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Abstract—The amount of digital pornographic content over
the Internet grows daily and accessing such a content has
become increasingly easier. Hence, there is a real need for
mechanisms that can protect particularly-vulnerable audiences
(e.g., children) from browsing the web. Recently, object detection
methods based on deep neural networks such as CNNs have
improved the effectiveness and efficiency of identifying and
blocking pornographic content. Even though improvements in
detecting intimate parts have been significant, the occlusion of
the content is still primarily done by either blurring or removing
regions of the image in an intrusive fashion. A recent study has
addressed the problem of censoring the pornographic content in a
non-intrusive way by generating the so-called seamless censorship
via cycle-consistent generative adversarial networks. Such an
approach has managed to automatically add bikinis to naked
women without explicit supervision or paired training data. In
this paper, we extend that method by designing a novel cycle-
consistency framework that leverages sensitive information from
an attention-based multi-label convolutional neural network. We
evaluate the quality of our novel generative model by conducting
a web survey with over 1000 opinions regarding the resulting
images from our method and from baseline approaches. Results
of the survey show that our method considerably improves the
state-of-the-art on the seamless censorship task.

Index Terms—adversarial training, attention, convolutional
neural networks, deep learning, GANs, pornography censorship.

I. INTRODUCTION

The amount of adult content available on the internet grows
daily. Cooper [1] associates the growing of that material
to three main factors: (i) accessibility, since it is easy to
access pornographic content online; (ii) affordability, given
that the adult content is available with low monetary cost;
(iii) anonymity, which protects users and encourages access.

Considering mostly the accessibility aspect from [1], there is
a clear need for automatic approaches capable of identifying
adult content and censoring it when accessed by vulnerable
audiences (e.g., children and specific religious groups). For
instance, an automatic system could be used in live broad-
casts to protect audiences from explicit body-part exposition.
This important task unfortunately has not received enough
attention from the scientific community in order to allow
the development of automatic methods for censoring explicit
content. There is also the need for widely-spread benchmarks
to properly evaluate novel data-driven models.

Seminal work for pornography censorship based on deep
learning has mostly focused on class-based predictions, hence
images or frames from a video containing pornographic con-
tent have to be fully removed [2]. An alternative for the clas-
sification approach is to generate bounding boxes surrounding
the intimate parts, so the images can be partly censored by
either blurring the enclosed regions or adding black boxes.
However, even the bounding box approach does not hide the
fact that the image is originally pornographic, bearing in mind
the intrusiveness of such a method.

In an attempt to develop a non-intrusive approach for
pornography censorship, More et al. [3] have addressed the
problem as an image-to-image translation task, where images
from domain A (naked women) are converted to another
domain B (women wearing bikinis). Such a method has the
advantage of translating images with no explicit supervision
(bounding boxes or segmentation masks) and does not re-
quire paired training examples (e.g., the same person with
and without a bikini). That method addresses the lack of
instance level supervision by using two domain sets, each
one representing the concepts of A and B. Thus, one needs
to train a generator to map G : A → B, which will then
be capable of transforming naked-women images into their
counterparts (women in bikinis). Another contribution of [3]
is the construction of a novel unaligned dataset containing
either nude women or women wearing bikini.

The main motivation of the work in More et al. [3] is to
avoid ruining the user experience while consuming content that
may occasionally contain nudity. Their solution workflow was
inspired by CycleGan [4], though the authors had to remove
the background of the input images to bring the generator
focus to the specific subject in order to achieve better-looking
images. Such a strategy, however, has the disadvantage of los-
ing an important component of the original image, which is the
background. Concurrently, Mo et al. [5] propose a method that
incorporates the instance information of multiple target objects
in the framework of generative adversarial networks (GAN),
called instance-aware GAN (InstaGAN), which translates both
an image and the corresponding set of instance attributes while
maintaining the permutation invariance property. The method
uses object segmentation masks for instance information,
which is a good representation for instance shapes since it



contains object boundaries, while ignoring other details such
as color and background. However, their method depends on
semantic segmentation labels (i.e., pixel-wise annotation) for
model training, constraining the adaptation for new problems
where pixel-level annotation is not available.

In this work, we address several previous limitations of the
seamless censorship approach to improve the overall quality
of the generated images. We aim to preserve peripheral parts
of the image (e.g., background and faces) while maintaining
our focus on covering the body parts. Our solution comprises
a multi-label convolutional network that is trained to identify
5 classes (body parts): i) butt, ii) breasts, iii) penis, iv) vagina,
and v) no-nudity, where no-nudity means the absence of sensi-
tive parts. The architecture of the network implements a Scaled
Dot-Product Attention branch [6], which generates attention
masks that focus on the main subject of an input image. To
improve the standard method, we merge the attention mask
to the input volume before and then inside the generator of a
cycle-consistent framework. The intuition is that the attention
mask will be capable of highlighting the target areas of the
image, contributing to shift the focus of the generator to act
only over the sensitive areas. To improve peripheral (and thus
overall) image quality, we merge the generator output with the
original input image.

To evaluate the results of our method, we have conducted a
web survey that have collected more than 1000 opinions. The
survey results demonstrate that the human-perceived quality
of our generated images is significantly superior than previous
methods for the seamless censorship task.

II. RELATED WORK

In this section, we discuss work that address the two main
concepts related to this paper: generative networks in the
context of image-to-image translation; and studies that provide
datasets and methods for identifying/classifying adult content
in both images and videos.

A. Image-to-Image Translation

Generative Adversarial Networks (GANs) [7] is a frame-
work that trains two networks simultaneously in a zero-
sum game. During training, a generator G produces synthetic
images while the discriminator D learns to identify whether
the input was drawn from a real dataset or was produced by
the generator. The generator thus learns to produce realistic
images that can trick the discriminator into producing false
responses. The game is defined as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))],
(1)

where z is a low-dimensional latent vector drawn from a
known distribution (such as uniform or Gaussian) and is fed
as input noise to G. In traditional GANs, the final G model
can generate multiple images by varying the sample from the
latent vector z.

Whereas in traditional GANs the generated images are
unconditioned, Conditional Generative Adversarial Networks
(CGANs) can generate images based on a certain input [8].
This type of framework pave the way for tasks that focus on
changing specific characteristics of the image, such as super-
resolution [9] and image inpainting [10]. Generally speaking,
CGANs are a way to solve image-to-image translation tasks,
where images from a certain domain A can be mapped to their
corresponding image in domain B .

Unless the experiment design comprises a task in which
the image can be collected in both domains (such as images
during day and night or winter and summer), finding paired
examples from both domains to train the model becomes
cumbersome and sometimes demand expensive expert help. To
overcome this limitation, Zhu et al. [4] proposed CycleGAN,
an unpaired image-to-image translation approach. More re-
cently, More et al. [3] extended CycleGAN to seamlessly cover
intimate body parts. To enhance the generated image quality,
the method comprises a step that detaches the background of
the input images to shift the focus of the generator to the
specific subject at hand. This solution contributes for better
covering results, but at the expense of losing peripheral char-
acteristics of the original image, especially the background.
More et al. [3] also contributed by publicly providing a novel
unaligned dataset containing images from both domains, i.e.,
naked women vs. women wearing bikinis.

B. Adult Content Filtering

Avila et al. [11] introduced one of the first datasets for
adult content detection, namely NPDI. It comprises nearly 80
hours from 802 videos downloaded from the internet. NPDI is
divided into two disjoint classes: adult and non-adult videos.
The non-adult class is further sub-divided in 200 easy-to-
classify videos and 200 hard-to-classify videos. The latter
includes videos with scenes of people in beaches, wrestling,
and swimming.

A novel dataset for adult content classification, namely
DataSex, was introduced by Simões et al. [12]. The authors
provided the largest dataset for binary classification of porno-
graphic images. It contains a collection of ≈ 300, 000 images
that are equally distributed into adult and benign classes.
They also provide splits for training and validation purposes.
DataSex was built by crawling around 300, 000 publicly avail-
able images from adult websites. Simões et al. [12] reports
classification results of ≈ 95% accuracy in DataSex’s test set,
achieved by fine-tuning a pre-trained GoogleNet [13].

The work described in [14] is the first to use deep neural
networks for pornography classification in videos. It proposes
a method that requires fine-tuning two distinct ConvNets,
namely AlexNet [15] and GoogLeNet [13]. Next, the pre-
trained models are fine-tuned in each fold of the NPDI dataset.
Note that such an approach requires training 10 distinct
models: one model per training fold (5) and per network (2).
In order to avoid overfitting, the authors apply strong dropout
rates and data augmentation with randomly selected image-
crops in the training phase.



Recently, Wehrmann et al. [16] presented ACORDE (Adult
Content Recognition with Deep Neural Networks). The pro-
posed approach uses a convolutional architecture as a feature
extractor and a Long Short-Term Memory network (LSTM)
[17] to perform video classification. The method extracts
feature vectors from the keyframes of NPDI to construct
video semantic descriptors that feed an LSTM responsible for
analyzing the video. The entire pipeline works in an end-to-
end fashion, eliminating the fine-tuning phase and the ConvNet
re-training. ACORDE establishes itself as the current state-of-
the-art for adult video detection in NPDI.

III. METHOD

In this paper, we propose a novel method for seamless
nudity censorship in images, namely AttGAN+. For such, we
make use of an adversarial-training image-to-image transla-
tion approach that draws bikinis over nude female bodies,
preserving peripheral parts of the image such as the back-
ground and people’s faces. Our solution encloses an attention
convolutional network which is trained to identify sensitive
(intimate) body parts to create attention maps that will be
used to help guiding the generators within the image-to-
image translation framework. We embed the attention masks
as additional information to reinforce the need of focusing
on the intimate body parts that should be transformed in the
output image.

A. Attention Network

Our main contribution is regarding the use of an additional
attention network responsible for recognizing images that
contain explicit content, so the generative network can focus
on those regions in order to generate state-of-the-art seamless
censorship. For training such a network, we need a dataset
for body-part recognition. Given that the ones available for
censorship or nudity detection do not contain labels for each
body-part, we introduced a novel dataset, namely Dataset for
Pornography Censorship (DPC). This dataset has been man-
ually annotated in a per-body-part granularity (see Section IV
for more details).

In order to learn the attention maps, we use a pre-trained
ResNet-152 [18] removing the last two layers (last fully-
connected and global pooling layers). By removing those
layers, the network outputs a tensor Rf×w×h, where f is the
number of filters, w is the width, and h is the height of the
feature map. Since we need an attention map for each class,
we add a convolutional layer with c filters, where c is the
number of classes, generating a c×w× h feature tensor. For
generating class scores, we apply an average global pooling
so the spatial dimensions are summarized into a c-dimensional
vector. This vector is then activated with the logistic sigmoid
function σ, generating the final model predictions denoted by
Ŷ. Note that by averaging all the spatial dimensions directly
onto the class space, we enforce the image regions related to
each class to present scores large enough to outperform those
related to classes absent from the image.

The attention network is trained in a multi-label fashion
given that a single image may contain several explicit body
parts altogether. Therefore, similarly to [19]–[21], we optimize
a per-neuron binary cross-entropy loss function, as follows:

− 1

N

N∑
i=1

C∑
j=1

[
Yij × log(Ŷij)

+ (1−Yij)× log(1− Ŷij) (2)

where N is the number of instances within a mini-batch, C is
the number of classes, and Yij is the jth ground truth label
for the ith instance.

After training the attention network using DPC, we remove
the final average global pooling function so the spatial dimen-
sions are preserved. Each spatial position is then normalized
within the range [0, 1] by applying a 2D-SOFTMAX function
on the class dimension of the output. Ultimately, we aggregate
all the maps from classes that represent any explicit body part
through a max-pooling operator. Such an aggregation results
in an attention tensor of size 2×w×h, in which the first w×h
map represents all the regions responsible for the explicit body
parts, while the second depicts regions without any sensitive
content. Note that, in theory, by introducing the first activation
map to the generative network within the image-to-image
translation framework, it should be able to only modify regions
of the original image that contain explicit content, while
keeping unchanged the safe regions of the image. Formally, the
forward pass in the attention network that is used to generate
the attention map is denoted by AN(I) =M where M is the
2× w × h attention mask generated from input image I .

B. AttGAN+

Figure 1 presents our novel framework for seamless nu-
dity censorship, AttGAN+. Our solution is inspired on [4],
preserving the original architectures of generators G and
discriminators D. We add an additional convolutional network
to the flow which comprises the following 7 steps: i) the
attention mask generation when input A flows within the
attention CNN, resulting in an attention map (upsampled
according to the image input size); the final attention mask
is a 256 × 256 × 1 tensor originated from the max of
the first 4 channels of the attention output. ii) we fuse the
attention mask as additional information to the input image
creating a new channel, transforming the original image into
a volume of dimension W ×H×4; this volume flows through
the generator network up to the second convolutional layer;
iii) we sum the attention map across all output channels of
the first convolutional layer activations produced by the first
convolutional layer of GAB ; iv) we invert the original attention
mask; v) we concatenate the inverted mask to the generated
image (Fake B) to build the volume prior to the reconstruction;
vi) we sum the inverted attention mask across all output
channels of the first convolutional layer activations inside
GBA; and vii) we match the reconstructed image with the
original input. The generator and discriminator architectures
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Fig. 1: AttGAN+ framework. Real A is an image sampled from domain A, i.e., the set of images with naked women.
Analogously, Real B is an image sampled from domain B, which is the set of women wearing bikini. Generator GAB

transforms images from domain A into B, and GBA maps an image that was generated as belonging to B (Fake B) back
to domain A. Both GAB and GBA are guided by the attention masks of each domain. This is done by concatenating the
mask at the input, and also through a summation operation for every channel at the output of the first convolutional layer.
The inverted mask serves the same purpose, but highlighting regions without sensitive content. For privacy reasons we have
manually blurred all faces and covered the intimate parts with red tags.

were based on the work by More et al. [3], which uses a
9-Blocks ResNet Generator – an autoencoder that interposes
residual connections and bottleneck layers inspired on [22].

We test with other two variations of AttGAN+: AttGANand
AttGAN++, as detailed next.

1) AttGAN: The first approach that we have developed to
combine the attention mask with the cycle-consistent image-
to-image translation framework is called AttGAN. In AttGAN,
we use the attention data generated by AN as additional
information to the framework by only concatenating it at the
generators GAB and GBA input, which means AttGAN com-
prises only steps i), ii), iv), and v) of AttGAN+.

2) AttGAN++: Our second variation, namely AttGAN++,
enhances AttGAN+ by merging the GAB output with the
original input image. We use the attention maps produced by
AN to make a guided merging, where sensitive nude parts
are covered by fake bikinis, generated by GAB . The idea of
AttGAN++ is to maintain the improvements of AttGAN+ while
keeping peripheral regions of the image entirely preserved.

IV. DPC: Dataset for Pornography Censorship

DPC is a dataset that contains 3, 000 images for detection
of intimate parts. Each image contains at least 1 object from
any of the following classes: butt, breast, penis (frontalm), or
vagina (frontalf ). DPC is divided into training (2, 100 images),
test (600), and validation (300) sets. It comprises images
crawled from the wild presenting large variability in terms
of:

• scale/size, where the image dimensions range from 170
to 3, 000 pixels;

• lighting conditions;
• scene composition; and
• ethnicity of the components.
To build DPC, we randomly selected image samples from

DataSex, the pornographic classification dataset presented
in [12]. Those images were annotated for object detection
following two steps: i) initial annotation, and ii) reviewing
step. In the first step, all images were divided into four groups,
each of which assigned to a human annotator. In the second
step, annotators reviewed each other’s work. The complete
work pipeline took about a month to be completed.

Given the body parts subject, the total annotated area is
relatively small. For instance, PASCAL VOC [23] presents an
average annotated area of 20.8% across all images, while in
DPC such an area consists of ≈ 11.8%. A total of 6, 500
objects were manually annotated, implying an average of
3.4 objects per image (1 being the minimum number of
annotations and 11 the maximum). Table I shows the bounding
box (annotations) distribution through classes and images.

TABLE I: Body-part distribution in DPC.

butt breast penis vagina total

bounding boxes 1, 200 2, 693 1, 265 1, 383 6, 541
images 1, 122 1, 537 1, 134 1, 335 3, 000

V. EXPERIMENTAL SETUP

In this section, we introduce the datasets that were used for
training both the multi-label classification model (AN ) and the
generative models. We also briefly describe how we evaluate



(a) 100 epochs (b) 200 epochs (c) 300 epochs (d) 400 epochs (e) 500 epochs

Fig. 2: The same sample from domain A after translation within 5 different training epochs. Results from method AttGAN++.
For privacy reasons we have manually blurred all faces.

the quality of the generated images and compare them with
baseline methods.

A. Datasets

We train our attention network AN in a multi-label fashion
to predict 5 classes: no-nudity, butt, breast, penis and vagina.
In this context, no-nudity means the absence of intimate parts
and the other classes represent content that must be covered.
To train the network we use DPC, a dataset originally built for
addressing the problem of pornography censorship as an object
detection task. We first adapt the dataset for a multi-label task
by using the available bounding box labels. The task becomes
the prediction of whether an object from a class appears in the
image, and we no longer worry in detecting its (x, y) position
or finding multiple occurrences. DPC is a subset of DataSex
[12], a binary pornographic dataset for image classification.

1) Bikini dataset: The Bikini dataset that we adopt to
validate our method and run our experiments was presented
by More et al. [3]. To build the dataset, the authors scrapped
images from the Internet for nude women and women wearing
bikinis. They keep only one single person per image. The
dataset was divided into training and test sets. For nude women
(domain A) the final image count was 921 for training and 103
for test, and for women wearing bikinis (domain B) the final
image count was 1044 training images and 117 test images.

B. Hyperparameters

For training our approach, we start from scratch and we
keep all the hyperparameters the same as those used in the
work by More et. al. [3]. The generator and discriminator loss
functions were the same as [4], however we train our models
for 500 epochs with an initial learning rate of 1×10−4, which
we keep by 100 epochs, and we decay it linearly to zero for
400 epochs. We conducted experiments for 3 versions of the
method: AttGAN, AttGAN+, and AttGAN++.

C. Evaluation

To qualitatively validate the generated results, we have
distributed a web form composed of 50 images from our
test set. For each input image, we ask people to compare
the baseline (the work by More et al. [3]) with AttGAN and
AttGAN+ specifically for the seamless censorship task. When
none of the images seem to present adequate results, users

were instructed to check option D, which always represented
poorly-translated images. Options A, B and C presented im-
ages generated by the baseline, by AttGAN, and by AttGAN+.
Those options were shuffled not to bias users into checking the
same alternative. Note that AttGAN++ is not included in the
survey since it was created after we had evaluated the survey
results.

VI. EXPERIMENTS

In this section, we detail experiments that show the per-
formance of 3 variations of our method, namely AttGAN,
AttGAN+, and AttGAN++. For each variation, we keep opti-
mization hyperparameters and loss functions equivalent to [3],
which is the work we use as baseline method (hereby called
simply baseline). We use input dimensions equal to 256×256
for the attention network and for the generators GAB and
GBA. The attention network output has dimensions 8×8. We
apply bilinear upscale algorithm to make the attention mask
size compatible with the generator input. Figure 2 depicts
the training evolution for 5 different training epochs from
AttGAN++, for on of the samples of our test set. It is clear
that the optimization process is generating better and better
results as training advances.

A. Attention Network Results

Table II shows results for four versions of AN , ResNet-[34,
50, 101, 152], with an adapted final convolutional layer. The
last layer can also be a transposed convolutional layer (denoted
by T), making the output volume slightly larger since we use
kernel size of 3. All models were trained and evaluated on
the multi-label dataset DPC(validation set). In addition, we
also computed AN accuracy for nudity detection in the Bikini
training set. Results show that for deeper networks, the use
of transposed convolutions seem helpful for achieving better
predictive performance across distinct datasets. In addition,
one can see that the best performing model is the ResNet-152T,
which outperformed all other networks in both evaluation sets.
Hence, this model was used for the attention map extraction
in all versions of AttGAN+.

B. Generation Results

Figure 3 shows 8 test-set samples translated by the base-
line [3] and by the 3 variations of our method. Figure 3b



(a) Raw Image (b) More et al. [3] (c) AttGAN (d) AttGAN+ (e) AttGAN++

Fig. 3: Results after 500 epochs. a) original image. b) baseline by More et al. [3]. c) AttGAN. d) AttGAN+. e) AttGAN++.
For privacy reasons we have manually blurred all faces and covered the intimate parts with red tags.



TABLE II: Attention network results.

Model Validation Training (Bikini)

ResNet-34 97.83% 98.42%
ResNet-34T 96.17% 96.92%
ResNet-50 97.33% 96.17%
ResNet-50T 97.33% 97.67%
ResNet-101 97.33% 97.82%
ResNet-101T 97.17% 98.57%
ResNet-152 97.67% 97.90%
ResNet-152T 97.90% 98.65%

illustrates the output of the baseline method trained by 500
epochs, while Figures 3c and 3d show outputs for AttGAN and
AttGAN+ also after 500 epochs. Observing the outputs, we
clearly identify that AttGAN+ has the best covering capability
and the most coherent bikini shapes when compared to the
baseline and to AttGAN. In Figure 3e we depict AttGAN++,
which merges the raw input image with the method output.
We use the attention mask to guide the merging process.
This approach seems to be the best option since it carries
all advantages from AttGAN+ while being better at preserving
the peripheral areas such as faces and background.

We perform a web survey to evaluate our method. The
survey ask users to identify the best method among the
baseline, AttGAN, and AttGAN+. Table III compile results
for 2 particular cases: (i) considering option D (none of the
previous methods are good enough), and (ii) considering only
the responses among options A (baseline), B (AttGAN), and
C (AttGAN+). The survey was answered by 21 participants
resulting in a total of 1050 responses. For the first scenario, we
observe that 49.4% of the generated images were perceived by
the respondents as poor results, while 35.2% choose AttGAN+,
10.5% choose AttGAN, and only 4.9% prefer the baseline
approach.

TABLE III: Evaluation survey results.

Baseline (A) AttGAN (B) AttGAN+ (C) Poorly (D)

Case (i) 4.9% 10.5% 35.2% 49.4%
Case (ii) 9.6% 20.7% 69.7% -

The second scenario ignores the nonconformity option
D, and it clearly depicts the differences between baseline,
AttGAN, and AttGAN+. We have also performed a chi-squared
test to check for statistical relevance in the survey’s results.
The statistical test was conducted only for the second scenario,
and it shows the existence of significant differences with a p-
value < 0.001.

C. Ablation Study

The source of our intuition to build AttGAN+ comes from
the fact that it is now possible to develop networks that
generate attention maps highlighting areas of interest. We
assume that additional information, e.g., attention maps that
highlight regions according to certain objects, can improve the
generative process. We validate our assumption by observing
the attention masks produced by AN . Figure 4 illustrates the

attention masks generated by the softmax layer of AN for 3
input images from the test set. The intimate regions observed
in Figure 4b are coherently aligned with the original image.
Figure 4c confirms that assumption when masking the image
and fully supports our intuition that by feeding the input
with additional information we can improve the generator
capabilities and reinforce transformations at sensitive areas.

(a) Raw Image (b) Attention Mask (c) Masked Image

Fig. 4: Attention masks for 3 domain A input images. For pri-
vacy reasons we have manually blurred all faces and covered
the intimate parts with red tags.

Next we investigate the effects of each component of our
method presented at Figure 1. Figure 5 illustrates the 3
variations of our method that we progressively add to the base-
line. Observe the improvement of adding novel information
from the attention masks when concatenated as a new input
image channel, and then training by 200 epochs (AttGAN in
Figure 5a). AttGAN keeps improving after 300, 400, and finally
500 epochs (Figure 5b). Now note the improvement when also
summing the attention masks at the first convolutional layer
output of the generator, which is depicted at Figure 5c. Finally,
in Figure 5d we use the attention mask to merge our best
method output (AttGAN+) with the raw input image, in such
a way that peripheral parts such as background and faces are
better preserved (the so-called AttGAN++).

VII. CONCLUSIONS

In this paper we have presented a new method for seamless
nudity censorship based on a cycle-consistent image-to-image
translation approach enhanced by additional information ex-
tracted from an attention network. We make use of the atten-
tion masks in three distinct strategies to improve the original
seminal work by More et al. [3] on seamless nudity censorship,



(a) (b)

(c) (d)

Fig. 5: Samples from 3 different experiments. a) AttGAN with
200 epochs; b) AttGAN trained by 500 epochs; c) AttGAN+
trained by 500 epochs; d)enhanced AttGAN+. For privacy
reasons we have manually blurred all faces.

which in turn is an evolution of the CycleGAN [4] framework
for automatically covering intimate body parts without explicit
supervision and/or paired training samples.

We have designed 3 variations of the method and have
also conducted a web survey in which 50 test-set images are
analyzed by 21 users that need to choose the best approach
for automatically generating bikinis in naked women. The
survey results indicate a statistically-significant advantage for
AttGAN+, which was selected as the best approach based on
the 1050 collected opinions. Then, we have further evolved
AttGAN+ in an attempt to preserve as best as we could the
peripheral parts of the images such as background and faces,
resulting in the so-called AttGAN++.

For future work, we intend to evaluate the behavior of our
method with the generator GBA input also being matched
with the original image. In other words, we would like to
see if we can successfully include the process performed by
AttGAN++ (Section III-B2) during training. We believe that
such improvement will contribute in producing even better
reconstruction results. We also intend to evaluate AttGAN+ in
different application domains, especially those used in the
literature as benchmarks, e.g., the well-known horses-to-zebras
and oranges-to-apples.
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