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Abstract—This work presents a framework for heterogeneous
many-core SoCs generation, which comprises a flexible EDA
(Electronic Design Automation) framework and a many-core
model for heterogeneous SoCs. The framework together with the
many-core model supports the integration of processors, network
interfaces, routers, and peripherals. The hardware model is cycle-
accurate, with a SystemC model to speed up simulation time
and a VHDL model enabling prototyping in FPGAs devices.
The framework provides a rich set of graphical debugging tools
enabling an easy and intuitive understanding of computation
and communication events happening at runtime. The coupled
integration of the platform model to the EDA framework makes
the many-core well suited to be employed in research and
teaching. As case-study, we provide an evaluations addressing
the many-core generation, simulation, and debugging.

Index Terms—Heterogeneous Many-core; NoC (Network-on-
Chip); Architecture Model; Debug Framework.

I. INTRODUCTION

The design of many-core SoCs became predominant for
high-performance circuits. Such systems increase computing
power through parallel computation due to thread-level par-
allelism (at the system level) by splitting an application into
tasks that can run in parallel over several Processing Elements
(PEs).

The many-core design can be divided into logical and
physical design phases. Logical phase is concerned with
functional requirements. In this phase, the circuit is described
in a hardware description language. The modules of each PE
are developed and integrated. The system is simulated using
an RTL simulator, and the results are used to validate the
design according to the specifications. The physical phase is
concerned with the synthesis of the circuit according to the
target technology.

While the physical steps have a well-defined design flow
provided by CAD tools, the many-core logical design is an
open field to frameworks aiming design space exploration,
automatic system generation, and validation.

Table I presents related works related to many-core frame-
works. Features of our proposal include: (1) a scalable many-
core SoC with an hierarchical organization, allowing the
evaluation of large systems (e.g. 16x6); (2) support to the
connection with peripherals, as hardware accelerators; (3) an
RTL model enabling to capture detailed performance figures,
as frequency and energy consumption; (4) set of graphical
debugging tools providing views as packet paths in the NoC,
tasks’ mapping, tasks’ scheduling, tasks’ messages.

TABLE I: Related works Many-Core/MPSoC frameworks.
Work Peripheral

Support RTL Validation Online Support GUI

Monemi et
al.[1]-2017 As an IP Verilog OpenCores Generation

Elmohr et al.
[2]-2018 Inside PE Verilog No No

Busseuil et
al.[3]-2011 No VHDL No No

Zhang et al.
[4]-2015 No No No No

Balkind et al.
[5]-2016 No Verilog Own site No

Skalicky et al.
[6]-2015 No VHDL No No

This Work Chip borders VHDL,
SystemC Git, Own site Debugging

The goal of this work is to present the many-core model
(hardware, management and software) and the corresponding
debugging framework.

The original contribution of the paper is twofold:
• An architectural model, which comprises a homogeneous

many-core, surrounded by input/output peripherals;
• An integration with a rich set of graphical debugging

tools, aiming both the hardware (mapping, task schedul-
ing, NoC traffic) and application debugging (individual
trace messages for each executing task).

These features are coupled integrated, enabling to trace
hardware and software events simultaneously during the sys-
tem simulation.

II. MANY-CORE MODEL

The first three subsections describe the hardware, the man-
agement, and the application models. The last subsection
details the protocol for the admission of new applications into
the system.

A. Hardware Model
Figure 1(a) overviews the hardware components. The sys-

tem is heterogeneous because it contains two regions: the Gen-
eral Purpose Processing Cores (GPPC), and the Peripherals.
The GPPC includes a set of identical PEs that execute general
purpose applications. Peripheral are specialized cores, which
provide I/O interface and hardware acceleration for tasks
running on GPPC. Peripherals are connected to the boundaries
of the GPPC. The connection of peripherals in a NoC-based
SoC may occur at any location of the NoC, at external routers,
or at unused ports of the mesh NoC (e.g., South ports of
bottom routers). We adopted the last option, resulting in a
regular floorplan for PEs, with peripherals distributed along
the GPPC boundary.978-1-7281-0453-9/19/$31.00 c©2019 IEEE
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Fig. 1: Overview of hardware model.

Each GPPC PE (Figure 1(b)) contains a CPU, local memory,
a NoC router (PS) and a Direct Memory Network Interface
(DMNI) [7]. The CPU adopted in this work is the Plasma one
(MIPS-like). The DMNI module is a network interface with
DMA capabilities [7]. The local memory is a true dual-port
scratchpad, storing code and instructions. The goal of using
this memory model is to reduce the power consumption related
to cache controllers and NoC traffic (transfer of cache lines)
[8]. If some application requires a larger memory space than
the one available in the local memory, it is possible to have
shared memories connected to the system.

Peripherals are connected at the mesh NoC boundary ports.
Examples of peripherals include shared memories, accelerators
for image processing, communication protocols (e.g., Ether-
net, USB), and Application Injectors (AppInj). The system
requires at least one peripheral, the AppInj. This peripheral
is responsible for transmitting applications to be executed in
the GPPC.

The hardware architecture herein presented is well suited
to design systems as Field-Programmable System-On-Chip
(FPSoC), which combine the high processing power of many-
cores and the reconfigurable logic flexibility of FPGAs, and
is in accordance with the new demands of flexibility and
computing power of the IoT market[9].

B. Management Model

Scalability at the hardware level comes from PEs exe-
cuting several tasks in parallel, using the NoC to transmit
concurrently multiple flows. However, large systems require
high-level management for controlling the deployment of
new applications, monitoring resources usage, manage task
mapping and migration, and execute self-adaptive actions
according to systems constraints (as power cap [10]). Thus,
to achieve a scalable design, the architecture adopts cluster-
based decentralized management. Clusters are virtual regions
in the GPPC, with a set of slave processors (SPE) and one
manager PE (MPE). SPEs execute applications’ tasks, while
MPEs manage the clusters.

The management occurs at the MPE and SPE levels, executed
by the operating systems (kernels) running in those PEs. At the

MPE level the local memory is reserved to the kernel, without
executing user’s tasks. The MPE executes heuristics as task
mapping, task migration, monitoring, and reclustering. At the
SPE level, a multi-task kernel acts as an operating system. This
work adopts a paged memory scheme to simplify the kernel
design. Examples of actions executed by the kernel include
task scheduling, inter-task communication (message passing),
deadlines monitoring.

Both kernels are written in C language, easing the portability
to other architectures. Only a small part of the code is written
in assembly language, responsible for executing context saving
and handling hardware and software interruptions.

C. Application Model

Acyclic communication task graphs model the applications,
where edges represent communication between tasks, and
vertices represent the computation of each task. Tasks use non-
blocking Send() and blocking Receive() MPI-like primitives
to communicate. The SPE task scheduler supports real-time
(RT) and best-effort tasks (BE). RT tasks have constraints:
deadline, execution time and period. The adopted task sched-
uler is the Least Slack Time algorithm [11], which gives higher
priority to the task closest to its deadline. BE tasks use the
slack time of RT tasks to execute.

D. Dynamic Application Injection Protocol

Applications may start at any moment in the system,
characterizing a dynamic workload behavior. To support the
dynamic injection of new applications, it is necessary to deploy
a protocol enabling the admission of new applications into the
system. This subsection details this protocol, which is executed
between the AppInj and an MPE. This protocol is generic, and
may be deployed by other entities other than the AppInj, as
an Ethernet core.

Figure 2 depicts the sequence diagram of the protocol. The
process begins with AppInj requesting the execution of a new
application, by sending a ”NEW APP REQUEST” message
to an MPE with the application’s task number - step 1. This
message is addressed to the cluster zero MPE, which handles
this message. Only one MPE handles those requests because
it is necessary to have a global knowledge of the resources’
usage to select where to execute the new application.

• step 2. The MPE selects the cluster according to some
criterium, sending an ”APP ACK” message to AppInj,
with the MPE address selected to receive the application.

• step 3. The AppInj sends an ”APP DESCRIPTOR”
message, with the application task graph in its payload.
Upon the reception of this message, the MPE executes the
application task mapping.

• step 4. After task mapping, the MPE sends an ”APP
ALLOCATION REQUEST” message to the AppInj,
with the tuples {task ID, address}.

• step 5. The AppInj transfers the tasks’ object code to
the SPEs, ”TASK ALLOCATION” message, with the task
object code in its payload. When a given SPE receive
a ”TASK ALLOCATION” message, it configures the
DMNI to copy the task object code to a selected memory
page.
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Fig. 2: Sequence diagram of the Dynamic Application Injection
Protocol.

• step 6. Once received the task object code, the SPE
sends a ”TASK ALLOCATED” message to its MPE.
Such message is used by the MPE to control when all
application tasks were loaded.

• step 7. After receiving an amount of ”TASK ALLO-
CATED” messages equal to the application task number,
the MPE releases the application to execute by sending a
”TASK RELEASE” message to each SPE.

III. DEBUGGING FRAMEWORK

Figure 3 overviews the debugging flow. Traditional de-
bugging can be done using GDB, waveforms and log files
generated by RTL SystemC or VHDL simulators. Increasing
the number of the many-core components, low-level debugging
with waveform and logs becomes unfeasible. The framework
supports the integration of simulators with an intuitive debug-
ging framework [12], with a set of graphical tools enabling
developers to trace high-level system events during simulation.

The many-core description receives a module named Data
Extraction Layer (DEL) responsible for capturing communica-
tion and computation events. It is important to mention that the
DEL is non-intrusive, i.e., it only captures data, storing them
in a database and not affecting the applications’ performance.
DEL captures all packets arriving at any PE local port, storing
the packet information in a database, corresponding to the
communication events. DEL also captures software events, by
sniffing the CPU buses, enabling to trace specific OS and task
functions.

While DEL extracts and writes simulation data, the graphi-
cal tool reads such information at runtime, converting the raw
data into meaningful information represented graphically to
the user. In this sense, the debugging tool acts as a graphical
interface of the simulated many-core.

The platform developer uses the graphical tools to validate
heuristics such as task mapping, routing algorithms, operating
system functions (as send and receive primitives). For whom is
developing applications, assuming a given platform instance,
a specific tool enables to filter the messages per application,
allowing to validate parallels applications that use message
passing.

This debugging framework is not coupled to this specific
platform. The framework requires three configuration files:

Database

Communication 
Table

Computation 
Table

Database

Communication 
Table

Computation 
Table

Simulator

MPSoC Description
(RTL, TLM, Virtual)

my_testcase.yaml

packet.cfg

CPU.cfg

Data Extraction Layer 
(DEL)

Log files

GDB

DB Queries

DB Insertions

GUI Debugging Tool Set

waveforms

Communication 
events

Computation
events

Fig. 3: Debugging flow using a graphical tool with several windows
for computation and communication event debugging.

the platform description (my testcase.yaml); the packet con-
figuration file with the information related to the packets’
services; the CPU configuration file with the CPU addresses to
monitor and extract the computation events. Each packet has
in its payload a service identifier, which corresponds to the
action executed by the packet. With this service identifier, it
is possible to monitor the operations executed by the messages
exchanged between PEs and display them as high-level events.

IV. EXPERIMENTAL RESULTS

This section presents a case study using a many-core with
36 PEs (6x6), with 4 3x3 clusters. Figure 4(a) details the
applications’ task graphs. The communication application is
a parallel sort, and MPEG implements a pipeline MPEG
decoder. Figure 4(b) presents the platform configuration file
(hardware). The platform uses the SystemC model, is con-
figured to execute one task per PE, and the MPE is placed
at the LB (left-bottom) position of each cluster. Observe that
the AppInj (peripheral) is connected at PE 0x1 at the west
port. Executing the command platform-gen 6x6 3x3 sc.yaml
the directory 6x6 3x3 sc is created, with the hardware and
kernels compiled.

Figure 4(c) presents the scenario file, which lists the
applications to execute. Application communication is in-
jected into the system at 1 ms, being statically mapped and
application MPEG is injected at 2 ms, being dynamically
mapped. These applications are compiled and saved at the
6x6 3x3 sc/application directory by executing platform-app

task
A

task
B

task
C

task
D

6x6_3x3_sc.yaml
model_description: sc
tasks_per_PE:  1
page_size_KB:  32     
noc_buffer_size: 8      
mpsoc_dimension: [6,6]    
cluster_dimension: [3,3]
master_location: LB   
Peripherals: 
  - name: APP_INJECTOR
     pe: 1,0
     port: W

model_description: sc
tasks_per_PE:  1
page_size_KB:  32     
noc_buffer_size: 8      
mpsoc_dimension: [6,6]    
cluster_dimension: [3,3]
master_location: LB   
Peripherals: 
  - name: APP_INJECTOR
     pe: 1,0
     port: W

6x6_3x3_sc.yaml
model_description: sc
tasks_per_PE:  1
page_size_KB:  32     
noc_buffer_size: 8      
mpsoc_dimension: [6,6]    
cluster_dimension: [3,3]
master_location: LB   
Peripherals: 
  - name: APP_INJECTOR
     pe: 1,0
     port: W

scenario.yaml
apps:
 - name: communication
   start_time: 1
   cluster: 0
   static_mapping:
      taskA: [1,1]
      taskB: [2,1]
      taskC: [0,1]
 - name: mpeg
   start_time: 2

apps:
 - name: communication
   start_time: 1
   cluster: 0
   static_mapping:
      taskA: [1,1]
      taskB: [2,1]
      taskC: [0,1]
 - name: mpeg
   start_time: 2

scenario.yaml
apps:
 - name: communication
   start_time: 1
   cluster: 0
   static_mapping:
      taskA: [1,1]
      taskB: [2,1]
      taskC: [0,1]
 - name: mpeg
   start_time: 2

- communication/
  - taskA.c
  - taskB.c
  - taskC.c
  - taskD.c
    

(a) (b) (c)

- mpeg/
  - start.c
  - ivlc.c
  - idct.c
  - iquant.c
  - print.c
    

start

ivlc

idct

iquant

print

mpeg

communication

(a) (b)
(c)

(d)

Fig. 4: Applications’ task graphs, and configuration files for the
platform and the software.
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model_description: sc
tasks_per_PE:  1
page_size_KB:  32     
noc_buffer_size: 8      
mpsoc_dimension: [6,6]    
cluster_dimension: [3,3]
master_location: LB   
Peripherals: 
  - name: APP_INJECTOR
     pe: 1,0
     port: W

model_description: sc
tasks_per_PE:  1
page_size_KB:  32     
noc_buffer_size: 8      
mpsoc_dimension: [6,6]    
cluster_dimension: [3,3]
master_location: LB   
Peripherals: 
  - name: APP_INJECTOR
     pe: 1,0
     port: W

6x6_3x3_sc.yaml
model_description: sc
tasks_per_PE:  1
page_size_KB:  32     
noc_buffer_size: 8      
mpsoc_dimension: [6,6]    
cluster_dimension: [3,3]
master_location: LB   
Peripherals: 
  - name: APP_INJECTOR
     pe: 1,0
     port: W

scenario.yaml
apps:
 - name: communication
   start_time: 1
   cluster: 0
   static_mapping:
      taskA: [1,1]
      taskB: [2,1]
      taskC: [0,1]
 - name: mpeg
   start_time: 2

apps:
 - name: communication
   start_time: 1
   cluster: 0
   static_mapping:
      taskA: [1,1]
      taskB: [2,1]
      taskC: [0,1]
 - name: mpeg
   start_time: 2

scenario.yaml
apps:
 - name: communication
   start_time: 1
   cluster: 0
   static_mapping:
      taskA: [1,1]
      taskB: [2,1]
      taskC: [0,1]
 - name: mpeg
   start_time: 2

- communication/
  - taskA.c
  - taskB.c
  - taskC.c
  - taskD.c
    

(a) (b) (c)

- mpeg/
  - start.c
  - ivlc.c
  - idct.c
  - iquant.c
  - print.c
    

start

ivlc

idct

iquant

print

mpeg

communication

(a) (b)
(c)

(d)

Fig. 5: Windows of the debug framework for testcase 6x6 3x3 sc execution applications of scenario. (a) Main view of many-core. (b) Task
mapping view. (c) Communication load map view. (d) CPU utilization view.

6x6 3x3 sc.yaml communication mpeg. Finally, the execution
of the command platform-run 6x6 3x3 sc.yaml scenario.yaml
50 starts the platform simulation for 50 ms.

Figure 5 shows a set of windows of the debug framework,
where it is possible to observe the system and applications
behavior. Figure 5(a) depicts an overview of the many-core,
allowing to trace the packets (red arrows), and see the link
utilization (inside each router’s box), during the simulation.
Figure 5(b) shows the mapping of the two tasks of scenario,
communication in green (statically mapped) and MPEG in
brown (dynamically mapped). Each SPE executes one task as
specified. The number after the task name is its unique ID
assigned by the MPE during application admission. Figure 5(c)
shows the communication load map view, where is possible
to analyze the communication load distribution due to a
color spectrum representation. As expected, the routers where
application communication was mapped present a higher com-
munication load. The SPEs where MPEG tasks execute present
a lower communication load due to the mixed profile of MPEG
related to its time in computation and communication. Finally,
Figure 5(d) shows the CPU of SPE 2x1 executing task B. The
green slices are related to the kernel execution, and blue slices
are related to the task execution. It is possible to observe that
taskB have periods of execution and idle periods. The idle
periods are due the task is waiting for a message from taskA.

This framework allows to simultaneously debug hardware
and software during system simulation using high-level events.
This framework is an original feature of the work, which
simplifies the hardware and software debugging for designers.

V. CONCLUSION

This work proposed an open-source framework and a many-
core model suitable for researchers and parallel applications’
developers. This work showed how to build a heterogeneous
multi-core, using a homogeneous processing core with dis-
tributed management for processing user applications, with a
set of peripherals connected at the boundaries of this core.
The architecture model considers physical constraints (floor-
planning). Architecture models where peripherals can be con-
nected anywhere in the NoC are not feasible to be physically
implemented. It is possible to generate only the hardware and
keep the same software, allowing the design space exploration
of different optimizations at the hardware level. Likewise, it is

possible to maintain the same hardware and develop different
applications’ sets for this particular platform. Thus, the final
system is flexible and easily customized by designers.

Future work include: (i) developing a peripherals library;
(ii) prototype the system in FPGAs; (iii) make available other
processor models (such as RISC-V), adapting the kernels.
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