
Allocating Social Goals Using the Contract Net
Protocol in Online Multi-Agent Planning

Rafael C. Cardoso and Rafael H. Bordini
School of Informatics (FACIN-PPGCC)

Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre, RS, Brazil

Email: rafael.caue@acad.pucrs.br, rafael.bordini@pucrs.br

Abstract—Centralised planning systems generally assign goals
to agents during the search for a solution to a planning problem.
In a distributed multi-agent setting, this would constrain the
autonomy of the agents, and violate their privacy. Thus, by
using task allocation protocols, the agents themselves can compete
to decide who will take each goal, then later plan individually
provided coordination mechanisms are in place, giving a higher
degree of autonomy and privacy during the planning process.
In this paper, we propose the use of a contract net protocol
mechanism to allocate social goals in multi-agent planning. Our
contributions are an algorithm for determining a bid, and several
bid evaluation criteria. We also define some heuristics that can be
used as bids. In our algorithm, agents expand social goals using
their plan library in order to collect information and formulate
their bid. We also show the results of experiments in a multi-
agent planning domain in order to evaluate our heuristics.

I. INTRODUCTION

Multi-Agent Systems (MAS) are often situated in dynamic

environments where new plans of action may need to be

devised in order to successfully achieve the system’s goals.

Therefore, employing planning techniques during run-time of

a MAS can be used to improve agent’s plans using knowledge

that was not previously available, or even to create new plans

to achieve some goal for which there was no known effective

course of action at design time.
Organisations in a MAS are complex entities in which

agents interact in order to achieve some global purpose [1].

They provide a scope for the interactions, reduce or manage

uncertainty, and coordinate agents to improve efficiency and

avoid conflicts. Social goals are organisational objectives that

are originated in the MAS organisation. These goals are not

necessarily shared by individual agents. Organisations and

social goals are especially relevant to MAS in complex,

dynamic, and distributed domains. These types of domains

are very similar to those that are often used in the area of

Multi-Agent Planning (MAP).
In order to successfully and efficiently achieve social goals,

they have to be allocated to the most appropriate agents. If

the best agent to achieve the goal is not known beforehand,

then it can be done, for example, by using task allocation

protocols. Task allocation has seen a wide array of uses in

MAS, but in this paper we use it in the context of MAP.

Because we are dealing with online planning (i.e., combining

planning and plan execution), new social goals can emerge (or

their conditions can change) at run time.

In this paper, we use a Contract Net Protocol (CNP)

mechanism to allocate social goals to agents. The main idea

is to find the agent that can expand the social goal most

effectively, out of all eligible agents. Agents expand social

goals using their plan library in order to collect information

and formulate their bid. We provide some heuristics that agents

can use to determine their bid for a social goal, and also show

how these heuristics can be evaluated.

When all agents taking part in the goal allocation have

identical plan libraries, and they all have the same computing

power, then the allocation is reduced to just assigning the goals

randomly to one of these agents [2]. However, when this is not

the case, our approach can lead to reasonable task allocations,

and more importantly, it provides various heuristics that can

be experimented with to find out the most suitable one for a

particular application.

Our approach is most useful when using libraries of pre-

compiled plans that are composed of: goal, the postcondition

of the plan; context, the precondition of the plan; and body,

the course of action to be executed (including actions and

subgoals). Although our goal allocation algorithm ignores the

context of the plan, this information can still be used by

subsequent MAP mechanisms (e.g., planner, coordination).

The algorithm can be adapted with minimal effort to work

with other similar types of plan libraries, and it is also worth

noting that many BDI-based agent programming languages use

that plan structure, notably AgentSpeak [3] and its variants [4].

The remainder of this paper is structured as follows. In the

next section we contextualise our approach by providing some

background on MAP and CNP. Section III shows our main

contribution on how to use a CNP mechanism to allocate

social goals. We introduce a domain-independent algorithm

for calculating CNP bids based on expanding social goals

using plan libraries, discuss about the relation between agents’

plans, and also provide some bid evaluation criteria. Next,

in Section IV, we describe our experiments with a MAP

domain, and discuss the results obtained. Afterwards, we

discuss related work and end the paper with some conclusions

and a brief description of future work.

II. CONTEXT

Over the years, MAP has been interpreted as two different

things. Either the planning process is centralised and produces

2016 5th Brazilian Conference on Intelligent Systems

978-1-5090-3566-3/16 $31.00 © 2016 IEEE

DOI 10.1109/BRACIS.2016.35

199

distributed plans that can be acted upon by multiple agents,

or the planning process itself is multi-agent. Recently, the

planning community has been favouring the concept that MAP

is actually both of these things, that is, the planning process

is done by multiple agents, and the solution is for multiple

agents.

Six phases of MAP are described in [5]: global goal
refinement, decomposition of the global goal into subgoals;

task allocation, use of task-sharing protocols to allocate tasks

(goals and subgoals); coordination before planning, coor-

dination mechanisms that avoid conflicts before planning;

individual planning, planning algorithms that search solutions

for the problem; coordination after planning, coordination

mechanisms that solve conflicts after planning; and plan
execution, the agents carry out the solution found.

Task allocation is one of first phases required in MAP. In

this phase, the agents gain access to the goals that will be

planned for. A mechanism (e.g., negotiation-based or task-

sharing protocols) is used to separate and allocate goals to

agents that have the best (estimated) chance of finding a

potential solution.

According to Smith’s original concept from his work in

1980 [6], the contract net protocol “has been developed to

specify problem-solving communication and control for nodes

in a distributed problem solver”. In this protocol, nodes enter

a negotiation process over contracts, where the winner is

awarded a contract to execute the task. In our case, the tasks

in questions are the social (i.e., organisational) goals.

Nodes (i.e., agents) in the CNP can assume one of two

possible roles: initiator (manager) or bidder (contractor). The

initiator is responsible for announcing new tasks in the CNP

(i.e., creating new contracts), monitoring their activity, award-

ing tasks to winners, and processing the results of the task’s

execution. The bidders decide which contracts to take part

in, determine their bids, and execute the tasks that they are

awarded.

III. USING CNP FOR GOAL ALLOCATION

Our CNP mechanism is based on the original protocol [6],

with a few modifications in order to accommodate our needs

for a goal allocation mechanism in the context of MAP.

The initiator in our case is the MAS organisation. It is the

organisation’s role to start new contracts for social goals that

have not been previously assigned to any agent. The bidders

are agents taking part in the MAS organisation that also

participate in the planning process.

In Listing 1, we show an overview of the specification

for a social goal announcement. The to field allows the

announcement to be sent either to all agents in the organ-

isation (broadcast), or to a specific group of agents within

the organisation. Each announcement is identified through a

unique id. The goal contains both the name of the goal and

the goal specification, such as preconditions for example. The

eligibility field can be used for restricting goals to certain roles,

and/or to agents that have specific plans in their plan library.

Finally, the deadline limits the time that the initiator accepts

the bids for that specific goal.

Listing 1. Goal announcement specification.

1 to ::= ∗ or groupid
2 from ::= organisation
3 id ::= announcementid
4 goal ::= goal-name, goal-spec
5 eligibility ::= role and/or plans
6 deadline ::= timer

After all social goals have been allocated, that is, each social

goal has a contractor agent in charge of achieving it, then the

next phase of MAP can start. We assume here that every goal

will eventually be allocated, meaning that there is at least one

eligible agent for each social goal. The goal allocation does

not guarantee that the agent will be able to find a solution (this

depends on the results of the planning phase) and execute it

successfully (which depends on the execution stage). Instead,

goals are allocated to agents that have shown a better chance

of doing so according to the chosen heuristics.

A. Social Goal Expansion

During the expansion of a social goal, our algorithm ignores

the preconditions of plans, that is, we do not apply an action

theory. This would involve performing lookahead, which is

essentially planning, and would also have a high computing

cost. Instead, we opted to go for a quick expansion of the

plan library, selecting all plans that are related to the social

goal, while ignoring the context of these plans. This relaxation

allows for quick computation of potentially useful heuristics

for the goal allocation phase.

AgentSpeak-like plan libraries often contain several recur-

sive plans, which leads to infinite expansion of goal-plan

trees [7]. Although we considered limiting or ignoring these

recursive plans, we found out from our experiments that this

can be a valuable information to have, and it causes no

problem for our algorithm since it has a particular deadline

within which to terminate. Agents with recursive plans can

get stuck in a loop during execution, either because actions

on real-world applications are non-deterministic, or because

the MAS programmer made a mistake.

Contract nets have a deadline in order to prevent initiators

to wait indefinitely for bids. In our approach, this deadline is

set offline by the MAS designer for all possible types of social

goals. We use it to stop the infinite expansion that can happen

when agents get stuck in a loop, or when agents have large

plan libraries. That is, agents expand the social goal up until

they are close to that deadline, at which point they stop the

expansion and use measurements of the expanded tree to form

their bid value.

In Algorithm 1, we perform a breadth-first expansion of

a social goal using the agent’s plan library. Our algorithm

collects data during expansion, which can then be used by the

agent to place his bid.

200

Algorithm 1 Breadth-first expansion of a social goal.

1: function expand(goal, deadline)
2: Plans← relevant plans(goal)
3: if Plans = ∅ then
4: return “not eligible”

5: end if
6: n plans, n actions,m depth← 0
7: m width← |Plans|
8: Subplans← ∅

9: while there exists plan ∈ Plans do
10: if time() ≥ deadline then
11: return (n plans, n actions,m depth,m width)
12: end if
13: n plans← n plans+ 1
14: n actions← n actions+ count actions(plan)
15: Goals← goals(plan)
16: Subplans← Subplans ∪ relevant plans(Goals)
17: Plans← Plans \ {plan}
18: if Plans = ∅ then
19: if |Subplans| > m width then
20: m width← |Subplans|
21: end if
22: m depth← m depth+ 1
23: Plans← Subplans
24: Subplans← ∅

25: end if
26: end while
27: return (n plans, n actions,m depth,m width)

The expansion starts with the social goal as the root of the

tree. The agent uses a relevant plans function that returns all

plans in the agent’s plan library that can be used to achieve that

particular goal. If the set of such Plans is initially empty, then

the agent is not eligible to bid for this contract. Otherwise, the

information used for determining the agent’s bid is initialised:

n plans is the total number of plans that were expanded;

n actions is the total number of actions found in all of the

plans that were expanded; m depth is the maximum depth

of the tree; and m width is the maximum width of the

tree, which initially receives the cardinality of the Plans set,

indicating the initial width of the tree. The Subplans set is

initially empty.

Parameter deadline is the maximum time after the start

of expansion that the algorithm can run for. It is expected

that when calling the expand function, the deadline given for

the algorithm is sufficiently before the CNP deadline so that

the agent has time to communicate its bid to the organisation

manager (the protocol initiator).

At the start of a plan’s expansion, the agent uses a function

time() to get the time that has passed since the start of the

expand function, and checks if that value is greater than

or equal to deadline. If it is, then the algorithm stops the

expansion and returns its measurements that will be used to

formulate a bid.

While there remains any plan in the Plans set, we increase

the counter of total plans expanded, add the number of actions

found in the body of the plan to the total number of actions,

and assign all the subgoals found in the body of the plan to

the Goals set. Then, the agent uses again the relevant plans
function to get all relevant plans but now for each of the

subgoals in that set.

The plan that was expanded is removed from the Plans
set. If this was the last plan and the Plans set is now empty,

then the agent checks if the cardinality of the Subplans set is

higher than our current m width, in which case the cardinality

of the Subplans set becomes the current maximum width of

the tree. After that, we increase the maximum depth counter,

and move the Subplans set to the Plans set (this effectively

give us breadth-first search but doing it in this particular way

allows us to make all the measurements we need).

When both sets are empty, or the deadline is past, the

algorithm returns a multi-valued bid, a 4-tuple with relevant

information collected during the expansion of the goal-plan

tree for the given social goal.

B. Plan Trees

We opted for not saving the whole goal-plan tree. Instead,

we update the measurements that will be part of the bid and

we currently use as bid evaluation criteria, and save only the

plans that need to be immediately expanded. This makes the

whole expansion process faster and use less memory, which is

good enough for the heuristics we need at this initial stage of

allocating goals in MAP. The tree being generated is similar

to goal-plan trees, which are tree structure of goals whose

children are the plans that achieve it, and the children of a plan

are subgoals. For the purpose of comparing goal-plan trees

between agents as used in our approach, we can omit goals

and subgoals, since we currently do not count the number of

goals for bidding purposes.

When comparing plan trees between agents, we can classify

them according to their topology into four different types:

recursive distinct plan tree, when a recursive plan was used

and plan trees are sufficiently distinct from each other; non-
recursive distinct plan tree, when no recursive plan was

used and plan trees are sufficiently distinct from each other;

recursive similar plan tree, when a recursive plan was used

and plan trees are similar or identical to each other; and non-
recursive similar plan tree, when no recursive plan was used

and plan trees are similar or identical to each other.

In Figure 1, we can observe all four comparisons between

plan trees. Figure 1(a) shows the recursive distinct plan tree

comparison, where plan trees contain recursive plans and

the trees are different from each other, which is evident by

comparing the maximum width of both trees: 3 for agent1 and

1 for agent2. Figure 1(b) shows the non-recursive distinct plan

tree, where plan trees do not contain any recursive plans and

the threes are once again different from each other. Figure 1(c)

shows the recursive similar plan tree, where plan trees contain

recursive plans and the trees are very similar to one another

(same maximum width). Figure 1(d) shows the non-recursive

201

(a) (b)

(c) (d)

Fig. 1. Possible plan trees comparisons: (a) recursive distinct plan tree; (b) non-recursive distinct plan tree; (c) recursive similar plan tree; (d) non-recursive
similar plan tree.

similar plan tree, where plan trees do not contain any recursive

plans and the trees are again very similar.

We do not show specific types for the variations when some

plan trees contain recursive plans and some do not, because if

there is at least one agent that has a plan tree with recursive

plans, then it can be considered to belong in the recursive
distinct plan tree type.

C. Bid Evaluation

Agents place a multi-valued bid, a 4-tuple containing the

following criteria: total number of expanded plans, the number

of plans that the agent was able to expand; total number of
actions, the number of actions found in the bodies of expanded

plans and subplans; maximum depth of the tree, the maximum

depth found while expanding the tree; and maximum width
of the tree, the maximum width found while expanding the

tree. These criteria are used as heuristics by the organisation

manager (initiator) to allocate social goals to agents with the

best (according to the heuristic chosen for that application)

bids.

Agents with higher total number of expanded plans repre-

sent agents with the best computing power available (assuming

that they expanded plans up until the deadline). A higher

number of actions represent agents that may require longer

steps in order to solve a social goal. When compared to other

agents, agents with a lower maximum depth often represent

that there were no expansion of recursive plans. While agents

with a higher maximum depth can represent either very linear

plan trees (few options), or the presence of recursive plans.

Higher maximum width often indicates that the agent has more

options available to accomplish the social goal.

Some assumptions were made for the evaluation of those

bidding criteria. First, agents can only place bids for one

contract at a time; there is no concurrent or parallel bidding.

This is required to avoid cases where one agent could be

awarded with most or all social goals. This assumption could

be easily ignored if there was a mechanism in place to monitor

which contracts have been awarded and to whom. Second, we

assume that agents will not place bids on contracts that can

202

cause conflicts with their previously awarded contract. For

example, if a social goal sg1 causes conflict with sg2, and

an agent is awarded sg1, then it cannot place any bids for

sg2. Cases where conflicting social goals are necessary are

not very common, but a possible solution is to allow agents to

subcontract any conflicting social goals that they were awarded

with.

IV. EXPERIMENTS

To evaluate our algorithm and determine which heuristics

are better for a certain plan tree configuration, we used the Dis-

tributed Online Multi-Agent Planning System (DOMAPS) [8]

to run our experiments. The DOMAPS framework consists

of four main components: planning formalism – a formal

representation of the information from the planning domain

and problem that will be used during planning; goal allocation
– the mechanism used to allocate goals to agents; individual
planning – the planner used during each agent’s individual

planning stage; and coordination mechanism – used before or

after planning to avoid possible conflicts that can be generated

during planning.

Modularity is one of the advantages of DOMAPS, allowing

these four components to be separated and replaced with

different approaches. We added our CNP approach, bid for-

mulation algorithm, and heuristics for bid evaluation criteria,

as the goal allocation mechanism of DOMAPS.

We use the Floods domain [8] for our experiments. It is

a multi-agent domain inspired in classical planning domains

such as rover and logistics. In Floods, a team of autonomous

robots are dispatched to monitor flood activity in a region,

a sequence of interconnected areas. Movement through the

region occurs from traversing these areas. The Centre for

Disaster Management (CDM) establishes a base of operation

in the region that is being monitored. The base is used to

receive and interpret data, provide some assistance to the

robots, and create new social goals.

There are two types of autonomous robots in this domain.

Naval units are composed of Unmanned Surface Vehicles

(USVs) that can move through areas connected by water

paths, collect water samples, and take pictures of flood events.

Meanwhile, Unmanned Ground Vehicles (UGVs) are ground

units that are able to move through areas connected by ground

paths, take pictures of flood events, and provide assistance to

victims by transporting first-aid kits to first responders close

by.

We made four versions of the Floods domain, one for each

of the possible topology types of plan trees (described in

Section III-B). We used two agents (one USV and one UGV),

with both agents starting in the same area. The social goal that

the agents had to expand was to take a picture of a nearby flood

disaster. In order to compare which bid evaluation criterion

was more appropriate for each version, we used the individual

planner in DOMAPS to find the solutions, and then analysed

the solutions found between the agents.

Table I shows the results of those comparisons. In the

first version of the domain, the maximum width of the tree

indicated agents with more options. These agents were the

ones that found more solutions for the problem, because they

had different ways of achieving the social goal, which is

very useful in dynamic and non-deterministic environments.

In the second version of the domain, both maximum depth

and maximum width proved to be important. Agents with a

higher width still indicated agents with more options, but lower

depth indicated agents that could potentially accomplish the

goal using fewer plans than others.

TABLE I
INDEX OF THE BEST EVALUATION CRITERION FOR EACH PLAN TREE

COMPARISON: 0 – NOT RELEVANT, 1 – RELEVANT, 2 – VERY RELEVANT.

Floods domain n plans n actions m depth m width
recursive distinct
plan tree 1 1 0 2

non-recursive distinct
plan tree 1 1 2 2

recursive similar
plan tree 2 1 0 0

non-recursive similar
plan tree 2 1 1 0

In versions three and four of the domain, the number of

expanded plans was the most important criterion, as it was

indicative of computing power, and because agents had a

similar plan tree, the maximum depth and width were almost

equal. Maximum depth is not relevant when agents have

expanded recursive plans because it will be equal, or close

to equal, to the number of expanded plans. The number of

actions can be relevant in domains where actions have a high

cost of execution.

V. RELATED WORK

There are many options that can be used to allocate goals,

many of these being well-established coordination protocols

found in the literature. A Vickrey [9] auction is an example

of an auction protocol that is used quite often in MAS. In

this protocol, each agent can make one closed bid (i.e., other

agents in the system do not have access to this value) for a

particular auction that contains a goal. The task of achieving

that goal is assigned to the highest bidder for the price of

the second-highest bidder. This means that each bidding agent

should simply bid their true private values (i.e., exactly what

they think it’s worth to them), since this will provide them

with the best chance of winning without overspending. Our

approach does not consider selfish agents, they will not try to

interfere with other agents’ bids.

In [10], de-commitment penalties and a Vickrey auction

mechanism are proposed to solve a MAP problem in the

context of an airport, to solve the problem of deicing and

anti-icing aircrafts during winter. The agents are self-interested

and can have conflicting interests. Performance on both of

these mechanisms were positive, and could be applied as goal

allocation or coordination mechanisms in problems involving

self-interested agents. Our approach differs from theirs in that

it targets domain-independent problems.

203

Market simulations and economics can also be used to

allocate large quantities of resources to agents. For example,

in [11], a decentralised market protocol for allocating tasks

and scarce resources among agents is presented. We currently

do not consider resource-based problems in our approach.

Regarding argumentation, in [12], an argumentation mech-

anism is utilised for the coordination of agents during MAP.

The authors use a well-known defeasible logic programming

formalism (DeLP) to implement a defeasible argumentation

mechanism. Although it is used as the coordination mechanism

in this instance, we argue that it could also be used as a

goal allocation mechanism, and that it would not severely

suffer from performance issues like it did as a coordination

mechanism, since the goal allocation phase tends to be fast

paced. This approach could be more useful when dealing with

entirely cooperative agents.

When self-interested agents are involved, game theory can

be used. The use of game theory in MAP has not been

explored very much, at least not when compared to the other

approaches. In [13], a mechanism is used to design a set of

rules for a game, with the objective of ensuring that the agents

behave honestly. This mechanism can be used to generate

optimal multi-agent plans, when planning is performed by and

for a group of self-interested agents.

VI. CONCLUSIONS AND FUTURE WORK

We have discovered from the experiments shown in this

paper that the best evaluation criteria can depend on the

similarity between plan trees of agents. If all agents have

the same plans (same body, context can be different because

we are ignoring it) for a specific social goal (i.e., same or

very similar plan tree for that goal), then the best criterion is

the total number of expanded plans, since this is a possible

indication that the agent has more computing power than the

others. Otherwise, if agents have very distinct plan trees (i.e.,

plan bodies with different actions and subgoals), then the total

number of actions, maximum width, and maximum depth can

provide more useful information.

Agents with higher maximum width often represented

agents with multiple paths in the goal-plan tree, an important

information for non-deterministic and dynamic environments.

Agents with a lower number of actions often represented

agents that would require less action steps to achieve the social

goal, especially useful in domains with high cost actions. More

experiments on domains with distinct plan trees are needed in

order to provide a more in-depth analysis of bid evaluation

criteria. A measurement that we are currently investigating is

plan-library coverage, which would indicate the percentage of

the plan library that the agent was able to expand.

An interesting property of CNP is that it allows bidders to

partition the task that was awarded to them into subtasks. As

future work, it could be interesting to allow agents to become

initiators of tasks that they believe they can only do a part

of, subcontracting the rest. This would be especially useful

for solving goals that require tightly-coupled agents, that is,

where actions that are required to achieve social goals have a

lot of dependencies.

Furthermore, the authors of [14] propose some interesting

extensions to CNP that could provide several benefits if

integrated into our CNP mechanism. Two main ideas are

discussed. First, the authors suggest adding a threshold to

limit the number of concurrent contracts that each bidder can

participate, which could be useful in domains with many social

goals where agents can only realistically pursue a limited

number of such goals. Second, a degree of availability is

suggested to allow the initiator to consider the availability of

the bidders along with their respective bid, which could avoid

cases where agents are already too busy to be taking on more

goals.

ACKNOWLEDGMENT

We are grateful for the support given by CNPq and CAPES.

REFERENCES

[1] V. Dignum and J. Padget, “Multiagent organizations,” in Multiagent
Systems 2nd Edition, G. Weiss, Ed. MIT Press, 2013, ch. 2, pp. 51–98.

[2] E. H. Durfee, “Distributed problem solving and planning,” in Mutli-
agents Systems and Applications, J. G. Carbonell and J. Siekmann, Eds.
New York, NY, USA: Springer-Verlag New York, Inc., 2001, pp. 118–
149.

[3] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical com-
putable language,” in Proceedings of the 7th European workshop on
Modelling autonomous agents in a multi-agent world, ser. MAAMAW
’96, Secaucus, NJ, USA, 1996, pp. 42–55.

[4] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with JaCaMo,” Science of Computer
Programming, 2011.

[5] M. de Weerdt and B. Clement, “Introduction to Planning in Multiagent
Systems,” Multiagent Grid Syst., vol. 5, no. 4, pp. 345–355, 2009.

[6] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol. 29,
no. 12, pp. 1104–1113, Dec. 1980.

[7] J. Thangarajah, L. Padgham, and M. Winikoff, “Detecting and avoiding
interference between goals in intelligent agents,” in International Joint
Conference on Artificial Intelligence. Morgan Kaufmann Publishers,
2003.

[8] R. C. Cardoso and R. H. Bordini, “A distributed online multi-agent
planning system,” in Proceedings of the 4th Workshop on Distributed
and Multi-agent Planning (DMAP), held with ICAPS’16, 2016.

[9] W. Vickrey, “Counterspeculation, Auctions and Competitive Sealed
Tenders,” Journal of Finance, pp. 8–37, 1961.

[10] X. Mao, A. Mors, N. Roos, and C. Witteveen, “Coordinating Competi-
tive Agents in Dynamic Airport Resource Scheduling,” in Proceedings of
the 5th German conference on Multiagent System Technologies, Berlin,
Heidelberg, 2007, pp. 133–144.

[11] W. E. Walsh and M. P. Wellman, “A market protocol for decentralized
task allocation,” in Proceedings of the Third International Conference on
Multiagent Systems, ICMAS 1998, Paris, France, July 3-7, 1998, 1998,
pp. 325–332.

[12] E. O. Sergio Pajares Ferrando, “Defeasible argumentation for multi-
agent planning in ambient intelligence applications,” in 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), vol. 1, 2012, pp. 509–516.

[13] R. P. van der Krogt, M. M. de Weerdt, and Y. Zhang, “Of mechanism
design and multiagent planning,” in Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-08), M. Ghallab, C. D.
Spyropoulos, N. Fakotakis, and N. Avouris, Eds. IOS Press, 2008,
pp. 423–427.

[14] C. Xueguang and S. Haigang, “Further extensions of fipa contract
net protocol: Threshold plus doa,” in Proceedings of the 2004 ACM
Symposium on Applied Computing, ser. SAC ’04. New York, NY,
USA: ACM, 2004, pp. 45–51.

204

