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Abstract-Automatic pattern recognition from videos is a 
high-complexity task, and well-established Machine Learning 
algorithms have difficulties in handling it in an efficient and 
effective fashion. Convolutional Neural Networks are the state­
of-the-art method for supervised image classification, borrowing 
concepts from image processing in order to ensure some degree 
of scale and position invariance. They are capable of detecting 
primary features, which are then combined by subsequent layers 
of the CNN architecture, resulting in the detection of higher­
order complex and relevant novel features. Considering that 
a video is a set of ordered images in time, we propose in 
this paper to explore CNNs in the context of movie trailers 
genre classification. Our contributions are twofold. First, we 
have developed a novel movie trailers dataset with more than 
3500 trailers whose genres are known, and we make it publicly 
available for the interested reader. Second, we detail a novel classi­
fication method that encapsulates a CNN architecture to perform 
movie trailer genre classification, namely CNN-MoTion, and we 
compare it with state-of-the-art feature extraction techniques for 
movie classification such as Gist, CENTRIST, w-CENTRIST, and 
low-level feature extraction. Results show that our novel method 
significantly outperforms the current state-of-the-art approaches. 

Keywords-convolutional neural networks, video analysis, movie 
genre classification, machine learning 

I. INTRODU CTION 

Machine Learning (ML) is an area within computer science 
that is growing and evolving quickly. Probably most of the 
modern computer-based systems and applications make use 
of ML at some extent. The successful tasks performed by 
ML algorithms include a variety of applications such as hand­
written digits recognition [1], autonomous driving [2], gene 
expression classification [3], [4], protein function prediction 
[5], [6], software metrics estimation [7]-[9], real-time stream 
sensor analysis [10], and that is just to name a few. 

The task of automatically analyzing videos could help 
humans in solving several problems that are nowadays either 
too expensive or excessively tedious for them to perform 
alone. Whereas there are several efficient ML approaches that 
reach almost 94% of accuracy when classifying images as 
belonging to one within a thousand of labels [11], video-based 
applications have shown to be much more challenging. Such 
a task has a high complexity level, and well-established ML 
algorithms have difficulties in handling it in an effective and 
efficient fashion. 

Automatic video analysis is a broad concept and offers 
many research possibilities, such as action recognition, cat­
egorization, element recognition, context analysis, and many 
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other tasks. Recent work [12]-[14] address video analysis with 
Deep Convolutional Neural Networks (CNNs) [15], showing 
exciting first results and possibly paving the way for many 
applications to be further explored. 

CNNs are the state-of-the-art method for supervised image 
classification, borrowing concepts from image processing to 
ensure some degree of scale, position, and distortion invari­
ance. These ideas are based on the detection of primary 
features that may be located at any part of the image, such as 
oriented edges, end-points, and comers. These visual features 
are then combined by the subsequent layers in order to detect 
novel higher-order features, ultimately mimicking the human 
learning process. 

Each stage of a CNN comprises one or more convolutional 
layers (often with a pooling step) that are followed by one 
or more fully-connected layers (as in a standard multi-layer 
neural network). The CNN architecture is designed to take 
advantage of the 2D structure of an input image (or other 2D 
input abstractions such as a two-channel speech signal). 

In this paper, we propose a novel method supported by a 
CNN architecture to classify movie trailers according to their 
genres, namely CNN-MoTion (Convolutional Neural Networks 
for Movie Trailer Classification). Our contributions in this 
paper are as follows. First, we make publicly available a 
novel movie trailers dataset, which comprises more than 3500 
trailers that belong to one of the following four genres: action, 
comedy, horror, or drama. Second, we present CNN-MoTion 
in detail, and we empirically demonstrate that it outperforms 
the state-of-art movie trailer classification techniques Gist [16], 
CENTRIST [17], w-CENTRIST [18], and low-level features 
[19]. 

This paper is organized as follows. Section IT introduces the 
reader to the required background on video analysis through 
image-processing and machine learning techniques. Section TIl 
describes in detail our novel approach for movie trailers genre 
classification, whereas Section IV presents a thorough experi­
mental analysis for validating our research hypotheses. Finally, 
we end this paper with our conclusions and suggestions for 
future work in Section V. 

II. VIDEO ANALYSIS 

The problem of automatically analyzing videos through 
image-processing and machine learning approaches has been a 
much-studied research theme. One of the many possible tasks 
within video analysis is automatic movie genre classification. 



In this section, we present a background on the state-of-the-art 
approaches for solving such a task. 

A. Learning from low-level features 

Rasheed et al. [19] propose the extraction of low-level 
features to detect movie genres through the application of 
the mean-shift classification algorithm [20]. Such features are 
responsible for describing raw video elements, such as the 
average shot length, color variance, lighting key, and motion 
presence, which are computed as follows. 

1) Shot detection: For detecting when a novel shot happens 
within a video, one must compare every frame to its adjacent 
neighbor. A scene boundary is found when the inter-frame 
similarity is low. Frame similarity is computed via histogram 
intersection in the HSV (Hue, Saturation, Value) color space. 
Each histogram comprises 16 bins: eight for hue, four for 
saturation, and four for value. Eq. (1) details the histogram 
intersection computation. 

s(i) = L min(Hi(j), Hi-1(j)) (1) 
jEallbins 

Such an approach works well for detecting abrupt scene 
changes. However, the algorithm fails when soft transitions 
occur. For fixing that issue, we can iteratively smooth s(i) 
with a Gaussian kernel, as proposed by [21] and adapted by 
[19]. This process is presented in Eq. (2) , where t is the 
iteration number, A = 0.1 and k = 0.1. 

St+l(i) = St(i) + AloE·V ESt(i) +cw ·VwSt(i)] (2) 

VES(i)=0 S(i+l)-S(i) (3) 

VwS(i) =0 S(i -1) -S(i) (4) 

C1=g(IVESt(i)l) (5) 

civ = g(IVwSt(i)l) (6) 

g(x) = e-(t)2 (7) 

A scene boundary is set at the local mInIma of the 
inter-frame similarity smoothed function s(i). Each scene is 
represented by a single static frame known as the keyframe, 
which is the central frame from the scene. 

2) Color Variance: Color variance seems to play an im­
portant role at the movie genre classification. For instance, 
comedies often present a higher color variance than horror 
movies. To calculate such a feature one must convert the 
key frames into the CIE Luv space. Then, a covariance matrix 
must be generated, as presented in Eq. (8). 

(8) 

The determinant of Pcov, also known as the generalized 
variance, represents the movie trailer's total color variance. 

3) Lighting Key: There are two main lighting categories: 
high-key lighting and low-key lighting. The first one concerns 
of abundant bright color levels and less contrast between dark 
and light. In the latter, usually darker tones are predominant 
and there is a high contrast ratio. 

(9) 

The lighting key feature for frame i «(i) is computed as 
shown in Eq. (9). It is better extracted from the HSV color 
space by computing the mean (j.J,) and standard deviation 
(0") of the pixel values. A frame with high-key lighting is a 
consequence of high j.J, and 0" values. Conversely, a low-key 
frame is a consequence of low values from both j.J, and 0". 

4) Motion Content: The motion content feature represents 
the action in a movie, i.e., the amount of active pixels with 
time. This analysis must be done for every scene/shot with all 
frames. A practical way to compute this feature is based on the 
structural tensor theory (r). Given the x, y spatial dimensions, 
and the temporal dimension t, one can compute r following 
Eq. (10). 

(10) 

where Hx and Ht 
are the partial derivatives of the frames in 

either the x spatial dimension or the t temporal dimension. To 
calculate the gradients we convolve the frames both spatially 
and temporally by means of the Sobel filter. To find the 
direction of the gray levels we need to compute es for every 
pixel, as presented in Eq. (11). 

(11) 

When all e values are constant, it means there is no motion 
on the scene. When motion is global (e.g. camera movement), 
all pixels tend to move to the same direction. Local motion 
causes pixel values to move to different regions. To perform 
this analysis, we use the directions of the pixels' gray levels 
summarized into a 7-bin histogram. The majority of pixels are 
static and hence always fall into the first bin. The remaining 
non-static pixels are defined as active. The overall motion of 
a scene is the ratio of active pixels per total amount of pixels. 

B. Learning from high-level features 

A second approach for movie genre classification makes 
use of well-known image descriptors to compute high-level 
features for each keyframe. These image descriptors form a 
trailer holistic representation, though they are not capable of 
capturing motion information that varies with time. 

The work of Zhou et al. [18] make use of the image 
descriptors Gist [16], CENTRIST [17], and w-CENTRIST 
to extract high-level features from frames and then perform 
movie genre classification via the k-NN algorithm. The Gist 
descriptor tries to encode semantic information like natural­
ness, openness, roughness, expansion, and ruggedness that 
represent the dominant spatial structure of a scene [16]. Census 
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Transfonn Histogram (CENTRIST) [17] is an image descriptor 
that produces good results for environmental classification. It 
is often employed to recognize places and scenes. To generate 
the CENTRIST image, one must apply a spatial pyramid 
at different levels, breaking the image into smaller patches. 
This process enables the detection of both local and global 
information. Each patch is processed through the Census 
Transfonn which compares the pixels with its neighbors. This 
step produces an 8-bit vector replacing the current pixel. 
Afterwards, it is appended to the final vector containing all 
values from the patches. Finally, w-CENTRIST [18] modifies 
CENTRIST by taking into account color information, neither 
present in Gist nor in CENTRIST. For such, it makes use of 
the W color space, which is derived from the opponent color 
space [22] (see Eq. (12». 

[WI] [01] W2 = §� 

(12) 

(13) 

It is often the case that the image descriptors output is 
employed to build a bag-of-visual-words (BOVW) via the well­
known k-means clustering algorithm [16]-[18]. The final cen­
troids generated by k-means are known as codewords. Hence, 
each trailer keyframe is assigned to one cluster represented by 
a codeword, and then a global multi-dimensional histogram is 
built for each trailer, where each dimension encodes a part of 
the trailer (e.g., if t = 3 there is the first, second, and the third 
part of the trailer encoded as a histogram). In its final step, each 
trailer in the test set is processed by the k-NN algorithm that 
computes its neighbors according to the X2 histogram distance. 

C. Audio-based classification 

The work described in [23] employs both audio and video 
features extracted from the entire movie trailer. The authors 
extracted 277 features (75 from video and 202 from audio) 
and trained several SVMs with the one-vs-one approach, 
performing feature selection for selecting the best features for 
identifying each genre pair. This approach requires Cn(�n-l) 

SVMs, where Cn is the number of classes. For a 7-c1ass 
problem, it demands 21 classifiers, each trained with different 
features. First the authors define subset of features with the 
Self-Adaptive Harmony Search (SAHS) algorithm, and then 
they compute relative correlations for choosing the best subset 
for a given genre-pair. A good feature subset should contain: 
independent variables - Eq. (14), reduced intra-subset corre­
lation - Eq. (15), and high correlation with the target class -
Eq. (16), improving the overall relative correlation - Eq. (17). 

� � p(x,y) 
I(X,Y) = � �p(x,y)log 

( ) ( ) 
xEXyEY PI X P2 Y 

(14) 

(15) 

I lSI 
RT(S, y) = lSI � I(xi' y) (16) 

RC(S ) -
k x RT(S, y) 

(17) ,y - J k + k x (k - I) x RI (S) 

III. CNN-MoTION 

In this section we detail our novel approach for movie 
genre classification, namely CNN-MoTion: Convolutional 
Neural Networks for Movie Trailer Classification. We first 
present the data preprocessing and augmentation step in Sec­
tion III-A, and then the CNN architecture that was built 
to extract features from the movie trailers in Section llI-B. 
Finally, we explain our post-processing learning step, which 
is needed for converting the frame-based classification given 
by the CNN into the ultimate movie trailer classification 
(Section 1lI-C). 

A. Preprocessing and Data Augmentation 

In order to meet the input requirements for the CNN, a 
sequence of steps were taken to clean and augment the data. 
Cleaning the data is an important preprocessing step since 
the raw movie trailers contain data that are irrelevant for the 
purpose of genre identification, such as black borders used to 
compensate different video sizes and aspect ratios. In addition, 
when using models with thousands of parameters, such as 
CNNs, data augmentation is important to avoid overfitting. In 
a nutshell, we employ techniques to artificially enlarge the 
original data, generating label-preserving transformations with 
a low computational cost [24]. 

Since the input for a 2D-CNN is a set of images represented 
by 3D matrices (width x height x RGB), the preprocessing 
steps are applied for each frame of each movie trailer. First, the 
cleaning process is applied to clean and transform the frames 
to the format required by the CNN. It comprises the following 
steps: isolate the content area by removing black borders and 
downsizing the image to a fixed dimension (width x 256), 
keeping its original aspect ratio. Second, the augmentation 
process is employed to artificially extract images (of size 
224 x 224) from each frame (width x 224). It generates 5 
overlapping patches from different image regions (one patch 
per corner and one for the center). Alongside a horizontal 
flipping, this approach allow us to enlarge the original data 
tenfold. Figure 1 depicts the preprocessing and data augmen­
tation process. 

Finally, the preprocessed and augmented frames are then 
used as training set. The augmentation step is not performed 
for testing the model. Thus, for predicting purposes we use 
only the original frames without the black borders. 

B. CNN Architecture 

Convolutional Neural Networks (CNNs) [25] are a pow­
erful class of models with impressive results in image recog­
nition problems. Indeed, many studies have applied and im­
proved these models for traditional image-based classification 
[24], [26], [27]. Notwithstanding, video-based classification 
has proven to be a much more challenging task. 
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Original@640x480 No borders@479x275 Resized@240x136 Cropped@104x104 

Data augmentation 

Fig. 1: Data preprocessing and augmentation in CNN-MoTion. 

CNNs are neural networks that make use of convolutions 
instead of regular matrix multiplications in at least one of their 
layers [28]. Convolution is a mathematical operation over 2 
functions resulting in a modified version of these functions. 
Eq. (18) defines a convolution, where bij is the bias for a 
given feature map, m indexes over the set of feature maps in 
the (i _1)th layer connected to the current feature map, Wfjqk 
is the value at the position (p, q) of the kernel connected to 
the kth feature map, and Pi and Qi are the height and width 
of the kernel, respectively. 

vXY = relu (b . + '" �l �l wpq v(x+P)(y+q)) (18) tJ tJ � � � 'Jm (,-l)m 
m p=o q=O 

The intuition regarding the application of CNNs for video­
based classification emerges from the basic video components: 
frames. Movie trailers can be seen as a set of sorted frames, 
and each frame (image) will probably express a given genre re­
garding the particular shot that it represents. However, note that 
it is perfectly possible that some frames are more important 
in defining the actual movie genre than others, and also that 
there may be frames that are genre-free or generic regardless 
of the movie at hand. In a standard CNN architecture, each 
video frame consists of a single instance labeled according to 
the genre of the entire video. Note that the relationship among 
frames is not taken into account when considering a 2D-CNN, 
which means the network will evaluate each frame separately, 
since it does not convolve into the temporal dimension. 

Each stage of a CNN comprises one or more convolutional 
layers (often with a pooling step) and is followed by one or 
more fully connected layers (as in a standard multi-layer neural 
network). The CNN architecture is designed to take advantage 
of the 2D structure of an input image or any other 2D input 
abstraction that is developed according to the application at 
hand. 

Based on Simonyan [29], the CNN-MoTion architecture is 
defined as follows: C(16, 3) - C(16, 3) - P (2) - C(32, 3) -
C(32, 3) - P (2) - C (64, 3) - C (64, 3) - P (2) - C(128, 3) -
C(128, 3) -P (2) -C(128, 3) -C(128, 3) -P (2) -FC (2048) ­
FC (2048) , where C(#filters, filters' size) denotes a convolu­
tion, P denotes a pooling layer (size 2 x 2), and FC(#nodes) 
denotes a Fully-Connected architecture. All convolutional lay­
ers are succeeded by ReLU non-linear normalization. The 
network input consists of a 224 x 224 x 3 trailer frame. The 
result is an output array with 4 probabilities: one for each 
movie genre. 

For optimizmg the network, we employ the Stochastic 
Gradient Descent (SGD) with mini-batch of 128 instances, 
learning rate of 1 x 10-3 , momentum of 0.9 and weight decay 
of 1 x 10-5 . A separate validation set was employed to select 
the best training model. The network makes use of the well­
known Cross-Entropy loss function. 

For decreasing the computational cost of passing all trailer 
frames to the CNN, we decided to split each trailer movie 
into m keyframes (scene representatives) by employing the 
shot-detection algorithm described in [19], plus an additional 
percentage of frames from every shot according to its length 
(10% of the frames in a scene), resulting in a total of n frames 
per movie (variable size according to the number and length 
of shots per trailer). Our training set consists of 1,2 million 
images (post data augmentation), belonging to around 350 
movie trailers. 

CNN-MoTion offers different strategies for performing 
the final genre prediction based on the four probabilities 
provided by the CNN per test frame i, Pig, 9 E Q = 
{action, comedy, drama, horror}: 

• CNN-MoTion-S: classifies each movie trailer accord­
ing to the maximum weighted genre probability, as 
described in Eq. (19). 

• CNN-MoTion-P: employs a SVM post-processing 
learning step to fine-tune the classification (see Sec­
tion llI-C for details). The following frameworks 
(denoted by subscript letters) indicate which features 
are used during the post-processing learning step. 

o CNN-MoTion-Pp: only the CNN weighted 
predictions (Eq. (20)) are used in the post­
processing step. 

o CNN-MoTion-PAPv: MFCC audio features 
are used as features alongside the CNN 
weighted predictions (Eq. (20)) and low-level 
video features. 

o CNN-MoTion-PH: the frequencies of elements 
in a scene histogram are used as features 
during the post-processing step. 

o CNN-MoTion-PAHP: MFCC audio features, 
scene-histograms, and weighted predictions 
are used during the post-processing step. 
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Pt = argmax[pg] 
9 

LPi9 
iEF 

Pg = 

LLPij 
iEF jEg 

C. Post-Processing Learning Step 

(19) 

(20) 

The CNN output in CNN-MoTion can be seen somehow 
as a genre histogram of the entire movie trailer. We know 
that even for action and horror movies it is quite common 
the presence of generic frames, like people talking, landscape 
shots, etc. Action movies may not have the majority of frames 
expressing the "action" genre, considering that maybe the 
majority of frames could be generic. 

CNN-MoTion's more nai've classification approach, CNN­
MoTion-S, does not account for this fact. For instance, if the 
CNN associates these generic frames to a given genre, such as 
drama or comedy, the final classification of an action movie 
trailer most probably will not be accurate. Our idea, thus, for 
the CNN-MoTion-P version is to train an SVM classifier with 
the four CNN predictions Pg produced by the best training 
model. The novel training set for this post-processing learning 
step will thus contain 4 features (likelihood of each genre 
provided by the CNN) for each of the training set instances. 

Since our dataset is labeled at the movie level, there exists 
a semantic gap between the frame and movie levels, which can 
lead the CNN to be much less accurate than it is in problems 
such as object recognition from images. To address this issue, 
one could try many different things, such as: i) manually 
providing labels for aJI dataset scenes, a tedious and laborious 
task; ii) automatically providing labels to scenes using a pre­
trained scene recognition model [30], and then performing 
some kind of mapping between sets of scene labels and movie 
genres; iii) automatically providing labels for scenes with an 
unsupervised learning algorithm, and also performing some 
kind of mapping between these novel labels and movie genres. 

In CNN-MoTion, we decided to implement the unsuper­
vised approach which represent each movie trailer as a bag of 
visuaJ features. For each frame, we extracted the output from 
the last convolutionaJ layer, which is a 2048 feature vector. 
Then, we caJculate the average of these values per scene, 
going from frame-level anaJysis to scene-level anaJysis. This 
step generates a 2048-long vector that represents each movie 
trailer scene. Afterwards, we perform k-means clustering to 
automaticaJly find scene categories. For finding the proper 
vaJue of k (number of clusters), we run k-means on the training 
set and test the approach on validation data, varying the value 
of k 2 and 150. Once we have defined the clusters, CNN­
MoTion assigns each trailer scene to a "category" (Figure 2), 
building a scene-level histogram, where the histogram bins are 
the clusters. Finally, the k-bin histogram (H) act as potentiaJly 
novel features for the post-classification step. Since we are 
dealing with a high-dimensional feature space, the initialization 
has an important impact on the clusters that are found. Thus, 
CNN-MoTion runs k-means 20 times for finding the best 
prototype initiaJization. All feature values are normaJized in 
the [0,1] range. 

Cluster 1 Cluster 15 Cluster 25 Cluster 89 

Fig. 2: Scene-level histogram found with k-Means. 

So far, CNN-MoTion has seve raj fealures at disposaJ: 
i) scene histograms provided by the unsupervised clustering 
aJgorithm (H, for short); ii) weighted genre predictions for 
each trailer (P) (Eq. (20); iii) low-level video fealures from 
[19] (V1) and from [23] (V2); and iv) audio features [23] 
(A). For evaJuating the discriminative power of these feature 
subsets, we performed SVM classification with and without 
feature selection based on the information gain criterion [31], 
[32]. Table I presents details on the subsets of features. 

TABLE I: Feature sets summary. 

Feature Set 

Video Low Level Features [19] 
Video Low Level Features [23] 
Audio Features [23] 
MFCC (5 statistics) [23]. [33] 
CENTRIST scene histogram [19] 
Gist scene histogram [19] 
w-CENTRIST scene histogram [19] 
Weighted CNN Predictions [Ours] 
CNN scene histograms [Ours] 

Abrev. 

V, 
V2 

A 
MFCC 

CENTRIST 
GIST 

w-CENTRIST 

P 
H 

Vector size 

4 
75 

202 
52 

100 
100 
100 

4 
89* 

In Table II we provide the comparison results regarding 
the available feature subsets. Feature vectors P and H, which 
were extracted by CNN-MoTion, have shown to be more 
discriminative than the other feature subsets. Comparing only 
the image and video-based features, we see that our approach is 
15% better in terms of accuracy terms than the second place 
subset of features (V2). The features extracted by the CNN 
based on the trailer frames are only behind of the audio A set, 
which contains 277 audio features. 

Since the scene histogram feature vector is dependent of 
the unsupervised learning algorithm, its size is equal to the 
number of clusters k that was defined. The best k found by 
CNN-MoTion is 89. The MFCC descriptor is in the A feature 
vector, however we decided to create a separate set since it is 
a strong audio classification baseline [34], [35]. 

IV. EXPERIMENTAL ANALYSIS 

For vaJidating the performance of CNN-MoTion, we per­
formed severaJ experiments over a novel movie trailer dataset 
that we have developed and make it now publicly available 
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TABLE IT: Comparing the discriminative power of the feature 
subsets. 

Method 

w-CENTRIST + k-NN 

CENTRIST + k-NN 

VI + k-NN 
Gist + k-NN 
VI + SVM 
V2 + SVM 

MFCC + SVM 
A + SVM 

P [Ours] + SVM 
H [Ours] + SVM 

Accuracy 

29.50% 
29.97% 

33.14% 
34.21% 

35.31% 
43.44% 
59.69% 
59.38% 
58.44% 
62.19% 

Accuracy with Feat. Selection 

N/A 
N/A 
N/A 
N/A 

31.56% 
46.88% 

65.31 % 
66.21% 
60.63% 
63.44% 

(see Section IV-A). In Section IV-B, we detail the baseline 
algorithms that we compare with CNN-MoTion. These al­
gorithms are currently the state-of-the-art approaches in the 
movie genre classification domain. Finally, in Section IV-C we 
present the results of this empirical analysis and a discussion 
on our findings. 

A. Dataset 

To validate the hypothesis that movie trailer genres can 
be properly identified by CNN-MoTion, we need a labeled 
movie trailer dataset. Zhou et. al. [18] describe their own movie 
trailer data, though it is not made publicly available for the 
research community. Another curious fact is that 54% of the 
trailers in their dataset belong at the same time to three out of 
the four genres (the same four genres evaluated in here), and 
their reported accuracy values consider a correct classification 
whenever their approach classify the movie trailer as belonging 
to any of the labeled genres, which means movies with 3 genres 
have a 75% probability of being correctly classified simply by 
chance. 

We have developed a novel movie trailers dataset hereby 
called LMTD (Labeled Movie Trailer Data), which comprises 
more than 3500 trailers whose genres are known, and we make 
it publicly available for the interested readerl. The � 3500 
movie trailers are distributed over 22 different genres. For 
creating LMTD, we selected trailers with runtimes between 
60 and 200 seconds and release data after 1974. 

In this paper, to avoid the problems identified in the work 
of Zhou et. al. [18], we have selected a subset of 1067 movie 
trailers from the LMTD, as presented in Table III, where each 
trailer belongs to one of 4 disjoint genres (action, comedy, 
drama, or horror). Note that this subset is a consequence of 
1) restricting to 4 genres among the 22 existing ones, and 
2) selecting all disjoint movie trailer from the 4 selected 
genres. This subset is called LMTD-4. The training, validation, 
and test sets were chosen randomly among the available 
trailers. 

To collect the movie trailers, we developed a script to 
download them from a licensed You tube channel. They are 
stored as . mp4 files. Genres were automatically collected from 
IMDB (Internet Movie Database) and properly assigned to 
each collected trailer. Every movie is associated with at most 
3 genres, which are identified in the respective filenames. 

t In our research group website, http://www.inf.pucrs.br/gpin. go to the 
downloads section. 

TABLE III: LMTD-4 dataset. 

Genre Training Validation Test Total 

Action 97 90 98 285 
Comedy 98 93 91 282 
Drama 100 84 101 285 
Horror 86 65 64 215 

B. Baselines and Parameters 

To validate our results we compare CNN-MoTion with the 
state-of-the-art methods in movie genre classification, namely 
Gist [16], CENTRIST [17], w-CENTRIST [18], low-level 
feature extraction [19], and one-vs-one SVMs [23]. 

Note that the low-level features extraction approach pre­
sented by [19] makes use of a strategy that cannot be directly 
compared to the other methods. Therefore, we employ the 
same strategy of the work by Zhou et al. [18] for classifying 
the low-level features, which is to perform k-NN classification 
with a varying number of neighbors k. 

For training the 6 one-vs-one SVMs as described in [23], 
we used the REF (Radial Basis Function) kernel. Both C and 
'Y parameters were defined by the best performance on the 
validation set. All values were normalized between -1 and 
l. For the sake of simplicity, we performed feature selection 
with the information gain as heuristic instead of the SAHS 
plus cross-correlation as described in [23]. 

The remaining baselines are CENTRIST, w-CENTRIST, 
and Gist. For these approaches, we set the same parameters as 
defined in [18], namely: BOVW of 200 codewords, 100 bin 
histogram with t = 3, and k-NN with k = 5. 

C. Results and Discussion 

Table IV presents the results of our experimental analysis. 
Some of the baseline methods reach an accuracy of � 30%. 
Considering that classification by chance would achieve � 
25% of accuracy, one can easily verify the high-complexity of 
analyzing hundreds of movies and automatically discovering 
their genre through image-based approaches. 

TABLE IV: Results of the experimental analysis. 

Method 

w-CENTRIST [18] 
CENTRIST [18] 
Gist [18] 
One-vs-One SVM [23] 
CNN-MoTion-S 
CNN-MoTion-P A P v 
CNN-MoTion-P A H P 

Accuracy 

29.50% 
29.97% 
34.21% 
47.50% 

49.06% 
60.94% 
65.31% 

Accuracy with Feat. Selection 

N/A 
N/A 
N/A 

66.87% 
N/A 

72.19% 
73.75% 

Table IV shows that CNN-MoTion outperforms all im­
age/video based approaches, and that is true even for our 
simplest approach namely CNN-MoTion-S. Comparing mod­
els based on both audio and video features, our best result is 
around 7% superior than the state-of-the-art methods. These 
results indicate that the CNN feature extraction process is 
indeed better than then image/video features used in [23]. In 
addition, they show that even though our training method is 
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Fig. 3: Frames predicted by CNN-MoTion. The bar graph under the frames presents the respective genre probability. Orange 
stands for action, green for comedy, blue for drama, and purple for horror. 

based on weakly-labeled data, the Convolutional Neural Nets 
could learn discriminative semantic features. 

We noticed after a careful analysis of the per-frame re­
sults that CNN-MoTion-S tends to classify "dubious" frames 
(frames that we would classify as generic) as belonging to the 
comedy genre, which is a genre particularly hard to extract 
features from. CNN-MoTion-PAPv, which is the version that 
performs the post-processing learning step with the aid of low­
level and audio features, seems to have properly addressed this 
issue, since it was capable of correctly classifying action trail­
ers that were previously being classified as comedies/dramas. 
We also noticed that the color variance feature indeed helped 
to correctly classify several horror movies. The average shot 
length and the MFCC features proved to be helpful for 
discriminating all genres that were explored in our experiment. 

By further analysing the CNN-MoTion predictions we 
observe that our model seems to have learned robust features. 
The network could find relations not directly indicated in the 
dataset. For instance, in Figure 3 one can see sampled frames 
from Mad Max: Fury Road. All these frames are annotated as 
action in our dataset. The network have predicted the "action" 
genre for the first frame (68% probability), comedy for the 
second (47%), and for the third there is a draw between 
drama (32%) and horror (28%). One can observe that all 
these predictions are plausible: the first frame clearly indicates 
action, considering it shows an explosion; however, both the 
second and the third frames do not highlight any particular 
genre. 

Based on the accuracy measure, the best variation of 
CNN-MoTion is CNN-MoTion-P AHP, with 73.45%. For more 
performance details, see the confusion matrix in Figure 4. Note 
that our method has a specificity (TN / (TN + F P) ) of 97.41 % 
for predicting horror movies. For comedies, its specificity is of 
89.13%. However, the major issues are: action movies being 
predicted as drama, which occurs 14 times; and horror and 
drama movies being predicted as action trailers. 

V. CONCLUSIONS 

Automatic video analysis is a complex problem yet to 
be effectively handled by machine learning algorithms. The 

Action Comedy Drama Horror 

Action 

I 
62 7 14 0 

Comedy 4 72 10 1 

Drama 12 10 54 4 

Horror 13 3 6 48 J 
Fig. 4: Confusion matrix of the CNN-MoTion-P AHP method. 
Columns indicate the predictions and rows the real classes. 

specialized literature presents different techniques for video 
classification, most of them based on the extraction of sophis­
ticated image descriptors and further execution of traditional 
learning algorithms. In the last couple of years, many efforts 
have been employed for improving the automatic analysis of 
videos, specially with the rise of the so-called deep learning 
algorithms. 

The problem investigated in this paper was the automatic 
movie genre classification, which is far from presenting solu­
tions as good as those provided in several image classification 
contests. For addressing such a problem, we proposed a novel 
deep-learning based strategy named CNN-MoTion - Convo­
lutional Neural Networks for Movie Trailer Classification. 
In our experiments, we have compared our novel approach 
with the current state-of-the-art techniques, namely Gist [16], 
CENTRIST [17], w-CENTRIST [18], and low-level feature 
extraction [19], [23]. Our results clearly indicate that CNN­
MoTion has the edge in the movie genre classification problem, 
which confirms the current trend in which deep learning 
approaches are becoming the state-of-the-art in many media­
based applications (image, audio, and video recognition). 

Even though our results show a strong improvement over 
the state-of-the-art methods, we are confident there is much to 
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be done until movie genre classification is a solved research 
problem. For instance, we believe we could enhance the results 
by incorporating convolutions over the time dimension in order 
to avoid the generic frame issue that was detected during the 
experimental analysis. Hence, for future work we intend to 
develop a novel 3D-CNN architecture [12] for CNN-MoTion 
in order to capture the relationship among frames within the 
same trailer. 
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