

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ABSTRACT MODELS OF NOC-BASED

MPSOCS FOR DESIGN SPACE

EXPLORATION

LUCIANO COPELLO OST

TESE APRESENTADA COMO REQUISITO

PARCIAL À OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIA DA COMPUTAÇÃO NA PONTIFÍCIA

UNIVERSIDADE CATÓLICA DO RIO GRANDE DO

SUL

ORIENTADOR: PROF. DR. FERNANDO GEHM MORAES

CO-ORIENTADOR: DR. LEANDRO SOARES INDRUSIAK

PORTO ALEGRE, BRASIL

2010

Dados Internacionais de Catalogação na Publicação (CIP)

O85a Ost, Luciano Copello

Abstract models of NoC-based MPSoCs for design

space exploration / Luciano Copello Ost. – Porto Alegre,

2010.

99 p.

Tese (Doutorado) – Fac. de Informática, PUCRS.

Orientador: Prof. Dr. Fernando Gehm Moraes.

1. Informática. 2. Arquitetura de Redes. 3. Simulação e

Modelagem em Computadores. I. Moraes, Fernando Gehm.

II. Título.

CDD 004.6

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

AGRADECIMENTOS

Primeiramente, gostaria de agradecer aos meus pais Eugenio Ost e Maria Bernadett Copello Ost pelo
apoio recebido em todas as etapas de minha vida (ambos sabem, ou pelo menos deveriam saber, o quanto sou
grato). Obrigado por todos os ensinamentos e valores, os quais levarei por toda minha vida. A minha querida
mana Lilian Copello Ost (a Lica, meu porto seguro).

Aos meus orientadores e amigos Fernando Gehm Moraes e Leandro Soares Indrusiak (apesar de ser
colorado). Ambos tiveram e, certamente, ainda terão muita influência na minha formação profissional e pessoal.
Ambos sabem que sou muito grato (pelo menos eu espero que sim :-) e que estou em divida (algum dia pagarei
:-). Obrigado pela paciência, conselhos, incentivos e dos puxões de orelha durante minha formação (talvez eu
não merecesse alguns, mas tudo bem :-). VALEU!!! Ahhh, eu fui o orientando mais serelepe de vocês né ???
Cabe agradecer ao professor Ney Calazans que diversas vezes me auxiliou durante o desenvolvimento dessa
Tese. Valeu!!!

Aos meus amigos e colegas Ricardo Czekster (apesar de colorado um grande amigo - hoje tu deve
escutar U2 todos os dias né ), Edson Moreno (um cara que admiro muito – apesar de ser colorado), Leonel
Tedesco (uns dos caras que conheço que mais sabe de futebol – e um dos caras que mais gosta de Dave
Matthews Band também  - valeu tche), Ewerson Carvalho (mesmo tendo algumas opiniões divergentes sei que
ele sempre gostou de apreender a jogar bola comigo  - valeu tche), Thaïs Webber (valeu pela força), Rafael
Iankowski Soares (tudo bem é colorado, mas um cara show de bola que sabe tudo de horário de train ),
Alexandre Amory (que me atirou um copo d’agua – marquei na paleta  – valeu pela ajuda tche), Julian Pontes
(que aprendeu muito a jogar bola comigo ), Carlos Petry (sempre sábio em suas colocações) e o Cesar Augusto
Missio Marcon (que adorava tomar dribles ). Pessoal valeu pelas inúmeras “bagunças” (e.g. jogos, parada para
café, churrascos, viagens, jantas, saídas – despedidas/reencontros).

Aos meus amigos e afilhados Leandro Heleno Möller e Laura Artoni Möller que me aturaram durante o
período que passei em Darmstadt (tá bom não foi só no período em Darmstadt, é é é deixa assim ). Devo
destacar as discussões, o trabalho desenvolvido e o aprendizado adquirido com o Möller. Möller levarei muita
coisa comigo. Também não posso esquecer-me dos excelentes momentos passados extra-laboratório, onde se
incluem discussões filosóficas, viagens, as cantorias do Möller no laboratório (é esse não tão extra-laboratório
assim e o Möller não canta tão bem) e, claro, as jantas lideradas pela Laura . Não poderia deixar de agradecer
a Giuliana (Indrusiak’s wife) pela ajuda durante o mesmo período em Darmstadt (valeu mesmo, sei que
incomodei um pouco  e estou em divida). Não posso deixar de agradecer a Sanna Mättä pela amizade e
colaboração no trabalho desenvolvido. Valeu Sanna sempre me diverti muito contigo, mesmo quanto estávamos
discutindo coisa de trabalho (CABUMMM ). Devo agradecer ao casal de amigos Osmar Marchi dos Santos
(tudo bem ele gosta de escutar Lionel Richie - mas ninguém é perfeito né) e a Simone Regina Ceolin (quanta
paciência , agora tu pode falar “nem parece um Dr.” ), por me agüentarem tantos anos, valeuuuuuu!!!
Resumindo, todos vocês vão ter que me agüentar ainda .

Agradeço ao meu amigo de longa data Leandro Galvão (ELE) pela força e amizade de anos. Obrigado
mesmo pela paciência e ajuda, principalmente, durante o período que dividimos o apartamento (e.g. período da
escrita dessa Tese). Todas as conversas e cervejadas me ajudaram muito. Valeeeeeu mesmo!!! Devo agradecer a
Denise Oliveira dos Santos que durante um bom tempo do doutorado esteve do meu lado me dando força.
Agradeço também a Giselle Duarte por ter me ajudado algumas vezes durante o doutorado. Valeu!!!

Agradeço também aos demais colegas do GAPH pela convivência e discussões. Destaco o Guilherme
Guindani (que ajudou muito durante o trabalho), Thiago Raupp da Rosa, Marcelo Mandelli e Matheus Trevisan.
Devo ainda agradecer ao Thiago Lingener, Regis Silva, Sandra, e o Zé Carlos - funcionários da FACIN - que
inúmeras vezes me ajudaram.

Agradeço ainda o suporte financeiro advindo do CNPq na forma da bolsa de fomento do Programa
Nacional de Microeletrônica (PNM).

Não agradeço as seguintes pessoas... ahhh é palha mencionar então deixa assim.

ABSTRACT MODELS OF NOC-BASED MPSOCS FOR DESIGN

SPACE EXPLORATION

RESUMO

MPSoCs baseados em NoCs podem fornecer alto desempenho em um único circuito

integrado, atingindo centenas de bilhões de operações por segundo através do emprego de

múltiplos elementos de processamento que se comunicam através de uma NoC operando a uma

freqüência que excede 100 Tbps. Tais dispositivos podem suportar a execução simultânea de

múltiplas aplicações (e.g. HDTV, múltiplos padrões de comunicação sem fio, tocadores multimídia,

jogos), devido a características como alto desempenho, flexibilidade e eficiência em termos de

consumo de energia. Devido a quantidade de alternativas inerentes ao grande espaço de projeto,

a avaliação de MPSoCs baseados em NoCs em baixo níveis de abstração não prove o suporte

necessário para encontrar a melhor arquitetura para a NoC considerando métricas de

desempenho (e.g. latência, potência) de uma dada aplicação nas fases iniciais de projeto. Dessa

forma, o projeto de MPSoCs baseados em NoCs requer modelos simples e precisos em alto nível

de abstração, os quais possam gerar resultados precisos de desempenho, de cada alternativa de

projeto, em um tempo de projeto razoável. Neste contexto, a presente Tese tem duas

contribuições principais: (i) desenvolvimento de modelos de NoC abstratos, e (ii) integração dos

modelos propostos dentro de um fluxo de projeto baseado em modelos, permitindo assim a

exploração do espaço de projeto de MPSoCs baseados em NoCs nas fases iniciais do fluxo projeto.

Palavras chave: NoCs, orientação a atores, modelagem em alto nível de abstração, modelagem de
estimativa de potência de NoCs.

ABSTRACT MODELS OF NOC-BASED MPSOCS FOR DESIGN

SPACE EXPLORATION

ABSTRACT

NoC-based MPSoCs can provide massive computing power on a single chip, achieving

hundreds of billions of operations per second by employing dozens of processing cores that

communicate over a packet-switched network at a rate that exceeds 100 Tbps. Such devices can

support the convergence of several appliances (e.g. HDTV, multiple wireless communication

standards, media players, gaming) due to their comparatively high performance, flexibility and

power efficiency. Due to the vast design space alternatives, evaluating the NoC-based MPSoCs at

lower abstraction levels does not provide the required support to find out the most efficient NoC

architecture considering the performance constraints (e.g. latency, power) of a given application

at early design process stages. Thus, NoC-based MPSoCs design requires simple and accurate high

level models in order to achieve precise performance results, of each design alternative, in an

acceptable design time. In this context, the present Thesis has two main contributions: (i)

development of abstract NoC models, providing accurate performance evaluation; and (ii)

integration of the proposed models into a model-based design flow, allowing the design space

exploration of NoC-based MPSoCs at early stages of the design flow.

Keywords: MPSoC, NoC, Actor Orientation, High Level Modeling, NoC Power Estimation Model.

LIST OF FIGURES

Figure 1 – Examples of expected 4G applications for future portable systems. Figure extracted from
[KRE08b]. .. 18

Figure 2 – Proposed model-based design flow. ... 21

Figure 3 - (a) Pyramid of abstraction levels that comprises a system design from the specification to a
possible optimal solution. Figure extracted from [KIE99]. (b) Proposed approach location
according to the pyramid’s classification. .. 24

Figure 4 - Calibration of architectural simulation models. Figure taken from [PIM08]. 25

Figure 5 – Structural view: actor-oriented model and its hierarchical abstraction. 26

Figure 6 - Generic structure of the actor (a), example of actor parameters (b) and its pseudo XML
description (C). ... 27

Figure 7 - Actor behavior execution flow during simulation time. Figure based on definitions presented in
[LEE03]. ... 27

Figure 8 - Proposed design flow. Figure obtained from [PES04]. .. 32

Figure 9 – Methodology proposed by Xu et. al. Figure obtained from [XU05]. 33

Figure 10 - (a) energy model extraction methodology, (b) energy-aware validation flow. Figures
extracted from [CHA05]. .. 35

Figure 11 – Example of a CDCG. Figure taken from [MAR05b]. ... 36

Figure 12 – NoC design flow proposed by Xi. Figure taken from [XI06]. ... 36

Figure 13 - Modeling the MPSoC processing element into a computational graph; (a) Typical
microprocessor architecture block diagram; (b) Microprocessor modeled as a computational

graph. Figure taken from [EIS06]. ... 37

Figure 14 - (a) traffic distribution graph (TDG) example and (b) its corresponding traffic distribution
matrix (λ). Figure extracted from [ELM09]. .. 39

Figure 15 - (a) Y-chart design space exploration flow, and (b) Sesame's model layers. Figures obtained
from [PIM06] and [PIM08], respectively. .. 43

Figure 16 – A 3 x 4 direct Mesh NoC topology and a generic router architecture. 48

Figure 17 - Adopted approach for NoC modeling and design space exploration. 50

Figure 18 - UML sequence diagrams depicting interactions between components of the HERMES NoC.

Figure extended from [IND08]. ... 50

Figure 19 - Example of packet flit difference between HERMES and RENATO models. 51

Figure 20 - Implemented Round-Robin method. .. 52

Figure 21 - (a) JOSELITO's packted structure and (b) buffer state machine. 53

Figure 22- Unblocked (in the left side) and blocked packet transmission situations. 53

Figure 23 - Estimated release times regarding blocking-free delivery scenario. 55

Figure 24 - Packet forwarding situation regarding header blocking. ... 56

Figure 25 - Packet forwarding situation regarding header and trailer blocking. 57

Figure 26 - ATLAS design exploration flow. ... 58

Figure 27 - Latency difference in clock cycles between JOSELITO and HERMES for 3 different traffic
distributions: (a) uniform, (b) normal, and (c) pareto on-off and NoC sizes (2x2, 3x3, 4x4 and
5x5), 16 flits packets. .. 59

Figure 28 - Evaluated end-to-end communications (sent communications from node 00 to other NoC

nodes). For simplicity only the node 00 is illustrated in the figure. 60

Figure 29 - Latency difference between a 4x4 JOSELITO and a 4x4 HERMES for 3 different traffic
distributions (uniform, normal and pareto on-off) and 3 different packet sizes (16, 50 and 100

flits). ... 62

Figure 30 - Extension of rate-based power estimation flow. ... 64

Figure 31 - 5x5 NoC and the PowerScope. .. 67

Figure 32 – An example of a unified model representation. Figure extended from [MÄÄ10]. 74

Figure 33 - Proposed model-based design flow. ... 77

Figure 34 – (a) Example of an application with 4 application blocks. (b) Example of a pseudo C code for

the application block A, where the m1 data size constraint of A defines the LENGHTH_X (line
14). ... 79

Figure 35 - Resulted mapping of VOPD, automotive, MPEG4 and HDTV applications, according 4
heuristics: SA, Taboo Search, GI and Random. ... 81

Figure 36 - Average NoC power dissipation (a) and energy consumption (b), for different mapping

heuristics and link switching activity. ... 81

Figure 37 - Relative power distribution according to the four defined intervals for: (a) 30 %, (b) 40%,
and (c) 50% of link switching activity. ... 82

Figure 38 - Power values in interval 4 with 50% of link switching activity, during 1 second of simulation.
 ... 83

Figure 39 – Local analysis of hotspot communication zones at the peak power value (SA - 476,03, Figure
38). ... 83

LIST OF TABLES

Table I - Comparison of power dissipation (mW) between ORION 1.0 and ORION 2.0. Table taken from
[KAH09]. .. 38

Table II - Related works in NoC-based MPSoCs Power Estimation. .. 41

Table III - Average latency (“L” - clock cycles) and throughput (“T” - % of the relative channel
bandwidth) values for two NoC models: HERMES (“H” - RTL model) and JOSELITO (“J” - actor-
oriented model). ... 60

Table IV - Average (Av.), Standard Deviation (S.D), Minimum (Min.) and Maximal (Max.) end-to-end
communication latency values for HERMES and JOSELITO models. Number of packets (#
Pkts). ... 61

Table V - Speed up of JOSELITO in comparison to RENATO. .. 63

Table VI - Average power dissipation results using a commercial power estimation tool (PrimePower),
rate-based model, and volume-base model (NoC frequency: 50MHz). 65

Table VII - Average power dissipation results using a commercial power estimation tool (PrimePower),
rate-based model, and volume-base model (NoC frequency: 50MHz). 66

Table VIII - Average Power Dissipation difference between Model RTL and JOSELITO, using random (R)
and complement (C) traffic distribution. T1, T2, T3 means 100, 1000 and 10,000 packets with
32 and 64 flits... 68

Table IX - Average Energy Consumption difference between Model RTL and JOSELITO, using random (R)
and complement (C) traffic distribution. T1, T2, T3 means 100, 1000 and 10,000 packets with
32 and 64 flits... 69

Table X - Speed up of actor-oriented power model in comparison to RTL power model for 3 traffic

distributions with 100 packets. .. 69

Table XI - Number of detected hotspots for each power interval, varying mapping, injection rate (30 and

60 fps) and link switching activity (sw. act.). .. 82

Table XII - VOPD end-to-end communication latency results for different mapping heuristics. Application
(A), maximum (Max.), minimum (Min.) and average (Av.). .. 84

LIST OF ABBREVIATIONS

APD Average Power Dissipation

BCA Bus Cycle Accurate

CABA Cycle Accurate Bit Accurate

CDCG Communication Dependence and Computation Graph

CT Continuous Time

DE Discrete Event

DSP Digital signal processing

DivX Digital Video Express

EFSM Extended Finite State Machine

FSM Finite State Machine

FPGA Field Programmable Gate Array

GALS Globally Asynchronous Locally Synchronous

GI Greedy Incremental

HDTV High-definition Television

IDCT Inverse Discrete Cosine Transform

IP Intellectual Property

IPD Instantaneous Power Dissipation

KPN Kahn Process Network

LSE Liberty Simulation Environment

LUT Look Up Table

MID Mobile Internet Device

MMS MultiMedia System

MoC Model of Computation

MPSoC Multiprocessor System on a Chip

NAM Network Animator

NI Network Interface

NoC Networks-on-Chip

PAT Payload Abstraction Technique

PE Processor Element

RPD Relative Power Dissipation

RTL Register Transfer Level

SA Simulated Annealing

SDF Synchronous Dataflow

TDG Traffic Distribution Graph

TLM Transaction Level Modeling

TM Timed Multitasking

VOPD Video Object Plan Decoder

TABLE OF CONTENTS

1. INTRODUCTION.. 17
1.1 GOALS ... 19
1.2 CONTRIBUTION .. 19
1.3 ORIGINALITY OF THIS THESIS .. 20
1.4 OUTLINE OF THIS THESIS ... 20

2. ABSTRACT SYSTEM MODELING AND ACTOR ORIENTATION ... 23
2.1 TERMINOLOGY AND BASED CONCEPTS .. 23
2.2 ACTOR ORIENTATION .. 25

2.2.1 Actors .. 25
2.2.2 Actors Behavior .. 26

2.3 DE MODEL OF COMPUTATION ... 28
2.3.1 Discrete Event (DE) ... 29

3. STATE-OF-THE-ART IN NOC-BASED MPSOC MODELING ... 31
3.1 NOC MODELING .. 31

3.1.1 NoC Modeling - Closing Remarks ... 33
3.2 NOC-BASED MPSOCS POWER ESTIMATION MODELING ... 34

3.2.1 NoC-based MPSoCs Power Estimation Modeling - Closing Remarks 40
3.3 MPSOC APPLICATION MODELING AND MAPPING ... 42

3.3.1 MPSoC Application modeling and mapping - Closing Remarks 45

4. PROPOSED MODELS ... 47
4.1 NOC BASIC CONCEPTS .. 47
4.2 HERMES REFERENCE MODEL .. 48
4.3 RENATO MODEL ... 49
4.4 JOSELITO MODEL .. 52

4.4.1 Scenario I: Blocking-free delivery ... 54
4.4.2 Scenario II: Header Blocking ... 55
4.4.3 Scenario III: Header and Trailer Blocking ... 56

4.5 EVALUATION OF THE PROPOSED MODELS .. 57
4.5.1 Experimental Setup .. 58
4.5.2 JOSELITO Latency and Throughput Evaluation .. 59
4.5.3 JOSELITO End-to-end Communication Evaluation ... 60
4.5.4 Limitation of the PAT .. 61
4.5.5 Comparison Between JOSELITO and RENATO Models ... 62

4.6 DEBUGGING AND NOC POWER ANALYSIS USING SCOPES ... 63
4.6.1 Rate-based Power Model ... 63
4.6.2 Comparison of Power Estimation Models .. 65
4.6.3 Actor-oriented Power Model ... 66
4.6.4 Comparison between RTL and Actor-Oriented Models for Power and Energy
Estimation .. 68

4.7 CHAPTER 4 – CLOSING REMARKS .. 70

5. MODEL-BASED DESIGN FLOW FOR NOC-BASED MPSOCS .. 73
5.1 APPLICATION MODEL LAYER .. 73
5.2 PLATFORM MODEL LAYER ... 75
5.3 MAPPER MODEL LAYER ... 75
5.4 UNIFIED MODEL EXECUTION FLOW ... 76
5.5 MODEL-BASED DESIGN FLOW .. 77
5.6 CASE STUDY .. 80
5.7 CHAPTER CLOSING REMARKS ... 84

6. CONCLUSION AND FUTURE WORK .. 87
6.1 THESIS CONTRIBUTIONS .. 87
6.2 PUBLICATIONS ... 87
6.3 FUTURE WORKS ... 88

REFERENCES ... 91

17

1. INTRODUCTION

Due to increasing demands on performance (high data rates that continue to go up) several

embedded applications (e.g video processing, HDTV, multiple wireless communication standards,

gaming) are frequently implemented on multiprocessor systems-on-chips (MPSoCs)

[WOL04][KAN06]. MPSoCs increase system performance by employing multiple processors to

execute system application tasks1. MPSoCs comprise many processor elements (PEs), like

embedded processors, memories, dedicate hardware components, interconnected by a

communication infrastructure.

Networks-on-chip (NoCs) are employed as the communication infrastructure able to handle

MPSoC communication requirements due to its scalability, power efficiency, and support to

globally asynchronous locally synchronous (GALS) paradigm [WOL04][PAN05][BJE06]. NoCs2 are

composed of cores connected to routers, and routers interconnected by communication channels

[BEN02]. However, the adoption of NoCs includes new challenges to the MPSoC design flow, such

as choosing a suitable routing algorithm, NoC topology, buffering strategy, flow control scheme, or

reducing power dissipation. Due to the vast design space alternatives that these challenges may

impose to the final application and its required performance, the evaluation of NoCs become a

mandatory step in the MPSoCs design flow [PAN05][BEN06]. The evaluation of NoCs is required to

establish a good trade-off between the NoC architecture characteristics and the requirements of

the given application.

NoC-based MPSoCs are a trend for future portable systems that require high performance

while maintaining low power dissipation. Fourth generation systems are examples of mobile

internet devices (MIDs) with limited power budget (battery operated), which must be efficiently

used for executing several performance demanding applications [BER10]. Figure 1 shows some of

the expected 4G applications for future portable systems, such as: (i) three dimensional and

holographic gaming, (ii) 16 megapixel smart cameras and (iii) high-definition camcorders. In this

scenario, the impact of the power dissipation by the NoC interconnect becomes a critical challenge

in the design space exploration3 of such systems [ATI07b][BER10]. For example, NoC infrastructure

of two real systems reported by [LEE09] and [KAH09] are responsible for 36% and 28% of the total

power dissipation, respectively.

Such applications are composed of several tasks running simultaneously. The increasing

number of application tasks drives the investigation of more efficient mapping heuristics, which is

another challenge in design space exploration of MPSoCs. Task mapping consists of finding the

1 In the context of this Thesis, a task is a behavioral entity (defined according to a set of operations) that compose

2 The main concepts of the NoC are defined in the Chapter 4 of this Thesis.

3 It is defined in Chapter 2 of this Thesis.

18

best placement for the application tasks, in order to fulfill a set of requirements (e.g. minimizing

the traffic congestion) [MAR05][HU05][RUG06]. Task mapping is classified as static or dynamic,

according to the moment it is defined. In the static approach, tasks are mapped onto PEs at design

time. In turn, dynamic mapping defines each task placement at runtime [CAR09].

Figure 1 – Examples of expected 4G applications for future portable systems. Figure extracted from
[KRE08b].

Due to the vast number of alternatives in the design space of NoC-based MPSoCs, fast and

accurate performance evaluation approaches can result in earlier - and often better - design

decisions. Modeling at higher abstraction levels is a common practice to increase and simplify

development and validation of complex systems, as MPSoCs [JAN03]. The simulation speed, the

improved observability, and debugging capabilities provided by higher-level models reduce design

space exploration time [ZEN10]. In this work, modeling is defined as the practice of implementing

or modifying a model (system description) or even part of it, using some formalism (e.g.

programming languages) with respect to a given specification4. A model is a simplification of

another entity, which can be a physical thing or another model (that can be a simplification of the

previous model). As defined in [JAN03], a model has to include exactly those characteristics and

properties of the modeled entity that are relevant for a given purpose (e.g. prediction of the

worst-case execution time of an application). In this context, model-based design was introduced

recently as an efficient way to develop complex systems (e.g. automotive systems) by combining

models, tools and design methodologies resulting in earlier design decisions that are necessary to

respect the time-to-market frame5 of these systems [KRE08][NIC09][ZEN10].

4 As defined in [BLA04], the system specification is the top technical document for designing a system. The system
specification is language-independent and it has to provide, for instance, behavioral and temporal properties of
the system.

5 The time interval between the product concept generation and its introduction in the market.

19

In this perspective, the most promising technique to explore the complex design space of

NoC-based MPSoC platforms is to build simpler, more abstract models of applications and

platform components, and to evaluate the impact of alternative compositions on, for example,

performance and power dissipation. The accuracy and speed of such evaluation must be high, and

the effort to build and compose such models must be very low, so that they can provide

meaningful results early on the design flow.

The foregoing context provides the motivation for this Thesis, which aims at integrating a

set of tools and actor-oriented models into a model-based methodology developed into the

Ptolemy II framework. The proposed methodology flow enables flexible modeling and joint

validation of application and platform models under different constraints, mappings, and

configurations, allowing the design space exploration of NoC-based MPSoCs at early stages of the

design flow.

1.1 Goals

The strategic goal of this Thesis is to propose a semi-automated model-based design flow

that allows early performance analysis of different design alternatives of NoC-based MPSoCs6,

focusing on homogeneous processor platforms only. To accomplish this strategic goal, the

following specific objectives should be fulfilled:

 propose accurate actor-oriented NoC architecture models;

 define a validation7 metric in order to compare the accuracy of the proposed NoC
models with the adopted reference RTL model;

 support the joint validation of applications mapped onto the platform model;

 support the use of static mapping heuristics;

 support an accurate NoC power estimation at early stages of the MPSoC design flow;

 propose an integrated design flow by providing semi-automated and easy to use
toolset that enable design space exploration of NoC-based MPSoCs;

1.2 Contribution

This Thesis has two main contributions: (i) development of abstract NoC models, providing

accurate performance evaluation; (ii) integration of the proposed models into a model-based

design flow. As a summary, such contributions can be detailed as follows:

Modeling contributions:

1. simple and flexible NoC architectures modeling providing accurate performance
estimation results (e.g. latency and throughput) when compared to RTL models;

6 It is important to mention that the present work is performed on homogeneous processor platforms only.

7 Here, validation means the process of comparing the model results with a reference model.

20

2. a technique that can be applied to wormhole packet switching NoCs to reduce the
simulation time, with high accuracy of latency, throughput and power estimation;

3. increased observability, allowing the analysis of different performance metrics over
simulation time using actor-oriented monitor models attached to a graphical
interface;

Design flow contributions:

1. integration and extension of an accurate power estimation model into an abstract

and parameterizable actor-oriented NoC model;

2. integration of mapping heuristics that can be used to define the most power/latency-
efficient placement of applications onto the MPSoC platform;

3. modeling and validation of real applications using the actor-orientation and UML;

4. automatic transformation of application models (using actors and UML) to graph
description (used for mapping purpose) and to pseudo C code (used for traffic
injection purpose) that can be executed by HEMPS platform;

1.3 Originality of this Thesis

The originality of this Thesis is in how the applications and platforms are jointly modeled

and validated. Figure 2 summarizes the present work, proposing a complete NoC-based MPSoC

validation flow. Application modeling includes actors and executable UML sequence diagrams, to

enable the description of actual embedded applications (A). The application representation can be

automatically converted to pseudo C code (used for traffic injection purpose) and to graph

description (used for mapping purpose) (B) (C). Platforms, also described with actors, enabling fast

design exploration and system debugging by using scope actors that are responsible to monitor

some performance figures (D). Performance figures are generated during the joint validation of

application model mapped onto the platform model (E), keeping the accuracy of lower abstraction

levels (F).

1.4 Outline of this Thesis

This Thesis is organized as follows. Chapter 2 presents basic concepts related to high level

modeling and actor orientation. In sequence, related works in NoC-based MPSoC modeling

approaches are presented in Chapter 3. Chapter 4 presents the development and the validation of

the proposed abstract NoC models, as well as the integration of a NoC power estimation model

into an actor-oriented model. Chapter 5 presents the integration of the proposed models into a

model-based design flow. Finally, Chapter 6 points out conclusions and directions for future work.

21

AB

Application

Modeling

Application Model with actors and UML Diagrams

AB1

AB2 AB3

AB4

M
2

CWM Graph Description

Vergil (PtolemyII Interface)

NoC

AB4 internal

view

M
1 M

3

A 3s
m

M
5

AB1

NoC

NoC Characterization

NoC Dimesion

Buffer depth

Number of

Virtual Channels

Control Flow

Scopes

PowerScope

ChannelScope

BufferScope

HopSpotScope

Point2pointScope

m3

m1

AB1

m2

m4

m5

AB3

AB4

UML

Sequence

Diagram

m1

m2

m3

m4

m5

Director

AB4AB1 AB2 AB3

m1

m3

m2

m4

m5

m6 m6

m6

Application

graph and

C code

Generation

Mapping

heuristics

(CAFES)

CAFES´ Mapping

Platform

and Scopes

Selection

Reports and

Analysis

Results

Unified

Model

Simulation

(Ptolemy II)

T2

T1

m6

m5m4

AB2

#include "../../task.h"

Message m4, m5, m6

m4.lengh = 128;
 . . .
Receive(m4, AB3);

Pseudo C code

 NoC Dimension

 2x2

 [allocated tasks]

 AB4.c

 router 00

Hemps

Mapping File

Hemps Editor

C
a

lib
ra

tio
n

...

AB3

AB4 AB2

...

Constraints

ok?

Mapping Files

Pseudo C Description

AB1.c AB2.c

AB3.c AB4.c

(A)

(B)

(C)

(D)

(E)

(F)

Figure 2 – Proposed model-based design flow.

22

23

2. ABSTRACT SYSTEM MODELING AND ACTOR ORIENTATION

High level abstraction modeling of NoC-based MPSoCs is an emerging approach to handle

the vast design space alternatives of such systems. However, the terminology and some concepts

are not well established. The following Sections present the terminology that is used in this Thesis,

as well as define the basic concepts and features related to abstract system modeling and actor

orientation.

2.1 Terminology and Based Concepts

System-level modeling has been used to increase the design productivity of NoC-based

MPSoCs. In this context, modeling and simulation at high abstraction levels are used to increase

and to simplify the development and the validation of NoC-based MPSoC, since not suitable

alternative designs can be disqualified (design space reduction) in a shorter time

[CAI04][JAN04][KOO08].

According to Mohanty e.t al. [MOH02], design space exploration is the process of analyzing

several implementation alternatives to identify an optimal solution. Such alternatives are not

identical but they have to perform the same functions and to provide the same utility. As defined

in [KIE99], the design space exploration is a trade-off between three issues: modeling effort,

evaluation speed, and accuracy of the obtained results when compared with a reference model.

Figure 3 (a) illustrates the abstraction pyramid that represents the three issues in performance

modeling8, which are organized in different abstraction levels according to the modeling and

evaluation cost. The high level modeling activity is a trade-off between level of details and model

confidence [BRO96]. The level of detail refers to the structural and behavior abstraction of the

system components. The structural abstraction means the granularity of a data storage and the

number of included components and their interconnects. The behavioral abstraction includes how

and when the components update their internal state and concurrently interact with other

components (e.g. how the memory is accessed by a processor). The model confidence means how

useful the model is for a particular purpose for instance in terms of accuracy when compared to a

reference model.

Figure 3 (b) places the proposed approach (which is detailed in Chapter 4 and 5 of this

Thesis), according to the pyramid internal structure. As shown in Figure 3 (b), the proposed

approach allows flexible modeling, by employing accurate and abstract executable models that

can be used to design space exploration of NoC-based MPSoCs before it goes down to the RTL

execution (HEMPS), which is then used to identify the optimal design solution. It should be clear

that design space exploration discussed in this Thesis is not restricted to the architecture

8 A detailed description of each issue in performance modeling can be found in [KIE99].

24

modeling, as proposed in [KIE99], it refers to the space of application-mapping-NoC platform from

an overall system design point of view.

Specification

synthesizable RTL

models

Explore

optimal

solution

cycle accurate models

abstract executable models

estimation models

alternative realizations

C
o

s
t o

f M
o

d
e

lin
g

/E
v

a
lu

a
tio

n
/

L
e

v
e

l o
f d

e
ta

il

High

Low

O
p

p
o

rt
u

n
it

ie
s

/A
b

s
tr

a
c

ti
o

n

High

Low

not suitable

alternative

Specification

synthesizable RTL

models

Explore

optimal solution

(HEMPS execution)

cycle accurate models

abstract executable models

estimation models

alternative realizations

Proposed

approach

executable application models

executable mapper model

executable NoC platform models

cycle accurate results

C
o

s
t o

f M
o

d
e

lin
g

/E
v

a
lu

a
tio

n
/

L
e

v
e

l o
f d

e
ta

il

High

Low

O
p

p
o

rt
u

n
it

ie
s

/A
b

s
tr

a
c

ti
o

n

High

Low

(a) abstraction pyramid (b) proposed approach location

Figure 3 - (a) Pyramid of abstraction levels that comprises a system design from the specification to a
possible optimal solution. Figure extracted from [KIE99]. (b) Proposed approach location according to the

pyramid’s classification.

In addition to modeling aspects mention above, model calibration and model validation

have received more attention [PIM08]. The model calibration process provides the connection

between the high level model and the lower levels of design abstraction, in order to achieve

accurate performance results. The model calibration is fundamental to adjust the model’s

parameters (e.g. router arbitration time), since accurate system modeling becomes especially

important to the design of complex systems like NoC-based MPSoCs [ZEN10]. In turn, model

validation is the process of comparing the model results with a well known datasheets,

documentation (e.g. data) or even a reference model, usually implemented in a lower level

[BRO96][PIM08]. Figure 4 shows the relation among model calibration, model validation, and

model simulation.

In terms of model simulation, a set of simulation-based environments have been proposed,

such as: Metropolis [BAL03], MESH [PAU05], Ártemis [PIM06], SIMULINK [MAT08] and Ptolemy II

[LEE03], adopted in this Thesis. These environments can be very useful to the design space

exploration of complex systems, since they allow capturing the behavior of the system

components and their interactions at a high level of abstraction [PIM08]. Such environments, with

exception of SIMULINK, are described and classified in [GRI04] considering different modeling

aspects. It is out of the scope of this Thesis to investigate and to present a review of simulation-

based environments characteristics. Documents like [GRI04] and [DEN06] can be used for such

purpose.

25

Datasheets/

Documentation

Low-level

simulator

(Prototype)

Implementation

validation

calibration
Model

Parameters

(system-level)

simulation

model

performance
estimates

Figure 4 - Calibration of architectural simulation models. Figure taken from [PIM08].

Ptolemy II has been chosen because previous works used in this Thesis (e.g. supporting a

set of directors to include the possibility of co-simulate UML sequence diagrams) were already

implemented under this environment [IND07][IND07b]. Besides, Ptolemy II is an open-source

component-based design tool that can be extended to support addition components and features,

as done in this Thesis. As defined in [LEE03], Ptolemy II consists of a set of Java packages that

provide a framework for modelling, simulation, and design of concurrent systems, implementing

an actor-oriented design methodology.

2.2 Actor Orientation

Actor orientation design is a component methodology, which separates the functionality

concerns (modelled as actors) from the component interaction concerns (modelled as

frameworks) [LEE03]. Actor orientation is a widely accepted paradigm in system level design and

its main components are actors [LEE04].

2.2.1 Actors

Actors are classified as atomic or composite. An atomic actor is a simple capsule that

executes a sequential computation (Java class). Atomic actor cannot contain other actors, while

composite actors are those composed of other actors, allowing different models of computation

(MoCs) to be specified at different levels in the hierarchy. Figure 5 illustrates a basic actor-oriented

model, which consists of two levels of interconnected actors that are managed by different

directors (director 1 and 2). In this context, each director manages the execution of its MoC,

defining the flow of control and the actors’ communication semantics. The upper part of Figure 5

shows the top model that is composed of two actors (A and B), where the composite actor A

represents an abstraction of its internal functionality (model at the bottom of the hierarchy).

26

input

ports

Action

Methods

Composite

actor A

Atomic

actor B

channel

external

input

ports

Director 1

Director 2

Actor C
Actor E

output

ports

relation

type type type
tokens

Actor D

Action

Methods

Action

Methods

Action

Methods

Action

Methods

external

output

port

Figure 5 – Structural view: actor-oriented model and its hierarchical abstraction.

As shown in Figure 5, the communication between actors A and B is based on data tokens

exchange through channels, which establish the relation among the actors connecting their input

and output ports. The tokens transmitted among actors can encapsulate a single value (e.g. int

type), as well as tokens that contain different tokens types identified by a name (so-called record

tokens).

Figure 6 (a) represents a generic structure of an actor composed of a set of input and

output channels used to pass tokens to other ports. In addition to ports, actors may have

parameters. Figure 6 (b) shows the set of parameters of the TLMBuffer actor, for instance its

storage capacity (capacity parameters defined to have 8 positions, period and delay). In addition in

Figure 6 (c), a pseudo XML description of TLMBuffer actor is illustrated.

2.2.2 Actors Behavior

The actor behaviour execution is defined according to the action methods, which are public

methods of the actor that implement its functionality as a part of a simulation. The execution of

these methods has a sequential order during the model simulation, to provide preparation, data

processing and finalization to the actor’s workflow into the simulation. Figure 7 illustrates the

sequential order that such action methods are invoked during the model simulation. The

sequential order is organized in three main periods: (i) initialization – 1 occurrence during the

simulation, (ii) iteration - multiple occurrences during the simulation, and (iii) finalization - that

occurs only one time at the end of model simulation.

27

ACTOR
ACTOR

PORT
PORT

CHANNEL

DATA
PORT

PARAMETERS

Package
Data Unpackage

Data

Process
Data

ACTION METHODS

TOKEN

(a)

(b)

1. <class name="TLMBuffer" extends="lsi.noc.renato.TLMBuffer">

2. <property name="capacity" class="ptolemy.data.expr.Parameter" value="capacity">

3. </property>

4. <property name="_location" class="ptolemy.kernel.util.Location" value="[175.0, 130.0]">

5. <port name="input" class="ptolemy.actor.TypedIOPort">

6. <property name="input"/>

7. <property name="_showName" class="ptolemy.data.expr.SingletonParameter" value="true">

8. </property>

9. </port>

10. <port name="output" class="ptolemy.actor.TypedIOPort">
11. <property name="output"/>

12. <property name="_showName" class="ptolemy.data.expr.SingletonParameter" value="true">

13. </property>

14. </port>
15. </class>

(c)

Figure 6 - Generic structure of the actor (a), example of actor parameters (b) and its pseudo XML
description (C).

Director

ACTOR BEHAVIOR

Actor

preinitialize()

initialize()

prefire ()

fire()

posfire()

wrapup()

INITIALIZATION

begins the simulation

ITERATION
process data

 during simulation run

FINALIZATION
 ends the simulation

Multiple

occurrences

1 occurrence

1 occurrence

Model

simulation

time

Figure 7 - Actor behavior execution flow during simulation time. Figure based on definitions presented in
[LEE03].

28

2.2.2.1 Initialization

The initialization period is composed of two execution methods: preinitialize() and

initialize(). The initialization period starts with the preinitialize() method call, which is often used

to set type constraints and to analyse the model consistency (e.g. type inference, checking for

deadlock [GOD09]). This method is called exactly once before any other behaviour method is

called. The initialize() method is invoked next, and is typically used to initialize state variables

(generally depending on type resolution) in the actor. After the initialize() method, multiple

iterations can occur according to the model characteristics.

2.2.2.2 Iteration

Initially, an iteration is defined as exactly one occurrence of prefire(), some occurrences of

fire(), and at most one occurrence of postfire(). Finally, the actor execution ends with a call to

wrapup().

Prefire() method is used to verify the condition for firing of the actor. If the Actor is ready, it

returns a Boolean true. The prefire() method can also be used to perform an operation that will

happen exactly once per iteration (e.g. read a file with some data that is sent from an actor to

another one). The fire() is not called until the prefire() returns true.

The fire() method is the main point of an actor execution and is generally responsible for

reading input tokens from input ports and, if necessary, producing tokens to outputs ports

[GOD09]. Another possibility is reading parameter values to apply to input tokens or even

generated an output depend on them.

The postfire() method determines whether the execution of an actor is complete. The

return value of postfire() is a Boolean that indicates to the model director whether execution of

the actor is complete. In case, the model director will not call prefire(), fire(), or postfire() again

during this execution of the model.

2.2.2.3 Finalization

The wrapup() method is typically used for displaying final results. It is called exactly once

for each actor to finish the execution of a workflow.

2.3 DE Model of Computation

A MoC is defined in [LEE03], as a set of rules that guide the interaction among actors,

defining how concurrency and time affect the way actors communicate and behave. The most

important differences between MoCs are the way they deal with concurrency, the way the

components communicate with each other, and finally how time is modeled. Examples of MoCs

implemented in Ptolemy II include: (i) continuous time (CT), (ii) finite-state machine (FSM), (iii)

synchronous dataflow (SDF), (iv) timed multitasking (TM), and (v) discrete-event (DE), which is

briefly described here. A detailed description, classification and more comprehensive discussion of

29

MoCs can be found in [JAN03], as well as in documents offered by Edward Lee and his team in the

Ptolemy II manuals9.

2.3.1 Discrete Event (DE)

The DE is a well known MoC for specifying digital hardware and for simulating

telecommunications systems. A large number of simulation environments for digital hardware

description and simulation follow a predefined DE MoC (e.g. Modelsim). In DE MoC actors

communicate through sequences of events placed in time, along a real-time line. Actors under this

MoC communicate by triggering events, where one event is understood as the pair formed by a

token and a time stamp. The DE scheduler processes the events chronologically according to the

time stamp by firing those actors whose available input events are the oldest – the token with the

earliest time stamp. Time stamp is defined as a numerical value that is interpreted as the time at

which the communication occurs [GOD09]. The current time in the executable model is referred as

the model time. The DE Director increments the model time when all events with time stamps

equal to the model time have been processed.

From the actor point of view, the DE Director calls fire() every time that a valid Token is in

the input. When no more tokens are available to be passed, meaning that all events have a time

stamp earlier than the model time, the Director stops the simulation and calls the wrapup()

method. Simultaneous events are those with the same time stamp. This implementation handles

simultaneous events systematically and deterministically, supplying an important characteristic by

prioritizing such events. As defined in [JAN03], another important characteristic of this MoC is the

efficient structure of the global event queue, which minimizes the overhead associated with

handling a large number of events.

9 Available at: http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm.

30

31

3. STATE-OF-THE-ART IN NOC-BASED MPSOC MODELING

This Chapter surveys the state-of-the-art in NoC-based MPSoC modeling approaches,

according to different criteria: (i) high level NoC modeling, (ii) NoC-based MPSoC power

estimation, (iii) application modeling and mapping. This survey gives special attention in the

development of high-level models/approaches that can be easily employed for early-stage NoC-

based MPSoCs design space exploration purposes.

3.1 NoC Modeling

As defined in [PAN05] [BJE06], modeling NoC interconnects through abstract models is the

first means to approach and understand the required architecture and the impact of the traffic

within it. This Section surveys these approaches while Section 3.1.1 discusses them. In this

context, some research groups try to adapt generic network simulators to the intra-chip

environment, while others propose tools/frameworks and techniques to specify, simulate and

generate NoCs. Examples of generic network simulators used in this context are NS-210 and

OPNET11.

NS-2 is a general purpose network simulator that gives support to describe the network

topology, the communication protocols, routing algorithms, and traffic (e.g. random traffic)

[SUN02]. NS-2 provides simulation traces for interpreting results and a graphic aid to observe

network message flows called NAM (Network AniMator). NS-2 is open source, allowing code

modification in order to add new protocols and functionalities. The NS-2 is also used in [ALI06],

where the authors present some pros and cons for the use of NS-2 network simulator for

simulating NoCs. One limitation of using NS-2 is the fact that it does not support the power

estimation, an important cost function of the NoC design.

OPNET is also a general purpose network simulator used to simulate NoC-based

architectures [XU04]. OPNET presents some disadvantages to model NoCs, including: (i) it does not

allow setting a time unit smaller than 1 second; (ii) distance between nodes in the network is

measured in meters only; (iii) OPNET assumes only asynchronous communication.

Specific tools/frameworks have been proposed to describe, generate, verify and evaluate

NoC components, taking into account their specificities (e.g. network interface, NI). The developed

tools also allow traffic modeling and generation for different traffic scenarios, which can be

defined by the designer. Examples of specific tools/frameworks for design exploration of NoCs,

available in the literature, include: (i) Kogel’s framework [KOG03], (ii) NoCGEN [CHA04], (iii) OCCN

[COP04], (iv) Pestana’s approach [PES04], (v) Xu’s methodology [XU05], and (vi) NetChip synthesis

10 Available in: http://www.isi.edu/nsnam/ns/.

11 Available in: http://www.opnet.com.

32

flow [BER05].

Kogel et al. [KOG03] propose a modular framework for system level exploration of the on-

chip interconnection architecture using TLM abstraction. The framework has a library of different

network modules with configurable topologies and arbitration protocols, which can be used to

define the NoC architecture that will be simulated. Besides, it allows capturing performance

metrics as latency and throughput of different NoC configurations. However, the accuracy of such

results was not discussed in this work.

NoCGEN creates VHDL NoC descriptions used for simulations and synthesis [CHA04]. This

tool uses a set of parameterizable templates to build routers, varying the number of ports, routing

algorithms, data width and buffer depth. Besides NoC parameterization, it uses a mixed

SystemC/VHDL simulation environment. The evolution of this work was presented in [CHA08],

which describes the NoCGEN integration into a design methodology for generating optimized

application specific NoC topologies.

The OCCN framework proposed by [COP04] enables the creation of NoC architectures at

different abstraction levels, protocol refinement, design exploration, and NoC component

development and verification based on a communication API. The OCCN methodology has been

adopted by Dumitrascu et al. [DUM06] in order to analyze the effectiveness of inter-module

communication and for components adaptation. In this approach, the communication architecture

performance evaluation is based on cycle-accurate co-simulation.

 Pestana et al. present in [PES04] a NoC design flow, illustrated in Figure 8, which uses a

NoC simulator described in SystemC. Applying the proposed flow, the designer specifies in three

files NoC topology, IP to NoC mapping and detailed interconnections. These files are used by a

XML parser to instantiate the NoC-based system (VHDL description), which will be simulated. The

simulator also allows describing traffic generators to evaluate the performance metrics (e.g.

throughput) of NoC instances. A case study, in which different synthetic traffic workloads are

injected in the NoC, was described in [PES04] to demonstrate the main steps of the proposed

design flow.

Figure 8 - Proposed design flow. Figure obtained from [PES04].

33

Xu et al. [XU05] present a low-level methodology for modeling, designing and analyzing

different NoC architectures based on the application communication behavior. Due to its low level

abstraction (RTL and gate-level), this approach can accurately estimate the performance, power,

and area of several NoC architectures. This work uses the following tools: OPNET, Design Compiler,

and SPICE. Due to the use of SPICE, electrical simulation, modeling and simulation are time

consuming, which is not appropriated for rapid design space exploration.

Figure 9 – Methodology proposed by Xu et. al. Figure obtained from [XU05].

Bertozzi et al. [BER05] propose the NetChip synthesis flow, which allows the exploration of

different NoCs topologies (such as mesh, torus, hypercube, Clos, and butterfly). The NetChip flow

is composed of three phases: (i) NoC topology mapping, (ii) selection, and (iii) generation (SystemC

model that can be simulated at a cycle and signal accurate level). Additionally, an input core graph,

obtained with the SUNMAP tool, is used in the mapping phase [MUR04]. Then, the SUNFLOOR tool

is used to synthesize the most power and performance efficient NoC topology that satisfies the

application requirements [MEL06].

3.1.1 NoC Modeling - Closing Remarks

Making an overview of the NoC modeling researches, it is possible to verify that the NS-2

and OPNET network simulators do not consider some particularities that are necessary to the NoC

design. High-level abstract models of NoCs are proposed with different buffering strategy, flow

control, arbiters and virtual channels. Besides NoC architectures, an important effort was done to

provide faster analyses of performance metrics of NoCs, which is a mandatory step to find out the

best trade-off between architecture and data rates.

Most proposed techniques or tools allow the emulation of the NoC in different abstraction

levels, considering different architectures (e.g topology, router) and traffic conditions. In many

cases, the simulation occurs in TLM (transaction level model) style, which demands less design and

simulation time compared to RTL descriptions. However, the accuracy of those high level models is

34

influenced by the structural and behavioral abstractions.

One contribution of the proposed work, when compared to the reviewed NoC modeling

works, is a novel technique that can be applied to wormhole packet switching NoCs to reduce the

simulation time, with high accuracy of latency, throughput, and power estimation. This technique

is described in Chapter 4.

3.2 NoC-based MPSoCs Power Estimation Modeling

This Section surveys the state-of-the-art in NoC-based MPSoC power estimation models,

which are discussed and compared in Section 3.2.1. This survey focuses on high-level models that

can be used for design space exploration at early stages of the design flow.

Hu et al. [HU03] present an energy estimation model based on the traffic flow in the NoC's

building blocks (routers and interconnection wires). The authors make use of the bit energy

concept [YE02], which represents the amount of energy consumed in the transmission of a data

bits throughout the NoC (in its routers and interconnection wires). This model evaluates the

energy consumption in an end-to-end transmission only. Equation (1) describes the model energy

consumption estimation, for a single data transmission between two points of the NoC.

bitbit LhopsShops

hops

bit EnEnE)1((1)

In Equation (1), ESbit is the energy consumption in one router; ELbit is the energy

consumption of the interconnection wires; and nhops is the number of routers used in the data bit

transmission. This work was extended in [CHA05b], which evaluates the average energy

consumption while sending a data bit from point ti to point tj. The energy consumption is given by

the summation of the energy spent in the routers and communication wires that link these two

points through a given route.

Banerjee et al. [BAN04] present a set of power models of NoC's components. To build this

model, the authors synthesize the RTL NoC description, which contains the routers and the

interconnection wires. SPICE simulation is used to compute the power consumption for each basic

block. Adding the contribution of each block, they obtain the power consumption of each module.

The router power consumption is then obtained with the summation of the modules that

compose its structure.

Wolkotte et al. [WOL05] present simple energy models based on the average energy per

bit that cross through the router. The power dissipation of packet-switched and circuit-switched

routers (synthesized VHDL-designs) are estimated using Synopsys Power Compiler according

different scenarios (variable number of concurrent data-streams with a variable load between 0%

and 100%). The router power dissipation is calculated based on four parameters: (i) the average

load of every data stream; (ii) the amount of bit-flips in the data stream; (iii) the number of

concurrent data streams; and (iv) the amount of control overhead in a router. Authors use a linear

35

model based on [WOL05b], to calculate the link power dissipation when transporting a single bit

between routers. Finally, a comparison between the energy consumption of the two NoCs and a

bus based system is presented. Results show the benefit, in terms of energy consumption, when

using NoCs for a larger number of processing tiles. For example, for 25 tiles the energy

consumption for the bus is more than 30 pJ/bit, while a packet-switched NoC is less than 10 pJ/bit.

Chan et al. [CHA05] describe an energy macro-model extraction methodology for a NoC

packet switched router, called NoCEE and illustrated in Figure 10 (a). NoCEE employs linear

regression to define a macro-model (relationship between NoC events and energy consumption).

Thus, regression analysis requires both the dependent variables (energy consumption values

extracted from technology libraries and gate-level power simulation) and the independent

variables (macro-model parameters), as well. Different input traffics (varying the injection rate)

extracted from synthetic application traces are applied to the resulting NoC macro-models in order

to calculate the energy consumption of a NoC router from simulation (steps 8 and 9 in Figure 10

(a)). Results show an average error of 5% when compared to PrimePower tool (Figure 10 (b)).

(a) (b)
Figure 10 - (a) energy model extraction methodology, (b) energy-aware validation flow. Figures extracted

from [CHA05].

Marcon et al. [MAR05][MAR05b] propose an energy estimation model based on the

computation and communication dependencies in the cores of a NoC. Authors make use of the Hu

et al. [HU05] assumption, which states that the energy consumption of an application can be

reduced up to 60% by applying different application mapping algorithms in the network. In this

work, applications are modeled as a directed graph <P,D> called the communication dependence

and computation graph (CDCG), where: the set of nodes P have all the packets exchanged by any

pair of communication cores during the application. There are two special nodes called Start and

End (as illustrated in Figure 11). The set of edges D has all communication dependencies in the
application. The elements of P are quadruples with the form of

abqaqbaabq wtccP ,,, , where ca, cb

C, and Pabq is the q-thiest packet sent from ca to cb. This packet has wabq bits and is transmitted

after a computational time taq in the source core (ca). The set of all transmitted packets form ca to

cb is called Pab. The CDCG represents the computation and communication of an application

composed of any number of cores. In this graph, the direction of the edges represents a

36

communicational dependency between the two communicating nodes.

Figure 11 – Example of a CDCG. Figure taken from [MAR05b].

Xi et al. [XI06] present the integration of mathematical power/energy models of NoC

components (e.g. input buffers) into a SystemC transaction level NoC simulation framework.

During the simulation, each corresponding mathematical model receives the number of

transactions occurred in the router or among then, in order to calculate the dynamic and leakage

power of each one. Different traffic patterns (e.g. burst period from 10us to 15us) are applied on

the same mesh-NoC to evaluate its power dissipation. Experiments on eight deep sub-micron

CMOS processes (from 180nm to 45nm), were used to validate the proposed flow, illustrated in

Figure 12. Authors did not mention the accuracy of the NoC components power models.

Figure 12 – NoC design flow proposed by Xi. Figure taken from [XI06].

Eisley et. al. [EIS04][EIS06] employ a framework that takes as input message flows, and

derives a power profile of the network fabric. The authors map the CPU datapath as a graph, and

the application as a set of messages that flow in this graph, as illustrated in Figure 13. Those

mapped CPUs are connected into the network fabric, mapping the entire MPSoC as a network. The

37

authors make use of a network power estimation tool, called LUNA, to evaluate the power

dissipation of the entire MPSoC.

Figure 13 - Modeling the MPSoC processing element into a computational graph; (a) Typical microprocessor
architecture block diagram; (b) Microprocessor modeled as a computational graph. Figure taken from

[EIS06].

Atitallah et al. [ATI07][ATI07b] use a stack of abstract models. The higher abstraction

model, named Timed Programmer View (TPV), omits details related to the computation and

communication resources. Such abstract model enables designers to select a set of solutions, to be

explored at lower abstraction levels. The second model, CABA (Cycle-Accurate Bit-Accurate), is

used for power estimation and platform configuration. Results present an error of 8% in power

estimation compared to a physical measure and 17% of simulation speed-up.

Beltrame et al. [BEL07] develop a SoC power estimation method based on SystemC TLM

modeling strategy. It adopts multi-accuracy models, supporting the switch between different

models at run-time according to the desired accuracy level [BEL06][BEL08]. The authors validate

their model using the STBus NoC, and an analytical power model of this NoC. An MPEG4

application was tested, achieving up to 82% speed-up compared to TLM BCA (bus-cycle accurate)

simulation.

Wang et al. [HAN02] present ORION, a NoC simulator that enables the evaluation of

performance and the power dissipation of different NoC architectures. ORION was built upon the

Liberty Simulation Environment (LSE) framework [VAC02]. In the LSE framework, hardware blocks

are modeled as logical functional modules that send data through ports. Each functional module is

composed of parameters and input/ouput ports. For example, considering a FIFO buffer as a

functional module, the buffer size can be a parameter and it can be composed of read and write

38

ports. The NoC component power models are defined from a set of equations that are calibrated

using HSPICE and the Berkeley Predictive Technology Model12. An extension of ORION 1.0 was

later implemented by Kahng et al. [KAH09]. The ORION 2.0 was developed to improve the

accuracy of the original ORION 1.0 power models, including new subcomponent power models

(e.g. clock and link power models), area models (e.g. detailed router floorplanning13), and updated

technology models (e.g. designs beyond the 65nm technology). The Intel 80-core Teraflops chip

and the Intel Scalable Communications Core (Intel SCC) were used as case studies in order to

validate the new NoC power models of the ORION 2.0. As presented in Table I, ORION 2.0 presents

a small difference when compared to two recent NoC prototypes (e.g. 11% of the corresponding

total power value for the Intel SCC, while the difference using ORION1.0 is 202,4%).

Table I - Comparison of power dissipation (mW) between ORION 1.0 and ORION 2.0. Table taken from
[KAH09].

 Intel 80-core Intel SCC

ORION1.0 ORION2.0 ORION1.0 ORION2.0

%difference
(total power)

-85.3 -6.5 202.4 11.0

Koohi et al. [KOO08] present a NoC power and performance analysis with different traffic

models, using analytical models. The authors targeted a NoC with a mesh topology. The employed

traffic models are: (i) uniform, (ii) local, (iii) hot-spot and (iv) matrix transpose. Results were

compared to Synopsys Power Compiler and Modelsim, showing an error of 2% for power

estimation and 3% for throughput.

Matsutani et al. [MAT08] propose a NoC power estimation model based on commercial

power estimation tools. The Authors synthetize the evaluated NoC using the Synopsys Design

Compiler tool, then the Synopsys Astro tool is used to design the NoC clock distribution tree. The

NoC Verilog netlist is simulated using the Cadence Verilog-XL tool and a circuit value change dump

(VCD) file is obtained. The authors use the Synopsys Power Compiler tool to perform the NoC

power estimation.

Elmiligi et al. [ELM09] propose a topology-based methodology that explores the impact of

the NoC topology on system power dissipation. It uses a partitioning algorithm that aims to

achieve minimum inter-partition traffic. This methodology uses graph-theoretic concepts (e.g.

connectivity matrix) to acquire the optimum NoC topology that reaches the lowest power

dissipation for a given application. NoC topology is modeled as traffic distribution graphs (TDGs), G

= (V, E, Ψ), where each node vi V represents a PE (as illustrated in Figure 14). E is a set of edges

12 Available at: http://ptm.asu.edu/.
13 Clein [CLE00] defines floorplanning as a process that is used to identify structures that should be placed close

together, and to allocate space for them in such a manner as to meet the sometimes conflicting goals of available
space (cost of the chip).

39

that represent the logical communication channels between PEs. Ψ is the graph mapping incident

function Ψ : E → V x V, which maps an edge onto a pair of vertices (vi ,vj). Each edge eij E has a

weigh factor λij that represents the average number of packets per time step transmitted from vi

to vj, 1 ≤ i; j ≤ n; where n is the number of PEs. Results show the impact of the number of ports and

buffer depth on the total router power dissipation. A MPEG4 application was used to verify the

efficiency of the proposed methodology.

Figure 14 - (a) traffic distribution graph (TDG) example and (b) its corresponding traffic distribution matrix
(λ). Figure extracted from [ELM09].

Lee et al. [LEE09] propose a power estimation framework for SoCs, using power profiles to

produce cycle accurate results. The SoC is divided in its building blocks (e.g. processors, memories,

communication and peripherals) and the power estimation is based on the RTL analysis of each

component. The authors validate the framework using an ARM926EJ-S CPU and the AMBA AXI 3.0

as NoC. Results have a maximum error of 10% compared with a gate-level power evaluation, and

an average error of 5%. Speed-up compared to a gate level simulation is in average 100 times

faster.

Milojevic et al. [MIL09] describe the 3MF MPSoC, a NoC-based MPSoC platform for low-

power video coding applications (e.g. HDTV, AVC/H.264, MPEG4). The 3MF MPSoC platform is

composed of 13 IPs (e.g. six ADRES processors [VER05], one ARM and 4 memories) interconnected

by the Artemis NoC infrastructure [PIM01]. The power dissipation of three different

implementation scenarios of the platform (e.g. application mapping, arbitration) were evaluated.

Results show that the difference in the power dissipation can achieve 26% due to the application

mapping (comparing the worst and the best case application mapping).

Anagnostopoulos et al. [ANA10] propose a systematic methodology to reduce the NoC

overall temperature, employing three different techniques: (i) power-aware routing algorithms, (ii)

buffer sizing and (iii) direct connection. This methodology can be applied to both 2D and 3D NoC

designs. The temperature optimization is achieved by mapping the application to the selected NoC

architecture, using a bandwidth-constraint mapping algorithm. The next step in the proposed

methodology is to obtain thermal profiles for the mapped NoC, using a high-level NoC simulator.

40

In this step, three different power-aware routing algorithms can be selected, different buffer sizes

and direct connection links between two highly communicative routers can be implemented. The

thermal profiles of these NoC architectures are obtained using a HotSpot tool (a gate-level thermal

estimation tool). The authors present some results regarding the mapping of three DPS

applications (VOPD, MPEG-4 and MMS) onto a 8x8 2D and a 4x4 3D mesh NoCs. Results show that

the proposed methodology achieved an average temperature reduction of 13 ºC for the 2D NoCs

and 22 ºC for the 3D NoCs, respectively, without performance penalty.

3.2.1 NoC-based MPSoCs Power Estimation Modeling - Closing

Remarks

The detailed estimation of NoC power dissipation at transistor or gate level is time-

consuming due to the NoC’s high component count and complexity. Thus, authors proposed

abstract models of NoC-based MPSoCs to accelerate and to optimize the power estimation

analysis while coping with the complexities of the interconnect architecture and implementation.

In this context, TLM is adopted by Atitallah [ATI07b], Lee [LEE09], Beltrame [BEL07] and Xi [XI06];

algorithmic descriptions by Elmiligi [ELM09], Marcon [MAR05][MAR05b], Hu [HU03], Eisley [EIS06]

and Koohi [KOO08].

Most of the approaches in Table II calibrate their high-level models using a reference

design model to achieve more accurate power estimation (fifth column). For instance, [ELM09]

and [MAT08] use RTL/gate-level power estimation by commercial tools from Synopsys. The

remaining approaches in Table II (Kahng [KAH09], Milojevic [MIL09] and Matsutani [MAT08])

obtain power estimations directly from commercial tools, providing a better accuracy when

compared to the high-level models. On the other hand, the simulation time and the amount of

memory required by these commercial power estimation tools is too high, making their use

infeasible when exploring a large design space [LEE09][KAH09].

Finally, most of the reviewed approaches employ volume-based power models (sixth

column). Such models do not include low-level effects such as congestion and burstiness that are

essential to verifying the occurrence of hot-spots. In turn, hot-spots can impact the performance

of the whole system and even reduce its reliability and life-time. The proposed actor-oriented

power model considers the effects that can lead to hot-spots by abstracting inter-task

communication by their rates rather than their volumes, which is one contribution of this Thesis

when compared to the reviewed NoC-based MPSoCs power estimation modeling (this

contribution is explored in Chapter 4). Another contribution, described in Chapter 5, is the

possibility of joint validation of applications (modeled as UML sequence diagrams) mapped onto

the actor-oriented NoC model, considering power constraints early at the design process. Finally,

to the best of our knowledge, the present work is the first NoC power estimation model that

allows accurate power analysis using a simplified NoC model based on actor-orientation.

41

 Table II - Related works in NoC-based MPSoCs Power Estimation.

 (POWER DISSIPATION ESTIMATION=PDE, NOT AVAILABLE = NA)

Work Platform
Application /

Traffic
Abstraction

Level
Reference Model
(error/speed-up)

NoC Power
Model

Description

Hu
2003

[HU03]

generic
wormhole 2D

mesh NoC

benchmarks and
MultiMedia

System (MMS)
video application

algorithmic
Synopsys design compiler but
no comparison regarding PDE

error was reported

volume-based
model

NoC PDE based on bit energy concept
[YE02], in order to explore the problem

of energy-aware mapping

Banerjee
2004

[BAN04]

generic 2D mesh
NoC

uniform traffic
distribution

(random
destinations)

RTL SPICE evaluation
gate-level

model

propose of dynamic, and leakage power
estimation of NoC's components by

extracting SPICE net-list for each
component.

Wolkotte
2005

[WOL05]

generic packet
and circuit

switching NoC
architectures

streaming
applications (DVB,

MPEG-4)

RTL (NoC) and
Algorithmic

(links)
Synopsys Power Compiler tool

gate-level
model and

volume-based
model (links)

it uses the PDE (average energy per bit
to traverse on single router) for the

spatial mapping tool (SMIT) to optimally
map the on-chip communication stream

Marcon
2005

[MAR05]
Hermes NoC

VOPD, MMV,
MPEG4

algorithmic SPICE evaluation
volume-based

model

proposes a communication dependence
and computation model (CDCM) to

capture the volume and the timing of
applications for energy-aware mapping

exploration

Chan
2005

[CHA05]

packet switching
NoC

architectures
available in

NoCGEN libraries
[CHA04]

E3S benchmark
[E3S10]

algorithmic
and RTL

absolute average error is 5%
when compared to PrimePower

tool

volume-based
and gate-level

model

authors propose energy model
extraction methodology for a NoC

packet switched router based on linear
regression

Eisley
2006

[EIS06]

PEs and NoC
represented as a

graph

messages that
represents a

traffic behavioral
algorithmic

average error of 9,1% in PDE
and 7% of average simulation
speed-up when compared to

the Raw CMP BTL

volume-based
model

high-level power analysis framework for
multi-core chips based on LUNA tool

Xi
2006
[XI06]

generic packet-
switching NoC

synthetic traffic TLM
Berkeley Predictive Technology

Models
gate-level

model

authors propose a SystemC transaction
level NoC simulation framework, which
uses a mathematical power model for

the routers, input buffers and links

Penolazzi
2006

[PEN06]
Nostrum NoC synthetic Traffic RTL

average error of 5% in PDE
when compared to

Synopsys Power Compiler

volume-based
model for link
and gate-level

for router

this paper presents a study of the
Nostrum power dissipation comparing

the proposed NoC power model with the
Synopsys Power Compiler tool

Beltrame
2007

[BEL07]

STbus NoC and
abstract PEs

MPEG4 , PI,
VMUL, Sort

TLM NA
volume-based

model
it adopts multi-accuracy power models,
according to the desired accuracy level

Atitallah 2007
[ATI07b]

NoC and abstract
components

(PEs, memories)

parallelized
version of H.263

encoder
TLM

error of 8% in PDE compared to
a physical measure and 17% of

simulation speed-up

volume-based
model

integration of MPSoCs components
power models into a

framework/simulator at the Timed
Programmer View level

Koohi
2008

[KOO08]
2D Mesh NoC

different traffics
distributions (e.g.

uniform, local,
hot-spot)

algorithmic

error of 2% for PDE and 3% for
throughput when compared to
the Synopsys Power Compiler

and Modelsim

volume-based
model

high abstraction power model for
different traffic rate parameters

Matsutani
2008

[MAT08]

generic
wormhole NoC

NAS Parallel
Benchmark

RTL Synopsys Power Compiler tool
gate-level

models

it uses a run-time power-gating
technique into the NoC router structure,

enabled by a look-ahead algorithm

Elmiligi
2009

[ELM09]
generic NoC MPEG4 algorithmic Synopsys Power Compiler

volume-based
model

proposes a topology-based methodology
based on connectivity matrix concept

(graph-theoretic) for PDE of an
application specific NoC-based systems

Kahng
2009

[KAH09]

Intel 80-core
Teraflops chip
router & Intel

Scalable
communications

Core router

Video Processing
and Video
Decoding

RTL

Intel 80-core => 636,05% better
then ORION 1.0

Intel SCC => 1840% better then
ORION 1.0 [HAN02]

gate-level
models

the NoC components power models of
ORION1.0 (e.g. addition of clocking
model and link power model) were
improved, in order to increase the

results accuracy

Lee
2009

[LEE09]

NePA platform
(PEs, MIT Raw

NoC)

SPLASH-2
benchmark

TLM

average error of 5% when
compared to the Synopsys

PrimeTimeTM PX tool (gate-
level)

volume-based
model

presents a framework for router PDE
that uses the number of flits passing

through a router

Milojevic
2009

[MIL09]

Artemis NoC, PEs
and memories

multiple video
coding (MPEG4,

H.264, SVC)
RTL

Synopsis Prime Power tool and
Magma BlastPower tool

gate-level
model

power model of individual NoC
components, which are used for power
analysis of three different mapping on a

MPSoC platform

Anagnostopoulos

2010
[ANA10]

8x8 2D and a 4x4
3D mesh NoCs

VOPD, MPEG-4
and MMS

RTL NA
gate-level

model

proposes three techniques to reduce the
NoC temperature: (i) power-aware

routing algorithms, (ii) buffer sizing and
(iii) direct connection

Proposed
work
2009

Hermes NoC and
abstract PEs

VOPD, MPEG4,
HDTV and

automotive
TLM

error of 0% for PDE when
compared to the RTL model and
5% when compared to Synopsis

Prime Power

rate-based
model

simplified actor-oriented model that
allows accurate power/energy analysis

of applications mapped onto a NoC-
based MPSoC platform

42

3.3 MPSoC Application Modeling and Mapping

Ha et al. [HA08] proposed a model-based framework for MPSoC software development,

called HOPES. HOPES allows to model applications by using UML 2.0 and PeaCE model [HA07]. In

PeaCE the application model is based on actor-orientation and it can be specified with three

different MoCs: (i) on the top level, a process network is used to specify execution condition of

each task and to define the interaction between them, (ii) synchronous piggybacked dataflow

(SPDF - that is an extension of SDF MoC, proposed in [HA06]), which is used to specify signal

processing tasks [PAR02]; (iii) FSM extension called flexible FSM (fFSM), proposed in [KIM05],

which is used to specify control tasks. Once the application model is defined, it is manually

partitioned into the abstract PEs that compose the hardware platform [HA08]. The hardware

platform is separately specified in a block diagram (described in an xml-style file). Each block

diagram has a set of architectures parameters (e.g. processor name, memory type), as well as

constraint parameters (e.g. task period and task name) that must be defined by the designer

regarding the application behavior. Besides, the communication and synchronization requirements

between tasks must be defined as well. A Divx (Digital Video Express) composed of three tasks (Avi

Reader, MP3 player e H263 decoder) was used to validate the framework and its flow.

Pimentel et al. [PIM06][PIM08] present the Sesame (Simulation of Embedded System

Architectures for Multilevel Exploration): a modeling and simulation environment for system-level

design, based on the Y-chart design approach [KIE02]. The Figure 15 (a) illustrates Y-chart design

space exploration flow, which allows to model the application and the system architecture

separately. The application model can be mapped onto the platform model but both are co-

simulated14 via trace-driven simulation [PIM08]. Thus, Sesame does not support the joint

simulation of multi-applications mapped onto the platform model. Essentially, the application

model is not executed in the architecture model. Instead, during the application model simulation

traces of events (e.g. task communication) are generated and used as stimulus to the architecture

model, which captures and evaluates their performance constraints.

The Figure 15 (b) shows the three model layers supported by Sesame: (i) application model,

which uses Kahn Process Network (KPN) to implement the functional behavioral of the

application(s); (ii) mapping layer that is composed of abstract PEs, abstract components (e.g.

memories) and buffers for communication between the PEs (illustrated as virtual processors in

Figure 15 (b)). This layer supports the application events traces mapping onto the PEs (applying

dataflow graphs), as well as the scheduling of application events when multiple Kahn processes

are mapped onto a single PE; and (iii) architecture model that defines architecture resources and

captures their performance constraints according to the computation and communication events

generated by an application model. The designer can use Perl or SystemC to implement the

architecture model (respecting the characteristics of the DE MoC), which is simulated in

14 As described in [AND05], co-simulation is defined as two or more heterogeneous simulators executing together in
order to produce a complete simulation result.

43

transaction level [PIM06]. As defined in [PIM08], each PE is parameterized with a table of

operation latencies (e.g. table of processor 1 with latency values for the operations X, Y and Z, as

shown in Figure 15 (b)). The operation latency values are extracted from SimpleScalar ISS [AUS02]

simulation and used to statically calibrate the architecture model components. In [PIM06] and

[PIM08], the calibration of communication infrastructures or memory model components is not

addressed. A case study of a Motion-JPEG (M-JPEG) encoder application was used to verify the

efficiency of the proposed environment.

(a) (b)

Figure 15 - (a) Y-chart design space exploration flow, and (b) Sesame's model layers. Figures obtained from
[PIM06] and [PIM08], respectively.

Kempf et al. [KEM05] present a SystemC-based framework that enables the evaluation of

application mapping onto the virtual PEs (following the Y-chart design approach [KIE02]) by means

of an executable performance model, which is defined by an XML description. The XML

configuration file defines:

 the configuration of the timing model (e.g. the number of required cycles per task
execution),

 the number of available PEs and number of supported concurrent threads per PE,

 application mapping onto the PEs,

 parameterization, instantiation, and interconnection of communication nodes,

 address memory mapping.

An extension of this work was reported in [KEM06]. This extension describes a framework

targeted to MPSoC software development, verification, and evaluation, which already starts from

the beginning of the design cycle instead of starting the software design after the platform is

already designed. Software can be developed in four different levels of abstraction that vary in

44

accuracy and simulation speed. The framework uses SystemC for simulation and XML to describe

task mappings and timings.

Keinert et al. [KEI09] describe the SystemCoDesigner framework, which allows automatic

design space exploration (from application modeling to automatic platform synthesis) of MPSoCs

by integrating simulation and behavioral synthesis tools. The SystemCoDesigner flow comprises:

(i) application modeling that is described by an abstract actor-oriented modeling using a

particular subset of SystemC (SystemMoC library, presented in [FAL06]). In this approach,

each application module or task (for instance, a Huff Decode) is represented as an actor;

(ii) hardware generation, in this step from the described SystemMoC actors, hardware and

software modules are generated by code transformations. The hardware generation

consists of three steps, (i) transformation of SystemMoC actors into SystemC modules, (ii)

behavioral synthesis using the Forte Design Systems Cynthesizer15, and (iii) generation of

Verilog gatelevel netlists using Synplify Pro from Synplicity16;

 (iii) performance parameters definition (e.g accepted communication latency between two

modules, required memory resources), which are used for (iv) design space exploration,

(v) automatic platform synthesis that generates an FPGA17 configuration file by

interconnecting the previously generated modules and PEs. For example, for each allocated

PE, a MicroBlaze subsystem (memory and bus resources) is instantiated.

A case study of a Motion-JPEG encoder application was used to verify the efficiency of the

proposed environment. The proposed environment consider only bus architectures.

Kangas et al. [KAN06] present a design flow that allows automatic design space exploration

and synthesis, called Koski. Koski and SystemCoDesigner present some similarities in certain

aspects, for example, its cover the design phases from system-level modeling to FPGA prototyping.

Koski allows application and platform modeling using an UML 2.0 extension, targeting embedded

real-time system design. The UML application model is defined according to a Kahn process

network, previously described, which are refined using Statecharts (asynchronous communicating

extended finite state machines – EFSM - [GNE02]). The architecture model, in turn, is defined in

UML composite structure diagrams (hierarchical descriptions that represent interconnected

instances collaborating over communications links) according to the application model definitions.

The proposed design flow has a set of features (e.g. back- annotation, UML profiler), allowing the

15

 Available at: http://www.forteds.com.
16

 Available at: http://www.synplicity.com.
17

 Monmasson et al. [MON07] define FPGA as a matrix of configurable logic blocks (CLBs), interconnected by a
reprogrammable network.

45

architecture exploration based on the system optimization (e.g. application). This approach uses a

mapping model, based on the UML profiles, which defines the relationship between the

application and the architecture models. Before the application mapping, task are grouped in

blocks that are manually mapped (or pure random selection) onto the target architecture. Both,

the application and the platform model are separately validated by functional simulations.

3.3.1 MPSoC Application modeling and mapping - Closing Remarks

As the reviewed works, the proposed actor-oriented approach considers an abstract

application model and supports designers on analyzing and comparing different platforms that can

efficiently execute that application. To support the design space exploration, at an early design

phase, the application should be mapped onto a multiprocessor platform model, which should

support an analysis of the functional and non-functional requirements of the application.

The proposed approach combines actors and UML, modeling the concurrent behavior of

the application. The main advantage of the proposed method is on the layered models of

communication-centric multiprocessor platforms. Instead of generating customized platforms out

of the system-level model, the proposed approach jointly executes application models and existing

platform models, allowing an accurate performance estimation.

46

47

4. PROPOSED MODELS

This Chapter addresses one of the main contributions of this Thesis, the development and

the validation of abstract NoC models. The Chapter starts with presenting basic NoC concepts

(Section 4.1), emphasizing the most important building blocks. Furthermore, the adopted NoC

reference model (Section 4.2) and two proposed models are described (Sections 4.3 and 4.4).

Finally, both proposed NoC models are described and some results, including their accuracy when

compared to the reference model are presented (Section 4.5).

4.1 NoC basic concepts

As mentioned before, NoCs are likely to replace traditional on-chip interconnection

architectures due to its performance characteristics, such as dedicated wires and shared busses in

future MPSoCs [BJE06]. Dedicated wires present poor reusability and flexibility, while shared

busses transmit only one word per clock cycle and offer limited scalability. As defined in [MAR09],

the NoC communication paradigm consists of exchanging packets of information among nodes.

Each node is composed of an IP core18 (e.g. PEs, memory blocks), which is connected to a router

through the network interface (NI), as illustrated in the bottom left side of Figure 16 (a). The main

NoC component is the router, which handles the packets exchange among the nodes

[BEN02][YE03]. Routers usually have switching control and input and output ports, which can have

buffers for temporary storage of information, as shown in Figure 16 (b). The switching control

defines how packets move through the router, by defining the connection between input and

output ports, and it comprises routing and arbitration logic. The routing logic implements an

algorithm that defines the path that each incoming packet will follow by connecting the input port

to the correct output one. The arbitration logic is the mechanism that resolves (as fairly as

possible) the contention among incoming packet requests desiring a common output port.

The way routers are connected defines the network topology [MOR04]. The choice of

topology depends on many factors such as, for example, scalability and power-efficiency. For

instance, [DAL01] claims that a mesh topology is more power-efficient than a folded torus

topology. Figure 16 (a) shows an example of a mesh architecture, which is the most common NoC

topology [MAR09].

High level abstraction modeling of the NoC is needed to accelerate the design space

exploration of NoCs. The design exploration at register transfer level (RTL) does not provide the

required abstraction to the design space exploration of MPSoCs based on NoC communication

architecture. The level of details that have to be modeled and the low accessibility and visibility of

the components’ behavior justify this statement.

18 As defined in [GUP97], an IP core is a pre-designed, pre-verified hardware piece that can be used as a building
block for large and complex applications on an integrated circuit.

48

node

link

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

Router

IP

NI

v

input

buffers

switching

control

output

buffers

generic router

architecture

X-bar

 (a) (b)

The Figure (a) shows a 3 x 4 direct mesh NoC architecture consisting of IP cores, routers
and communication links. Each link represents a bi-directional connection between two
routers (or even a router and an IP) and it consists of a set of wires. In turn, Figure (b)
illustrates a generic router architecture, which is composed of input buffers to temporarily
store incoming packets and/or output buffers to temporarily store outgoing packets. In
addition to the buffers, the architecture above has a switch control.

Figure 16 – A 3 x 4 direct Mesh NoC topology and a generic router architecture.

The issues mentioned above, combined with time to market pressure, demand high

abstraction level modeling and more appropriate debugging capabilities. As mentioned in Chapter

2, the high level modeling activity is a trade-off between level of details and model confidence. In

NoC context, the level of details refers to the structure and behavior abstraction of the NoCs’

components. The structural abstraction refers to: (i) the granularity of data storage (e.g. storage

for a flit or packet); (ii) the number of components that will be considered or abstracted and how

they are interconnected (e.g. the number of wires or a channel). The behavior abstraction includes

how and, more importantly, when such components (e.g. arbiter) update their internal state and

concurrently interact with other components (e.g. buffer). In turn, the model confidence defines

how useful a NoC model is for a particular purpose (e.g. latency evaluation) regarding the accuracy

results between the model and its NoC reference model. In this Thesis the HERMES infrastructure,

proposed in [MOR04], is adopted as the NoC reference model.

4.2 HERMES reference model

HERMES implements a low area overhead packet switching NoC for different topologies,

flit sizes, buffer size, routing algorithms, and flow control strategies. It supports the

implementation of the three lower ISO-OSI layers, namely physical, data link and network. Initially,

HERMES is based on NoCs using only wormhole routing [MOR04]. Its routers have centralized

switching control logic and five bi-directional ports (East, West, North, South, and Local). The Local

port is used to establish the communication between a router and its local processing element,

whereas the others are connected to the neighbor routers. HERMES uses round-robin arbitration

for granting access to incoming packets, which are stored in a FIFO buffer. The priority of an input

49

port is a function of the last input port having a routing request granted. If the incoming packet

request is granted by the arbiter, the routing algorithm is executed to connect the input port to

the correct output port. If the algorithm returns a busy output port, the header flit and all

subsequent flits of this packet are blocked. After all flits in a packet are transmitted, the port is

released. Two flow control strategies are available: handshake protocol and credit based. When a

4-phase asynchronous handshake protocol is used, the external router interface is composed of six

signals: rx, ack-m and data-in for input and tr, ack-tx and data-out for output. When credit based

flow control is used, a transmission clock is sent to the receiver and a credit signal is asserted from

the receiver to the transmitter indicating available buffer space. Signal ack-m does not exist in this

case. This flow control algorithm enables implementing GALS networks.

Four main reasons justify the adoption of HERMES infrastructure as the NoC reference

model: (i) it was developed in the research group of the proponent of this Thesis, (ii) it is a well

known NoC and several instances of HERMES-based systems were successfully prototyped in

FPGAs, (iii) the Atlas19 framework provides a set of tools for NoC design space exploration,

including a NoC generation [OST05] and verification [TED05], and, finally, (iv) HERMES is the

interconnect infrastructure of HeMPS platform [CAR09], which is also used in this work.

In order to improve NoC design observability and to accelerate the design space

exploration of HERMES-based systems, two actor-oriented NoC models, called RENATO and

JOSELITO, were proposed. The development of such NoC models reflects the HERMES functional

details such as internal latencies, congestion effects, routing and arbitration delays. The proposed

models allow the designer to quickly modify and analyze, early at the design process, different

NoC configurations, aiming to satisfy the particular requirements of performance for a great

variety of applications.

4.3 RENATO model

A common practice in high-level NoC modeling is based on top-down design approach. In

this approach the NoC design starts with its specification in the higher hierarchical level, which is

successively refined in different models/submodels (where specific issues are more detailed). This

process is repeated until an adequate model, in terms of functionality and accuracy (usually, an

RTL implementation), is achieved. The design methodology used in this Thesis is based on opposite

approach (as illustrated in Figure 17), which is based on identifying each relevant inter-component

interaction existing on the RTL model and formalizing it using UML sequence diagrams.

As defined in [IND08], by describing a NoC through its inter-component interactions, it was

possible to isolate the individual functionality of each conceptual actor in the system, disregarding

the fact that many of such actors had been merged in the RTL implementation. For instance, the

arbitration and routing procedures were implemented as a single state-machine in the RTL model

19 Available in: http://www.inf.pucrs.br/~gaph/AtlasHtml/AtlasIndex_us.html.

50

for the sake of simplicity and efficiency. However, in the abstract model, such procedures must be

implemented separately in order to simplify the design space exploration (e.g. to investigate the

positive and negative impacts of using adaptive routing).

actor-oriented

NoC model

complex testbenches

debbugging / analysis tools

design space exploration, validation

Optimized NoC

RTL model

NoC RTL

model

analyze

interactions

Figure 17 - Adopted approach for NoC modeling and design space exploration.

Additionally, the specification of the system in interactions can abstract the notion of

discrete time that exists in the RTL model, providing just a partial order of the communication

among model components. Such abstract model can be used to show the system functionality or

be annotated with actual timing information so that a more accurate timing behavior can be

reflected.

In this context, two UML sequence diagrams, which describe the interactions of the

HERMES router components, were defined as illustrated in Figure 18. The UML sequence diagram,

shown in Figure 18 (a), refers to the arbitration request by a particular input buffer and the

establishment of a connection between it and an output port.

arbitration granted

RouterArbiter OutputPortInputBuffer:b1

requestArbitration(flit)

requestRouting(flit)

isFree()

boolean:free

setFree(false)

[else]

Controller

requestArbitration(flit)

arbitration NOT granted

alt

[free]

ControllerInputBuffer:b1

decreasePacketSize()

eraseFlit(flit)

alt

[response = true]

InputBuffer:b2Output Port

sendFlit(flit)

sendFlit(flit)

sendFlit(flit)

response

response

alt

[response = true AND flit IS payloadFlit]

[response = true AND flit IS sizeFlit]

setFree(true)

getPacketSize()

alt

[packetSize = 0]

1

2
3

4
5

6

7

8

9

1
2

3

4

5

(a) (b)

Figure 18 - UML sequence diagrams depicting interactions between components of the HERMES NoC.
Figure extended from [IND08].

Initially, the input buffer sends the packet header to the routing controller (interaction 1).

The routing controller asks the arbiter to choose one of the possible incoming requests that can

51

arrive from any of the five input buffers (interaction 2). After selecting an incoming input buffer

request, the arbiter sends the header flit to the router (interaction 3) that executes a particular

algorithm (for instance, XY algorithm) to determine which output port the packet should be sent

to. Once the routing is done (interactions 4 and 5), the controller verifies if the chosen output port

is free (interaction 6). If the output port is free (interaction 7), the input buffer establishes the

connection to the output port (interaction 8), otherwise the connection is refused (interaction 9)

and the input buffer must start the whole input-output connection requesting process again.

The second UML sequence diagram shown in Figure 18 (b), identifies the transmission of a

flit from an input buffer to a neighbor router through an output channel. Initially, the controller

receives the flit from the local input buffer (interaction 1) and checks which output port is

allocated to it (interaction 2). After sending the flit (interaction 3), the controller waits for

acknowledgement (interaction 4). A positive acknowledgement removes the successfully sent flit

from the source input buffer (interaction 5), while a negative acknowledgement causes a

retransmission of the flit.

It is important to mention that both UML sequence diagrams consider timing among

interactions, which were extracted from the simulation of the HERMES RTL model. The RENATO

actor-oriented model was implemented using Ptolemy II, following the interaction descriptions

shown in Figure 18. RENATO comprises two main actors: input buffer for temporary storage of

packet flits and arbiter. Due to the modeling flexibility, each RENATO's packet flit is modeled as a

record token, as illustrated in Figure 19.

HERMES’

header flit

Typical packet structure

PAYLOADTRAILER HEADER

xy

where:

 x // x target address

 y // y target address

 size // packet size (number of flits)

 payload // data

 timestamp_ini // initial packet timestamp

 timestamp_sent // timestamp time that the packet is being sent

 source_x // source x address

 source_y // source y address

RENATO’s header flit (record token representation)

xysizepayloadtimestamp_inisource_y source_x timestamp_sent

evaluation parameters

Figure 19 - Example of packet flit difference between HERMES and RENATO models.

The use of record token increases the range of evaluation parameters (e.g. timestamp time

that the packet is sent) that can be included and considered without requiring large code

rewriting, for instance the modification of state machines as in RTL approach.

The arbiter implements centralized round-robin arbitration (code illustrated in Figure 20)

that grants the access to incoming packets. The priority of an input port is a function of the last

52

input port having a routing request granted. If the incoming packet request is granted by the

arbiter, the XY routing algorithm is executed to connect the input port to the correct output port.

1. protected int nextRequest() throws IllegalActionException{

2. if(_debugging) _debug("Request detected, arbiter activated");

3. if (arbitersel==0){

4. if (state[1]==REQUESTING && inputreq[1].hasToken(0)) { return 1;}

5. else if (state[2]==REQUESTING && inputreq[2].hasToken(0)) { return 2;}

6. else if (state[3]==REQUESTING && inputreq[3].hasToken(0)) { return 3;}

7. else if (state[4]==REQUESTING && inputreq[4].hasToken(0)) { return 4;}

8. else if (state[0]==REQUESTING && inputreq[0].hasToken(0)) { return 0;}

9. }

10. else if (arbitersel==1){

11. if (state[2]==REQUESTING && inputreq[2].hasToken(0)) { return 2;}

12. else if (state[3]==REQUESTING && inputreq[3].hasToken(0)) { return 3;}

13. else if (state[4]==REQUESTING && inputreq[4].hasToken(0)) { return 4;}

14. else if (state[0]==REQUESTING && inputreq[0].hasToken(0)) { return 0;}

15. else if (state[1]==REQUESTING && inputreq[1].hasToken(0)) { return 1;}

16. }

17. else if (arbitersel==2){

18. if (state[3]==REQUESTING && inputreq[3].hasToken(0)) { return 3;}

19. else if (state[4]==REQUESTING && inputreq[4].hasToken(0)) { return 4;}

20. else if (state[0]==REQUESTING && inputreq[0].hasToken(0)) { return 0;}

21. else if (state[1]==REQUESTING && inputreq[1].hasToken(0)) { return 1;}

22. else if (state[2]==REQUESTING && inputreq[2].hasToken(0)) { return 2;}

23. }

24. else if (arbitersel==3){

25. if (state[4]==REQUESTING && inputreq[4].hasToken(0)) { return 4;}

26. else if (state[0]==REQUESTING && inputreq[0].hasToken(0)) { return 0;}

27. else if (state[1]==REQUESTING && inputreq[1].hasToken(0)) { return 1;}

28. else if (state[2]==REQUESTING && inputreq[2].hasToken(0)) { return 2;}

29. else if (state[3]==REQUESTING && inputreq[3].hasToken(0)) { return 3;}

30. }

31. else if (arbitersel==4){

32. if (state[0]==REQUESTING && inputreq[0].hasToken(0)) { return 0;}

33. else if (state[1]==REQUESTING && inputreq[1].hasToken(0)) { return 1;}

34. else if (state[2]==REQUESTING && inputreq[2].hasToken(0)) { return 2;}

35. else if (state[3]==REQUESTING && inputreq[3].hasToken(0)) { return 3;}

36. else if (state[4]==REQUESTING && inputreq[4].hasToken(0)) { return 4;}

37. }

38. return -1;

39. }

Figure 20 - Implemented Round-Robin method.

The main features of RENATO are the modeling flexibility and its debugging capacities. Due

to the modeling flexibility, different configurations of the same NoC (or even different NoCs with

slightly different behavior) can be quickly modeled simply by annotating the timing information for

each individual component. Moreover, it presents an improved potential (when compared to RTL

model) of observing and debugging the execution of an application running on top of a RENATO-

based MPSoC, as presented in [MÄÄ08][MÄÄ10] and described in the next Chapter of this Thesis.

Following, a simplified NoC model, called JOSELITO, is described. JOSELITO uses the Payload

Abstraction Technique (PAT), allowing performance evaluation by combining simulation and

analytical methods.

4.4 JOSELITO model

JOSELITO is a more abstract platform model than RENATO. However, it uses the same UML

interactions defined in Figure 18. The main difference between JOSELITO and RENATO is the

JOSELITO's reduced simulation time, caused by decreasing the number of communication events

due to the flit by flit packet forwarding. JOSELITO uses the Payload Abstraction Technique (PAT),

which is a contribution of this Thesis, previously described in [OST08]. In PAT: (i) the packet is

defined as a header and a trailer, as shown in Figure 21 (a), (ii) the buffer is a FIFO structure

modeled as the finite state machine illustrated in Figure 21 (b), (iii) packet headers are released

53

from a given router once there is available buffer space at next hop on its route, and (iv) a simple

analytical method is used to calculate the packet trailer release time (ptrt).

JOSELITO’s packet structure

Trailer Header empty wtheader trailer

header token

received

header

token sent

trailer token

received

trailer token sent

T H

 (a) (b)

Figure 21 - (a) JOSELITO's packted structure and (b) buffer state machine.

As shown in Figure 21 (b), the FIFO buffer is modeled as a finite state machine (FSM), with

four states: (i) empty, (ii) header, (iii) waiting trailer - represented as wt in Figure 21 (b), and (iv)

trailer. In the empty state, the buffer is able to receive a packet header. The received header is

stored into the buffer in the header state. After forwarding the packet header, the buffer goes to

the waiting trailer (wt) state. When the trailer is received, the FSM goes to trailer state. Once the

trailer is forwarded and removed from the buffer, it returns to the empty state. Even if the

transmission of the packet payload is abstracted away, the simulation model can still represent

both unblocked and blocked packet transmission scenarios, as illustrated in Figure 22.

P C

T H T H

Blocked Packet

Network linkRouter

PProducer
T H

Packet

Blockage
CConsumer

T H

Figure 22- Unblocked (in the left side) and blocked packet transmission situations.

If no resource conflicts occur (unblocked scenario), latency of the packet switching NoCs

can be measured with no loss of accuracy [OST08]. In a blocked scenario, when a header packet

arrives in an input buffer, two blocking situations can occur: either the desired output port is

reserved to another input port or the target neighbor input buffer is not able to receive a header

or a trailer of the packet. In such cases, a connection of an intermediate router (for instance, a

router between the source and the target PE) can be closed without considering the impact of the

blockage to other packets. Even with occurrence of blocking situations throughput and power

dissipation of NoCs can be evaluated with no loss of accuracy [OST09].

In this context, the packet trailer release time (ptrt - Equation (2)) is used to ensure correct

functionality during packet transfers, allowing the designer to obtain high accuracy latency,

throughput and power dissipation results with shorter simulation time in comparison with

RENATO. The accuracy of those results also depends on parameters obtained from RTL simulation.

One possible alternative for the analytical calculation of ptrt is the Equation (2), presented in

54

[OST08].

ctfpcksizehftptrt * (2)

where: ptrt is the packet trailer release time,

 hft is the header forwarding time,

 pcksize is the packet size (number of flits),

 and ctf is the number of clock cycles to transmit one flit from one hop to another one.

The header forwarding time depends on the number of clock cycles required to execute

the arbitration, the routing algorithm and the successful reception of the header by the neighbour

resource (router or consumer). This parameter is obtained from the RTL-NoC simulation. After

reaching the packet trailer release time, defined by Equation (2), the packet trailer is sent,

following the same path reserved by the header.

According the proposed technique, three transmission scenarios are possible: (i) blocking-

free delivery, (ii) header blocking, and (iii) header and trailer blocking. As buffer depth is not

considered in PAT, the following scenarios assume that the packet size requires 4 input buffers to

be fully stored. This means, for example, that when the packet header arrives at the Consumer (C),

the trailer (T) must be stored into the input buffer of the Router 3 (3 hops before the consumer

location).

These scenarios, used to exemplify possible unblocked and blocked situations, consider

arbitration/routing requiring 7 clock cycles, payload size equal to 21 flits and credit-based flow

control (ctf=1). The packet header (H) arrives at the first router (Router 1) at time 0.

4.4.1 Scenario I: Blocking-free delivery

In the blocking-free delivery, there is no loss of accuracy in the latency evaluation, as

illustrated in Figure 23. Initially, in the step 1, at cycle 0, the Producer 1 forwards the packet

header (H) to the Router 1 and calculates the ptrt value, at the same cycle. In step 2, after the

arbitration time (7 cycles best case, considering the routing request granted), the packet header

(H) is forwarded to the Router 2 and the Equation (2) is applied by the input buffer of Router 1.

Following, in step 3, the Producer 1 forwards the packet trailer (T) according to the ptrt, when the

simulation time reaches 21 cycles. At this moment, the connection between Producer 1 and Router

1 is closed. Finally, in step 4, the Router 1 sends the packet trailer (T) to the Router 2 and its

connection is released. This is the best case scenario, where the 3 hops between packet header (H)

and packet trailer (T) are maintained during the whole packet transmission. This ensures that the

trailer will be received by the Consumer 1 at the cycle 56.

55

Producer 1

Consumer 1

Router 1 Router 2 Router 3

Router 4

Router 5

hft ptrt

0 21

hft ptrt

0 21

HT

connection

reserved

1

T

Consumer 1

Router 1 Router 2 Router 3

Router 4

Router 5

hft ptrt

0 21

hft ptrt

7 28

H

2

Producer 1

Consumer 1

Router 1 Router 2 Router 3

Router 4

Router 5

hft ptrt

0 21

hft ptrt

28 49

H

T

connection

is closed

4

Producer 1

Consumer 1

Router 1 Router 2 Router 3

Router 4

Router 5

hft ptrt

0 21

hft ptrt

- 21

H

T

3

Producer 1

Producer 1

Input buffer

Router 1

Producer 1 Router 4

connection

is released

Producer 1

STEP STEP

STEPSTEP

Figure 23 - Estimated release times regarding blocking-free delivery scenario.

According to [MOR04], in a blocking-free delivery scenario, the latency of a packet

(pcklatency) from producer (e.g. Producer 1) to consumer (e.g. Consumer 1) is obtained from

Equation (3).

pcksizearbtnhopspcklatency + *
(3)

 where: nhops: number of hops between P and C

 arbt: arbitration time

 pcksize: packet size (number of flits)

Applying Equation (3) using the parameters of the scenario (i), the same 56 clock cycles are

obtained.

4.4.2 Scenario II: Header Blocking

Figure 24 illustrates a blocking situation at the input buffer of Router 5. In step 1, the

packet header (H) is sent by the Producer 2 at the cycle 21. Note that until this moment the 3 hops

between packet header (H) and packet trailer (T) are maintained.

In the step 2, at the cycle 28, a blocking situation (the header packet is blocked) is detected

in the input buffer of the fifth router (Router 5). During the header blocking time (assuming 10

clock cycles), the packet trailer (T) is forwarded one hop further (from Router 1 to Router 2),

decreasing the number of hops between the header and trailer (2 instead of 3 hops – as defined

before the scenarios description). Consequently, the connection between Router 1 and the Router

2 is closed without considering the impact of the header blocking, which can lead to loss of

56

accuracy on blocking other packets. Following, in step 3, the packet trailer (T) is stored into the

input buffer of Router 4 at the cycle 42 but will only be released at cycle 59, considering then the

header blocking time. Finally, in step 4, the ptrt of the input buffer actor of Router 5 is calculated

(ptrt equal to 66), ensuring that the packet trailer will be delivered to the Consumer 2 ten cycles

later (blocking time) when compared to the blocking-free delivery scenario.

Consumer 2

Router 1 Router 2 Router 3

Router 4

Router 5

hf

t

ptr

t
0

hft ptrt

21 28

T

blocking

situation

1

H

Producer 2

Consumer 2

Router 1 Router 2 Router 3

Router 4

Router 5

T

X cycles of

blocking

2

H

Producer 2

connection

is released

Consumer 2

Router 1 Router 2 Router 3

Router 4

Router 5

T

3 H

Producer 2

Consumer 2

Router 1 Router 2 Router 3

Router 4

Router 5

hf

t

ptr

t
0

hft ptrt

45 66

T
4 H

Producer 2

Router 1

hf

t

ptr

t
0

hft ptrt

38 59

Router 4
Router 5

T arrives at

Router 4

at cycle 42

Figure 24 - Packet forwarding situation regarding header blocking.

4.4.3 Scenario III: Header and Trailer Blocking

Initially the header and the trailer are sent as described in the previous scenarios (for the

sake of simplicity it is not illustrated in Figure 25).

Step 1, at the cycle 28, the header packet is blocked and it remains stored into the input

buffer of Router 4. In this moment, the packet trailer (T) is forwarded from Router 1 to Router 2. In

step 2, due to the high blocking time (assuming 20 clock cycles) the packet trailer (Router 3) is

blocked by its packet header (Router 4) at cycle 42. In this case, the distance between the header

and the trailer is just one hop. Therefore, two connections (Producer 3 to Router 1 and Router 1 to

Router 2) are released without considering the impact of the header and trailer blocking,

increasing the possibility of accuracy loss on blocking other packets. Note that when the trailer is

blocked by its header, the Equation (4) is applied to define the new (n_ptrt).

ctfpcksizetimecurrentptrtn *__ (4)

57

Consumer 3

Router 1 Router 2 Router 3

Router 4

Router 5

T

header

blocked

1

H

Producer 3

connection

is released

Consumer 3

Router 1 Router 2 Router 3

Router 4

Router 5 T4 H

Producer 3

Consumer 3

Router 1 Router 2 Router 3

Router 4

Router 52

H

Producer 3

hf

t

ptr

t
0

hft ptrt

28 49

Router 4

T

hf

t

ptr

t
0

hft ptrt

48 69

Router 4

trailer

blocked at

cycle 42

Consumer 3

Router 1 Router 2 Router 3

Router 4

Router 53 H

Producer 3

T

hf

t

ptr

t
0

hft ptrt

21 63

Router 3

header received

at cycle 62
trailer received

at cycle 83

Figure 25 - Packet forwarding situation regarding header and trailer blocking.

Thus, the router Router 3 releases the packet trailer (T) after 21 clock cycles of the header

forwarded time (n_ptrt equal to 63), ensuring that the connection between Router 2 and Router 3

is maintained, as illustrated in step 3. Finally, in step 4, the packet trailer is received by the

Consumer 3 at cycle 83.

It should be clear that the proposed technique is flexible in terms of modification and it is

not restricted to the abstractions presented here. For example, different parameters can be added

in the Equation (2), improving the accuracy of the technique, which can be applied to any

wormhole packet switching NoC. The JOSELITO model can still be optimized to reduce the number

of communication events, thus reducing the simulation time. One possibility is to modify the

model to not generate negative acks, but sending an ack only when a resource is available. The

arbiter can also be modified in order to reduce the number of times the round robin algorithm is

called when it is in idle state. The model confidence of both RENATO and JOSELITO models were

evaluated according to the ATLAS design exploration flow, as described below.

4.5 Evaluation of the Proposed Models

In order to accelerate the validation process of both RENATO and JOSELITO models, the

ATLAS framework was adopted. The ATLAS framework supports a set of automated steps related

to design exploration of HERMES NoCs. ATLAS flow comprises of 5 main steps: (i) NoC generation,

(ii) traffic generation, (iii) NoC simulation, (iv) traffic evaluation, and (v) power evaluation; as

illustrated on top of Figure 26.

58

RTL / Ptolemy II

Simulation

Input files Output files

R

R

 C

R

R

 P

 P

 C

ATLAS Design Exploration Flow

NoC generation
Traffic

Generation

traffic temporal

distribution

NoC Simulation Traffic Evaluation

File internal view

(each line represents a

packet)

2

3

1

4

timestamp pkt_sizetarget source data

timestamp pkt_sizetarget source data

timestamp pkt_sizetarget source data
timestamp pkt_sizetarget source data

timestamp pkt_sizetarget source data

NoC

model

traffic analysis

module

P: producer

C: consumer

R: router

NoC Power Evaluation

graphics / reports
generation

5

graphics / reports
generation

6

Figure 26 - ATLAS design exploration flow.

Step 1 comprises the NoC configuration (e.g. specification of buffer depth, routing

algorithm) and generation. In this step two NoC models (with the same configuration) are

generated: HERMES (RTL description) and an actor-oriented model (XML description of RENATO or

JOSELITO). The MAIA tool is used for HERMES generation [OST05], while the actor-oriented model

is generated by a developed tool based on the API JDOM20. Step 2 generates different traffic

patterns, for different injection rates and source/target pairs (e.g. random and complement). As

described in [TED05], one important concept in traffic modeling is the packet timestamp, which

defines the ideal moment that a packet should be inserted into the NoC by the source PE (P in

Figure 26). The packet timestamp is calculated according different temporal traffic distribution

(e.g. normal and uniform). All generated traffic files (step 2) are interpreted and injected to the

NoC by producers (P), in step 3. The HERMES NoC is simulated using ModelSim® (RTL simulation),

while actor-oriented NoC models are simulated in Ptolemy II framework. During the simulation,

consumers (C) generate output files that are read by the traffic analysis module, when the

simulation finishes (step 4). The traffic analysis module verifies if all packets were correctly

received, and generates basic statistic data (e.g. a report file and graphics) concerning time to

deliver packets (step 5). The report file presents some traffic analysis results, such as: (i) total

number of received packets, (ii) average time to deliver the packets, in clock cycles, (iii) total time

to deliver all packets, in clock cycles, and (iv) the average, minimal, maximal and standard

deviation time to deliver a packet, in clock cycles. The step 6 uses a module called HEFESTUS to

generate NoC power results (e.g. power reports).

4.5.1 Experimental Setup

This Section presents simulation results of the implemented model obtained according to

the validation process described below. The NoC Models (HERMES, RENATO and JOSELITO) are

evaluated varying:

 NoC sizes: 2x2, 3x3, 4x4 and 5x5;

20 Available in: http://www.jdom.org/.

59

 traffic distribution: uniform (200 Mbps), normal (minimal rate 150Mbps, maximal rate

250Mbps, and standard deviation 10Mbps), and Pareto on-off (200 Mbps, maximum

number of bursts set to 10 packets);

 number of transmitted packets per producer: 100 packets (T1), 1000 packets (T2),

10000 packets (T3), and 20000 packets (T4).

 HERMES buffer depth: 8 flits.

4.5.2 JOSELITO Latency and Throughput Evaluation

Figure 27 presents the average latency simulation difference (measured in clock cycles) of

JOSELITO in comparison with HERMES for 3 different traffic distributions, 4 different NoC sizes and

16 flits per packet. The closer the lines are from the zero latency error, the more alike the latencies

obtained for JOSELITO and HERMES are.

(a) Uniform Distribution (b) Normal Distribution

(c) Pareto Distribution

Figure 27 - Latency difference in clock cycles between JOSELITO and HERMES for 3 different traffic
distributions: (a) uniform, (b) normal, and (c) pareto on-off and NoC sizes (2x2, 3x3, 4x4 and 5x5), 16 flits

packets.

The worst case average latency error presented is 2.18 clock cycles (Figure 27 (a) - 2x2 -

100 packets). In this specific worst case, JOSELITO average latency is 3.60% lower than the

60

reference model (according to the average absolute latency results presented in Table III

The worst case throughput difference error of JOSELITO in comparison to HERMES is 0.1%

when sending 20000 packets per producer in a 4x4 Pareto on-off traffic distribution; configuration

which reflects multimedia applications behavior.

Table III presents the absolute average latency and throughput simulation results for

HERMES and JOSELITO using 16-flit packets (for simplification, the 2x2 results are not presented

here, but it can be verified in [OST08]). These similar average throughput and latency results

(Table III) between both models show that a high-level model can have high accuracy.

Table III - Average latency (“L” - clock cycles) and throughput (“T” - % of the relative channel bandwidth)
values for two NoC models: HERMES (“H” - RTL model) and JOSELITO (“J” - actor-oriented model).

 Uniform Distribution Normal Distribution Pareto On-Off Distribution
 3x3 4x4 5x5 3x3 4x4 5x5 3x3 4x4 5x5

 H J H J H J H J H J H J H J H J H J

T1
L 70.99 70.83 87.68 87.54 113.68 113.85 63.32 62.64 73.96 73.14 92.91 93.7 55.35 54.44 62.62 60.82 69.65 68.22

T 7.21 7.17 4.37 4.34 3.1 3.13 7.28 7.34 4.37 4.38 2.94 3.02 5.30 5.31 3.16 3.16 2.71 2.19

T2
L 70.75 70.81 85.97 85.96 109.46 110.05 61.85 61.50 73.85 73.14 94.91 93.75 55.96 55.24 62.49 60.80 71.01 69.45

T 7.29 7.28 4.55 4.57 3.1 3.13 7.13 7.13 4.44 4.45 3.05 3.05 6.80 6.81 4.32 4.32 2.9 2.9

T3
L 71.09 71.22 85.08 85.07 108.31 109.21 61.10 60.66 73.31 72.47 93.57 93.38 54.71 55.30 61.59 61.22 70.8 69.29

T 7.20 7.20 4.53 4.53 3.1 3.11 7.06 7.06 4.42 4.42 3.07 3.09 7.12 7.11 4.50 4.40 2.99 3

T4
L 71.22 71.30 84.93 85.00 107.92 108.94 61.09 60.62 73.33 72.42 93.97 93.67 54.92 55.44 62.83 61.19 71.51 70.14

T 7.25 7.25 4.51 4.52 3.11 3.14 7.09 7.09 4.45 4.46 3.07 3.09 7.02 7.08 4.41 4.41 3.01 3.01

4.5.3 JOSELITO End-to-end Communication Evaluation

End-to-end communication latency is an important performance metric, especially for real-

time applications, where end-to-end communication time is an important issue. Due to the large

number of simulations run (80) and the possible end-to-end communications, for instance in a 4x4

NoC allows 225 end-to-end communications (random spatial traffic distribution), only the end-to-

end communications presented in Figure 28 were evaluated according to the following scenario.

The adopted scenario comprises of all nodes sending 20000 packets to all other nodes in a 4x4

NoC applying random spatial traffic distribution and Pareto temporal traffic distribution.

node 00

02

12

01

11

22

32

21

31

10

20

30

01

13

23

33

00

Producer

00

Input files

Pareto temporal

distribution

Figure 28 - Evaluated end-to-end communications (sent communications from node 00 to other NoC
nodes). For simplicity only the node 00 is illustrated in the figure.

61

Table VI presents the end-to-end communication latency difference between JOSELITO and

HERMES models when 20000 packets are sent from the node 00 to all other possible targets in a

4x4 mesh NoC topology.

Table IV - Average (Av.), Standard Deviation (S.D), Minimum (Min.) and Maximal (Max.) end-to-end
communication latency values for HERMES and JOSELITO models. Number of packets (# Pkts).

S: Source
T: Target

Latency HERMES

(clock cycles)
Latency JOSELITO

(clock cycles)
Difference

(clock cycles)

S T # Pkts Av. S.D. Min. Max. Av. S.D. Min. Max. Av. S.D. Min. Max.

00 10 1308 47.62 8.20 44.0 115.0 45.77 8.68 43.0 114.0 1.85 -0.48 1 1.00

00 20 1325 55.87 9.34 51.0 167.0 54.42 10.48 50.0 147.0 1.45 -1.14 1 20.00

00 30 1356 63.65 11.93 57.0 267.0 62.21 11.92 57.0 178.0 1.44 0.01 0 89.00

00 01 1303 49.15 11.55 44.0 152.0 47.55 12.60 43.0 196.0 1.6 -1.05 1 -44.00

00 11 1337 59.02 15.69 51.0 199.0 57.36 16.58 50.0 226.0 1.66 -0.89 1 -27.00

00 21 1350 65.70 14.83 57.0 235.0 64.39 14.60 57.0 184.0 1.31 0.23 0 51.00

00 31 1331 71.96 14.10 64.0 273.0 70.57 14.65 64.0 238.0 1.39 -0.55 0 35.00

00 02 1377 58.46 14.84 51.0 152.0 57.07 16.91 50.0 253.0 1.39 -2.07 1 -101.00

00 12 1410 66.36 16.26 58.0 208.0 65.13 17.21 57.0 231.0 1.23 -0.95 1 -23.00

00 22 1334 74.64 18.26 64.0 314.0 73.54 17.77 64.0 266.0 1.1 0.49 0 48.00

00 32 1329 81.02 16.57 71.0 259.0 79.66 16.33 71.0 256.0 1.36 0.24 0 3.00

00 03 1324 66.13 14.86 57.0 139.0 64.64 15.34 57.0 189.0 1.49 -0.48 0 -50.00

00 13 1323 73.13 15.61 64.0 201.0 71.48 14.47 64.0 193.0 1.65 1.14 0 8.00

00 23 1314 82.72 17.36 71.0 216.0 81.57 17.04 71.0 243.0 1.15 0.32 0 -27.00

00 33 1279 88.49 17.34 78.0 282.0 86.95 16.59 78.0 275.0 1.54 0.75 0 7.00

In average 1334 packet are sent from the node 00 to a destination (e.g. node 00 sent 1308

packets to the Router 10, row 3 in Table IV). As shown in Table IV, much of the average (Av.),

standard deviation (S.D), and minimum (Min.) end-to-end communication latencies’ difference

between JOSELITO and HERMES models are negligible (less than 2%). On the other hand, as

JOSELITO does not consider the buffer depth, the maximal end-to-end communication latency

difference can be considerable in some cases (e.g. worst case differs by 101 clock cycles when one

packet is sent from source 00 to the target 02). As mentioned before, this difference is due to the

effect of connections that are released without considering a given blocking impact, increasing the

possibility of loss of accuracy on blocking other packets. It is important to mention that the

adopted injection rate is high (200 Mbps, maximum number of bursts set to 10 packets), implying

in more blocking situations than it happens on real scenarios.

4.5.4 Limitation of the PAT

In order to better explorer the impact of not considering the buffer size in PAT for latency

evaluation, different packets sizes (16, 50 and 100 flits) were applied in JOSELITO model. The same

packet sizes were injected into the HERMES model with 8-flit buffer depth. Figure 29 presents the

JOSELITO latency difference in comparison with HERMES when applying different packet sizes

inside both NoC models.

The worst case difference presented by 100 flits is 6.59 clock cycles (Figure 29 (a), 100

62

packets) in average. In this specific worst case (packet size is 12.5 times bigger than the buffer

depth), the absolute average latency to deliver all packets is 379.32 clock cycles in JOSELITO and

385.91 in HERMES. This represents only 1.71% average latency difference in comparison with the

same case study in the reference RTL model.

(a) Uniform Distribution (b) Normal Distribution

(c) Pareto Distribution

Figure 29 - Latency difference between a 4x4 JOSELITO and a 4x4 HERMES for 3 different traffic
distributions (uniform, normal and pareto on-off) and 3 different packet sizes (16, 50 and 100 flits).

As can be seen in Figure 29, the latency error increases with increasing the packet size. It is

important to remember that the packet size is usually chosen by network interfaces, which is

outside the NoC model and can usually be calibrated to any possible size. Besides, application-

specific NoC-based systems, for instance the 3GPP/LTE [CLE09], tend to employ small packets in

order to reduce the communication latency, increasing the applicability of the proposed model.

4.5.5 Comparison Between JOSELITO and RENATO Models

When validating the RENATO model, performance results were compared to the results of

HERMES (cycle-accurate simulation) using different traffic scenarios and NoC configurations

[IND08]. For long-lasting traffic, the error is about 10%, which is a very good figure considering

that the actor-oriented model is based on the interactions only and works without a synchronizing

clock signal. Note, for the sake of simplicity, the RENATO is compared only as reference model for

simulation time, to enable the comparison between both actor-oriented models. Table V shows

63

that JOSELITO is in average 2.3 times faster than RENATO in 88% of the executed case studies.

These improvements in simulation time were achieved only by reducing the number of

communication events originally caused by the flit by flit forwarding. Currently, JOSELITO (code

optimization without losing accuracy) can be 5-6 times faster than RENATO.

Table V - Speed up of JOSELITO in comparison to RENATO.

 Uniform Normal Pareto On-Off

 2x2 3x3 4x4 2x2 3x3 4x4 2x2 3x3 4x4

T1 2.51 2.41 2.93 5.95 2.00 2.08 2.45 2.34 2.34

T2 2.52 2.09 2.27 2.81 2.01 2.01 2.54 1.52 1.64

T3 2.53 1.78 1.99 1.82 1.39 1.67 1.78 0.72 0.74

T4 4.07 1.38 1.68 1.70 1.14 1.67 4.71 0.60 0.70

4.6 Debugging and NoC Power Analysis using Scopes

An important issue in the design of complex system like NoC-based MPSoCs is the

debugging. The debugging of such systems is difficult and time consuming because of the intrinsic

lack of internal observability and controlability of its components [CIO08]. Thus, more appropriate

debugging capabilities to design NoC-based MPSoCs are demanded in order to simplify the

development of these systems [MAR06][ZEN10]. In this context, some authors propose the use of

monitors, which can be attached to the NoC's components (e.g. router, NI) to increase its

observability, as well as to collect internal performance data (e.g. link utilization) [CIO06][VER09].

The collected data can be useful to improve the performance evaluation of a given NoC-based

MPSoC, for instance, optimizing the NoC communication usage in order to satisfy the application

requirements. In this Thesis an actor monitor, called Router monitor, was developed to increase

the NoC model observability and to provide the necessary information to estimate NoC power

dissipation.

As mentioned before, the power dissipation imposed by the NoC interconnect is a critical

challenge in MPSoCs design. As classified in the Chapter 3 of this Thesis, NoC power dissipation is

evaluated based on three power estimation models: (i) gate-level, (ii) volume-based model, and

(iii) the adopted rate-based model. The NoC power estimation based on the first model (electrical

simulation) is accurate when compared to the other two power models. However, it is very time-

consuming due to the number of details that must be considered to estimate the NoC power

dissipation. Volume-based models estimate the average power as a function of the total

transmitted data. Therefore, these models do not capture low-level effects, such as congestion

and burstiness, being simple but inaccurate. In this context, the rate-based power model was

proposed to achieve accurate power evaluation by considering those low-level effects.

4.6.1 Rate-based Power Model

Rate-based power estimation model, introduced in [GUI08], is a trade-off between volume-

based and gate-level power models: data volume is considered, but computed as a transmission

64

rate inside a given sample period; and accuracy is guaranteed from a physical calibration step,

which defines the power dissipation for each transmission rate. Rate-based power estimation

mode comprises two steps: calibration and application, left-hand side and right-hand side in Figure

30, respectively.

The calibration step (1) obtains the relevant power model parameters used in the

subsequent step. It starts with the logic synthesis of the RTL description of the NoC router (2),

which maps it onto the target technology and generates a netlist. This netlist replaces one router

of the original RTL description for a number of simulation runs (3) with different traffic scenarios,

each of them with a fixed injection rate (4). The switching activity of each simulation run is

analyzed by the Synopsys PrimePower estimation tool (5), which computes the average power

dissipation of the components within each router: (i) buffers (responsible for at least 80% of the

average power dissipation [PAL07]); (ii) internal crossbar and (iii) control logic.

 Application step Calibration step

Logical

synthesis

Central router

mapped

description

RTL

simulation

Switching activity

of the central

router (VCD file)

Power estimation

from PrimePower

Average power

dissipation for a

given injection rate

Traffic with fixed

injection rate - from

5% to 50% of the

available link

bandwidth

Equations derived from

the power dissipation

obtained from each

injection rate

Application

Moddeling

Injection rate of the

input buffers

HERMES NoC and traffic

generation using the

ATLAS framework

Central router

(5 input buffers)

R
e

p
e

a
t
fo

r
e

v
e

ry
 i
n

je
c
ti
o

n
 r

a
te

Actor-oriented

Simulation

Total NoC

power

dissipation

For all

routers

Compute the

router power

dissipation

1

2

3

4

5 6

8

7

9

10

Figure 30 - Extension of rate-based power estimation flow.

After the calibration phase, a power dissipation table is generated for each injection rate

and router element (6). Using linear approximation, an equation that gives the power dissipation

as a function of the injection rate is determined for each table.

The second step of the proposed model is the application (7), which was adapted to obtain

the reception rate at each buffer by simulating an actor-oriented NoC model under different traffic

loads (8), for instance, using real applications as explored in the next Chapter of this Thesis. The

65

rates are measured by monitors inserted at each router buffer, counting received flits in a

parameterizable sample window. For each reception rate, the associated power dissipation

(Pbuffer) is annotated, applying the equations obtained in the calibration step (9). The power

dissipation of the control logic (Pcontrol) and the crossbar (Pcrossbar) are obtained using the

average buffers reception rate.

The power dissipation of a router is given by Equation (5), where m represents the number

of sampling periods and n is the number of buffers in this router. The NoC average power

dissipation is given by the summation of the dissipation values of every router (10).

PcontrolPcrossbar
n

Pbuffer

P
m

k

n

i

k

avg

i

1

1

(5)

Power dissipated by different applications can be obtained without a new calibration. Re-

calibration is only necessary if some structural parameter changes (e.g. buffer depth, clock

frequency). Congestion and burst effects are implicitly taken into account, since these effects

change reception rates. Such model is highly customizable, and can be easily applied to different

NoC architectures and technologies.

4.6.2 Comparison of Power Estimation Models

Two scenarios were used to compare the power estimation models. The first evaluation

scenario considers a set of traffic flows that generate congestion in the NoC channels.

The experimental setup employs a 3x3 HERMES NoC with 16-bit flit width, 16-flit buffers,

and 16-flit packets are injected into the network by every router. Routing adopts the XY routing

algorithm. Two different injection rates are applied: (i) 1000 injected packets per router, at 120

Mbps (15% of the maximum link injection rate); (ii) 5000 packets injected per router, at 400 Mbps

(50% of the maximum link injection rate). Table VI shows the power estimation values using

Synopsys PrimePower, rate-based model and volume-based model.

Table VI - Average power dissipation results using a commercial power estimation tool (PrimePower), rate-
based model, and volume-base model (NoC frequency: 50MHz).

Traffic
1000 packets @

120 Mbps
5000 packets @

400 Mbps

PrimePower 283,00 mW 288,00 mW

Rate-Based 299,30 mW 299,91 mW

Volume-Based 405,49 mW 442,60 mW

This experiment shows that the error induced by the volume-based power estimation

model can be superior to 50%, when compared to the Synopsys PrimePower tool. The rate-based

model maintains the error below 6% in the same comparison. The rate-based power model

66

presents such a small difference to the reference estimation because it considers blocked packets

and burst transmissions, effects due to the congestion over the network. Considering Synopsys

PrimePower as reference, Table VII shows the evaluation error between the two models.

The second evaluation scenario estimates the execution time of the power estimation

models. A similar experimental setup is used, with each processing element transmitting 10,000

packets, random spatial packet distribution, with an injection rate equals to 25% of the available

link rate. Total power estimation time was approximately 20 hours with PrimePower, and less than

20 minutes with the rate-based model (Intel Core2 Duo 2.4 GHz, 2GB RAM). For the same traffic

scenario, using a 4x4 NoC, the power estimation with PrimePower becomes unfeasible. It is

important to mention that the volume-based model computation time is almost zero, since it

corresponds to the application of simple equations. However, volume-based model can only be

applied in situations with a small number of collisions between packets (absence of congestion),

an unrealistic scenario for NoCs.

Table VII - Average power dissipation results using a commercial power estimation tool (PrimePower), rate-
based model, and volume-base model (NoC frequency: 50MHz).

Traffic
1000 packets @

120 Mbps
5000 packets @

400 Mbps

Rate-Based difference error 5,76% 4,14%

Volume-Based difference error 43,28% 53,68%

4.6.3 Actor-oriented Power Model

Due to the advantages presented above, the rate-based model was integrated into the

JOSELITO model, aiming to provide an accurate estimation of the power dissipated of NoC-based

MPSoCs. Furthermore, the rate-based model was extended in this Thesis, in order to consider the

link power dissipation, which is responsible for at least 17% of the router power dissipation

[KAH09].

As mentioned before, JOSELITO was developed in Ptolemy II, but other environments

supporting actor semantics could be used as well. Besides, Ptolemy II supports application

modeling using multiple models of computation (e.g. finite-state machines, process networks,

discrete events), allowing applications to be described using time and concurrency primitives that

better reflect their nature. This possibility is explored in the next Chapter of this Thesis.

To integrate the rate-based power estimation model into JOSELITO model (PAT-based NoC

model), a number of equations (2, 4 and 6) were incorporated into the input buffer and arbiter

actors. Besides, the PowerScope and a monitor actor were implemented as part of this Thesis.

PowerScope is a parameterizable actor developed to display graphically the NoC power dissipation

during simulation.

The monitor actor, called Router monitor - Figure 31 (a), is used to collect the average

67

reception rate of each input buffer and the switching activity of its associated link. By means of the

PowerScope, the total NoC power dissipation (and energy consumption) is calculated and

displayed during the simulation, as illustrated in Figure 31 (b). This feature can help designers to

detect power hotspots, enabling, for example, different application mapping targeting low-power

budget. PowerScope generates graphics (e.g. Figure 38), and a report of energy consumption,

maximum, minimum and average power per router.

Scope

N

L

W

S

E
Router

monitor

average

reception rate

(a) (b)

Figure 31 - 5x5 NoC and the PowerScope.

PowerScope uses the following power parameters, obtained in the calibration step (Figure

30): (i) switch control base dissipation; (ii) switch control variable dissipation; (iii) buffer base

dissipation; (iv) buffer variable dissipation; and (v) link switch activity. During the simulation, i.e.

application step (Figure 30), the actor model computes the following values:

1. Each buffer computes its average reception rate avrr according to Equation (6) where:
recPkts is the number of received packets in the sample window; flit is the flit size; T is
the clock period; and sw the sample window in clock cycles.

swT

flitpktSizerecPkts
avrr (6)

2. The power dissipation of the links (LinkPD) is calculated according to the following
equations:

2VccfNoCClink loadBPD (7)

avrrwlinkLink BPDPD (8)

where:

Cload: represents the total switching capacitance of the wires

fNoC: is the NoC frequency

w: is the number of the wires used for data transmission

α: is the link switch activity

The router monitor collects the average reception rate of each buffer avrr, Equation (6),

68

and the switching activity of its associated link, which are sent to PowerScope at the end of each

sample period. The power dissipation is obtained by applying avrr to the individual power

equations (6 in Figure 30, Pbuffer, Pcrossbar and Pcontrol). The power dissipation of the router is

then computed from Equation (5).

4.6.4 Comparison between RTL and Actor-Oriented Models for Power

and Energy Estimation

This section compares two implementations of the rate-based model, using two

abstraction levels, RTL (HERMES-HEFESTUS) and actor oriented (JOSELITO-PowerScope). The

experimental setup uses a 4x4 2D-mesh NoC running at 50 MHz, with 16-bit flit width, 8-flit buffer

depth, XY routing algorithm and handshake control flow. The maximum link rate is 800 Mbps. The

following traffic parameters vary:

 packet size: 32 and 64 flits;

 temporal traffic distribution: uniform (200 Mbps), normal (minimal rate 150Mbps,

maximal rate 250Mbps, and standard deviation 10Mbps), and Pareto on/off (200

Mbps, maximum number of bursts set to 10 packets);

 spatial traffic distribution: complement and random;

 number of packets: 100 (traffic T1), 1,000 (traffic T2), and 10,000 (traffic T3).

Table VIII presents the difference in the average power dissipation between the JOSELITO

model and the HERMES RTL model. Note that the traffic scenarios induce network congestion,

which implies in blocked packets. Even with injection rates near to the network saturation point

(mesh networks saturate when injection rates are between 20% and 30%) and collision between

packets, both implementations of the rate-based model at the RTL and actor-oriented abstraction

level present similar results. The clear advantage of the actor-oriented model is its faster

construction, validation and debugging, enabling faster population and exploration of the design

space. Such accurate power evaluation at higher abstraction level is possible because the

estimation model is based on the buffer reception rates, sampled at fixed periods, and it can be

properly captured in the actor-oriented model.

The difference in the average energy consumption between JOSELITO and RTL model was

also evaluated, as reported in Table IX. Applying packets with 32 and 64 flits through the NoC, the

worst-case difference is presented when 10000 packets (Pareto on-off distribution), are sent per

producer over the NoC. In this case, the difference on the average energy consumption to deliver

all packets is only 0,001247 mJ between both models (in practice, an error of 0%).

Table VIII - Average Power Dissipation difference between Model RTL and JOSELITO, using random (R) and
complement (C) traffic distribution. T1, T2, T3 means 100, 1000 and 10,000 packets with 32 and 64 flits.

69

 Uniform Distribution Normal Distribution Pareto Distribution

Model RTL
(mW)

JOSELITO
(mW)

Difference
(mW)

Model RTL
(mW)

JOSELITO
(mW)

Difference
(mW)

Model RTL
(mW)

JOSELITO
(mW)

Difference
(mW)

T1
(R)

32 302,35 302,35 3,22E-06 303,07 303,07 3,64E-06 288,77 288,77 1,11E-06

64 303,23 303,23 5,02E-06 303,20 303,20 5,94E-06 289,05 289,05 3,20E-06

T1
(C)

32 311,25 311,25 5,06E-06 311,25 311,25 4,78E-06 292,23 292,23 3,26E-06

64 311,86 311,86 5,65E-06 311,86 311,86 5,89E-06 292,64 292,64 4,50E-06

T2
(R)

32 303,94 303,94 2,81E-06 303,89 303,89 3,45E-06 289,02 289,02 1,85E-06

64 303,86 303,86 4,69E-06 303,93 303,93 5,81E-06 289,65 289,65 3,95E-06

T2
(C)

32 312,88 312,88 5,02E-06 312,75 312,75 4,78E-06 293,70 293,70 4,57E-06

64 312,95 312,95 5,37E-06 312,88 312,88 5,43E-06 293,64 293,64 5,17E-06

T3
(R)

32 303,99 303,99 3,06E-06 303,94 303,94 3,48E-06 288,99 288,99 1,89E-06

64 303,99 303,99 4,78E-06 303,96 303,96 5,88E-06 289,61 289,61 3,91E-06

T3
(C)

32 313,00 313,00 5,03E-06 312,96 312,96 4,88E-06 293,05 293,05 4,56E-06

64 312,17 312,17 5,26E-06 312,95 312,95 5,38E-06 293,25 293,25 5,09E-06

Because JOSELITO abstracts the buffer size, increasing the packet size (considering the

same buffer depth) leads to a larger error on the average energy consumption. For example,

considering Pareto on-off traffic distribution, 8-flit buffer depth and a packet size of 32 and 64 flits,

the worst-case difference increases 0,000681 mJ to deliver 160,000 64-flits packets (16 routers

delivering each one 10,000 packets). The difference can also be considered insignificant, taking

into account that even assuming a packet size 8 times bigger than the buffer depth the error is still

in practice 0%.

In terms of simulation time, results show the speed-up obtained using the actor-oriented

model (JOSELITO-PowerScope), w.r.t the RTL model (HERMES-HEFESTUS) considering traffic with

small number of packets (e.g. T1, 100 packets per producer), as demonstrated in Table X. In these

simulated scenarios, the actor-oriented model was faster than RTL model.

Table IX - Average Energy Consumption difference between Model RTL and JOSELITO, using random (R)
and complement (C) traffic distribution. T1, T2, T3 means 100, 1000 and 10,000 packets with 32 and 64 flits.

 Uniform Distribution Normal Distribution Pareto Distribution

Model RTL
(mJ)

JOSELITO
(mJ)

Difference
(mJ)

Model RTL
(mJ)

JOSELITO
(mJ)

Difference
(mJ)

Model RTL
(mJ)

JOSELITO
(mJ)

Difference
(mJ)

T1
(R)

32 163,27 163,27 1,74E-06 163,66 163,66 1,96E-06 381,17 381,17 1,47E-06

64 321,42 321,42 5,32E-06 321,40 321,40 6,29E-06 745,76 745,76 8,27E-06

T1
(C)

32 168,07 168,07 2,73E-06 168,07 168,07 2,58E-06 385,75 385,75 4,31E-06

64 330,57 330,57 5,99E-06 330,57 330,57 6,24E-06 749,18 749,18 1,15E-05

T2
(R)

32 1562,26 1562,26 1,44E-05 1568,10 1568,10 1,78E-05 3693,74 3693,74 2,36E-05

64 3123,69 3123,69 4,82E-05 3124,46 3124,46 5,97E-05 6974,82 6974,82 9,52E-05

T2
(C)

32 1608,23 1608,23 2,58E-05 1613,81 1613,81 2,46E-05 3489,16 3489,16 5,43E-05

64 3210,88 3210,88 5,51E-05 3216,46 3216,46 5,59E-05 6982,90 6982,90 0,000123

T3
(R)

32 15570,79 15570,79 0,000157 15586,36 15586,36 0,000178 37135,51 37135,51 0,000243

64 31141,22 31141,22 0,000490 31187,08 31187,08 0,000603 70098,26 70098,26 0,000946

T3
(C)

32 16038,35 16038,35 0,000258 16048,84 16048,84 0,000250 36415,41 36415,41 0,000566

64 32778,61 32778,61 0,000553 32108,84 32108,84 0,000552 71859,65 71859,65 0,001247

Table X - Speed up of actor-oriented power model in comparison to RTL power model for 3 traffic

distributions with 100 packets.

70

Power model\Traffic Uniform Normal Pareto

RTL - HEFESTUS 45 sec. 45 sec. 49 sec.

Actor-oriented -PowerScope 26 sec. 27 sec. 28 sec.

Speed-up Factor 1,7307 1,6666 1,75

For the traffic scenarios T2 and T3, the simulation of the RTL model is, in average, 2.6 times

faster than the actor-oriented model. The number of necessary simulation events to deliver all

packets (assuming that one Ptolemy II simulation cycle corresponds to a RTL clock cycle) explains

the increased simulation time. This is probably due to the fact that the proposed actor-oriented

model is implemented on top of Ptolemy II, which is a Java application running on interpreted

mode on top of a virtual machine with restricted heap space and managing memory using garbage

collection. All such implementation aspects contribute to the simulation slowdown (the simulation

server has to spend much of its processing capacity on memory management rather than on the

simulation process itself). This is acceptable as a proof-of-concept, but additional work on

compiling Ptolemy II to native code and reducing the memory management overhead is needed to

make the proposed technique competitive in simulation time, in comparison with current

commercial tools.

4.7 Chapter 4 – Closing Remarks

The major contribution of this Chapter is describing a set of modeling techniques that can

be used to create simplified NoC models that are easier to design, setup, debug and visualize

results when compared to RTL or even TLM. In this context, a contribution is the identification of

the elements of a NoC that can be abstracted away (and those that cannot), by applying the

payload abstract technique, ensuring accurate performance analysis, such as latency, throughput

and power dissipation. The high accuracy achieved is an important contribution, hence accurate

system modeling becomes especially important to the design of complex systems like NoC-based

MPSoCs [ZEN10]. In addition, presented results prove that the proposed simplified NoC power

estimation model can be faster when compared to RTL models, due to the design flexibility, setup

and debugging features, without significant loss of accuracy.

By using the proposed NoC models, a designer can quickly change NoC configurations (e.g.

routing and arbitration algorithms), then simulate the model in Ptolemy II and obtain figures for

performance. Other benefits of the proposed model-based approach are the system observability

and debugging capacity achieved by using monitors and graphic tools enabling the visualization,

for instance, of the power dissipation at run-time. As defined in [IND08], according to the

proposed approach, three different levels of debugging are provided:

(i) code-level debugging – this level supports the debugging of the internal functionality of

the individual actors implemented within Ptolemy II. It can be done with regular

programming code debugging tools like Eclipse, and is mainly used to verify if the

71

sequential algorithm within a particular actor (for instance, the routing algorithm

implemented in the arbiter actor) works properly;

(ii) interaction-level debugging – It uses textual output to inform the sending and receiving

of each of the messages denoted in the sequence diagrams along with their timing

information. To avoid overflow of information, it is possible to track the activity of any

individual actors (for instance, observing only the input buffer of the direction “north” of

the router with XY address “11” on a mesh);

(iii) system-level debugging – a number of extended observability resources were

implemented within the context of this work. They are extensions to Ptolemy II and can be

plugged in different parts of the NoC model, working as scopes which collect data from the

network, process and display it graphically, for instance the PowerScope presented in this

Chapter.

Finally, the proposed models are slower, in almost all simulated scenarios (with the

exception of results presented in Table X), than the reference RTL model. Having said that, it was

expected since the comparison is between a proof-of-concept tool executed over a virtual machine

with commercial tools that are compiled to native code and that have been exhaustively optimized

over the past decades. In any case, the obtained results point to promising future work on

optimizing memory management of the simulator and the further reduction of simulation events

(for instance, by abstracting the internals of the arbitration algorithm). Another alternative to

solve the memory management problem would be to reimplement this approach using simulation

frameworks based on C++, such the multi-MoC extensions for SystemC done in [PAT04][PAT07].

72

73

5. MODEL-BASED DESIGN FLOW FOR NOC-BASED MPSOCS

This Chapter presents the second main contribution of this Thesis, the integration of the

proposed models into a model-based design flow. This model-based design supports the creation

of a unified model, illustrated in Figure 32, which comprises three-layer models: (i) application

model, (ii) platform model, and (iii) mapper model. The three-layer models are described in the

beginning of this Chapter. Furthermore, a model-based design for NoC-based MPSoCs, is

proposed. Finally, to validate the proposed approach, the Chapter includes a case study with the

design space exploration of a NoC-based MPSoC running four applications.

5.1 Application Model Layer

In this layer, designers specify application blocks, implemented here as a set of

communicating application actors (e.g. AB1 and AB2 in the upper part of Figure 32), according to

the modeling strategy proposed in [MÄÄ08][MÄÄ10]. Application blocks may contain 1 or more

tasks that execute sequentially. For instance, the application blocks represented by AB4 with tasks

T1 and T2 (represented as circles in Figure 32). Application actors have input and output ports for

sending and receiving messages. UML sequence diagrams (SDs like SD1 and SD2 in Figure 32) are

sequencing actors that constrain the order of the messages exchanged by application actors.

Application actors are defined as active or passive and are represented as lifelines within one or

more SDs (for instance, AB4 is represented in both SD1 and SD2). Active actors (e.g. AB1) are those

that initiate a communication, while passive actors (e.g. AB2) react or initiate a communication

after receiving a message from an active actor.

Taking into account the foundations mentioned above, the application model is formally

described. Assuming that A is a set of actors and C is a set of communication links, formally an

application model is a directed bipartite multigraph, G (A, C).

Given that AB is a set of application actors and SA is a set of sequencing actors, A = AB υ SA.

For the example in Figure 32, AB = {AB1, AB2, AB3, AB4, AB5, and AB6}, while AS = {SD1, SD2}. The set

EM = {m1, m2, m3, m4, m5, m6, m7, m8, m9} represent the messages exchanged by the

application actors in the application model illustrated in Figure 32. Following, C is the vertex set of

G and represents all communication links in the application model. C is in fact a set of triples with

C AB x AS x EM υ AS x AB x EM. Each communication link is defined by two triples in C. For the

example in Figure 32 AB1 and AB2 exchange m1. This is represented in C by the elements AB1, SD1,

m1), SD1, AB2, m1). The whole C set for the example in Figure 32 is: C = AB1, SD1, m1), SD1, AB2,

m1), AB2, SD1, m2), SD1, AB1, m2), AB1, SD1, m3), SD1, AB3, m3), AB3, SD1, m4), SD1, AB4, m4),

AB4, SD1, m5), SD1, AB3, m5), AB3, SD1, m6), SD1, AB4, m6), AB4, SD2, m7), SD2, AB5, m7), AB5,

SD2, m8), SD2, AB6, m8), AB4, SD2, m9), SD2, AB6, m9)}.

74

APPLICATION MODEL

AB5

AB6

AB4AB3

AB1

m1

m3

m2

m4

UML

Sequence

Diagram

m1

m2

m3

m4

m5

AB4AB1 AB2 AB3

m1

m3

m2

m4

m5

m6 m6

m6

Director 1

SD1

 m7

m9

m5

m5

Sequence diagram (SD)

par

m7

m8

Director 3

AB4

m7

m9

SD2

AB5 AB6

m9

Sequence diagram (SD)

m8

m8

m8

Director 2

AB4 internal view

AB5 internal view

AB5i

Director 4

AB5jC
link

T1

m5

m4

m7

m9m6

T2

AB2

MAPPER

MODEL
mapping

heuristics

Mapper Actor Mapping table

LIFELINES

AB3, AB4

AB5

AB1 AB2

AB6

PE

00

10

01

11

informations from
application model

informations from
platform model

message notifications

from application model

notifications to

platform model

notifications from

platform model

notifications to

application model

1

2

3

8

6

7

PLATFORM

MODEL

communication

link

NoC
Router

10

Router
00

Router
01

PE 01

mapped lifelines

scope

performance metrics

capture and analysislocal port

PE 00

PE 10

PE 11
AB2AB1

AB4AB3

AB5

AB6

PACKETS of m3

m3

m
3

Router
11

5
m3

scope

4

Figure 32 – An example of a unified model representation. Figure extended from [MÄÄ10].

Next, sequence actors can be defined according to the UML 2.0 specification, which

enables designers to model sequence diagrams by using combined fragments and interaction

operators, such as option (opt), and parallel (par). Thus, applications can be specified with

communication behaviour that includes parallel, optional, and iterative triggering of messages. For

the example in Figure 32, the SD2 supports the parallel execution of both m8 and m9 messages, by

using the par interaction operator. It is out of the scope of this Thesis to investigate and to present

a review of UML 2.0 specifications features, for such documents like UML 2.0 specification21 can

be used.

21 Available in: http://www.omg.org/cgi-bin/doc?ptc/2003-08-02.

75

Each sequencing actor (e.g. SD1) has a director (e.g. Director 2) for controlling its execution

(messages' delivery order between application actors). Total order and partial order directors,

SDTODirector and SDPODirector respectively, proposed in [IND07][IND07b], are examples of

supported directors. As defined in [MÄÄ10], the total order director maintains the order of the

messages of a sequence diagram whereas the partial order director maintains the order separately

on each lifeline. Such directors are the link between both application and mapper layers (as

discussed in the Section 5.4). Once the application model is defined, the designers need a platform

model to validate the application functionality and evaluate its performance.

5.2 Platform Model Layer

A platform can be seen as a directed graph H = G(P,C), where P is a set of processors and C

are the communication channels through which the processors exchange data packets. The

platform model layer comprises: NoC models, abstract and scopes, as illustrated in the bottom of

the Figure 32. Examples of supported NoC models were described in Chapter 4 of this Thesis. Due

to the flexibility of the present approach, the platform model layer is independent from the

application model layer. Thus, different communication infrastructure models (e.g. BOÇA NoC

model described in [MÄÄ10]) can be integrated without changing the other layers. This flexibility

enables the designer to evaluate the performance of an application running over different

configurations (e.g. RENATO model varying the buffer depth), or even completely different

platforms (e.g. not based HERMES infrastructure NoC models). In addition, PEs implements non-

preemptive first in first served scheduling policy (that is, once a task is running, it is never

interrupted), and they only differ according to their control flow. Different scheduling polices

could be implemented to evaluate, for instance, the impact of the mapping for real time

applications.

NoC-based MPSoC designers might be interested in observing a specific component (e.g.

central router) or even a particularity of system at (e.g. mapping time at system start-up) or during

a specific time (e.g. reception rate at a buffer, during 1 second), considering the traffic load

imposed by different applications executing in parallel. Therefore, designers need adequate

possibilities of observing and debugging the execution of a set of applications running on top of a

NoC model. In this context, the platform model layer includes Scope actors that can be used to

check the running status of the system, as well as to collect performance figures that can be used

for application/platform model optimization. For instance, the PowerScope is proposed in this

Thesis and integrated to the NoCScope framework [MOL09]. The NoCScope is a composition of a

set of scopes, such as: BufferScope, InputScope, OutputScope, EndToEndScope, and

PointToPointScope.

5.3 Mapper Model Layer

The mapper model layer establishes the link between application and platform models, as

illustrated in the middle of Figure 32. The main function of this layer is enabling the joint-

76

execution of applications running on top of the NoC-based platform models. The joint-execution

enable designers to analyze the impact of a set of applications running in parallel when they are

executed on a particular platform. This layer comprises the Mapper actor, which has access to

information from both the application (by communication with the directors of sequencing actors)

and platform models (by communication with the abstract PEs).

A lifeline is the smallest grain of the proposed mapping approach and the Mapper can map

one or more lifelines onto one of the available PEs of the platform, defining it as mono or

multitask (indicating that more than one lifeline is mapped onto it). For the example in Figure 32,

PE 01 (AB1 and AB2) and PE 00 (AB3 and AB4) are considered multitask, whereas PE 10 and PE 11

are mono-processors. The Mapper defines its lifeline mapping table according to the static

mapping heuristics that were incorporated into this mapper model layer by integrating the CAFES

tool [MAR05b][MAR08]. Other tools could also be used for mapping definition, but CAFES was

chosen, since it include several mapping heuristics, such as: exhaustive search (ES), simulated

annealing (SA), taboo search (TS), and greedy incremental heuristic (GI) [MAR08], increasing the

design space exploration. Therefore, the presented approach is extensible, enabling different

mapping algorithms and heuristics to be implemented and integrated into the mapper layer

without changing the other layers.

5.4 Unified Model Execution Flow

Figure 32 enumerates the execution of the unified model, from the sending and receiving

times of a message (m3). Assuming that messages m1 and m2 were already sent and received

to/by their applications blocks. The application block AB1 sent the message (m3) to the sequencing

actor (SD1), which receives it (1). When m3 is received, a pre-defined message within its sequence

diagram is triggered, (according to the example, the message m3 sent from lifeline AB1 to lifeline

AB3) - (2). When this happens, the corresponding director Director 2 interrupts the delivery and

notifies the mapper about the message (3). Since the mapper is responsible of assigning each

lifeline to a PE, it knows that for instance lifeline AB1 is mapped to PE 01, whereas AB3 is mapped

to PE 00. Once the mapper receives the information about the triggered message, it will command

the processing element (PE 01) associated to the sender of the message (m3) to generate the

corresponding traffic into the NoC platform. Thus, it must create a packet (according its structure)

and write this packet on the local input port of the corresponding Router 01 – (4). Then the

mapper waits until the processing element (PE 01) associated to the receiver of the message (m3)

notifies the complete reception of the packet (5) and (6). Upon notification, the mapper calls back

the Director 2 (which has notified the triggering of the message) and informs it that the message

can now be delivered (7). After that, the Director 2 can forward the message to the output port of

the SD1, and the message reaches its destination (AB3) with the exact latency that it would take if

the application is executed on top of the implementation platform (8).

The effective comparison of design alternatives of NoC-based MPSoCs requires a complete

design flow including application and platform modeling, mapping and evaluation tools. The

77

proposed model-based design flow, developed under Ptolemy II framework can fulfill the

requirements mentioned above.

5.5 Model-based Design Flow

The proposed design flow, as illustrated in Figure 33, adopts actor-oriented models for

both applications and platforms, as previously presented. As defined in [GAJ05], a design flow is a

sequence of design steps that are necessary to take the system specification to the manufacturing.

The proposed model-based design flow can be used for early design space exploration of NoC-

based MPSoCs and it comprises the steps described below:

Application

Modeling

Application Model with actors and UML Diagrams

AB1

AB2 AB3

AB4

M
2

CWM Graph Description

Vergil (PtolemyII Interface)

NoC

AB4 internal

view

M
1 M

3

A 3s
m

M
5

AB1

NoC

NoC Characterization

NoC Dimesion

Buffer depth

Number of

Virtual Channels

Control Flow

Scopes

PowerScope

ChannelScope

BufferScope

HopSpotScope

Point2pointScope

m3

m1

AB1

m2

m4

m5

AB3

AB4

UML

Sequence

Diagram

m1

m2

m3

m4

m5

Director

AB4AB1 AB2 AB3

m1

m3

m2

m4

m5

m6 m6

m6

Application

graph and

C code

Generation

Mapping

heuristics

(CAFES)

CAFES´ Mapping

Platform

and Scopes

Selection

Reports and

Analysis

Results

Unified

Model

Simulation

(Ptolemy II)

T2

T1

m6

m5m4

AB2

#include "../../task.h"

Message m4, m5, m6

m4.lengh = 128;
 . . .
Receive(m4, AB3);

Pseudo C code

 NoC Dimension

 2x2

 [allocated tasks]

 AB4.c

 router 00

Hemps

Mapping File

Hemps Editor

C
a
lib

ra
tio

n

...

AB3

AB4 AB2

...

Constraints

ok?

Mapping Files

Pseudo C Description

AB1.c AB2.c

AB3.c AB4.c

(A)

(B)

(C)

(D)

(E)

(F)

Figure 33 - Proposed model-based design flow.

78

Application Modeling: in this step designers can model application blocks as described in

Section 5.1. In addition to the sequencing actors/directors proposed in

[IND07][IND07b][MÄÄ08][MÄÄ10], a set of actors were built in order to facilitate the modeling of

applications, as streaming applications like MPEG. Those application actors were built with a set of

parameters, which are useful to model the application and to generate C code description as well.

At this level, designers have to characterize the application model by defining some constraint, like

the period of an active actor (e.g. AB1, as illustrated in Figure 33 (A)) or even the data size of a

message, as proposed in [MÄÄ09]. The period defines how often an active actor initiates a given

communication. By analyzing how often each actor executes and its communication patterns, the

model can characterize the processor workload imposed by the execution of each application

block. In turn, the data size defines the number of packets (considering the desired packet size)

required to transfer a message through the NoC. By varying this constraint it is possible to analyze

the trade-off between packet size and buffer depth, as investigated in [TED08].

Application Graph and C Code Generation: Ptolemy II was extended so that it can parse the

application model (e.g. UML Sequence Diagrams, message sizes) and generate a graph description

according to a communication weighted model (CWG) used in CAFES [MAR05]. In this work, CWG

nodes represent lifelines and edges represent the communication between them. Each edge

contains a message (communication weight - total number of flits sent from a source to a target-).

A message can represent the sum of all exchange messages that represent the communication

activity between a pair of lifelines, as illustrated in the CWG graph in Figure 33 (b), AB3 sent m4

and m6 to AB4 and both messages are represented by its sum (A3sm).

In addition, it is possible to generate pseudo C codes that can be executed by HEMPS

platform, as the one illustrated in Figure 34 (b). HEMPS is a homogeneous NoC-based MPSoC

platform [CAR09b]. The main hardware components are the HERMES NoC and the 32 bits MIPS-

like processor Plasma. A PE wraps a Plasma and attaches it to the NoC. PEs also contain a private

memory, a network interface, and a DMA module. PEs can be master or slave. The master is

responsible for system management, including: (i) task mapping, (ii) broadcast of control messages

(unicast based), (iii) monitoring management, (iv) reception of control messages, as end of task

and debug packets. On the other hand, slave PEs are those that execute application tasks. Two

groups of primitives are supported: debugging primitives (e.g. Echo, GetTick) and communication

primitives (e.g. send and receive).

Mapping: in this step, the generated CWG graph is used as input to the mapping tool,

which maps application blocks onto PEs connected to the NoC model. For the example in Figure 33

(C), AB4 is mapped onto PE connected to the bottom left router of the mesh NoC. Here, designers

have to apply a mapping heuristics to define a possible application-platform mapping that can

satisfy the application requirements. Once the application-platform mapping is defined, the

mapping tool generates two files. The first file is used as input by the Mapper Actor, which defines

its Mapping table, as described in Section 5.3 of this Chapter. The second file is used by the HEMPS

Editor tool to define the mesh NoC dimension, as well as the mapping of the generated tasks (C

79

code).

data size contrait = LENGHTH_X

D

C

A

B
UML

Sequence

Diagram

m1

m2

m3

DA B C

 m1

m3

Sequence diagram (SD)

Director
m1

 m2

m2

m3

Simulation

STOP TIME

INITIAL

TIME
INTERVAL between

messages

SIMULATION TIME

(CLOCK CYCLES)

(a) (b)

1. #include "../../include/task.h"

2. #include "../../include/stdlib.h"

3.

4. Message msg1;

5.

6. int main()

7. {

8.

9. int i, j;

10.

11. Echo("Communication task A started.");

12. Echo(itoa(GetTick()));

13.

14. msg1.length = LENGHTH_X;

15. for(i=0;i<LENGHTH_X;i++){

16. msg1.msg[0] = i;

17. }

18.

19. for(i=0;i<#_ITERATIONS;i++){

20. Send(&msg1,TASKC);

21. for(j=0;j<INTERVAL;j++);

22. }

23.

24. Echo(itoa(GetTick()));

25. Echo("Communication task A finished.");

26. return 0;

27. }

Pseudo C Code

Figure 34 – (a) Example of an application with 4 application blocks. (b) Example of a pseudo C code for the
application block A, where the m1 data size constraint of A defines the LENGHTH_X (line 14).

Platform and Scopes Selection: at this step, the platform is optimized according to the

application requirements through parameterization and scopes selection. NoC parameters include

buffer depth, control flow, routing algorithm, and number of virtual channels. Scopes can monitor

the power consumption, hot-spots, throughput, latency, and buffer usage. Two NoC platforms

models are supported for configuration and generation: RENATO and JOSELITO. A tool generates

an XML file description with the chosen parameters (e.g. buffer depth, control flow), which are

used as input file by Ptolemy II framework. Each NoC router is generated with one associated

abstract PE (composed of producer and consumer) that executes one or more tasks.

Ptolemy II Simulation: once defined the application model and its mapping onto the

selected platform model, the design is manually grouped into the unified model, which is validated

through Ptolemy II simulation. During the simulation reports are generated.

Reports and Analysis Results - designers evaluate the impact of a given platform on the

application (unified solution) by evaluating graphs and reports generated by the selected scopes,

in order to verify if the chosen NoC architecture fulfills the application’s power and performance

requirements. Furthermore, iff the resulting solution does not satisfies the performance

requirements (e.g. end-to-end communication latencies are not met) imposed by the target NoC-

based MPSoC, the designer can re-define some structural parameter (e.g. routing algorithm,

buffer depth) or ever re-mapping the lifelines by applying another mapping heuristic. Once one

possible good configuration regarding application-mapping-platform is taken, the generated C

code can then be executed in HEMPS platform. This allows designers to extract important

performance figures, which are not considered into the unified model. For instance, the proposed

approach does not consider the overhead of mapping lifelines, since the Mapper actor is not

connected to the NoC (thus, not generating traffic). Another performance figure that can be

80

extracted is the real load imposed by each task execution. These values can be used to re-calibrate

each layer of the unified model in order to evaluate different solutions that can improve the

performance of the target NoC-based MPSoC.

The proposed design flow is validated through a case study, with four applications running

simultaneously. The integration of the rate-based power estimation method into the proposed

design flow enables the analysis of different design parameters and the identification of the most

power-efficient application-platform mappings.

5.6 Case Study

Using the previously presented design flow, four applications were modeled in Ptolemy II

by using application and sequence diagram actors:

(i) HDTV, comprising end-to-end transmission of 10 HDTV channels, modeled as 2 application

blocks, Sender and Receiver [TED08]. The Sender transmits 10 simultaneous HDTV flows per

frame (constant interval between frames is 0,033324 seconds). Frames have an average size

of 675 flits obtained from real application traces;

(ii) VOPD (Video Object Plan Decoder), modeled as 12 application blocks, transmitting 30 or 60

fps with interval between frames equal to the HDTV;

(iii) MPEG4 decoder, modeled as 12 application blocks, also transmitting 30 or 60 fps with

interval between frames equal to the HDTV [MIL09];

(iv) automotive application, modeled as 10 application blocks [MÄÄ08][MÄÄ10].

The adopted NoC infrastructure has the following parameters: 6x6 mesh topology, XY

routing algorithm, 32-bit flit size, packets with 128 flits and handshake control flow. The rate-

based power model was calibrated using the XFAB XCMOS 0.18 µm (XC018) 1.8V technology22,

adopting clock-gating, and a 250 MHz clock frequency.

By using the PowerScope, the NoC-based MPSoCs power estimation was obtained for

different application characteristics (e.g. injection rate) and different mapping heuristics. The

simulation scenario has all four applications executing simultaneously for one second and its

design space exploration varies:

 injection rate of HDTV, VOPD and MPEG4 applications: 30 and 60 fps;

 switching activity in the NoC links: 10%, 20%, 30%, 40% and 50%;

 mapping heuristic: random (reference worst-case mapping), SA (simulated annealing),

GI (greedy incremental) , TS (Taboo search).

22 Available in: http://www.xfab.com/en/technology/cmos/018-um-xc018.html.

81

GISA Taboo Search Random VOPD

Automotive

MPEG4

HDTV

Figure 35 - Resulted mapping of VOPD, automotive, MPEG4 and HDTV applications, according 4 heuristics:
SA, Taboo Search, GI and Random.

Figure 34 illustrates how the four applications are mapped onto the platform. Figure 36 (a)

and Figure 36 (b) show the NoC average power dissipation (NoC-APD) and the average energy

consumption, respectively, for different mapping heuristics, when varying the link switching

activity. As expected, the impact of the mapping heuristic on the average power dissipation can be

clearly observed. For a low switching activity in the links, heuristics SA, TS, GI present similar

results. The power dissipation increases with the increase of the switching activity: for a switching

activity of 50%, the difference between SA and GI reaches 20.4%. Such results show the

importance of profiling an application’s average switching activity, and using it to guide design

choices.

(a) Average NoC power dissipation (b) Average NoC energy consumption

Figure 36 - Average NoC power dissipation (a) and energy consumption (b), for different mapping

heuristics and link switching activity.

Besides average power dissipation, it is also important to evaluate hot-spots, which affect

circuit reliability, costs of packaging and ultimately the life-time of the chip. Here, the term hot-

spot refers to instants where power dissipation reaches a peak value. Figure 37 presents the

relative power distribution (RPD) according to the NoC-APD, for 30%, 40 % and 50% of switching

activity. The power distribution includes four intervals: interval 1 - instantaneous power

dissipation (IPD) lower than 2 times NoC-APD; interval 2: IPD between 2 and 2.5 times NoC-APD;

interval 3: IPD between 2.5 and 3; interval 4: IPD above 3 times NoC-APD. Such intervals may be

customized in the flow, according to the design requirements. Intervals 2, 3 and 4 are considered

herein as hot-spots.

82

(a) 30% (b) 40% (c) 50%
Figure 37 - Relative power distribution according to the four defined intervals for: (a) 30 %, (b) 40%, and (c)

50% of link switching activity.

Obtained results show that all heuristics produce mappings that are most of the time

within RPD intervals 1 and 2. High RPD values are mainly due to network congestion, which is not

taken into account by volume-based models, so such effects are not likely to be detected by

previous work. It is also worth noticing that TS and GI heuristics present similar average power

dissipation compared to SA, they produce mappings that result in more hot-spots. Heuristics SA

and TS present less NoC-APD and hot-spots because applications are mapped in one region,

minimizing network congestion. For instance, using SA, only one of the VOPD tasks is not

contiguously mapped with the others, as illustrated in Figure 35.

Table XI presents the number of measured values for each power interval. The number of

hot-spots, i.e. the number of occurrences in intervals 2, 3 and 4, follows the increase in the

switching activity, justifying the use of more time-consuming mapping heuristics such as SA. On

the other hand, increasing the traffic injection rate has little impact on the number of hot-spots,

since the interval between frames (off period) is too high, even with 60 fps.

Table XI - Number of detected hotspots for each power interval, varying mapping, injection rate (30 and 60
fps) and link switching activity (sw. act.).

 MAPPING HEURISTICS

SW. ACT.
Power

interval

SA TS GI Random

30fps 60fps 30fps 60fps 30fps 60fps 30fps 60fps

10%

1 38 61 236 251 528 603 18652 18794
2 0 0 0 0 2 6 5642 5775
3 0 0 0 0 0 0 61 88
4 0 0 0 0 0 0 11 17

20%

1 4063 4165 7910 8016 19980 20017 49950 49919
2 12 35 234 244 272 330 1988 2097
3 1 1 0 1 18 30 3773 3887

4 0 0 0 0 0 2 1964 2032

30%

1 7755 7866 19499 19610 38524 38629 33141 33042
2 67 123 2327 2348 2602 2662 22349 22456
3 9 27 2 6 256 285 86 127

4 1 1 1 4 19 35 5728 5902

40%

1 22283 22357 27844 27919 32946 32998 14775 14791
2 323 357 6498 6554 8874 8981 38823 38756
3 41 104 471 479 726 758 1960 2047

4 8 23 3 7 35 76 5766 5969

50%

1 18139 18637 29447 29469 29926 29994 11129 11164
2 4919 4536 6070 6174 18792 18798 38840 38765
3 43 94 2096 2109 1189 1215 7397 7443

4 38 64 234 249 289 361 5806 6019

83

Figure 38 presents the power consumption (mW) for the last row of Table XI, with an

injection rate of 30 fps. The SA has 38 hot-spot occurrences in interval 4, with a 476.03 mW peak.

The TS produces 234 occurrences in the same interval, with a 466.65 mW peak. Note the different

behavior between these heuristics: SA produces a smaller number of occurrences in the interval 4,

but those have higher values than TS; and TS has a uniform power profile distribution.

650

600

550

500

450

400

350

300

0 2.5e+007 5e+007 7.5e+007 1e+008 1.25e+008 1.5e+008 1.75e+008 2e+008 2.25e+008 2.5e+008

Simulation Time (clock cycles)

P
o

w
e

r
v

a
lu

e
s

 (
m

W
)

466,65

608,90

476,03

Figure 38 - Power values in interval 4 with 50% of link switching activity, during 1 second of simulation.

Another important feature that can be investigate by employing the present approach is

illustrated in Figure 39, which shows the hotspot communication zones at an specific simulation

time (e.g. when the NoC achieves its peak power value).

0

0

1

2

3

4

5

1 2 3 4 5

Figure 39 – Local analysis of hotspot communication zones at the peak power value (SA - 476,03, Figure 38).

84

Table XII presents the maximum (Max.), minimum (Min.) and average (Av.) end-to-end

communication latency values for the VOPD. The end-to-end communication latency is defined

here as the delay between the time a PE starts its message transmission and the time the target PE

receives the message. The results show that the static mapping can reduce the end-to-end

communication latencies. For example, taken the end-to-end communication presented in the

first Table row (Iquant => IDCT), it is possible to verify a reduction of 32,7%, 4,1% and 6,11%, for

maximum, minimum and average latency, respectively, when comparing the resulted values for

the SA and GI mapping.

Table XII - VOPD end-to-end communication latency results for different mapping heuristics. Application
(A), maximum (Max.), minimum (Min.) and average (Av.).

Heuristics SA TS GI Random

A. Comm. Name Max. Min. Av. Max. Min. Av. Max. Min. Av. Max. Min. Av.

V
O
P
D

Iquant =>
IDCT

799,00 799,00 799,00 799,00 799,00 799,00 1.188,00 834,00 851,42 980,00 834,00 844,65

VOPme =>
VOPrec

1.093,00 1.085,00 1.085,26 1.093,00 1.093,00 1.093,00 1.093,00 1.085,00 1.085,26 1.524,00 1.120,00 1.162,26

StripeM =>
IQuant

168,00 98,00 100,26 163,00 91,00 93,32 178,00 98,00 100,58 207,00 119,00 132,74

VOPme =>
Pad

234,00 234,00 234,00 227,00 227,00 227,00 248,00 248,00 248,00 443,00 255,00 298,23

ACDC =>
IQuant

889,00 807,00 809,65 891,00 807,00 809,71 1.299,00 849,00 965,71 1.333,00 849,00 979,06

Iscan =>
ACDC

807,00 807,00 807,00 807,00 807,00 807,00 807,00 807,00 807,00 1.002,00 850,00 869,35

UPSAMP =>
VOPrec

691,00 683,00 683,26 690,00 690,00 690,00 741,00 725,00 726,68 1.552,00 718,00 1.107,16

Pad =>
VOPme

716,00 710,00 710,19 703,00 703,00 703,00 730,00 724,00 724,58 953,00 731,00 741,58

IDCT =>
UPSAMP

793,00 793,00 793,00 793,00 793,00 793,00 835,00 821,00 821,90 834,00 814,00 816,26

VOPrec =>
Pad

703,00 703,00 703,00 710,00 710,00 710,00 741,00 731,00 731,39 791,00 731,00 734,48

ARM =>
IDCT

142,00 126,00 126,84 105,00 105,00 105,00 97,00 91,00 91,39 114,00 112,00 112,13

ACDC =>
StripeM

129,00 129,00 129,00 136,00 136,00 136,00 175,00 171,00 171,19 160,00 150,00 151,94

Run =>
IScan

807,00 807,00 807,00 807,00 807,00 807,00 807,00 807,00 807,00 1.354,00 842,00 894,06

VLD =>
Run

161,00 161,00 161,00 161,00 161,00 161,00 165,00 159,00 161,19 177,00 175,00 175,06

5.7 Chapter Closing Remarks

This Chapter presented a model-based methodology and a supporting toolset that enable

the design space exploration of NoC-based MPSoCs at early stages of the design flow, when most

of design decisions are actually taken. It uses an actor-oriented simulation framework that

captures the dynamic behavior of the NoC components and feeds its parameters to a group of

Scopes, providing accurate performance evaluation. The accurate performance evaluation is

achieved by calibrating the proposed high level models using a reference design model, for

instance an RTL implementation.

 Due to the flexibility of the proposed approach, complete separation between application

85

and platform models, designers do not have to restrict themselves to a single platform template,

and they can successively evaluate the performance of an application running over different

platforms (already supported or that can even be implemented and integrated into the proposed

model-based design flow), allowing extensively exploration. This flexibility can significantly reduce

the design time, starting from system-level specification and going down to a more detailed

implementation (e.g. HEMPS).

By integrating the rate-based power estimation method into the proposed design flow, it is

possible to obtain accurate NoC power results (e.g. hot-spots, peak power values) of multi-

applications mapped onto NoC-based MPSoCs platforms. These results could not be obtained

using current volume-based models, since they do not consider NoC low-level effects. Presented

experiments show how the proposed model-based flow can support designers on the evaluation

of mapping heuristics, aiming to reduce end-to-end communication latency, power and the

occurrence of hot-spots.

86

87

6. CONCLUSION AND FUTURE WORK

The most promising technique to explore the complex design space of NoC-based MPSoC

platforms is to build simpler, more abstract models of applications and platform components, and

to evaluate the impact of alternative compositions on performance and power dissipation. The

accuracy and speed of such evaluation must be high, and the effort to build and compose such

models must be very low, so that they can provide meaningful results early on the design flow.

This Thesis addressed important issues in this scenario. In this context, the main contributions,

publications, and future works related to this Thesis are detailed as follows.

6.1 Thesis contributions

High abstraction and high accuracy models: Inaccurate models can lead to wrong design

decisions, which can be significant to the failure of a product. In this scenario, the first contribution

of this Thesis comprises the proposition of simple, flexible and accurate NoC architectures models,

which provide accurate results when are comparable to those obtained using commercial RTL

evaluation tools. In addition, a novel technique that can be used to model wormhole packet

switching NoCs, in order to reduce the simulation time, while still obtaining accurate results for

latency, throughput and power estimation, was also proposed within this Thesis. Another

contribution of the proposed approach is the possibility of using high level monitors that can be

attached to a graphical interfaces, allowing the analysis of different performance metrics over

simulation time.

Model-based design flow: the second main contribution of this Thesis is a model-based

flow that comprises accurate executable models and a toolset that enable the design space

exploration of NoC-based MPSoCs at early stages of the design flow. By using this flow, designers

can explore different design alternatives regarding the design space of application-mapping-NoC

platform point of view. The proposed approach supports the evaluation of system performance

(application-mapping-platform) using different views of the platform model (already supported or

that can be integrated), differing in accuracy and simulation speed.

Benchmarking: A real case study, comprising four real applications, was employed to

demonstrate the potential of the presenting approach, evaluating the impact of different design

alternatives, varying some performance characteristics (e.g. injection rate), as well as different

mapping heuristics.

6.2 Publications

The following papers, related with the work presented in this thesis, have been published

or submitted for publication:

88

Indrusiak, L. S.; Ost, L.; Möller, L.; Moraes, F. and M. Glesner.
Applying UML Interactions and Actor-oriented Simulation to the Design Space Exploration of Network-on-Chip
Interconnects.
In: ISVLSI, 2008, pp. 491-494.

Ost, L; Möller, L.; Indrusiak, L.; Moraes, F.; Määttä, S.; Nurmi, J. and Glesner, M.
A Simplified Executable Model to Evaluate Latency and Throughput of Networks-on-Chip.
In: SBCCI, 2008, pp. 170-175.

Varyani, S.; Lui, T.; Indrusiak, L. S.; Ost, L., Möller, L. and Glesner, M.
Experimental review of task mapping algorithms for NoC-based Multiprocessor Systems-on-Chip.
In: ReCoSoC, 2008, pp. 22-28.

Määttä, S.; Indrusiak, L.S.; Ost, L.; Möller, L.; Nurmi, J.; Glesner, M. and Moraes, F.
Validation of Executable Application Models Mapped onto Network-on-Chip Platforms.
In: SIES, 2008, pp. 118-125.

Ost, L.; Indrusiak, L. S.; Guindani, G.; Reinbrecht. C.; Raupp, and T.; Moraes, F.

A high abstraction, high accuracy power estimation model for networks-on-chip. (best paper award)
In: SBCCI, 2009, pp. 193-198.

Määttä, S.; Indrusiak, L.S.; Ost, L.; Möller, L.; Glesner, M.; Moraes, F. and Nurmi, J.
Characterizing Embedded Applications using a UML Profile.
In: SoC, 2009, pp. 172-175.

Määttä, S.; Möller, L.; Indrusiak, L.; Ost, L.; Glesner, M.; Nurmi, J. and Moraes, F. J
Joint Validation of Application Models and Multi-Abstraction Network-on-Chip Platforms.
Journal of Embedded and Real-Time Communication Systems (IJERTCS), v. 1(1), 2010.

Indrusiak, L. S.; Ost, L.; Moraes, F.; Määttä, S.; Nurmi, J.; Möller, L. and Glesner, M.
Evaluating the impact of communication latency on applications running over on-chip multiprocessing
platforms: a layered approach.
In: INDIN, 2010, accepted for publication.

Määttä, S.; Indrusiak, L.; Ost, L.; Möller, L.; Glesner, M.; Moraes, F. and Nurmi, J.
A Case Study of Hierarchically Heterogeneous Application Modelling Using UML and Ptolemy II
In: SoC, 2010, accepted for publication.

Ost, L.; Indrusiak, L. S.; Guindani, G.; Määttä, S. and Moraes, F.
Accurate Power Estimation for NoC-based MPSoCs using Abstract Models.
Submitted to the IEEE Design & Test of Computers

6.3 Future Works

This thesis has explored a wide range of issues related to system level NoC-based MPSoC

design. As future works it is possible to enumerate:

Platform: NoC can offer different architectures, for instance, by employing virtual channels,

adaptive routing, and so on and so far. Thus, the development and the integration of other NoC

models can improve the quality of the design space exploration of the proposed approach. In

addition, the latency accuracy of PAT can be improved by considering the buffer depth. Another

89

aspect that can be investigated is the possibility of applying PAT into one of SystemC HERMES

models already implemented by GAPH’s members. Besides, additional work will also be done on

extending the power estimation model so that it considers also the power dissipation due to the

switching activity in the router buffers.

Mapping: In this thesis, the application mapping was assumed to be static. However, the

overhead of mapping lifelines is not considered, since the Mapper actor is not connected to the

NoC. The first step to overcome this limitation is connecting the Mapper to the NoC model in

order to better investigate the overhead when applications are mapped. Nonetheless, static

mapping may be insufficient to handle with the dynamic behavior of more complex applications

running in parallel. In this context, the adoption of dynamic mapping heuristics is another mapping

aspect to be investigated.

Fault detection in high level NoC Models: due to the flexibility and the high debugging

capacity inherent to proposed approach, it is possible to model faults in NoC during the simulation

(e.g. blocking a given port of a router to represent a faulty port). It can be useful to explore, for

instance, how to handle those faults to keep the correct execution of an application when a router

stops working.

90

91

REFERENCES

[ALI06] Ali, M.; Welzl, M.; Adnan, A.; Nadeem, F. “Using the NS-2 Network Simulator for
Evaluating Network on Chips (NoC)”. In: International Conference on Emerging
Technologies (ICET'06), 2006, pp. 506-512.

[ANA10] Anagnostopoulos, I.; Bartzas, A.; Soudris, D. “Application-Specific Temperature
Reduction Systematic Methodology for 2D and 3D Networks-on Chip”. Lecture Notes in
Computer Science, vol. 5953, February 2010, pp. 86-95.

[AND05] Andrews, J. R. “Co-verification of hardware and software for ARM SoC design”.
Burlington: Elsevier Inc., 2005, 288p.

[AND08] Andersson, P.; Höst, M. “UML and SystemC-comparison and mapping rules for
automatic code generation”. Lecture Notes in Electrical Engineering, vol. 10, May 2008,
pp. 199-209.

[ATI07] Atitallah, R.; Niar, S.; Meftali, S.; Dekeyser, J. “An MPSoC Performance Estimation
Framework Using Transaction Level Modeling”. In: International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA'07), 2007, pp.
525-533.

[ATI07b] Atitallah, R.; Niar, S.; Dekeyser, J. “MPSoC power estimation framework at transaction
level modeling”. In: International Conference on Microelectronics (ICM'07), 2007, pp.
245-248.

[AUS02] Austin, T.; Larson, E.; Ernst, D. “Simplescalar: An infrastructure for computer system
modeling“. IEEE Computer, vol. 35-2, February 2002, pp. 59-67.

[BAL03] Balarin, F.; Watanabe, Y.; Hsieh, H.; Lavagno, L.; Passerone, C.; Sangiovanni-Vincentelli,
A. “Metropolis: An Integrated Electronic System Design Environment”, IEEE Computer,
vol. 36-4, April 2003, pp. 45-52.

[BAN04] Banerjee, N.; Vellanki, P.; Chatha, K. “A Power and Performance Model for Network-
on-Chip Architectures”. In: Design, Automation and Test in Europe (DATE'04), 2004, pp.
1250-1255.

[BEL06] Beltrame, G.; Lyonnard, D.; Pilkington, C.; Sciuto, D.; Silvano, C. “Exploiting TLM and
object introspection for system-level simulation”. In: Design, Automation and Test in
Europe (DATE'06), 2006, pp. 100-105.

[BEL07] Beltrame, G.; Sciuto, D.; Silvano, C. “Multi-Accuracy Power and Performance
Transaction-Level Modeling”. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26-10, October 2007, pp. 1830-1842.

[BEL08] Beltrame, G.; Bolchini, C.; Fossati, L.; Miele, A.; Sciuto, D. “ReSP: A non-intrusive
Transaction-Level Reflective MPSoC Simulation Platform for design space exploration”.
In: Design Automation Conference Asia and South Pacific (ASPDAC'08), 2008, pp. 673-
678.

[BEL08b] Beltrame, G.; Fossati, L.; Sciuto, D. “High-Level Modeling and Exploration of
Reconfigurable MPSoCs”. In: NASA/ESA Conference on Adaptive Hardware and
Systems (AHS'08), 2008, pp. 330-337.

[BEN02] Benini, L.; De Micheli,G. “Networks on chips: a new SoC paradigm”. IEEE Computer,
vol. 35-1, January 2002, pp. 70-78.

92

[BER05] Bertozzi, D.; Jalabert, A.; Srinivasan, M.; Tamhankar, R.; Stergiou, S.; Benini, L.; De
Micheli, G. “NoC Synthesis Flow for Customized Domain Specific Multiprocessor
Systems on Chip”. IEEE Transactions on Parallel and Distributed Systems, vol. 16-2,
2005, pp. 113-129.

[BER10] Beraha, R.; Walter, I.; Cidon, I.; Kolodny, A. “Leveraging Application-Level
Requirements in the Design of a NoC for a 4G SoC - a Case Study”. In: Design,
Automation and Test in Europe (DATE'10), 2010, pp 1-6.

[BEN06] Benini, L. “Application specific NoC design”. In: Design, Automation and Test in Europe
(DATE'06), 2006, pp. 491 - 495.

[BJE06] Bjerregaard, T.; Mahadevan, S. “A Survey of Research and Practices of Network-on-
Chip”. ACM Computing Surveys, vol. 38-1, March 2006. pp. 1-51.

[BLA04] Blanchard B. S. “System engineering management”. Hoboken: John Wiley & Sons, Inc.
3rd ed., 2004, 483 p.

[BRO96] Brooks R.J.; Tobias A.M. “Choosing the Best Model: Level of Detail, Complexity, and
Model Performance”. Mathematical and Computer Modelling, vol. 24-4, August 1996,
pp. 1-14.

[CAR09] Carvalho, E.; Marcon, C.; Calazans, N.; Moraes, F. “Evaluation of Static and Dynamic
Task Mapping Algorithms in NoC-Based MPSoCs”. In: International Conference on
System-on-Chip (SoC'09), 2009, pp. 87-90.

[CAR09b] Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. “HeMPS - A Framework for NoC-Based
MPSoC Generation”. In: International Symposium on Circuits and Systems (ISCAS'09),
2009, pp. 1345-1348.

[CAI04] Cai, L.; Gerstlauer, A.; Gajski, D. “Retargetable Profiling for Rapid, Early System-Level
Design Space Exploration”. In: Design Automation Conference (DAC'04), 2004, pp. 281-
286.

 [CHA04] Chan, J.; Parameswaran, S. “NoCGEN: A Template Based Reuse Methodology for
Networks on Chip Architecture”. In: International Conference on VLSI Design
(VLSID'04), 2004, pp. 717-720.

[CHA05] Chan, J.; Parameswaran, S. “NoCEE : Energy Macro-Model Extraction Methodology for
Network on Chip Routers”. In: International Conference on Computer Aided Design
(ICCAD'05), 2005, pp. 254-259.

[CHA05b] Chang, K.; Shen, J.; Chen, T. “A Low-Power Crossroad Switch Architecture and Its Core
Placement for Network-On-Chip”. In: International Symposium on Low Power
Electronics and Design (ISLPED'05), 2005, pp.375-380.

[CHA08] Chan, J.; Parameswaran, Sri. “NoCOUT : NoC Topology Generation with Mixed Packet-
switched and Point-to-Point Networks”. In: Design Automation Conference Asia and
South Pacific (ASPDAC'08), 2008, pp. 265-270.

[CIO06] Ciordas, C.; Goossens, K.; Basten, T.; Radulescu, A.; Boon, A. “Transaction Monitoring
in Networks on Chip: The On-Chip Run-Time Perspective”. In: Symposium on Industrial
Embedded Systems (IES'06), 2006, pp. 1-10.

[CIO08] Ciordasa, C.; Hanssona, A.; Goossensb, K.; Bastena, T. “Monitoring-aware network-on-
chip design flow”. Journal of Systems Architecture, vol. 54-3, January-February. 2008,
pp.397-410.

93

[COP04] Coppola, M.; Curaba, S.; Grammatikakis, M.; Maruccia, G.; Papariello, F. “OCCN: A
Network on Chip Modeling and Simulation Framework”. In: Design, Automation and
Test in Europe (DATE'04), 2004, pp. 174-179.

[CLE00] Clein, Dan. “CMOS IC layout: concepts, methodologies, and tools”. Boston: Elsevier
Inc., 2000, 261p.

[CLE09] Clermidy, F.; Lemaire, R.; Popon, X.; Kténas, D.; Thonnart, Y. “An Open and
Reconfigurable Platform for 4G Telecommunication: Concepts and Application”. In:
Digital System Design, Architectures, Methods and Tools (DSD'09), 2009, pp. 449-456.

[DAL01] Dally, W.; Towles, B. “Route Packets, Not Wires: On-chip Interconnection Networks”.
In: Design Automation Conference (DAC'01), 2001, pp. 684-689.

[DEN06] Densmore, D.; Passerone, R.; Sangiovanni-Vincentelli, A. “A Platform-Based Taxonomy
for ESL Design”. IEEE Design and Test of Computers, vol. 23-5, September-October
2006, pp. 359-374.

[DUM06] Dumitrascu, F.; Bacivarov, I.; Pieralisi, L.; Bonaciu, M.; Jerraya, A. “Flexible MPSoC
Platform with Fast Interconnect Exploration for Optimal System Performance for a
Specific Application”. In: Design, Automation and Test in Europe (DATE'06), 2006, pp.
166-171.

[EIS04] Eisley, N.; Peh, L. “High-Level Power Analysis for on-Chip Networks”. In: International
Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES'04), 2004, pp. 104-115.

[EIS06] Eisley, N.; Soteriou, V.; Peh, L. “Low power: High-level power analysis for multi-core
chips”. In: International Conference on Compilers, architecture and synthesis for
embedded systems (CASES'06), 2006, pp. 389-400.

[ELM09] Elmiligi, H.; Morgana, A.; El-Kharashib, M.; Gebalia, F. “Power optimization for
application-specific networks-on-chips: A topology-based approach”. Journal of
Microprocessors & Microsystems, vol. 33-5, August 2009, pp. 343-355.

[E3S10] E3S: “Embedded system synthesis benchmark suite (E3S)”. Available at:
http://www.princeton.edu/~cad/projects.html, February, 2010.

[FAL06] Falk, J.; Haubelt, C.; Teich, J. “Efficient representation and simulation of model-based
designs in SystemC”. In: Forum on Design Languages (FDL'06), 2006, pp. 129-134.

[GAJ05] Gajski, D. “System Design Extreme Makeover”. In: International Conference on Formal
Methods and Models for Co-Design (MEMOCODE'05), 2005, pp. 71-75.

[GNE02] Gnesi, S.; Latella, D.; Andmassink, M. “Modular semantics for a UML statechart
diagrams kernel and its extension to multicharts and branching time model-checking”.
Journal of Logic and Algebraic Programming, vol. 51-1, April-May 2002, pp. 43-75.

[GOD09] Goderis, A.; Brooks, C.; Altintas, I.; Lee, E. A.; Goble, C. “Heterogeneous composition of
models of computation”. Future Generation Computer Systems, vol. 25-5, May 2009,
pp. 552-560.

[GRI04] Gries, B. M. “Methods for Evaluating and Covering the Design Space During Early
Design Development”. Integration VLSI Journal, vol. 38-2, December 2004, pp. 131-
183.

http://www.princeton.edu/~cad/projects.html

94

[GUI08] Guindani, G.; Reinbrecht, C.; Raupp, T.; Calazans, N.; Moraes, F. G. “NoC Power
Estimation at the RTL Abstraction Level”. In: Computer Society Annual Symposium on
VLSI Design (ISVLSI'08), 2008. pp. 475-478.

[GUP97] Gupta, R.; Zorian, Y. “Introducing core-based system design”. IEEE Design & Test, vol.
14-4, October-December 1997, pp. 15-25.

[HA06] Ha, S.; Lee, C.; Yi, Y.; Kwon, S.; Joo, Y. “Hardware-software codesign of multimedia
embedded systems: the PeaCE approach”. In: Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA'06), 2006, pp. 207-214.

[HA07] Ha, S.; Kim, S.; Lee, C.; Yi, Y.; Kwon, S.; Joo, Y. “PeaCE: A hardware-software codesign
environment for multimedia embedded systems”. ACM Transactions on Design
Automation of Electronic Systems, vol. 12-3, 2007, pp. 1-25.

[HA08] Ha, S. “Model-based Programming Environment of Embedded Software for MPSoC”.
In: Asia South Pacific Design Automation Conference (ASP-DAC'08), 2008, pp. 330-335.

[HAN02] Hang, H.S.; Peh, H.S.; Malik, S. “Orion: A Power-Performance Simulator for
Interconnection Network”. In: International Symposium on Micro-architecture
(MICRO02), 2002, pp. 294-305.

[HU03] Hu, J.; Marculescu, R. “Energy-aware mapping for tile-based NoC architectures under
performance constraints”. In: Asia South Pacific Design Automation Conference (ASP-
DAC'03), 2003, pp. 233-239.

[HU05] Hu, J.; Marculescu, R. “Energy- and Performance-Aware Mapping for Regular NoC
Architectures”. IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24-4, April 2005, pp. 551-562.

[IND07] Indrusiak, L. S.; Glesner, M. “Specification of Alternative Execution Semantics of UML
Sequence Diagrams within Actor-Oriented Models”. In: Symposium on Integrated
Circuits and Systems Design (SBCCI'07), 2007, pp. 330-335.

[IND07b] Indrusiak, L.S.; Thuy, A.; Glesner, M. “Executable System-Level Specification Models
Containing UML-Based Behavioral Patterns”. In: Design, Automation and Test in
Europe (DATE'07), 2007, pp. 301-306.

[IND08] Indrusiak, L. S.; Ost, L.; Möller, L.; Moraes, F.; M. Glesner. “Applying UML Interactions
and Actor-oriented Simulation to the Design Space Exploration of Network-on-Chip
Interconnects”. In: Computer Society Annual Symposium on VLSI Design (ISVLSI'08),
2008, pp. 491-494.

[JAN03] Jantsch, A. “Modeling Embedded Systems and SoC's: Concurrency and Time in Models
of Computation”. San Francisco: Morgan Kaufmann Publishers Inc., 2003, 375p.

[JAN04] Jang, H; Kang, M.; Lee, M.; Chae, K.; Lee, K.; Shim, K. “High-Level System Modeling and
Architecture Exploration with SystemC on a Network SoC: S3C2510 Case Study”. In:
Design, Automation and Test in Europe (DATE'04), 2004, pp. 538-543.

[KAH09] Kahng, A.; Li, B.; Peh, L.; Samadi, K. “ORION 2.0: A Fast and Accurate NoC Power and
Area Model for Early-Stage Design Space Exploration”. In: Design, Automation and Test
in Europe (DATE'09), 2009, pp. 423-428.

[KAN06] Kangas, T.; Kukkala, P.; Orsila, H.; Salminen, E.; Hännikäinen, M.; Hämäläinen, T.;
Riihimäki, J.; Kuusilinna, K. “UML-based multiprocessor SoC design framework”. ACM
Transactions on Embedded Computing Systems, vol. 5-2, May 2006, pp. 281-320.

95

[KEI09] Keinert, J.; Streubuhr, M.; Schlichter, T.; Falk, J., Gladigau, J.; Haubelt, C.; Teich, J.;
Meredith, M. “SystemCoDesigner - an automatic ESL synthesis approach by design
space exploration and behavioral synthesis for streaming applications”. ACM
Transactions on Design Automation of Electronic Systems, vol. 14-1, January 2009, pp.
1-23.

[KEM05] Kempf, T.; Doerper, M.; Leupers, R.; Ascheid, G.; Meyr, H.; Kogel, T.; Vanthournout, B.
“A Modular Simulation Framework for Spatial and Temporal Task Mapping onto Multi-
Processor SoC Platforms”. Design Automation and Test in Europe (DATE'05), 2005, pp
876-881.

[KEM06] Kempf, T.; Karuri, K.; Wallentowitz, S.; Ascheid, G.; Leupers, R.; Meyr, H. “A SW
Performance Estimation Framework for Early System-Level-Design Using Fine-Grained
Instrumentation”. In: Design, Automation and Test in Europe (DATE'06), 2006, pp. 468-
473.

[KIE99] Kienhuis, B. “Design Space Exploration of Stream-based Dataflow Architectures:
Methods and Tools”. PhD thesis, Delft University of Technology, 1999, 266 p.

[KIE02] Kienhuis, B.; Deprettere, E.; Wolf, P.; Vissers, K. “A Methodology to Design
Programmable Embedded Systems - The Y-Chart Approach”. Lecture Notes in
Computer Science, v.2268, 2002, pp. 18-37.

[KIM05] Kim, D.; Ha, S. “Static analysis and automatic code synthesis of flexible FSM model”. In:
Asia South Pacific Design Automation Conference (ASP-DAC'05), 2005, pp. 161-165.

[KOG03] Kogel, T.; Doerper, M.; Wieferink, A.; Leupers, R.; Ascheid, G.; Meyr, H.; Goossens, S.
“A Modular Simulation Framework for Architectural Exploration of On-Chip
Interconnection Networks”. In: Hardware/Software Codesign and System Synthesis
(CODES+ISSS'03), 2003, pp. 7-12.

[KOO08] Koohi, S.; Mirza-Aghatabar, M.; Hessabi, S. Pedram, M. “High-Level Modeling Approach
for Analyzing the Effects of Traffic Models on Power and Throughput in Mesh-Based
NoCs”. In: International Conference on VLSI Design (VLSID'08), 2008, pp. 415-420.

[KRE08] Kreku, J.; Hoppari, M.; Kestil, T.; Qu, Y.; Soininen, J.; Andersson, P.; Tiensyrja, K.
“Combining UML2 Application and SystemC Platform Modelling for Performance
Evaluation of Real-Time Embedded Systems”. EURASIP Journal on Embedded Systems,
vol. 2008-712329, January 2008, pp. 1-18.

[KRE08b] Krenik, B. “4G wireless technology: When will it happen? What does it offer?” In: IEEE
Asian Solid-State Circuits Conference (A-SSCC'08), 2008, pp. 141-144.

[LEE03] Lee, E. A.; Neuendorffer, S.; Wirthlin,M. J. “Actor-Oriented Design of Embedded
Hardware and Software”. Systems, Journal of Circuits, Systems, and Computers, vol. 12-
3, January 2003, pp. 231-260.

[LEE04] Lee, E. A.; Neuendorffer, S. “Actor-oriented Models for Codesign: Balancing Re-Use and
Performance”. Formal Methods and Models for System Design. Kluwer Academic
Publishers: Norwell, 2004, pp. 33-56.

[LEE09] Lee S. E.; Bagherzadeh, N. “A high level power model for Network-on-Chip (NoC)
router”. Computers & Electrical Engineering, vol. 35-6, November 2009, pp. 837-845.

[MÄÄ08] Määttä, S.; Indrusiak, L.S.; Ost, L.; Möller, L.; Nurmi, J.; Glesner, M.; Moraes, F.
“Validation of Executable Application Models Mapped onto Network-on-Chip

96

Platforms”. In: IEEE Symposium on Industrial Embedded Systems (SIES'08), 2008, pp.
118-125.

[MÄÄ09] Määttä, S.; Indrusiak, L.S.; Ost, L.; Möller, L.; Glesner, M.; Moraes, F.; Nurmi, J.
“Characterising Embedded Applications using a UML Profile”. In: International
Conference on System-on-Chip (SoC'09), 2009, pp. 172-175.

[MÄÄ10] Määttä, S.; Möller, L.; Indrusiak, L.; Ost, L.; Glesner, M.; Nurmi, J.; Moraes, F. “Joint
Validation of Application Models and Multi-Abstraction Network-on-Chip Platforms”.
International Journal of Embedded and Real-Time Communication Systems (IJERTCS),
vol. 1-1, January-March 2010, pp. 86-101.

[MAR05] Marcon, C. A. M.; Calazans, N.; Moraes, F.; Hessel, F.; Reis, I. ; Susin, A. “Exploring NoC
Mapping Strategies: An Energy and Timing Aware Technique”. In: Design Automation
and Test on Europe (DATE'05), 2005, pp. 502-507.

[MAR05b] Marcon, C. A. M. “Modelos para o Mapeamento de Aplicações em Infra-estruturas de
Comunicação Intrachip”. Tese de Doutorado, PPGC - UFRGS, 2005. 192 p. (in
Portuguese).

[MAR06] Martin, G. “Overview of the MPSoC Design Challenge”. In: Design Automation and
Conference (DAC'06), 2006, pp. 274-279.

[MAR08] Marcon, C.; Moreno, E.I.; Calazans, N.L.V.; Moraes, F.G. “Comparison of network-on-
chip mapping algorithms targeting low energy consumption”. IET Computers and
Digital Techniques, vol. 2-6, April 2008, pp. 471–482.

[MAR09] Marculescu, R.; Bogdan, P. “The Chip Is the Network: Toward a Science of Network-on-
Chip Design”. Foundations and Trends® in Electronic Design Automation, vol. 2-4,
March 2009, pp 371-461.

[MAT08] Matsutani, H; Koibuchi, M; Wang, D. “Run-Time Power Gating of On-Chip Routers
Using Look-Ahead Routing”. In: Asia South Pacific Design Automation Conference (ASP-
DAC'08), 2008. pp. 55-60.

[MAT08b] Mathworks, Simulink Data Sheet. Available at:
http://www.mathworks.com/mason/tag/proxy.html?dataid=9798&fileid=43815,
January, 2008.

[MEL06] Meloni, P.; Murali, S.; Carta, S.; Camplani, M.; Raffo, L. De Micheli, G. “Routing Aware
Switch Hardware Customization for Networks on Chips”. In: Nano-Networks and
Workshops (NanoNet'06), 2006, pp. 1-5.

[MIL09] Milojevic, D.; Montperrus, L.; Verkest, D. “Power Dissipation of the Network-on-Chip in
Multi-Processor System-on-Chip Dedicated for Video Coding Applications”. Journal of
Signal Processing Systems, vol. 57-2, November 2009, pp. 139-153.

[MOH02] Mohanty, S.; Prasanna, V. K.; Neema, S.; Davis, J. “Rapid design space exploration of
heterogeneous embedded systems using symbolic search and multi-granular
simulation”. In: Language, Compiler and Tool Support for Embedded Systems
(LCTES'02), 2002, pp. 18-27.

[MON07] Monmasson, E.; Cirstea, M. N. “FPGA Design Methodology for Industrial Control
Systems - A Review”. IEEE Transactions on Industrial Electronics, vol. 54-4, August
2007, pp. 1824-1842.

http://www.mathworks.com/mason/tag/proxy.html?dataid=9798&fileid=43815

97

[MOL09] Moller, L.; Indrusiak, L.S.; Glesner, M. “NoCScope: A graphical interface to improve
Networks-on-Chip monitoring and design space exploration”. In: International Design
and Test Workshop (IDT'09), 2009, pp. 1-6.

[MOR04] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. “HERMES: an Infrastructure for
Low Area Overhead Packet-switching Networks on Chip”. Integration the VLSI Journal,
vol. 38-1, October 2004, pp. 69-93.

[MUR04] Murali, G. De Micheli. “SUNMAP: A Tool for Automatic Topology Selection and
Generation for NoCs”. In: Design Automation and Conference (DAC'04), 2004, pp. 914-
919.

[NIC09] Nicolescu, G.; Mosterman, P. J. “Model-Based Design for Embedded Systems”. Boca
Raton: Taylor & Francis Group, 2009, 766 p.

[OST05] Ost, L. C.; Mello, A. V.; Palma, J. C. S.; Calazans, N. L. V.; Moraes, F. G. “MAIA - A
Framework for Networks on Chip Generation and Verification. In: Asia South Pacific
Design Automation Conference (ASP-DAC'05), 2005, pp. 18-20.

[OST08] Ost, L; Möller, L.; Indrusiak, L.; Moraes, F.; Määttä, S.; Nurmi, J.; Glesner, M. “A
Simplified Executable Model to Evaluate Latency and Throughput of Networks-on-
Chip”. In: Symposium on Integrated Circuits and Systems Design (SBCCI'08), 2008, pp.
170-175.

[OST09] Ost, L.; Indrusiak, L. S.; Guindani, G.; Reinbrecht. C.; Raupp, T.; Moraes, F. “A high
abstraction, high accuracy power estimation model for networks-on-chip”. In:
Symposium on Integrated Circuits and Systems Design (SBCCI'09), 2009, pp. 193-198.

[PAL07] Palma J.; Indrusiak, L.; Moraes, F.; Ortiz, A.; Glesner, M.; Reis, R. “Inserting Data
Encoding Techniques into NoC-Based Systems”. In: IEEE Computer Society Annual
Symposium on VLSI (ISVLSI'07), 2007, pp. 299-304.

[PAN05] Pande, P.; Grecu, C.; Jones, M.; Ivanov, A.; Saleh, R. “Performance Evaluation and
Design Trade-Offs for Network-on-Chip Interconnect Architectures”. IEEE Computer,
vol. 54-8, August 2005, pp. 1025-1040.

[PAR02] Park, C.; Chung, J.; Ha, S. “Extended synchronous dataflow for efficient DSP system
prototyping”. Design Automation for Embedded Systems, vol. 6-3, March 2002, pp
295-322.

[PAT04] Patel, H. D.; and Shukla, S. K. “SystemC Kernel Extensions for Heterogeneous System
Modeling”. Dordrecht: Kluwer Academic Publishers, 2004, 172 p.

[PAT07] Patel, H. D.; Shukla, S. K; Bergamaschi, R. A. “Heterogeneous Behavioral Hierarchy
Extensions for SystemC”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26-4, April 2007, pp. 765-780.

[PAU05] Paul, J. M.; Thomas, D. E.; Cassidy, A. S. “High-level modeling and simulation of single-
chip programmable heterogeneous multiprocessors”. ACM Transactions on Design
Automation of Electronic Systems, vol. 10-3, July 2005, pp. 431- 461.

[PEN06] Penolazzi,S.; Jantsch, A. “A High Level Power Model for the Nostrum NoC”. In:
Conference on Digital System Design (DSD'06), 2006, pp. 673-676.

[PES04] Pestana, S.; Rijpkema, E.; Radulescu, A.; Goossens, K.; Gangwal, O. “Cost-Performance
Trade-Offs in Networks on Chip: A Simulation-Based Approach”. In: Design,
Automation and Test in Europe Conference (DATE'04), 2004, pp. 764-769.

98

[PIM01] Pimentel, A.D.; Hertzberger, L.O.; Lieverse, P.; Wolf, P.; Deprettere, E.F. “Exploring
Embedded-Systems Architectures with Artemis”. IEEE Transactions on Computer, vol.
34-11, November 2001, pp. 57-63.

[PIM06] Pimentel, A.D.; Erbas, C.; Polstra, S. “A systematic approach to exploring embedded
system architectures at multiple abstraction levels”. IEEE Transactions on Computer,
vol. 55-2, February 2006, pp. 99-112.

[PIM08] Pimentel, A. D.; Thompson, M.; Polstra, S.; Erbas, C. “Calibration of abstract
performance models for system-level design space exploration”. Journal of Signal
Processing Systems, vol. 50-2, February 2008, pp. 99-114.

[RUG06] Ruggiero, M.; Guerri, A.; Bertozzi, D.; Poletti, F.; Milano, M. “Communication-aware
allocation and scheduling framework for stream-oriented multi-processor systems-on-
chip”. In: Design, Automation and Test in Europe (DATE'06), 2006, pp. 3-8.

[SUN02] Sun, Y., Kumar, S.; Jantsch, A. “Simulation and Evaluation for a network on chip
architecture using NS-2”. In: NORCHIP conference, 2002, pp. 1-6.

[TED05] Tedesco, L.; Mello, A.; Garibotti, D.; Calazans, N.; Moraes, F. “Traffic Generation and
Performance Evaluation for Mesh-based NoCs”. In: Symposium on Integrated Circuits
and Systems Design (SBCCI'05), 2005, pp. 184-189.

[TED08] Tedesco, L. P.; Calazans, N. L. V.; Moraes, F. G. “Buffer Sizing for Multimedia Flows in
Packet-Switching NoCs”. Journal of Integrated Circuits and Systems, vol. 3-1, March
2008, p.46-56.

[VAC02] Vachharajani, M.; Vachharajani, N.; Penry, D. A.; Blome, J. A.; August, I. D.
“Microarchitectural exploration with Liberty”. In: International Symposium on
Microarchitecture (MICRO'02), 2002, pp. 271-282.

[VER05] Veredas, F.J.; Scheppler, M.; Moffat, W.; Mei, B. “Custom implementation of the
coarse-grained reconfigurable ADRES architecture for multimedia purposes”. In: Field
Programmable Logic and Applications (FPL'05), 2005, pp. 106-111.

[VER09] Vermeulen, B.; Goossens, K. “A Network-on-Chip Monitoring Infrastructure for
Communication-centric Debug of Embedded Multi-Processor SoCs”. In: International
Symposium on VLSI Design, Automation and Test (VLSI-DAT'09), 2009, pp. 183-186.

[WOL04] Wolf, W. “The Future of Multiprocessor Systems-on-Chips”. In: Design Automation and
Test in Europe (DATE'04), 2004, pp. 681-685.

[WOL05] Wolkottex P.; Smit, G. J.M.; Kavaldjiev, N.; Becker, J. E.; Becker, Jurgen. “Energy model
of networks-on-chip and a bus, system-on-chip”. In: International Symposium on
System-on-Chip (SoC'05), 2005, pp. 82-85.

[WOL05b] Wolkotte, P. T.; Smit, G. J.; Becker, J. E. “Energy-efficient NoC for best-effort
communication”. In: Field Programmable Logic and Applications (FPL'05), 2005, pp.
197-202.

[XI06] Xi, J.; Zhong, P. “A Transaction-Level NoC Simulation Platform with Architecture-Level
Dynamic and Leakage Energy Models”. In: Great Lakes Symposium on VLSI
(GLSVLSI'06), 2006, pp. 341-344.

[XU04] Xu, J.; Wolf, W.; Henkel, J., Chakradhar, S.; Lv, T. “A Case Study in Networks-on-Chip
Design for Embedded Video”. In: Design Automation and Test in Europe (DATE'04),
2004, pp. 770-775.

99

[XU05] Xu, J.; Wolf, W.; Henkel, J.; Chakradhar, S. “A Methodology for Design, Modeling, and
Analysis of Network on Chip”. In: International Symposium on Circuits and Systems
(ISCAS'05), 2005, pp. 1778-1781.

[YE02] Ye, T.; Benini, L. and De Micheli, G. “Analysis of Power Consumption on Switch Fabrics
in Network Routers”. In: Design Automation and Conference (DAC'02), 2002, pp. 524–
529.

[YE03] Ye, T.; Benini, L.; De Micheli, G. “Packetized On-Chip Interconnection Communication
Analysis for MPSoC. In: Design Automation and Test in Europe (DATE'03), 2003, pp.
344-349.

[ZEN10] Zeng, K.; Guo, Y.; Angelov, C.K. “Graphical Model Debugger Framework for Embedded
Systems”. In: Design, Automation and Test in Europe (DATE'10), 2010, pp. 87-92.

