
Service Level Objectives via C++11 Attributes

Dalvan Griebler1, Daniele De Sensi2, Adriano Vogel1, Marco Danelutto2, and
Luiz Gustavo Fernandes1

1 Pontifical Catholic University of Rio Grande do Sul (PUCRS)
dalvan.griebler@acad.pucrs.br

2 Department of Computer Science, University of Pisa (UNIPI)

Abstract. In recent years, increasing attention has been given to the
possibility of guaranteeing Service Level Objectives (SLOs) to users about
their applications, either regarding performance or power consumption.
SLO can be implemented for parallel applications since they can pro-
vide many control knobs (e.g., the number of threads to use, the clock
frequency of the cores, etc.) to tune the performance and power consump-
tion of the application. Different from most of the existing approaches,
we target sequential stream processing applications by proposing a so-
lution based on C++ annotations. The user specifies which parts of the
code to parallelize and what type of requirements should be enforced on
that part of the code. Our solution first automatically parallelizes the
annotated code and then applies self-adaptation approaches at run-time
to enforce the user-expressed objectives. We ran experiments on different
real-world applications, showing its simplicity and effectiveness.

Keywords: Parallel Programming, Adaptive and Autonomic Comput-
ing, Power-Aware Computing, Domain-Specific Language.

1 Introduction

The rich stream processing application domain motivated the creation of differ-
ent parallel programming environments/tools to speed up the computation of
data stream. In multi-core systems, this is typically exploited by using linear or
non-linear pipeline structures [15]. To this purpose, state-of-the-art framework
such as Streamit, TBB, and FastFlow provide different programming approaches
and interfaces with a reasonable performance scalability for this domain [19, 16,
1]. Although these frameworks are equipped with high-level patterns implemen-
tation to express the parallelism, they are still closer to expert system program-
mers rather than to the application domain programmers. Seeking to provide
domain-specific and suitable abstractions for stream parallelism, SPar was cre-
ated. Different from these frameworks, application programmers are invited to
express parallelism with SPar through C++11 annotation without the need for
rewriting/restructuring the sequential source code semantics [10].

Moreover, stream processing applications usually have unpredictable load
fluctuations and uncertain end of execution (may never end) characteristics [3].

Therefore, besides the need for improving performance through the efficient ex-
ploitation of the multi-core parallelism, there are other major concerns such
adaptive and autonomic computing, power-aware computing, and efficient re-
source usage [9, 13]. In this direction, Nornir was created to be a simple inter-
face and runtime support to dynamically and automatically control the resources
allocated to the application according to the user needs [7]. However Nornir,
like most existing self-adaptive solutions, only works on parallel applications.

In this paper, we propose the use of the Service Level Objective (SLO) con-
cept [18] for sequential stream processing applications. The idea is that the
programmer annotates the code by using the SPar language, synergistically
specifying both the parallelism exploitation and the SLO. Based on the code
annotations, SPar generates a parallel code with the Nornir runtime system,
which will dynamically adapt the parallel execution to meet the SLO. We sim-
plify the SLO definition by introducing new attributes in SPar. The simplicity is
delivered by integrating SPar annotation syntax with new attributes to specify
SLO about throughput, power consumption, system utilization or a combina-
tion of these. Our approach could also be applied to REPARA project3, which
provides a set of C++11 attributes to introduce parallelism [6].

This paper is organized as follows. In Section 2 we analyze the related work
in this area. Then, in Section 3 we introduce the SPar domain-specific language
and in Section 4 we describe how we extended it to consider SLO. In Section 5
we perform our evaluation and, eventually, in Section 6 we draw the conclusions,
and we outline some possible future directions for this work.

2 Related Work

In the literature, there are different studies targeting power consumption, through-
put, and system utilization objectives. Among them, the approach of Maggio el
al. [13] monitors generic applications and supports the specification of a target
performance (throughput) in the parallel code. It efficiently manages the CPU
cores, adapting the amount of resource usage needed. However, it supposes that
the parallel application has already been implemented, and does not provide any
mechanism to introduce SLO in sequential programs.

Concerning stream parallel processing for real-time data analytic, Floratou
et al. [9] introduced the notion of self-regulation in Twitter’s Heron framework,
called Dhalion. The user defines a target throughput as an SLO parameter for
Dhalion. The self-regulator engine handles the number of process and number
of instances in a cloud infrastructure to provide the specified throughput. In
the experiments, the results revealed that the system can dynamically adapt
resources and automatically reconfigure to meet SLOs. We differently proposed
three target SLOs (throughput, energy, utilization) to be expressed in sequential
source codes for multi-core systems. Our adaptive runtime uses system knobs and
applies machine learning algorithms to dynamically adapt CPU frequency and
the number of active threads to meet SLO requirements.

3 http://repara-project.eu/

There are studies focusing on high-level abstractions for energy saving on
data parallelism [2, 17]. They provide compiler directives for expressing energy
consumption and performance objectives in OpenMP. While Shafik et al. [17]
can minimize energy consumption on both sequential and parallel applications,
they do not provide any means to explicitly control the performance of the ap-
plication. On the other hand, in Alessi et al. [2], OpenMPE is proposed adding
a new construct and two clauses (objectives) for OpenMP. Their solution was
implemented using a source-to-source compiler, which recognizes the new direc-
tives and control the number of threads used by OpenMP and applies DVFS
to satisfy the SLOs expressed by the user. This is probably the closest work to
the approach we are proposing in this work. The main difference is that, while
Alessi et al. [2] targets batch applications (i.e. applications for which all the
input data is already available in memory) implemented through OpenMP, we
provide support for stream processing applications, exposing ad-hoc SLOs for
these applications such as system utilization.

3 SPar: High-Level Stream Parallelism

SPar4 is an internal Domain-Specific Language (DSL) designed to support high-
level stream parallelism for application programmers [10]. With SPar, instead of
rewriting the source code, the programmer introduces C++ annotations (stan-
dard C++-11 [14]) using five attributes, representing the main properties of
stream processing applications. The ToStream attribute identifies the beginning
of a stream region, which can be viewed as an assembly line. The Stage at-
tribute marks a stage in the assembly line and as many as necessary can be
declared. Auxiliary attributes can be used inside the attribute list of an annota-
tion sentence. The Input and Output respectively attributes are used to specify
the input and output stream items, while the Replicate attribute is used for
replicating stateless stages to increase the degree of parallelism.

Listing 1.1 provides a short code example annotated with SPar attributes.
This example represents a typical use case of stream parallelism, where there is
a sequence of operations to be performed on each stream element. The parallel
activity graph produced by the SPar compiler for Listing 1.1 is shown in Figure 1.
SPar generates the parallel code with the FastFlow library [1], which implements
different parallel patterns [15] for stream processing computations. SPar compiler
parses the code of Listing 1.1 and represents the code with an Abstract Syntax
Tree (AST) [10]. Traversing the AST, it performs a semantic analysis of the
attributes to further make the source-to-source transformation. In this step,
SPar compiler finds the best parallel pattern that meets the parsed annotation
schema. In the case of Listing 1.1, it will generate parallel code with three stages
where one of them have replicated instances. There will be situations where there
will be different compositions of stages and replicated instances. By default,
elements are scheduled from the ToStream stage to the Stage.x stages in a
round-robin way. However, it is possible to use an on-demand policy by specifying

4 SPar website: https://gmap.pucrs.br/spar

the -spar ondemand flag to the SPar compiler. If the data needs to be received
from the last stage in the same order it was produced by the ToStream stage,
the programmer can specify the -spar ordered flag to the SPar compiler.

1 [[spar : :ToStream]] while (1) {
2 frame f = read frame () ;
3 i f (f . empty ()) break ;
4 [[spar : : Stage , spar : : Input (f) , spar : :

Output(f) , spar : : Replicate (n)]]
5 for (int i =0; i<f . l ength () ; i++) {
6 f [i] = convert (f [i]) ;
7 }
8 [[spar : : Stage , spar : : Input (f)]] {
9 wr i t e f rame (f) ;

10 }
11 }

Listing 1.1. SPar code example. Fig. 1. Parallel activity graph.

4 Service Level Objective for Stream Parallelism

Service Level Objectives (SLOs) are traditionally included in Service Level Agree-
ments (SLAs), which are contracts to manage the quality of service delivered by
or received by a provider [18]. An SLA contract defines the acceptable levels of
service by user and attainable levels of service by a provider. The SLO is a target
value or a range of values for a certain level of service to be delivered and the level
of service is measured by a Service Level Indicator (SLI). A typical structure of
SLO can be written SLI ≤ target or lower bound ≤ SLI ≤ upper bound [4].
When an SLO is violated, the system should autonomously react to guarantee
the quality of service and SLA. Our design goal is to simplify the usability of
SLO for stream parallel applications, on top of an existing parallel programming
tool. Since SPar already provides high-level parallel programming abstractions
and allows us to extend its annotations, we made our proof of concept on top
of it. We will concentrate for the moment on three different SLOs (through-
put, power, and utilization), which can be expressed by using standard C++11

attributes that will be described in the following section.

4.1 Attributes

The proposed attributes have to be used along with a ToStream annotation,
which identifies the beginning of a stream parallelism region, so that the SLO
is applied to this particular region. Listing 1.2 presents how the code looks
like when expressing a power consumption SLO of 60 watts. It is worth noting
that, beside the slo::Power attribute, no other modification is required with
respect to the original SPar code (Listing 1.1). The following list enumerates the
attributes we added to SPar in this work, to support SLOs.

1 [[spar : :ToStream , s lo : :Power(60)]] while
(1) {

2 frame f = read frame () ;
3 i f (f . empty ()) break ;
4 [[spar : : Stage , spar : : Input (f) , spar : :

Output(f) , spar : : Replicate (n)]]
5 for (int i =0; i<f . l ength () ; i++) {
6 f [i] = convert (f [i]) ;
7 }
8 [[spar : : Stage , spar : : Input (f)]] {
9 wr i t e f rame (f) ;

10 }
11 }

Listing 1.2. SPar code example with power
consumption SLO.

Fig. 2. Parallel activity graph with
self-adaptation support.

slo::Power(<max-watts>) is the attribute used to specify the power consump-
tion SLO. The user can specify the maximum power consumption in Watts. If
no other attributes are specified, Nornir will implicitly find the configuration
with the highest throughput among those with a power consumption lower than
<max-watts>.

slo::Throughput(<min-items/second>) is the attribute used to specify the
application throughput SLO. The user can specify the minimum throughput
required in items per second. If a power consumption SLO is not explicitly set,
Nornir will implicitly find the configuration with the lowest power consumption
among those with a throughput greater than <min-items/second>.

slo::Utilization(min-percentage) is the attribute used to specify the ap-
plication utilization SLO. The user can specify the minimum utilization required
in percentage. Utilization represents the percentage of time that the system is
active (i.e. actively processing input elements) over a time interval. Having a low
utilization is often associated to a low power efficiency, since resources may be
active but performing useless activities (i.e. actively waiting for new elements
to be processed). If a power consumption SLO is not explicitly set, Nornir
will implicitly find the configuration with the lowest power consumption among
those with a greater utilization number than <min-percentage>.

4.2 Implementation and Self-Adaptation Support with Nornir

In the SPar compiler, we registered the new SLO attributes and performed the
semantic analysis traversing the source code AST. Since the SLO attributes
belong only to the ToStream attribute list, we stored it along with the SPar
AST [10]. In the source-to-source code transformation, we generate the same
parallel patterns originally designed. However, we check if there is an SLO at-
tribute to generate code with Nornir in the situations where SPar annotation
generates a stage with replicated instances.

To provide the specified SLO, we couple a self-adaptive runtime to the activ-
ity graph (Figure 2). In this work, we rely on the Nornir self-adaptive runtime
support [7]. Nornir monitors the application throughout its entire execution,
dynamically changing the number of resources used by the application to sat-
isfy the requirements expressed by the user. For example, Nornir may decide
to reduce the number of replicated stages of the application to decrease its
power consumption, or to increase the clock frequency of the cores to increase
its throughput5. Nornir can rely on different algorithms to decide how many
resources to add/remove, either based on machine learning techniques [8] or
on heuristics. In both cases, when the application starts, Nornir spends some
time in collecting data about the application in different configurations. These
data are used to build prediction models which will be used to find the optimal
configuration according to the objectives specified by the user. If no feasible so-
lutions are found, Nornir will select the configuration with performance and
power consumption closest to the user requirements. More information about
this algorithm can be found in [8].

Besides providing the possibility to control existing parallel applications (by
inserting instrumentation calls in the existing code), Nornir can also be used as
a programming framework (by relying on the FastFlow framework) for imple-
menting stream-parallel applications with an embedded self-adaptation support.
In this work, we exploited this second possibility, so that SPar can translate se-
quentially annotated code into self-adaptive Nornir parallel code.

While the integration with SPar allows to use Nornir in a simple and trans-
parent way, it is worth noting that Nornir could also be used on other frame-
works different from SPar.

5 Experiments

In this section, we evaluate our approach over some real-world applications. We
will first introduce the considered applications. Then, we will compare the code
generated by SPar with some handwritten parallel implementations, both regard-
ing maximum performance achieved and in terms of productivity. Eventually, we
will analyze the self-adaptation capabilities of our solution under different sce-
narios.

All the experiments have been executed on a dual-socket NUMA machine
with two Intel Xeon E5-2695 Ivy Bridge CPUs running at 2.40GHz featuring
24 cores (12 per socket). The machine exposes 13 frequency levels, ranging from
1.2GHz to 2.4GHz, at steps of 0.1GHz. Each core has 2-way hyperthreading,
32KB private L1, 256KB private L2 and 30MB of L3 shared with the cores on
the same socket. The machine has 64GB of DDR3 RAM. We used Linux 3.14.49
x86 64 shipped with CentOS 7.1 and gcc version 4.8.5. For all our experiments
we disabled the hyper-threading feature.

5 Since the number of replicas is dynamically changed during the execution, the num-
ber of replicas specified with the spar::Replicate attribute now represents the
maximum number of replicas that can be active at any time.

5.1 Applications

In this section, we briefly describe the real-world application set, input loads,
and parallel implementations. For a detailed description of how Lane Detection
and Person Recognition have been parallelized by using SPar please refer to [12],
while for Pbzip2 more details can be found in [11].

Lane Detection is a video processing application to detect road lanes, imple-
mented by using the OpenCV library. To introduce parallelism in the sequential
code, we annotated it with SPar by identifying three stages: i) a first stage which
reads the frames; ii) another stage, replicated a number of times, which processes
the frames in parallel; iii) a last stage which displays the frames in the proper
order, with the lanes properly marked. As input workload, we used a 22MB
MPEG-4 video (640x360 pixels).

Person Recognition is an application used to recognize people in a video. The
parallel structure of this application is similar to Lane Detection, with the middle
stage detecting the faces from the crowd and searching in an image database to
classify each face detected. As input workload, we used a 4.8MB MPEG-4 video
(640x360 pixels) along with a training set of 10 face images of 150x150 pixels.

Pbzip application is a parallel implementation of the bzip2 block-sorting files
compressor6. This is a very coarse grained application characterized by a stream
parallel programming model. We annotated the SPar version with three stages,
where the middle stage is replicated. The input file to compress that we used for
our experiments is a 6,3GB file containing a dump of all the abstract present on
the English Wikipedia on 01/12/2015.

5.2 Comparison with Handwritten Implementations

Before evaluating the ability to satisfy SLO specified by the user we want to
prove that, from a performance standpoint, the code generated by SPar is com-
parable with a handwritten implementation. On the other hand, we would like
to show that our solution reduces the code intrusion required to transform a se-
quential application into a parallel one. As reference implementations for Pbzip
we consider the original Pthreads version, while for Lane Detection and Per-
son Recognition applications we consider the handwritten FastFlow versions de-
scribed in [12].

Performance To measure the maximum performance, we executed both the
reference and our solution generated versions by running them with 24 threads
(to have at most one thread per core). For our generated version, we did not
specify any SLO, but we still monitor the application by using Nornir. By doing
so, we monitor both the overhead introduced by the interaction with the self-
adaptive support and possible inefficiencies in the generated code. As shown by

6 http://compression.ca/pbzip2/

Pbzip2
Lane

Detection
Person

Recognition

Performance
Improvement (%)

+0.48% −1.45% −0.92%

LOC Reduction (%) −15.86% −21.51% −24.49%

Table 1. Performance improvement with respect to a handwritten implementation.
Negative values mean that SPar version is slower than the handwritten one. For LOC
Reduction, negative values mean that SPar version is more concise than the handwrit-
ten one.

the results in Table 1, for Lane Detection and Person Recognition, the overhead
is negligible (below 1.5%). For Pbzip2, there is a slight improvement caused by
the use of FastFlow as runtime support, while the reference implementation
was based on Pthreads.

Code Intrusion To measure the code intrusion, we rely on Lines of Code (LOC)
metric. Despite that LOC is not universally accepted, it is commonly used to
compare different implementations of the same application [20]. For our mea-
surements, we only considered the source files containing the code relevant for
the parallelization. In all the cases, parallelizing an application by using SPar re-
quires a lower code intrusion with respect to Pthreads or FastFlow [10, 11], since
it usually only requires introducing some annotations in the already existing
sequential code. Also, the SLOs attributes requires minimal effort.

5.3 Self-Adaptation Analysis

To analyze the self-adaptation capabilities of the parallel code automatically
generated by our solution, we first require the application to have a greater
throughput number than the sequential version while minimizing the power con-
sumption.

The target of this first experiment is to prove that parallelization is not only
useful for improving the performance of an application, but it can also be used
to reduce its power consumption. In a nutshell, we want to prove that a parallel
application with the same performance of the sequential one has lower power
consumption. We show the results of this test in Table 2.

The interpretation we would like to give to these results is that, even if the
performance of a sequential application is satisfactory, parallelizing it may still be
useful for reducing its power consumption. This effect occurs since by increasing
the number of replicas (and thus the number of cores used by the application),
we can reduce the clock frequency while keeping the same performance. Since
the power consumption increases linearly with the number of cores but more
than quadratically with the clock frequency [5], running an application on more
cores at a lower frequency is usually more energy efficient than running it on
fewer cores at a higher frequency. Having tools and methodologies for doing

Pbzip2
Lane

Detection
Person

Recognition

Power Consumption
Reduction (%)

−9.43% −10.37% −7.39%

Table 2. Power consumption reduction obtained by a parallel application with the
same throughput of the sequential one.

that automatically and with low code intrusion, like those we are describing in
this work is of paramount importance for enabling such techniques in real-world
scenarios.

 3

 7

 11

 15

 19

T
h
ro

u
g

h
p

u
t

(F
ra

m
e

s
 P

e
r

S
e
c
o
n
d
)

Measured
Required (MIN)

 50

 70

 90

 110

 130

 0 100 200 300 400 500 600

P
o
w

e
r

(W
a
tt
s
)

Time (Seconds)

Measured
Required (MAX)

Fig. 3. Person Recognition application with slo::Throughput(7) and
slo::Power(75).

We now analyze the time behavior of different applications for different types
of SLO. In Figure 3, we show how throughput and power change in time when
the user requires a greater throughput number than 7 frames per seconds and a
power consumption lower than 75 watts for the Person Recognition application.
In the first 40 seconds of the execution, our runtime changes the configuration
a few times to collect some data which will then be used to predict the best
configuration according to the user requirements. This behaviour depends from
the specific algorithm we used in Nornir and other algorithms, which avoid
such fluctuations could be used as well. Around 390 seconds from the beginning,
the application enters a different phase of its execution, and our runtime needs
to update the prediction models by collecting new data. This different phase im-
pacts in the throughput and power consumption fluctuations, occurring around
400 seconds from the beginning.

In Figure 4 we analyze a different scenario, where the user requires a greater
throughput number than 20 blocks per second and power consumption lower
than 65 watts for the Pbzip application. In this test, we add some external noise

to show that our runtime succeeds in providing the required SLO even in the
presence of unexpected behaviors. In particular, besides the usual calibration
done in the first seconds of execution, after 50 seconds from the start of Pbzip,
we start another application on the same machine. Since the two applications
share some resources (i.e., cores, memory, among others), the throughput of
Pbzip2 starts to decrease. In response to this issue, our runtime recomputes the
prediction models, now considering the presence of external interference. As a
consequence, as we can see from the bottom part of Figure 4, our runtime in-
creases the number of replicas of the middle stage from 12 to 14. When the other
interfering application terminates (around 120 seconds from the start of Pbzip2),
our runtime recomputes the models and decreases the number of replicas from
14 to 13. As we can see from the two upper parts of the figure, our runtime
satisfies the user requirements throughout the entire execution (excepts for the
phases where the models are computed), independently from the presence of
other applications running on the system.

 10

 30

 50

 70

 90

T
h
ro

u
g
h
p
u
t

(B
lo

c
k
s
 P

e
r

S
e
c
o
n
d
)

Measured
Required (MIN)

 65

 90

 115

P
o
w

e
r

(W
a

tt
s
)

Measured
Required (MAX)

 11

 13

 15

 17

 0 50 100 150 200 250
 1
 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4

N
u
m

b
e
r

o
f

C
o
re

s

F
re

q
u
e
n
c
y
 (

G
H

z
)

Time (Seconds)

Number of Cores
Clock Frequency

Fig. 4. Pbzip2 application with slo::Throughput(20) and slo::Power(65).

In the last experiment, which we report in Figure 5, we analyze the Lane
Detection application, in a scenario where it produces no more than 50 frames per
seconds. In such case, using all the available resources could be inefficient, since
they could be idle for most of the time. To avoid such scenario, we set a utilization
SLO of 80%. In the upper part of Figure 5, we report the utilization when an
SLO is specified and when it is not specified. In the bottom part, we report the
power consumption. As shown by the result when an SLO is not specified, the
utilization would be around 20%. This utilization means that the threads of the
application would spend 80% of the time waiting for new frames to arrive. By
requiring a minimum utilization of 80%, our runtime decreases the number of
resources allocated to the application, decreasing the power consumption from 90

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o
n

 (
%

)

Measured Utilization (With SLO)
Measured Utilization (Without SLO)

Required Utilization (MIN)

 40

 55

 70

 85

 100

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
(W

a
tt
s
)

Time (Seconds)

Measured Power (With SLO)
Measured Power (Without SLO)

Fig. 5. Lane Detection application with slo::Utilization(80).

watts to 55 watts. This event occurs without decreasing the overall performance
of the application. Indeed, the threads still spend some time waiting for new
data, but it is reduced from 80% to 5% (the utilization is around 95%).

6 Conclusions and Future Work

In this paper we provided the possibility to express SLO on the sequential code,
using automatic parallelization and self-adaptation of resources such as the num-
ber of replicas (and, consequently, the number of cores) and clock frequency.
We described how we extended the SPar source-to-source compiler to support
different types of SLO and we performed an experimental evaluation showing
the effectiveness of our approach. The results demonstrated that by using self-
adaptation, under certain conditions, we reduced the power consumption up to
42%. Also, we reduced the power consumption by 9.06% while not decreasing
the performance with respect to the sequential version. Lines of code are reduced
20% in average with respect to a handwritten implementation, which shows the
simplicity of our solution.

As a future work, we intend to consider other types of SLO such as execution
time and energy consumption (i.e., integral of power consumption over time).
Moreover, we would like to extend our work by considering more applications
and different or more heterogeneous workloads.

Acknowledgement
This work has been partially supported by the EU H2020-ICT-2014-1 project
RePhrase (No. 644235), FAPERGS 01/2017-ARD project ParaElastic, and
CAPES scholarships.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: FastFlow: High-Level
and Efficient Streaming on Multi-core. In: Programming Multi-core and Many-core
Computing Systems. PDC, vol. 1, p. 14. Wiley (2014)

2. Alessi, F., Thoman, P., Georgakoudis, G., Fahringer, T., Nikolopoulos, D.S.:
Application-Level Energy Awareness for OpenMP. In: International Workshop on
OpenMP. pp. 219–232. Springer (2015)

3. Andrade, H.C.M., Gedik, B., Turaga, D.S.: Fundamentals of Stream Processing.
Cambridge University Press, New York, USA (2014)

4. Beyer, B., Jones, C., Petoff, J., Murphy, N.R.: Site Reliability Engineering.
O’Reilly, Boston, USA (2016)

5. Chandrakasan, A.P., Brodersen, R.W.: Minimizing Power Consumption in Digital
CMOS Circuits. Proceedings of the IEEE 83(4), 498–523 (1995)

6. Danelutto, M., Garcia, J.D., Sanchez, L.M., Sotomayor, R., Torquati, M.: Introduc-
ing Parallelism by Using REPARA C++11 Attributes. In: Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. pp. 354–358.
IEEE (2016)

7. De Sensi, D., De Matteis, T., Danelutto, M.: Simplifying Self-Adaptive and Power-
Aware Computing with Nornir. Future Generation Computer Systems pp. – (2018)

8. De Sensi, D., Torquati, M., Danelutto, M.: A Reconfiguration Algorithm for Power-
Aware Parallel Applications. ACM Transactions on Architecture and Code Opti-
mization 13(4), 43:1–43:25 (dec 2016)

9. Floratou, A., Agrawal, A., Graham, B., Rao, S., Ramasamy, K.: Dhalion: Self-
Regulating Stream Processing in Heron. Proceedings of the VLDB Endowment 10,
1825–1836 (2017)

10. Griebler, D., Danelutto, M., Torquati, M., Fernandes, L.G.: SPar: A DSL for High-
Level and Productive Stream Parallelism. Parallel Processing Letters 27(01), 20
(2017)

11. Griebler, D., Filho, R.B.H., Danelutto, M., Fernandes, L.G.: High-Level and Pro-
ductive Stream Parallelism for Dedup, Ferret, and Bzip2. International Journal of
Parallel Programming pp. 1–19 (2018)

12. Griebler, D., Hoffmann, R.B., Danelutto, M., Fernandes, L.G.: Higher-Level Par-
allelism Abstractions for Video Applications with SPar. In: Parallel Computing is
Everywhere, Proceedings of the International Conference on Parallel Computing.
pp. 698–707. ParCo’17, IOS Press, Bologna, Italy (2017)

13. Maggio, M., Hoffmann, H., Santambrogio, M.D., Agarwal, A., Leva, A.: Controlling
Software Applications via Resource Allocation within the Heartbeats Framework.
In: IEEE Conference on Decision and Control. pp. 3736–3741. IEEE (2010)

14. Maurer, J., Wong, M.: Towards Support for Attributes in C++ (Revision 6). Tech.
rep., The C++ Standards Committee (2008)

15. McCool, M., Robison, A.D., Reinders, J.: Structured Parallel Programming: Pat-
terns for Efficient Computation. Morgan Kaufmann, MA, USA (2012)

16. Reinders, J.: Intel Threading Building Blocks. O’Reilly, USA (2007)
17. Shafik, R.A., Das, A., Yang, S., Merrett, G., Al-Hashimi, B.M.: Adaptive Energy

Minimization of OpenMP Parallel Applications on Many-Core Systems. In: Parallel
Programming and Run-Time Management Techniques. pp. 19–24 (2015)

18. Sturm, R., Morris, W., Jander, M.: Foundations of Service Level Management.
SAMS, Boston, USA (2000)

19. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A Language for Stream-
ing Applications. In: Proceedings of the International Conference on Compiler
Construction. pp. 179–196. Springer, Grenoble, France (2002)

20. Weyuker, E.J.: Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering 14(9), 1357–1365 (1988)

