
Fault Classification of the Error Detection Logic in
the Blade Resilient Template

Felipe A. Kuentzer and Alexandre M. Amory
Faculty of Informatics, PUCRS University

Av. Ipiranga, 6681, Porto Alegre, Brazil

felipe.kuentzer@acad.pucrs.br, alexandre.amory@pucrs.br

Abstract—Resilient architectures emerged as a promising
solution to remove worst-case timing margins added due to
process, voltage and temperature variation, improving system
performance while reducing energy consumption. Asynchronous
circuits can also improve energy efficiency and performance
due to the absence of a global clock. A recently proposed
circuit template, called Blade, leverages the advantages of both
asynchronous and resilient techniques. However, Blade still
presents challenges in terms of testing, which hinder its practical
application. This paper evaluates the fault behavior of the Error
Detection Logic (EDL) block of Blade with single stuck-at or
propagation delay fault models. We propose a fault classification
based on the effects observed in the overall circuit operation while
in the presence of a fault. This classification shows the obtained
fault coverage assuming three different testability scenarios and
it also shows that a single fault can entirely disable an EDL,
disabling its resilience. The proposed classification can be used
in the future to improve the design for testability of resilient
architectures.

I. INTRODUCTION

Resilient designs emerged as a solution to to reduce timing

margins that must be added to traditional synchronous designs

to ensure correct operation under worst-case delays caused by

process, voltage, and temperature (PVT) variations. Resilient

architectures [1] [2] [3] rely on extra logic to detect and

recover from timing violations that may appear due to the the

timing margin reduction, while improving performance and

energy efficiency.

Asynchronous templates can also be a solution for this

problem, while improving energy efficiency due to the ab-

sence of a global clock and performance with the design

for the average-case. Quasi-delay-insensitive (QDI) embed a

completion signal in the data representation, which makes the

design robust to delay variations, but it uses more silicon

area if compared to traditional implementations. Bundled-data

templates (e.g. micropipeline [4]) present lower area than QDI,

but its delay lines must also be implemented with sufficiently

large margins to account for PVT variations. Some solutions

for these margins in bundled-data templates were proposed at

[5] and [6].

The Blade template [7] is a recently proposed alternative

that combines the advantages of the asynchronous bundled-

data designs and resilient techniques to alleviate these timing

margins. Blade uses two reconfigurable delay lines and error

detection logic to detect timing violations coupled to a novel

speculative handshake protocol that improves average-case

performance. The authors demonstrated that Blade circuit

can achieve as much as 30% power reduction at the same

performance, when compared to a similar synchronous circuit,

for an area overhead of about 10%.

Despite these promising results, Blade’s practical usage (as

all others resilient circuits) is still hindered by the challenges

in terms of testability. For instance, as demonstrated in this

paper, a single fault at the block called Error Detection Logic

(EDL), responsible for detecting the timing violations (TV)

and for triggering the recovery process, is sufficient to disable

the EDL. This, in turn, disables the circuit resilience, missing

timing violations. Thus, without a proper testing approach it

is not possible to assure that the EDLs are going to perform

according to their specification.

This paper presents a fault analysis and proposes a fault

classification for the Blade’s EDL block with single stuck-

at faults or propagation delay faults. We evaluate the fault

coverage of EDLs with three scenarios: assuming only func-

tional test; adding scan cells to improve the observability of

EDL outputs; and considering a method for injecting timing

violations at the EDL input. The results show that, without

DfT logic, the fault coverage of the EDL is low, jeopardizing

Blade’s correct functionality, as it is not possible to assure that

the EDL is going to perform its violation detection role.

The remainder of this paper is organized as follows. Sec-

tion II introduces the Blade template and explores the most

relevant aspects associated to this paper. Section III describes

the fault simulation environment used to produce the results

for the analysis. Section IV presents an extensive analysis

and discussion on the effects observed for each fault and

how they can be detected. In Section V we propose the fault

classification and discuss how it could guide future works.

Finally, Section VI provides conclusions.

II. BLADE TEMPLATE

The Blade template [7], shown in Figure 1, consists of

an asynchronous Blade controller, two reconfigurable delay

lines, and an EDL. The Blade controller communicates with

other stages using a typical bundled data channel L/R. The

δ delay controls the moment the data at the output of the

combinational logic can be sampled and propagated through

the EDL. The Δ delay defines the amount of time that the latch

is transparent, accepting data corrections. A TV is flagged

if data changes during this time window, which allows a

2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems

978-1-4673-9007-1/16 $31.00 © 2016 IEEE

DOI 10.1109/ASYNC.2016.9

37

subsequent correction. This time window is defined as the

timing resiliency window (TRW).

�����

���

	
����
�
�������
���

�
���

�����

�
���
����

�
����

	��
��������������������������

��

�
���

�
	�

��
	�

��
���

	
���

	�
���

	
	�

	�
	�

!
�
�
"
��

�
�#

������!����
���
���������
���
���

�

Fig. 1: Blade template [7]

The error detection logic flags a timing violation by assert-

ing its Err signal. The Blade controller then communicates

with its right neighbour using an additional error channel

RE/LE. To recover from the timing violation the next stage

delays its latch opening until the correct data is propagated

through the combinational logic.

A. Error Detection Logic

The error detection logic used in Blade is shown in Figure

2. As detailed in [7], the design consists of error detecting

latches, generalized C-elements and Q-Flops [9]. The latches

are based on the Transition Detecting Time Borrowing (TDTB)

latches proposed in [8]. The generalized C-element acts as

a memory cell that stores any violation detected during the

high phase of the CLK. This C-element switches to 0 when

CLK is at 0 and to 1 only when both the CLK and the XOR

output are at 1. The output of the C-element is sampled at

the end of the TRW by the Q-Flop. The Q-Flop ensures

safe operation against metastability at the X signal and the

C-element by applying a filter that prevents its outputs from

becoming metastable. The dual-rail signal Err, composed by

wires Err0 and Err1, stalls the controller until the outputs

are stable and it can safely evaluate if an error occurred. The

delay element tTD defines the transition detector pulse width,

while tcomp is the compensation delay added to ensure that

a transition before the rising edge of CLK is not flagged as

a violation. Figure 2 also presents the wire labels that are

referenced throughout the Section IV.

B. Controller

The Blade controller implements a new form of asyn-

chronous handshaking protocol, called speculative handshak-
ing [7]. The implementation is divided into three interacting

Burst-Mode state machines [10]. These state machines are

illustrated in Figure 3. Although the controller testability is

not the focus of this analysis, understanding its behavior once

the EDL has a fault is important for the fault classification.

In particular, there are three signals related to the EDL that

can cause problem in the controller, delay, Err1 and Err0. The

highlighted doted states at the center state machine in Figure 3

are the ones that depend on transitions of the delay signal.

This signal is not directly connected to the EDL, but the CLK

����

���

�	

��
���

����������	�
�����

	

����������

�
�

� �

�����

�
��
�

�����

���

�
������

�
��
�

�

� �

��

��

��

��

��
��

�	

�

�����

��� ���

���
�������

�������

���
�������

�����
�
��

Fig. 2: EDL diagram with labeled wires, adapted from [7]

signal is connected to EDL, and controls the rise and fall of the

delay. The highlighted doted states at the right state machine

of Figure 3 are the ones that react to changes of Err1 or Err0.

As previously described, the controller stalls waiting for these

signals to resolve before continuing the protocol process, and

the same will happen if the delay signal does not change its

value. In summary, a faulty EDL may cause the failure of the

controller. This situation is explored in Section IV.

C. Timing Constraints

The timing overheads associated with the EDL for a single

Blade stage are shown in the timing diagram of Figure 4. The

delays are divided in five components: (i) propagation delay

from Din to X, tX,pd; (ii) the pulse width of X defined by the

delay element tTD shown in Figure 2, tX,pw; (iii) C-element

propagation delay, tCE,pd; (iv) Q-Flop setup time, tQF,setup;

and (v) propagation delay of the OR gate before the Q-Flop,

tOR,pd. The sum of components tX,pd and tX,pw corresponds

to the compensation delay tcomp described previously.

�
����

�
����

�
�	���

�
�
�
���

�
�
��������

�
����

���

�

���

Fig. 4: Timing constraints in Blade [7]

The Timing Resiliency Window constraint is the most rele-

vant for our study, since its size is directly affected by the delay

components of the error detection logic. The TRW, according

to [7], is defined as:

TRW = Δ+ tX,pw − (tCE,pd + tOR,pd + tQF,setup) (1)

The complete timing analysis of the Blade template is

available at [7].

38

������

�����	�
���

��
����	

���������
���
���

�������
����	

����
��

�����	�
���

��
����	

���������
���
���

�������
����	

����
��

����������������	

����

�����	

�����������������

�������������	�
��������	

����������������	

������������
�������	��������

��������	�����

�����	������ �������	��������

��������	�����

�����	�������

����������������	

����

�������������	�
��������	

����������������	

������������

�����	

�����������������

������������	������

������

������������	������

������

���

���

�����

�����

������

������

�����
�����

������
������

������ ����������
�
��

!

!

���

��
��

"
����
�#$��

��

Fig. 3: Burst-mode state machine for Blade controller highlighting states that may be affected when the EDL has a fault, adapted from [7]

III. SIMULATION ENVIRONMENT

In order to evaluate the testability of the EDL, we created a

behavioral simulation environment that allows controlled fault

insertion at specific locations of the circuit, such as forcing

wires to fixed values to produce a stuck-at or to modify the

propagation delay of logic gates or other elements of the circuit

to simulate a delay fault. It is also possible to simulate the

circuit with a timing violation (TV) at the EDL’s input. This

means that the combinational takes longer than the δ delay

to propagate the correct data. As discussed in the following

sections, the ability to generate a timing violation is essential

to detect some specific faults in the EDL.

The test scenario consists of a three stage Blade pipeline,

where all three stages are identical regarding the timing

constraints. Between each stage there is a string of inverters

acting as the combinational logic. The simulation generates a

log file informing the timing violations found on each stage.

Another log file describes the injected data pattern at the first

stage and the output data received at the last stage. From these

logs the environment extracts the results presented in the next

section.

The environment only simulates a single fault at a time,

and these faults are always inserted at the middle stage (the

second one). The other two stages are fault-free, and they are

used to observe how the overall circuit behaves when one of

the stages is faulty. The accepted faults are stuck-at-0 (SA0),

stuck-at-1 (SA1), shorter propagation delay (SPD) and longer
propagation delay (LPD). Stuck-at faults are inserted at all

wires inside the error detection logic and the propagation delay

fault is injected in all logic gates. We assume that data is not

masked by the combinational logic, and a data transition is

always propagated from one stage to another. In the following

discussions the use of error indicates that a timing violation

(not the stuck-at or propagation delay fault) was detected by

the error detection logic. An TV within the resilience window

must cause an error in the EDL, unless the EDL is faulty.

IV. FAULT ANALYSIS

In following sections the faults are individually analysed.

As we move forward with the analysis we discuss the effects

that can be observed and how they can be applied to the fault

detection. For the detection of some particular faults, a timing

violation (TV) must be generated to stimulate parts of EDL

that are only activated in such situations. By default we assume

that a TV is not required to detect the fault. However, when

the TV is necessary, it is explicitly referred and discussed in

the text.

A. Stuck-at Fault Analysis

The first fault to be analysed is an SA0 at w1. In this case,

the pipeline halts waiting for the delay signal to go up. The

same will happen with an SA1 in the this wire, but instead the

pipeline halts waiting delay signal to go down. Both faults are

easily detectable with a functional test due to a pipeline halt.

An SA0 and an SA1 at w2 makes the latch to always capture

a constant data due to the stuck value in its input. These faults

are detected at the output of the next stage.

The next fault point is w3. An SA0 or an SA1 at this wire

can cause a false error generation that depends on the input

data. For instance, if w3 is SA0, the fault is detected only

if the input data is at logic level 1. It means that the input

data must be controllable and the signals Err1 or w7 must be

observable. For the rest of this analysis Err1 is considered the

observability point.

An SA fault at w4 differs from a fault at w1 because the

former does not affect the latch. An SA1 at wire w4 always

produces an error at the faulty stage, while an SA0 causes

the stage to never detect a timing violation, since C-element

clock never goes up. As observed in the part two of the

experiment, to detect this SA0 fault a TV must be generated

at the stage under test and the Err1 signal of the next stage

observed. This is possible due to a particular feature of Blade’s

template, where the timing violation missed at a stage, in this

case because of a stuck-at fault, can still be detected in the

following stages. Since the faulty stage does not capture the

39

error, the delay is not extended as it would be expected in such

situation, and an invalid data is propagated to the next stage.

The following stage eventually detects the TV and delays its

latch opening, such that its following stage receives the correct

data. This and some other faults are defined as detectable in
the next stage.

Another fault point is w5, but this fault analysis can also be

extended to w6 and w7. An SA0 at these nets cause the EDL

to not detect timing violations. As in the previous analysis,

a TV must be inserted so that the fault is detectable at the

next stage by observing its Err1 signal. The SA1 is detected

at the faulty stage, since an error is always signaled by Err1.

The next signal, w8, is the Q-Flop Sample signal. The Blade

controller requires that the signals Err0 or Err1 must go up and

later go down before a new protocol cycle is initiated. So, if

w8 is SA0, both error signals are also at logic level 0, causing

the pipeline to halt. The SA1 has the same behavior but in the

opposite direction, while the SA0 halts the pipeline because

Err0 or Err1 never goes up, the SA1 halts the pipe because

the signals never goes down. Both faults are detectable with
a functional test due to a pipeline halt.

As in the previous analysis, the next fault is also detected

by a halt in the pipeline. To detect an SA0 at w9 a TV must be

generated in the faulty stage. In this case the Err1 should go up

but, because of the fault, it never goes up. On the other hand,

the SA1 at w9 can be detected with a functional test when the

pipeline halts waiting for Err1 to go down, the same for an

SA1 at w11. The detections of an SA0 at w11 is similar to

w9, except that a TV is not required in this case. An SA0 at

w10 can be detected with a functional test once the pipeline

halts waiting for Err0 signaling. On the other hand, to detect

an SA1 fault, a TV must be injected at that the data input.

The last fault point is w12 where, for both SA0 and SA1, the

pipeline halts waiting for Err0 to go up or down, respectively,

and they are both testable with functional test.

B. Delay Fault Analysis

As mentioned earlier, the propagation delay of gates, latch

and delay lines is considered for the delay fault analysis. The

faulty gate has either an SPD fault or an LPD fault, compared

to the design timing constraints. An SPD fault, except for

the delay lines, does not represent a threat to the overall

circuit operation. For example, looking at the C-element or

the following OR gate, an SPD at any one of them will

increase the TRW presented in Subsection II-C. With a bigger

TRW, the faulty stage catches timing violations that otherwise

would not be captured by the EDL. These group of faults

that don’t affect the circuit functionality can be defined as

don’t care faults. The Q-Flop and the following OR gate and

AND gate in the presence of an LPD fault also don’t produce

any catastrophic failure to the circuit, but these faults can be

detected by looking at the performance degradation of the

pipeline, since the late propagation of signals Err0 or Err1
would delay the completeness of the protocol cycle.

Even though this analysis does not consider the datapath

testability, an LPD fault in the latch can be seen as a datapath

delay fault. In this case a timing violation is detected at the

next stage, and a high error rate at a pipeline stage would

suggest that there is a delay fault in the datapath. Unlike SPD,

an LPD at the C-element and the following OR gate reduces

the TRW, and it affects directly the circuit resiliency to timing

violations. In particular, this fault causes the circuit to behaves

differently depending on the moment that the violation occurs.

For example, looking at the timing diagram of Figure 4, the

tCE,pd can be so long that the last X pulse is not propagated

until the falling edge of the CLK, thus missing the TV. In this

case the violation is propagated to the next stage. With the

same propagation delay fault in tCE,pd, if this last X pulse

appears right after the rising edge of CLK, then the violation

would still be captured at the faulty stage. This demonstrates

that the TV must be inserted at specific lines and at specific

moments inside the TRW.

The next fault is an LPD at the XOR gate. Using the timing

diagram of Figure 4 as reference, this fault dislocates the X
pulse inside the TRW by increasing the tX,pd, which produces

a false error that is dependent on the input data, like the

analysis of a stuck-at fault at w3. Now looking at the tTD

delay line, if an SPD fault occurs at this element, the X pulse

width (tX,pw) becomes smaller. This fault harms the circuit

operation if the pulse gets smaller than the setup time of the

C-element, otherwise the fault is a dont’t care fault. In the

case where the pulse width is smaller than the setup time of

the C-element an error is missed at the faulty stage, but the

next stage detects the error. A method for injecting a TV is

necessary to detect this last fault. Similarly to the XOR gate

LPD fault, an LPD at the tTD delay line generates a false

error that depends on the input data, with the difference that

instead of shifting the X pulse into the TRW, tX,pw increases

the pulse width that grows into the TRW.

The last delay fault analysis is at tcomp. An SPD at this

delay element reduces the compensation delay added to ensure

that X is not captured before the rising edge of CLK. In this

case the C-element captures X pulse before the correct time,

which generates a false error. This fault can be dependent

on the input data, although it is unlikely that all inputs are

always capturing the same logic value. If at least one data

input changes every clock cycle, an error is always observed

at Err1. An LPD at tcomp causes the C-element to late capture

the X pulses. Comparing with the timing diagram of Figure 4,

this fault dislocates the CLK to the right, which can be seen

as a decrease in the TRW, and some timing violations may not

be captured by the EDL. Like the LPD fault at the C-element,

to detect this fault, a TV must be inserted at the beginning of

the TRW. If this fault is present, the error is not captured at

the faulty stage, only in the next stage. If the TV is inserted

at the end of the TRW, an error is flagged at the faulty stage,

which is the expected behavior of a fault-free stage, thus the

fault is not detected.

C. Discussion about the fault effects on the EDL

As noted in the previous fault analysis, a faulty EDL triggers

different effects in the overall circuit that can lead to a fault

40

TABLE I: Relevant effects for the fault classification.

Acronym Description

UN undetectable

PST pipeline output stuck at a value

PH pipeline halted

ERR ST errors in the faulty stage

ERR NST errors in the next stage

detection. Some of these faults only affect the performance of

the circuit. This behavior can either be caused by a high rate of

false errors or due to an LPD at a gate that does not prevent the

EDL from detecting timing violations, such as the AND Gate.

In both cases, these slower circuits can still be commercialized

at a lower cost, since they are fully functional.

Some fault effects impact directly the circuit resiliency by

either completely disabling the EDL or increasing/decreasing

the TRW. Similar to the performance problem, an EDL that

has its TRW increased by a fault is still functional and it

can detect longer timing violations compared to the expected

EDL behaviour. When the TRW is reduced, the EDL may

not capture all the timing violations or, in the worst case, it

may miss all the timing violations when the EDL is disabled

by a fault, such as an SA0 at the Q-Flop sample signal.

The detection of these faults is critical, once the faulty EDL

propagates invalid data to be processed by the following

combinational logic, which can lead to a major system failure.

The faults called detectable in the next stage can only be

detected right in the next stage if the TRW of the next stage

is equal or longer than the TRW of the stage under test.

Otherwise, when the TRW of the next stage is shorter, the

timing violation can be propagated beyond the next stage.

V. FAULT CLASSIFICATION

So far the faults were discussed individually, looking at the

side effects observed in the overall operation of the circuit

and how each one can be detected. Now we present a fault

classification that generalizes the relationship between cause

and effect of the analysed faults. Table I shows the fault effects

observed during the circuit simulation that are relevant to the

fault classification.

Based on the individual analysis of the faults, we correlate

the cause, which is the fault simulated, and the effects listed

in Table I. The result of this is a fault classification that

groups faults with similar effects. Tables II and III show

the classification for the stuck-at faults and the propagation

delay faults, respectively. Both tables present the classification

assuming that a method to inject timing violations is available

(w/ TV) and without (wo/ TV) this method. It is possible to

see that without the TV some faults are undetectable (UN).

This demonstrates that the ability to control the injection of
timing violations is important for the testability of the EDL.

The missing items in Table III represent the faults described

in the analysis as don’t care. Especially for this classification,

the LPD faults in the OR Gate (Err1) and the AND Gate

(Err0) are classified as don’t care, since the circuit operates

as expected, but with a lower performance.

TABLE II: Classification for stuck-at fault model. Timing Violation
(TV).

Faulty SA0 SA1
Line wo/ TV w/ TV wo/ TV w/ TV

w1 PH PH PH PH

w2 PST PST PST PST

w3 ERR ST ERR ST ERR ST ERR ST

w4 UN ERR NST ERR ST ERR ST

w5 UN ERR NST ERR ST ERR ST

w6 UN ERR NST ERR ST ERR ST

w7 UN ERR NST ERR ST ERR ST

w8 PH PH PH PH

w9 UN PH PH PH

w10 PH PH UN PH

w11 UN PH PH PH

w12 PH PH PH PH

This fault classification guides the next steps towards the

design for testability of the EDL. As it is presented in Table

IV, the three approaches were evaluated in terms of fault

coverage of the 32 possible faults (don’t care faults are

not accounted). Functional test would be the first alternative.

The fault coverage would be of 34%, the smallest coverage

among the three. The next approach assumes a scan cell at

the Err signals of each stage to enhance its observability.

Another alternative would be to make the Q-Flops of each

stage scannable. On the other hand, the first approach is

preferable because using scan cells at the border of EDL and

the controller could also help to improve the controlability

of the controller. The observed fault coverage for this second

approach is 66%. To obtain a fault coverage of 100% it is

necessary to include a timing violation generator to fully

exercise the error detection logic. As previously demonstrated,

some faults are only observed when the circuit has a timing

violation and, in some particular cases, the timing violation

must occur at specific moments (at the end of the TRW) of the

circuit operation. A glitch generator could be used to exercise

the EDL’s logic, but this is still an open research topic that

must be further investigated.

VI. CONCLUSION

This paper addressed the testability of the error detection

logic of the Blade template. A fault classification based on the

relationship of cause and effect of faults in the overall circuit

operation was proposed. The fault analysis and classification

was used to propose three preliminary test methods and their

respective fault coverage for stuck-at and delay fault models.

It is shown that some faults can completely disable the error

detection capability of EDL, allowing the propagation of

timing violations. Without a testing approach it is not possible

to assure that the EDLs are going to perform as they were

designed and whether the actual resilience windows match

the specification. The analyses show that, to achieve a fault

coverage of 100%, design for testability circuitry must be

added into the design flow, such as including scan cells to

increase the observability and controlability, and a method to

41

TABLE III: Classification for propagation delay fault model. Timing Violation (TV).

Faulty SPD LPD
Element wo/ TV w/ TV wo/ TV w/ TV

Latch - - ERR NST ERR ST / ERR NST

tcomp ERR ST ERR ST UN ERR ST / ERR NST

tTD UN ERR NST ERR ST ERR ST

XOR Gate - - ERR ST ERR ST

C-element - - UN ERR NST

OR Gate - - UN ERR NST

Q-Flop - - - -

OR Gate (Err1) - - - -

AND Gate (Err0) - - - -

TABLE IV: Fault coverage obtained per test approach. (*) Fault
Detected.

Fault
Functional Scan Chain TV Gen.

Type
Wire/

Element

SA0

w1 * * *

w2 * * *

w3 * *

w4 *

w5 *

w6 *

w7 *

w8 * * *

w9 *

w10 * * *

w11 *

w12 * * *

SA1

w1 * * *

w2 * * *

w3 * *

w4 * *

w5 * *

w6 * *

w7 * *

w8 * * *

w9 * * *

w10 *

w11 * * *

w12 * * *

SPD
tcomp * *

tTD *

LPD

Latch * *

tcomp *

tTD * *

XOR Gate * *

C-element *

OR Gate *

Coverage 34% 66% 100%

inject timing violation at the EDL input. We expect that these

results would motivate further research on the test of other

resilient circuits such as, for instance, bubble razor.

ACKNOWLEDGMENT

The authors would like to thank Peter A. Beerel and

Matheus T. Moreira for the discussions about testability issues

on Blade. Alexandre would like to thank CNPq for the

financial support (process 460205/2014-5).

REFERENCES

[1] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, ”Timber: Time
borrowing and error relaying for online timing error resilience,” in DATE,
pp. 1554-1559, Mar. 2010.

[2] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull,
and D. Blaauw, ”Razor II: In situ error detection and correction for PVT
and SER tolerance,” IEEE JSCC, vol. 44, no. 1, pp. 32-48, Jan. 2009.

[3] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, and D.
Sylvester, ”Bubble razor: Eliminating timing margins in an ARM cortex-
M3 processor in 45 nm CMOS using architecturally independent error
detection and correction,” IEEE JSCC, vol. 48, no. 1, pp. 66-81, Jan. 2013.

[4] I. E. Sutherland, ”Micropipelines,” Commun. ACM, vol. 32, no. 6, pp.
720-738, Jun. 1989.

[5] I. J. Chang, S. P. Park, and K. Roy, ”Exploring asynchronous design tech-
niques for process-tolerant and energy-efficient subthreshold operation,”
IEEE JSSC, vol. 45, no. 2, pp. 401-410, Feb. 2010.

[6] N. Jayakuma, R. Garg, B. Gamache, and S. Khatri, ”A PLA based
asynchronous micropipelining approach for subthreshold circuit design,”
in DAC, 2006, pp. 419–424.

[7] D. Hand, M. T. Moreira, H.-H. Huang, D. Chen, F. Butzke, Zhichao Li,
M. Gibiluka, M. Breuer, N. L. V. Calazans, and P. A. Beerel, ”Blade – A
Timing Violation Resilient Asynchronous Template,” in ASYNC, pp.21-
28, May 2015.

[8] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S. Lu, T.
Karnik, and V. De, ”Energy-efficient and metastability-immune resilient
circuits for dynamic variation tolerance,” IEEE JSCC, vol. 44, no. 1, pp.
49-63, Jan. 2009.

[9] F. Rosenberger, C. Molnar, T. Chaney, and T.-P. Fang, ”Q-modules:
internally clocked delay-insensitive modules,” IEEE Trans. on Computers,
vol. 37, no. 9, pp. 1005-1018, Sep. 1988.

[10] R. Fuhrer, B. Lin, and S. Nowick, ”Symbolic hazard-free minimization
and encoding of asynchronous finite state machines,” in ICCAD, pp. 604-
611, Nov. 1995.

42

