. 
 

1. void send_packet(mem_size_1, mem_addr_1, mem_size_2, 
mem_addr_2){ 

2.   while (MemoryRead(DMNI_SEND_ACTIVE)); 
3.   MemoryWrite(DMNI_SIZE, mem_size_1); 
4.   MemoryWrite(DMNI_ADDRESS, mem_addr_1); 
5.   if (mem_size_2 > 0){ 
6.     MemoryWrite(DMNI_SIZE_2, mem_size_2); 
7.     MemoryWrite(DMNI_ADDRESS_2, mem_addr_2); 
8.   MemoryWrite(DMNI_OP, READ); 
9.   MemoryWrite(DMNI_START, 1); 
10. } 

Fig. 5 – Send_packet() function, executed in the µkernel of the processor. 

Fig. 6 presents the FSM (Finite State Machine) controlling the 
Send module. Initially, the FSM waits the configuration of the 
MMRs (WAIT state) by the send_packet() function. When lines 8-9 of 
the function are executed, the FSM goes to the LOAD state, and the 
FSM assert a send_active signal to the arbiter to request access to the 
memory. The LOAD verifies if the local port of the router may receive 
data (credit=1) and if the arbiter allows a read operation 
(read_enable=1). If both conditions are satisfied, the data is read 
from the memory and injected into the router local port (state 
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COPY_FROM_MEM). Whenever the arbiter or the local port disables 
the transmission, the FSM returns to the LOAD state. The FSM sends 
the first memory block and then changes the address pointer to the 
second memory block (if configured) to transmit the remaining data. 
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Fig. 6 – FSM controlling the send module. 

Fig. 7 presents the transmission of a packet configured with two 
memory regions. Two memory regions are configured: one starting at 
address 0x910 with contents {1, 7, A1, A2, A3}, and the second one 
starting at address 0x8c8 with contents {B1, B2, B3, B4}. Between 
clock cycles 3 to 10, the first memory block is transmitted (signal 
data_out). At clock cycle 11, the send_size becomes zero, changing 
the mem_addr signal to the second memory region, and the second 
part of the packet is transmitted. The gap to change the memory 
region is only two clock cycles. In a standard implementation 
(DMA+NI), which requires programming the DMA twice, the 
minimal gap is 22 clock cycles, penalizing the transmission of 
packets with a small payload. 

 
Fig. 7 – Packet transmission by accessing two memory blocks. 

B. Receive Module 
This section details the process related to the consumer PE (right 

side of Fig. 2). Fig. 8 details the receive module. It contains two 
FSMs and a 16-flit buffer. The buffer depth is parameterizable at 
design-time. 

When a packet arrives at the local port of the NoC router, the 
HEADER state reads the first flit of the packet, interrupting the 
processor. Next, the PAYLOAD_SIZE state reads the payload size and 
advances to the DATA state, which reads the remaining flits of the 
packet. The buffer receives all incoming flits. The NoC stalls when 
the buffer becomes full.  
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Fig. 8 – FSM controlling the receive module. 

Fig. 9 presents the interruption handler process (read_packet() 
function). The read_packet() function writes into MMRs the amount 
of data to receive (line 2), the memory address to store the packet 
(line 3), the DMNI operation (line 4), and a start command (line 5). 

The µkernel waits the complete reception of the packet (line 6) to 
safely read the packet content from memory, and executing the 
actions related to the packet service. 

 
1. void read_packet (init_addr, packet_size) 
2.    MemoryWrite(DMNI_SIZE, packet_size); 
3.    MemoryWrite(DMNI_ADDRESS, init_addr); 
4.    MemoryWrite(DMNI_OP, WRITE); 
5.    MemoryWrite(DMNI_START, 1); 
6.    while (MemoryRead(DMNI_RECEIVE_ACTIVE)); 
7. } 

Fig. 9 – Read_packet() function, executed in the µkernel of the processor. 

The write and start conditions start the FSM at the top of Fig. 8 
(lines 4 and 5 of the read_packet()). This FSM transfer the data 
stored in the buffer to the local memory (state COPY_TO_MEM). To 
write into the memory, this second FSM assert the receive_active 
signal to the arbiter to request access to the memory. The arbiter can 
grant access to the memory by asserting the signal write_enable. If 
the arbiter does not grant access to the memory, the FSM stays 
blocked in the COPY_TO_MEM state. 

Note that both FSMs of the receive module work in parallel. The 
first one receives data from the NoC storing the flits into the buffer, 
and the second one reads the buffer storing the data into the memory. 
C. Memory Access Arbiter 

The arbiter enables concurrent memory accesses to receive and 
to send packets. With such feature, the PE may receive new data and 
concurrently inject new packets into the NoC, interleaving the 
memory accesses. A round-robin (RR) arbiter enables this feature, by 
controlling two signals: read_enable (send) and write_enable 
(receive). A timer (DMNI_TIMER) controls the amount of time each 
module may access the memory. 

  Fig. 10 presents the FSM controlling the arbiter. A signal 
named round selects the module to grant access. The receive and 
send FSMs assert the signals send_active and receive_active, 
respectively. When the arbiter goes to SEND state, the read_enable 
signal is asserted, enabling the send module to access the memory. 
The FSM stays in this state while send_active is asserted, or the timer 
expired and the other module requested access to the memory. Note 
that the arbiter may stay in the SEND state for periods larger than the 
timer limit if the other module does not request access to the 
memory. The RECEIVE state has the same behavior of the SEND state. 
When the FSM returns to the ROUND state, the round signal inverts, 
changing the order to verify which module must be served. 

ROUND

SEND

RECEIVE

send_active	=	0	OR	
(	current_timer	>=	DMNI_TIMER
	AND	receive_active	=	1	)

receive_active	=	0	OR	
(	current_timer	>=	DMNI_TIMER	
AND	send_active	=	1	)

 
Fig. 10 – FSM controlling the arbiter module. 

Fig. 11 presents the arbiter operation. For the sake of clarity, the 
DMNI_TIMER was configured to 5 clock cycles (cc). At the cc=2, 
the receive_active becomes true, signalizing to the arbiter that the 
send module needs to be stopped, and the RR scheduling executed. 
Note the timer value at this cc (0xF) is larger than the DMNI_TIMER 
(5) because only the send module is active. The RR execution occurs 
at cc=3, the timer returns to zero, the round signal is inverted, the 
read_enable becomes false, and the arbiter releases the receive 
module by activating the write_enable signal. The RR executes again 
at cc=10, and now the send module is released (receive_activeß1). 
This interleaved operation continues while both receive_active and 
send_active signals remain asserted. 
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Fig. 11 - Memory access scheduling. 

V. RESULTS 
The DMNI was implemented using synthesizable VHDL, 

integrated into a public-available MPSoC [1]. The baseline design, 
with separated modules, is named DMA+NI.  
A. Latency to transmit packets  

Fig. 12 presents the latency to transmit packets with different 
sizes. The latency is measured from the moment when send_packet() 
is invoked up to the end of the execution of the read_packet(). Note 
that this latency includes the network latency, the interruption 
handling, and the context saving. The network latency represents a 
small fraction in the total latency, corresponding to 5 clock cycles per 
hop (in non-congested scenarios). 

It is possible to observe that in both scenarios the latency grows 
linearly with the packet size. DMNI had a latency decrease of 116 
clock cycles per 128 flits compared to DMA+NI. This reduction 
comes from two main reasons. The first one is related to software. 
For the DMA+NI implementation, the processor has to wait the 
transmission of the message header and then program the DMA to 
transmit the message payload. Using the DMNI, the processor 
programs once the memory regions, without waiting the transmission 
of the message header. The second reason is related to hardware. The 
unified DMNI design can transmit 1 flit per clock cycle, while in the 
DMA+NI it is necessary 2 clock cycles to inject one flit into the NoC 
due to the interface protocol between the two modules.  

 
Fig. 12 – DMNI and DMA+NI latency comparison.  

A second latency evaluation concerns the latency in a real 
application, an MPEG decoder. The latency to decode one frame with 
the DMNI presented a reduction of 12.3% compared with DMA+NI. 
Further, the impact in the application execution time of MPEG is 
15% lower with the DMNI design. Such results highlight the 
performance improvement offered by the DMNI, which specializes 
and simplifies the PE design. 
B. Area and State-of-the-Art comparison  

Both designs, DMA+NI and DNMI, were synthesized using the 
Cadence ASIC design flow for a 65nm CMOS technology, and 
prototyped in FPGA (Xilinx XC5VLX330). Table 1 presents the area 
for the proposed DMNI, DMA+NI, and related works (those that 
have area report).   

Comparing the baseline design (DMA+NI) with the proposed 
DMNI, there is a small area reduction (3.47%) when targeting an 
ASIC implementation. On the other side, for FPGAs, an important 
reduction in the number of flip-flops is observed – 48%, with an 
increased number of LUTs – 11.5%. The reduction observed in the 
number of flip-flops comes from the smaller number of registers 
required by the DMNI implementation. 

Comparison to related works is difficult due to different specific 
objectives and use different technologies. Observing the table, works 
from Derin [5] and Ma [15] (that use a DMA and a NI) have similar 
FPGA area results compared with DMNI. 

Table 1 - Area comparison. 
Author FPGA/ASIC Work Goal LUTs FFs Area 

Derin et al. [5] FPGA (Xilinx 
XC6VLX240T) 

Network Adapter  
(DMA + NI) 879 577 N/A 

Chouchene et al. [8] FPGA (Xilinx XC5VLX30) Power-efficient NI 
(Credit Based) 420 590 N/A 

Matos et al. [9] ASIC (0.18um) Asynchronous NI  N/A N/A 18735 um2 
Ma et al. [15]	 FPGA (Zynq7000)	 Programmable NI (DME)	 1163 313 N/A 

Baseline design FPGA (Xilinx 
XC5VLX330) / ASIC (65 

nm) 

Standard PE arch. 682 787 22141 um2 

This proposal Unified design - DMNI  761 409 21371 um2 

VI. CONCLUSION  
This paper presented the integration of DMA and NI modules 

into a single hardware component named DMNI. This integration 
removed unnecessary interfaces, registers, and signals, being 
specialized for NoC-based MPSoCs. The adoption of the DMNI 
reduced the latency to transmit packets, execution time, and area 
(FPGA and ASIC technology) when compared to the baseline 
implementation (DMA+NI). This paper showed the need to adopt 
specialized architectures for many-core systems, as NoC-based 
MPSoC, targeting simplified software programming together with an 
efficient hardware implementation. 
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