
A Design Patterns-Based Middleware for
Multiprocessor Systems-on-Chip

Jean Carlo Hamerski∗†, Geancarlo Abich‡, Ricardo Reis‡, Luciano Ost§, Alexandre Amory∗
∗Escola Politécnica, Pontifı́cia Universidade Católica do Rio Grande do Sul, (PUCRS), Porto Alegre, Brazil
†Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul, (IFRS), Porto Alegre, Brazil
‡PGMICRO Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
§Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, UK

jean.hamerski@restinga.ifrs.edu.br, {gabich,reis}@inf.ufrgs.br, l.ost@lboro.ac.uk, alexandre.amory@pucrs.br

Abstract—Current multiprocessor systems might comprise
dozens of processors, requiring a runtime management to provide
performance while complying with system’s constraints such as
energy consumption, thermal balance, and fault tolerance. Self-
adaptive multiprocessor systems have been proposed to cover
some key aspects such as hardware abstraction, programming
models and modular software architecture. This paper provides
a modular middleware to assist the development of self-adaptive
services and applications on MPSoC environments. Based on key
design patterns, the proposed middleware uses highly efficient
features of object-oriented programming for embedded systems
and specific compiler optimization options. The results show a
case study of a self-adaptive application on top of the proposed
middleware. Additional experiments demonstrate a reduction in
the execution time from 3% up to 19%, presenting a memory
footprint overhead of 8.7% when compared to previous middle-
ware without the features to ease modular software design.

I. INTRODUCTION

The constant increase of applications’ complexity along
with technologies constraints (e.g., power and memory wall)
influenced the evolution of the embedded systems from a single
core to multiprocessor architectures. Multiprocessor system-
on-chip (MPSoCs) provide parallel processing capabilities,
aiming at covering the increasing requirements of emerging
applications. Resulting complexity calls for a flexible and self-
adaptive system, which must handle critical design constraints
to address multiple complex applications competing for re-
sources in the multiprocessor system.

Self-adaptive approaches have been proposed to cover
the requirements of operating systems and applications at
runtime [1–6]. Software modularity, object-oriented program-
ming, and software design patterns are examples of techniques
used to provide systems with self-adaptive property. The
software modularity aims to separate the software design from
the other system elements that are architecture dependents.
Object-oriented programming provides known advantages such
as code reuse and encapsulation. Software design patterns
are widespread solutions to common problems in operating
systems, which rely on portable code that can be reused
in many different situations. Some works target to improve
the software adaptability in embedded systems, focusing on
software development [4] and security issues [6]. Although
well-known in several segments, the applicability of these
techniques is not well explored in the multiprocessor systems
domain.

Middleware approaches leverage patterns and techniques to
bridge the gap between the functional requirements of applica-
tions and the underlying architecture [7, 8]. This approach is
used by solutions in the most diverse distributed environments,
such as the DDS1 (Data Distribution Service) for real-time
systems environments and ROS2 (Robot Operating System) for
robotic environments. Although the client nodes are designed
to memory-constrained environments, these solutions typically
make use of more burdensome infrastructure for centralized
management roles (e.g., broker), which are usually hosted on
a node without memory restrictions.

The main contribution of this paper is to demonstrate the
design of a middleware for proposing modular self-adaptive
services in MPSoCs with small memory. The proposed mid-
dleware has 17.03 Kbytes of footprint. The modular features
for self-adaptive services and applications are achieved by
incorporating best practices of object-oriented programming,
the publish-subscribe programming model for distributed sys-
tems [8], and design patterns which are suitable to MPSoCs
with small memory. The proposed middleware is public avail-
able3.

The rest of this paper is organized as follows. Section
II presents related works. Section III provides recommended
design patterns and best practices regarding to the middle-
ware design. Section IV details the the proposed middleware.
Section V presents the experimental setup and discusses the
results. Section VI points out the conclusions and provides
directions for future works.

II. RELATED WORKS

Several approaches are proposing the use of design patterns
and modular techniques to address the design of self-adaptive
systems in different computing systems.

Ramirez and Cheng [1] conduct a study comprising project
implementations to harvest adaptation-oriented design patterns
that support the development of adaptive systems in general
domains. A subset of collected design patterns is evaluated
in an adaptive news web-server case study. In this context,
Abuseta and Swesi [2] propose a set of design patterns for
modeling and designing self-adaptive software systems based
on IBM MAPE-K multiple control loop issues. To evaluate

1http://www.omg.org/spec/DDS/
2http://www.ros.org
3https://bitbucket.org/jeanhamerski/mqsoc/

978-1-5386-7431-4/18/$31.00 c© 2018 IEEE

TABLE I. RELATED WORKS COMPARISON

Reference Domain Approach Case Study Impact Study

Ramirez and Cheng [1] General Collection of adaption patterns for self-adaptation expertise
reuse. News Web Server No

Abuseta and Swesi [2] General Collection of design patterns for self-adaptive systems
based on IBM MAPE-K multiple control loop issues. E-learning Web Server No

Berkane et al. [3] General Collection of design patterns for developing policies for
self-adaptive systems at multiple levels of abstraction. Smart Home System No

Lakhani and Faisal [4] Embedded Systems Collection of design patterns with focus on software
development for embedded applications. No No

Said et al. [5] Embedded Systems
Propose five patterns to model a self-adaptive system,
comprising the Monitor, Analyzer, Decision-Making,

Acting and Assessing patterns.

Object Tracking and
Resource Allocation

Control Engine
No

Amorim et al. [6] Embedded Systems Systematic pattern-based approach that interlinks safety
and security pattern engineering workflow. Automotive System No

This Paper MPSoC
MPSoC middleware based on collection of Design Patterns

and best practices of object-oriented programming for
embedded systems, with focus on MPSoC domain.

Homogeneous MPSoC Applications Execution Time
and Memory Footprint

the applicability of the design patterns implemented in the
environment, they present some case studies through an e-
learning system. Furthermore, Berkane et al. [3] present an
approach based on design patterns for developing policies
for self-adaptive systems at multiple levels of abstraction.
Such system considers feedback loops modeled in a modu-
lar way, and evaluates the execution in a smart home case
study scenario. Although these works [1–3] present innovated
approaches to achieve reusable design, they are designed with
the focus on particular software development which comprises
specific resource constraints.

Recent works propose the use of design patterns along
with adaptive techniques to address the hard design constraints
of embedded systems. Lakhani and Faisal [4] present a re-
view regarding the evolution of design patterns developed for
building architectures to diverse applications with a special
focus on software development for embedded systems. Aiming
to achieve performance and to cover real-time constraints,
Said et al. [5] propose five design patterns used to model a
loop-based self-adaptive embedded system. Further, Amorim
et al. [6] present a systematic design patterns-based approach
that interlinks safety and security patterns, considering an
automotive use case scenario. All these approaches consider
embedded systems and target particular designs that cover
specific design constraints. However, none of them focus
on embedded multiprocessor system-on-chip platforms. While
these platforms provide parallel capabilities, the constraints
include all embedded design restrictions, even more strict,
increased by the complexity of management of multiple re-
sources and applications.

Table I shows a comparison between the proposed approach
and related works, emphasizing the performed impact at each
work in the respective domain. This paper is the first one
to present a middleware designed using design patterns and
object-oriented languages aiming to improve software modu-
larity and portability in the MPSoC domain.

III. BEST PRACTICES IMPLEMENTED IN THE PROPOSED
MIDDLEWARE

The usage of design patterns allows the reuse of established
solutions for known problems. In this section, we review
approaches that employ or propose the use of design patterns

to the MPSoC domain (Sec. III-A). Adding, we present some
best practices in object-oriented programming for embedded
systems (Sec. III-B) and details about the programming model
implemented in the proposed middleware (Sec. III-C).

A. Collected Design Patterns

Aiming design flexibility, the Container design pattern
comprises a holder object that stores a collection of other
objects (its elements). Containers are implemented as class
templates, supporting several element types. We have used two
categories of containers: Sequence Container and Associative
Container. Sequence Container stores objects and its elements
in a strict linear order, providing methods for accessing them
[9]. Examples of Sequence Container implementations are List,
Queue and Deque. Associative Container stores objects based
on keys (indexes), differing from sequence container since it
does not provide insertion at a specific position [9]. Examples
of Associative Container implementations are Map, Multimap,
Flat-map and Flat-multimap. We use the Queue container to
implement the Message Buffer component and the Flat-map
and Flat-multimap containers to implement the managed topic
tables in the proposed middleware (see Fig. 1).

Regarding design patterns for self-adaptive systems, the
Factory design pattern [1] allows the decoupling of high-
level elements (e.g., monitors, decision makers and actuators)
from those elements that are target-dependent (e.g., processing
elements and other low-level hardware/software components).
This design pattern creates a standard interface that can be
invocated in order to, for example, require information of a
distributed monitoring infrastructure. We use the Factory de-
sign pattern to implement the Sensor/Decision Maker/Actuator
interfaces detailed in the Sec. IV-B. The Broker design pattern
[10] decouples the communication between the communicating
elements in a publish-subscribe system. The Observer design
pattern [10] defines a one-to-many dependency in a system
with multiple both monitoring and actuation services. With
it, all dependent objects are notified about a changing of a
state in an object under observation. We use the Broker and
Observer design patterns to implement the publish-subscribe
programming model, detailed in the Sec. III-C.

Regarding software modularity, the Hardware Abstraction
Layer (HAL) pattern [11] abstracts the underlying hardware/-

software structure from the rest of the system by implementing
a driver with an abstract interface. We use the HAL pattern to
enable portability in the proposed middleware.

Dynamic memory allocation is another issue in environ-
ments with restrict memory size. The Fixed Memory Allocation
technique [11] allows the static allocation of the memory,
with its maximum size defined at compilation time, avoiding
unexpected behavior at runtime. We use this technique to
improve runtime predictability and reduce the software code
size when the dynamic allocation and adjacent library are used
to compile the source code.

B. Selected Programming Language

Most of the operating systems or middlewares for embed-
ded systems use C programming language because of the run-
time efficiency and the high availability of compilers for a wide
range of processors. Although design patterns can be imple-
mented in a non-object oriented programming language [12],
it leads to an awkward code, difficult to maintain. Recently,
there have been efforts to use C++ in embedded systems. Most
recent versions of C++, such as C++114 and C++145 standards,
have enhanced features like type traits, operator overloading,
static assertion, constant expression and concurrency support,
enabling part of the C++ language support for embedded
systems. The use of C++ in embedded systems with severe
memory limitation (about tens or few hundreds of KBytes per
processor) requires the use of techniques and best practices to
reduce the code size generated by the compiler on the target
platform. Following, we present some of these techniques
applied to the proposed middleware. The impact of using these
techniques is demonstrated in the Sec V-B2.

1) Placement new: The default new operator in C++ allo-
cates memory in the kernel heap area and constructs an object
in the allocated memory in execution time. This approach is
usually not suitable for embedded systems. The new operator
can cause unpredictable behavior in the lack of available
heap memory space. Limiting the object’s maximum allocation
space to a fixed amount of memory at compile time is an
alternative approach. Besides that, the default new operator
increases the code size generated by the addition of all inherent
methods of this operator, such as malloc, mallocr and free.
Placement new approach [13] reimplements the new operator
passing a pre-allocated memory area pointer and building the
object in the given memory at compile time.

2) Avoid Exception Handling: Exception C++ feature adds
to the code a large number of functions even when the
exception feature is not used. So, in addition to not explicitly
use exception handling in the code, it is advisable to include “-
fno-exceptions” in the compiler options to disable this feature.

3) Compiler Optimization Options: The GCC and G++
compilers provide a set of options to control sorts of opti-
mization. When used, they attempt to improve the performance
and/or code size. The available set of optimization options
depends on the target and how the compiler is configured. For
example, when the primary goal is small memory size, the
compiler could be instructed to optimize for size using the “-
Os” flag in the compilation command. Other options are “-O1”,

4https://www.iso.org/standard/50372.html
5https://www.iso.org/standard/64029.html

“-O2” and “-O3” to performance optimization in exchange,
generally, for large code size.

4) Embedded Template Library: The Standard Template
Library6 offers a set of well-tested design patterns implementa-
tions. However, it does not fit well in platforms with limited re-
source requirements. The Embedded Template Library7 (ETL)
is a worthwhile alternative designed for environments with
restrict memory resources, since it provides containers with
fixed capacity and static memory allocation. In the middleware
presented in this paper, we use the following ETL containers
patterns: queue; map; multimap; and its alternatives aiming
size memory optimization - flat map and flat multimap.

C. Used Programming Model for Distributed Memory

There are several programming models for systems based
on distributed memory, such as message passing, remote
procedure call, client-server, and publish-subscribe (also called
message queue). The publish-subscribe programming model is
used in the proposed middleware for decoupling the application
and system services development of the underlying hardware/-
software infrastructure. In this model, the participants (nodes)
communicate with each other by exchanging messages. The
broker pattern is used to mediate the advertise and subscribe
steps, decoupling, at the user level, the source of the messages
from their destinations. A subscriber node manifests interest
in a particular data or event identified by a topic (subscribe
step). The node is notified when a message is published in
this topic (publish step). The publisher node must register itself
in the system as topic generator (advertise step). Subscribers
interested in a topic receive notifications asynchronously.

IV. PROPOSED MQSOC MIDDLEWARE

The middleware proposed in this paper, called Message-
Queuing System on Chip (MQSoC), is based on the publish-
subscribe programming model [8]. In addition, we are also
proposing a new middleware structure based on an object-
oriented approach improved with design patterns and program-
ming best practices for embedded systems. The middleware
structure also includes a Hardware/Software Abstraction Layer
(HSAL), decoupling the middleware from the Operating Sys-
tem (OS) kernel and the hardware components.

Fig. 1 shows the proposed middleware structure and inter-
faces in a general MPSoC platform. From previous middle-
ware implementation [8], we have only derived the publish-
subscribe protocol phases. The remainder of the middleware
structure has been fully redesigned. The gray blocks represent
the modules implemented in this work. The white blocks
represent hardware and software modules inherited from the
base platform. The proposed middleware presents modules
related to the publisher, subscriber and broker management.
Containers represent data structures that store the topics data
handled by each manager module. A message buffer, im-
plemented through the Queue Container, retains the received
messages before delivering them to the application layer.

6https://www.sgi.com/tech/stl/
7http://www.etlcpp.com

Network-On-Chip Interface

Memory CPU

OS

Publishers Manager Subscribers Manager

Broker Manager

Containers

Sensor / Decision Maker /
Actuator Fabric

 MQSoC Middleware API

HSAL MQSoC API

MQSoC Middleware

Message Buffer

APP1 APP2 APPn

Hardware/Software Abstraction Layer (HSAL)

Fig. 1. Middleware structure and interfaces.

A. Platform Abstraction

The Hardware/Software Abstraction Layer (HSAL)
presents a set of primitives that aims to facilitate the
middleware portability in other platforms. It assures the
middleware portability by the implementation of a specific
driver for the target platform. The middleware code remains
the same. The proposed HSAL has standardized functions
to interface with the Kernel (i.e., to create, destroy, suspend,
and resume system tasks), NoC (to write or read in the NoC
interface) and MPSoC manager (i.e., to know if a node is the
broker of the system).

B. Modular Software for Self-Adaptive MPSoC

The proposed middleware additionally provides an inter-
face to manage self-adaptive services in the target platform.
The Factory design pattern is used to model the set of
sensor/monitor, decision maker and/or actuator components.
The proposed interface allows to create different behaviors for
these components and to call each one of them in a standard
way. Fig. 2 shows the base interface classes (sensor/monitor,
decision maker and actuator) and examples of derived classes
(sensors of CPU temperature and buffer occupancy, an instance
of a decision maker implemented through control theory, and
an actuator in CPU clock). The Alg. 1 shows an example
of sensors object creation in C++ using the Placement New
technique (Sec.III-B1), and how the sensors are called by
the middleware. Both sensors/monitors, decision makers and
actuators objects can be statically or dynamically added to the
middleware by using this interface. The Sec. V-C presents a
case study of a self-adaptive application modeled using the
proposed interface.

V. EXPERIMENTAL SETUP AND RESULTS

This section presents the MPSoC platform used in all
experiments (Sec. V-A), the performed experiments comparing
the proposed middleware and the previous middleware imple-
mentation (Sec. V-B), and the self-adaptive application case
study (Sec. V-C).

Decision Maker

- enabled: bool

+ enable() : void
+ disable() : void
+ enabled() : bool
+ update() : void

Sensor

- enabled: bool

+ enable() : void
+ disable() : void
+ enabled() : bool
+ update() : void

Control_Theory
<Decision Maker>

Actuator

- enabled: bool

+ enable() : void
+ disable() : void
+ enabled() : bool
+ update() : void

CPU_Clock_Set
<Actuator>

Temperature
<Sensor>

Occupancy
<Sensor>

Fig. 2. Sensor, decision maker and actuator base classes and derivations.

Algorithm 1 Example using two sensors objects.
Se ns o r ∗ S e n s o r s [2] ;
s i z e t s e n s o r L o c [2] [SIZE OF SENSOR OBJECT] ;
S e n s o r s [0] = new (s e n s o r L o c [0]) (Tempera tu r e) ;
S e n s o r s [1] = new (s e n s o r L o c [1]) (Occupancy) ;
. . .
f o r { i n t i =0 ; i <=1; i ++}

i f (S e n s o r s [i]−>e n a b l e d ())
S e n s o r s [i]−>u p d a t e () ;

A. MPSoC Platform

Fig. 3 illustrates the adopted case study platform composed
of a 4x4 NoC-based MPSoC platform, with homogeneous
processing elements (PEs) organized in clusters of 2x2 size.
Each PE includes a Cortex-M4F processor, private random
access memory (RAM) addressed to store the system (ker-
nel+middleware) and applications, network interface, DMA
and router. Each PE runs an extended FreeRTOS kernel in-
dependently, which uses cluster-based distributed management
with dynamic task mapping feature [14].

The proposed middleware was incorporated into this plat-
form through a specific HSAL implementation for the Free-
RTOS kernel. The MPSoC hardware infrastructure was des-
cribed using OVPSIM APIs8 by Imperas, which provides an
instruction accurate simulation framework.

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

MAPPING

Initial Task

Task

App Path

Cluster

Message Passing

Legend:

Application Repository

C
L
U
S
T
E
R

Processor

DMAN
et

w
o

rk
In

te
rf

a
ce

PE

Tn

.

.

.

T1

T0

FreeRTOS

R
A

M

SP
Applications

MQSoC Middleware

FreeRTOS Kernel + HSAL

ROUTER

Fig. 3. Case Study MPSoC 4x4 platform instance (adapted from [14])

B. Middleware comparison

This section presents the evaluated applications benchmark
and results regarding the middleware comparison against the
previous middleware [8].

1) Evaluated Applications Benchmark: In order to com-
pare the proposed middleware with the previous middleware

8http://www.ovpworld.org/technology ovpsim

a) Bank

P8

Recognizer

pub(A)

P2 . . .P1

topic A

sub(B) pub(C)

topic B

b)

Start IVLC

IQUANT

IDCT

PRINT

pub(A) sub(A)

pub(B)

sub(B)

sub(C)

pub(D)sub(D)

to
pi

c
A

to
pi

c
B

to
pi

c
C

to
pi

c
D

pub(C)

c)

Consumer

pub(A) sub(A)

to
pi

c
A

Producer

sub(A)
pub(B)
sub(C)

topic C

Fig. 4. Task graph of the a) MPEG, b) PROD-CONS, and c) DTW
applications.

implementation [8], we have used a benchmark composed
of the MPEG, Producer-Consumer (PROD-CONS) and DTW
(Dynamic Time Warping) applications. Fig. 4 shows these app-
lications represented through a task graph using the publish-
subscribe programming model. In the Fig. 4, a directed arrow
between two tasks (blocks in the figure) means that the first
task sends data to the second one. A message encapsulates the
data transferred between two tasks with a maximum payload
size of 512 bytes in the experiments. The number of exchanged
messages by an application depends on the workload data
configured at compile time, in the test scenario.

2) Results: We compare two equivalent implementations
of the middleware: a previous middleware implemented using
C programming language [8]; and the C++ based middleware
proposed in this paper (respectively C MIDD and C++ MIDD
in the Fig. 5). Both implementations use the same base
platform and programming model. The evaluated key metrics
are memory footprint and application execution time. The used
compilers are the arm-none-eabi-gcc and arm-none-eabi-g++,
version 4.9.3. All scenarios use a single-cluster 4x4 MPSoC,
with each PE executing a single task. Tasks are mapped in the
same PE in both C and C++ evaluation scenarios.

The first experiment evaluates the achieved memory foot-
print size (kernel + middleware) of the C++ middleware
implementation by using each technique and best practices
for embedded C++, as presented in Section III-B. The Tab.
II shows the footprint size of the initial version with no
optimization (first line) and the footprint size achieved after
using each technique, in the order in which they appear in the
table. The total memory footprint size achieved in the final
version of C++ the middleware is 17.03KB, being 11.06KB
related to the kernel size and 5.97KB related to middleware
size. Compared to the C-based middleware, the proposed C++
middleware represents an overhead of 1.37 KB (8.7%).

The second experiment evaluates the application execution
time measured through a timing model [14] that capture
the executed instructions for each processor, generating an

TABLE II. TOTAL MEMORY FOOTPRINT (KERNEL+MIDDLEWARE)
IMPROVEMENT

Version Footprint (KB) Reduction

No optimization (INITIAL VERSION) 106 -

+ Using “-Os” 75.29 29%

+ Using “-fno-exceptions” 75.01 0.4%

+ Replacing Map/Multimap by

Flat-map/Flat-Multimap 72.32 3.6%

+ Using “Placement new” (FINAL VERSION) 17.03 76.4%

0

2

4

6

8

10

12

14

16

8 16 32 64

A
p

p
lic

at
io

n
 E

xe
cu

ti
o

n
 T

im
e

(1

06
 C

lo
ck

 C
yc

le
s)

Workload (Number of Packets)

DTW/C++ MIDD

DTW/C MIDD

PROD-CONS/C++ MIDD

PROD-CONS/C MIDD

MPEG/C++ MIDD

MPEG/C MIDD
0

5

10

15

20

25

8 16 32 64

G
ai

n
 (P

er
ce

n
ta

ge
)

DTW
PROD-CONS
MPEG

Fig. 5. Application execution time for C and C++ scenarios.

execution time from total executed instructions. For this ex-
periment, we use the final version (last line in Tab. II) of the
C++ middleware, which incorporates all cited optimizations.
The execution time of both DTW, MPEG and PROD-CONS
applications were evaluated ranging the workload data from
8 to 64 packets. Fig. 5 shows the results for each scenario.
In all the simulated scenarios the C++ middleware presents
better application execution time. The Fig. 5 also shows the
percentage of gain obtained in the C++ middleware implemen-
tation compared with the C implementation (minor graph). It
reduces the execution time ranging from 4% to 13.4% in DTW,
from 3.4% to 19.5% in PROD-CONS, and from 3% to 6.7%
in MPEG, depending on the workload. The gain decreases
when the workload increases because the highest gain is
obtained on topic advertise/subscribe steps, which occurs at
the beginning of the application execution. In these steps, the
use of containers reduces the time spent with the insertion and
search of objects in the managed topic tables.

C. Self-Adaptive Application Case Study

This section shows an experiment performed to demon-
strate the feature provided by the proposed middleware to
manage self-adaptive services/applications.

1) Evaluated Application: For this experiment, the
Producer-Consumer application was modified to allow an
adaptive behavior on the data injection by the producer tasks.
The application is composed of one or more producer tasks
and one consumer task. The Fig. 6 shows a scheme of the self-
adaptive application. The producer tasks inject data messages
(of fixed size) in a configurable time interval (delay), and
a local actuator (DataInjectRate) adapts the injection rate
changing the delay at runtime. The actuators are commanded
by the decision maker present in the consumer task. The

DataInjectRate
<Actuator>

DataInjectRate
<Actuator>

Producer N

Producer 2

DataRcvRate
<Sensor>

IncDecDecision
<Decision Maker>

DataInjectRate
<Actuator>

Consumer

Producer 1\producer\1

\producer\2

\producer\N

Managed Application

Adaptive Service

\topic\name

Adaptive Service Component
<Base Middleware Class>

Application Task

DataMessagePath

ControlMessagePath

Legend:

desiredReceiveRate

\sensor\receiveRate \decisionMaker\injectRate

Fig. 6. Self-adaptive Prod-Cons application modelled using the middleware.

0

500

1000

1500

2000

2500

3000

3500

4000

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330

D
at

a
R

ec
ei

ve
 R

at
e

(b
yt

es
 p

e
r

kt
ic

k)
 -

C
o

n
su

m
e

r
Ta

sk

Tick Counter (kticks)

PROD2

PROD4

PROD6

PROD8

Max. Desired Data Rate = 2304

Min. Desired Data Rate = 1792

Max. Desired Data Rate = 3328

Min. Desired Data Rate = 2816

Change at Desired Data Receive Rate

Fig. 7. Data receive rate adaptation at consumer task.

decision maker (IncDecDecision) monitors the received data
rate (by subscribing to the topic “\sensor\receiveRate”) and
decides whether this rate should be increased, decreased or
if nothing should be done. The decision is published in
the topic “\decisionMaker\injectRate”. Since the producer
tasks have subscribed to this topic, they receive the decision
messages, and the actuator configures the new delay. The
actuation heuristic performed in the publisher tasks on the
configurable delay allows to increase or decrease by 10%
the delay depending on the decision message sent by the
consumer task. After a period of stabilization, it is expected
that the consumer task receives data messages at the desired
receive rate. The desired receive rate represents the application
requirement which must be achieved at runtime, expressing the
adaptability of the system.

2) Results: Fig. 7 shows the results of this experiment. We
have analyzed four scenarios, ranging the number of producer
tasks (2, 4, 6 and 8) in each scenario (PROD2, PROD4, PROD6
and PROD8, respectively). For this experiment, we define a
tick time of 1000 clock cycles. The consumer task performs a
round of decision at every 10 ticks (10000 clock cycles). We
defined an initial desired receive rate offset in the consumer
task from a minimum and maximum values of 1792 and 2304
bytes per tick, respectively). Each producer task begins the
data injection at an initial rate of 512 bytes per tick, defined
at design time. The results show that the data receive rate in
the consumer task is stabilized after around 80 ticks, reaching
the desired rate offset in all scenarios. At the instant 170, we
change the desired receive rate offset from 2816 to 3328 bytes
per tick in order to show the application adaptability at runtime.
As expected, the data receive rate is stabilized after instant 220.

VI. CONCLUSIONS

This paper presented a middleware to assist the develop-
ment of self-adaptive management services and applications
for MPSoCs. The proposed middleware is heavily based on
object-oriented practices and design patterns to deliver plat-
form abstraction, modular design, and decoupled distributed
programming model. Despite the common sense in the field
of embedded systems, where C programming language is
predominantly used, this paper showed that modern C++ com-
pilers along with best practices in object-oriented programming

are competitive in term of memory footprint and performance.
The performed experiments demonstrate that the proposed
middleware is well tailored to MPSoC domain since it presents
low memory usage and improved applications execution time.
An additional experiment shows the applicability of the pro-
posed middleware to design self-adaptive applications in the
MPSoC domain. Future works include evaluating the modeling
and implementation of emerging self-adaptive services aiming
to satisfy application requirements while at the same time
operating costs and energy-efficiency are optimized.

ACKNOWLEDGMENT

Thanks to Imperas Software Ltda. and Open Virtual Plat-
forms for support and access to their models and simulator.
Jean Carlo Hamerski is supported by CNPq and IFRS.

REFERENCES

[1] A. J. Ramirez and B. H. Cheng, “Design patterns for de-
veloping dynamically adaptive systems,” in ICSE Work-
shop on Software Engineering for Adaptive and Self-
Managing Systems, 2010, pp. 49–58.

[2] Y. Abuseta and K. Swesi, “Design patterns for self
adaptive systems engineering,” Int. Journal of Software
Engineering & Applications (IJSEA), vol. 6, no. 4, 2015.

[3] M. L. Berkane et al., “A modular approach dedicated to
self-adaptive system,” Lecture Notes on Software Engi-
neering, vol. 3, no. 3, p. 183, 2015.

[4] F. Lakhani and N. Faisal, “Design patterns-from archi-
tecture to embedded software development,” Int. Journal
of Computer Science Issues, vol. 12, no. 1, p. 146, 2015.

[5] M. B. Said et al., “Design patterns for self-adaptive
rte systems specification,” Int. Journal of Reconfigurable
Computing, vol. 2014, p. 8, 2014.

[6] T. Amorim et al., “Systematic pattern approach for safety
and security co-engineering in the automotive domain,”
in Int. Conference on Computer Safety, Reliability, and
Security. Springer, 2017, pp. 329–342.

[7] D. C. Schmidt and F. Buschmann, “Patterns, frame-
works, and middleware: their synergistic relationships,”
in Software Engineering, 2003. Proceedings. 25th Int.
Conference on. IEEE, 2003, pp. 694–704.

[8] J. C. Hamerski, G. Abich, R. Reis, L. Ost, and A. Amory,
“Publish-subscribe programming for a noc-based multi-
processor system-on-chip,” in IEEE Int. Symposium on
Circuits and Systems (ISCAS), 2017, pp. 1–4.

[9] D. A. Alonso et al., Dynamic Memory Management for
Embedded Systems. Springer, 2015.

[10] S. Tarkoma, Publish/subscribe systems: design and prin-
ciples. John Wiley & Sons, 2012.

[11] V.-P. Eloranta et al., “Patterns for distributed embedded
control system software architecture,” Tampere University
of Technology. Report 2, 2009.

[12] B. P. Douglass, Design patterns for embedded systems in
C: an embedded software engineering toolkit. Elsevier,
2010.

[13] K. Guntheroth, Optimized C++: Proven Techniques for
Heightened Performance. ” O’Reilly Media, Inc.”, 2016.

[14] G. Abich et al., “Extending freertos to support dynamic
and distributed mapping in multiprocessor systems,” in
IEEE Int. Conference on Electronics, Circuits and Sys-
tems (ICECS), 2016, pp. 712–715.

