
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332082660

Fast and Efficient Text Classification with Class-based Embeddings

Conference Paper · March 2019

CITATIONS

0
READS

139

3 authors:

Some of the authors of this publication are also working on these related projects:

Hierarchical Multi-Label Classification View project

Development of Fully-Flexible Receptor (FFR) Models for Molecular Docking View project

Jônatas Wehrmann

Pontifícia Universidade Católica do Rio Grande do Sul

22 PUBLICATIONS 146 CITATIONS

SEE PROFILE

Camila Kolling

Pontifícia Universidade Católica do Rio Grande do Sul

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Rodrigo C. Barros

Pontifícia Universidade Católica do Rio Grande do Sul

93 PUBLICATIONS 1,095 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jônatas Wehrmann on 29 March 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332082660_Fast_and_Efficient_Text_Classification_with_Class-based_Embeddings?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332082660_Fast_and_Efficient_Text_Classification_with_Class-based_Embeddings?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Hierarchical-Multi-Label-Classification?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Development-of-Fully-Flexible-Receptor-FFR-Models-for-Molecular-Docking?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonatas_Wehrmann?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonatas_Wehrmann?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia_Universidade_Catolica_do_Rio_Grande_do_Sul?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonatas_Wehrmann?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Camila_Kolling2?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Camila_Kolling2?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia_Universidade_Catolica_do_Rio_Grande_do_Sul?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Camila_Kolling2?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo_Barros2?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo_Barros2?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia_Universidade_Catolica_do_Rio_Grande_do_Sul?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo_Barros2?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonatas_Wehrmann?enrichId=rgreq-8a22eb8ae000d6d389179ebf86c19146-XXX&enrichSource=Y292ZXJQYWdlOzMzMjA4MjY2MDtBUzo3NDE4NzM5OTE4MTEwNzJAMTU1Mzg4Nzk1MTk2NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Fast and Efficient Text Classification
with Class-based Embeddings

Jônatas Wehrmann, Camila Kolling, and Rodrigo C. Barros
Machine Intelligence and Robotics Research Group

School of Technology, Pontifı́cia Universidade Católica do Rio Grande do Sul
Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil

Email: {jonatas.wehrmann,camila.kolling}@acad.pucrs.br, rodrigo.barros@pucrs.br

Abstract—Current state-of-the-art approaches for Natural
Language Processing tasks such as text classification are either
based on Recurrent or Convolutional Neural Networks. Notwith-
standing, those approaches often require a long time to train, or
large amounts of memory to store the entire trained models.
In this paper, we introduce a novel neural network architecture
for ultra-fast, memory-efficient text classification. The proposed
architecture is based on word embeddings trained directly over
the class space, which allows for fast, efficient, and effective text
classification. We divide the proposed architecture into four main
variations that present distinct capabilities for learning temporal
relations. We perform several experiments across four widely-
used datasets, in which we achieve results comparable to the
state-of-the-art while being much faster and lighter in terms
of memory usage. We also present a thorough ablation study
to demonstrate the importance of each component within each
proposed model. Finally, we show that our model predictions can
be visualized and thus easily explained.

Index Terms—Text classification, deep learning, neural net-
works, natural language processing.

I. INTRODUCTION

Text classification approaches are important components
within the Natural Language Processing (NLP) research, and
they have been designed for countless application domains
such as document classification [1], sentiment analysis [2]–[4],
information retrieval [5], [6], hierarchical classification [?], [7]
and generation of sentence embeddings [8], just to name a few.

A central problem in text classification is feature represen-
tation, which has relied for a long time on the well-known
bag-of-words (or bag of n-grams) approach. Such a strategy
describes the occurrence of words or characters within a
document, and basically requires the usage of a vocabulary
of known words and the measurement of the occurrence of
those known words. Since we need to store the vocabulary,
memory requirements are often a practical concern.

Recently, the NLP community has turned to methods
that are capable of automatically learning features from raw
text, such as Convolutional or Recurrent Neural Networks
(CNNs/RNNs). CNNs were originally designed with computer
vision applications in mind, but they have shown to be
quite effective for a plethora of NLP applications [9], [10].
Indeed, models based on neural networks have outperformed
traditional hand-crafted approaches achieving state-of-the-art
performance in several NLP tasks [1], [11], [12].

Whereas neural network models often achieve very good
performance on text classification, they tend to use a large
amount of memory during both training and inference, es-
pecially when learning from a given corpus that contains a
very large vocabulary. Recent work have tried to change this
perspective, e.g., FastText [11]. Such a method represents a
document by averaging word vectors from a given sentence,
resulting in a bag-of-words-like representation, though allow-
ing the update of word vectors through backpropagation during
training as opposed to the static word representation in a
standard bag-of-words model.

FastText provides fast learning of word representations
and sentence classification. Compared to other systems [9],
[13], [14] that are based on either CNNs or RNNs, FastText
shows comparable results though much smaller training times.
Nevertheless, in spite of being faster to train and to test than
traditional techniques based on n-grams, FastText uses a lot
of memory to store and process the embeddings. This is an
important issue for applications that need to run on systems
with limited memory, such as smartphones.

To address the limitation of the current neural network
models, we propose four different fast and memory-efficient
approaches. The first one, CWE-BCdraws inspiration from
FastText [11] and generates word-embedding vectors by di-
rectly mapping the word-embedding space to the target class
space. Our second method, CWE-SA, replaces traditional
pooling functions by a self-attention module, giving different
weights for each word and thereby focusing on the most
important words of the sentences. CWE-C is the third ap-
proach and employs convolutional layers for processing the
temporal dimension. Our final approach, CWE-R, is based on
recurrent operators: it is designed to learn temporal relations
and, unlike traditional RNNs, it does not require additional
trainable weight matrices.

We compare our models with previous state-of-the-art ap-
proaches. They perform on a par with recently-proposed deep
learning methods while being faster and lighter in terms of
memory consumption. Our models make use of ≈ 100× less
memory while running up to 4× faster when compared to
FastText [11]. In addition, they are much easier to visualize
and understand since they learn word embeddings that are
trained directly on the class space.

The rest of this paper is organized as follows. In Section II
we describe the proposed approach and its variations, while
in Section III we detail the setup used for training and
evaluating each of the models and the respective baselines. In
Section IV we describe the experiments that are performed
to quantitatively evaluate our approaches on several text-
classification datasets. In Section V we qualitatively assess
the proposed methods. Section VI summarizes previous related
work, and we finally conclude this paper and discuss future
research directions in Section VII .

II. CLASS-BASED WORD EMBEDDING

In this paper, we introduce Class-based Word Embeddings
(CWE), an approach designed to classify text in a fast,
light, and effective fashion. Unlike traditional state-of-the-art
text classification methods, CWE is developed to work with
minimal resources in terms of processing and memory, while
achieving solid results across distinct datasets.

CWE works by learning a text classification function
ψ(T) = y, where T ⊃ {ωj}tj=1 is a given text (instance)
within the text-classification dataset, and it comprises t words,
each encoded as a ωj ∈ RC vector, and y is the respective
binary-class vector for a C-class classification problem, so that∑C

i yi = 1. In the following sections we detail several flavors
of function ψ(·), which gives CWE distinct capabilities with
advantages and disadvantages.

A. CWE-BC: Bag-of-Classes

CWE-BC is the first strategy for learning function ψ(·),
which somewhat draws inspiration from the FastText [11]
model. In the latter, word embeddings ω ∈ Rd are averaged in
order to build a d-dimensional sentence feature representation,
which is then linearly mapped through a trainable weight-
matrix W ∈ Rd×h to a hidden feature space with h di-
mensions, and finally projected onto the C-dimensional class
space. Our approach aims to generate word-embedding vectors
by exploring direct relations across the word-embedding space
and the target class space. In CWE-BC, the direct word-class
mapping is achieved by training ω ∈ RC word embeddings
instead of ω ∈ Rd, discarding the need for additional transition
weight-matrices. The final classification scores are given by
processing the input T ∈ Rt×C matrix with a given pool-
ing function. We have tried three distinct pooling functions,
namely max, mean, and selfatt, the latter a self-attention-
based function. Figure 1 depicts the CWE-BC approach.

Note that by using a pooling function directly over uni-
gram word embeddings, CWE-BC fully discards temporal
information, i.e., the order of the words across a sentence
is not considered and does not affect the model predictions
whatsoever. Therefore, such a method can be regarded either
as a linear bag-of-words or as a bag-of-classes approach. Our
hypothesis is that despite CWE-BC being very simple, it will
be capable of providing good predictive performance across
distinct datasets, since there are several words that are directly
related to a given class. In sentiment analysis datasets, for
instance, it is easy to find specific words that carry strong

I

love

this

place

 C

AVG / MAX / SELF ATTENTION

 t

 C

Fig. 1. Model architecture of CWE-BC. Each word is embedded according
to the number of classes C and passed to one of the pooling functions.

class-based content, such as amazing and awesome, which
most certainly denote a positive polarity, while terrible and
worst represent mostly the negative polarity.

In addition, word embeddings trained with CWE-BC can be
easily visualized when the class space is small. For instance,
assume that a sentiment analysis model is trained to classify
text as either positive or negative. In that case, one could
naturally visualize those embeddings in a bidimensional Eu-
clidean space and fully explain the model predictions, without
the need of further employing algorithms to visualize high-
dimensional data such as t-SNE [15], which presents a high
asymptotic computational complexity (quadratic in the number
of instances), limiting its use to roughly 10,000 instances [15].
In theory, high-dimensional word-embedding-based methods
project the input data so that the feature space lies on several
different, though related, low-dimensional manifolds. In CWE,
we directly optimize a low-dimensional manifold which is
equivalent to an Euclidean space, making it much easier to
visualize.

B. CWE-SA: Self-Attentive Pooling

Our second approach replaces traditional global pooling
strategies by a learned self-attention module (selfatt), re-
sponsible to assign distinct weights for each word so the
final sentence representation is given by a weighted mean
pooling. We refer to this method hereby as CWE-SA, and
it is depicted in Figure 2. The self-attention mechanism was
originally introduced in [16], being applied within RNNs.

Several papers have evaluated such an approach to sum-
marize both convolutional and word-based data. In [17], the
authors use the self-attention module so that the models can
more easily focus on the most important sentence parts. Here
we use the same input representation strategy T ∈ Rt×C ,
which is processed by a tanh-based fully-connected layer
with n neurons (here we use n = C) that is responsible for
normalizing activation values in the (−1, 1) range, namely
T̂ . A second fully-connected layer, namely φ(T̂) generates
the annotation vector θ ∈ Rt×1 that will contain all word
weights after a softmax function:

θk =
exp(φ(T̂)k)∑t
j=1 exp(φ(T̂)j)

, (1)

I
love
this

place

 C

 t
FC

 C

softmax

 tanh
⊗

 C

 1 1

FC

Fig. 2. Model architecture of CWE-SA. In this case, the first fully-connected layer transforms C classes into a t × n matrix, and the tanh is used as
activation function. This matrix is passed to another fully-connected layer, generating a t × 1 annotation vector that employs a softmax function so the
weights for the words sum to 1. Finally, this matrix is multiplied by the input matrix, generating the final vector of C classes, which will display probabilities
after the softmax function.

 t

=1k

=2k

=3kI
love
this

place

 C

 t
AVG AVG

 C

 C

Fig. 3. Model architecture of CWE-C. Each word is embedded according to the number of classes and passed to a convolutional layer. Each convolutional
layer has a different kernel size k, which affects the size of the receptive field over the temporal dimension, i.e., the number of words being processed
altogether. Each feature map resulting from the convolutional layers are processed with a pooling layer, resulting in n arrays with dimension 1xC. Finally,
all arrays are averaged.

where θk provides the importance of the kth word, and∑t
j=1 θj = 1. Ultimately, model predictions ŷ are generated

as ŷ = T T θ, activated once again via softmax.
Similarly to CWE-BC, this approach also discards tem-

poral data, being unable to learn word dependencies and
eventually leading to sub-optimal results. To circumvent this
issue, we discuss two additional methods that are capable of
leveraging temporal data for text classification, presented in
Sections II-C and II-D.

C. CWE-C: A Convolutional Approach

CWE-C is a CWE variation that employs at least one
convolutional layer for processing the temporal dimension. By
applying a convolution with f filters of kernel size k directly
over the input data, one can embed k words altogether within
an f -sized feature representation. Thus, by processing the
input textual data with distinct convolutional layers, one can
learn k-gram-like information. Even though such a capability
has been previously explored [1], [3], [5], to the best of
our knowledge it was never applied over C-dimensional data,
which may present additional learning constraints.

Inspired by [1], our models employ parallel convolutional
layers over the input text T . Each of these layers use f
convolutional filters of length k, where the jth filter in the
ith convolutional layer generates feature map Fij whose xth

position is given by:

Fx
ij = φ

bij + fi−1∑
m=0

k−1∑
p=0

wp
ijmT

(x+p)
(i−1)m

 (2)

where φ is an activation function, bij is the bias for the
respective convolutional filter, m iterates over the feature maps

(channels), p indexes the position of the kernel, wp
ijm is the

filter weight, and Fx+p
(i−1)m is the value of the previous feature

map (or input). Note that m iterates over the C dimensions of
the input text T , while p iterates over the temporal dimension
building k-gram-like word embeddings.

The default version of CWE-C, as depicted in Figure 3,
employs three parallel convolutional layers that are applied
over the input data, containing {k = 1, k = 2, k = 3}. Each
of those layers is padded so the output size remains unchanged,
and the resulting feature matrix can be merged for building a
consensual representation. Finally, a pooling strategy (mean,
max, or selfatt) is used to generate the final predictions.

D. CWE-R: A Recurrent Approach

Our final approach, hereafter called CWE-R, is based on
fast and light recurrent operators that are designed to learn
temporal relations. Differently from traditional RNNs such
as LSTMs [18] and GRUs [19], CWE-R does not require
any additional trainable weight matrices, since it applies non-
linearity functions to the word embeddings themselves allied
to residual connections over distinct time steps.

Formally, a given text T that contains word-embedding
vectors {ω1, ω2, ..., ωt} is forwarded through CWE-R by
activating the first word embedding φ(ω1), which is then
added to the original state of the second word embedding ω2.
This addition, which can also be seen as a temporal residual
connection, resembles to some extent the input gate of the
LSTM network. Note that by adding the non-linear word
embedding to a linear one, distinct word orders would most
likely produce distinct results, i.e., φ(ω1)+ω2 6= φ(ω2)+ω1.
Therefore, CWE-R should be able to learn temporal relations
across words. Note that although the current CWE-R defi-

TABLE I
OVERVIEW OF THE TEXT CLASSIFICATION DATASETS.

Datasets Training Validation Test Total #Characters/Inst #Words/Inst Vocabulary Size Classes (C)

AGNews 112,400 7,600 7,600 127,600 239.62± 66.78 48.01± 13.78 35,065 4
DBPedia 490,000 70,000 70,000 630,000 307.00± 139.34 57.69± 24.42 193,680 14
Twitter 89,720 12,818 25,635 128,173 79.09± 37.22 18.37± 7.55 24,768 2
Yelp P. 522,000 38,000 38,000 598,000 728.43± 670.08 156.66± 141.68 26,241 2

nition uses the normalized last non-linear state softmax(ω̂t)
for performing the sentence prediction ŷ, one could use any
of the previously-discussed pooling strategies across all the t
non-linear states as well.

I
 C

 w1
σ

σ

σ

love w2

σ

this w3

place w4

⊕

⊕

⊕

Fig. 4. Model architecture of CWE-R.

III. EXPERIMENTAL SETUP

In this section we detail the setup used for training and
evaluating our models and the baseline approaches.

A. Datasets

We train and evaluate our models on four distinct text
classification datasets: (i) AGNews, which contains short texts
extracted from the AG corpus, and whose texts are clas-
sified according to 4 categories, namely Sports, Business,
Sci/Tech and World; it comprises 30k training samples and
1.9k test samples per class; (ii) DBPedia is labeled according
to an ontology, built with 14 categories from DBPedia 2014;
each class has 40k training samples and 5k testing samples;
(iii) Twitter [3], [20], a multilingual sentiment analysis dataset
comprised of Tweets manually-annotated according to the
classes positive and negative; it comprehends Tweets in En-
glish, German, Spanish, and Portuguese; and (iv) Yelp Polarity
[9], a large scale sentiment analysis dataset that comprises
more than 500,000 reviews from several products and places.

Given that most datasets do not provide a public validation
set, we randomly selected instances from the training data ac-
cording to the size of the test set. Table I presents an overview
of the four datasets that were used in the experiments.

B. Hyper-parameters

All of our models were trained using Adam for minimizing
the Categorical Cross-entropy loss function. We used the
default learning rate as suggested in [21], namely 1×10−3. For

building the default vocabularies for each dataset, we filtered
rare words by keeping words that present minimum frequency
of 4 occurrences within their respective corpus. Note that both
CWE-BC and CWE-R are free from model hyper-parameters,
only requiring the setup of the optimizer. On the other hand,
CWE-C does take additional model hyper-parameters: p is the
number of parallel convolutional layers, each one containing
f filters, with k kernel size. We used p = 3, k = {1, 2, 3},
and f = c when not specified otherwise.

Regarding the pooling strategy, mean pooling is the default
option for all methods but CWE-R, which uses the last
activation of the hidden-state as the sentence representation.
Finally, the hyper-parameter for controlling the size of the
word embeddings with respect to the number of classes is by
default γ = 1.

IV. EXPERIMENTS

We first compare our models with the current state-of-the-
art. Then, we analyze the impact of the pooling strategies for
summarizing the temporal dimension: max, mean, or selfatt.
Next, we evaluate the impact of varying γ on CWE-BC,
CWE-R, and CWE-C. We also evaluate the impact of the
vocabulary size for CWE-BC, CWE-R, and CWE-C.

A. State-of-the-art

In this section, we compare our methods with the state-
of-the-art for text classification, depicted in the upper region
of Table II. We measure predictive performance in terms of
test set accuracy for each model in each dataset. Notably,
our simpler approach CWE-BC, which employs only bag-
of-class-based word embeddings, was capable of achieving
performance comparable to the state-of-the-art models in three
out of four datasets, namely AGNews (91.8%), DBPedia
(98.5%), and Twitter (72.8%). In addition, it outperformed
much more complex and heavier models in at least one dataset,
e.g., char-CNN [9], char-CRNN [22], FastText (unigram) [11],
and VCDNN [13], the latter being a very deep character-level
neural network that requires several hours to train a single
epoch [11]. Table II also shows that CWE-BC and CWE-
SA achieve comparable performance. Indeed, the use of the
self-attention strategy for pooling did not help achieving better
predictive performance, which is somehow surprising given
that it allows for the model to more easily focus in the most
important words across a given text. CWE-R also presented
sound results, outperforming all methods but FastText(bigram)
on AGNews. Overall, it performed in a similar fashion to
CWE-BC for all datasets, which gives us the intuition that

the temporal relations are not that helpful to classify text from
the selected data. One also can observe that convolution-based
approaches present better performance when trained with large
datasets such as Yelp Polarity, in which CWE-C achieves
94.3% accuracy, only 1.4% behind both VCDNN and FastText
(bigram) despite being much faster for classification and
requiring fewer trainable parameters.

TABLE II
TEXT CLASSIFICATION RESULTS.

Model AGNews DBPedia Yelp P Twitter

char-CNN [9] 87.2 98.3 94.7 70.6
char-CRNN [23] 91.4 98.6 94.5 -
VDCNN [12] 91.3 98.7 95.7 -
Conv [1] - - - 71.8
Conv-Char-S [3] - - - 72.0
fastText h = 10 [11] 91.5 98.1 93.8 71.3
fastText h = 10 bigram [11] 92.5 98.6 95.7 -
CHAIN-v1 [5] 91.5 98.6 - 73.5

CWE-BC 91.8 98.5 93.8 72.8
CWE-SA 91.9 98.3 93.5 72.2
CWE-R 92.1 98.4 93.7 72.5
CWE-C 91.2 98.0 94.3 71.1

B. Ablation Study

Validation performance during training. We first compare
the training steps for each approach. Figure 5 shows this
comparison on AGNews, DBPedia, and Yelp Polarity datasets.
Results show that CWE-BC takes more steps to converge
compared to CWE-C and CWE-R, since it is a linear model.
CWE-C and CWE-R have similar training convergence, ex-
cept for the Yelp Polarity dataset, in which CWE-R converges
faster than CWE-C. Finally, CWE-R and CWE-C are up to
9× faster then CWE-BC.

TABLE III
IMPACT OF THE POOLING STRATEGY.

Dataset Method max mean selfatt hs

CWE-BC 88.0 91.9 91.9 -
AGNews CWE-R 92.3 92.1 92.2 92.1

CWE-C 90.4 91.5 91.2 -

CWE-BC 67.0 72.3 72.2 -
Twitter CWE-R 72.5 72.4 72.3 72.5

CWE-C 71.2 72.2 72.2 -

CWE-BC 96.7 98.5 98.3 -
DBPedia CWE-R 98.4 98.3 98.4 98.4

CWE-C 98.1 98.4 97.8 -

Pooling strategy. We analyze the impact of the pooling
strategy for summarizing the temporal dimension. We provide
results by using max, mean, and selfatt pooling layers in all
of our methods. For CWE-R, since it is based on a recur-
rent formulation, we also provide experiments using the last
activation of the hidden-state as the sentence representation
instead of summarizing the temporal dimension via pooling,
namely hs. Table III shows the impact of distinct pooling
strategies on AGNews, Twitter, and DBPedia. Results show

0 10 20 30 40 50 60 70 80 90
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy

AGNews

BC
R
C

0 2 4 6 8 10 12 14 16 18 20
Step

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

DBPedia

BC
R
C

0 2 4 6 8 10 12 14 16
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

cu
ra

cy
Yelp Polarity

BC
R
C

Fig. 5. Validation accuracy during training of CWE.

that all approaches but CWE-BCseem to be quite robust
to the pooling strategy. For instance, CWE-R and CWE-
C present only a slight variation when changing the pooling
strategy. We do believe that such a robustness is due to the
fact that differently from CWE-BC, both CWE-R and CWE-
Care capable of approximating non-linear functions, which
makes it easier for those models to approximate complex
functions regardless of the pooling strategy. Finally, CWE-
BC underperforms in all datasets with max-pooling while
presenting virtually the same results with mean and selfatt.

Impact of γ. Table IV depicts the predictive performance
for CWE-BC, CWE-R, and CWE-C when varying γ ∈
{10, 50, 100, 150}, which is the number of dimensions per
class (default = 1). Hence, each model is trained with
word embeddings of C × γ dimensions in order to evaluate
the impact of the embedding size. Specially for this set of
experiments, given that the original word-space is larger than

25 50 75 100
Word Frequency Threshold

90

91

92

Ac
cu

ra
cy

 (%
)

(a)
R
BC
C

200 400 600 800 1000
Word Frequency Threshold

83

84

85

86

87

88

89

90

Ac
cu

ra
cy

 (%
)

(b)
R
BC
C

Fig. 6. Impact of the vocabulary size on the validation set accuracy for CWE-BC, CWE-R, and CWE-C. (a) The impact of filtering rare words; and (b)
The impact of removing more frequent ones.

the class space, we use a linear layer of shape (C×γ)×C to
project the word-space onto the class space. Clearly CWE-C is
the method that better leverages higher-dimensional input data,
achieving 95.4% accuracy on Yelp Polarity when γ = 150,
which is only 0.3% behind the state-of-the-art approaches,
namely VCDNN and FastText(bigram). Results also show that
both CWE-BC and CWE-R in their original incarnations are
not affected by larger values of γ, presenting virtually the same
results in all experiments.

TABLE IV
IMPACT OF THE CLASS-EMBEDDING SIZE γ .

γ CWE-BC CWE-R CWE-C

1 93.8 93.7 94.3
10 93.9 94.1 94.8
50 93.9 94.4 95.1
100 93.8 94.2 95.3
150 93.8 94.4 95.4

Impact of the vocabulary size. Figure 6 depicts the impact
of the vocabulary size on the AGNews dataset for three dif-
ferent approaches, namely CWE-BC, CWE-R, and CWE-C.
Figure 6-(a) shows the performance by filtering relatively rare
words, i.e., whose frequency ranges from 25 to 100; Figure 6-
(b) depicts the effect of pruning the vocabulary by filtering
more frequent words, i.e., whose frequency ranges between
200 and 1000. We defined those thresholds according to the
word distribution in the AGNews training set. Results show,
in all cases, a large performance drop as the word frequency
threshold increases. One can observe that such a drop presents
a linear correlation to the word frequency threshold. We
believe that when limiting the vocabulary, trained models may
suffer from underfitting.

C. Time Analysis

Table V shows the time (in seconds) each model takes to
train a single epoch. For providing a fair comparison, we
reimplemented all methods in PyTorch and trained them on
the same hardware, which generated slightly different results

when compared to the original FastText report [11]. All time-
related experiments were processed on a MacBook Pro, 2 GHz
Intel Core i5, 16 GB 1867 MHz LPDDR3 RAM, 512GB SSD.

Results show that CWE-BC is the fastest method to train,
taking only 14.7 seconds to train an epoch on Yelp Polarity.
Even CWE-C was capable of outperforming FastText in some
datasets. As expected, CWE-R is slower when compared
to the other CWE incarnations, mostly due to its recurrent
nature. Moreover, our methods train up to three orders of
magnitude faster than classic convolutional approaches such
as VCDNN [12] and ConvChar [9].

TABLE V
TIME ANALYSIS (IN SECONDS).

Method AGNews DBPedia Twitter Yelp P.

VCDNN (d=29) [12] 3× 103 3.6× 103 - 4.1× 104

ConvChar [9] 1.1× 104 1.8× 104 - -
FastText [11] 3.4 17.8 2.4 60.02

CWE-BC 2.6 12.4 1.9 14.7
CWE-C 5.1 26.9 2.2 54.6
CWE-R 6.2 45.3 2.8 129.6

V. QUALITATIVE ANALYSIS

Our models are easier to visualize and understand given
that they learn word embeddings that are trained directly over
the class space. In this section, we show examples of word-
embedding visualizations without using costly techniques such
as t-SNE. In addition, we also depict plots of word-by-word
predictions in the learned Euclidean class space. All the
following analysis were generated using the first approach,
namely CWE-BC, trained on Yelp Polarity. Since it was
trained for sentiment analysis, we can directly visualize the
trained word embeddings within a bidimensional chart.

A. Embedding Visualization

Our first qualitative analysis is regarding the visualization
of the trained word embeddings. Figure 7 shows two distinct
charts: (a) the spatial organization of the ten words with the
largest magnitude for the positive class; and (b) the top ten

77.5 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5
Negative Class Score

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Po
sit

iv
e

Cl
as

s S
co

re

perfection
pleasantly

delicious
perfect

incredible perfectly
fantastic
amazing

excellent
gem

(a)

70 75 80 85 90 95 100 105
Negative Class Score

105

100

95

90

85

80

75

70

Po
sit

iv
e

Cl
as

s S
co

re

worst

bland
mediocre

tasteless
awful

flavorlessdisgusting
disappointment

downhillhorrible
(b)

Fig. 7. Visualization of the learned word embeddings in the class space. (a) The ten words with largest score for the positive class. (b) The ten words with
largest score for the negative class.

40 30 20 10 0 10
Negative Class Score

0

10

20

30

40

50

60

Po
sit

iv
e

Cl
as

s S
co

re

their
food

is

good
and

super

healthy
(a)

20 10 0 10 20 30
Negative Class Score

10

5

0

5

10

15

20

25

30

Po
sit

iv
e

Cl
as

s S
co

re

I

liked

the
bar

The
food

not
at

all

(b)

Fig. 8. Visualization of word-by-word prediction generated by CWE-BC. The horizontal line depicts the decision boundary of positive and negative classes,
so the positive values of the x-axis generate positive-class predictions whilst negative values at the x-axis result in negative-class predictions. (a) The detailed
prediction of a positive class review. (b) The detailed prediction of a negative class review.

words with largest magnitude for the negative class. In this
visualization, we can see that the word with largest positive
score is perfection, while for the negative class the word is
worst. In addition, we can also observe that the classification
of the sentence “pleasantly disappointment” should be neutral,
i.e., ≈ 0 for both classes, given that words pleasantly and
disappointment present almost perfect opposite weights.

B. Prediction Visualization

Figure 8 shows detailed word-by-word prediction for two
excerpts of Yelp Polarity validation reviews, one for each class.
Each marker on the charts depicts an intermediate prediction
after all previous words. Figure 8-(a) explains the complete
prediction for the text “their food is good and super healthy”,
in which it is easy to see that words in {their, food, is} present
neutral content (near-zero values for both classes), while words
in {good, super, healthy} largely increase the prediction score
for the positive class. Figure 8-(b) details the prediction for
review “I liked the bar. The food not at all.”. In this case,
despite the fact that this review contains the positive-biased
word liked, the following sequence {not, at, all} is responsible
for increasing negative scores, ultimately causing the review to
be assigned to the negative class. Once again we can observe

that there are neutral words that present slight biases that do
not largely affect predictions, e.g., those in {I,the,bar,food,at}.

VI. RELATED WORK

Traditional approaches for text classification represent doc-
uments with sparse lexical features such as n-grams, and then
use a linear model or kernel methods over that representa-
tion [24], [25]. Recently, models based on neural networks
have gained space. For instance, the architecture from [1] is
based on convolutional layers, which was not used at that time
in applications other than computer vision.

C-LSTM [22] is an architecture that combines both LSTM
and convolutional layers for both sentence representation and
text classification This model uses a CNN to extract a sequence
of higher-level phrase representations, which are fed to a
LSTM responsible for encoding the sentence. C-LSTM is said
to be capable of capturing both local, global, and temporal
sentence semantics.

[9] introduce a CNN that learns directly from raw
characters. This architecture achieved state-of-the-art perfor-
mance without requiring additional pre-processing strategies.
VCDNN [13], in turn, is a very deep character-level CNN
for text processing that uses several convolutional layers (up

to 29) with filter sizes of 3, allied to pooling operations for
reducing the temporal dimension of the sentences.

The authors of [26] propose a hierarchical attention network
for text classification. They empirically verify whether better
representations can be obtained by incorporating knowledge
of document structure into the model architecture. The work
of [16], in turn, introduces the self-attention mechanism along
with a regularization term for regulating the importance of
diversity within the self-attention activation map.

FastText [11] is a model based solely on averaging word
embeddings for building bag-of-words-like representations of
sentences. The default incarnation of FastText uses only uni-
gram information, fully discarding temporal information. The
authors also propose the use of n-gram-based embeddings,
which led to state-of-the-art text classification results while
training up to two orders of magnitude faster than the baseline
approaches. On the other hand, the use of additional n-gram
information requires much larger amounts of memory to store
all the trained embeddings. Note that our architecture in this
paper is orthogonal to the work that perform quantization and
compression of the models [27]. Our models are much lighter
and faster due to their original design, which does not prevent
them to be compressed or quantized.

VII. CONCLUSION

In this paper, we present four efficient, light, and very fast
methods for text classification. All of them follow the same
principle, which is to generate word-embedding vectors by
exploring direct relations across the word-embedding space
and the target class space. By doing so, our approaches are
quite fast at both training and inference while using less
memory to store and process information. We evaluate our
approaches on widely-used datasets and results show that our
methods perform on a par with state-of-the-art approaches
while being much faster and memory-efficient. Finally, our
models are easier to visualize and understand since they learn
word embeddings that are trained directly over the class space.
For future work, we intend to verify the feasibility of using
our approaches in more complex NLP tasks.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nivel Superior – Brasil
(CAPES) – Finance Code 001. We also would like to thank
Google and FAPERGS for funding this research. We gratefully
acknowledge the support of NVIDIA Corporation with the
donation of the graphics cards used for this research.

REFERENCES

[1] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[2] S. Rosenthal, N. Farra, and P. Nakov, “Semeval-2017 task 4: Sentiment
analysis in twitter,” in Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), 2017, pp. 502–518.

[3] J. Wehrmann, W. Becker, H. E. Cagnini, and R. C. Barros, “A character-
based convolutional neural network for language-agnostic twitter senti-
ment analysis,” in Neural Networks (IJCNN), 2017 International Joint
Conference on. IEEE, 2017, pp. 2384–2391.

[4] W. Becker, J. Wehrmann, H. E. L. Cagnini, and R. C. Barros, “An
efficient deep neural architecture for multilingual sentiment analysis in
twitter,” in Proceedings of the Thirtieth International Florida Artificial
Intelligence Research Society Conference, FLAIRS 2017, Marco Island,
Florida, USA, May 22-24, 2017, pp. 246–251.

[5] J. Wehrmann and R. C. Barros, “Bidirectional retrieval made simple,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[6] J. Wehrmann, A. Mattjie, and R. C. Barros, “Order embeddings and
character-level convolutions for multimodal alignment,” Pattern Recog-
nition Letters, vol. 102, pp. 15–22, 2018.

[7] J. Wehrmann, R. Cerri, and R. Barros, “Hierarchical multi-label classi-
fication networks,” in International Conference on Machine Learning,
2018, pp. 5225–5234.

[8] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and
R. Ward, “Deep sentence embedding using long short-term memory
networks: Analysis and application to information retrieval,” IEEE/ACM
Transactions on Audio, Speech and Language Processing (TASLP),
vol. 24, no. 4, pp. 694–707, 2016.

[9] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in neural information
processing systems, 2015, pp. 649–657.

[10] J. Wehrmann, W. E. Becker, and R. C. Barros, “A multi-task neural
network for multilingual sentiment classification and language detection
on twitter,” Symposium on Applied Computing, vol. 2, no. 32, p. 37,
2018.

[11] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

[12] A. Conneau and H. Schwenk, “Very deep convolutional networks for
natural language processing,” 2016.

[13] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very
deep convolutional networks for text classification,” arXiv preprint
arXiv:1606.01781, 2016.

[14] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent
neural network for sentiment classification,” in Proceedings of the 2015
conference on empirical methods in natural language processing, 2015,
pp. 1422–1432.

[15] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[16] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” arXiv
preprint arXiv:1703.03130, 2017.

[17] J. Wehrmann, M. A. Lopes, M. D. More, and R. C. Barros, “Fast self-
attentive multimodal retrieval,” in 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, 2018, pp. 1871–1878.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[20] I. Mozetič, M. Grčar, and J. Smailović, “Multilingual twitter sentiment
classification: The role of human annotators,” PloS one, vol. 11, no. 5,
p. e0155036, 2016.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[22] C. Zhou, C. Sun, Z. Liu, and F. Lau, “A c-lstm neural network for text
classification,” arXiv preprint arXiv:1511.08630, 2015.

[23] Y. Xiao and K. Cho, “Efficient character-level document classifica-
tion by combining convolution and recurrent layers,” arXiv preprint
arXiv:1602.00367, 2016.

[24] T. Joachims, “Text categorization with support vector machines: Learn-
ing with many relevant features,” in European conference on machine
learning. Springer, 1998, pp. 137–142.

[25] S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good
sentiment and topic classification,” in Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Short Papers-
Volume 2. Association for Computational Linguistics, 2012, pp. 90–94.

[26] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” pp. 1480–1489, 2016.

[27] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou,
and T. Mikolov, “Fasttext.zip: Compressing text classification
models,” CoRR, vol. abs/1612.03651, 2016. [Online]. Available:
http://arxiv.org/abs/1612.03651

View publication statsView publication stats

https://www.researchgate.net/publication/332082660

