
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIAS DA COMPUTAÇÃO

VINICIUS MORAIS FOCHI

FAULT-TOLERANCE AT THE MANAGEMENT LEVEL IN MANY-CORE SYSTEMS

Porto Alegre
2019

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FAULT-TOLERANCE AT THE
MANAGEMENT LEVEL IN
MANY-CORE SYSTEMS

VINICIUS M. FOCHI

Thesis presented as partial requirement
for obtaining the degree of PhD in
Computer Science at Pontifícia Univer-
sidade Católica do Rio Grande do Sul.

Advisor: Prof. Fernando Gehm Moraes

Porto Alegre
2019

REPLACE THIS PAGE WITH
THE LIBRARY CATALOG

PAGE

Vinicius Morais Fochi

Fault-Tolerance at the Management Level in Many-Core Systems

Tese apresentada como requisito parcial para
obtenção do grau de Doutor em Ciências da
Computação do Programa de Pós-Graduação em
Ciências da Computação, Escola Politécnica da
Pontifícia Universidade Católica do Rio Grande do
Sul.

Aprovado em 23 de agosto de 2019.

BANCA EXAMINADORA:

Prof. Dra. Fernanda Kastensmidt – Avaliadora (UFRGS)

Prof. Dr. Eduardo Bezerra – Avaliador (UFSC)

Prof. Dr. Cesar Marcon – Avaliador (PUCRS)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Orientador)

ACKNOWLEDGMENTS

Gostaria de agradecer as pessoas que tiveram influência sobre o desenvolvimento
desta tese e de todo meu Doutorado. Gostaria de dedicar esta conquista aos meus pais,
José Jorge Fochi e Rosi Morais Fochi que me apoiaram a continuar estudando e a minha
irmã Cristina.

Ao Professor Fernando Gehm Moraes, por aceitar o imenso desafio de continuar
me orientando. Muito obrigado por manter reuniões semanais, me obrigando assim a tra-
balhar intensamente no desenvolvimento do trabalho. Obrigado por todo o conhecimento
compartilhado e por sempre acreditar no nosso trabalho. Por ter compartilhado seu tempo
e paciência para a realização desta tese. Sou muito grato por me aceitar como aluno de
doutorado.

Agradeço a todos os professores do PPGCC pelo conhecimento compartilhado.
Aos colaboradores do PPGCC pela dedicação em nos manter sempre informados dos pra-
zos e burocracias.

Um agradecimento especial ao colega Luciano Lores Caimi, grande colaborador
no desenvolvimento deste trabalho e organizar todos os eventos.

Aos colegas que me ajudaram durante a jornada do Doutorado: Eduardo Wachter,
Marcelo Ruaro, L. Heck, G. Heck, Roger, Juraci, Marcelo Holgado e a todos os demais:
obrigado pela ajuda!

Agradeço a Capes e os contribuintes por terem possibilitado e financiado esta
pesquisa.

TOLERÂNCIA A FALHAS NO NÍVEL DA GERERÊNCIA EM SISTEMAS
MANY-CORE

RESUMO

A redução dos nodos tecnológicos permitiu o surgimento de sistemas com múlti-
plos núcleos de processamento utilizando redes intra-chip (MCSoCs - many-core systems-
on-chip), com dezenas a centenas de elementos de processamento (PEs). Apesar do poder
de processamento oferecido pelo grande numero de PEs e da flexibilidade de comunicação
devido à adoção de NoCs, é necessário gerenciar os recursos do sistema para garantir sua
escalabilidade. A execução das tarefas de gerência requer PEs reservados exclusivamente
para executar essas ações. Uma abordagem centralizada induziria uma carga de traba-
lho significativa para os PEs de gerência (MPE) em sistemas de grande escala. A adoção
de abordagens distribuídas, com MPEs hierarquicamente organizadas, reduz a carga de
gerência, sendo a organização adotada nesta Tese. Propostas recentes de gerência em
MCSoCs focam em diferentes aspectos: potência, desempenho, utilização dos recursos do
sistema. Essas técnicas são aplicadas no nível sistêmico dos MCSoCs. No entanto, nos
trabalhos analisados, há uma lacuna nas propostas relacionadas a falhas permanentes nos
MPEs. Esta Tese tem por objetivo abordar dois problemas principais. Primeiro, tratar fa-
lhas permanentes nos MPEs, desenvolvendo um conjunto de novas técnicas para que os
MCSoCs continuem a operar corretamente, sem reexecutar as aplicações em execução.
Segundo, resolver a questão do ponto único de falha na comunicação dos MCSoCs com
o mundo externo. A contribuição original desta Tese é uma arquitetura MCSoC distribuída,
com capacidade de recuperação de falhas em pontos críticos do sistema. O método de re-
cuperação inclui módulos de hardware e software, monitoramento de falhas e recuperação
de gerenciamento. A proposta utiliza técnicas de migração de tarefas e heurísticas para
selecionar a posição do novo MPE. Esta Tese propõe um método de recuperação quando
um MPE torna-se falho. O método é escalável, capaz de atuar em sistemas de dezenas
a centenas de processadores. O método é transparente para as aplicações executadas
no MCSoC, com uma pequena sobrecarga no tempo de execução, observado durante a
migração de gerência e migração de tarefas.

Palavras-Chave: MCSoCs; NoC; Gerenciamento de sistemas; Recuperação de falhas; Mi-
gração de tarefas; Tolerância a falhas; Admissão de aplicativos; BrNoC.

FAULT-TOLERANCE AT THE MANAGEMENT LEVEL IN MANY-CORE
SYSTEMS

ABSTRACT

The technology nodes reduction enabled the emergence of NoC-based many-
cores with dozens to hundreds of processing elements (PEs). Despite the processing power
offered by a large number of processors and communication flexibility due to the adoption of
NoCs, it is necessary to manage the many-core resources to ensure scalability. The execu-
tion of the management tasks requires processing elements reserved exclusively to execute
such actions. A centralized approach would induce a significant load to the managers PEs
(MPE) in large-scale systems. The adoption of distributed approaches, with MPEs hierar-
chically organized, reduces the management load, being the organization adopted in this
work. Recent proposals for Many-core System-on-chip (MCSoCs) management focus on
different aspects: power, performance, system resources. These management techniques
are applied to the systemic level of the MCSoCs. However, in the reviewed works, there is a
gap in proposals related to permanent faults in processors with management functions. This
Thesis aims to tackle two main problems. First, to treat permanent faults in management
processors, developing a set of new techniques so that the MCSoCs continues to oper-
ate correctly, without re-executing applications running on it. Second, to solve the single
point of failure issue regarding the communication of the MCSoCs with the external world.
The original contribution of this Thesis is a distributed MCSoC architecture, with fault recov-
ery capability at critical points in the system. The recovery method includes hardware and
software modules, fault monitoring, and management recovering. The proposal uses task
migration techniques, and heuristics to select the position of the new manager. This Thesis
proposes a recovery method when an MPE became faulty. The method is scalable, able to
act in systems from dozens up to hundreds of processors. The method is transparent to the
applications executing in the MCSoC, with a small execution overhead observed during the
management and task migration.

Keywords: MCSoCs; NoC; System Management; Fault-recovery; Task migration; Fault-
tolerance; Application Admission, BrNoC.

LIST OF FIGURES

Figure 1.1 – Overview of MCSoC hardware model adopted as reference for this
Thesis. 19

Figure 2.1 – Architectural overview of the invasive hardware/software stack [Paul
et al., 2015]. 23

Figure 2.2 – (a) Original PE and (b) new PE with DVFS support. The new PE
has Clock Generator hardware as well as changes on the DMNI [Martins
et al., 2016]. 24

Figure 2.3 – Proposed software stack in the MADNESS project [Meloni et al., 2012]. 25

Figure 2.4 – Architecture proposed in the MADNESS project [Meloni et al., 2012]. 26

Figure 2.5 – Hardware test components placed near the processing cores [Kam-
ran et al., 2016]. 28

Figure 2.6 – The Observe–Decide–Act control loop of [Bolchini et al., 2013]. 30

Figure 2.7 – Overview of SoftRM proposal [Tsoutsouras et al., 2017]. 31

Figure 2.8 – A Overview of Network-on-Chip (NoC) architecture with multiple cores
[Suraj Paul, 2018]. 32

Figure 2.9 – Fault Tolerance using replica tasks [Suraj Paul, 2018]. 33

Figure 2.10 – A 6x6 platform with 3x3 clusters configuration [Domingues et al., 2018]. 35

Figure 2.11 – Block diagram of the OsPhoenix architecture [Silveira et al., 2016]. . . 36

Figure 3.1 – HeMPS baseline architecture. 39

Figure 3.2 – Modified architecture adopted in this Thesis. 40

Figure 3.3 – Packet and message structures - a flag (D/P) in the target address
field differentiates data packets from peripheral packets. 43

Figure 3.4 – Overview of the kernels: (a) MPE kernel manages the system and do
not execute users’ tasks; (b) SPE kernel manage users’ tasks. 43

Figure 3.5 – Application task graph example. 44

Figure 3.6 – BrNoC architecture. 46

Figure 3.7 – Control NoC Wrapper logic. 47

Figure 3.8 – Message (flit) and one row of BrNoC CAM memory. 47

Figure 3.9 – Example of path discovery using the BrNoC. 49

Figure 3.10 – Example of fault and freeze notification using the BrNoC. 51

Figure 3.11 – Application Injector connection with the MCSoC. 53

Figure 4.1 – Scenarios handled by the recovery method: (a) cluster with available
SPs; (b) cluster with all SPs executing tasks. 56

Figure 4.2 – High-level flow chart, with the actions executed by the recovery proto-
col. Above the rectangles, it is inserted the section detailing the procedures.
. 57

Figure 5.1 – Example of ward pairs definition. 62

Figure 5.2 – Protocol to detect a faulty MP using ward_messages. 62

Figure 5.3 – Fault notification using a fail_CPU_message. 63

Figure 5.4 – Fail Wrapper Module (FWM). 64

Figure 5.5 – Manager Candidate (SPcandidate) selection - (a) startup; (b) selection
after a new application admission. 64

Figure 5.6 – Freeze process on the cluster managed by the VGM. LM1 injects
the freeze_message. 66

Figure 5.7 – Task migration to release an SP. (A) Fault detect at LM; (B) task C
migrated from PE2,1, to PE1,1; (C) LM migration from address (2,0) to (2,1). . 66

Figure 5.8 – Sequence diagram of the recovery protocol steps with task migration.
Black arrows: messages transmitted through the Data NoC. Red arrow:
messages transmitted through the Control NoC. 67

Figure 5.9 – Kernel migration process in a faulty MP. 69

Figure 5.10 – A 6x6 instance of the reference many-core system with 3x3 clusters
and a Virtual Global Manager migration. 71

Figure 5.11 – Local manager migration. 72

Figure 5.12 – Local manager recovery protocol. 73

Figure 6.1 – MCSoCs with multiple injector instances and redundant links. 75

Figure 6.2 – Interface between a injector and the MCSoC. 76

Figure 6.3 – Application Admission Protocol. 77

Figure 6.4 – Fault in a the primary link. 79

Figure 6.5 – Recovery from a fault in a manager PE during application admission. 80

Figure 7.1 – Task graphs used in the experiments. 82

Figure 7.2 – Recovery method for the VGM. 83

Figure 7.3 – Scheduling of the Synthetic tasks, showing the moment when the
application is suspended. 84

Figure 7.4 – Recovery method for the LM1. 84

Figure 7.5 – Recovery method for the VGM and a task migration. 85

Figure 7.6 – Scheduling of Task C, showing the moment when the task migrate. . . 86

Figure 7.7 – Recovery method for the LM1 and a task migration. 87

Figure 7.8 – Fault in a the primary link from Injector 2. 88

Figure 7.9 – Fault in a the primary link from Injector 1. 89

Figure 7.10 – Recovery method in a Manager during a application admission. 90

Figure 7.11 – Recovery method in a Manager during a application admission. 91

Figure A.1 – Application Injector FSM. 104

Figure A.2 – Data NoC Out FSM. 105

Figure A.3 – Data In NoC FSM. 106

Figure A.4 – BrNoC Out NoC FSM. 107

Figure A.5 – BrNoC in NoC FSM. 108

LIST OF TABLES

Table 2.1 – Summary of the the state-of-the art. 38

Table 3.1 – Examples of messages types and purposes of the brNoC. 50

Table 7.1 – Overhead - VGM recovery. 83

Table 7.2 – Applications’ execution time. 83

Table 7.3 – Overhead – LM recovery. 85

Table 7.4 – Applications’ execution time. 85

Table 7.5 – Overhead - VGM recovery and task migration. 86

Table 7.6 – Applications’ execution time. 86

Table 7.7 – Overhead - LM recovery and task migration. 87

Table 7.8 – Applications’ execution time. 87

Table 7.9 – Recovery overhead from a fault in the primary link. 88

Table 7.10 – Applications’ execution time. 88

Table 7.11 – Recovery overhead from a fault in the primary link with task retrans-
mission. 89

Table 7.12 – Applications’ execution time. 89

Table 7.13 – Overhead to a VGM recovery. 91

Table 7.14 – Application’s execution time. 91

Table 7.15 – Overhead from a LM recovery. 92

Table 7.16 – Application’s execution time. 92

Table 7.17 – Summary of Results. 92

Table 8.1 – Summary of Publications. 96

LIST OF ACRONYMS

ACT – Autonomous Chip Tester

AET – Application Execution Time

AIM – Application Injector Machine

API – Application Program Interface

BRT – Broker Recovery Time

BSS – Block Started by Symbol

CAM – Content Addressable Memory

CRC – Cyclic Redundancy Check

DMA – Direct Memory Access

DMNI – Direct Memory Network Interface

DVFS – Dynamic Voltage and Frequency Scaling

DWC – Duplication with comparison

DWCR – Duplication with comparison and re-execution

ECC – Error Correction Codes

EBL – Effective Buffer Length

FIFO – First In First Out

FPD – fault-resilient Packet delivery

FPGA – Field Programmable Gate Array

FTR – Fault-Tolerant Routing

FSM – Finite State Machine

FWM – Fail Wrapper Module

GMP – Global Manager Processor

GM – Global Manager

GPPC – General Purpose Processing Cores

GPD – General Purpose Device

HEMPS – Hermes MultiProcessor System

I/O – Input/Output

IP – Intellectual Property

LMP – Local Manager Processor

LM – Local Manager

MEMPHIS – Many-core Modeling Platform for Heterogenous SoCs

MP – Manager Processor

MPSOC – Multi-Processor System-on-Chip

MCSOC – Many-Core System-on-Chip

NI – Network Interface

NOC – Network On Chip

NBTI – Negative Bias Temperature Instability

ODA – Observe-decide-act

OS – Operating System

PE – Processor Element

PDA – Path-Diversity-Aware

PPN – Polyhedral Process Network

PS – Packet Switch

QOS – Quality Of service

RISC – Reduced Instruction Set Computing

RTL – Register Transfer Level

REM – Runtime Energy Management

RTOS – Real-Time Operating System

SCC – Single-chip Cloud Computer

SA0 – Stuck-At-0

SA1 – Stuck-At-1

SR – Source Routing

SP – Slave Processor

SOC – System-On-Chip

SBST – Software-Based Self-Test

SAF – Stuck-at Faults

TCB – Task Control Block

TMR – Triple Modular Redundancy

TRA – Test Response Analyzer

TMSU – Task Mapping and Scheduling Unit

TM – Task Mapper

TS – Task Scheduler

VHDL – VHSIC Hardware Description Language

VLSI – Very Large Scale Integration

VHSIC – Very High Speed Integrated Circuit

WET – Workload Execution Time

CONTENTS

1 INTRODUCTION . 16

1.1 MOTIVATION . 17

1.2 PROBLEM DEFINITION . 18

1.2.1 REFERENCE ARCHITECTURE . 18

1.2.2 PROBLEM DEFINITION . 19

1.2.3 THESIS STATEMENT . 20

1.2.4 OBJECTIVES . 20

1.2.5 ORIGINAL CONTRIBUTIONS . 21

1.2.6 DOCUMENT ORGANIZATION . 21

2 STATE OF THE ART . 22

2.1 JOHNY PAUL ET AL. 22

2.2 ANDRÉ LUÍS DEL MESTRE MARTINS ET AL. 23

2.3 PAOLO MELONI ET AL. 24

2.4 YU-YIN CHEN ET AL . 26

2.5 AREZOO KAMRAN ET AL. 27

2.6 BISWAJIT BHOWMIK ET AL. 28

2.7 CRISTIANA BOLCHINI ET AL. 29

2.8 TSOUTSOURAS ET AL. 31

2.9 SURAJ PAUL ET AL. 32

2.10 DOMINGUES ET AL. 34

2.11 SILVEIRA ET AL. 35

2.12 RELATED WORK ANALYSIS . 36

3 BASELINE PLATFORM . 39

3.1 BASELINE PLATFORM AND ITS EVOLUTION . 39

3.1.1 DATA NOC . 42

3.1.2 SOFTWARE MODEL . 43

3.2 CONTROL NOC - BRNOC . 45

3.3 APPLICATION INJECTOR . 52

4 SYSTEM MANAGEMENT RECOVERY OVERVIEW AND FAULT MODEL 55

4.1 PROPOSED RECOVERY METHOD OVERVIEW . 55

4.2 ACTIONS EXECUTED BY THE RECOVERY PROTOCOL 56

4.3 FAULT MODEL . 58

4.3.1 FAULT DETECTION MECHANISMS . 58

5 SYSTEM MANAGEMENT RECOVERY METHOD . 61

5.1 MANAGER PAIRS DEFINITION . 61

5.2 FAULT DETECTION NOTIFICATION . 62

5.3 MANAGER CANDIDATE DEFINITION . 64

5.4 FREEZE & UNFREEZE MESSAGES . 65

5.5 TASK MIGRATION . 66

5.6 KERNEL MIGRATION . 68

5.7 RECOVERY PROTOCOL . 70

5.7.1 VIRTUAL GLOBAL MANAGER FAULT RECOVERY . 70

5.7.2 LOCAL MANAGER FAULT RECOVERY . 72

5.8 FINAL REMARKS . 73

6 APPLICATION ADMISSION RECOVERY METHOD . 75

6.1 INJECTOR HARDWARE MCSOCS AND FAULTS MECHANIMS 75

6.2 APPLICATION ADMISSION PROTOCOL . 77

6.3 FAULT RECOVERY DURING APPLICATION ADMISSION 78

6.3.1 RECOVERY FROM A FAULT IN THE PRIMARY LINK . 78

6.3.2 RECOVERY FROM A FAULT IN A MANAGER PE DURING APPLICATION AD-
MISSION . 79

6.4 FINAL REMARKS . 80

7 EXPERIMENTAL RESULTS . 82

7.1 RECOVERY RESULTS FROM A FAULT IN A MANAGER 82

7.2 RECOVERY RESULTS FROM A FAULT IN A MANAGER WITH TASK MIGRA-
TION . 85

7.3 RECOVERY RESULTS FROM A FAULT IN THE PRIMARY LINK 88

7.4 RECOVERY RESULTS FROM A FAULT IN A MANAGER DURING APPLICA-
TION ADMISSION . 90

7.5 FINAL REMARKS . 92

8 CONCLUSION . 93

8.1 FUTURE WORKS . 95

8.2 PUBLICATIONS . 96

REFERENCES . 97

Appendices . 103

A INJECTOR FINITE STATE MACHINES . 104

16

1. INTRODUCTION

The continuous development in Very Large Scale Integration (VLSI) technology
and scaling of transistors to nanometer range led to the integration of billions of transistors
on a single chip. This allows the system designer to embed a large number of intellectual
property cores, memory units, and Processing Elements (PEs) onto a single chip resulting
in a System-on-Chip (SoC).

Shared buses are commonly used for the communication between different com-
putation and memory units present in the SoC. However, the performance of on-chip com-
munication medium between the components becomes a critical issue with the increase in
the number of cores [Grecu et al., 2004]. Networks-on-chip (NoCs) have been proposed as
a viable solution to deal with this limitation [Benini and Micheli, 2002]. In the NoC paradigm,
data communication among various cores is achieved through an on-chip network consist-
ing of routers and links. In a direct NoC topology, each core is attached to a router through
a Network Interface (NI) module. NoCs provides a scalable, flexible, and reusable commu-
nication infrastructure, which is required for SoCs where different on-chip elements need to
communicate with each other in parallel.

Large SoCs require processing elements (PEs) dedicated to management pur-
poses, for example, execute the task mapping, handle monitoring data obtained from sen-
sors and estimation functions, and run self-awareness adaptation (e.g., quality-of-service,
DVFS control, aging, temperature) [Dutt et al., 2015, Tajik et al., 2016]. Many-core Systems-
on-Chip (MCSoCs) with a hierarchical organization ensure scalability at the management
level, with PEs having distinct roles: managers (MP), responsible for manipulating sys-
tem resources at runtime, and slave processors (SP), processors that only executed tasks,
[Faruque et al., 2008]. With such organization, MCSoCs contains virtual regions, named
clusters, with one MP and a set of SPs per cluster. A cluster may increase its size at run-
time, borrowing SPs from neighbor clusters, in a process named re-clustering [Castilhos
et al., 2013].

Transistors, vias, and wires degrade faster over time in deep sub-micron technolo-
gies, inducing transient faults and permanent faults, thus shortening integrated circuits life-
time [Kim et al., 2013]. The aggressive technology scaling and increasing design complexity
of MCSoCs made the chip components vulnerable to faults. The failure rate of electronic
components increases as high as 316% with 64% decrease in the feature size [Srinivasan
et al., 2004]. These faults may be permanent or transient. Permanent faults are nonrecover-
able device defects. These faults can occur due to manufacturing defects or device wear-out
caused by Negative Bias Temperature Instability (NBTI) [Knebel et al., 2016], electromigra-
tion and oxide breakdown [Fick et al., 2009a].

17

While, transient faults are temporary random faults that may occur for a short in-
terval of time due to, e.g., crosstalk [Cui et al., 2016], alpha particles, cosmic radiation [Li
and Draper, 2016], permanent faults damage the on-chip elements. As a result, compo-
nents with permanent faults are no longer available to the system, inducing performance
degradation, system malfunction, or compromising the entire chip.

Thus, reliability becomes a key issue in MCSoC design [Heron et al., 2010]. Clas-
sical fault-tolerant approaches, as Triple Modular Redundancy (TMR) or spare components
[Reddy et al., 2016], do not comply with today’s requirements of silicon area and power dis-
sipation. Due to the way it is built, an MCSoC provides a set of replicated structures (PEs),
where a healthy component can execute the faulty component functions, resulting in graceful
performance degradation.

It is worth to differentiate the consequences of a permanent fault in SPs and in
MPs. A fault in a PE executing a user application (SP) compromises the application, being
possible to remap the application [Barreto et al., 2015]. The effect of a fault in an MP is more
severe than a fault in an SP, because it may halt the entire cluster, making the set of SPs
controlled by the faulty MP unavailable.

1.1 Motivation

Modern MCSoCs increasingly require runtime fault recovery methods because
fault probability increases in deep-sub-micron technology nodes. Thus, systems should
adopt self-adaptation techniques to cope with transient and permanent faults to extend the
system lifetime.

System management, and how to deal with a failure on it, opens a set of new chal-
lenges and opportunities in the field of many-core systems research. Several system-level
approaches are available in the literature: as power management (DVFS)[Martins et al.,
2016], performance/quality-of-service (QoS) management [Ruaro and Moraes, 2017], re-
source management[Paul et al., 2015]. A rich literature with methods to test the processing
elements modules is also available, with approaches adopted at different levels (hardware
or software) or modules (as NoC[Fochi et al., 2015], processors, memories [Meloni et al.,
2012]).

However, there is a gap in the literature related to fault-tolerant methods at the sys-
tem level, i.e., related to the processors with the function to manage the system. Therefore,
system management requires alternative monitoring and actuation policies to recover the
system when one of these processors presents a permanent fault.

Besides fault-tolerant methods at the system level, the deployment of new appli-
cations into the MCSoCs is a subject with few works in the literature. The availability of

18

distributed MCSoCs architectures adds flexibility to define new methods to deploy appli-
cations into the system. For example, it becomes possible to consider several instances
responsible for injecting new applications into the MCSoC, eliminating the single point of
failure when only one device is in charge to deploy applications.

In the context of this Thesis, the focus of the research is the investigation of tech-
niques to deal with permanent faults in MP and methods to deploy applications into the
MCSoC. Fault detection is out of the scope of the Thesis.

1.2 Problem Definition

This Session initially presents the MCSoC reference architecture with the goal to
identify to the reader the relevant features of modern systems. Next, the text presents the
challenges related to fault-tolerance covered in this Thesis.

1.2.1 Reference Architecture

This Section presents the reference architecture. The Thesis adopts it for the proof-
of-concept of proposed methods. It is worth to mention the methods proposed throughout
this Thesis are not specific to this architecture, but generic, with applicability in systems with
similar architectural features.

The reference many-core platform (Figure 1.1) has the following features [Carara
et al., 2009, Castilhos et al., 2013, Ruaro et al., 2019]:

• NoC-based system: the Network-on-Chip (NoC) connection allows multiple communi-
cations between PEs while ensures scalability. The NoC adopts 2D-mesh topology,
input buffering, credit-based flow control, round-robin arbitration, wormhole packet-
switching, support for deterministic XY and source routing, 8-flit buffer depth, input
buffering, and duplicated physical channels (two 16-bit channels per link), enabling full
adaptive routing.

• Homogeneous GPPC (General Purpose Processing Core): all PEs have the same
hardware architecture with a router, a private memory, an MIPS-like processor and a
Direct Memory Network Interface (DMNI) module.

• Distributed memory: each PE has a private memory, responsible for storing instruc-
tions and data. Inter-task communication occurs through message-passing.

• Applications modeled as task graphs: the applications are divided into tasks, and a
graph defines the communication flow between them.

19

• Distributed management: the system is divided into clusters. Every cluster contains a
Local Manager PE (LM), which manages the cluster, and a set of Slave PEs (SPs),
which runs the applications’ tasks. One of the LMs has the role of Global Manager
(GM), being the only PE with access to external devices (e.g. application repository).
The GM works as a LM and distributes the applications to clusters. The Operating
System (OS) running on PEs defines their role in the system.

GM

Repository

Legend:
 - DMNI: Direct Memory Network Interface
 - GPPC: General Purpose Processing Cores
 - GM: Global Manager Processor
 - LM: Local Manager Processor
 - SP: Slave Processor

SP

LM

SP

Memory CPU

Data
NoC

Router

PE
Processing Element

GPPC

(a) (b)

DMNI

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

LM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

LM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

Figure 1.1 – Overview of MCSoC hardware model adopted as reference for this Thesis.

1.2.2 Problem Definition

Recent proposals for many-core management focus on different aspects: power
[Martins et al., 2016, Haghbayan et al., 2014], performance [Bolchini et al., 2013], system
resources [Paul et al., 2015]. These management techniques are applied to the systemic
level of the MCSoC. However, in the reviewed works, there is a gap in proposals related to
permanent faults in processors with management functions.

For fault-tolerance, the literature present proposals at different levels: processor
level [Braak et al., 2010, Walters et al., 2011], router level [Yu et al., 2011, Chen et al., 2017],
link level [Vitkovskiy et al., 2012, Veiga and Zeferino, 2010]. It is important to differentiate the
impact of a permanent fault in a SP and in a manager processor (GM and LM). A faulty SP
may be isolated using wrappers and the tasks assigned to it remapped to another SP. A faulty
manager processor compromises all SPs of the cluster by compromising the computational
capacity of the system, but the system may continue to operate. The existence of a LM with
a global management function (GM) represents a single point of failure.

20

This Thesis aims to tackle two main problems. First, to treat permanent faults
in management processors (LM and GM), developing a set of new techniques so that
the MCSoC continues to operate correctly, without re-executing applications running on
it. Second, to solve the single point of failure issue regarding the communication of the
MCSoC with the external world.

1.2.3 Thesis Statement

Hardware and software faults in MCSoCs may compromise not only the execution
of the applications, but also reduce the system lifetime. A weakness in MCSoCs’ design
is its management, frequently made by a single processor with a single interface with the
external world.

The Thesis herein proposed aims to demonstrate that it is possible to develop a dis-
tributed MCSoC architecture, supporting permanent faults at critical points of the system, as
in the processors executing management functions, and at the interface of the MCSoC with
external entities responsible for deploying new applications into the system.

1.2.4 Objectives

The strategic goal of the Thesis is the specification, development, and validation of
methods for fault recovery in manager processors, intending to eliminate the single point of
failures in an MCSoCs.

The specific goals of the Thesis include:

• Define methods to trigger the fault recovery mechanism after the fault detection;

• Define methods to migrate the memory contents of a faulty PE to a healthy one;

• Create a software structure where the manager processors can be recovered by a
health PE ;

• Define the method to connect external hardware modules to the MCSoCs;

• Validation of approaches with faults injected in any manager processor.

21

1.2.5 Original Contributions

The original contribution of this Thesis is a distributed MCSoC architecture, with
fault recovery capability at critical points in the system. The recovery method includes hard-
ware (Sections 3.1 and 3.2 and Chapter 6) and software modules (Sections 5.3, 5.5 and 5.6),
fault monitoring and management recovering. The proposal uses task migration Section 5.5,
techniques, and heuristics to select the position of the new manager (Section 5.3). The pro-
posal is scalable, able to act in systems from dozens up to hundreds of processors.

1.2.6 Document Organization

The remaining of this document is organized as follows. Chapter 2 reviews and
discusses system management and fault-tolerance related works, positioning the current
Thesis with regard to the state-of-the-art. Chapter 3 details the MCSoC baseline platform
and its evolution in the context of this work. This Chapter presents the two first contributions
of the Thesis, the brNoC (Section 3.2) and the Injector Module (Section 3.3). Chapter 4
presents a general view of the system management recovery method. This presentation
is required to provide a comprehensive perspective of the proposals discussed in the next
Chapters. Chapter 5 presents the third contribution of the Thesis, the recovery method of
the system management functions, action required when a Manager PE becomes faulty.
Chapter 6 presents the fourth contribution of the Thesis, the modifications carried-out at
the MCSoC boundaries to cope with faults during the applications’ admission. Chapter 7
presents results related to the methods proposed in Chapters 5 and 6. Finally, Chapter 8
concludes this Thesis, pointing-out directions for future works.

22

2. STATE OF THE ART

This Chapter reviews and discusses system management and fault-tolerance re-
lated works. The Chapter finishes with a comparison between its key features, positioning
the current Thesis with regard to the state-of-the-art.

2.1 Johny Paul et al.

Paul et al. [Paul et al., 2015] propose a system management technique. The Au-
thors use a resource-aware computing paradigm called Invasive Computing to reduce the
negative effects of resource sharing in MPSoCs with the focus in mobile robotics applica-
tions. In the proposal, the operating system (OS) can influence the applications’ internal de-
cisions, based on dynamic load distribution. Using the resource-aware programming model,
the application gains the ability to adapt to available resources by changing its workload.

To achieve the programming model of invasive computing, it is necessary an OS
specifically designed to support the model. The authors choose the OctoPOS [Schedel
et al., 2011] OS. This OS provides primitives and a scalable and low-overhead execution
environment for invasive-parallel applications. Figure 2.1 presents the overall system design
of OctoPOS, showing two instances of OctoPOS running on two compute tiles. The pro-
posal has 4 phases: invasive, assort, infect, and retreat. In the invasive phase, applications
exclusively acquire resources according to their needs. In the assort phase, the application
adapts itself according to the number of resources received from the system. In the infect
phase, the processing elements designated to executed the tasks are said “infected”, and
once the execution has finished, the results can be collected and merged. In the retreat
phase, the allocated resources are released.

The Authors executed experiments to evaluate the adaptive algorithm using a plat-
form prototyped in an FPGA (Xilinx Virtex-5 XC5VLX330) at 50MHz, with 16 SPARC LEON3
processing elements equally distributed over 4 tiles connected via a custom-designed NoC.
The authors considered the execution time and cycle-accurate time-stamp counters avail-
able in the hardware prototype.

A comparison with two adaptive algorithms, Harris and Shi-Tomasi corner detector,
are made to evaluate the new resource-aware algorithm. Applications like audio processing
or motor control are used to compare the results. The main conclusions from the work are:
(i) the model helped to avoid frame drops, no frame was dropped during the evaluation,
and the accuracy values improved significantly over the conventional approach; (ii) when
the resources are the same both approaches have the same accuracy values, but when the
resources are scarce the resource-aware model starts to adapt the workload by increasing

23

Figure 2.1 – Architectural overview of the invasive hardware/software stack [Paul et al.,
2015].

the pruning threshold resulting a slight drop in accuracy however the overall accuracy has
improved significantly over the conventional approach; (iii) the resource-aware model im-
proves the performance, with up to 22% improvement in the throughput and up to 20% the
accuracy.

2.2 André Luís Del Mestre Martins et al.

Martins et al. [Martins et al., 2016] propose a power management method, called
Runtime Energy Management (REM) to reduce energy while guaranteeing scalability, focus-
ing on homogeneous NoC-based MPSoCs. In the proposal, the power management controls
the system by monitoring the energy consumption at the PE level using fine-grain DVFS as
the primary power control policy. Scalability is ensured by a distributed management archi-
tecture, responsible for power monitoring and actuation on individual cores to respect power
constraints.

To implement the DVFS technique in the reference platform, the Authors propose
different strategies for modeling the frequency and voltage scaling. To model the frequency
scaling, the original PE structure was modified, in such a way to have the NoC router al-
ways running at the nominal frequency, while the processor and memory support different
frequencies. To guarantee realistic DVFS support, the authors propose a model of voltage
scaling considering hardware overheads, as latency and energy.

The DVFS actuates on the processor, memory, and DMNI as shown in Figure 2.2.
With this hardware modification, the processor may work at different voltage-frequency pairs,
while the NoC transmits packets using the nominal frequency. The DMNI module is respon-

24

sible for synchronizing the modules working at different frequencies. The DVFS protocol
manages the minimum period for scaling the voltage safely with the frequency range gener-
ated by the clock generator.

The REM monitors packets sent by each PE . All PEs send their energy values
to the cluster manager PE periodically. The REM heuristic defines three energy zones:
(i) hot zone: energy is above a given high threshold; (ii) cold zone: energy is below a low
threshold; (iii) warm zone: the energy is between hot zone and cold zones. The power zones
are configured at the design-time. The manager PE receives monitoring packets from the
PEs. If a given PE is in the hot zone, a packet is sent to the SP to scale down the frequency
and voltage; if the PE is in the cold zone a packet is sent to scale up the frequency and
voltage.

Memory
Access
Arbiter

Send

Receive

Interruption
signal

MMR

Processor - DMNI
programming interface

Send
packet

Receive
packet

Copy FROM mem.

Copy TO mem.

Nominal
frequency

Scaled
frequency

Rout
er

Novel Processing Element - PE

M
E
M
O
R
Y

Clock
generator

Clock
generator

DMNI

MIPS-like
processor

Scaled
clock

MIPS-like
processor

Rout
er

Processing Element - PE

DMNI

M
E
M
O
R
Y

MIPS-like
processor

Rout
er

Processing Element - PE

DMNI

M
E
M
O
R
Y

Memory
Access
Arbiter

MMR

Receive

Copy FROM mem.

Copy TO mem.

From
FIFO

To NoC

From
mem

To FIFO

From
FIFO

To NoC

From
mem

To FIFO

From
NoC

To FIFO

From
FIFO

To mem

From
NoC

To FIFO

From
FIFO

To mem

Frequency domain line

Send

(a) (b)

Figure 2.2 – (a) Original PE and (b) new PE with DVFS support. The new PE has Clock
Generator hardware as well as changes on the DMNI [Martins et al., 2016].

Results show an average energy saving of 12.09%, with an execution time over-
head of 19.04% to a light power management policy and an average energy saving of
47.39% with an execution time overhead of a 38.22% to a restrict power management policy.

2.3 Paolo Meloni et al.

Meloni et al. [Meloni et al., 2012] propose the MADNESS project, which provides
adaptive fault tolerance management in NoC-based MPSoCs. The method uses task migra-
tion to handle faults in a processing element that presents a permanent fault by migrating the
task to a processor free of faults. The method proposed in [Meloni et al., 2012] involves dif-
ferent layers during the MPSoC design. At the application level, a software infrastructure was

25

proposed allowing the execution of the applications in a computational model called Polyhe-
dral Process Network (PPN), which consists of autonomous and concurrent processes that
communicate with each other through FIFO channels. The middleware layer implements
support for communication between processes as well as task migration modules for fault
tolerance, and the module called Run-time Manager, responsible for making decisions about
the resources to be migrated in the presence of a permanent failure in the processing ele-
ments. Figure 2.3 presents the software elements to support fault tolerance in MADNESS.
The levels presented are:

– Application level, executes the communicating processes;

– Middleware level, implements the communication process layer (PPN), the migration pro-
cess, and the run-time manager;

– Local Operating System, provides basic functionalities such as process management (pro-
cess creation/deletion, setting process priorities) and multitasking capabilities;

Figure 2.3 – Proposed software stack in the MADNESS project [Meloni et al., 2012].

The last layer developed is at the hardware level, composed of a self-test module
used in fault detection and by the task migration process.

The migration module has as main functions: isolate the processor that presented
a permanent fault; notify the run-time manager module that it is running on a fault-free
processor to execute the task migration; receive all pending messages and FIFO tokens
relating to predecessor and successor processors (derived from the PPN model); and finally
send the task context and FIFO channels to the triggered run-time manager.

The migration made by the software infrastructure is limited to migrate only the
context of the tasks in the failed processor since the task code is loaded on all processors in
the system. Figure 2.4 shows the proposed architecture of the self-test module responsible
for detecting the permanent faults and signalize to the task migration module to start the
process. The task migration hardware disables access to the data and instructions memories
of the faulty processing element. However, the DMA module has access to the data and
instructions memories, enabling to transmit the memory contents even if the PE is faulty.

26

Figure 2.4 – Architecture proposed in the MADNESS project [Meloni et al., 2012].

2.4 Yu-Yin Chen et al

Chen et al. [Chen et al., 2017] propose a fault tolerance management in NoCs.
The Authors present a Path-Diversity-Aware Fault-Tolerant Routing (PDA-FTR) algorithm for
NoCs. The PDA-FTR combines path adaptiveness and routing path quality to achieve fault-
resilient packet delivery (FPD) and traffic load distribution. In the proposal, the algorithm
uses the PDA information and a local buffer occupancy to acquire the Effective Buffer Length
(EBL) of the routing direction. EBL is a router delay measurement, where higher EBL implies
shorter routing delay. The routing decision made by the proposed routing algorithm sends
the packet to a less congested region and away from the faulty region.

The PDA-FTR algorithm, based on the Path Diversity (PD) information, initially
adopts minimal routing paths for packet delivery. However, as minimal routing paths are
blocked by faults, PDA-FTR employs non-minimal ones to prevent packet congestion in the
faulty region. To ensure the absence of deadlocks, the Authors use the non-minimal Odd-
Even turn model [Tsai et al., 2013]. If there are two or more routing path candidates, the
PDA-FTR uses the EBL information of each candidate channel to select the better output
channel.

The Authors report that to implement the PDA-FTR, it is necessary to store the FPD
(Fault-Location-Based PD) table at every router and the entire FPD table in a router. The
number of tables entries in a router increases by O(k2), where k is the number of routers.
This feature compromises scalability, and the computing time and power consumption grow
when searching for a specific entry in a large table. To reduce the memory cost, the Authors
propose a regional FPD table to cover most routing paths for packet transmission while min-
imizing performance degradation. Due to the data locality, processing elements that often
communicate with each other are usually placed in proximity to each other for minimizing the
delay in data delivery. Based on this property, a small table can store the most used paths

27

for making a routing decision with minimal performance degradation when compared to full
FPD table.

Results show that the router with PDA-FTR has an area overhead of 10.77% com-
pared to the baseline design. Compared with the baseline design router, the proposed
PDA-FTR router has power overhead of 7.04% due to the routing table.

2.5 Arezoo Kamran et al.

Kamran et al. [Kamran et al., 2016] propose an autonomous test mechanism for
online detection of permanent faults in many-core processors. In this method, several test
components are incorporated in the many-core architecture that autonomously and concur-
rent with the system normal operation, distribute software-based self-test routines among
the processing cores, monitor the behavior of the processing cores during the execution of
the test routines, detect faulty cores, and make their suppression from the system if possible.
To use short idle times of the processing cores, test data is segmented into small pieces,
called test snippets. Individual test snippets are distributed among the processing cores and
are made accessible to them for a limited period. If a processing core has an idle slot during
a period that a test snippet is available, it executes the test snippet, otherwise, it skips exe-
cution of that portion of the test. The proposed test mechanism is designed in such a way
that it supports skipping of test snippets at the expense of losing test quality, but without any
effect on the integrity of the whole test mechanism.

The Authors assume that the many-core processor contains identical nodes, each
of which with a processing core, cache blocks, and hardware facilities for communications
with other nodes. The test architecture is independent of core communication and uses
a dedicated test distribution logic. The processing cores are tested using a non-intrusive
software-based self-test approach (SBST). In the proposed technique, a small amount of
assisting hardware is incorporated in the many-core architecture. These hardware test com-
ponents distribute SBST among the processing cores and detect idle processing cores to
switch them to test mode. The SBST routines execute, monitoring the behavior of the pro-
cessing cores during the test.

Figure 2.5 shows the hardware components added near a processing core. Several
adjacent processing cores share this additional test component. A local test controller, called
cluster tester, receives a test routine from a shared global controller called Autonomous Chip
Tester (ACT), and stores it in a small local buffer (called test-snippet buffer). When this clus-
ter tester is triggered by a command from the ACT , it starts monitoring the processing cores.
When a processing core becomes idle, the cluster tester disconnects the idle processing
core from the communication infrastructure and the memory subsystem and connects it to
test-snippet buffer while the other neighboring processing cores are performing their normal

28

Figure 2.5 – Hardware test components placed near the processing cores [Kamran et al.,
2016].

operation. Meanwhile, the disconnected processing core starts executing the test routine
execution, the cluster tester captures bus activities of the processing core under-test, and
generates a signature. This signature is used later to be compared with the signatures gen-
erated by other processing cores or with a golden signature. The responsibility of a cluster
tester is to receive test commands and test data from the ACT , detect and isolate idle pro-
cessing cores of the cluster, apply test data to the idle processing cores, and identify and
remove faulty processing cores in collaboration with the ACT .

Experimental results show that, for a cluster with four Plasma MIPS processing
cores, there is a hardware overhead of 3.6%, and for larger cluster sizes, as 32 Plasma
MIPS, 1.2%. The authors related that there is no performance overhead because the test
executes when the processing cores are in idle status.

2.6 Biswajit Bhowmik et al.

Bhowmik et al. [Bhowmik et al., 2016] present a distributed online test mechanism
that detects stuck-at faults (SAFs) in the NoC channels as well as identifies the faulty chan-
nels. The proposed test mechanism improves yield and reliability of NoCs at the cost of a
small performance degradation. The method focus on detecting stuck-at-0 (SA0) and stuck-
at-1 (SA1) faults in the channels and evaluate their effect on network performance. Each
channel consists of control, data, and handshake wires. The authors propose an on-line
method for testing wires connecting the router to its core.

29

The proposal assumes a 16-bit channel. The method starts the application of the
test on a 2 × 2 NoC configuring the channels as unidirectional links. Thus, there are 256
wires (8 channels between routers and 8 channels between routers and cores). The pro-
posed test model tests 256 SA0 and 256 SA1 faults. The test technique accounts these
faults on data, control, and handshake wires. The method test a channel in this sequence.
During the test of a channel, the method keeps the underlying network functional, except
the subset of channels under test in a test iteration. In this mode, the network is allowed to
transmit application data but must wait at an intermediate router involved in the test. The al-
gorithm uses test packets that contain the test vectors. The packet contents vary depending
on the type of wire under test. That means stuck-at faults in data, control, and handshake
wires get detected with a specific packet format. To test data wires, test vectors are placed
in the payload field of the test packet. After transmitting the test packets, the test response
analyzes at receiver core and routers analyzes received test vectors to detect whether data,
channel, and wire experiences any SA0 or SA1 fault. If the wire experiences an SA0 or SA1,
the test response analyzes receives logic-0 or logic-1 on the wire. The detection ensures
the state of the faultiness of a wire. After testing the data-wires, the control and handshake
wires are undergone the testing similarly.

The Authors show that during the experiment they observe that the Test Packt
Generator takes one clock to generate a test packet. Another clock cycle is used to organize
it as a test packet. The packet takes four clocks to reach the neighbor and additional two
clocks to analyze the received test sequences. Thus, a channel can be tested in just 11
clocks. Multiple channels in an iteration need this time to be tested. The authors related that
the link cover metric in the proposed test mechanism achieves 100%.

2.7 Cristiana Bolchini et al.

Bolchini et al. [Bolchini et al., 2013] describe a system with an adaptive level of
reliability. The work presents a fault management layer at the OS level. This layer has
a strategy for dynamically adapting the reliability at run-time. The fault management layer
contains three methods: duplication with comparison (DWC), triplication (TMR), duplication
with comparison and re-execution (DWCR).

The DWC technique guarantees the fault detection property by creating a replica
of the application and by comparing the outputs. A checker task is issued at the end of each
node of the application’s task graph to identify discrepancies in the (intermediate) results.

The TMR technique creates two replicas of the original application, resulting in
three results to be voted by specific 2-of-3 majority voter that mitigate the possible occur-
rence of faults. Besides the fault tolerance property, the technique is also able to achieve
fault diagnosis features, by identifying the core producing the erroneous mismatching value.

30

The DWCR similarly to the DWC technique, the original application is duplicated to
have the possibility to detect possible faults by comparing two results using a checker task.
If an fault is detected, a third replica of the task is created and executed. In this way, a voter
task can identify the correct result. This technique provides the fault tolerance property, and
may provide fault diagnosis features, i.e., it can identify the core that caused the fault. This
technique is characterized by a limited overhead for achieving the fault tolerance property
because the third replica is used and scheduled only after a problem has been detected.

The method uses an observe-decide-act (ODA) control loop as shown in Figure 2.6.
The ODA loop is divided into three stages. The observe phase consists of sensing the sta-
tus of the system and, in particular, collecting execution data for computing a set of perfor-
mance and reliability-related metrics. Then, the decide phase is performed by considering
the measured metrics and a high-level goal specified as a requirement on the application
(as performance and reliability). The knowledge of the goal guides the adaptation engine
in making a suitable decision on how to execute the applications. Finally, once the decision
has been taken, it is put into practice in the act phase through the actuators, which modify
the system’s knobs to alter its behavior. The behavior of the system is sensed again in the
observed phase, and the control loop is restarted.

Figure 2.6 – The Observe–Decide–Act control loop of [Bolchini et al., 2013].

If the method experiences a high detected fault ratio, DWCR is highly disadvan-
tageous compared to TMR since it would require a considerable number of tasks to be
re-executed. The last knob is the resource activation/deactivation. The fault management
techniques, during the execution, the adaptation engine may diagnose a suspected dam-
aged processing core. In this case, the engine can deactivate the processing core to further
analyze it using specific diagnosis tasks. Later, if the result of the accurate analysis is neg-
ative, the unit can be reactivated and used again for executing the application.

31

2.8 Tsoutsouras et al.

Tsoutsouras et al. [Tsoutsouras et al., 2017] present a run-time resource man-
agement framework which can dynamically adapt the system to permanent faults in a self-
organized, workload-aware manner. They proposed an organization that allows resource
management agents to recovery from a failure electing a new agent to replace the faulty
management agent, while workload awareness optimizes the election according to the sta-
tus of each core.

Figure 2.7 – Overview of SoftRM proposal [Tsoutsouras et al., 2017].

The work is hierarchically organized as shown in Figure 2.7:

– Controller cores (red in Figure 2.7). Responsible for monitoring the system status. There
is no central point of system monitoring. Each Controller core is dedicated to its cluster and
it is not involved in application management or workload execution. Each cluster area of
the system is monitored by a controller core. These clusters are not overlapping and their
number and topology is parameterizable and can be defined at the system initialization,
but cannot change at run-time;

– Manager cores (dark gray in Figure 2.7). The relationship between a manager core and
an application is one to one, meaning that there is one manager core per application. This
one to one relationship allows that each manager core adopt different workload allocation
schemes, without any resource sharing between applications;

– Worker cores. Execute the applications’ tasks. Each worker core has a controller and a
manager core. This design choice decouples system monitoring and application manage-
ment. Cores without a manager and a controller core are considered Idle Cores.

32

The technique allows fault tolerance recovery to any agent in the system (controller,
manager and worker). When a fault is detected, an election occurs to determine which PE
replace the failed agent. The PE with the lowest workload is elected to replace the failed
agent. After the election, the state of the system is updated and the failed PE is ”removed”
from the system.

The SoftRM was implemented and evaluated on Intel Single-chip Cloud Computer
(SCC) NoC based many-core system. The SCC chip consists of 24 dual-IA-core tiles con-
nected by a 2D-grid on-die network, where each tile contains two P54C cores.

2.9 Suraj Paul et al.

Suraj Paul et al. [Suraj Paul, 2018] present a fault-tolerant resource allocation
strategy to mitigate the effect of permanent faults on processors, targeting mixed critical
applications. The goal is to select a suitable fault tolerance strategy to mitigate the effect of
processor failure at run time with minimum degradation in the performance of the executing
applications.

Figure 2.8 presents the system model. A special purpose PE hosts the real-time
operating system (RTOS), and it is referred as Manager Core. The work assumes that
such PE acting as Manager Core is reliable and faulty-free. The Manager Core executes
task allocation. When a user submits an application to the system, its tasks are stored in
the Task Memory. The status of every PE, i.e., faulty/non-faulty, is updated in the resource
manager. The Task Mapping and Scheduling Unit (TMSU) has two sub-units, Task Mapper
(TM) and Task Scheduler (TS). The allocation algorithm is present in TM, which is executed
at runtime for assignment of tasks to different available PEs. TS schedules the allocated
tasks depending on their timing characteristics and criticality.

Fig. 1. A overview of Network-on-Chip (NoC) architecture with multiple cores.
Figure 2.8 – A Overview of Network-on-Chip (NoC) architecture with multiple cores
[Suraj Paul, 2018].

33

Fig. 3. Fault tolerance by the task allocation obtained for application G using TFAMS.
Figure 2.9 – Fault Tolerance using replica tasks [Suraj Paul, 2018].

Figure 2.9 presents four different scenarios using the proposed fault-tolerant algo-
rithm. Note the ⌧0, ⌧1 and ⌧3 are critical tasks, so a replica from these tasks are created in
different PEs.

– Passive replica scheduling – Figure 2.9(a). In this scenario, PE4 became faulty at time t=4.
To overcome the effect of this fault on executing task ⌧1, its passive replica, ⌧1* allocated
on PE7, is scheduled.

– Active replica scheduling – Figure 2.9(b). A permanent fault affects the execution of task
⌧3 mapped on PE1 at t = 9. Since this is a critical task with a low slack time, the replica
task ⌧3* is already scheduled concurrently with ⌧3, which tolerates failure of PE1.

– Task migration without State Transfer – Figure 2.9(c). PE0 is assumed to become faulty at
t = 10, while executing task ⌧5. As the fault occurred close to the start time of the task, the
proposed fault mitigation policy re-executes the task on an alternative PE, PE6.

34

– Task migration with State Transfer – Figure 2.9(d). PE0 fails at t = 12. A different fault
tolerant strategy is adopted, which helps to complete the task within its deadline. It can
be seen that in this case the fault occurs close to the task ⌧5 deadline. Therefore, state
transfer policy is used to recover from fault. Here, the state of the task ⌧5 consisting of
both code and data is transferred to the nearest available PE6 and the task resumes its
execution.

The fault-tolerance method effectiveness of dynamic mapping and scheduling algo-
rithm was implemented on a simulator developed in C++ and used in ORION 3.0. Scalability,
QoS performance, communication latency and communication energy was evaluated using
the ORION 3.0 model. The proposed algorithm uses an unified mapping and scheduling
strategy that gives an energy aware resource allocation in both fault-free and faulty scenar-
ios.

2.10 Domingues et al.

[Domingues et al., 2018] propose a system management technique targeting com-
munication between PEs. The Authors proposer a lightweight fault recovery mechanism for
brokers of a publish-subscribe middleware for MPSoCs. The proposed approach uses the
existing brokers to backup sensitive data of its neighbor brokers, which provides high avail-
ability to the system because when a fault is detected in a broker’s processor, its neighbor
broker promptly assumes the responsibility of managing the applications of the faulty broker.
This broker replacement is entirely transparent to the application level.

Figure 2.10 illustrates a case study using a 6x6 NoC-based MPSoC, with 3x3 clus-
ters. The proposed fault recovery approach relies on a 3-stage protocol consisting of mon-
itoring, cluster recovery and broker recovery phases. The arrows in the figure indicate that
the broker at the end of the arrow (called primary broker) is monitored by the broker at
the start of the arrow (called secondary broker). This ring topology is reconfigured in the
presence of a faulty broker.

The broker fault tolerante feature has the following configurations that must be de-
fined at design-time: (a) the time span between keepalive requests (30,000 clock cycles in
the performed experiments); (b) the number of unanswered keepalive requests to consider
the broker as faulty (3 in performed experiments).

The MPSoC hardware infrastructure was described using OVPSIM APIs by Im-
peras, which provides an instruction accurate simulation framework. The kernel software
was implemented in C programming language and the middleware software using the C++
programming language.

35

30

cluster
idle worker

31 32 33 34 35

24 25 26 27 28 29

18 19 20 21 22 23

12 13 14 15 16 17

6 7 8 9 10 11

0 1 2 3 4 5

Application Repository

R

Network
Interface

Processor

DMA

broker

router

PE

publisher/subscriber

RAM

Application Level

Pub/Sub Middleware

FreeRTOS Kernel

Operations

Syscalls

monitoring

Figure 2.10 – A 6x6 platform with 3x3 clusters configuration [Domingues et al., 2018].

The results presents the broker recovery time (BRT) is in average 32,000 clock
cycles. Results showed the approach had a minimal resource overhead for different fault
insertion setups.

2.11 Silveira et al.

[Silveira et al., 2016] proposes a technique that employs the preprocessing of fault
scenarios based on forecasting fault tendencies, which is performed with a fault threshold
circuit operating in accordance with high-level software.

The work focuses in a reconfigurable fault-tolerant system for irregular networks
that requires the follow mechanisms for (i) fault detection and diagnosis; (ii) fault recogni-
tion reporting; (iii) deadlock-free routing computation; and (iv) routing reconfiguration (e.g.,
routing tables and auxiliary circuits).

The OsPhoenix’s Kernel contais (Figure 2.11): (i) the Control Module that man-
ages the fault-tolerant mechanism; (ii) the NoC Driver. The Global Fault Table is a module
that stores the status of fault tendency for all the NoC links. The Control Module update the
Global Fault Table and synchronize the OsPhoenix knowledge with all the PEs. The Scenar-
ios Processing Module is responsible to compute the routing tables managed by the Control
Module using the information provided from the Global Fault Table. When a new routing path
is discovery it is stored and can be transmitted to the HwPhoenix.

The Authors related that the preprocessed scenarios reduces the time that the NoC
is halted. The amount of scenarios grows exponentially with the quantity of faults.

36

Kernel
NoC DriverControl Module

NoC Interface

OS Modules
Scenarios
Processing

Module

OsPhoenix

Scenarios and

Memory

(SRT Memory)

Global Fault
Table

Figure 2.11 – Block diagram of the OsPhoenix architecture [Silveira et al., 2016].

That requires and overhead of area to compute all scenarios. To minimize this prob-
lem the work proposes a differential treatment for static and transient faults, an incremental
processing of fault scenarios and dissimilarity approach.

2.12 Related Work Analysis

Table 2.1 summarizes the reviewed works according to the classification chosen for
system management and fault-tolerance comparison. The first column contains the Author
and reference. The second column shows the constraints applied to the system, which is
management or fault-tolerance. The third column presents the architecture (homogeneous,
heterogeneous or only NoC) and the core counting given by the number of processor ele-
ments or the NoC size. The fourth column is the method or technique main goals under the
constraint (second column). The fifth column lists the techniques used to control the sys-
tem according to the Authors definitions. The last column presents the experimental setup
used by the Authors and the abstraction level of the system modeling which the results are
produced according to the following standard: (i) cycle-accurate simulation, only the execu-
tion time result is exact, and the others are estimated; (ii) FPGA prototyping, cycle-accurate
simulation for FPGA devices.

The literature presents distinct management and fault-tolerance approaches for
many-core systems that can be applied to the PE modules. According to the Table 2.1, sev-
eral techniques are used to manage the system with different goals, as power, resources,

37

and performance. Fault-tolerance may be applied at different levels, as routing-algorithm,
link level, processor level, system level.

The literature presents a rich fault tolerance and management approaches for
MCSoCs. However solutions that encompass a fault tolerance focused on the system man-
agement are scarce. [Tsoutsouras et al., 2017] is the work that most similar with this Thesis
proposal. The main difference is that the [Tsoutsouras et al., 2017] implemented the man-
ager recovery in different hierarchical levels. They have tree levels of management and
recover, the first level is the replacement of the Controller cluster. The second level is the
recover from the Manager PE (manager from an unique application) and an worker recovery
(PE that execute an task). To execute the recovery method in [Tsoutsouras et al., 2017] they
have a communication protocol to update and leave the system in a safe state. In this work
we assume that the memory is protected, similar to [Meloni et al., 2012], and a hardware
module in the fault manager handle the migration of data and contents to a health PE.

The proposal made in this Thesis includes fault tolerance techniques at the MCSoC
management level, including the local management in the clusters and the global system
management (Chapter 5). Fault tolerance is also proposed for the admission of new appli-
cations in the MCSoC, through the redundancy of the links with external devices, as well as
redundancy with external devices (Chapter 6). Thus, the proposal is original and advances
the state-of-the-art in fault tolerance for MCSoCs, through the proposition of high-level tech-
niques, given that low-level techniques (router and processor) are mature in the literature.

38

Ta
bl

e
2.

1
–

S
um

m
ar

y
of

th
e

th
e

st
at

e-
of

-th
e

ar
t.

A
ut

ho
r

D
es

ig
n

C
on

st
ra

in
t

A
rc

hi
te

ct
ur

e
#

of
co

re
s

D
es

ig
n

G
oa

ls
Te

ch
ni

qu
es

M
od

el
lin

g
(E

xp
.S

et
up

to
ol

s)

[P
au

le
ta

l.,
20

15
]

R
es

ou
rc

e
M

an
ag

em
en

t
H

et
er

og
en

eo
us

,1
6

S
PA

R
C

LE
O

N
3

Pe
rfo

rm
an

ce
D

yn
am

ic
lo

ad
di

st
rib

ut
io

n,
ad

ap
tiv

e
sh

ar
ed

re
so

ur
ce

s
FP

G
A

S
im

ul
at

io
n

(X
ili

nx
V

irt
ex

-5
,

X
C

5V
LX

33
0

FP
G

A
)

[M
ar

tin
s

et
al

.,
20

16
]

Po
w

er
M

an
ag

em
en

t
H

om
og

en
eo

us
,3

x3
to

12
x1

2
S

ca
la

bi
lit

y
an

d
en

er
gy

ef
fic

ie
nc

y
D

V
FS

,c
lo

ck
ga

tin
g,

m
ap

pi
ng

,
m

ig
ra

tio
n

C
yc

le
-a

cc
ur

at
e

si
m

ul
at

io
n,

an
d

lo
w

-le
ve

la
na

ly
si

s
(C

ad
en

ce
to

ol
s)

[M
el

on
ie

ta
l.,

20
12

]
Fa

ul
t-T

ol
er

an
ce

on
pr

oc
es

so
r

co
re

s
H

om
og

en
eo

us
2x

2
Ta

sk
re

m
ap

pi
ng

Ta
sk

m
ig

ra
tio

n
FP

G
A

si
m

ul
at

io
n,

D
es

ig
n

S
pa

ce
E

xp
lo

ra
tio

n
(D

S
E

)

[C
he

n
et

al
.,

20
17

]
Fa

ul
t-T

ol
er

an
ce

on
R

ou
tin

g
al

go
rit

hm
O

nl
y

N
oC

,8
x8

A
da

pt
iv

e
ro

ut
in

g
al

go
rit

hm
,b

al
an

ce
tra

ffi
c

lo
ad

Pa
th

di
sc

ov
er

y
C

yc
le

-a
cc

ur
at

e
si

m
ul

at
io

n

[K
am

ra
n

et
al

.,
20

16
]

Fa
ul

t-T
ol

er
an

ce
on

pr
oc

es
so

r
co

re
s

H
om

og
en

en
eo

us
,2

to
32

pr
oc

es
si

ng
co

re
s

C
P

U
fa

ul
ty

de
te

ct
S

of
tw

ar
e-

ba
se

d
se

lf-
te

st
ro

ut
in

es
X

ili
nx

IS
E

s
W

eb
PA

C
K

si
m

ul
at

io
n

[B
ho

w
m

ik
et

al
.,

20
16

]
Fa

ul
t-T

ol
er

an
ce

on
lin

ks
O

nl
y

N
oC

,2
x2

to
8x

8
O

n-
lin

e
te

st
m

ec
ha

ni
sm

th
at

de
te

ct
s

st
uc

k-
at

fa
ul

ts
Pa

ck
et

te
st

X
ili

nx
10

.1
si

m
ul

at
io

n

[B
ol

ch
in

ie
ta

l.,
20

13
]

M
an

ag
em

en
ta

nd
Fa

ul
t-T

ol
er

an
ce

on
pr

oc
es

si
ng

co
re

s

H
om

og
en

eo
us

,6
to

12
pr

oc
es

si
ng

co
re

s
Pe

rfo
rm

an
ce

,d
et

ec
te

d
fa

ul
ts

A
pp

lic
at

io
n’

s
re

pl
ic

as
C

yc
le

-a
cc

ur
at

e
si

m
ul

at
io

n
+

R
eS

P
si

m
ul

at
io

n
en

vi
ro

nm
en

t

[D
om

in
gu

es
et

al
.,

20
18

]
Fa

ul
tT

ol
er

an
ce

in
M

an
ag

em
en

t
C

or
es

H
om

og
en

eo
us

2
to

36
Fa

ul
tD

et
ec

tio
n

an
d

M
an

ag
er

R
ec

ov
er

y
M

ig
ra

tio
n

of
da

ta
co

nt
en

ts
an

d
cl

us
te

rr
ec

on
fig

ur
at

io
n

O
V

P
S

IM
,i

ns
tru

ct
io

n-
ac

cu
ra

te
si

m
ul

at
io

n
[T

so
ut

so
ur

as
et

al
.,

20
17

]
Fa

ul
tT

ol
er

an
ce

in
M

an
ag

em
en

t
C

or
es

H
om

og
en

eo
us

6
to

24
P

E
Fa

ul
tD

et
ec

tio
n

an
d

M
an

ag
er

R
ec

ov
er

y
R

ep
la

ce
m

en
tC

or
e

In
te

lS
in

gl
e-

ch
ip

C
lo

ud
C

om
pu

te
r

(S
C

C
)

[S
ur

aj
Pa

ul
,2

01
8]

Fa
ul

tT
ol

er
an

ce
in

P
ro

ce
ss

or
co

re
s

H
om

og
en

eo
us

4x
4

to
10

x1
0

Fa
ul

tT
ol

er
an

to
n

cr
iti

ca
la

pp
lic

at
io

ns
Ta

sk
re

pl
ic

as
O

R
IO

N
3.

0
S

im
ul

at
or

[S
ilv

ei
ra

et
al

.,
20

16
]

Fa
ul

tT
ol

er
an

ce
in

D
at

a
N

oC
ro

ut
er

s
H

om
og

en
eo

us
2x

2
to

8x
8

Fa
ul

tD
et

ec
tio

n
an

d
ro

ut
in

g
re

co
nfi

gu
ra

tio
n

D
ea

dl
oc

k-
fre

e
ro

ut
in

g
co

m
pu

ta
tio

n
C

yc
le

-a
cc

ur
at

e
si

m
ul

at
io

n

Th
is

Th
es

is
Fa

ul
t-T

ol
er

an
ce

on
pr

oc
es

si
ng

co
re

s
H

om
og

en
eo

us
,p

ar
am

et
er

iz
ab

le
si

ze
S

ys
te

m
M

an
ag

em
en

tR
ec

ov
er

y
Ke

rn
el

m
an

ag
er

m
ap

pi
ng

,t
as

k
m

ig
ra

tio
n

C
yc

le
-a

cc
ur

at
e

si
m

ul
at

io
n

39

3. BASELINE PLATFORM

This Chapter introduces the MCSoC baseline platform used in this work, based on
the Hermes MultiProcessor System (HeMPS) [Carara et al., 2009, Woszezenki, 2007] and
its evolution in Section 3.1. Section 3.2 presents the control NoC (brNoC) and Section 3.3
the Injector Module. The baseline platform and this work are both developed at the Hardware
Design Support Group (GAPH) research group [GAPH, 2018].

The brNoC (Section 3.2) and the Injector Module (Section 3.3) corresponds to the
first two contributions of this Thesis.

3.1 Baseline Platform and its Evolution

Figure 3.1 presents the reference baseline platform. The architecture contains a
set of PEs interconnected by a data NoC. The Global Manager (GM) has an interface with
the external environment to the MCSoC to receive new applications. Each PE contains
one processor (32 bits MIPS), a Direct Memory Network Interface (DMNI, combining the
functions of a Network Interface and a DMA module) [Ruaro et al., 2016]. The PEs’ hardware
is the same, being the role assigned to the PEs made by software: Slave PEs (SPs) execute
users’ tasks, supporting multitasking and message exchanging; GM/LM manage a given
cluster.

GM

Repository

Legend:
 - DMNI: Direct Memory Network Interface
 - GPPC: General Purpose Processing Cores
 - GM: Global Manager Processor
 - LM: Local Manager Processor
 - SP: Slave Processor

SP

LM

SP

Memory CPU

Data
NoC

Router

PE
Processing Element

GPPC

(a) (b)

DMNI

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

LM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

LM

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

Figure 3.1 – HeMPS baseline architecture.

The main baseline architecture features include:

• Global Manager attached to the Application Repository;

40

• True-dual local scratchpad memory, with one port connected to the CPU, and the
second one to the DMNI;

• Single 32-bit physical links;

• Wormhole packet switching;

• Suport to XY routing algorithm;

• Input buffer depth: 8 flits.

Figure 3.2 presents the evolution of the baseline platform carried out in this The-
sis. The main differences include: (i) addition of a Control NoC (Section 3.2); (ii) control
wrappers; (iii) Application Injector IP core and support for peripherals (Section 3.3); (iv)
duplicated physical channels. Two similar descriptions model the platform: synthesizable
VHDL, for characterization purposes; SystemC at the RTL level, with clock-cycle accuracy,
enabling the simulation of systems with dozens of PEs.

SP SP SP

SP SPSP

SP SP LM SP

SP

SP

SP SPSP SP

SP

SP

SP

SP

SP

VGM

SP

SP

SPSP

Application
Injector

Legend:
 - DMNI: Direct Memory Network Interface
 - GPPC: General Purpose Processing Cores
 - VGM: Virtual Global Manager Processor
 - LM: Local Manager Processor
 - SP: Slave Processor

SPSP

SP

SP

SP

SP

SP SP SP

SP SPSP

SP SP LM SP

SP

SP

SP SPSP SP

SP

SP

SP

SP

SP

LM

SP

SP

SPSP

SPSP

SP

SP

SP

SP

Peripheral 3

Memory
CPU

Data
NoC

Router

Control
NoC

Router

PE
Processing Element

W W

W

W

W

W

W

W

Wrapper
Control

GPPC

P
e

ri
p

h
e

ra
l
2

P
e

ri
p

h
e

ra
l
1

(a) (b)

DMNI

Figure 3.2 – Modified architecture adopted in this Thesis.

The data NoC main features includes: (i) 2-D mesh topology; (ii) 8-flit buffer depth,
input buffering; (iii) wormhole packet-switching; (iv) support for deterministic XY and source
routing; (v) credit-based flow control; (vi) duplicated physical channels (two 16-bit channels
per link), enabling full adaptive routing.

As can be observed, the most significant changes in the data NoC correspond to
the links’ duplication (16-bit links were used to avoid area overhead), resulting in two 16-bit
disjoint networks; and support for source routing. These two modifications are important in
the context of fault tolerance, because it allows applying dual routing algorithms (for exam-
ple, west-first and east-first) at each subnet, and thus ensure fully adaptive routing, free of
deadlock.

41

The control NoC, detailed in Section 3.2, transfers the control messages. This work
uses the control NoC to transmit messages with the following purposes:

• notify the status of the VGM/LM;

• notify the new application admission to VGM;

• freeze application(s) managed by a given Manager;

• notify an SP that it will become a new Manager;

• notify a DMNI module to transfer the memory contents of an SP to a new system
address;

• notity the SP about a new Manager address;

• unfreeze application(s) after the Manager migration.

• notify an SP to discard an incomplete task.

A new architecture feature is that the memory is accessible by the data NoC even
if the processor has a permanent fault. The control NoC configures the DMNI module to
transfer the memory contents to another PE. This feature, transfer the memory contents
when the processor has a permanent fault, is commonly adopted in fault-tolerant approaches
[Meloni et al., 2012].

The methods proposed in this Thesis may be applied to homogeneous or hetero-
geneous MCSoC. The proposed method requires the following architectural features: (i) a
set of PE with the same architecture; (ii) at least two disjoint NoC, one for application data
and one for management purposes [Wentzlaff et al., 2007]; (iii) a memory module that can
be read/write directly by the network interface [Meloni et al., 2012].

Briefly, the changes made by the Author in the reference architecture include:

• DMNI received two modules: send kernel and receive kernel, and started to serialize
the data incoming from the CPU (32 to 16 bits) and to parallelize the data coming from
the data NoC (from 16 to 32 bits);

• Added wrappers in the control signals of both NoCs;

• Data NoC: support to 16-bit flits (buffer, switch control, crossbar), support to XY and
source routing, duplicated physical channels;

• Control NoC: broadcast as the default transmission mode, non-intrusiveness (i.e., de-
coupled from the Data NoC), full reachability (the broadcast mode ensures that if there
is a path to a given router, the path is found);

• Inclusion of the support for peripherals, such as the Application Injector (Section 3.3).

42

3.1.1 Data NoC

The data NoC transfers data messages, exchanged by applications. The data
NoC extends the NoC Hermes [Moraes et al., 2004] adopting duplicated physical channels,
flit width equal to 16 bits, input buffering, round-robin arbitration, credit-based flow control,
wormhole packet switching, simultaneous support for distributed XY routing and source rout-
ing (SR).

The use of duplicated physical channels ensures deadlock avoidance and full rout-
ing adaptivity. The number of virtual or replicated channels required to avoid deadlocks is
a function of the network topology. For example, two virtual or replicated channels are suf-
ficient to avoid deadlocks in a 2D-mesh topology [Linder and Harden, 1991]. The flit width
is half of the original in the Hermes NoC to minimize the area overhead due the duplicated
physical channel adoption.

The standard routing mode between PEs is the distributed XY routing algorithm.
The data NoC also supports source routing (SR) such that it is possible to determine alter-
native paths to circumvent faulty routers. The mechanism to found an alternative path to use
in the SR is presented in Section 3.2.

The reference MCSoC architecture, HeMPS, does not support the communication
with peripherals. This platform was modified in such a way to support such hardware com-
ponents. Section 3.3 presents an example of an external device -Application Injector. The
data NoC differentiates data packets from peripheral packets. Data packets are those ex-
changed by tasks running in PEs, and peripheral packets are those transferred between a
task and a peripheral. A peripheral packet arriving in a boundary PE goes to the peripheral,
and not to the DMNI.

A data packet, from the NoC point of view, has a header and a payload (Figure
3.3). The packet header content is used to control the data NoC behavior, such as, routing
and arbitration. While in [Carara et al., 2009] the packet header have two fields (target and
payload size), we adopt three fields to support the SR, the rerouting mechanism and the
communication with peripherals: (i) the source/target address with data (D) or peripheral (P)
packet flag; (ii) the XY or SR field that indicates the turns on each router when use SR or
the source/target address when use XY routing (repeat the first field) and; (iii) the payload
size.

From the task point of view, a message is used by kernel with two fields: (i) the
message header to control the data exchange between tasks or with peripherals through
data such as, producer task ID, consumer task ID, service (e.g. message delivery, request
for a message, task mapping, task allocation), message timestamp and, (ii) the payload, an
optional field, with the task or peripheral data. It may contain, for example, user data or the
object code of a task.

43

Source /
 Target

D
/
P

XY /
SR

Payload
 Size

Service Payload (optional)Service
header

Packet header Packet payload

Message header Message payload

Figure 3.3 – Packet and message structures - a flag (D/P) in the target address field differ-
entiates data packets from peripheral packets.

3.1.2 Software Model

Scalability at the hardware level comes from PEs executing several tasks in parallel,
using the NoC to transmit concurrently multiple flows. However, large systems require high-
level management for controlling the deployment of new applications, monitoring resources
usage, manage task mapping and migration, and can execute self-adaptive actions accord-
ing to systems constraints. Thus, to achieve a scalable design, HeMPS adopts cluster-based
decentralized management [Castilhos et al., 2013]. Clusters are virtual regions, with a set of
slave processors (SPE) and one manager PE (MPE). SPEs execute applications’ tasks, while
MPEs manage the clusters.

The management occurs at the MPE and SPE levels, executed by the kernel running
in those PEs, as depicted in Figure 3.4.

Task 1 Task 2 Task 3 ...

Task 2

Task 1

Kernel
Slave

Kernel
Slave

...

Communication System Calls

Task
Scheduling

Interrupt
Handling

Wait New
Kernel

Freeze -
Unfreeze

S
c

ra
tc

h
p

a
d

 L
o

c
a

l M
e

m
o

ry

Slave PE - SPE

Kernel
Manager

Kernel
Manager

App Mapping System Calls

Manager Pairs

Task
Migration

Slave
Candidate

Kernel
Migration

S
c

ra
tc

h
p

a
d

 L
o

c
a

l M
e

m
o

ry

Manager PE - MPE

(a) (b)

Figure 3.4 – Overview of the kernels: (a) MPE kernel manages the system and do not execute
users’ tasks; (b) SPE kernel manage users’ tasks.

At the MPE level, Figure 3.4.a, the local memory is reserved to the kernel, with-
out executing user’s tasks. The MPE executes heuristics as task mapping, task migration,
monitoring, kernel migration, manager pairs, slave candidate.

At the SPE level, Figure 3.4.b, a multi-task kernel acts as a operating system. The
platform adopts a paged memory scheme to simplify the kernel design. Examples of ac-

44

tions executed by the kernel include task scheduling, inter-task communication (message
passing), interrupt handling, freeze, unfreeze, wait new kernel.

Both manager kernels are written in C language. Only a small part of the code is
written in assembly language, responsible for executing context saving and handling hard-
ware and software interruptions.

Applications are also written in C language. They are modeled as task graphs
A = < T , P, D >, where T = {t1, t2, ..., tm} is the set of application tasks corresponding to
the graph vertices, P = {p1, p2, ..., pn} is the set of peripherals corresponding to the graph
vertices. The D set represents the application descriptor which contains the communicating
pairs {(ti , tj), (ti , pr), (tj , ps), ..., (tm, pn)} with (ti , tj , ..., tm) 2 T, (p1, p2, ..., pn) 2 P. A pair (ti , tj)
denotes the communication from task ti to task tj (ti ! tj), and a pair (ti , pr) denotes the
communication from task ti to peripheral pr (ti ! pr). Figure 3.5 present an application
modeled as task graph.

task
A

task
B

taskC

taskE
periph

1

taskD

Send(&msg, taskB)

Send(&msg, taskD)

Receive(&msg, taskA)

Send(&msg, taskC)

Receive(&msg, taskB)

Send(&msg, taskE)

Receive(&msg, taskA)

Send(&msg, taskE)

Receive(&msg, taskC)

IO_Send(&msg, periph1)

Receive(&msg, taskD)

taskA:
 taskB
 taskD
taskB:
 taskC
taskC:
 taskE
taskD:
 taskE
taskE:
 periph1

App.
Descriptor

Figure 3.5 – Application task graph example.

Tasks communicate using message passing (MPI-like) primitives. The API provides
two primitives: a non-blocking Send() and blocking Receive(). The main advantage of this
approach is that a message is only injected into the NoC if the receiver requested data,
reducing network congestion. To implement a non-blocking Send(), a dedicated memory
space in the kernel, named pipe, stores each message written by tasks. The pipe is a
communication channel where messages are consumed in the same order that they are
stored. Within this work, the pipe is a memory area of the kernel reserved for message
exchanging, where messages are stored in an ordered fashion and consumed according
it. Each pipe slot contains information about the target/source processor, task identification
and the order in which it is produced.

At the lower level, the kernel communicates with the data NoC with data_request
and data_delivery packets. The pipe and a message buffer enables packet retransmission
to inter-task communication and inter-manager communication respectively.

45

The support for I/O communication uses a second API, with IO_Receive() and
IO_Send() primitives, using a master/slave communication model. The PE is the communi-
cation master and the peripherals the communication slaves. At the lower level, the kernel
communicates with the data NoC with IO_request , IO_delivery , and IO_ack packets. The
IO_Receive() primitive uses the IO_request at the PE side and the IO_delivery at the pe-
ripheral side. The IO_Send() primitive uses IO_delivery at the PE side and the IO_ack at
the peripheral side.

3.2 Control NoC - BrNoC

This Section presents the Control NoC, named BrNoC (broadcast NoC) The BrNoC
is the first contribution of this Thesis, developed in cooperation with members of the research
group. The design of this network aimed to create a network decoupled from the data net-
work, allowing its use for fault tolerance - the theme of this Thesis [Fochi et al., 2018, Fochi
et al., 2017], in security techniques [Caimi et al., 2017a, Caimi et al., 2017b, Caimi et al.,
2018], system management (used throughout the protocols presented in this thesis). It is
flexible and can be easily adapted for other applications.

The BrNoC [Wachter et al., 2017] is a dedicated NoC, decoupled from the data
NoC. The BrNoC has the same topology of the data NoC, enabling to control each port
individually (e.g. the North port in the dedicated NoC has an equivalent North port in the
data NoC). The broadcast is the default transmission mode because it enables to reach PEs
in case of disabled links, to notify several PEs with one message, and to transmit with low
latency control messages.

In a broadcast, when a given port receives a message, it is processed and broad-
casted to the neighbors routers (ports N, S, E, W), except to the port it came from. According
to the transmission mode, the message may be transmitted to the port connected to the NI
(local port). The broadcast acts as a wave traveling through the NoC. The BrNoC supports
four transmission modes:

• brTgt (broadcast with a target): a specific PE is the target of this message. The mes-
sage is broadcasted to all routers, but only the PE with the target address consumes
it. This mode may be used to find a new path after a message discard adn to notify a
specific PE to execute some action. The broadcast ensures that the message will be
delivered even if a link/router is faulty or disable.

• brAll (broadcast to all PEs): all PEs consume the message. Therefore, all PEs are
interrupted, and the message type defines the action the PE should execute. This
mode may be used to freeze the tasks of a given application; send commands to PEs
of same application ID; set wrappers to define a secure zone.

46

• brWt (broadcast without a target): all BrNoC routers consume the message without
notifying the NIs. This mode executes actions related to the BrNoC management, as
clearing specific data structures.

• unicast : this message is an answer to a brTgt message. The unicast message
follows the path defined by the brTgt message, in the reverse order to reach the source
PE (backtrack process). This mode may be used to return a new path. Due to the
limited payload size, each BrNoC router in the path sends a unicast message to the
source router so that the fault-free path can be completely received.

Figure 3.6 presents the internal architecture of a BrNoC router, for a 2D-mesh
topology. The router contains two control FSMs (Finite State Machines), two round-robin
arbiters and a centralized CAM (Content Addressable Memory) memory. Routers have a
small area footprint since they do not have input buffers (the CAM acts as a buffer shared
by all input ports), and each flit encapsulates a single message.

source target... used pending

...

Input
Arbiter

O-FSM

I-FSM
Output
Arbiter

CAM

North
South

East
West
Local

North
South
East
West
Local

Input
Ports

Output
Ports

Figure 3.6 – BrNoC architecture.

The wrappers are connected to the control flow signals (req, ack in the control NoC
- Figure 3.7). The control flow signals traverse the wrapper, if it is disabled. Considering the
activation of the wrapper the int_in_req signal (internal value of the input request) is masked
to 0 even if the in_req value is 1 in the external side of the PE . The value 1 in the wrapper
value also set the out_req regardless of the int_out_ack value. This actions disable the
message request from the neighbor PE and set the out_ack value to release it. From the
neighbor PE the message was delivery. Equivalent behavior occurs when the request is
generated internally (int_out_req signal).

Figure 3.8 details the flit structure (37 bits) and one CAM row (51 bits). Each CAM
row stores the flit contents (to enable the broadcast) and control fields. The flit structure
contains the fields: message ID (identification); source address; target address; message
type (defines the action to execute and the transmission mode); message payload . The tag

47

in_ack

out_req

in_req

out_ack

int_in_ack

int_out_req

int_out_ack

wrapper_reg
value

Internal PE
Side

External PE
Side

Control NoC Wrapper

Figure 3.7 – Control NoC Wrapper logic.

to search in the CAM is the tuple {msg ID, source address}. Each brNoC link contains the
flit structure plus the req, ack and nack signals.

The CAM size definition (number of rows) occurs at design time, and it is not a
function of the system size, ensuring scalability. Smaller CAMs can increase the delay in
handling the messages, while larger CAMs reduces avoid this delay at the cost of larger
silicon area. The payload size may increase at design time to support services requiring
larger data to transmit. The payload size is also a trade-off between the amount of data to
transmit and the silicon area.

source target type payload my_hop out_port

8 bits 8 bits 4 bits 8 bits 8 bits 2 bits

pending

1 bit

used

1 bit

in_port

2 bits

msg ID

8 bits

control = 14 bitsflit = 37 bits

op_mode

1 bit

Figure 3.8 – Message (flit) and one row of BrNoC CAM memory.

The control structure of one CAM row contains the fields: op_mode, in_port ,
my_hop, out_port , pending and used . The pending field signalizes the presence of a mes-
sage to be handled. The used indicates that the row is in use. The in_port stores the
port identification from where the message comes from. The unicast mode uses the fields
my_hop and out_port .

The control NoC has two operation modes (op_mode field): global and restrict. The
global operation mode enables the control messages to pass through the wrappers, even if
they are enabled. This operation mode enables PEs inside a secure zone to exchange mes-
sages with manager PEs. The restrict operation mode observes the status of the wrappers,
i.e., if a control message hits an activated wrapper, the message is discarded. This mode
enables a path discovery mechanism by the control NoC.

48

The I-FSM receives incoming messages and if necessary stores the message in a
CAM row. A handshake protocol (req, ack , nack) controls the I-FSM. The I-FSM is initially in
an idle state waiting for incoming messages (req asserted in a given port). The input arbiter
chooses an input port to handle. Three conditions may assert the ack signal: (c1) the tag
is not in the CAM, and there is space in the CAM; (c2) the tag is in the CAM; (c3) failed
or isolated port, where a wrapper force the ack signal. The assertion of the nack occurs
when the tag is not in the CAM, and there is no space in the CAM. The router receiving the
nack unsets the req and tries later (action discussed in the O-FSM). When condition (c1) is
satisfied the I-FSM executes the following actions:

• stores the message in a free position of the CAM;

• asserts the pending field to signalize that the message should be broadcasted;

• asserts the used field to signalize that the CAM row contains a valid message;

• stores the port identification selected by the arbiter in the in_port field (the size of
in_port and out_port fields are a function of the number of router ports);

• in a search for a source-target path, the payload contains the distance from the current
router address to the source address. This value is incremented and stored in the
my_hop field.

Condition (c2) ensures that requests to already visit routers are discarded, avoiding
cyclic transmissions (i.e. deadlocks), and the end of the broadcast when all routers were
visited.

The O-FSM handles the messages stored in the CAM, using the same handshake
protocol. The output arbiter chooses a row to handle, according to the asserted pending
fields. All broadcast modes propagate the message to the neighbors routers, except the
in_port . According to the broadcast mode, the message also goes to all local ports (brAll),
or to the local port that matches the router address with the target field (brTgt). The pending
field is cleared when all broadcasted ports answer with an ack . If some broadcasted port
answers with a nack , the arbiter selects another CAM row, enabling the selection of the
current row again. An example of message type using brWt propagation is the CLEAR,
responsible for freeing a CAM row, by clearing the used field. The unicast message uses
the in_port , my_hop and out_port fields to answer a brTgt message. The unicast message
forwards the message to the port defined in the in_port field.

Faults can compromise the path between a given source-target pair. The function
of the BrNoC is to find an uninterrupted path between the communicating pair. Figure 3.9
presents an example of the procedure to find a new path. In this scenario, Router 1 com-
municates with Router 15 (XY path), but a fault in Router 11 interrupts the communication
(the fault notification is sent to Router 11 neighbors). Using the BrNoC, Router 7 starts a

49

BROKEN_PATH message to Router 1. When the message reaches the Router 1, it starts a
SEARCH_PATH message to find a fault-free path to Router 15 (Figure 3.9(a), red arrows).

12

 0

 4

15
(hop 6)

 2

 6 7

 3

14
(hop 5)

13
(hop 4)

9
(hop 3)

5
(hop 2)

1
(hop 1)

12

 0

 4

15

 2

 6 7

 3

1413

9

5

1
(hop 1)

12

 4

15

 6 7

 3

1413

9

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

12 15

 7

1413

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

6
(hop 3)

4
(hop 3)

3
(hop 3)

9
(hop 3)

12 1514

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

6
(hop 3)

4
(hop 3)

3
(hop 3)

9
(hop 3)

7
(hop 4)

13
(hop 4)

15

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

6
(hop 3)

4
(hop 3)

3
(hop 3)

9
(hop 3)

7
(hop 4)

13
(hop 4)

12
(hop 5)

14
(hop 5)

 (a) (b) (c)

 (d) (e) (f)

- backtrack path - backtrack path routers - source and target routers - all links faulty routers

Figure 3.9 – Example of path discovery using the BrNoC.

Next, Routers 0, 2 and 5 receive the message through ports East, West and
South, respectively. Then, these routers broadcast their messages to their neighbors (Fig-
ure 3.9(b)). In Figure 3.9(c), Routers 3, 4, 6 and 9 receive the message from ports East,
South, West, and South, respectively and broadcast to their neighbors. As the Routers 8, 10
and 11 are faulty (wrappers are activated), they do not broadcast the messages (the wrap-
per force the ack signal to high). Note that the message sent by the Routers 3, 4, 6 and 9
is discarded in Routers 2 and 5 because these routers already have received the message
from the same source (msg ID/source address stored in CAM). Next, Figure 3.9(d), the
message is received in ports West and South of Routers 7 and 13, respectively, and sent to
their neighbors. In the next hop (Figure 3.9(e)), the message is received in Routers 12 and
14, and finally, in Figure 3.9(f), the SEARCH_PATH message reaches the target, starting
the answer step with BACKTRACK messages.

In the answer step, each router in the path sends a BACKTRACK message to the
source router. Initially, Router 15 sends a BACKTRACK message to Router 1 through the
West port (information stored in the in_port field). Next, Router 14 propagates the first

50

message, and then transmits a new BACKTRACK message to Router 1 with the payload
having the contents of the out_port field. Each router in the path repeats this process,
propagating the previous BACKTRACK messages and sending a new one. The my_hop field
controls the process, finishing when the source router receives all BACKTRACK messages
(my_hop=1). Therefore, the source router receives a number of BACKTRACK messages
equal to the number of hops in the path to the target. Each one of these messages contains
in the payload the port to reach the destination router.

When Router 1 receives the BACKTRACK message, the PE is interrupted to com-
pute the source routing path to Router 15. Then, Router 1 resends the lost message and all
subsequent packets to this destination using the source routing path, which is stored in an
OS structure. The process to find a new path to a given target is executed once, only when
the fault is detected.

Table 3.1 shows examples of messages types with the respective transmission
mode, operation mode and purpose in the context of this Thesis. The message type opera-
tion will be explained in Chapters Chapter 5 and Chapter 6.

Table 3.1 – Examples of messages types and purposes of the brNoC.

Purpose Message Type Transmission
Mode

Operation
Mode

Path Discovery
BROKEN_PATH brTgt Global
SEARCH_PATH brTgt Restrict
BACKTRACK unicast Restrict

Recovery

FAIL_CPU brAll Global
FAIL_INJ_LINK brAll Global
FREEZE brAll Global
UNFREEZE brAll Global
BROKEN_RECEPTION brAll Global
WAIT_KERNEL brTgt Global
SEND_KERNEL brTgt Global
VGM_READY brAll Global

System Management START_APP brAll Global
END_TASK brTgt Global

Figure 3.10 presents an example of the procedure to notify a fault in the manager
(FAIL_CPU_message) and a FREEZE_message to hold a cluster using the control NoC. In this
scenario Figure 3.10.a, Manager 0 became faulty. A message to notify the Manager Pair
PE2 is sent in broadcast. Using the control NoC, Router 0 starts the FAIL_CPU_message to
Router 2 (Figure 3.10.a, red arrows). Next, Router 4 and 1 receive the message through
ports South and West respectively. Then, these routers broadcast the received message
to their neighbors (Figure 3.10.b). After 3 hops (42 clock cycles), Router 2 receives the
message (Figure 3.10.c). Finally the fault notification is sent to the CPU.

51

 - Manager Fault

8

15

10 11

12

 4

 2

 6 7

 3

1413

9

5

 (a) (b) (c)

 (d) (e) (f)

1
0

(hop 1)

8

4
(hop 2)

15

10 11

12

 2

 6 7

 3

1413

9

5

0
(hop 1)

1
(hop 2)

 - Manager Pair

8
(hop 3)

4
(hop 2)

15

10 11

12

 2

 6 7

 3

1413

9

5
(hop 3)

0
(hop 1)

1
(hop 2)

8

15

10 11

12

 4

 2
(hop1)

 6 7

 3

1413

9

5

10

 - Freeze Targets

8

15

10 11

12

 4

 2
(hop1)

 7

1413

9

0
 1
(hop 2)

 6
(hop 2)

 3
(hop 2)

5

8

1512

 2
(hop1)

13

 1
(hop 2)

 6
(hop 2)

 3
(hop 2)

 5
(hop 3)

 0
(hop 3)

 7
(hop 3)

 10
(hop 3)

 4
(hop 4)

 9
(hop 4)

 14
(hop 4)

 11
(hop 4)

Figure 3.10 – Example of fault and freeze notification using the BrNoC.

Figure 3.10.d presents an example of a FREEZE_message. In this scenario (Fig-
ure 3.10.d, red arrows) Router 2 starts the broadcast of the FREEZE_message and with target
Routers 1,4 and 5. Next, Routers 1, 3 and 6 receive the message through ports East, West
and South respectively. Then, these routers broadcast the received message to their neigh-
bors, Figure 3.10.e. Finally the FREEZE_message notification reaches the targets. In this case
the broadcast spends 4 hops (56 clock cycles) to achieve all targets.

One may ask: "is it possible to implement the methods proposed in this Thesis
without the brNoC?". The benefits of using the brNoC include : (i) the broadcast transmis-
sion enables to reach a large number of targets quickly, without the need to know the PE
addresses to freeze/unfreeze; (ii) the control messages may reach their targets even in the
presence of faults in the NoCs; (iii) the control traffic is isolated from the applications’ traffic,
not interfering in their performance. Thus, it would be possible to use only the Data NoC, but
the cost in terms of the protocols’ performance would be high (unicast messages instead of
broadcast ones) and interference between control and data packets.

52

3.3 Application Injector

This Section presents the Application Injector module, which is an external periph-
eral. The Application Injector module is the second contribution of this work, developed by
the Author of this Thesis. The support to connect external devices in the MCSoC, and the
application Injector module are part of the baseline architecture, which evolved from HeMPS
to MEMPHIS [Ruaro et al., 2019].

Support for peripherals required simple modifications at both hardware and soft-
ware levels. At the software level, it was necessary to implement the peripheral communica-
tion API, described in Section 3.1.2. At the hardware level, only the "switch control" module
(router) was modified to differentiate data packets from peripheral packets. When a periph-
eral packet reaches the destination router, it is transferred to the output port, to which the
peripheral is connected.

In the original baseline architecture model (HeMPS), the Global Manager (GM)
was mapped statically (address0,0) and connected to a repository (external memory with the
applications’ codes). The GM was responsible for sending applications to the system, with
one connection with the repository. This original MCSoC model presents problems related
to both, a general purpose architecture and fault tolerance:

• In a general purpose architecture, the MCSoC system is connected to external inter-
faces, such as network interfaces (e.g., Ethernet) or other communication interfaces.
The baseline architecture needs to be modified to reflect the structure of real systems.

• In a general purpose architecture, the MCSoC system can be connected to shared
external memories and hardware accelerators.

• As for fault tolerance, the existence of only one PE connected to the repository repre-
sents a single point of failure.

These three issues led to the development of the architecture with the possibility
of connections in the external boundaries of the MCSoC and, specifically in the context of
this Thesis, to the development of the Injector module that approximates the MCSoC to real
systems and eliminates the single point of failure if the Injector is replicated.

Figure 3.11 presents the Injector structure. This module communicates with the two
NoCs. The brNoC is used for exchanging control messages, while the data NoC is used for
sending messages with longer payloads, such as applications’ descriptors and object codes.
The injector has five state machines controlled by the Application Injector Machine (AIM).
The injector emulates a Data router (Data NoC in / Data NoC out) and Control router (BrNoC
in / BrNoC out) behavior. In this way, any hardware module can insert applications, as long
as it respects the communication protocol for applications’ admission. The communication

53

with the injector is transparent for the MCSoC. No special packet is needed for the exchange
of messages.

Data Noc
Router

Many-Core

Boundary PE

BrNoC
Router

Injector Module

App.
Injector

Machine

BrNoC
In

BrNoC
Out

Data
NoC In

Data
NoC Out

Load
App.

Workload
Conf.

App. 1 App. 2 App. NApp. 3

Figure 3.11 – Application Injector connection with the MCSoC.

At design time occurs the following actions:

• the kernel of each manager receives a tuple {Injector ID, address, port}, enabling the
communication between managers and injectors/peripherals;

• each injector/peripheral receives a unique ID, enabling it to receive/send packets from/to
the many-core;

• a "workload configuration" file is created with the tuples {Application ID, injection time,
[optional] static mapping};

• the object code of each application is created and stored in a file.

When the simulation initiates, the AIM FSM starts reading the workload configura-
tion file. For each application (app) to be injected into the system, the protocol described
later in Section 6.2 exchanges messages through the brNoC with the VGM in such a way
to receive the cluster ID to send app. The injector allows the injection of one application at
a time. If the workload configuration file specifies two applications with the same injection
time, they are inserted into the system sequentially. FSMs involved in this process: AIM,
BrNoC in, BrNoC out.

Next, the AIM FSM reads the app descriptor, transmitting it to the selected cluster
ID. FSMs involved in this process: AIM, Load App, Data NoC Out.

54

The selected cluster maps the app tasks and requests the object codes. FSMs
involved in this process: Data NoC In, AIM.

Finally, the AIM FSM reads the app object codes and transmits them to the system.
FSMs involved in this process: AIM, Load App, Data NoC Out.

The injector module is described in SystemC. Chapter A shows the FSM diagrams.

55

4. SYSTEM MANAGEMENT RECOVERY OVERVIEW AND FAULT
MODEL

This Chapter presents in Section 4.1 a general view of the system management
recovery method for the VGM or LM. This presentation is required to provide a holistic
perspective of the Thesis approach before detailing the methods on the next Chapters. Sec-
tion 4.2 presents possible situations handled by the method and a high-level flow chart,
with the actions executed at each scenario. Section 4.3 presents the fault model, and the
fault-tolerant techniques available in the literature organized according to their proposals.

4.1 Proposed Recovery Method Overview

This Section presents a management recovery method overview. The recovery
method is similar for the VGM and LMs. However, each one is explained separately because
the VGM communicates with the Injectors. The fault detection mechanism (out of the scope
of the present work) detects a permanent fault in the processor of the VGM. The fault
detection fires the following protocol:

1. The fault detection signal, in the VGM, induces the brNoC to send three control mes-
sages:

(a) broadcast message targeting all SPs managed by the faulty manager processor,
VGMF , to freeze all tasks managed by VGMF (note that due to the reclustering
process some tasks may be executing in another clusters).

(b) broadcast message targeting the Injectors to stop the admission of new applica-
tions, and eventually, interrupts the admission of a new application if this applica-
tion should execute in the cluster managed by VGMF .

(c) broadcast message targeting the Manager Pair (manager processor supervising
the VGM) to start the kernel migration process.

2. The Manager Pair evaluates if there is in the cluster managed by VGMF a free SP
(SP in an idle state, not executing tasks). If this condition is not satisfied, the Manager
Pair selects an SP, migrating the running tasks to available SPs to neighbor clusters.
The result of this step is the selection of an SP to receive the code and data of VGMF ,
named SPcandidate.

3. Migrate the memory contents of VGMF to SPcandidate.

56

4. After migrating the VGMF to SPcandidate, the VGM restarts in this processor, unfreezing
the tasks managed by it.

5. If an application admission was interrupted, the VGM releases the reserved SPs.

6. The new VGM restarts the communication with the Injectors. If an application admis-
sion was interrupted, the Injector restarts the protocol.

The Manager Recovery Method is similar for the LM. The main difference is that the
Injectors are free to inject new applications into the system. Only the cluster belonging to the
LMF freezes its execution and cannot receive new applications. After the recovery process,
the injector starts the application injection protocol again. The VGM does not choose the
cluster while the LM is faulty. The cluster can receive new applications when the new LM
restarts.

4.2 Actions Executed by the Recovery Protocol

Figure 4.1 exemplifies two possible situations handled by the proposed recovery
method, using as example two 4x2 many-core instances, with two 2x2 clusters. In Fig-
ure 4.1(a), LM2,0 is faulty and SP3,0 is free, i.e., there is no tasks executing on it. In this case,
the proposed recovery method migrates the kernel from LM2,0 to SP3,0. In Figure 4.1(b) all
SPs of the cluster managed by the faulty LM execute tasks. In this scenario, the recovery
method migrates tasks executing in the cluster to another cluster before migrating the kernel.

0 1 2 3

0 1 2 3

SPSP T1 T2

SP

T2

SPVGM LM T30

1

VGM

SP

SP LM

T1SP

0

1

(A) SP
Available

(B) Cluster
Full

Figure 4.1 – Scenarios handled by the recovery method: (a) cluster with available SPs; (b)
cluster with all SPs executing tasks.

The proposal starts by defining Manager pairs. Each Manager selects its pair at
runtime. A pair of Managers are responsible for supervising each other, by exchanging
periodically control messages, or for receiving a fault message.

57

Figure 4.2 presents the actions taken when a Manager presents a permanent fault.

Available SPs
in the cluster?

No

Find a PE to receive a task

Migrate task(s)

Migrate Kernel and
Unfreeze task(s)

Yes

Freeze all applications
managed by the Manager

faulty.

Fault Detected
in a Manager

Injectors hold new
applications in the system

Only the cluster do not receive
new applications

VGM LM

Manager was
receiving an
application

No

Continue

Yes

1) Injectors restart the application deploy

2) SP will discard the task received from the application

5.2 Section

5.4 Section

5.5 Section

5.6 Section

5.7.1 Section 5.7.2 Section

6.3.2 Section

Figure 4.2 – High-level flow chart, with the actions executed by the recovery protocol. Above
the rectangles, it is inserted the section detailing the procedures.

When a permanent fault is detected in a Manager (faulty Manager, or MF), its Man-
ager pair (healthy Manager, or MH) is notified by a broadcast control message. The MH

starts the recovery method. The MH immediately inject a freeze message to all the PEs. All
tasks managed by MF stop their execution. Next, MH evaluate the PE location to receive
the functions executed by MF . If there is an available SP in the cluster, i.e., with no tasks

58

assigned it, the kernel migration process starts. Otherwise, it is necessary to release an SP
of the cluster managed by MF to another cluster. This action is done by migrating one or
more tasks to a free SP. When the task migration finishes, the kernel migration begins. After
the kernel migration, the PE that received the kernel assumes the role of the previous MF .

The recovery process isolates the faulty processor, resulting in a graceful degra-
dation of total processing power. However, the system continues to operate even in the
presence of permanent faults in the manager processors.

4.3 Fault Model

The focus of this Thesis is not the fault detection, but the recovery method for a
fault recovery in a Manager PE. This work assumes:

• Healthy modules of the PE : memory, DMNI, data and control NoCs. A usual method
to protect the memory is the usage of ECC (Error Correction Codes). The DMNI is
a small hardware module with two state machines and a buffer. This module may be
protected by hardware replication and adoption of ECC in the buffer. Besides the NoCs
be considered healthy, it is possible to detect transient faults [Fochi et al., 2015], and
according to the severity of the transient faults trigger the proposed protocol.

• PE module subject to faults: CPU. The proposed method is fired when a permanent
fault is detected in a manager PE . The basis of the fault recovery method is a moni-
toring process between manager PEs. When a fault is detected on a manager PE , a
message is sent to its Manager Pair. When a manager PE has a permanent fault, the
recovery process starts. The goal of the recovery process is to transfer the memory
contents of the faulty manager to a healthy PE . The DMNI of the faulty manager PE
handles this process.

4.3.1 Fault Detection Mechanisms

This section presents examples of fault detection methods, that can be applied to
the PE modules, and used by be current work. All techniques cited bellow can initiate the
proposed protocol. A rich literature with methods to test the PE modules is available, with
approaches adopted at different levels or modules.

– Fault detection and management at the system level. The Madness project [Meloni et al.,
2012] adopts two approaches to detect faulty processors: self-testing using a pre-computed

59

signature for non-critical applications, or N-modular redundancy at the software level. Us-
ing these methods, the Authors present a system level adaptive and fault-tolerant tech-
niques to reduce the performance loss by using dynamic remapping (task migration) of
faulty PEs. However, it is not defined if the PE is a system manager. It can be inferred
that it is an SP because it executes tasks. In [Boraten and Kodi, 2016] the Authors pro-
pose a Runtime Module Configuration with a 3-mode configurable encoder. The goal is to
change the encoder mode according to the number of faults occurring at the NoC links.
The method encodes packets and optimizes the fault coverage of the NoC. [Kamran et al.,
2016] focus on a test framework for a specific cluster, applying the technique to PEs that
are in idle mode, deactivating the PE if a fault is detected. However, this work does not
define who is the manager in the MPSoC or in the cluster, nor what happens if the man-
ager fails. [Bolchini et al., 2013] focus on system management and fault-tolerance on
PEs. This work uses software-based techniques to detect faulty PEs. A macro technique
analyzes the failures to modify the system behavior. An element called fabric controller
dispatches the applications to the various tiles. Fault-tolerance is applied only to slave
tiles. [Paul et al., 2015] propose a management approach that focuses on resource shar-
ing adaptively, but it does not focus on fault-tolerance. [Martins et al., 2016] focus on
power management using techniques such as DVFS, clock gating, and task migration.
[Domingues et al., 2018] propose fault-tolerance in the manager cores applied only to the
communication protocol of a publisher-subscribers approach. [Tsoutsouras et al., 2017]
propose a fault tolerance in the manager cores, with the MPSoC hierarchically organized
in clusters.

– Fault detection at the processor level. In [Braak et al., 2010] a general-purpose device
(GPD) creates a test pattern, sending it to the processor. The processor applies the test
pattern and sends the results back to the GPD. Faulty tiles are bypassed and replaced
by another processor via an embedded resource manager implemented in software. The
Authors in [Walters et al., 2011] adopt a software-based fault tolerance, process-level repli-
cation, thread-level replication, kernel level checkpoint/rollback and distributed heartbeat
implementation.

– Fault detection at the router level. The proposal in [Fick et al., 2009b] inserts multiplexers
at the input ports to enable port swapping, and a bypass bus enables to connect input
ports to output ports when the internal crossbar fails. In [Zhang et al., 2012] present
a dual-input crossbar design targeting performance and power reduction. The crossbar
duplication enables fault tolerance at the router level. When a crossbar failure is detected,
all the inputs ports are forwarded to another crossbar. The proposal in [Yu et al., 2011]
focuses on transient faults in the router using ECC to prevent packet loss, incorrect routing,
and network congestion. An fault detection module request re-computation if a fault is
detected. It also includes an fault correction module after the crossbar to prevent fault

60

propagation. [Chen et al., 2017] propose a fault-tolerant routing algorithm for NoC focused
on path discovery to avoid congestion of NoC in the presence of faults.

– Fault detection at the link level. In [Vitkovskiy et al., 2012] the Authors propose a fault-
tolerant method with a gracefully degrading link-level, proportional to the number of faults
detected in the link. In [Veiga and Zeferino, 2010] the Authors implement an fault recovery
technique for NoCs with the goal to protect network links against crosstalk effects using
Cyclic Redundancy Check (CRC) modules. [Bhowmik et al., 2016] also focus on NoC only
to detect link failures between routers using a technique of sending test packets between
routers.

61

5. SYSTEM MANAGEMENT RECOVERY METHOD

This Chapter presents the recovery method of the system management functions,
action required when a Manager PE (MP) becomes faulty. The fault in MPs is assumed per-
manent, and the fault detection mechanism is out-of-the-scope of the present Thesis. The
method handles faults, at runtime, in both MPs, Virtual Global Manager (VGM) and Local
Managers (LM). The recovery method migrates the management functions of the faulty MP
to a healthy PE. Briefly, after a fault notification, the method selects a Slave Processor (SP)
to become the new MP, freezes the tasks managed by the faulty MP, migrates the memory
contents to the new MP (kernel migration), restarts the processor, and unfreezes the tasks
without restarting them. This recovery method is an original contribution of this Thesis, and
a relevant feature of the proposed method is to preserve the management context without
saving it in redundant structures.

Section 5.1 to Section 5.6 presents the mechanism to deploy the recovery method
when an MP presents a fault. Section 5.7 uses the mechanisms presented along this Chap-
ter to show how the many-core management can be recovered in the presence of faults,
either in local or global managers. Section 5.8 concludes this Chapter, summarizing its
contributions.

5.1 Manager Pairs Definition

The recovery method starts by defining ward pairs. Each MP (LM or VGM) selects
its pair, and they exchange messages, named ward_messages, to determine if they are alive.
At system startup, the ward pairs are physically aligned, but after migrating an MP to a new
position this organization changes. Thus, the communication between MPs to manage the
ward pairs occurs through the brNoc, enabling the communication using the MP identifier
and not its physical address.

The method defines at system startup ward pairs. Consider Figure 5.1 as an ex-
ample. The first step of the method defines horizontal ward pairs. In the Figure they are:
{VGM0,0, LM3,0}, {LM0,3, LM3,3} and {LM0,6, LM3,6}. If the number of LM columns is odd, the
second step of the method defines vertical ward pairs at the rightmost LM coordinate. In this
example, one vertical ward pair is created, {LM6,6, LM6,3}. Finally, as LM6,0 has no ward pair
to supervise, its ward pair is the last LM address, LM6,3. Thus, LM6,3 is in charge to monitor
the status of LM6,0 and LM6,6.

62

LM0,6 ! LM3,6 LM6,6

l
LM0,3 ! LM3,3 LM6,3

"
VGM0,0 ! LM3,0 LM6,0

Figure 5.1 – Example of ward pairs definition.

Each MP runs a supervision function for triggering the recovery process when it
detects the fault on its pair. Note, in the Figure, that LM6,0 sends periodically ward_messages

to LM6,3, and its supervision function is disabled. Its supervision function is disabled because
the MP responsible to recover LM6,3 is LM6,6.

5.2 Fault Detection Notification

Figure 5.2 presents the first method to trigger kernel migration. Event 1 in Fig-
ure 5.2 corresponds to ward_messages exchanged periodically between MPs (LM0 and
LM1), through the brNoC. The advantage of the method is that these messages do not
interfere with the traffic in the Data NoC. The interval definition between ward_messages is
a design-time parameter. Large periods delays the time to recover from a faulty MP, while
short periods may lead to false positives. False positives may occur if the MP is executing
management functions, delaying the answer to its pair, which will consider it faulty, starting
the recovering process.

LM1LM0

ti
m

e
o

u
t

...SP7 SP8

Freeze

SP13

Ward
Msg

Ward
Msg

Ward
Msg

Ward Msg

Ward Msg

Ward Msg

Ward Msg

1

2

3

Figure 5.2 – Protocol to detect a faulty MP using ward_messages.

We adopt experimentally an interval of 1 ms, as it represents a good trade-off
between recovery time and execution time overhead in MPs. MPs transmit ward_messages
through the brNoC, using the MP identifier and not its physical address. As brNoC uses
broadcast to transmit its messages, the ward_messages reaches the destination MP even is
there is a fault in the NoC.

63

If an MP sends three ward_messages without receiving any answer from its pair
(event 2), the MP that did not reply is considered faulty, starting the recovery process (event
3). Although effective, this method proved to be slow to detect faulty MPs, because it requires
three unanswered messages, in addition to the fact that the interval between messages
needs to be evaluated to avoid false positives.

A second method has been developed to reduce the fault detection time. This
method includes a new hardware module, name Fail Wrapper Module (FWM), responsible
for: (i) isolate the control signals of the MP when the fault detection mechanism detects
the fault; (ii) generate a fault message for its ward. The main advantage of this method is
the isolation of the faulty MP by means of wrappers as soon as the fault is detected. This
prevents the MP memory contents from being modified, and the occurrence of Byzantine
faults due to the fault on this component.

When a fault notification occurs, the FWM isolates the faulty MP, and generates
a message, fail_CPU_message to the ward MP – Figure 5.3(1). Upon the reception of the
fail_CPU_message, the ward MP start the recovery process. This method replaced the first
one, ward_messages.

Fail CPU message

Freeze

...SP7 SP13

1

2

SP8LM1

Cluster 0 Cluster 1

execution
time

F
a

il d
e

te
c

te
d

VGM

fault detected

Figure 5.3 – Fault notification using a fail_CPU_message.

Figure 5.4 presents the sequence of events handled by the FWM:

1. MP becames faulty;

2. the fault detection module notifies the FWM that a permanent fault was detected;

3. the FWM isolates the MP, disabling its access to any hardware module, including its
local memory;

4. the FWM inject in the brNoC router a fail_CPU_message.

Note that the fault detection module can also work with transient faults that occur
frequently, which point out that the MP is suffering from aging effects. Given a threshold
on the number of transient faults for a given period, this module may decide that the MP is

64

Figure 5.4 – Fail Wrapper Module (FWM).

faulty. The process of detecting aging effects is not in the scope of this work but it is a feature
to consider in the development of the fault detection module.

5.3 Manager Candidate Definition

Figure 5.5 presents the Manager Candidate selection process. Figure 5.5(a) presents
the many-core configuration at the startup. The Figure presents a 6x6 many-core, orga-
nized in four clusters, with four MPs. The closest SP to its MP is the manager candidate –
SPcandidate.

SP

SP
Candid.VGM

SPSP

SP

SP

SP

SPSP

LM2

SPSP

SP

SP

SP

SPSP

LM3

SPSP

SP

SP

SP

SPSP

LM1

SPSP

SP

SP

SP

SP Task
B

Task
D

VGM

SPSP

Task
C

Task
E

SP
Candid.

SPSP

LM2

SPSP

SP

SP

SP

SPSP

LM3

SPSP

SP

SP

SP

SPSP

LM1

SPSP

SP

SP

SP

Task
A

SP
Candid.

SP
Candid.

SP
Candid.

SP
Candid.

SP
Candid.

SP
Candid.

(A) (B)

Figure 5.5 – Manager Candidate (SPcandidate) selection - (a) startup; (b) selection after a new
application admission.

The admission of a new application into the many-core is a two-step process. First,
the VGM selects a cluster to receive the new application according to some criteria, as the

65

number of available SPs. Next, the LM (or VGM if the selected cluster is the one managed
by the VGM) maps the tasks into the cluster. After the mapping procedure, the LM or VGM,
verifies if the SPcandidate received a task. In this case, the rule to select a new SPcandidate is to
choose the SP with the minimum number of tasks assigned to it. Thus, after an application
mapping, if the SPcandidate address changed, the MP transmits it to its ward : (i) new address;
(ii) the number of tasks executing in the SPcandidate because if it is different from zero, the
ward will manage the migration of the tasks executing in the SPcandidate.

Figure 5.5(b) presents a manager candidate selection scenario. The VGM mapped
a new application in its cluster, mapping task D in the SPcandidate. The VGM searches a new
SP with no tasks assigned to it, and chooses a free SP as the new SPcandidate. After the
selection process, the VGM sends a Master_Candidate_Message, using the brNoC, to LM1
(its ward), updating the SPcandidate address.

5.4 Freeze & Unfreeze Messages

When a MP fails, the tasks it manages should be suspended to prevent control
messages from being lost. This suspension process is called freezing. Since the MP is
faulty, its ward executes this action.

Freeze and unfreeze are control actions to stop or release the execution of a set
of tasks. Figure 5.6 presents the freezing process that starts with a healthy MP (LM1)
transmitting in broadcast a freeze_message, by the brNoC, having in its payload the address
of the faulty manager (MF). Any SP receiving a freeze message verifies if it has tasks
managed by MF . In this the case, all tasks of this SP are freezed. Otherwise, the message
is discarded. The broadcast transmission of the freeze message enables to stop tasks in
SPs managed by MF executing in other clusters, due to the reclustering process. The freeze
message does not stop the tasks immediately. To avoid messages losses, the task must be
in a safe state. A safe state is defined as: the task to freeze should be ready to be scheduled
by the kernel, and there is no pending request for messages. For example, if a task is in a
waiting state, this means that the task requested a message to a producer task. Thus, the
producer receives the request and at some moment inject messages into the NoC. Such
procedure ensures that when a given task stops, there are no messages generated by the
task in the data NoC. Thus, all tasks managed by MF goes to the freeze state, avoiding
their scheduling by the kernel.

After the recovery process, the new MP sends an unfreeze_message, also in broad-
cast. This message unfreezes the tasks managed by the new MP and also transmits the
new MP address to the SPs of the cluster.

66

Task

B

VGM

SPSP

Task

C

SP

Candid.

Task

A
SP

LM2

SPSP

Task

B

Task

C

SP

Task

Y
SP

LM3

Task

X
SP

SP

Task

W

SP

Task

H
SP

LM1

SPSP

Task

U

SP

Task

A

SP

Candid.

SP

Candid.

SP

Candid.

Task

T

Task

D

Task

E

Figure 5.6 – Freeze process on the cluster managed by the VGM. LM1 injects the
freeze_message.

5.5 Task Migration

Tasks migration is an action required to release an SP to receive the manager
processor software if this SP is executing one or more tasks.

Figure 5.7 presents a possible scenario handled by the recovery protocol with task
migration. In this scenario, it was detected a permanent fault at the LM. All SPs of this
cluster have at least one task in execution, being SP2,1 the SPcandidate. In Figure 5.7(a)
occurs the fault detection in the LM. The fail wrapper module (FWM) notifies the fault by
injecting a fail_CPU_message in the brNoC. The VGM knows that the SPcandidate is executing
task C (Section 5.3). Thus, it is necessary a task migration before the recovery process. In
Figure 5.7(b) task C migrates from SP2,1 to SP1,1, in another cluster. When the task migration
finishes, the kernel migrates to SP2,1 (Figure 5.7(c)).

0 1 2 3 0 1 2

SPVGM

3

LMC

SP

LM

SP E1

SP

D0

SPSP C E

ConsBCons

SP A

D

E

Prod ProdSP

SP

2

LM

3

SP BSP

D

Cons

SP

2

3 SP A

0

1

SP

SPProd

2

3 SP A

C

B

SP

SP LM

Free

SP

0

1

0 1 2 3

A CB

VGM VGM

Figure 5.7 – Task migration to release an SP. (A) Fault detect at LM; (B) task C migrated
from PE2,1, to PE1,1; (C) LM migration from address (2,0) to (2,1).

67

Figure 5.8 presents the recovery method protocol. After the application mapping
phase (events 1,2 in the Figure), at a given moment a permanent fault is detected at LM1 (3),
and its ward is notified. The ward (VGM) freezes the tasks managed by LM1 (4), verifying
that a task migration is required. The VGM selects SP1 to receive the tasks executing on
SP7. The VGM sends a migrate task message to SP7 (5). SP7 sends to SP1 a set of
messages with the task contents. After receiving all messages related to the task migration,
SP1 notifies to all application’s tasks the new location of the migrated task (6). The task
migration ends with SP1 notifying VGM the end of the migration process (7).

Task Migrated

Update Task Location

SP13 - Task N

SP7 - Task A

SP8 - Task B

SP7 - Task A

CM Candidate

Fail CPU message

Freeze

...SP7 SP13

1

2

3

4

5

SP8LM1

Cluster 0
Cluster 1

C
lu

s
te

r F
u

ll

execution
time

SP1

F
a

il d
e

te
c

te
d

6

7

VGM

application

M
ig

ra
tio

n
 T

a
s

k

Migrate Task A to SP1

Task
Migration

fault detected

Figure 5.8 – Sequence diagram of the recovery protocol steps with task migration. Black
arrows: messages transmitted through the Data NoC. Red arrow: messages transmitted
through the Control NoC.

The selection of the SP that will receive the task from the cluster with a faulty MP
occurs in the cluster of the healthy MP (ward of the faulty MP). It is assumed the presence
of a free SP in the cluster managed by the ward MP. There are methods available in the MP
to circumvent scenarios where this cluster has no available SPs. Two possible examples: (i)
join, using internal cluster migrations, increasing the CPU sharing; (ii) move task(s) to other
clusters with free SPs.

The ward MP sends a message to the SPcandidate to migrate the running task(s) to
a new SP. As previously explained, the ward MP always chooses an SP from its cluster
to receive the task(s) running on the SPcandidate. The operating system of the SPcandidate

68

executes the task migration. To execute the task migration, the OS sends a set of messages
to the target SP:

– Task code;

– Task data: local data and BSS memory segments;

– Stack data: data stored in the memory corresponding to the stack;

– TCB (Task Control Block): a data structure that stores the task state, including the
values stored at each register, Program Counter, Stack Pointer, size of the object code
and data (for migration purposes);

– Message Requests: a structure with the received requests for messages;

– Pipe: all messages produced by the task but not yet delivered;

– Tasks location: addresses of the tasks that communicate with the task being migrated.

The first three messages refers to the memory contents of the task. It would be
simpler to send the task’s memory content to the target SP, but this would induce larger
messages in the NoC, inducing a larger impact on other applications. For this reason, each
memory segment is sent separately. The remaining messages are control messages, stored
in the operating system, which are necessary for the correct execution of the task.

The target SP after receiving all messages related to the task migration, execute
the following actions: (i) sends a message to all SPs that communicate with the migrated
task with the new task address (6); (ii) sends a message to ward notifying that the migration
process ended (7).

The task migration process induce an overhead in the application execution time
when it occurs. The Results section evaluates this overhead.

5.6 Kernel Migration

The kernel (operating system) migration differs from task migration. While in task
migration it is possible to optimize the amount of data to be transmitted, the kernel migra-
tion requires the transmission of complete memory contents from the faulty MP to the new
position (SPcandidate).

Another difference between migration methods is the migration management. While
in task migration the kernel itself performs this process, in the kernel migration this is not pos-
sible because the processor is faulty and isolated by wrappers. Thus, it was added in the

69

DMNI module the ability to treat specific packets, which start the process of transferring the
memory content.

The first step of the kernel migration process is to prepare the SPcandidate to re-
ceive the memory contents (code and data) of the faulty MP, MPF . The healthy ward
MP, MPH , notifies the SPcandidate that it will receive the kernel executing in MPF , through
a wait_kernel_message. A field in the packet header of this message defines that the DMNI
module will process the message payload, not the processor. This message induces in the
PE the following actions: (i) hold the processor and configure the DMNI module to write in-
coming packets into the memory, from address zero; (ii) after configuring the DMNI to write
packets directly into the memory, the DMNI sends a wait_kernel_acknowledge message to
MPH .

Once received the wait_kernel_acknowledge message, the MPH notifies MPF to
send the kernel to SPcandidate through a send_kernel_message. The kernel migration is sim-
pler than the task migration in the sense that only one message is transmitted with the
complete memory contents, but induces congestion in the NoC during the kernel transmis-
sion.

Figure 5.9 presents how MPF handles the send_kernel_message. The DMNI of the
MPF handles this message (1), transferring the memory contents to the SPcandidate (2), using
the data NoC. After transferring the memory contents, the DMNI is configured to avoid any
transmission from the faulty processor, preventing Byzantine faults.

Memory CPU

DMNI

Data
NoC

Router

Control
NoC

Router

Processing Element

Manager
Faulty

(1)

(2)

Figure 5.9 – Kernel migration process in a faulty MP.

70

5.7 Recovery Protocol

This section presents the complete protocol, using the mechanisms presented
above, for VGM and LM faults.

5.7.1 Virtual Global Manager Fault Recovery

Figure 5.10 shows the execution of the recovery protocol, assuming a fault in the
VGM. The example adopts a 6x6 many-core instance, with 3x3 clusters. The fault occurs
during the application admission.

Figure 5.10(a) presents the system before the recovery protocol. The application
injector starts the transmission of a new application to the cluster managed by VGM (these
events are detailed in Chapter 6), events 1 to 7. These events correspond to the transmission
of the object code of tasks A, B, and C to their SPs. The fault in VGM is detected before the
complete transmission of all tasks belonging to the new application - event 8. As detailed in
Section 5.2, the VGM broadcasts a fail_CPU_message to its ward (LM1). Two actions are
taken:

1. All injectors interrupt the transmission of the current and future applications to the
many-core. If an application is being injected in the many-core, this injection is inter-
rupted. In this example, this corresponds to event 9, by interrupting the transmission of
task C.

2. The ward MP, LM1, initiates the process to recovery the VGM.

The first action executed by LM1 is to inject a freeze message to all SPs (event
10). An SP receiving a freeze message verifies if exists a task managed by VGMF (faulty
VGM), and stops the tasks in a safe state. Any task managed by the VGMF goes to a freeze
state, avoiding its scheduling by the kernel (Section 5.4).

Next, LM1 sends a send_kernel_message to the VGMF (event 11). The DMNI han-
dles this message, transferring the memory contents to SPcandidate using the data NoC (event
12). After transferring the memory contents, the DMNI is configured to avoid any transmis-
sion from the faulty VGMF processor. The SPcandidate after received the kernel (event 13),
restart the execution, now as a VGM0,1 and send three messages:

1. unfreeze message to all SPs (event 14);

2. remove_task_message, as an application admission was interrupted, the SPs needs
to release the data structures related to the tasks belonging to application that was
incompletely received (event 15);

71

Task
B

SP
Candid.VGM

SPSP

Task
C

SP

SP

SPSP

SPLM2

SPSP

SP

SP

SP

SPSP

SPLM3

SPSP

SP

SP

SP

SPSP

SPLM1

SPSP

SP

SP

SP

0 1 2 3 4 5
0

1

2

3

4

5

SP

VGM

SPSP

SP

SP

SP

SPSP

SPLM2

SPSP

SP

SP

SP

SPSP

SPLM3

SPSP

SP

SP

SP

SPSP

SPLM1

SPSP

SP

SP

SP

0 1 2 3 4 5
0

1

2

3

4

5

Injector

Injector

Task
A

SP

LM1 VGM Injector SP1 SP2
 SP
Candidate

New_app

New_app_ack

SP3

App_Descriptor

Task _Info

Task _Release

Task A

Task B

VGM

FAIL_CPU_message

Frezze

Migrate to SP candidate
Migrate Kernel

VGM

Unfrezze

Remove

Tasks

VGM Ready

New_app

1

2

3

4

5

6

7

9 Task C

8

10

11

12

13

14

15

17

16

(C)

(A)

(B)

Figure 5.10 – A 6x6 instance of the reference many-core system with 3x3 clusters and a
Virtual Global Manager migration.

3. The new VGM send a vgm_ready message to all injectors after the system recovery is
complete (event 16).

The new VGM sends the remove_task_message to the tasks belonging to the appli-
cation that was interrupted. Their address were defined during the mapping process. This
message resets the TCBs, in such way to release the memory page.

After these steps, injectors are allowed to restart the application injection protocol
(event 17). Figure 5.10 (c) presents the system after the recovery protocol, the new VGM is
located at PE0,1, and the SPs are free to receive new tasks.

72

SP

SPGMV

SPSP

SP

SP

SP

SPSP

SPLM2

SPSP

SP

SP

SP

SPSP

SPLM3

SPSP

SP

SP

SP

SPSP

SP
Candid.LM1

SPSP

SP

SP

SP

0 1 2 3 4 5

0

1

2

3

4

5

SP

SPGMV

SPSP

SP

SP

SP

SPSP

SPLM2

SPSP

SP

SP

SP

SPSP

SPLM3

SPSP

SP

SP

SP

SPSP

LM1LM1

SPSP

SP

SP

SP

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1Injector 1

SP SP

(A)
(B)

Figure 5.11 – Local manager migration.

5.7.2 Local Manager Fault Recovery

Figure 5.11 presents a scenario handled by the recovery protocol when a fault is
detected in an LM. The protocol is similar to the previous one. In this scenario, the LM1
cluster has an application with four tasks and four free SPs. The main difference is that
Injectors are allowed to inject new applications into the system. Only the cluster managed
by the faulty LM freezes its execution, and cannot receive new applications. The injector
restarts the application injection protocol when it receives the notification that the LM be-
comes faulty. The VGM does not select the cluster to receive new applications up to the
completion of the faulty LM migration.

Figure 5.12 details the steps to recover the system from a fault in an LM. Clus-
ter 1 receives application mapping requests (1), assigning tasks to four SPs in its cluster.
In this example, four SPs execute at least one task and four SP are free as showed in
Figure 5.11(a). After assigning the tasks’ location in the cluster, SP5,0 is elected as a new
SPcandidate (Section 5.3), and LM1 notifies its ward, VGM, that SP5,0 is the SPcandidate , located
at SP5,0 and has no task assigned to it (2). At a given moment (3), a fault is detected in LM1.
The brNoC receives the fault notification, and broadcast a fail_CPU_message. The first ac-
tion, after the fault notification message, is to broadcast a freeze message (Section 5.4) to
all tasks managed by LM1 (4).

The ward MP, VGM, starts the kernel migration. Events 5 to 8 correspond to the
kernel migration protocol (Section 5.5): prepare the SPcandidate to receive the kernel (5), ac-
knowledgment message to the ward MP (6), notification to transmit the kernel (7), transmis-
sion of the kernel (8). Once the kernel received, the SPcandidate restarts, assuming the role
of a new LM1. After restarting, the new LM1 sends an unfreeze message to the stopped

73

Unfreeze

Kernel

Wait Kernel

Wait Kernel Ack

Send Kernel

SP13 - Task N

SP8 - Task 1

SP7 - address 5x0

SP Candidate

Fail CPU message

Freeze

...SP7 SP13

1

2

3

4

5

8

SP8LM1

Cluster 0 Cluster 1

A
p

p
. D

e
p

lo
y

execution
time

F
a

il d
e

te
c

te
d

6

7

VGM

application

M
ig

ra
tio

n
 K

e
rn

e
l

LM1
9

fault detected

Figure 5.12 – Local manager recovery protocol.

tasks (9). This message unfreezes the tasks managed by the new LM1 and also transmits
the new LM1 address to the SPs.

5.8 Final Remarks

This Chapter presented an original method for recovering the management func-
tions of a many-core in the presence of permanent faults in a manager processor, LM or
VGM. It is worth remembering that permanent faults in these management processors can
isolate an entire region of the many-core (a cluster), or even prevent its use if the fault occurs
in the VGM. Thus, the methods proposed in this Chapter increase the many-core lifetime
at the cost of a reduction in overall system performance, given that the wrappers isolate
processors with permanent faults. Thus, the presence of the single point of failure is elimi-
nated internally to the many-core, since the functions associated with the VGM can migrate
to another processor, allowing the many-core to continue to receive applications from the
"injector" peripheral. However, the presence of only one application injector connected to
the system still represents a single point of failure, since this peripheral is responsible for
requesting and transmitting applications to the many-core. If the injector or its connection to
the many-core fails, the many-core will be disconnected from the external environment. The

74

next Chapter discusses two solutions for tolerating these faults. The first is related to the
redundancy of the links between the injector and the many-core, and the second one is the
redundancy of injectors.

75

6. APPLICATION ADMISSION RECOVERY METHOD

The previous Chapter presented the recovery method at the system level, by mi-
grating a kernel to some PE . This Chapter presents the recovery method when a new
application is entering into the system, and a fault occurs during this process.

Section 6.1 presents modifications carried-out at the MCSoCs boundaries to cope
with faults during application admission, including multiple injectors and redundant links.
Section 6.2 shows the admission protocol, without the presence of faults. Section 6.3 details
the recovery method during application admission. Section 6.4 concludes this Chapter.

6.1 Injector hardware MCSoCs and faults mechanims

The injector communicates with the VGM through an external NoC border to inject
a new application in to the system. Figure 6.1 details two major modifications added to the
system: (i) redundant links between a injector and the MCSoC; (ii) multiple injector modules.

SP SPSP

SP SP

SP SP

SP

SP

SP

SP SPSP SP SP SP

SP SPSP

SP SPVGM

SP

LM

SP

SP

SP

SP

SP SPSP SP SP SP

Memory CPU

DMNI

Data
NoC

Router

Control
NoC

Router

Processing Element

LMLM

0 1 2 3

0

1

2

3

4

5

4 5

Injector Injector Injector

Figure 6.1 – MCSoCs with multiple injector instances and redundant links.

Each injector has now a primary and a secondary link connected to the MCSoC.
The primary connection is the default communication port with the MCSoC, and the sec-
ondary link is only used when a fault is detected in the primary connection. Thus, the
redundant connection between the injector and the MCSoC prevents that faults in links do
not block the application admission from this injector.

Multiple injector instances may be connected to the MCSoCs boundary’s (e.g.,
each injector can be seen as an Ethernet port). Injectors can insert new applications at
any time, respecting the protocol with the VGM. The admission protocol can handle per-

76

manent faults, at runtime, in the links with the MCSoC. Also, the injector may deal with
fault notification in the VGM or LM during application admission. Briefly, after a message
from VGM or LM reporting a fault, the injector aborts the application admission and waits
for the manager to restart. If a fault is detected in the injector link the injector change to the
secondary link.

Each injector inserts new applications into the system independently. The injectors
use the Control NoC to synchronize the application insertion protocol with the VGM. The
Data NoC is used only to send the Task object code to the SPs.

Figure 6.2 presents the fault detection module ([Fochi et al., 2015]) in the routers
and their connection to an injector. A fault module in the router detects the faulty link and
notifies the injector (f0 and f1). The default link between the injector and the MCSoC is
the primary connection. When a permanent fault is detected in the primary connection,
the injector switches the communication to the secondary connection. To complete this
change, the injector sends a message in broadcast to all PEs and managers notifying the
new injector port address. An injector is disconnected from the MCSoC when a fault arises
in the secondary link, but the system continues to operate due to the presence of other
injectors.

Router

In
je

c
to

r

Data Noc

Fault Module

Control Noc

Many-Core

Data Noc

Fault
Module

Control Noc

Fault
Module

Many-Core

Data Noc

Control Noc

In
je

c
to

r

PE

Fault Module

f0

f1

Control Noc

Data Noc

Router

PE

Figure 6.2 – Interface between a injector and the MCSoC.

77

6.2 Application Admission Protocol

System management demands procedures such as application admission, han-
dling of monitoring messages, and control of resources through actions such as task mi-
gration and commands to change the voltage and frequency (DVFS) of some PEs. The
management is distributed in clusters, in such a way that this process does not become a
bottleneck in large systems. This section addresses application admission management,
which enables the injection of new applications into the system. This presentation does not
consider the presence of faults, subject detailed in the next Section.

Figure 6.3 presents the application admission protocol. At the system startup, the
Virtual Global Manager (VGM) notifies all Injectors that it is ready to receive new applications
(event 1 in Figure 6.3). All Injectors connected to the system receive the VGM_READY_MESSAGE

message (2). When an Injector has an application to be executed in the MCSoC, it sends a
NEW_APP_MESSAGE, having in its the payload the the application’s tasks number (3). The VGM
receives the application request, select the cluster according to some heuristic, and returns
a NEW_APP_ACK_MESSAGE (4) to the Injector that made the request. This message contains
the manager ID responsible to receive and map the application. The messages exchanged
in these four initial steps use the brNoC (broadcast transmission mode) since the VGM may
be located at any physical position of the system. The NEW_APP_MESSAGE is only consumed
and treated by the VGM.

TASK RELEASE

INJECTOR
VIRTUAL GLOBAL

MANAGER

NEW_APP_MESSAGE

VGM_READY_MESSAGE

NEW_APP_ACK_MESSAGE

B
R

N
O

C

LOCAL MANAGER

D
A

T
A

N
O

C

APP_DESCRIPTOR

TASK_INFO

SP1 SPn

Cluster 0

TASK A

 TASK N

TASK RELEASETASK_INFO

Cluster 1

...

TASK ALLOCATED (TASK A)

TASK ALLOCATED (TASK N)

8

76

1

2 3

4

5

9

Figure 6.3 – Application Admission Protocol.

Next, the Injector sends the APP_DESCRIPTOR (5) message to the selected manager.
This message contains the application description. Each application task is represented by a

78

tuple {taskID, textsize, datasize, bsssize}. The taskID is a unique identifier for the task, while the
other parameters are used for task migration, corresponding the memory size of each object
code segment. The APP_DESCRIPTOR message uses the data NoC, due to the message size.
Once received this message, the manager PE executes a mapping heuristic [Castilhos et al.,
2016],[Marcon et al., 2017], selecting the addresses to receive the tasks. After executing the
mapping heuristic, the manager sends two types of messages:

• TASK_INFO: message sent to the Injector, with the tuple {taskID, taskaddress}, address
obtained during the mapping process (6).

• TASK_RELEASE: message sent to all SPs that will receive tasks (7). This message con-
tains the task control information (size of the memory segments) for a specific task (7),
and notifies the SP that it will receive a task to execute.

For each received TASK_INFO message, the Injector sends the object code of the
task to the address embodied in the message (8). When an SP receives and stores the
object code in the PE internal memory, the task is scheduled to execute, and it sends a
TASK_ALLOCATED message to its manager PE (9). Once received all TASK_ALLOCATED mes-
sages, the admission protocol finishes. A fault in a VGM or an LM in any steps of this
protocol is critical. If it occurs, the injector needs to restart the application admission proto-
col.

6.3 Fault Recovery during Application Admission

This section presents the actions executed during a permanent fault detected in the
primary link of the Injector, and the actions executed when a fault arises in a manager PE
during the application admission.

6.3.1 Recovery from a Fault in the Primary Link

Figure 6.4 presents the application admission protocol with a fault in the primary
link. The injector starts the application admission protocol (events 1 to 4). At a given mo-
ment (5), a fault is detected in the primary link, and the injector is transmitting Task B ob-
ject code (6) when the fault occurs. The injector sends to the SP, through the brNoC, a
Broken_Task_Message, notifying that the transmission was interrupted. The SP2 receives
this message (event 7), and release the memory area used to receive the task. Next, the
SP2 kernel sends a Broken_Task_ACK message, notifying the injector that SP2 is ready to
receive Task B object code (event 8). The injector broadcasts a Change_Link_Service to

79

the VGM and all managers, notifying the new connection address. After that, the injector re-
transmits Task B object Code. The protocol continues its operation, now using the secondary
link.

INJECTOR VIRTUAL GLOBAL
MANAGER

NEW_APP_MESSAGE

NEW_APP_ACK_MESSAGE

P
ri

m
a

ry
 C

h
a

n
n

e
l

SP1

APP_DESCRIPTOR

SP2

TASK ALLOCATED (TASK A)

5

8

9

TASK RELEASE

BROKEN_TASK_ACK

TASK ALLOCATED (TASK B)

TASK A

 TASK B

BROKEN_TASK_MESSAGE

 TASK B

TASK_INFO

S
e

c
o

n
d

a
ry

 C
h

a
n

n
e

l

CHANGE_LINK_MESSAGE

6

7

11

2

3

4

Figure 6.4 – Fault in a the primary link.

If the fault is detected when the injector is not sending object codes, i.e., the data
NoC is not in use, the injector simply switches the link and sends a Change_Link_Message

message (9) to the VGM and all managers, notifying the new connection address.

6.3.2 Recovery from a Fault in a Manager PE During Application Admission

Figure 6.5 presents the actions taken by an Injector when it is notified about a
permanent fault in a Manager PE .

Fault in the VGM. When a permanent fault is detected in the VGM, a fault notification is
broadcasted to its ward, being also received by all injectors. If an application admission
is occurring in the VGM cluster, the application admission is interrupted, and all injectors
will wait for the new VGM address. Otherwise it is verified if an application admission is
occurring in another cluster. In such a case, the admission continues, since the VGM cluster
is not required at this step of the protocol. Once a new PE receives the VGM, the injectors
are notified, and the admission of new applications may restart.

80

Admission an
application in to
VGM cluster?

Yes

Abort
Admission

Continue

No

Fault Detected
in a Manager

VGM

Admission an
application in to

LM? No

Yes

Wait for the new VGM

Admission an
application to

this LM
cluster?

LM

Continue

Abort
Admission

No

Yes

Figure 6.5 – Recovery from a fault in a manager PE during application admission.

Fault in an LM. When a permanent fault is detected in a Local Manager the injector and
the VGM identify the faulty LM by the broadcast fault notification. If an Injector is sending
an application to the cluster where the LM is faulty, the application admission is aborted. In
this case the injector re-initiates the application admission protocol, with the VGM selecting
another cluster. The VGM continues to admit new applications, excluding the faulty cluster
up to the migration of the faulty LM to a new address.

6.4 Final Remarks

This Chapter presented another important contribution of this Thesis, fault toler-
ance between the MCSoC and the external components responsible for injecting new appli-
cations. The foundation of the method is redundancy, in the injector links and in the number
of injectors. The proposed method avoids single points of failure, allowing the MCSoC to

81

continue to receive new applications in the presence of faults in the links of a given injec-
tor; as well as with disconnected injectors, given the redundancy of the same. Thus, with
these techniques, it is concluded the part related to the development of fault tolerance tech-
niques at the management level in MCSoC systems. The next Chapter evaluates the set of
techniques proposed in this Chapter, as well as the techniques of the previous Chapter.

82

7. EXPERIMENTAL RESULTS

This Chapter presents results related to the methods proposed in Chapters 5 and 6.
Experiments are executed using a clock-cycle accurate RTL SystemC model of the reference
many-core platform. Applications and kernel are described in C language, compiled from
C code and executed over the platform model. The experiments adopt a 6x6 many-core
instance, organized in 3x3 clusters. To evaluate the recovery protocol, five benchmarks
execute in the MCSoC: MPEG decoder (5 tasks), Prod Cons (2 tasks), DTW (6 tasks),
Synthetic (6 tasks) and Dijkstra (6 tasks). Figure 7.1 presents the benchmarks’ task graphs.19/06/2019 22(10Grafos de Comunicação

Página 2 de 2about:blank

MPEG

start ivlc iquant idct print

DTW

bank

P2 P3 P4P1

recognizer

Synthetic
taskA taskD

taskE

taskC

taskB

taskF

Prod_Cons

Dijkstra

prod cons

dijsktra_4

dijsktra_2

dijsktra_0

dijsktra_1

dijsktra_3

divider

Figure 7.1 – Task graphs used in the experiments.

This Chapter evaluates the Workload Execution Time (WET) and the recovery
method overheads, in milliseconds (@100MHz). A common overhead in the experiments
is the time required to migrate the kernel (64 KB), 1.5 ms (average value), and the time to
migrate one task (10 KB, code and data), 0.3 ms (average value). These overheads vary
proportionally with the kernel and task sizes. The reason to keep the same kernel and
task sizes in the experiments comes from the fact that they do not impact in the remaining
protocol steps.

7.1 Recovery Results from a Fault in a Manager

This section presents a scenario when the fault is injected in the VGM or LM. This
first evaluation corresponds to the best-case scenario for the protocol, since the VGM or the
LM is not receiving an application and the SPCandidate is free (without any task assigned to it).

Figure 7.2 presents the test case to recover the VGM. Figure 7.2(a) presents the
MCSoC state before the recovery method, being SP2,2 the SPCandidate. When the fault is de-
tected by the LM1 (VGM ward), the manager recovery method starts. Figure 7.2(b) presents
the system state after the VGM migration to the SPCandidate(2,2).

83

TB

ConsVGM

TF

TA

TD

SP
Cand.

dij1dij4

dij0LM2

printdij3

dij2

div

p3p4

RecLM3

p2

p1

bank

idctivlc

ProdLM1

printstart

iquant

TC

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

TE
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

TB

ConsVGM

TF

TA

TD

VGM

dij1dij4

dij0LM2

printdij3

dij2

div

p3p4

RecLM3

p2

p1

bank

idctivlc

ProdLM1

printstart

iquant

TC

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

TE
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

(A)
(B)

Figure 7.2 – Recovery method for the VGM.

Table 7.1 details the time spent at each recovery protocol step. The 1st line contains
the time when a fault was inserted and detected, 2.8 ms. The 2nd line shows the moment
when the kernel migration starts. The 4th line corresponds to the moment when the recovery
ended, 4.32 ms. The difference, 1.52 ms, is the delay mentioned above to migrate the kernel.

The last two lines correspond to the WET , with (5th) and without (6th) the recov-
ery method. The difference (1.78 ms) is slightly higher than the kernel recovery time. The
reason for explaining the increase in the total execution time is mainly due to the reschedul-
ing of tasks. Figure 7.3 illustrates the task scheduling of the Synthetic application, which
was running in the left-most cluster. It is possible to observe the moment when all tasks
were suspended due to the freeze message, and later the moment of reactivation (unfreeze
message). Given the interdependence between the tasks, there is an overhead for the
resynchronization between them.

Table 7.1 – Overhead - VGM recovery.
Time (ms)

Fail CPU 2.8
Freeze 2.81
Wait Kernel 2.97
Unfreeze 4.32
WET (with recovery) 10.13
WET (baseline) 8.35

Table 7.2 – Applications’ execution time.
Application tstart (ms) tend (ms) Injector
DTW 0.00 8.32 1
Synthetic 0.00 10.08 1
Dijkstra 1.50 7.98 4
Mpeg 2.54 7.04 3
Prod_cons 2.17 5.30 3

Table 7.2 shows the time when each application starts and ends its execution. Note
that all applications were executing when the fault was injected into the VGM. The tstart in
Table 7.2 corresponds to the moment that an Injector must start the application injection
into the MCSoC. The VGM execute the cluster selection, in the sequence occurs the task
mapping, the transmission of the object code of the tasks to the SPs, and finally, the task is

84

scheduled. Thus, even if tstart = 0, as for the Synthetic application, this application actually
starts at 0.5 ms.

Figure 7.3 – Scheduling of the Synthetic tasks, showing the moment when the application is
suspended.

Figure 7.4 presents the test case to recover an LM. Figure 7.4(a) presents the
MCSoC state before the recovery method, being SP5,2 the SPCandidate. When the fault is
detected by the VGM (LM1 ward), the manager recovery method starts. Figure 7.4(b),
presents the system state after the LM1 migration to the SPCandidate(5,2).

iquant

idctVGM

SP
Cand.

print

idct

dij1dij4

dij0LM2

Printdij3

dij2

div

TETB

TCLM3

TF

TA

TD

startiquant

ivlcLM1

print

ivlc

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

start
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

iquant

idctVGM

SP
Cand.

print

idct

dij1dij4

dij0LM2

Printdij3

dij2

div

TETB

TCLM3

TF

TA

TD

startiquant

ivlcLM1

print

ivlc

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

start
Injector

2

Injector
4

SP
Cand.

SP
Cand.

LM1

(A) (B)

Figure 7.4 – Recovery method for the LM1.

The result is similar to the VGM recovery, 1.52 ms to migrate the LM1 kernel.
Table 7.3 details the time spent at each recovery protocol step. Table 7.4 shows the time
when each application starts and ends its execution. The WET , with and without recovery,
is the same. The reason for explaining the same WET is that the application affected during
the recovery method (MPEG-1) finishes its execution before the Synthetic application (9.05
ms). The overhead occurs only in the MPEG-1 execution time, 5.01 ms to 6.64 ms, resulting
in an overhead equal to 1,63 ms.

85

Table 7.3 – Overhead – LM recovery.
Time (ms)

Fail CPU 2.5
Freeze 2.51
Wait Kernel 2.67
Unfreeze 4.02
WET (with recovery) 9.06
WET (baseline) 9.06

Table 7.4 – Applications’ execution time.
Application tstart (ms) tend (ms) Injector
MPEG-1 2.00 8.54 4
Synthetic 0.00 9.05 1
Dijkstra 1.50 7.09 4
MPEG-2 0.00 5.06 1

In both scenarios, with faults injected into the VGM or LM1, the overhead is the
time to migrate the memory contents (code and data of the faulty manager) to the SPCandidate.
When an MP fails, the tasks it manages should be suspended to prevent control messages
from being lost (freeze), delaying applications. For both VGM or LM recovery, the overhead
was the same, corresponding to 1.5 ms@100MHz, or 150,000 clock cycles.

7.2 Recovery Results from a Fault in a Manager With Task Migration

This section presents a scenario when the fault is injected in the VGM or LM,
and the cluster has all resources in use. Thus, the SPCandidate is not free. i.e., it has tasks
assigned to it, being necessary to execute task migration before the recovery method starts.

Figure 7.5 shows the test case to recover the VGM, executing task migration before
kernel migration. Figure 7.5(a) presents the MCSoC state before the recovery protocol,
being SP1,0 the SPCandidate. When the fault is detected by LM1 (VGM ward), the manager
recovery method starts. The task TC migrates from SP1,0 to SP5,2 . After task migration, the
SPCandidate(1,0) receives the VGM kernel. Figure 7.5(b) presents the system state after the
VGM kernel migration.

TB

ConsVGM

ProdTF

TA

TD

Cons

dij1dij4

dij0LM2

printdij3

dij2

div

p3p4

RecLM3

p2

p1

Bank

idctivlc

ProdLM1

printstart

iquant

TC

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

TE
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

TB

ConsVGM

ProdTF

TA

TD

Cons

dij1dij4

dij0LM2

printdij3

dij2

div

p3p4

RecLM3

p2

p1

Bank

idctivlc

ProdLM1

printstart

iquant

VGM

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

TE
Injector

2

Injector
4

SP
Cand.

SP
Cand.

TC

(A)
(B)

Figure 7.5 – Recovery method for the VGM and a task migration.

86

Figure 7.6 illustrates the task scheduling of TC, which was running in the SP1,0 and
migrated to SP5,2. It is possible to observe the moment when the task was suspended due
to the freeze message, migrated and later the moment of reactivation (unfreeze message).

Figure 7.6 – Scheduling of Task C, showing the moment when the task migrate.

Table 7.5 details the time spent at each recovery protocol step. The 1st and 2nd

lines present when the fault was inserted and detected, 3.0 and 3.01 ms, respectively. The
3rd line shows the moment when task migration ended. The 4th line shows the moment when
kernel migration starts. The 5th line shows the moment when the recovery ended. Table 7.6
shows the time when each application starts and ends its execution.

The overhead induced by the recovery method and a task migration was 1.65 ms.
However the WET with recovery presents a overhead equal to 1.31 ms. The overhead is
lower than expected due to the fact that task TC is originally in a position with high data
traffic, and with migration, its mapping reduced the network congestion. This experiment
shows that a reduced number of hops between tasks, the primary function of the mapping
heuristics, may impact negatively in the application performance.

Table 7.5 – Overhead - VGM recovery and
task migration.

Time (ms)
Fail CPU 3.00
Freeze 3.01
Migration 3.29
Wait Kernel 3.30
Unfreeze 4.65
WET (with recovery) 9.92
WET (baseline) 8.61

Table 7.6 – Applications’ execution time.
Application tstart (ms) tend (ms) Injector
DTW 0.00 8.33 1
Synthetic 0.30 9.89 1
Dijkstra 1.50 7.11 4
Mpeg 2.50 7.04 3
Prod_cons 2.17 5.24 4
Prod_cons 2.00 7.01 3

Figure 7.7 presents the test case to recover LM1 with task migration, being the re-
sult similar to the previous one. Figure 7.7(a) presents the MCSoC state before the recovery
method, being SP4,0 the SPCandidate. When the fault is detected by the VGM (LM1 ward),
the manager recovery method starts. The SP2,2 receives task TC from the SP4,0. After task

87

migration, the SPCandidate(4,0) receives the LM1 kernel. Figure 7.7(b), presents the system
state after LM1 kernel migration.

Iquant

TDVGM

Cons

print

idct

dij1dij4

dij0LM2

printdij3

dij2

div

p3p4

RecLM3

p2

p1

bank

TETB

TCLM1

prodTF

TA

ivlc

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

start
Injector

2

Injector
4

prod

Prod

(A)

cons

cons

Iquant

TDVGM

Cons

print

idct

dij1dij4

dij0LM2

printdij3

dij2

div

p3p4

RecLM3

p2

p1

bank

TETB

prodTF

TA

ivlc

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

start
Injector

2

Injector
4

prod

Prod

(B)

cons

consTC

LM1LM1

Figure 7.7 – Recovery method for the LM1 and a task migration.

Table 7.7 details the time spent at each recovery protocol step. The 1st and nth2
lines present when the fault was inserted and detected, 3.0 and 3.01 ms, respectively. The
3rd line shows the moment when task migration ended. The 4th line shows the moment when
kernel migration starts. The 5th line shows the moment when the recovery ended. Table 7.8
shows the time when each application starts and ends its execution. In this experiment, the
overhead induced by the recovery method and a task migration was 1.65 ms, and the WET
overhead 1.66 ms. They are, in practice, the same because the affected application by the
LM1 fault is the one with the longest execution time.

Table 7.7 – Overhead - LM recovery and task
migration.

Time (ms)
Fail CPU 3.00
Freeze 3.01
Migration 3.29
Wait Kernel 3.30
Unfreeze 4.65
WET (with recovery) 11.86
WET (baseline) 10.20

Table 7.8 – Applications’ execution time.
Application tstart (ms) tend (ms) Injector
Synthetic 2.50 11.82 2
Mpeg 0.03 5.07 1
DTW 0.00 8.21 1
Dijkstra 1.50 7.10 4
Prod_cons 2.17 5.29 3
Prod_cons 2.00 5.12 4
Prod_cons 2.00 7.02 2

In both VGM or LM1 fault scenarios, the overhead is the time spend to migrate
the memory contents (code and data of the faulty manager) to the SPCandidate and the task
migration. When an MP fails, the tasks it manages should be suspended to prevent control
messages from being lost (freeze). The freezing process delays the application. For both
VGM or LM1 recovery and the task migration, the time overhead was 1.65 ms or 165,000
clock cycles.

88

7.3 Recovery Results from a Fault in the Primary Link

This section evaluates the recovery method when a fault is injected in the primary
link of an injector. The first evaluation does not require task transmission, and the second
one does. Figure 7.8 shows the test case to recover from a fault in the primary link without
retransmission. This evaluation corresponds to a best-case scenario, since the Injector is
not sending a task through the link.

iquant

RecVGM

Prod
SP

Cand.

print

idct

Cons

dij1dij4

dij0LM2

Printdij3

dij2

div

TETB

TCLM3

TF

TA

TD

Cons

P3P4

BankLM1

P2

P1

ivlc

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

start
Injector

2

Injector
4

SP
Cand. Prod

SP
Cand.

Figure 7.8 – Fault in a the primary link from Injector 2.

Table 7.9 details the time spent at each recovery step. The 1st line presents when
the fault was inserted and detected – 0.8 ms. The second line presents when the Injector
produces the Change_Link_Message, transmitted in broadcast by the brNoC. The overhead
to change the link is 0.0011 ms (110 clock cycles), corresponding to the time required by the
brNoC to broadcast a message. Table 7.10 presents the applications’ execution time and
the injector for each application. The WET is not affected because the fault occurred when
the Injector was not sending a task.

Table 7.9 – Recovery overhead from a fault in
the primary link.

Time (ms)
Fail Link 0.8000
Change link 0.8011
WET (with recovery) 8.93
WET (baseline) 8.93

Table 7.10 – Applications’ execution time.
Application tstart (ms) tend (ms) Injector
Synthetic 0.5 8.61 1
Dtw 1.0 8.90 2
Mpeg 0.0 5.08 1
Dijkstra 1.5 7.08 3
Prod_Cons 2.0 5.15 4
Prod_Cons 2.0 5.28 3

89

Figure 7.9 presents a recovery scenario from a fault in the primary link with task
retransmission. The scenario injects a fault in the primary link of Injector1 when it is trans-
mitting task TC to SP4,3.

P4

ConsVGM

P1

bank

dij1dij4

dij0LM2

Printdij3

dij2

div

TETB

TCLM3

TF

TA

TD

idctivlc

ProdLM1

printstart

iquant

rec

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

P3
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

P2

Figure 7.9 – Fault in a the primary link from Injector 1.

Table 7.11 details the time spent at each recovery step. The 1st line presents when
the fault was inserted in the Injector1 primary link – 0.7367 ms. The 2nd line presents when
the Broken_Task_Message is injected to SP4,3, notifying it the incomplete task transmission.
The 3rd line presents when the brNoC broadcasts the Change_Link_Message. The 4th line
presents the time when Injector1 receives the Broken_Task_ACK_Message from SP4,3. The
5th line present when the task TC retransmission starts, and the 6th line when task TC
started at SP4,3. Table 7.12 presents the applications’ execution time and the injector for
each application.

Table 7.11 – Recovery overhead from a fault
in the primary link with task retransmission.

Time (ms)
Fail Link 0.7367
Broken Task 0.7379
Change link 0.7395
Broken Task ACK 0.7450
Resend Task 0.7516
Task C Started 0.7690
WET (with recovery) 8.72
WET (baseline) 9.08

Table 7.12 – Applications’ execution time.
Application tstart (ms) tend (ms) Injector
Synthetic 0.50 8.62 1
Mpeg 2.00 7.17 3
DTW 0.00 7.78 1
Dijkstra 1.50 7.07 4
Prod_cons 2.50 4.95 3

The overhead in this scenario is between the fault injection and the time to start
the task that was interrupted due to the faulty link. The overhead induced by the recovery

90

link process was in this experiment 0.0323 ms. Surprisingly, the WET of the scenario with
fault recover ended before the baseline scenario. A hypothesis to explain this behavior is
because the Synthetic application has an intensive communication profile. Delaying task C,
data are produced and stored by tasks A and B. When task C starts, there is already data
for it to consume and send to tasks D and E, without waiting for the generation of new data
by tasks A and B.

7.4 Recovery Results from a Fault in a Manager During Application Admission

This section presents a scenario when the fault is injected in the VGM/LM, dur-
ing an application admission. The cluster has a free resource (SPCandidate) to receive the
Manager. Thus it is not necessary to execute task migration before the recovery method
starts.

Figure 7.10 shows the test case to recover the VGM. Figure 7.10(a) presents
the MCSoC state when the fault is injected in the VGM, interrupting the admission of the
Synthetic application. The Injector stops the application admission and waits for the VGM
recovery. Figure 7.10(b) presents the MCSoC after the recovery method. When the VGM
restarts, it releases the SPs that received tasks belonging to the interrupted application
(Synthetic). Note that this application is now mapped in the cluster managed by the LM3
because the VGM admitted first the DTW application.

TB

VGM

TATD

TF

SP
Cand.

LM2 LM3

LM1TC

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

TE
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

dj4

divVGM

printdij3

dij2

div

VGM

p3p4

RecLM2

p2

p1

Bank

TETB

TCLM3

TF

TA

TD

dij1dij4

dij0LM1

printdij3

dij2

dij0

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

dj1
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

(A) (B)

Figure 7.10 – Recovery method in a Manager during a application admission.

Table 7.13 details the time spent at each recovery step. The 1st and 2nd lines
present when the fault was inserted and detected, 0.39 and 0.40 ms, respectively. The 3rd

line shows the moment when kernel migration starts. The 4th line shows the moment when
the recovery ended. Table 7.14 shows the time when each application starts and ends its
execution.

91

In this experiment, the overhead induced by the recovery method was 1.57 ms and
the WET overhead 1.29 ms. As the fault was injected at the beginning of the simulation, the
Synthetic, DTW, and one Dijkstra applications were affected. The Table 7.14 presents when
the applications should start and the actual time they started. These applications started
after 2 ms because the VGM was recovered at 1.96 ms.

Table 7.13 – Overhead to a VGM recovery.
Time (ms)

Fail CPU 0.39
Freeze 0.40
Wait Kernel ACK 0.58
Unfreeze 1.96
WET (with recovery) 10.22
WET (baseline) 8.93

Table 7.14 – Application’s execution time.
Application tstart /treal (ms) tend (ms) Injector
Synthetic 0.00/2.24 10.12 1
DTW 1.50/2.21 9.86 2
Dijkstra-1 1.00/2.31 8.49 1
Dijkstra-2 2.00/2.66 8.13 3

Figure 7.11 presents the test case to recover a LM (LM3). Figure 7.11(a) presents
the MCSoC before the recovery method, being SP5,5 the SPCandidate. When the fault is
detected by the LM2 (LM3 ward), the manager recovery method starts. Figure 7.11(b),
presents the system state after the LM3 migration to the SPCandidate(5,5).

TB

VGM

TF

TA

TD

SP
Cand.

LM2

startiquant

ivlcLM3

LM1TC

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

TE
Injector

2

Injector
4

SP
Cand.

SP
Cand.

SP
Cand.

TB

divVGM

TF

TA

TD

SP
Cand.

P3P4

RecLM2

P2

P1

Bank

startiquant

ivlcLM3

print

idct

dij1dij4

dij0LM1

printdij3

dij2

TC

0 1 2 3 4 5

0

1

2

3

4

5

Injector 1

Injector 3

TE
Injector

2

Injector
4

SP
Cand.

SP
Cand.

LM3

(A) (B)

Figure 7.11 – Recovery method in a Manager during a application admission.

Table 7.15 details the time spent at each recovery protocol step. Table 7.16 shows
the time when each application starts and ends its execution. The result is similar to the
VGM recovery, 1.62 ms to migrate the LM3 kernel. The WET , with and without recovery is
the same. The reason for explaining the same WET is that the application affected during
the recovery method (MPEG) finishes its execution before the Synthetic application (8.55
ms). The overhead only affects the MPEG execution time.

92

Table 7.15 – Overhead from a LM recovery.
Time (ms)

Fail CPU 1.29
Freeze 1.30
Wait Kernel ACK 1.53
Unfreeze 2.91
WET (with recovery) 8.93
WET (baseline) 8.93

Table 7.16 – Application’s execution time.
Application tstart /treal tend (ms) Injector
Synthetic 0.00/0.02 8.55 1
DTW 1.00/1.24 8.90 2
MPEG 1.00/3.14 7.94 1
Dijkstra 2.00/2.31 8.07 3

7.5 Final Remarks

Table 7.17 summarizes the results presented in this Chapter. It is possible to state
that a failure in a manager processor (VGM or LM) induces a runtime overhead of around
1.5 ms (150,000 clock cycles), and it increases according to the size of the kernel memory
footprint. The overhead due to the failure of the external links is minimal (100 to 3,200 clock
cycles), ensuring that the MCSoC continues to operate even in the presence of faults in the
communication with the external world.

Table 7.17 – Summary of Results.

Fault Location Relevant protocol feature Protocol overhead
(kernel: 64KB/task: 10 KB)

VGM without task migration 1.5 msLM
VGM with task migration 1.65 msLM

Injector primary link without task retransmission 0.001 ms
with task retransmission 0.032 ms

VGM Fault during application admission 1.57 ms
LM 1.62 ms

The evaluation made in this Chapter focused on the method overhead in terms of
performance. There are two implementation costs: software and hardware. The cost of the
software refers to the increase in memory required by the kernels running on VGM/LM, from
12 to 43 KB, and on Kernel Slave, from 19 to 34 KB.

The hardware costs associated with the methods can be listed as follows: (i) brNoC
network, area equivalent to 20% of a data network router; (ii) wrappers, it require only logic
gates to isolate control signals; (iii) it is assumed that the memory is protected by ECC
(error-correcting codes) and that the network interface has access to this memory in case of
processor failure. Therefore, the hardware cost is minimal, being portable for other MCSoCs
architectures.

93

8. CONCLUSION

The Introduction of the Thesis declared as Thesis Statement the following para-
graph:

The Thesis herein proposed aims to demonstrate that it is possible to develop
a distributed MCSoC architecture, supporting permanent faults at critical points
of the system, as in the processors executing management functions, and at
the interface of the MCSoC with external entities responsible for deploying new
applications into the system.

When starting the process of defining the fault recovery methods, it was observed
that hardware support was needed to allow fast communication with a broad set of pro-
cessors simultaneously. The result was the brNoC, which allowed reaching a broad set of
processors using broadcast communication. The brNoC is a generic NoC that can be used
for multiple purposes. This work employed the BrNoC for fault-tolerance and system man-
agement purposes. As shown in Section 8.2, brNoC was also the basis for works related to
security in many-cores.

The second observation related to the proposal for fault-tolerant methods in dis-
tributed architectures refers to the method of transferring applications to the MCSoC. Thus,
a new method was proposed, based on application injectors. This method approximated the
reference architecture to actual many-cores and was adopted in the baseline architecture.

These previous developments, brNoC and injectors, paved the way for the demon-
stration of the first part of the hypothesis: support for permanent faults at critical points of
the system, as in a manager processor (MP).

This Thesis considered two options to keep the management state of the system
after a fault in a MP: to maintain the management state in redundant data structures, or
to use a monitoring scheme between MPs, in which a healthy MP isolates the faulty MP,
starting the recovery process. The first option was discarded due to the excess of redundant
messages and high memory consumption. The second method, monitoring between MPs,
was then chosen.

Initially, it was adopted a method based on the response time to determine fault in a
MP (ward messages). This method, although efficient, would generate a very long response
delay for fault detection, which could compromise the content of the MP memory. Given the
development of the brNoC, it was chosen to use it for the fault notification given the reduced
time for the transmission of the fault notification.

The proposed method is an original contribution of this work because it does not
require that the management data remain in redundant structures. The MP that presents
a permanent fault is isolated by the healthy MP, being the content of its memory migrated

94

to another processor. This new processor assumes the role of MP, with the management
context stored in the original MP. There is a global loss of performance because the many-
core will have one less processor, but it will continue to operate despite the permanent fault
in the processor.

An important premise for the developed proposal is that memory content can be
migrated after fault detection and processor isolation. It is suggested as future work the
monitoring of transient faults in the MP. After a certain amount of faults, this MP migrates
to another processor. This processor would be in a "quarantine state", running user appli-
cations. When reaching a threshold in the number of faults, the processor would be finally
isolated from the system.

The results obtained demonstrated the correctness of the first part of the hypoth-
esis, through the fault injection in local and global MPs, with the system always operating
correctly again after the MP migration.

The second part of the hypothesis is related to the interface of the MCSoC with
external entities responsible for deploying new applications into the system. In this case,
the work adopted two levels of redundancy. Local redundancy, at the link level, and injec-
tor redundancy. The first redundancy level allows a given injector to continue to send new
applications to the system if the primary connection with the system fails. The second redun-
dancy level ensures that even if a given injector becomes isolated, there is still the possibility
of sending applications to the system with a second injector.

Thus, we conclude that the original hypothesis is demonstrated, with the proposal
of an architecture having distributed and fault-tolerant management, with no single point of
failure. The methods proposed increase the many-core lifetime at the cost of a reduction
in overall system performance, given that the wrappers isolate processors with permanent
faults. Thus, the presence of the single point of failure is eliminated internally to the many-
core, since the functions associated with the VGM can migrate to another processor, allow-
ing the many-core to continue to receive applications from the injector peripherals.

The software cost of the proposed methods corresponds to about 258% in the man-
ager kernel and 78% in the kernel slave. The hardware costs associated with the methods
can be enumerated as follows: (i) brNoC network, area equivalent to 20% of a data network
router; (ii) wrappers, it require only logic gates to isolate control signals; (iii) it is assumed
that the memory is protected by ECC (error-correcting codes) and that the network interface
has access to this memory in case of processor failure. Therefore, the hardware cost is
minimal, being portable for other MCSoCs architectures with similar architectural features

95

8.1 Future Works

As a guideline for future works, this Thesis has room for improvements as follow:

• Extend the method to cover faults in slave processors (SPs). Fault tolerance for SPs
has a rich literature. A method can be developed to recovery the SP from a permanent
fault in its main components: NoC router, processor, and memory. The main goal is to
enable the fault recovery without re-execution. The recovery method developed in this
Thesis can be applied to the SP with a fault detection module.

• Extend the method to cover transients faults, preventing faults in the manager proces-
sors. This work targeted only permanent faults. It is suggested as future work the
monitoring of transient faults in the MP. After a certain amount of faults, this MP mi-
grates to another processor. This processor would be in a "quarantine state", running
user applications. When reaching a threshold in the number of faults, the processor
would be finally isolated from the system.

• Evaluate the application feasibility of the proposed recovery method without using the
control NoC – brNoC. The reasons to adopt the brNoC were advanced in the text,
which is mainly the rapid notification of a large set of PEs by using broadcast com-
munication. We consider that its possible an implementation of the recovery methdos
without using a control NoC. An adaptation of the methods and the corresponding eval-
uation, only with the data NoC can be developed to evaluate the proposed methods
with a standard NoC-based many-core system.

• Include a hardware module to detected the fault in the CPU. In this work, we assume
that a fault detection module responsible for triggering the recovery method. Future
work can implement a module to detect transient and permanent faults in the CPU.

• Extend the method to detect permanent faults in the boundaries of the manager PE
(NoC links), migrating the manager PE to prevent its isolation to the remaining of the
system.

• brNoC (control NoC) for multiple purposes. This work employed the brNoC for mon-
itoring, notification, and system management services. Another work from the group
used brNoC for security, path discovery and secure zones. Cache coherence and QoS
can be explored with brNoC.

96

8.2 Publications

Table 8.1 presents the publications made during the Thesis, relating them to the
respective Chapters, when applicable.

Table 8.1 – Summary of Publications.

Publication Reference Relationship with the Thesis
Ruaro, M.; Caimi, L.; Fochi, V.; Moraes, F.
A Framework for Heterogeneous Many-core SoCs
Generation
In: LASCAS, 2019

Chapter 3 - development of the
Injectors

Fochi, V.; Caimi, L.; Silva, M.; Wachter, E.; Moraes, F.
Fault-tolerance at the Management Level in
Many-core Systems
In: SBCCI, 2018

Chapter 5 - System
Management with task
migration

Fochi, V.; Caimi, L.; Ruaro, M.; Wachter, E.; Moraes, F.
System Management Recovery Protocol for MPSoCs.
In: SOCC, 2017, pp. 367-374.

Chapter 5 - Basis of the
System Management with task
migration.

Wachter, E.; Caimi, L.; Fochi, V.; Munhoz, D.; Moraes, F.
BrNoC: a Broadcast NoC for Control Messages in
Many-core Systems.
Microelectronics Journal, Volume 68, October 2017,
Pages 69–77.

Chapter 3 - development of the
BrNoC

Wächter, E. W.; Fochi, V.; Barreto, F.; Amory, A.; Moraes,
F.
A Hierarchical and Distributed Fault Tolerant
Proposal for NoC-based MPSoCs
IEEE Trans. on Emerging Topics in Computing, 2016
(accepted), v.6(4), pp 524-537, Oct.-Dec. 2018.

Fault-tolerance at the MPSoC
level, routers and processors.
Transition between the MsC to
the PhD.

Wächter, E. W.; Fochi, V.; Barreto, F.; Amory, A.; Moraes,
F.
A layered approach for fault tolerant NoC-based
MPSoCs
In: LATS, 2016
Caimi, L.; Fochi, V.; Wachter, E.; Moraes, F.
Runtime Creation of Continuous Secure Zones in
Many-Core Systems for Secure Applications
In: LASCAS, 2018

Publications not directly
related to the Thesis subject
- use of the BrNoC and
wrappers infrastructure
in the security domain

Caimi, L.; Fochi, V.; Moraes, F.
Secure Admission of Applications in Many-Cores
In: ICECS, 2018
Caimi, L.; Fochi, V.; Wachter, E.; Munhoz, D.; Moraes, F.
Activation of Secure Zones in Many-Core Systems
with Dynamic Rerouting
In: ISCAS, 2017, pp. 144-147
Caimi, L.; Fochi, V.; Wachter, E.; Moraes, F.
Secure Admission and Execution of Applications in
Many-core Systems
In: SBCCI, 2017.

97

REFERENCES

[Barreto et al., 2015] Barreto, F., Amory, A. M., and Moraes, F. G. (2015). Fault Recovery
Protocol for Distributed Memory MPSoCs. In Proceedings of the IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 421–424.

[Benini and Micheli, 2002] Benini, L. and Micheli, G. (2002). Networks on chips: a new SoC
paradigm. Computer, 35(1):70–78.

[Bhowmik et al., 2016] Bhowmik, B., Deka, J. K., Biswas, S., and Bhattacharya, B. (2016).
On-line Detection and Diagnosis of Stuck-at Faults in Channels of NoC-based systems.
In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pages 4567–4572.

[Bolchini et al., 2013] Bolchini, C., Carminati, M., and Miele, A. (2013). Self-Adaptive Fault
Tolerance in Multi-/Many-Core Systems. Journal of Electronic Testing: Theory and Appli-
cations, 29(2):159–175.

[Boraten and Kodi, 2016] Boraten, T. and Kodi, A. K. (2016). Packet security with path sen-
sitization for NoCs. In Proceedings of the Design, Automation Test in Europe Conference
(DATE), pages 1136–1139.

[Braak et al., 2010] Braak, T. D. T., Burgess, S. T., Hurskainen, H., Kerkhoff, H. G., Ver-
meulen, B., and Zhang, X. (2010). On-line dependability enhancement of multiprocessor
SoCs by resource management. In Proceedings of the International Symposium on Sys-
tem (SSOC), pages 103–110.

[Caimi et al., 2018] Caimi, L., Fochi, V., Wachter, E., and Moraes, F. G. (2018). Runtime
Creation of Continuous Secure Zones in Many-Core Systems for Secure Applications. In
Proceedings of the IEEE Latin American Symposium on Circuits and Systems (LASCAS),
pages 1–4.

[Caimi et al., 2017a] Caimi, L., Fochi, V., Wachter, E., Munhoz, D., and Moraes, F. G.
(2017a). Activation of Secure Zones in Many-core Systems with Dynamic Rerouting.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
pages 144–147.

[Caimi et al., 2017b] Caimi, L., Fochi, V., Wachter, E., Munhoz, D., and Moraes, F. G.
(2017b). Secure Admission and Execution of Applications in Many-core Systems. In Pro-
ceedings of the Symposium on Integrated Circuits and Systems Design (SBCCI), pages
65–71.

98

[Carara et al., 2009] Carara, E., de Oliveira, R., Calazans, N., and Moraes, F. G. (2009).
HeMPS - a framework for NoC-based MPSoC generation. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1345–1348.

[Castilhos et al., 2013] Castilhos, G., Mandelli, M., Madalozzo, G., and Moraes, F. G. (2013).
Distributed resource management in NoC-based MPSoCs with dynamic cluster sizes. In
Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
153–158.

[Castilhos et al., 2016] Castilhos, G., Mandelli, M., Ost, L., and Moraes, F. G. (2016). Hier-
archical Energy Monitoring for Task Mapping in Many-core Systems. Journal of System
Architecture, 63(C):80–92.

[Chen et al., 2017] Chen, Y., Chang, E., Hsin, H., Chen, K., and Wu, A. (2017). Path-
Diversity-Aware Fault-Tolerant Routing Algorithm for Network-on-Chip Systems. IEEE
Transactions on Parallel and Distributed Systems, 28(3):838–849.

[Cui et al., 2016] Cui, T., Li, J., Shafaei, A., Nazarian, S., and Pedram, M. (2016). An efficient
timing analysis model for 6T FinFET SRAM using current-based method. In Proceedings
of the International Symposium on Quality Electronic Design (ISQED), pages 263–268.

[Domingues et al., 2018] Domingues, A. R. P., Hamerski, J. C., and Amory, A. (2018). Bro-
ker Fault Recovery for a Multiprocessor System-an-Chip Middleware. In Proceedings of
the Symposium on Integrated Circuits and Systems Design (SBCCI), pages 1–6.

[Dutt et al., 2015] Dutt, N., Jantsch, A., and Sarma, S. (2015). Self-Aware Cyber-
Physical Systems-on-Chip. In Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 46–50.

[Faruque et al., 2008] Faruque, M. A. A., Krist, R., and Henkel, J. (2008). ADAM: run-time
agent-based distributed application mapping for on-chip communication. In Proceedings
of the ACM/IEEE Design Automation Conference (DAC), pages 760–765.

[Fick et al., 2009a] Fick, D., DeOrio, A., Chen, G., Bertacco, V., Sylvester, D., and Blaauw,
D. (2009a). A Highly Resilient Routing Algorithm for Fault-tolerant NoCs. In Proceedings
of the Design, Automation Test in Europe Conference (DATE), pages 21–26.

[Fick et al., 2009b] Fick, D., DeOrio, A., Hu, J., Bertacco, V., Blaauw, D., and Sylvester, D.
(2009b). Vicis: A reliable network for unreliable silicon. In Proceedings of the ACM/IEEE
Design Automation Conference (DAC), pages 812–817.

[Fochi et al., 2018] Fochi, V., Caimi, L., da Silva, M. H., and Moraes, F. G. (2018). Fault-
Tolerance at the Management Level in Many-Core Systems. In Proceedings of the Sym-
posium on Integrated Circuits and Systems Design (SBCCI), pages 1–6.

99

[Fochi et al., 2017] Fochi, V., Caimi, L., Ruaro, M., Wachter, E., and Moraes, F. G. (2017).
System management recovery protocol for MPSoCs. In Proceedings of the IEEE Interna-
tional System-on-Chip Conference (SOCC), pages 367–374.

[Fochi et al., 2015] Fochi, V., Wachter, E., Erichsen, A., Amory, A. M., and Moraes, F. G.
(2015). An integrated method for implementing online fault detection in NoC-based MP-
SoCs. In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1562–1565.

[GAPH, 2018] GAPH (2018). Hardware Design Support Group. www.inf.pucrs.br/gaph/.

[Grecu et al., 2004] Grecu, C., Pande, P. P., Ivanov, A., and Saleh, R. (2004). Structured
Interconnect Architecture: A Solution for the Non-scalability of Bus-based SoCs. In Pro-
ceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI), pages 192–195.

[Haghbayan et al., 2014] Haghbayan, M., Rahmani, A., Weldezion, A. Y., Liljeberg, P.,
Plosila, J., Jantsch, A., and Tenhunen, H. (2014). Dark Silicon Aware Power mMan-
agement for Manycore Aystems under Dynamic Workloads. In Proceedings of the IEEE
International Conference on Computer Design (ICCD), pages 509–512.

[Heron et al., 2010] Heron, O., Guilhemsang, J., Ventroux, N., and Giulieri, A. (2010). Anal-
ysis of on-line self-testing policies for real-time embedded multiprocessors in DSM tech-
nologies. In Proceedings of the IEEE International On-Line Testing Symposium (IOLTS),
pages 49–55.

[Kamran et al., 2016] Kamran, A. et al. (2016). Stochastic Testing of Processing Cores in a
Many-core Architecture. Integration, the VLSI Journal, 55(1):183–193.

[Kim et al., 2013] Kim, H., Vitkovskiy, A., Gratz, P. V., and Soteriou, V. (2013). Use it or lose
it: Wear-out and Lifetime in Future Chip Multiprocessors. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 136–147.

[Knebel et al., 2016] Knebel, F., Rehman, S., Shafique, M., and Henkel, J. (2016). ageopt-
rmt: Compiler-driven variation-aware aging optimization for redundant multithreading. In
Proceedings of the ACM/IEEE Design Automation Conference (DAC), pages 1–6.

[Li and Draper, 2016] Li, J. and Draper, J. (2016). Joint Soft-Error-Rate (SER) Estimation
for Combinational Logic and Sequential Elements. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 737–742.

[Linder and Harden, 1991] Linder, D. H. and Harden, J. C. (1991). An Adaptive and Fault Tol-
erant Wormhole Routing Strategy for k-ary n-cubes. Transactions on Computer, 40(1):2–
12.

www.inf.pucrs.br/gaph/

100

[Marcon et al., 2017] Marcon, C., Webber, T., and Susin, A. A. (2017). Models of computa-
tion for NoC mapping: Timing and energy saving awareness. Microelectronics Journal,
60(1):129–143.

[Martins et al., 2016] Martins, A. L. M., Sant’Ana, A. C., and Moraes, F. G. (2016). Runtime
energy management for many-core systems. In Proceedings of the IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pages 380–383.

[Meloni et al., 2012] Meloni, P. et al. (2012). System Adaptivity and Fault-Tolerance in NoC-
based MPSoCs: The MADNESS Project Approach. In Proceedings of the Euromicro
Conference on Digital System Design (DSD), pages 517–524.

[Moraes et al., 2004] Moraes, F. G., Calazans, N., Mello, A., Moller, L., and Ost, L. (2004).
HERMES: an infrastructure for low area overhead packet-switching networks on chip. In-
tegration, the VLSI Journal, 38(1):69–93.

[Paul et al., 2015] Paul, J. et al. (2015). Self-adaptive Corner Detection on MPSoC Through
Resource-aware Programming. Journal of System Architecture, 61(10):520–530.

[Reddy et al., 2016] Reddy, B., Vasantha, M., and Kumar, Y. (2016). A Gracefully Degrading
and Energy-Efficient Fault Tolerant NoC Using Spare Core. In Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 146–151.

[Ruaro et al., 2019] Ruaro, M., Caimi, L., Fochi, V., and Moraes, F. G. (2019). A Frame-
work for Heterogeneous Many-core SoCs Generation. In Proceedings of the IEEE Latin
American Symposium on Circuits and Systems (LASCAS), pages 89–92.

[Ruaro et al., 2016] Ruaro, M., Lazzarotto, F. B., Marcon, C. A., and Moraes, F. G. (2016).
DMNI: A specialized network interface for NoC-based MPSoCs. In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1202–1205.

[Ruaro and Moraes, 2017] Ruaro, M. and Moraes, F. G. (2017). Demystifying the cost of
task migration in distributed memory many-core systems. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–4.

[Schedel et al., 2011] Schedel, K. et al. (2011). OctoPOS: a parallel operating system for
invasive computing. In Proceedings of the International Workshop on Systems for Future
Multi-Core Architectures, pages 9–14.

[Silveira et al., 2016] Silveira, J., Marcon, C., Cortez, P., Barroso, G., ao M. Ferreira, J., and
Mota, R. (2016). Scenario preprocessing approach for the reconfiguration of fault-tolerant
NoC-based MPSoCs. Microprocessors and Microsystems, 40(1):137–153.

[Srinivasan et al., 2004] Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. (2004). The
Impact of Technology Scaling on Lifetime Reliability. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pages (177–186).

101

[Suraj Paul, 2018] Suraj Paul, Navonil Chatterjee, P. G. (2018). A permanent fault tolerant
dynamic task allocation approach for Network-on-Chip based multicore systems. Journal
of Systems Architecture, 97(1):287–303.

[Tajik et al., 2016] Tajik, H., Donyanavard, B., Dutt, N., Jahn, J., and Henkel, J. (2016). SPM-
Pool: Runtime SPM Management for Memory-Intensive Applications in Embedded Many-
Cores. ACM Transactions on Embedded Computing Systems, 16(1):25:1–25:27.

[Tsai et al., 2013] Tsai, W.-C., Chu, K.-C., Hu, Y.-H., and Chen, S.-J. (2013). Non-minimal,
turn-model based NoC routing. Microprocessors and Microsystems, 37(8B):899 – 914.

[Tsoutsouras et al., 2017] Tsoutsouras, V., Masouros, D., Xydis, S., and Soudris, D. (2017).
SoftRM: Self-Organized Fault-Tolerant Resource Management for Failure Detection and
Recovery in NoC Based Many-Cores. ACM Transactions on Embedded Computing Sys-
tems, 16(5s):144:1–144:19.

[Veiga and Zeferino, 2010] Veiga, F. and Zeferino, C. A. (2010). Implementation of Tech-
niques for Fault Tolerance in a Network-on-Chip. In Proceedings of the Symposium on
Computing Systems (SCS), pages 80–87.

[Vitkovskiy et al., 2012] Vitkovskiy, A., Soteriou, V., and Nicopoulos, C. (2012). A Dynami-
cally Adjusting Gracefully Degrading Link-Level Fault-Tolerant Mechanism for NoCs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(8):1235–
1248.

[Wachter et al., 2017] Wachter, E., Caimi, L. L., Fochi, V., Munhoz, D., and Moraes, F. G.
(2017). BrNoC: A broadcast NoC for control messages in many-core systems. Microelec-
tronics Journal, 68(1):69–77.

[Walters et al., 2011] Walters, J. P., Kost, R., Singh, K., , and Crago, S. P. (2011). Software-
based fault tolerance for the Maestro many-core processor. In Proceedings of the
Aerospace Conference (AERO), pages 1–12.

[Wentzlaff et al., 2007] Wentzlaff, D. et al. (2007). On-Chip Interconnection Architecture of
the Tile Processor. IEEE Micro, 27(5):15–31.

[Woszezenki, 2007] Woszezenki, C. (2007). Alocação de tarefas e comunicação entre tare-
fas em mpsocs. Master’s thesis, Pontifical Catholic University of Rio Grande do Sul (PU-
CRS), Porto Alegre.

[Yu et al., 2011] Yu, Q., Zhang, M., and Ampadu, P. (2011). Exploiting inherent information
redundancy to manage transient errors in NoC routing arbitration. In Proceedings of the
Fifth ACM/IEEE International Symposium (IS), pages 105–112.

102

[Zhang et al., 2012] Zhang, Y., Morris, R., DiTomaso, D., and Kodi, A. (2012). Energy-
Efficient and Fault-Tolerant Unified Buffer and Bufferless Crossbar Architecture for NoCs.
In Proceedings of the International Parallel and Distributed Processing Symposium Work-
shops PhD Forum (PHD), pages 972–981.

Appendices

103

104

A. INJECTOR FINITE STATE MACHINES

The Application Injector FSM is responsible for managing all Injector FSMs: Data
NoC in, Data NoC out, BrNoC in, BrNoC out.

S_INIT_MANAGER

Application Injector Machine

S_WAITING_GM_READY

S_WAIT_LMP_LOCATION

S_WAIT_SEND_DESCRIPTOR
S_WAITING_MAP

S_SENDING_TASKS

Figure A.1 – Application Injector FSM.

105

Data NoC Out FSM. This FSM sends data to the Data NoC of the MCSoC.

DATA NOC OUT

S_INIT_DATANOC

S_SEND_DESCRIPTION
S_SEND_TASK

S_END_SEND_TASK

S_SEND_HEADER

S_SEND_PAYLOAD_HIGH

S_WAIT_CREDIT_HEADER

S_SEND_PAYLOAD_LOW

S_WAIT_CREDIT_PAYLOAD_LOW

S_SEND_EOP
S_WAIT_CREDIT_PAYLOAD_HIGH

S_BROKEN_TASK

Figure A.2 – Data NoC Out FSM.

106

Data NoC In FSM. This FSM receives data from the Data NoC of the MCSoC.

S_INIT_IN

DATA NOC IN

S_RECEIVE_HEADER S_PAYLOAD

S_SERVICES

S_WAIT

Figure A.3 – Data In NoC FSM.

107

BrNoC out FSM. This FSM sends packets to the control NoC of the MCSoC.

BR NOC OUT

S_WAIT_INIT

S_NEW_APP S_CLEAR S_CHANGE_LINK

S_WAIT ACK

S_WAIT _ACK_DOWN

Figure A.4 – BrNoC Out NoC FSM.

108

BrNoC in FSM. This FSM receives packets from the control NoC of the MCSoC.

BR NOC IN

S_INIT

S_ACK_NEW_APP_RECEIVES_VGM_RECEIVE

S_ACK

S_ACK

NEW APP - MAQUINA DE ESTADOS PRINCIPAL

Figure A.5 – BrNoC in NoC FSM.

	Introduction
	Motivation
	Problem Definition
	Reference Architecture
	Problem Definition
	Thesis Statement
	Objectives
	Original Contributions
	Document Organization

	State of the art
	Johny Paul et al.
	André Luís Del Mestre Martins et al.
	Paolo Meloni et al.
	Yu-Yin Chen et al
	Arezoo Kamran et al.
	Biswajit Bhowmik et al.
	Cristiana Bolchini et al.
	Tsoutsouras et al.
	Suraj Paul et al.
	Domingues et al.
	Silveira et al.
	Related Work Analysis

	Baseline Platform
	Baseline Platform and its Evolution
	Data NoC
	Software Model

	Control NoC - BrNoC
	Application Injector

	System Management Recovery Overview and Fault Model
	Proposed Recovery Method Overview
	Actions Executed by the Recovery Protocol
	Fault Model
	Fault Detection Mechanisms

	SYSTEM MANAGEMENT RECOVERY METHOD
	Manager Pairs Definition
	Fault Detection Notification
	Manager Candidate Definition
	Freeze & Unfreeze Messages
	Task Migration
	Kernel Migration
	Recovery Protocol
	Virtual Global Manager Fault Recovery
	Local Manager Fault Recovery

	Final Remarks

	APPLICATION ADMISSION RECOVERY METHOD
	Injector hardware MCSoCs and faults mechanims
	Application Admission Protocol
	Fault Recovery during Application Admission
	Recovery from a Fault in the Primary Link
	Recovery from a Fault in a Manager PE During Application Admission

	Final Remarks

	Experimental Results
	Recovery Results from a Fault in a Manager
	Recovery Results from a Fault in a Manager With Task Migration
	Recovery Results from a Fault in the Primary Link
	Recovery Results from a Fault in a Manager During Application Admission
	Final Remarks

	Conclusion
	Future Works
	Publications

	References
	Appendices
	Injector Finite State Machines

