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ABSTRACT 

 

This paper presents a fast 3D-High Efficiency Video Coding 

(3D-HEVC) depth maps intra-frame prediction based on 

static Coding Unit (CU) splitting decisions trees. This 

coding approach uses data mining to extract the correlation 

among the encoder context attributes and to define a split 

decision tree for each CU level of the depth maps encoding. 

The decision trees were trained using the information 

extracted from 3D-HEVC Test Model (3D-HTM) and using 

the Common Test Conditions (CTC). Each decision tree 

defines if the current CU must be split into smaller sizes, 

considering the encoding context through the evaluation of 

some current encoder attributes. The proposed solution 

reaches a complexity reduction of 59.0% for depth maps 

coding with a negligible impact of 0.18% in the encoding 

efficiency of synthesized views. 

 

Index Terms— 3D-HEVC, Data mining, Complexity 

reduction, Depth maps, Intra-frame prediction 

1.  INTRODUCTION 

Focusing on increasing the 3D encoding efficiency, the 

experts of Joint Collaborative Team on 3D Video Coding 

Extension Development (JCT-3V) has developed the 3D-

High Efficiency Video Coding (3D-HEVC) [1]. The 3D-

HEVC is an extension of the HEVC used on 2D videos. 

Multiview Video plus Depth (MVD) [2] is an additional 

feature provided by 3D-HEVC, where each texture frame is 

associated with a depth map. The depth maps indicate the 

distance of each object from the camera and are used to 

generate virtual views through synthesis view techniques [2] 

at the decoder side. The complexity of a traditional 3D 

encoder is already high; however, the insertion of depth 

maps coding, implies a larger computational complexity [3]. 

Moreover, the development process inserted many new 

coding tools in depth maps coding focusing on intra-frame 

prediction. These tools include Depth Modeling Modes 

(DMMs) [4], Segment-wise Direct Component Coding 

(SDC) [5], and Depth Intra Skip (DIS) [6]. 

The depth maps intra-frame prediction provides a 

flexible quadtree-based structure, where each frame is 

divided into Coding Tree Units (CTUs), and each CTU can 

be recursively divided into Coding Units (CUs) [7]. The 

maximum and minimum sizes of a CU are 64×64 and 8×8, 

respectively. For intra-frame prediction, each CU may be 

divided into one or four Prediction Units (PUs) whose sizes 

vary from 4×4 to 64×64 [7]. 

In 3D-HEVC Test Model (3D-HTM) [8] the 

partitioning structure for each CTU is chosen through Rate-

Distortion Optimization (RDO), which assesses many 

combinations of encoding structures (block partitions and 

prediction modes) seeking for the best encoding possibility. 

This process reaches a very high coding efficiency at the 

cost of a significant increase in the encoder computational 

complexity when compared with previous standards. 

Some works proposed solutions to decrease the 

encoding computational complexity of depth maps intra-

frame prediction, such as [9]-[11], and use the execution 

time as the metric to evaluate this complexity. Our previous 

work [9] presents a fast block-level decision based on 

simplified edge detector for skipping unnecessary DMMs 

evaluations. Peng et al. [10] propose a block-level and a 

quadtree-level decision algorithm proposing a threshold 

based on Rate-Distortion (R-D) cost of the prediction 

modes. The quadtree-level algorithm computes the CU 

variance and the maximum variance of the sub-blocks. The 

split only occurs if the maximum variance of sub-blocks is 

higher than the CU variance or the CU variance is higher 

than a threshold. Zhang et al. [11] exploit a QP-based 

quadtree depth limit to detect if the information of smaller 

blocks is relevant and the current CU must be split. 

This paper proposes a data mining approach to build 

static decision trees to define if each CU should be or not 

split into smaller CUs to predict depth maps intra-frame, 

without using the full RDO evaluation. Experimental results 

demonstrate the encoding complexity, regarding processing 

time, is reduced about 50% maintaining the encoder R-D 

efficiency. Moreover, the proposed solution surpasses the 

coding efficiency of related works methods. 

2.  INITIAL ANALYSIS AND MOTIVATION 

This Section presents a first analysis of the 3D-HEVC 

encoder behavior. These experiments use the 3D-HTM 16.0 
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version considering the Common Test Conditions (CTC) 

[12] under All-Intra (AI) encoder configuration [13]. 

Fig. 1(a) shows the complexity distribution (concerning 

processing time) between texture and depth maps using the 

four Quantization Parameter-pairs (QP-pair) values (QP-

texture/QP-depth). The worst case of texture coding 

complexity is about 15.7%, which is much lower than depth 

map coding complexity. It occurs in the AI configuration 

because texture coding only applies the HEVC intra-frame 

prediction, whereas, depth maps coding also uses DMMs, 

DIS and SDC evaluations [3]. This analysis shows that the 

depth maps coding is 5.8 times more complex than the 

texture coding, on average. 
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Fig. 1. (a) Complexity distribution for texture and depth coding 

and (b) CU size distribution for depth coding. 

From Fig. 1(a) it is possible to conclude that depth maps 

encoding complexity is a critical bottleneck in the 3D-

HEVC and solutions able to reduce this complexity without 

penalizing the encoding efficiency are crucial, especially for 

applications targeting battery-powered devices. 

Fig. 1(b) shows the CU size distribution for depth maps 

coding per QP-depth value, highlighting a variation in the 

QP-depth causes a different CU size distribution; i.e., the 

CU size distribution of each encoding block is not 

homogeneous. It occurs because the QP-depth value defines 

the compression rate and directly affects the image quality. 

The details (and quality) of the image are inversely 

proportional to the QP-depth value. High QP-depth values 

generate coded frames with more homogeneous areas (many 

image details are suppressed), and these areas are efficiently 

encoded using bigger CUs sizes. Besides, heterogeneous 

image regions (typically reached with a low QP-depth) must 

use lower CUs sizes to maintain the encoding efficiency. 

Based on this fact, for lower QP-depth values, such as 34, 

about 67% of CUs were encoded with the size of 8×8 and 

only 3% were encoded with 64×64 CUs. In contrast, with 

QP-depth=45, about 50% of CUs were encoded with the size 

of 64×64 and only 5% were encoded with 8×8 CUs. Thus, a 

solution able to decide when a current CU should or not be 

split into smaller CUs, considering the QP-depth value, can 

avoid the excessive cost of the full RDO process. 

At runtime, the encoder takes many other decisions that 

determine the coding efficiency. Consequently, the 

proposition of solutions that can statically set some of these 

decisions considering the encoding context (and not the full 

RDO) and with less impact on the encoder efficiency is 

highly desirable. 

Data mining can be used to correlate the value of 

dependent variables identifying regularities and building 

generalizations in attributes of the data set. Decision trees 

are models built through data mining, which is frequently 

used when high accuracy and low complexity execution are 

required [14]. These are essential features for this work 

since it aims to achieve high complexity reduction 

maintaining R-D efficiency. 

Correa et al. [15] use data mining to evaluate the 2D 

encoder (texture only) attributes and to extract the 

knowledge among the correlations of these attributes to 

avoid some of the dynamic 2D encoder decisions, reducing 

the encoder complexity. The present work also uses data 

mining, but to decrease the depth maps encoding complexity 

in a 3D encoder. Since the scenario is entirely different, a 

new and complete evaluation of the encoder tools and 

correlations was necessary, conducting the definition of new 

attributes (Section 3) and allowing the definition of inedited 

static CU decision trees (Section 4). 

3.  ENCODER ATTRIBUTES EVALUATION 

Many encoder attributes were evaluated to define the ones 

most relevant to build the static CU trees for depth maps 

encoding. The same experimental setup used in Section 2 

(considering the CTCs) was employed in this investigation. 

A significant amount of data from the depth video sequences 

and internal encoding variables were collected to find 

features that could lead to sound splitting decisions. The 

following attributes were evaluated and stored for each CU 

size during the 3D-HTM encoder execution: 

• The current QP-depth value, which defines the 

compression rate and has much impact in the CU split 

decision. 

• R-D cost when encoding the current CU size, which was 

used to better evaluate the relations among the different 

encoder decisions and the encoding efficiency. 

• The variance (VAR) of the original samples inside the 

current CU, which indicates the block homogeneity, and 

then, can indicate if the block should or not be split. 

• The maximum variance of smaller blocks inside of the 

current CU (VAR_size), which represents the maximum 

variance of the samples inside a block. For a 64×64 CU, 

there are four instances of this attribute, one for each 

possible block partition (4×4, 8×8, 16×16 and 32×32). 

This information can be useful to indicate the 

homogeneity or the presence of edges into smaller blocks. 

• Average value of the current CU, which is the average of 

all samples inside each CU. This information indicates if 

the encoding CU is near or far from the camera. 
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Additional details of near objects should be maintained 

and, in these cases, it is interesting to evaluate lower CUs 

sizes. 

• The single maximum difference between samples of the 

current CU (MaxDiff), which is useful in the CU split 

decision since this information can indicate sudden 

variations in samples values. 

• The gradient of the four corners of original samples, 

which is the maximum absolute difference of the four 

corners in the current CU. This information can be useful 

to indicate the presence of edges in the current CU (which 

must be preserved in depth maps [2]). 

• Maximum gradient of smaller blocks inside of the current 

CU, which is the maximum absolute difference of the four 

corners of these blocks. As VAR_size, there are four 

instances of this attribute for 64×64 CU, and they can 

indicate when a CU should be split or not. 

These attributes were selected to verify depth maps 

edge regions that tend to be harder to encode [16] and, 

consequently, tend to cause a splitting decision.  

Fig. 2 presents the density probability of the 64×64 CUs 

do not be split into smaller CUs for some collected 

attributes. Fig. 2(a) and Fig. 2(b) show that the MaxDiff and 

VAR_64 have lower values for those CUs that are not split 

into smaller CUs. The distribution of R-D cost is shown in 

Fig. 2(c) and reveals a correlation with the splitting decision. 

Fig. 2(d) shows the distribution of VAR_16, which provides 

essential information for sub-blocks inside a 64×64 CU 

since high values of VAR_16 can indicate the presence of 

edges in the current CU and its information can be hidden in 

generated information for larger blocks. In the case of low 

variance values in sub-blocks, the current encoding CU 

tends not to be split into smaller CUs. 
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Fig. 2. Probability density of the analyzed attributes does not 

divide the current 64×64 CUs. 

The attributes evaluation allows concluding that only 

QP-depth, R-D cost, VAR, VAR_size, Average, and MaxDiff 

are relevant to build the static CU decision trees. Then, only 

these attributes were used in the data mining training 

process, as discussed next in Section 4. 

4. PROPOSED CU TREES 

Since 3D-HEVC depth maps intra-prediction allows 

square CU sizes from 8×8 up to 64×64, this work proposes 

three static decision trees to define when CUs of sizes 

16×16, 32×32 and 64×64 should be or not split into smaller 

CUs. 

For the data mining process, Kendo video sequence was 

encoded in all-intra configuration, considering all CTC QP 

values. The CTU size has been limited to 16×16, 32×32 and 

64×64 pixels for each evaluation. For each encoded CU, 

were stored: (i) all information that was presented in Section 

3 and (ii) the information indicating if the CU has been split 

or not. It is important to emphasize that there are a limited 

number of 3D video sequences with their depth maps 

available to make 3D video coding experiments. Therefore, 

Kendo video sequence was randomly selected from the CTC 

dataset, and it was used to extract the data necessary to the 

offline training process. Only one video sequence was used 

in the training process to avoid overtraining. However, all 

video sequences defined in the CTCs were evaluated in 

Section 5 to demonstrate that the trained solution is capable 

of achieving a high quality in different encoding scenarios. 

The Waikato Environment for Knowledge Analysis 

(WEKA) [17], version 3.8, was used to train each decision 

tree. The training was performed using the J48 algorithm, 

which is an open-source implementation of the C4.5 

algorithm [18] available on WEKA. Seeking for a better 

solution for data balancing, the input files were organized in 

two sets of data with equal sizes containing inputs that result 

in (i) splitting and (ii) not splitting of CUs. Besides, to avoid 

the overfitting problem on the train data set, the Reduced 

Error Pruning (REP) [19] was performed in each tree, 

reducing the depth of decision trees and allowing a better 

generalization. 

Fig. 3 illustrates the static decision tree generated for 

64×64 CUs, where the leaves “N” and “S” correspond to the 

not split and split decisions, respectively. The decision trees 

for 32×32 and 16×16 CUs are composed of five and eight 

decision levels, respectively. The attributes in each decision 

tree were selected through the information gain, which is 

used by WEKA decision trees training algorithm [18]. 
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Fig. 3. Decision tree for splitting decision in 64×64 CUs. 
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Table I presents the complete list of attributes and the 

corresponding usage in the three proposed decision trees 

(details about the attributes can be seen in Section 3). One 

can notice that the proposed solution does not add any new 

computational complexity to the 3D-HEVC encoder since 

the training is an offline operation, which is performed only 

once to define the static trees, and the attributes are easily 

obtained. 

Table I. Attributes used in decision trees. 

Decision 
trees 

Attributes 

QP-depth R-D cost 
Var 

MaxDiff Average 
4 8 16 32 64 

16×16 × × × × ×   × × 

32×32 × ×  ×  ×   × 

64×64 × ×   ×  ×   

5. EXPERIMENTAL RESULTS 

The three proposed static decision trees were implemented 

into the 3D-HEVC Test Model (3D-HTM) (version 16.0) 

[8] and evaluated following the CTC for 3D experiments 

[12] in all-intra encoder configuration, aiming to assess the 

performance of the proposed solution. 

Table II presents the results of this solution regarding 

Bjontegaard Delta-rate (BD-rate) [20] considering the 

synthesized views quality, the complexity reduction 

(regarding processing time) for the whole 3D-HEVC 

encoder (texture and depth maps) and the percentage of not 

split decisions reached for each decision tree. 

The proposed solution was able to achieve an average 

complexity reduction of 52.4% (from 37.3% to 63.4%). 

Considering only the depth maps coding, the proposed 

solution can achieve an average complexity reduction of 

59%. The average BD-rate degradation was of 0.18% (from 

0.04% to 0.62%). 

The complexity reduction results were reached because 

the proposed decision trees, on average, did allow the 

splitting of 35% of 16×16 CUs, 50% of 32×32 CUs and 

60% of 64×64 CUs. 

According to the presented experimental results, higher 

QP-depth values achieved the highest not splitting 

percentages. An average of 85% of the 64×64 CUs was not 

split for QP-depth=45 since this QP-depth causes higher 

compression rates and tends to encode the CTUs with larger 

CU sizes. These results demonstrate that the proposed 

solution can achieve a high complexity reduction by 

removing smaller CU evaluations with small impacts on the 

encoder R-D efficiency. 

It is important to notice that only the Kendo video 

sequence was used in the offline training process and for the 

decision trees creation. Moreover, the remaining test 

sequences were evaluated, and the reached results in 

complexity reduction and BD-rate degradation were 

considered promising. Therefore, these results demonstrate 

that the proposed decision trees were not overfitted for the 

experimental analysis. 

Moreover, the proposed solution was compared with the 

works [10] and [11], whose results are also displayed in 

Table II. The method proposed by [10] achieves a 

complexity reduction of 37.6% with an average BD-rate 

increase of 0.8%. In [11], a complexity reduction of 41% 

was obtained with an impact in BD-rate of 0.44%. 

Therefore, the solution proposed in this work was able to 

reach the highest complexity reduction when compared with 

related works. The presented solution also reached the 

lowest encoding efficiency degradation among the related 

works with a BD-rate 4.4 times lower than [10] and 2.4 

times lower than [11]. 

6. CONCLUSIONS 

This paper presented a fast 3D-HEVC depth maps intra-

frame prediction based on static CU splitting decisions trees 

using data mining. Three static decision trees were trained 

using WEKA software to define if a current encoding CU 

should or not be split into smaller CUs. An evaluation of the 

most relevant encoder attributes was done, where some of 

these attributes were selected to be used in an offline 

training. The static decision trees were implemented in the 

3D-HTM 16.0 and evaluated under the CTCs for 3D 

experiments using the all-intra configuration. Experimental 

results demonstrated that the proposed solution reached a 

complexity reduction of 52.4% considering the texture and 

depth maps complexity and 59% when considering only 

depth maps, with an impact of 0.18% on BD-rate increase of 

the synthesized views, reaching the best results in both axes 

when compared with related works. 

Table II. Proposed solution results for CTC evaluation in all-intra configuration. 

Video 

This work Peng [10] Zhang [11] 

CUs not splitting 
BD-rate 

Complexity 
reduction 

BD-rate 
Complexity 

reduction 
BD-rate 

Complexity 
reduction 16×16 32×32 64×64 

Balloons 47.7% 48.1% 51.1% 0.14% 45.7% 1.2% 27.6% 0.29% 41% 

Kendo 45.6% 54.3% 55.9% 0.19% 49.8% 0.7% 26.3% 0.29% 39% 

Newspaper_CC 28.2% 40.0% 28.1% 0.11% 37.3% 1.1% 26.6% -0.23% 36% 

GT_Fly 30.4% 49.9% 72.7% 0.06% 58.8% 0.3% 45.1% 0.20% 45% 

Poznan_Hall2 35.6% 62.1% 85.9% 0.62% 63.4% 1.3% 43.7% 0.33% 48% 

Poznan_Street 24.8% 46.0% 57.7% 0.12% 55.8% 1.4% 49.1% 1.16% 40% 

Undo_Dancer 39.0% 55.5% 69.9% 0.14% 56.5% 0.6% 49.1% 1.01% 39% 

Shark 29.9% 45.9% 61.3% 0.04% 51.9% 0.1% 33.7% - - 

Average 35.1% 50.2% 60.3% 0.18% 52.4% 0.8% 37.6% 0.44% 41% 
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