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EMULAÇÃO AUTOMÁTICA DE SISTEMAS DISTRIBUÍDOS
ATRAVÉS DE GERÊNCIA DE SISTEMAS E VIRTUALIZAÇÃO

RESUMO

Sistemas distribuídos são compostos de elementos computacionais geograficamente distribuídos que

pertencem a múltiplos domínios administrativos controlados por múltiplas entidades. Estas carac-

terísticas dificultam testes e avaliações nesta plataforma, porque dificilmente testadores/avaliadores

de sistemas ou políticas adquirem repetidamente os mesmo recursos pela mesmo período de tempo

sob as mesmas condições de rede, o que são requisitos fundamentais para testes reproduzíveis e

controlados do software em desenvolvimento. Uma alternativa a experimentos em plataformas reais

é emulação, onde o modelo de um sistema executa o software real sob teste. A tecnologia de

virtualização possibilita o desenvolvimento de emuladores eficientes porque ela oferece meios para

multiplexação e isolamento de recursos. Apesar da virtualização facilitar o desenvolvimento de em-

uladores, pouco esforço tem sido feito para isolar testadores/avaliadores de sistemas ou políticas da

operação das ferramentas e do ambiente virtualizado. Esta tese apresenta o Automated Emulation

Framework (AEF), que aplica tecnologias de virtualização e gerência de sistemas em um cluster de

estações de trabalho a fim de oferecer uma ferramenta automatizada para emulação de sistemas

distribuídos. Três atividades principais são realizadas pelo AEF: primeiro, ele realiza o mapeamento

das máquinas virtuais que representam nós do ambiente distribuído emulado para nós do cluster e

dos links entre máquinas virtuais para caminhos na rede física; segundo, ele realiza a instalação e

configuração automática das máquinas virtuais no cluster e rede virtual na rede do cluster; terceiro,

ele realiza configuração e disparo automático de experimentos no sistema emulado, monitoração e

controle do ambiente e aplicações, e reconfiguração do sistema em caso de violações nas demandas

do testador/avaliador de sistemas ou políticas. Em relação à primeira atividade, o problema de

mapeamento é definido formalmente e quatro herísticas para solução do problema são desenvolvidas

e avaliadas com o uso de simulação de eventos discretos. Em relação às duas últimas atividades,

a arquitetura do AEF é descrita em detalhes. Além do mais, um protótipo do AEF é desenvolvido

e avaliado através da realização de experimentos no contexto de grades computacionais. Experi-

mentos mostram que a arquitetura é realizável e que AEF pode ser uma ferramenta valiosa para

experimentação repetida e controlável de sistemas distribuídos.

Palavras-chave: Emulação; Mapeamento de Máquinas Virtuais; Virtualização; Gerência de Sis-

temas.





AUTOMATED EMULATION OF DISTRIBUTED SYSTEMS THROUGH
SYSTEM MANAGEMENT AND VIRTUALIZATION

ABSTRACT

Distributed systems are composed of geographically distributed computing elements that belong to

multiple administrative domains and are controlled by multiple entities. These characteristics from

distributed systems make hard the task of testing and evaluating software for this platform, because

it is unlikely that testers/system or policy evaluators are able to acquire repeatedly the same re-

sources, for the same amount of time, and under the same network conditions, which are paramount

requirements for enabling reproducible and controlled tests in software under development. An al-

ternative to experiments in real testbeds is emulation, where a model of a system hosts the actual

software under test. Virtualization technology enables development of efficient emulators because

it offers means for resources multiplexing and isolation. Even though virtualization makes easier

development of emulators, there are few efforts in isolating testers/system or policy evaluators from

operation of the virtualization tools and environment. This thesis presents Automated Emulation

Framework (AEF), which applies virtualization and systems management technology in a cluster of

workstations to provide testers/system or policy evaluators with a tool for automated emulation of

distributed systems. Three main activities are performed by AEF. First, it performs the mapping of

virtual machines that represents nodes from the emulated distributed environment to cluster nodes

and emulated links between virtual machines to paths in the physical network; second, it performs

automated installation and configuration of virtual machines in the cluster and virtual network in

the cluster network; third, it performs automated configuration and triggering of experiments in the

emulated system, monitoring and control of environment and applications, and system reconfigu-

ration in case of violations in the tester/system or policy evaluator demands. Regarding the first

activity, the mapping problem is formally defined and four heuristics for solution of the problem are

developed and evaluated with the use of discrete-event simulation. Regarding the last two activities,

AEF architecture is described in details. Furthermore, an AEF prototype is developed and evalu-

ated by execution of experiments in the context of grid computing. Experiment results show that

implementation of the architecture is feasible and that AEF can be a valuable tool for repeatable

and controllable distributed systems experimentation.

Keywords: Emulation; Virtual Machines Mapping; Virtualization; System Management.
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1. INTRODUCTION

In the last decades, we have witnessed a slowly shift of paradigm applied in computer science:

mainstream computer architecture has been moved from a model where a huge, centralized com-

puting unit was used to supply computing power to a number of users to a model where distributed

and less powerful units are deployed to supply computing power to users. In the former model,

we have mainframes and supercomputers as examples of how this paradigm was applied in indus-

try and academia, respectively. In the latter model, we have client/server architectures and grid

computing [FOS99a] as significant examples of the model.

What enabled this shift in paradigm were the advances in computer networks technology reached

in the last decades. As a result from the paradigm shift, we have seen in the last years an outstanding

growth in research and development in topics such as grid computing, cloud computing [BUY09a],

utility computing [RAP04], and P2P computing [ORA01]. These technologies share special char-

acteristics not present in centralized architectures: control over all the elements of the distributed

architecture is not hold by any entity. Moreover, characteristics of resources may be hidden from

the user and may vary along the time.

Together with development of new methodologies for organization of computing elements, new

methodologies for evaluation of software artifacts were also proposed. Nevertheless, the methodology

to be applied to evaluate an artifact depends on the stage of development such an artifact achieved.

In earlier stages of development, e.g., when a model or algorithm is proposed, abstract methods

of evaluation, such as formal methods [PLA91, PLA07], may be applied. In such methods, both

the artifact behavior and the system behavior are described in terms of a formalism that is solved

with the use of mathematical tools. Nevertheless, output of such a method is also abstract, and its

utilization requires a considerable effort both in modeling software and hardware and in interpreting

results.

Another technique to be applied in earlier stages of development of software artifacts is sim-

ulation, where both the application and the distributed system are modeled algorithmically and

execution of the software model is observed in the architecture model [GUS09]. Both analytical

methods and simulation can accurately supply designers of the tested artifact with information that

allows them not only to choose a given algorithm among several possible choices, but also to under-

stand how an entity is affected by other entities or conditions. Nevertheless, there is a gap between

the results obtained in the evaluation and the results of the system in a real world. It happens

because during the modeling of the simulator or during the analytical modeling, several aspects that

would affect the real system are ignored, otherwise the experiment becomes too complex and would

be computationally intractable.

In a more advanced stage of development of the software artifact, when a prototype is available,

a suitable approach for evaluation of the software is emulation. In this approach, the actual software

is executed in a model of the environment [GUS09]. Recently, several emulators were proposed
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[APO6, CAN07, CHI06b, GUP08, QUE07]. Because emulators allow testers to describe the exact

configuration and condition of the emulated environment, it is also possible not only to reuse a

given emulated environment but also to replicate tests.

However, development of emulators is not an easy task. Typically, one or more real hosts support

several emulated entities, therefore it is necessary to multiplex both host resources for guests running

on it and network resources. This complexity in providing multiplexing made most part of the early

distributed systems emulators [DIC96, KIE02, LIU04, TAK99] fail in achieving a development stage

on which they could be used to emulate arbitrary environments running arbitrary software.

Recently, development of virtualization tools [BAR03, DEV02] allowed a revisit in the develop-

ment of emulators. In virtualization-based emulation, clusters of workstations are used to host the

experiments, and virtualization is used in such a way that virtual machines correspond to emulated

computing nodes. The main advantage in using virtualization to develop emulation tools is that vir-

tualization allows a simpler implementation of the emulator, because host multiplexing and network

multiplexing are performed by the virtual machine monitor. Also, by using virtualization, each node

of the emulated system is a virtual machine with its own resources (e.g., memory, operating sys-

tem, CPU share), and therefore isolation of performance in emulated environments can be achieved.

Moreover, each virtual machine is isolated from the others, which means that a failure of a given

virtual machine does not affect execution of other virtual machines in the same host [SMI05].

In this thesis, we present the Automated Emulation Framework (AEF), which applies virtual-

ization and systems management technology in a cluster of workstations to provide testers with a

tool for repeatable and controllable research, through automated building, configuration, monitoring

and reconfiguration of the environment, and execution of distributed experiments. Throughout this

thesis, we present AEF design, prototype, and experiments evaluating such a prototype. Results of

the experiments show that by the application of the architecture and techniques presented in this

thesis, testers of distributed software have a valuable tool for leveraging quality of their artifacts

through its repeatable and controllable test and evaluation, and therefore AEF goals are achieved.

1.1 Motivation

A typical scenario of experimentation in distributed systems is depicted in Figure 1.1. In the

core of the scenario, there is the person that is willing to evaluate a software artifact that runs in

a distributed system. This software may be, for example, a cloud broker, a grid scheduler, a P2P

protocol, among others.

The environment hosting the experiment is composed of heterogeneous computing elements,

e.g., computing elements with different architectures, amount of memory, storage, and CPU, and

running different operating systems. Moreover, network connections among them may present

heterogeneous behavior.

Another relevant issue of the system is the distributed control and access policy available to

each node. It makes testers have difficulty in having access to components of the system to install
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Figure 1.1 – Typical scenario for testing of distributed software.

the artifact, and in enforcing conditions in the system to observe artifact behavior in the presence

of such conditions. Thus, testers may be unable to monitor system states and configuration, what

limits revisability of experiment results.

Finally, elements join and leave the system without control from testers, therefore it is not

guaranteed that the same set of resources will be available more than once to the tester, what

compromises capacity of reproduction of experiments.

These characteristics of real system limit experiments that may be performed in these platforms,

as well as compromise required features for experiments, e.g., repeatability, scalability, and accuracy

of results. As a consequence of all these issues, only a subset of the possible use cases are covered

in the evaluation, and even these cases are limited to a scale that tends to be smaller than the scale

of the environment that will host the system.

To overcome these limitations and enable repeatable, controllable, scalable and accurate ex-

perimentation in distributed systems, alternatives to direct execution in real platforms have to be

sought. This is the motivation of this thesis.

1.2 Research problems

This thesis tackles the problem of how to provide an automated tool for experimentation of

distributed systems using emulation. The target environment of the tool is clusters of workstations,

which are virtualized and managed with the use of system management technologies in such a way

that virtual machines correspond to emulated computing elements.

One issue that must be considered to solve such a problem is the placement of virtual machines

in the hosts, because it limits the scalability of the environment, due to fragmentation problems:

because each virtual machine requires an amount of resources from the host, these resources are a
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constraint to be considered. For example, even if the overall amount of free memory in the testbed

allows more virtual machines to be deployed in the environment, it is possible that no single host

has enough memory to support a new virtual machine. The same may happen not only to other

resources from the host (e.g., CPU, storage) but also to network resources (i.e., capacity of links

used by pairs of virtual machines communicating during the emulation). This placement problem is

computationally hard, because it encompasses solution of two different problems (hosts and network

assignment), each of them already a computationally complex problem.

The other issue to be considered is how to provide automated building and configuration of

the emulated distributed system. Software developers may not be familiar with tools for managing

virtual environments. Thus, if they could only describe the system, and the emulator could provide

the means for creation of the system, the task of creating and managing a virtual distributed system

could be abstracted from developers, which can focus in the main activity they are supposed to

develop.

Finally, the issue of management of the system and applications during the test is also an issue

that has to be addressed. Considering that the emulated distributed system may contain hundreds

or thousands of elements, manual operation of such a system by distributed system developers may

be a hard and counterproductive task. Therefore, automated management of the experiment is also

desirable to increase efficacy of the evaluation process, because it allows testers to spend more time

in the test itself than in the operation of the test platform.

Towards this end, this thesis investigates mechanisms for automated assignment of physical ele-

ments to each emulated element; automated building and configuration of the emulated distributed

system; and automated execution and monitoring of the experiment and the emulated system be-

havior. Moreover, the only required interaction between the user of the proposed architecture—

called tester throughout the rest of this thesis—and the architecture happens through configuration

files describing the cluster that hosts the experiment, virtual distributed system, and the experiment

itself. The rest of the process proceeds without human intervention.

1.3 Thesis contributions

The contributions of this thesis are the following:

1. It proposes an architecture for automated installation and configuration of a virtual distributed

environment in a cluster of workstations. The proposed architecture applies virtualization and

systems management to achieve its purpose. Activities performed by the architecture are:

mapping of virtual machines representing emulated computers, and therefore having memory,

storage, and processing capacity defined by the tester, to cluster nodes; mapping of virtual

links between virtual machines to physical paths in the cluster, with the latency and bandwidth

determined by the tester; deployment of the virtual machines in the cluster nodes, according

to the assignment defined in the mapping stage; and configuration of the virtual network, in

such a way that virtual sites (LANs) are created and connected by virtual WANs [CAL08];
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2. It proposes an architecture for automated initialization of experiments in the emulated dis-

tributed system, monitoring of use of resources by physical and virtual elements, and recon-

figuration of the environment if any element does not respect the required configuration or

use of resources does not respect limits in utilization determined by the tester [CAL09b];

3. It presents a formal definition of the problem of mapping VMs to hosts and virtual links to

physical paths [CAL09c];

4. It presents heuristic solutions for the mapping problem defined in this thesis. Heuristics are

evaluated and compared [CAL10];

5. It presents a prototype of AEF. This prototype is evaluated by execution of experiments in the

context of grid computing [CAL10].

1.4 Thesis organization

The rest of this thesis is organized as follows.

• Chapter 2 presents the background relevant for the context of the thesis;

• Chapter 3 presents related works and positions contributions of this thesis regarding related

works;

• Chapter 4 presents the architecture for automated installation and configuration of a virtual

distributed environment in a cluster of workstations; Moreover, it presents the formal definition

of the problem of mapping VMs to hosts and virtual links to physical paths and the heuristics

aimed at solving such a problem;

• Chapter 5 presents the architecture for automated execution of experiments, monitoring and

reconfiguration of the distributed environment;

• Chapter 6 presents the prototype of AEF that was developed based on the architecture pre-

sented in previous chapters;

• Chapter 7 presents experiments aiming at evaluating mapping heuristic developed in the con-

text of AEF, experiments aiming at evaluating different parts of AEF prototype, and experi-

ments showing application of AEF in experimentation in the context of grid computing;

• Chapter 8 presents conclusions, further works, and publications derived from the thesis and

from other works performed during doctorate candidature.
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2. BACKGROUND

This chapter presents background and relevant concepts for the better understanding of the

topics addressed in this thesis. It starts with a discussion on the role of emulation in computer

science experimentation. Even though most discussions about this issue are found in the context

of scientific experimentation, the experimentation process discussed in this chapter is not limited to

such a context: it can also be applied for test of software prototypes. The work presented in this

thesis does not focus on any of these specific fields. Thus, we hope that results of this research

are used by both computer scientists and professionals. Throughout this thesis, we use the term

“tester” to refer to the user of AEF, without making any other consideration about the goals and

applications of the tester activity (either academia or industry).

Later in this chapter, other subjects also relevant in the context of this work are explored, in

the following order: first, concepts of emulation, virtualization, and the specific case of system

virtualization are explored. Then, we investigate the use of virtualization as a support tool for

distributed systems emulation. Finally, other issues addressed in this work, are addressed: network

management, grid and cloud computing, and the CloudSim toolkit.

2.1 Methodologies of experimentation in computer science

Experimentation has applications both in industry and academia. In the latter, the goal is

typically to verify whether properties predicted or expected in a given system hold. In industry,

experimentation has an important role in software testing.

In spite of specific reasons for experimentation of a software artifact, such as an algorithm, a

software, a method, and so on, there are some attributes that testers expect to be offered by the

experimentation methodology. Gustedt et al. [GUS09] presents the following attributes as relevant

for computer science experimentation:

Reproducibility. It is important that a methodology provides means to reproduction of conditions

and results of an experiment, in order to confirm results and/or findings of the experiment;

Extensibility. The methodology must provide means for testers to adapt the experiment to other

platforms or scenarios;

Applicability. The methodology must support applicable research, by allowing the experiments to

use realistic and representative data sets;

Revisability. A good methodology must provide means for testers identify the reasons why a re-

search hypothesis is not met, what are the errors in the experiment, and ways of improving

the experiment.
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Together with these attributes, we present other relevant attributes for experimental method-

ologies:

Scalability. It is important that the methodology enables growing in the scale of the experiment, in

such a way that the artifact under evaluation is evaluated in the presence of more processors,

users, or other parameter defined by the tester;

Development effort. Another relevant attribute of the methodology is easy transition from the

version used in the tests to the production version. The ideal approach in this case is that

the methodology allows evaluation of a prototype of the production version of the artifact.

However, as we will discuss later, some methods use models of the software instead of the

software itself. In such a case, it is necessary the development of two versions of the artifact:

one that is used in the experiments and the other that is used in production;

Modeling effort. In the case of methods that require a model of the artifact to be tested, instead

of the actual artifact, it is desirable that this modeling stage is as easy as possible. Therefore,

the model is quickly developed, and thus more time is spent in the testing stage than in the

modeling stage. Furthermore, the easier to model the artifact, the smaller the chance of

introducing errors in the model;

Accuracy. Finally, it is important that the methodology generates accurate results. By accurate,

we mean results that are compatible with those ones that would be obtained in the real

platform under same conditions. In some cases, a qualitative or a quantitative measurement

is enough for the experiment goals. In this case, the goal is to determine the relative behavior

among algorithms or other artifacts. For example, a qualitative experiment may be carried

out in order to verify which scheduling heuristic, among several options, would have a better

performance considering a specific scenario and workload. If the goal of the experiment is

to determine how much better than the others the scheduling heuristic is, then we have a

quantitative experiment [GUS09].

Different methods for evaluation of computer science artifacts were largely discussed in the

literature, and each one offers the discussed attributes in different degrees. The most abstract

methodology for evaluation is formal methods [MIC96, PLA91, PLA07]. In this methodology, the

specific target of the evaluation process is modeled according to some formalism that is later solved

with the use of mathematical techniques. The output of the evaluation process has to be interpreted,

because it is also some abstract information. For example, output of an evaluation using the PEPS

tool for solving Stochastic Automata Networks (SAN) [PLA91] is a vector containing probabilities of

occurrence of each model state. Other approaches based on analytical methods, and a comparison

among them, are presented by Planna et al. [PLA07]. One of the drawbacks of formal methods for

systems evaluation, as pointed by Planna, is the lack of structural information of the models, what

causes lost of information in the experiment.
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Table 2.1 – Classification of experimental methodologies proposed by Gustedt et al. [GUS09].
Environment

Software Real Model
Real In-situ Emulation

Model Benchmarking Simulation

To avoid errors in interpretation of the results caused by very abstract output, less abstract

methodologies for evaluation of algorithms and software are required. A classification of other

methodologies is proposed by Gustedt et al. [GUS09]. This classification considers both the nature

of the environment (whether it is real or a model) and the nature of the tested application (also

whether it is a real application or a model). Such a classification is presented in Table 2.1.

According to Gustedt’s classification of experimental methodologies, we can define an emulator

as a system that provides a model of a computing system that is able to execute actual software.

The same classification defines a simulator as a system that provides a model of an environment

on which a model of software executes. So, it is clear that the difference between emulation and

simulation is the nature of the environment hosting the application under test.

It is worth noting that the experimental methodologies contemplated by Gustedt’s research

are complementary, and not exclusive: each method has a specific application. So, during the

development of some project, more than one of these strategies can be applied.

For example, consider the case of a new algorithm that is being developed for scheduling of

applications across multiple grid sites. In the very beginning of the development process, it is

important to ensure that the algorithm meets the goals it is being developed for. Suppose the goal

of the algorithm is to reduce execution time of applications. So, after the proposal of the algorithm,

it can be evaluated with the use of simulation. By using simulation, testers are able to model

different environments where the algorithm can be used. If results show that the algorithm tend to

reach its goals, it is implemented in the form of a grid scheduler.

When the grid scheduler prototype is implemented, some bugs may be introduced in the code.

Furthermore, specific development decisions may insert some limitations in scalability and perfor-

mance of the software. In this stage, emulation is used to evaluate the scheduler prototype, because

it allows testers to analyze the actual software running in a controlled environment. Tests can be re-

produced and different environments can be considered. After tester is satisfied with the functioning

of the prototype, it can be put in production.

If the tester wants to know the efficiency of the scheduler, it is a good idea to know the limits of

the environment where the software is being used. One way to evaluate the environment is with the

use of benchmarks. So, by using a benchmark, it is possible to determine the maximum performance

of the environment, and so the tester can figure out how much overhead the scheduler inserts in

the application.

Finally, once the scheduler is fully implemented, it is tested in an in-situ experiment where the

software behavior can be observed in its actual environment.
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Regarding the differences between simulation and emulation, McGregor [MCG02] presents a

discussion about the role of simulators and emulators in systems modeling, their similarities and

differences, and when and where one or other is more suitable to be used. McGregor highlights the

high-speed execution and repeatability of simulation experiments against real-time execution and

robustness of emulation. Even though McGregor’s work focuses in different key aspects of both

methodologies, it agrees with the work of Gustedt et al. regarding applicability of both strategies.

Sulistio et al. [SUL04] proposed a taxonomy of computer simulations with focus on parallel and

distributed tools. The proposed taxonomy classifies simulations according to the area where they are

applied (industrial processes, environmental resources, parallel and distributed systems, and others).

Inside the parallel and distributed systems area, simulations are classified according to the parallel

and distributed system being simulated, according to the usage (simulation or emulation), according

to type of simulation (whether time is considered or not, whether the values are continuous or

discrete and whether the behavior is deterministic or probabilistic), and according to system design

(characteristics of simulation engine, modeling framework available to users, programming paradigm,

whether the tool is presented as a library or as a language, kind of user interface available and support

tools offered by the system).

So, oppositely to the previous works, Sulistio et al. considers emulation a special case of simu-

lation where the system is not modeled. Throughout the rest of this thesis, we use McGregor’s and

Gustedt’s terminology to refer to simulation and emulation, because it highlights the difference in

applicability of both methodologies.

Both Sulistio et al. and Gustedt et al. focused their studies in the context of parallel and

distributed systems, which is the same target environment of this thesis. Experiments in distributed

systems are harder than experiments in other platforms because distributed systems are typically

composed of elements that are geographically spread. Furthermore, control of individual components

in distributed systems is decentralized, thus testers do not have access to remote components and

so a more precise control over configuration is not possible. Another issue of distributed systems

experiments is that they use the Internet to enable communication among the computer systems

used in the experiments. Because network conditions vary during the time, and are influenced by

several factors testers do not control, it is not possible to replicate exact conditions observed in a

previous experiment.

These problems with in-situ experiments in distributed systems motivate application of other

methodologies for experimentation in such a context. A comparison of the previously discussed

methodologies in the context of distributed systems and considering the attributes presented previ-

ously is given in Table 2.2.

As previously stated, in-situ experiments are hard to reproduce and extend. The same factors that

limit reproducibility and extensibility also compromise revisability of results, because it is also hard to

assess conditions that led to specific results. Furthermore, results obtained in such experiments are

not directly applicable in other environments, because the several factors influencing the results may

not be the same in other environments. Also, testing another scenarios and scaling the experiment
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Table 2.2 – Comparison among methodologies for distributed systems experimentation.
In-situ Simulation Emulation Benchmarking Formal methods

Reproducibility low high high low high
Extensibility low high high medium low
Applicability low medium medium low medium
Revisability low high high low low
Scalability low high medium low low

Development effort low high low high high
Modeling effort low high low high high

Accuracy high low high high low

require the set up of the whole experiment in other testbed, which may require getting access rights

to other systems, among other requirements. However, in-situ experiments do not require changes

in the software under evaluation, and so both modeling and development efforts are low. The same

limitations also affect benchmarking, because both approaches require the use of a real environment

for the experimentation. Nevertheless, benchmarking requires the extra effort of modeling the

application.

Formal methods offer good reproducibility and revisability, because in this methodology models

are evaluated with the use of exact mathematical methods. Nevertheless, extension and scaling of

experiments require a new modeling stage. Applicability of this method is fair, because virtually any

scenario can be modeled, even though the effort of this modeling, and consequently the effort for

implementation, tends to be big.

Simulation offers a high reproducibility, extensibility, scalability, and revisability, because the

hardware platform is modeled. Applicability in this method is fair, because representative data set

can be modeled, even though they tend to suffer some abstraction during the modeling stage and

it decreases applicability. However, simulation requires an extra effort in modeling, to represent the

artifact under evaluation in the simulation language. As in other techniques that model the software,

modeling the software in simulation includes extra effort in the development, because it is necessary

to develop both the model and the real product after the experiments. Accuracy of simulations tends

to be compromised by simplifications performed in the modeling of both application and environment

in order to allow execution of the models. If such simplifications are not performed, the model tends

to become very complex and hard to be described by the testers, and in this case the tool would

not be adopted.

Finally, emulation provides high reproducibility, extensibility, scalability, revisability, and accuracy,

because the actual software runs in a modeled version of the platform. As in the case of simulation,

applicability of this method is fair, because the environment may have some limitations regarding the

supported data sets and supported modeled environments. Because emulation enables the actual

software to be used in the modeled environment, further effort of development and modeling are

not required.

These advantages of emulation over other experimentation methods in the context of distributed
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systems motivate this work. Thus, the next section provides a more detailed presentation of the

concept of emulation, with a focus on emulation of distributed systems.

2.2 Emulation

As stated in the previous section, an emulator (also known as direct execution simulator [DIC96])

is defined by Gustedt et al. as a methodology for experimentation where the actual application runs

on top of a model of the application’s target environment [GUS09]. McGregor [MCG02] defines

emulation as an experimentation technique where some functional parts of the model being tested

are replaced by a part of the actual system. Both definitions are equivalent if the whole software

model being tested is replaced by the actual software in an experiment.

Emulation is applied since the 60’s. Before its use to computer science experimentation, emu-

lation was used to allow applications developed to a given processing architecture to be executed

unmodified in another architecture [MAL73].

Regarding emulation in computer science experiments, one of the main justifications for its

utilization is the fact that emulation decreases the “credibility gap” between results obtained exper-

imentally and results obtained in in-situ experiments. The role of real components in emulations is

to make such a gap smaller than in simulations [MCG02].

Because emulators execute real code of the artifact being tested, they are used in order to

evaluate artifacts under different conditions in a secure testing platform. Unlike simulators, which

allow control over the time passing of the experiments, because the software is also modeled in

such a way that it proceeds according to the simulator timing model (e.g., discrete, continuum),

emulators cannot assume infinite processing time between events, because applications have timing

demands that must be respected. So, emulators have to either make decisions in a time that is

compatible with the time expected by applications [MCG02] or implement some mechanism in order

to virtualize the time perceived by applications [LIU04].

Emulators may be either sequential, when a single processor is used to emulate all the components

of the model, or parallel, when several processors are used, each one emulating one or more system

components [DIC96]. Regarding the emulated platform, there are tools for network emulation

(such as Netbed [WHI02b] and ModelNet [VAH02]), peer-to-peer emulation (P2PLab [NUS06]),

grid emulation (MicroGrid [LIU04]), and arbitrary distributed systems, what include the previous

environments (V-DS [QUE07]). Typically, network emulators are used when it is important for

testers to consider effects of routing and other packet-related events in the experiment, like in the

case of comparing network protocols. The other distributed systems emulators are useful when

characteristics (number, localization) of processing elements are more important for the experiment

than routing and packing, like in the case of testing high-level applications.

The first proposals towards development of distributed systems emulators appeared in the 90’s

[DIC96]. Nevertheless, it was only after the raise of modern system virtualization tools such as

Xen [BAR03] and VMware [DEV02], which allow deployment of several isolated virtual machines
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Figure 2.1 – Codesigned Virtual Machines.

(VMs) in a single physical host, that distributed system emulators became popular and a very

exploited research subject. With the use of virtualization software, it is possible to have various nodes,

running different operating systems with different amount of resources in a single hardware [SMI05].

Because of significance virtualization technology has in distributed systems emulation research,

virtualization technology is presented next.

2.3 Virtualization

Virtualization of computing platforms, i.e., the mapping of a system interface to the interface

of the same or other system [SMI05] is used since 60’s, in special in IBM mainframes, as pointed by

Creasy [CRE81]. In fact, early works in this area were very practical, and the main target of these

works was IBM products. Virtualization worked by that time because of a combination of software

and hardware architectures that were developed to work together.

Virtualization may happen in one or more of several layers that compose a modern computing

system [SMI05] architecture. The lowest level of virtualization is that one that enables virtualization

of a machine’s Instruction Set Architecture (ISA), as depicted in Figure 2.1. By applying this

virtualization technique, binary applications written to an architecture can be executed in another

architecture without modifications. These virtual machines are called Codesigned Virtual Machines

[SMI05]. An example of this kind of virtualization is the Transmeta Crusoe processor [KLA00].

The highest level of virtualization is performed by high-level languages virtual machines [SMI05].

An example of such virtualizer is the Java Virtual Machine (JVM) [LIN99]. JVM is a user-level

application that translates a specific binary code (Java Bytecode) to a target operating system binary

code. Then, the same code generated by a Java compiler can be executed in several architectures,

if there is a JVM available to these architectures.

Another possible type of virtualization is the one that provides to higher levels layers the vision of a

complete computing environment, on which it is possible to run different operating systems [SMI05].

The corresponding virtual machine, called System Virtual Machine (Figure 2.2), enables different

operating systems—called virtual machines (VMs)—to be executed concurrently in a same real

machine (host). The virtualizer software is called, in this case, Virtual Machine Monitor (VMM),
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Figure 2.2 – System virtual machine.

and its goal is to control the use of hardware resources by each virtual machine. Xen [BAR03] and

VMware [DEV02] ESX Server are examples of system virtualizers. This technique is detailed next.

2.4 System virtualization

System virtualization has been used since the 60’s, as previously stated. This technology was

put aside when personal computers became widely available. However, research and development in

this subject were retaken recently, with the development of Xen virtual machine monitor [BAR03].

The motivation for such interest in virtualization are the facts that the currently available personal

computers have a capacity that most part of time is not completely used by typical applications

[BAR03] and that the overhead brought by the virtualization layer does not compromise the overall

system performance.

The advantages of virtualization are the increasing in flexibility of the systems, possibility of load

balancing, security, high availability through migration of virtual machines to other hosts without

service interruption, and isolation of virtual machines, which restricts the damage caused by malicious

application running in a VM to the VM itself. Furthermore, virtualization1 enables different operating

systems, fulfilling different user requirements, to run in a single host [BUL06].

The operating systems running atop the VMM are developed to a specific hardware platform,

and do not have to be modified to run atop a VMM. However, it is well-known, since the beginning

of works on virtualization, that not all processors are able to support virtualization techniques,

and x86 are among architectures that do not support the technology. Popek and Goldberg [POP74]

defines requirements a computer architecture must meet in order to support virtualization. Basically,

Popek and Goldberg defines as a condition of a computer architecture to be virtualizable that all

the sensitive instructions are privileged instructions. By sensitive instructions, Popek and Goldberg

mean instructions that change amount of available resources, instructions that change the CPU

mode, or instructions that are sensitive to the position in memory the program is hosted. Privileged

instruction, in Popek and Goldberg’s model, means an instruction that causes a trap to be called

if it is executed in user context. It means that these instructions can be appropriately executed in

system (supervisor) context. Attempts of running the instruction in user context cause traps in the

1throughout the rest of this thesis, the term virtualization is used as a synonym of system virtualization.
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system, which switches context to supervisor mode before executing the operation.

Unfortunately, x86 architecture is not virtualizable, because there are sensitive instructions that

do not trap properly when executed in user context [BAR03]. In order to run host virtual machines

in x86 architectures and other platforms that do not support virtualization, some workarounds

must be applied. VMware applies binary translation, on which sensitive operations executed by the

guest operating system are converted by the VMM to VM-safe [ADA06] operations. However, this

translation introduces an overhead in the system.

Paravirtualization [BAR03] is a special case of system virtualization where the virtualization of

the hardware platform is not completely abstracted from the operating system. Therefore, the guest

operating system needs some adaptations in order to support the VMM. This adaptation consists in

the removal of sensitive operation from the code or invocation of the VMM wherever some sensitive

operation is required. The advantage of such an approach is the enhancement in the performance

of virtual machines. Denali [WHI02a] employs this strategy, even though it does not support Linux

and Windows virtual machines, two of the most used operating systems. This fact contributed for

a small adoption of such virtualization software. Xen [BAR03], also adopted paravirtualization to

support x86, but unlikely Denali it supports Linux and Windows virtual machines.

Processors currently available in the market offer hardware support for virtualization. Processors

“Pacifica” from AMD [AMD05] and Intel processors with the “VT” [NEI06] technology are examples

of virtualization-enabled hardware. With such hardware, operating systems do not have to be

modified to run in a virtualized environment.

Applications of Virtualization

Virtualization technology has several applications. In this thesis, we investigate its application

in distributed system emulation. In this section, we describe other applications of virtualization

technology.

Figueiredo et al. [FIG03] presented one of the first works considering application of virtualization

in grid computing. In such a work, it is argued that features enabled by virtualization such as secu-

rity, isolation, customization, resource control, and independence from operating systems overcome

the overhead brought by this technology. Followed by this work, some practical applications of

virtualization were developed for the Globus Toolkit [FOS99b], like Dynamic Virtual Environment

(DVE) [KEA04] and Virtual Workspace (VW) [FOS06]. Furthermore, there are proposals of abstract

grid frameworks, like Distributed Virtual Computers (DVC) [TAE04] and Grid Gateway [CHI05]. Fi-

nally, there are also standalone grid middlewares, like In-VIGO [ADA05] and VMPlants [KRS04].

Garfinkel et al. [GAR03] considered applying virtualization technology to build a platform for

trusted computing. Whitaker et al. [WHI04] considered using virtualization to allow recovery from

failures caused by system misconfiguration. In such an approach, the system state is logged peri-

odically. Whenever a failure occurs, it is possible to analyze what files have been changed since the

last log, and then it is possible to recover the system working configuration.
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VELNET [KNE04] is a virtualization-based environment supporting computer networks educa-

tion. It uses VMware to build a virtual environment using one or more physical hosts. It is a tool

supporting mainly network configuration aspects (i.e., how to configure network elements such as

routers, firewalls and servers).

Virtual Lab Automation (VLA) [VMW07] is an environment for test of systems deployment

using VMware. It supports load of previously stored configurations and test of services in the virtual

environment. VLA chooses machines able to host the VM and loads the latter into the former. It

allows description of software-level environments (e.g., operating system and services running on

each VM). However, it does not allow description of software and hardware (e.g., amount of CPU

speed, amount of memory) configuration of the system, what makes VLA not suitable for distributed

systems experimentation.

Another application of virtualization is on emulation of local networks in overlay networks. This

application is addressed in several projects, such as VNET [SUN04], WOW [GAN06], and VIOLIN

[RUT05]. These projects vary on design decisions, such as whether middleware supplying the LAN

vision to VMs runs in VM-space or in VMM-space. Gupta et al. [GUP06c] shows that an additional

advantage of using such techniques of emulation of LANs in WANs is that the middleware supplying

the LAN vision to the distributed system can also perform network performance measurements and

topology optimization in such systems by analyzing user’s applications network traffic.

Notice that the former application of virtualization addresses a different problem than AEF. The

former concerns creation of methodologies to make applications that expect to execute in the same

local network, such as parallel applications, to execute in machines belonging to different networks.

The goal of this technique is allowing production software to run in an environment different from

the one it was originally designed for. AEF, on the other hand, was conceived to allow evaluation of

software prototypes. Because both emulation problems have different goals and applications, they

are not compared in this work.

Finally, virtualization is one of the key features enabling the current Cloud Computing [BUY09a]

platforms. Clouds are defined later in this chapter.

Xen

The virtual machine monitor used to implement AEF prototype is Xen. Xen Virtual Machine

Monitor was first presented in [BAR03]. Since the year of its first paper (2003), the VMM has

passed for studies regarding its general performance [MEN05], migration performance [CLA05], I/O

performance [CHE05], and performance model [BEN06]. A tool for VM monitoring (XenMon)

was also development in this period [GUP05] and incorporated in the Xen VMM later, as well

new scheduling heuristics [GUP06a]. In 2005, a new article describing modifications in the Xen

architecture was published [PRA05].

Xen supports Linux, Windows XP, and BSD as guest operating systems. Because Xen is a

paravirtualizer, either these operating systems have to be modified to support Xen in a virtualized

environment, or a virtualization-enabled processor has to be used in the host.
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The VMM—known as hypervisor in Xen’s terminology—coordinates execution of one or more

guests—known as domains in Xen’s terminology. One of these domains, called domain 0 or simply

dom0 is responsible for managing the other VMs (called domU—of unprivileged). Management of

virtual machines happens through specific commands for VMs creation, destruction, pause, resume,

or restart. The dom0 also allows monitoring of use of resources by each VM.

Amount of memory a VM uses from the physical machine is one parameter that has to be

defined during virtual machine creation. The amount of memory used by a virtual machine can be

dynamically changed via dom0. Similarly, number of virtual CPUs allocated to a VM is another

parameter defined during VM creation.

The virtual machine monitor has a scheduler that controls sharing of CPU time among VMs. The

scheduling policy is determined in VMM’s boot time. CPU sharing of each VM can be dynamically

changed via dom0.

Network access in Xen is controlled via a Virtual Firewall-Router (VFR) [BAR03] that forwards

network packages to the virtual network interfaces available in each VM. Besides providing simple

packet forwarding, VFR also allows specification of rules related to network packets, what enables

network packets filtering.

Access to I/O devices is also ruled by dom0. It accesses these devices through virtual block

devices. It means that all the accesses to I/O devices pass through the dom0, what leads to

overhead in I/O operations. Impact of such overhead in applications was presented in one of our

previous works [CAL07] in the context of database applications.

2.5 Virtualization as a support tool for distributed systems emulation

Distributed systems emulators developed without the use of virtualization technologies have

several limitations. The first limitation is restrictions on supported applications: because these emu-

lators were developed in a specific platform, supporting specific operating systems, only applications

written for such an operating system can be tested.

Virtualization helps to overcome this limitation by providing means of allowing any application,

written to any operating system and requiring any piece of software, to be tested. In this case,

virtual machines providing the required operating system and software can be created and made

available to testers.

Another limitation of earlier emulators regards resources multiplexing: because typically exper-

iments require more virtual elements than the number of physical elements, computing nodes and

network have to be shared among virtual elements. Development of mechanisms to provide sharing

of resources and performance isolation among virtual elements is hard, because it requires interaction

of the emulator with operating systems kernel and device drivers.

Virtualizers, on the other hand, provide native support for resource sharing among virtual ele-

ments, as long each virtual element is modeled as one virtual machine.

So, to build an emulator with the help of a virtualizer, a tester installs a virtual machine manager
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Figure 2.3 – A generic model for virtualization-based emulation of distributed systems.

in one or more machines that are going to be used as the emulator hardware platform. In such a

virtualized physical environment, virtual machines representing the virtual nodes are created. If

emulation of network behavior is required, additional actions must be taken in order to perform this

configuration. Then, the application, which can be included in the VM images, is triggered in all

the relevant nodes. This approach is represented in Figure 2.3.

Different virtualization-based emulators use different strategies to perform the previous steps.

Current approaches for virtualization-based emulation, along with their strengths and weaknesses,

which motivated the present thesis, are described later in Chapter 3.

2.6 Network management

The methodology for using virtualization technology as a support tool for emulation described in

the previous paragraphs requires manual intervention of the tester in order to trigger the processes

of virtual machines deployment, network configuration, and applications execution. Nevertheless,

these tasks can be automated with application of network management techniques.

According to Stallings [STA99], the trend of automatic management of networked systems be-

came relevant with the growing in scale, complexity, and heterogeneity of distributed systems.

Networking management encompasses five key functional areas, according to the definition by the

International Organization for Standardization (ISO) [STA99]:

Fault management, which includes activities related to detection, isolation, and correction of

misbehavior in networked environments;



39

Accounting management, which includes activities related to appropriate charging for the use of

the networked environment, as well as control over resources usage;

Configuration and name management, which includes activities related to control, gathering

and supplying of data about the network components, in order to aid in the maintenance of

continuous operation of the environment;

Performance management, which includes activities related to evaluation of the behavior of

network components; and

Security management, which includes activities related to protection of data and components of

the networked system.

To perform such activities, network management systems contain distributed elements with

specific key functions: Managers, which have access and control over the managed elements of

the system; Agents, which query Managers in order to obtain information about, or request some

operation to be performed in one or more of the managed components; and an Information Base,

which contains information used both by Managers and by Agents to perform their activities [STA99].

Management activities can be categorized in two groups [STA99]: monitoring, which encom-

passes activities related to observation and analysis of the managed elements, e.g., retrieve the

current amount of usage of CPU in a given host; and control, which encompasses activities related

to modification in the system component’s parameters, and requests of actions to be taken by the

managed elements; e.g., a request to an application to be started in a host.

To perform such management activities, the Simple Network Management Protocol (SNMP)

has been widely used for several years. According to Stallings [STA99] SNMP is a collection of

specifications for network management. It is composed of the protocol itself, of the definition of the

relevant data structures, and of other associated concepts. Regarding the relevant data structures,

the most important is the Management Information Base (MIB). MIB is structured as a tree, which

gathers objects logically related. Each managed object has a unique numerical identifier that gives

the position of the element in the tree. For example, position of TCP-related managed elements are

grouped in the MIB below the object 1.3.6.1.1.2.1.6; then, the total number of TCP elements

received with errors in given by 1.3.6.1.1.2.1.6.14. Notice that the whole identifier but the last

element (14) is the TCP identifier. Similarly, other TCP-related components have the same eight

initial identifiers, but a unique last identifier. The managed elements are defined by a data type, like

Integer, Octet String, Sequence, and Null. There are standard MIBs available to management of

basic components, such as LANs. Furthermore, device vendors usually offer MIBs for their devices.

SNMP defines three basic operations: set (used for modifying a value in the managed compo-

nent), get (used to retrieve the current value of a management component), and trap (used to

inform the Agent about some event in the managed component). Further versions of the protocol

define operations for receiving information in bulks (get-bulk); and an enhanced security policy,

which is based in communities and unencrypted messages in the protocol’s first version.
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Figure 2.4 – WBEM architecture.

Even these improvements in the SNMP protocol were not enough to overcome all the protocol’s

limitations. Issues related to limitations in MIB to describe complex data and relationships between

attributes and the impossibility of performing network management operations as transactions are not

solved in later versions of the protocol. Recently, a specification has been proposed for management.

This standard addresses the SNMP limitations and has support of several organizations. This

proposal is called Web-Based Enterprise Management (WBEM) [HAR98]. As its name suggests,

application of such specification is not restricted to networked elements; virtually any hardware or

software component may be managed using such a specification. Furthermore, it is expected that

WBEM will be applied in other areas, such as in management of electric power supply chain and

telecommunications [HOB04].

WBEM provides both an architecture and a technology for network management. The level

of management provided by WBEM goes further than executing commands that machines can

understand and react to; it also encompasses service management, which includes higher level

management operations that translate to one or more operations in specific devices [HOB04].

WBEM architecture is composed of the following components, as depicted in Figure 2.4: WBEM

Clients, WBEM Listeners, WBEM Servers, Providers, and Repository [HOB04]. WBEM Clients

request management operations, typically reacting to some operator’s request, to a WBEM Server.

Providers are the elements that actually perform the management operation in the managed device.

So, these components are device-specific and operate according to a protocol that are unknown by

the other components. WBEM Servers receive requests from Clients, via Web-Server operations,

and forward them to the listener associated to the requested operation. WBEM Listeners are

elements that receive information about events and alarms in the managed device. The Repository

stores properties of the managed device, which is used by the WBEM Server when replying for

management operations.

Another interesting feature of WBEM is that Providers can act as WBEM Clients to a Server,

by forwarding management operations to remote or low-level WBEM Servers [HOB04]. With this

model, it is possible to have WBEM Servers for specific sub-components of an architecture, which are

accessed by a Provider in the main component. This organization is especially useful when Clients

do not have direct access to the Server of some device, because of security or design limitations.

Then another Server act as a proxy for the Client and the Server.
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The WBEM counterpart for SNMP’s MIB is the CIM (Common Interface Model). It is object-

oriented. Thus, new managed objects can be included as children of already defined objects; this

way, all the operations already defined for the parent class are automatically available for the new

object. Only operations that are different from parent’s operations have to be defined for the new

class, what makes simpler inclusion and management of new objects.

WBEM commands are encoded according to the xmlCIM specification, which defines XML el-

ements in Document Type Definition and CIM as a XML specification [HOB04]. Operations, in

WBEM, are part of the managed device specification. To transport operation messages, WBEM

supports several mechanisms, such as Web Services, http, xmlCIM, and application-specific proto-

cols.

Both SNMP and WBEM protocols were proposed before the large adoption of virtualized systems.

Therefore, these protocols do not have built-in support for this kind of environment. For example,

among standard MIBs for SNMP, there is no one able to handle virtualized objects. Similarly,

no standardized CIM for virtualized resources is available, even though there are some efforts in

this direction, such as the libvirt-CIM2, which is a CIM for VMM-independent management of

virtualized platforms based on Linux. In the same direction, vMIB [ROD08] has been proposed as

a VMM-independent MIB for virtualized environments. While standard information bases are not

available, developers of systems that require management activities must develop and use their own

bases, or rely on some incomplete and unstable draft of information base.

2.7 Grid computing

Evaluation of AEF in this thesis was performed in—and when one of the main platforms it

was developed for is—Grid Computing [FOS99a] environments. Grids are distributed systems whose

resources, which are either computing resources (e.g., computers, storage) or general resources (e.g.,

microscopes, antennas) can be shared and accessed in a secure and coordinated way.

Grids appeared in the 90’s. Initially, they were proposed as a solution to provide computing

services as utilities, in the same way electricity is supplied for domestic users [CHE02]. Nevertheless,

this vision was never realized and, in practice, what Grids became was a collection of distributed

resources, typically academic and research infrastructures, which are accessed in a coordinated

manner, based on agreements among institutions sharing the resources. Each institution providing

distributed resources, referred throughout the rest of this thesis as site, allows access to its resources

to other Grid participants. Access to the resources may be via allocation, which is used especially

when the resources are Clusters of workstations [FOS01]; or may be via exploitation of idle cycles of

machines, in an opportunistic way. In the latter model, unused resources are donated to the grid, to

be used while local users (e.g., users located in the same site than the resource) are not using them.

Another important aspect of Grids, according to Keahey et al. [KEA09] is that control of resources

is held by the site, and not by the user.

2http://libvirt.org/CIM
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Among the available grid middlewares, one of special interest in this work, because it is used in

the tests presented in Chapter 7, is OurGrid [CIR06]. OurGrid is a free grid middleware for building

peer-to-peer grid sites. Sites supply resources to the grid in an opportunistic way. When a resource

that was locally idle and then donated to the grid is accessed by a local user, grid applications are

canceled and the resource is made available to the local user. Similarly, whenever a local site is

unable to find enough local resources to serve local requests, it tries to get resources from remote

OurGrid sites, in an economic model known as network of favors [AND07]. Basically, in this model

each site keeps its own account of balance between amount of computing power donated to each

other site and computing power received from it. This balance is used in case of concurrent requests

for free resources received from remote sites: in such a case, resources are supplied to the site that

has the biggest balance between resources donated and resources received.

This model of donation of unused computing resources is suitable to OurGrid because its target

grid applications are bag-of-tasks applications. In such an application model, a user job is composed

of a set of heterogeneous and independent tasks, which can be executed in an arbitrary order. So,

tasks are sent to resources to be executed and, in case of failure in task execution, either because

the resource was returned to a local user or because of a fault in the network or resource, it returns

to the execution queue and it is started again later. Nevertheless, recent OurGrid versions support

execution of parallel tasks executing in cluster of workstations.

OurGrid architecture is depicted in Figure 2.5. The main component on each site is the OurGrid

peer. It communicates with remote peers in order to request resources and replies requests for

resources. These requests come both from local users and remote peers. Local users request

resources to the peer through the OurGrid broker. The broker input is the user job description

containing, for each task, files to be uploaded, application to be executed, and files to be retrieved

after execution. With this information, OurGrid broker requests resources to the peer to execute

the application, schedules the tasks in the received resources, and monitors tasks execution and

completion. Peer replies broker requests with available local resources and also remote resources.

The broker uses this information to map tasks to resources. After mapping, tasks are submitted and

executed in both local and remote resources, through interactions with resources able to run grid

tasks in the sites, which are nodes that run the OurGrid workers.

It is worth noting that the schedule performed by OurGrid broker is user-centric: Broker tries to

get as much resources as possible in order to minimize execution time of user application, ignoring

the presence of other users that also need access to grid resources. Scheduling in system-level,

whose goal is to minimize execution time of all the users, is performed by a software known as grid

scheduler or meta scheduler [SCH03]. However, such a component is not available in OurGrid.

Even though grid is already a mature technology, with stable middlewares and a consolidated base

of users and resource providers, its application is restricted to academic and research environments.

Nevertheless, the goal of offering computing power as a utility, like electricity and water, was not

abandoned. This vision has been resumed recently, with the Cloud Computing technology, as

described next.
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Figure 2.5 – OurGrid architecture.

2.8 Cloud computing

Recently, the trend of delivering computing power as a utility has been raised with the Cloud

Computing technology [WEI07]. According to Buyya et al., a Cloud is a collection of virtualized

distributed resources that are delivered to users in a pay-per-use basis according to negotiated

SLAs [BUY09a]. Cloud resources are physically organized as data centers containing hundreds or

thousands of computers. One of the key differences between a grid and a cloud, according to Keahey

et al. [KEA09] is that, in the latter, control of resources is held by users, while control in the former

is held by resource owners.

One of the key technologies that enabled Cloud Computing is virtualization, because it allows

deployment of isolated virtual machines, containing any configuration required by the user, in a set

of hosts. Moreover, the exact characteristics of the host running the virtual machine are hidden

from the user. Hence, VMs can be migrated to allow consolidation or to increase performance of

users applications without service interruption and transparently. Furthermore, it is possible the

dynamically increase or decrease the amount of resources allocated to a client.

Services in a Cloud are offered in three different levels: Infrastructure as a Service (IaaS), where

users receive a share of a host to deploy their own virtual machines with any configuration and

software on it; Platform as a Service (PaaS), where users receive a platform where they can build

specific (typically web) applications without handling the virtual machine or the underlying software

supporting the platform; or Software as a Service (SaaS), where users pay to use a specific software

without handling details of the underlying architecture supporting the software.

Regarding access rights to a Cloud, a cloud can be public, when any user can subscribe to use

the services; private, when access to resources is restricted to users belonging to the organization
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that built the Cloud; or hybrid, when a public cloud is used to supplement resources of a private

cloud [SOT09]. Private clouds can be built with the use of software such as Aneka [CHU07] or

Eucalyptus [NUR08]. Public cloud services are offered by providers such as Amazon EC23 (IaaS),

Google AppEngines4 (PaaS), and Salesforce5 (SaaS).

Even though Cloud Computing is a very promising technology, with potential to drastically

change the way companies and people use computers, there are several issues that have to be

resolved before a wide adoption of it as a replacement for local data centers and usersŠ desktops.

Some of the tools and methods presented in this thesis can be applied in Cloud environments to

help to solve some of these issues, because both the target physical environment of an emulator (a

cluster running a VMM) and a cloud data center have elements in common, even though the scale

of the latter tend to be at least one order of magnitude bigger than the scale of the former. An

evidence of applicability of tools and methods in both areas is given next.

2.9 CloudSim Toolkit

An important part of the work presented in this thesis consists in automatically deploying virtual

machines in the hosts of a cluster. Several strategies can be used to perform the mapping, and the

goal is applying a strategy that optimizes the system usage according to a specific criterion. Thus,

an evaluation method was required in order to identify the best strategy among the available ones.

In the beginning of this chapter, several methods for distributed systems experimentation were

discussed and compared. The problem addressed in this thesis, emulation, is a suitable strategy

to evaluate prototypes, because emulation allows execution of actual software in a model of the

environment.

Consider now the problem of evaluating strategies for mapping VMs to hosts. In this case, the

evaluation of the strategies happens before implementation of the prototype of the mapper. Thus,

emulation is not the best experimentation method to be applied in this case. Simulation, on the

other hand, fits well this task: it allows testing of a model of a software (in this case, a model of the

strategies) in a model of the system. Furthermore, simulation allows a quick evaluation of different

scenarios and different mapping parameters. Therefore, the experimentation method we chose for

evaluation of strategies for mapping VMs to hosts is simulation.

Now, consider the scenario of the experimentation: a set of heterogeneous machines, on which

some virtual machines must be mapped to. Furthermore, VMs in the same host share CPU, and

thus the performance of applications in the VM decreases. Hence, effect of sharing of resources

must be evaluated together with the effect of the mapping itself.

Some of the abstractions required in this experiment, like machines with some CPU capacity,

and submission of tasks that incur some load in the hosts are offered by available Grid simulators.

3http://www.aws.amazon.com/ec2
4http://code.google.com/appengine/
5http://www.salesforce.com
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However, the possibility of having VMs, which required sharing resources from the machine, is not

contemplated by existent simulators.

In order to enable evaluation of effects of virtual machines in a computing environment, the

GridSim grid simulation Toolkit [BUY02] has been extended, enabling simulation of virtualized

environments. This extension enabled simulation of sites containing hosts that can receive virtual

machines. Notice that it is exactly the concept of a Cloud data center presented previously: an

infrastructure containing a number of hosts that run virtualization software in order to enable sharing

of resources among users.

Because of these similarities between the target environment of our simulator and a Cloud

infrastructure, further abstractions, related to Clouds, were added to our GridSim’s extension and

the result was the first release of the CloudSim Toolkit [BUY09b].

The CloudSim Toolkit enables simulation of virtualized data centers, containing thousands of

virtualized hosts. Virtual machines are deployed in the data centers according to provisioning policies

defined by the tester. These data centers belong either to the same provider, or to different providers.

Users are also represented in the simulation. They require creation of virtual machines in the

data centers, and submit tasks to be executed in the virtual machines as in an IaaS cloud. Modeling

of policies to decide which data centers run which VMs is also delegated to the tester. Also, the

tester is responsible for defining scheduling policies of tasks to VMs.

Control of execution of tasks in the VMs is performed by CloudSim. Sharing of resources in

CloudSim happens in two levels: in the first level, a fraction of the CPUs on each host, which can

be multicore machines or SMP processors, is given to each VM. This level simulates the scheduling

policy of VMMs.

The second level of resource sharing is the sharing of the resources allocated to a VM among the

tasks running on it. This level simulates the operating system scheduler. In any level, it is possible

to apply a space-shared, time-shared, weighted time-shared, or other policies defined by the tester.

Differences in application of such algorithms on each level are depicted in Figure 2.6.

During execution of user tasks, data center controls resource utilization and use this information

to charge users for resource usage. So, different billing policies applied by different cloud providers

can also be simulated in CloudSim. It is possible to keep track of usage of resources by the VMs

(memory and bandwidth), usage of CPU by the tasks, and amount of time the VM executed. The

latter is important to allow simulation of typical charging policies used by Cloud providers, where

use of virtual machines is charged according to the time virtual machines run. Normally, the charge

is at fixed times, like in Amazon EC2, where use of VMs is charged in an hourly basis, rounded up.

So, if a virtual machine is used during one hour and one minute, user is charged for two hours of

resource usage. Nevertheless, CloudSim allows definition of other policies, either to allow effects of

different policies for Cloud users, or to allow modeling of new policies applied by real providers.

Other important features of CloudSim are listed below. Some of these features were added in

the recent version of the toolkit.

Network simulation. CloudSim allows simulation of bandwidth and delay in execution of applica-
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(a) (b)

(c) (d)

Figure 2.6 – Effects of different provisioning policies on task execution [BUY09b]: (a) Space-shared
for VMs and tasks, (b) Space-shared for VMs and time-shared for tasks, (c) Time-shared for VMs,
space-shared for tasks, and (d) Time-shared for VMs and tasks.

tions. So, the effect of geographic location of different data centers, belonging to the same

or different providers, can be evaluated;

Cloud federation simulation. CloudSim contains features to simulate federation of Clouds, where

data centers can exchange load in order to meet quality of services negotiated with users;

Power usage simulation. Use of power by each data center can be modeled. So, the effect of

placement of VMs in the host, in terms of use of energy, and the effects in the data center,

can be simulated and evaluated.

New features will be added when they are needed: because Cloud is an emerging area, whose

requirements are not well established yet, further research on it will show features that are not

contemplated by CloudSim. Whenever such features are identified, they will be added to the toolkit.

CloudSim is currently being maintained as a cooperation between researchers from the CLOUDS

Lab of University of Melbourne (which are also the maintainers of GridSim) and from PUCRS.

2.10 Chapter remarks

In this chapter the context which this thesis is inserted was discussed. The proposal of a

virtualization-based emulator for distributed systems applications concerns several areas, and each

one was discussed in this chapter. First, we showed that, among the different methodologies for dis-

tributed systems experimentation, emulation—approach where actual software executes in a model

of a hardware environment—is the most appropriated for evaluating software prototypes. Enabling

emulators to support this application, however, requires the use of technologies such as virtualization

and network management. Finally, simulation—methodology where a model of software runs in a

model of a hardware environment—was also required during validation of some components of this
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work, namely the mapping of VMs to hosts, because simulation is the most suitable approach for

testing algorithms prior development of the correspondent software. In this context, CloudSim, a

new simulator software, was developed, and it has been shown useful not only to simulate scenarios

of application of emulation, but also to cloud computing scenarios.

In the next chapter we present the state of the art and existing works on each of the areas relevant

in the context of this thesis. These existing approaches are compared to ours and conclusions related

to motivation to the work in this thesis are also presented.
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3. RELATED WORKS

In this chapter, we discuss other works that relate to this thesis. Because the research and

design of the proposed emulation framework encompass several areas, in the next sections each area

is discussed separately. Furthermore, this thesis is positioned against the other relevant works.

Investigation of related works and the positioning of this work are presented in the following order:

first, we discuss works related to simulation and emulation. Next, works related to management of

virtualized environments are explored.

Because a significant part of this work concerns the problem of mapping virtual machines to

hosts, other mapping problems that have similarities with our problem are discussed in the end of

this chapter.

3.1 Simulation

As already described later in this chapter, emulation and simulation are two techniques for exper-

imentation in computer science that have different applications. As also already stated, algorithms

for mapping VMs to hosts presented in this thesis were evaluated with a simulator (CloudSim).

There are several tools for simulation of distributed systems available nowadays. They differ from

each other in the kind of environment they model and in the approach for modeling the software

being tested.

A very popular simulator of networks is ns-21. It is a discrete-event simulator of networks. It

supports simulation of network protocols in different layers (TCP, IP, routing protocols) and also

simulation of wireless networks. The main components of an ns-2 simulation are the nodes and

links. In the nodes, there are agents that send data via a specific protocol to another agent, or to

several other agents, because broadcast and multicast are also supported in the simulator. Even

though ns-2 is a suitable tool for simulation of low-level behavior of networks, it does not provide

abstractions to support higher-level elements, like users, tasks, and computers. So, for simulation

of applications, other tools may suit better.

DSSimulator [SHA05] provides higher-level abstractions than ns-2. It is also a discrete-event

simulator. Nevertheless, the target environments are overlays. So, in DSSimulator, the specific net-

work protocol in use, routers, switches, and other intermediate elements are not simulated. Instead,

only the relevant components of the overlay are simulated, and the bandwidth and latency between

them are considered during simulation of communication. Even though DSSimulator provides higher

level abstractions for networking than ns-2, it also does not provide support for direct representation

of applications and elements able to execute such applications.

Grid computing simulators allow modeling of applications and elements able to process and

generate them. One of such simulators is SimGrid [LEG03]. It is a toolkit for discrete-event

1http://www.isi.edu/nsnam/ns/
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Table 3.1 – Comparison among grid simulators and CloudSim.
SimGrid GangSim GridSim CloudSim

Network representation yes yes yes yes
Processing nodes representation yes yes yes yes
Sites representation yes yes yes yes
Virtual organizations representation no yes no no
Economic modeling no no yes yes
VMs representation no no no yes
Language C, XML Perl Java Java

simulation of grid environments. It allows modeling of computers, networks, and applications,

including applications modeled as Direct Acyclic Graphs (DAGs). Simulations in SimGrid are agent-

oriented, what means that simulation elements able to perform actions are agents, which can take

scheduling decisions. Agents are described as their code, private data, and a location where they

execute. The agent location is another abstraction from the tool, and it is composed of a computing

resource and communication channels between other agents. The unit of execution of applications

is a task, and it is composed of the amount of processing power required by the application and an

amount of data to be transmitted.

GangSim [DUM05] is a simulation tool for grid environments. The main difference from GangSim

to other approaches is that the former supports virtual organizations as a basic simulation component.

So, this tool is suitable for modeling and simulation of grids that use virtual organizations, such

as Globus grids. Other elements represented in a GangSim simulation are sites, which contains

resources (CPU and storage) and network; meta schedulers, user schedulers and data schedulers;

and policy enforcers, which ensure that policies defined on other components are respected during

the simulation.

GridSim [BUY02] is a discrete-event simulation toolkit for grid applications. It supports modeling

of grid resources, which are described as an amount of processing elements with different processing

capacities, location of resource, cost for utilization, and scheduling policies for allocating processing

elements to the tasks in execution. Another component of the simulation is the user, which is

represented by its grid broker. Policies to submit user tasks to grid resources must be defined by

testers and are implemented in the broker. Finally, a grid application is represented as a number

of tasks, each one containing the amount of processing power required to complete task execution,

amount of data to be transferred to the grid, and amount of data to be retrieved. Later versions of

GridSim support simulation of network elements, simulation of data grids, and modeling of faulty

elements.

These tools were conceived before the increase in interest by virtualization in the context of

grids and clouds, therefore they do not contain elements to simulate virtualized infrastructures. It

motivated us to develop the CloudSim toolkit [BUY09b], which is based in the GridSim toolkit. A

comparison among the described Grid simulators and CloudSim is presented in Table 3.1.

Even though all the presented simulators provide mechanisms to model distributed environments,
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they also require modeling of the applications being tested. If a tester wants to evaluate a prototype,

simulation is not the most fitted methodology for experimentation. In this case, emulation should

be used. Next, emulation tools are described and compared to the one proposed in this thesis.

3.2 Emulation

Several emulators were proposed along the time, with different purposes and using different

technologies.

LAPSE [DIC96] is an emulator of distributed systems supporting message-passing programs.

This emulator executes only in Intel Paragon machines. The emulated network model supports

either simple inclusion of latency in the messages sent through the network or a complex model

including the presence of switches. In LAPSE, multiplexing of nodes is very simple. There is a

module, which is part of the emulator, executing for each instance of the distributed application.

This module interacts with the emulator core to receive and deliver message to the application, at

specific times. No further control of resources is allowed by LAPSE. The problem of such limitation

in resource multiplexing is that it is not possible to evaluate the application in the presence of

specific amount of resources. Furthermore, it is not possible to completely isolate applications,

and thus applications sharing resources interfere in other applications (i.e., lack of performance

isolation among virtual elements executing in the same host) what is undesirable when evaluation

of applications is performed.

MicroGrid [LIU04] is an emulator for distributed systems environments. The physical infras-

tructure required by MicroGrid is a distributed environment, such as clusters, LANs, or mixed

environments composed by subnetworks and clusters. On top of such physical environment, Micro-

Grid builds a virtual grid, which applications can use, together with the grid middleware required by

the application, if any is required. MicroGrid supports applications using the MPI message-passing

library [GRO96], if applications are compiled with a specific MicroGrid library. This library intercepts

systems calls that send messages and request the current time, so messages can be delayed and the

emulation time can be supplied instead of wall clock time. MicroGrid also supports grid applications

compatible with Globus Toolkit version 2 and Java applications. Network behavior is given by a

distributed network simulator called MaSSF. Nodes are multiplexed with the help of CPU controllers.

Controllers make processes be interrupted when they use all the CPU cycles they are supposed to

use, considering the difference of capacity between the actual machine running the application and

the emulated machine. Other resources cannot be controlled and therefore MicroGrid cannot provide

isolation among processes running in the same host, what is a major limitation of the tool.

Panda [KIE02] allows emulation of a wide-area network in a single cluster. Panda, which was

part of the Albatross project, has been developed to support testing of distributed applications that

run in multiple clusters. A unique characteristic of this kind of application is that some tasks, which

are running in the same cluster, communicate with low latency and high bandwidth, whereas other

tasks communicate with high latency and low latency, because they are in different clusters and
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thus communicate through a WAN. Similarly to MicroGrid, Panda requires several libraries and low-

level tools running together with the applications to provide network emulation (i.e., emulation of

latency in the network messages). Furthermore, nodes multiplexing are not performed. Then, there

is neither performance isolation among tasks running in the same node nor emulation of nodes with

different CPU speeds.

ModelNet [VAH02] is a network emulator that focuses in accurate emulation of network events.

Therefore, while other emulators only represent effects of the network as a delay in the packets

reception by remote nodes, ModelNet also emulates the presence of network elements, such as

routers and switches. Then, events related to packet flow (e.g., congestion, packet drops, etc.) are

also represented. The physical nodes supporting execution of ModelNet are divided in nodes for

emulating the network and nodes for executing the application. ModelNet supports only emulation

of the network. Therefore, it is not possible to multiplex the processing nodes, and so scalability of

this tool is limited by the number of physical machines available for running the application.

NET [MAI07] is a distributed system emulator testbed from the University of Stuttgart. The

hardware platform of NET is a cluster with 64 machines connected by a programmable Gigabit

Ethernet switch. Network model is modeled through the adequate programming of the switch.

Network behavior (latency and bandwidth) is inserted in the packets by a part of the emulator that

executes on each node. Furthermore, there is a virtual network stack for each virtual node of the

emulation. Even though the virtual network stack assures performance isolation of the network, it

does not assure performance isolation of CPU, which is not supported at all by NET.

P2PLab [NUS06] is a P2P environment emulator. It runs on FreeBSD, and uses tools provided

by such an operating system to provide network multiplexing. The hardware platform for P2PLab is

a cluster of workstations. Nevertheless, virtual nodes run as processes in the operating system level,

therefore there is no performance isolation among them.

Emulab\Netbed [EID07, WHI02b] is a software and hardware platform for distributed systems

experiments. Network multiplexing is performed with the use of four switches attached to each

cluster node. Node multiplexing is achieved with the use of BSD Jails [KAM00]. So, among all

the approaches for emulation discussed so far, this is the only one that provides both network

multiplexing and CPU multiplexing. However, it only supports applications that run in the BSD

operating system, and requires a specific hardware (hosts with four switches) to operate properly.

Flexlab [RIC07] is an emulation tool that runs over the PlanetLab [CHU03] overlay network. It

uses Emulab to provide the physical platform for the experiments. While application runs in the

emulator, Flexlab builds a topology similar to the emulated one in the PlanetLab network. Actual

data about network behavior is collected in real time and used in the network emulation. Even

though this approach allows more realistic network behavior, the use of actual network compromises

reproducibility of experiments, because network conditions vary during the time, and are influenced

by several factors testers do not control.

Table 3.2 summarizes features of emulators described so far. All these approaches make little

use, if any, of virtualization tools. It increases their development complexity, because emulation
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Table 3.2 – Comparison among emulators.
LAPSE MicroGrid Panda ModelNet NET P2PLab Emulab/Flexlab

Technique
for node
multiplexing

multitasking controllers multitasking — multitasking multitasking BSD Jails

Technique
for network
multiplexing

library library library simulation middleware OS tools OS tools

Performance
isolation?

no yes no yes no no yes

CPU scal-
ing?

no yes no no no no no

Distributed? yes yes yes yes yes yes yes
Target hard-
ware infras-
tructure

Intel Paragon clusters clusters clusters specific cluster clusters specific cluster

Target
Applications

distributed MPI distributed distributed distributed distributed distributed

developers have to deal with multiplexing of network and CPU. This is a possible reason why only

a few of the discussed approach actually consider CPU multiplexing while most of them assume

that only one task runs on each node. The limitation of such approach is that it does not allow

scaling down of CPU resources in order to simulate hardware with different capacities. Actual

isolation of performance among emulation elements, in such a way that a specific fraction of the

CPU is allocated to each node according to tester demand is only achieved by MicroGrid among the

previously discussed approaches.

With the application of virtualization in emulation, performance isolation and network multiplex-

ing are more easily achieved. One of the earlier tools to adopt such an approach was vBET [JIA03].

In vBET system, a single machine is used to host the entire virtual system, which is built with

User-mode Linux (UML) [DIK01]. The focus of this project is in experiments in network level, i.e.,

evaluation of behavior of network packets and other low-level features. It does not offer features for

testing applications and other high-level system elements. Furthermore, because only one physical

machine can be used to host the emulation, this tool has a limited scalability.

TestGrid [CHI06b] also applies virtualization to allow creation of simple emulated environments.

It allows testers to automatically deploy VM images of preconfigured types in a virtualized cluster,

enabling them to run grid application in an emulated network. This emulated network, however,

allows only isolation among grid sites, and not emulation of network parameters. It also does not

address mapping and deployment of VMs in hosts: testers have to manually decide where to create

each VM and do it with the help of the GridBuilder [CHI06a] tool. Network configuration is not

performed. CPU multiplexing is achieved with the use of virtualization technology (Xen).

NEPTUNE [CAN07] is another virtualization-based emulator that provides a Xen-based virtual

environment for distributed systems experiments. Network emulation is performed with the use of

tools supplied with Xen. CPU multiplexing and performance isolation is also supported natively by

Xen. There is no reference about capabilities of automatic configuration and installation based on

a tester-supplied specification. If these features are not available, testers have to manually map,

deploy, and configure the system.
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DieCast [GUP08] is a distributed system emulator that applies the concept of time dilation

[GUP06b] to enable emulation of more resources than the amount actually available. The technique

of time dilation consists in using virtualization to slow down VMs, by delaying events (reception

of time interruptions) in their operating system kernel. So, for example, by delaying in 10 times

the reception of interruptions, and keeping the network flow at its regular speed, from the VM

perspective network is 10 times faster than its actual speed. The same can be achieved for CPU

speed, whereas the same achievement for disks requires the use of a disk simulator, which calculates

the time an I/O operation would take considering the simulation time rate. The goal of the VMM

in the process of time dilation is ensuring that signals are received by VMs at the expected rate.

Even though time dilation allows experimentation with an emulated environment containing more

resources than in the actual environment, the process slowdowns the experiment in the same rate

the environment “grows”, what can make an experiment take a long time to complete. Furthermore,

DieCast requires a modified VMM to enable time dilation.

SVEET! [ERA09] is a TCP virtualization-based network emulator. Network emulation is per-

formed with the use of VPN and the PRIME network emulator [LIU07]. Network packets generated

in the VMs are forwarded, through the VPN, to PRIME, which applies delays on them according

to the expected delay considering the simulated scenario. SVEET! also implements the same time

dilation technique proposed by Gupta at al. [GUP06b] than DieCast to allow experimentation of

larger platforms than the one available for experimentation. A limitation of SVEET! is that it only

supports one operating system, which is a modified Linux kernel. So, the emulated environment is

restricted to VMs using such an operating system.

Table 3.3 summarizes both approaches for emulation of distributed systems based in emulation

and AEF. Emulators that use time dilation do not perform mapping, because lack of resources in

the host are compensated by the use of time dilation. Furthermore, vBET does not map because

VMs run in a single host.

Another important characteristic of emulators is the supported VMM and applications. Requiring

a modified VMM is undesirable because it makes hard performing upgrades of the VMM software,

which typically includes new desirable features and bug fixes. In the same direction, it is desirable

support for arbitrary operating systems in the VMs because it gives testers more options of emulated

environments to evaluate software. Finally, only emulators based in time dilation and AEF offer

network configuration.

None of the emulators offer features to allow management of experiments. This lack of auto-

matic mapping, deployment, network configuration, and management of experiments motivated the

development of AEF.

3.3 Management of virtualized environments

Another significant part of AEF’s activities concerns management of virtualized environments. In

AEF, this technique is applied to allow emulation of distributed systems. Nevertheless, techniques for
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Table 3.3 – Comparison among virtualization-based emulators.
vBET TestGrid Neptune DieCast SVEET! AEF

Application low-level
network

experiments

Emulation of
the EGEE grid

Emulation of
Globus grids

distributed
systems

emulation

TCP
experiments

emulation of grids

VMM UML Xen Xen Modified Xen Modified Xen Xen
Supports any
OS?

no yes yes yes no yes

Target hard-
ware infras-
tructure

Single host clusters clusters clusters clusters clusters

Automatic
mapping of
VMs?

— no no — — yes

Environment
set up

— GridBuilder manual automatic automatic automatic

Technique for
network emu-
lation

VMM — VMM — PRIME built in

Experiment
management?

no no no no no yes

management of virtualized environment are also applied in other contexts, especially for management

of data centers.

HARMONY [SIN08] applies management of virtualized environments to achieve load-balancing

in both storage and computing data centers. HARMONY provides an environment for monitoring

of data centers resources usage. Data centers resources are virtualized, both computing nodes

and storage nodes. System virtualization is performed by VMware, and storage management is

performed by IBM SAN Volume Controller. Furthermore, the physical infrastructure managed by

HARMONY is restricted to a specific topology, which is typically found in data centers built with

IBM software and hardware. When HARMONY is deployed in the data center, use of resources

is monitored. If conditions observed in a specific moment may lead to SLA violations, virtual

machines and virtual disks are remapped. These decisions are taken in real time and without

services interruption. HARMONY differs from AEF in the system goals, and so both approaches

are not interchangeable: AEF does not take remapping decisions in real time. When SLAs are

not observed, it stops execution of the experiment to rebuild it, using more time-costly remapping

strategies. But because HARMONY is applied in production data centers, services running in VMs

cannot be interrupted, and remapping must be as quick as possible, otherwise SLAs may be violated.

Khanna et al. [KHA06] presents another solution for data centers management that, like HAR-

MONY, is based in IBM solutions. In this approach, the IBM Director software is used to manage

the virtualized infrastructure. However, unlike HARMONY that performs management of the net-

work between computing elements and storage elements, Khanna’s approach considers only the VM

management, and violations in SLAs related to usage of resources by VMs. In reaction to potential

SLAs violations, the system performs VM migrations. Decisions are made in such a way that the

number of migrations is minimized. The system decides that a SLA violation is about to occur when

resources usage achieves a threshold specified by the infrastructure manager. The main drawback

of this approach is that management decisions are limited to VM migrations. AEF, on the other

hand, can also modify the amount of resources allocated to VMs in order to improve performance
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Table 3.4 – Comparison among managers of virtualized environments.
HARMONY Khanna’s Usher AEF

Managed topology specific specific arbitrary arbitrary
VMM VMware VMware Xen Xen
Management tools proprietary proprietary built in built in
VM management? yes yes yes yes
Network management? yes no no yes
Applications management? no no no yes
On line system adaptation? yes yes yes no
VM management actions supported migration only migration only user-defined user-defined

of applications running on it. Furthermore, Khanna’s approach does not manage network, and so

SLA violations caused by overload in some network links are neither detected nor fixed.

Usher [MCN07] is an extensible and customizable virtual machine management system for data

centers. It allows creation of virtual clusters in the infrastructure. These virtual clusters are composed

of VMs that run the same software and have the same configuration. Usher was developed to be

used in arbitrary data centers, unlike the previous approaches that require specific hardware and relies

in proprietary software for infrastructure management. It implements operations for management of

the whole VM lifecycle—creation, migration, destruction, and interruption. It also supplies tools for

definition of provisioning policies, VM lifecycle management policies, power management, and load

balancing. Usher supports virtualized environments build with Xen VMM. Only VM attributes are

monitored by Usher. So, load balancing and other management decisions are made based on VMs,

and, as in the previous case, SLA violations caused by overload in network links are not detected.

Usher allows the system administrators to express their own policies to set actions on VMs. When a

condition defined by the administrator is observed in the monitoring data, the corresponding action

set by the administrator is performed. AEF, on the other hand, allows combination of policies and

events to define complex actions for system reconfiguration. Also, in AEF network events observed

in the infrastructure also triggers reconfiguration events.

Table 3.4 summarizes the features of the virtual environment managers presented in this section

and AEF. HARMONY and Khanna’s approach work only on specific architectures, and so they

are not suitable to the context of emulation of distributed systems in arbitrary clusters. Usher is

the approach that has the most features in common with AEF. However, Usher manages neither

networks nor applications, and therefore considers only part of the management issues required by

an emulator and addressed by AEF.

3.4 Virtual machines mapping

The activities related to systems management, which enable automatic installation of the virtual

machines in the hosts and automatic execution of experiments, only take place after the decision of

where each VM must be created. This problem is an assignment problem: hosts available to the

emulation are assigned to each virtual machine. Furthermore, physical limitations in the amount of
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resources available on the hosts and the resources required by each VM must be taken into account

when the assignment is performed.

In this thesis, this problem was modeled as a mapping problem, where VMs are mapped to hosts

to be executed. Furthermore, resources are constraints in the mapping problem, limiting the number

of valid mappings. In our formulation, which is detailed in the next chapter, the goal is mapping

VMs to hosts and links between VMs to paths in the physical cluster. Because a similar problem

was not found in the literature, we formulated the formal description of the problem and proposed

algorithms to solve it. Nevertheless, there are other problems that have some relation with the

problem we defined.

One of such a related problem is the Generic Adaptation Problem in Virtual Execution Environ-

ments (GAPVEE) [SUN05,SUN06a]. GAPVEE consists in, starting from an original distribution of

VMs in a WAN and paths between them, finding a new mapping of VMs to hosts in order to improve

throughput of applications running in the VMs. This problem is applied in the context of emulation

of local area networks in wide area networks. This problem differs from the mapping problem solved

by AEF in three main aspects. The first difference is the existence of an initial state in GAPVEE

where the solution starts from. So, if a new mapping that improves the throughput is not found,

there is already a configuration that can be used to execute applications. In our proposal, there

is no such an initial valid state. Nevertheless, our solution can be applied in GAPVEE to find an

initial valid state, which the solution presented by Sundararaj et al. [SUN06b] is not able to do.

The second difference is the goal of the mapping, which is maximizing application throughput in

GAPVEE and load-balance of the environment in our proposal. Finally, there is a difference in the

application of both approaches (emulation of LANs in WANs in GAPVEE and emulation of WANs

and LANs in our approach), which leads to different formal models for each problem.

Another problem related to the mapping problem presented in this thesis is the Network testbed

mapping problem defined by Ricci et al. [RIC03]. In this approach, hosts receive VMs according to

a limit given by the number of VMs they can receive, and not the amount of resources required by

each VM. So, amount of memory, storage, and CPU capacity of hosts are not considered during

mapping. Considering that, in the emulation process, VMs can have different requirements in terms

of resources, the Network testbed mapping problem in the way it is formulated cannot model the

problem addressed by AEF.

Liu et al. [LIU05] also presents o model for a problem of mapping virtual nodes to physical

machines. However, in such a formulation each physical element can receive only one virtual element.

Even though constraints are considered during the mapping, allowing only one VM to execute in a

host limits the scalability of the infrastructure, thus this solution is also not suitable to be used in

AEF.

The last two approaches have their limitations because they were developed before modern

virtual machine monitors became widely spread. So, these approaches do not consider that host

resources can be allocated according to the requirements of each virtual node. Also, both solutions

have restrictions in the topology of the real environment they can map, while AEF allows arbitrary
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network topologies of physical environments.

Several areas have problems that relate to the problem presented in this work. Some remark-

able examples are hardware/software codesign [KAL97, LOO06, YAN05], heterogeneous comput-

ing [MAH98], grid computing [BUY05,YU05], and operational research [HOO05,JAI01]. Neverthe-

less, none of them can completely contemplate the scenario proposed in this work. For example,

models applied in hardware/software codesign and heterogeneous computing do not model the net-

work mapping performed by AEF. Models for grid do not consider resources limitation, and they

are driven to minimize execution time of applications. Models applied in operational research can

only describe the VM mapping, not the network mapping. Task Mapping algorithms for different

uses are compared by Adam et al. [ADA74], Kwok [KWO99], and Norman and Thanisch [NOR93].

These models also do not describe completely the problem addressed by AEF.

Even though these approaches cannot be used to solve the problem that AEF tackles, the study

of these models and their solutions was relevant to provide us insights on best approaches to model

and solve our own problem. For example, Sundararaj et al. [SUN05] demonstrates that GAPVEE

is an NP-Hard problem. Based on this fact, and the fact that both problems are very similar, we

decided to look for heuristics solution instead of exact solutions for the problem of mapping virtual

distributed environments to physical environments tackled by AEF.

3.5 Chapter remarks

In this chapter another approaches for simulation, virtualized systems management, and mapping

were presented, and the respective solutions proposed in this thesis were positioned against each

existing approach. Finally, other distributed systems emulators were described. The emulators that

do not use virtualization technology have limitations in scale and applicability that restricts their

utilization. Approaches based in virtualization, on the other hand, have fewer limitations. However,

none of the existing solutions allows automatic mapping, deployment, network management, and

application management. This is the main motivation of this work. Our approach for the problem

of distributed systems emulation is presented and evaluated in the following chapters of this thesis.
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4. INSTALLATION AND CONFIGURATION OF EMULATED

DISTRIBUTED ENVIRONMENTS

In this chapter we start to describe our architecture for automated emulation of distributed

system. The proposed solution—called Automated Emulation Framework (AEF)—aims at providing

testers with a tool for evaluation of distributed applications. To support such an activity, AEF builds

the emulated distributed system in a cluster of workstations and then triggers applications that are

part of the experiment.

Throughout this chapter, the approach taken by AEF to perform the first activity—installation

and configuration of the emulated environment—is detailed. This chapter starts with a discussion

of requirements of a distributed system emulator. As already stated, the current approaches for

this activity do not meet the requirements we identified. Afterward, a general overview of AEF is

presented. Next, each AEF module that takes part in the installation and configuration process

is detailed. In this chapter, we explore only the general AEF architecture, without specifying any

technology for performing the activities related to the installation and configuration of the emulated

distributed system. Implementation-specific issues, which we applied in the AEF prototype, are

explored later in Chapter 6.

4.1 Requirements of a distributed system emulator

In this section, we enumerate the requirements we pursued during AEF conception. These

requirements have to be met in order to enable development of a tool for automated emulation of

distributed systems.

The first requirement is ability of reproducing conditions, of both networks and machines, found

in an experiment. Most emulators that do not use virtualization fail in meet such a requirement,

because they do not allow definition of configuration parameters of emulated machines.

The second requirement we sought was ability of performing tests in several levels. The emulator

has to support not only experiments in application level, where applications themselves are the target

of the experiment, but also low-level experiments, where artifacts such as network protocols are

evaluated.

The third requirement is ability to work without dedicated or expensive hardware. By meeting

such a requirement, it is possible to deploy the emulator in an environment built with commercial

off-the-shelf hardware, preferably cheap (or even free/open source software) and heterogeneous.

The next requirements we pursued are necessary not only in emulators, but also in tools for sup-

porting computer science experiments, as we stated in previous chapters: scalability and performance

isolation among emulated elements.

Next, we sought presence of mechanisms for control of experiments performed in the environ-

ment. None of the current emulators offer such a support. Finally, presence of mechanisms for
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automated mapping, deployment, and network configuration is also desirable. As in the previous

case, current emulators fail in offer such a service.

Design and development of a tool that meets all the previous requirements demand significant

research. One of the main aspects in the AEF development—and one of its main differences from

other approaches—regards the automated building, configuration, and execution of the experiment,

starting from a description of the experiment. In the rest of this chapter we explore the process

towards meeting the requirement of automated building and configuration of the experiment. Next,

we present an overview of such an activity in AEF.

4.2 Automated Emulation Framework: general overview

The Automated Emulation Framework (AEF) is an emulation testbed for distributed system

experiments. It allows testers to describe the distributed system required by the application, au-

tomatically deploys a virtual infrastructure corresponding to such a system in a local cluster, and

executes the experiment. The virtual infrastructure is composed of virtual machines, each one rep-

resenting one virtual element of the emulated distributed system. The use of a VMM allows each

VM to have its own share of computing resources—CPU, memory, storage. Each VM executes an

operating system with the software required by the experiment. Network connections between VMs

are also configured to behave according to tester demands. The overall AEF architecture is depicted

in Figure 4.11.

AEF runs in the machine that is the cluster frontend. The cluster that hosts the experiment

may be either homogeneous or heterogeneous regarding nodes configuration, i.e., nodes can have

different architectures, different amounts of memory and storage, and different amount of CPU

power. It also can have any network configuration. However, it is required that each cluster node

runs the same version of a Virtual Machine Monitor.

Cluster configuration, virtual network topology, and application parameters are stored to be used

by AEF. This information is sent to AEF via three XML files. They all use the same Document Type

Definition (DTD), which is based on SimGrid’s [LEG03] input file format and is presented in Figure

4.2. One of the files describes the cluster and is kept stored in a repository, the second one contains

description of the virtual environment and the last one describes the experiment to be performed.

Regarding the actors in AEF, there are two roles played by users of the system. The first one

is the system administrator. The role of this actor is to keep configuration of the cluster hosting

AEF. System administrator is responsible by keeping the cluster description file updated with the

latest information about cluster nodes and cluster network. This file is kept in a local repository and

it is read by AEF every time a new experiment is about to be started. Therefore, whenever some

modification takes place in the cluster (e.g., some node is removed or new ones are added), this file

have to be updated to reflect the modification.

1Throughout this thesis, in figures that represent architectural aspects of AEF, and unless otherwise specified,
boxes denote hardware or software components of the system and arrows denote directed interaction between com-
ponents. In some cases, arrow’s label details the nature of interaction.
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Figure 4.1 – Automated Emulation Framework architecture.

The second actor in AEF is the tester. This actor is responsible for executing experiments in

AEF. Testers are the AEF users. They interact with the system through the two XML input files

described earlier. When a tester wants to run an experiment with a different distributed system,

such a new XML file, describing the new required system, is supplied to AEF. If the environment is

going to be kept, but a different experiment is executed, the experiment file is replaced.

In any case, the same language is used by both actors to describe the cluster, the distributed

system, and the experiment. The elements in DTD that are part of the environment description are

the following:

network. This element represents a collection of CPUs, what means the cluster hosting the experi-

ment in the cluster description file or each emulated site in the virtual environment description.

Each network is defined by a name, a network mask (required for network configuration pur-

poses), and a gateway. There are other definitions that are useful for definition of sites with

variable number of computer nodes: maximum number of CPUs in the site, minimum number

of CPUs, and relative number of hosts. These attributes are explained in the next chapter.

cpu. This element represents a computer—a node in the cluster or a VM in the emulated envi-
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Figure 4.2 – Document Type Definition (DTD) of AEF input.

ronment. It is defined by its name, power, amount of memory (in MB), operating system,

hardware address (MAC), and network address. The latter two parameters are used by AEF

only for description of the cluster. Both values are generated by AEF in the emulated envi-

ronment description. Other attributes are used for management purposes and are described

in the next chapter.

network_link. This element represents types of network connection between CPUs (e.g., Ethernet,
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WAN). They are defined by their name, bandwidth (in bits per second), and latency (in ms).

route. This element represents a connection between two CPUs. It is defined by the source and

destination of the connection. Because it is possible that two CPUs are connected by different

types of networks, a route is composed of one or more route elements, each one representing

one of such network connections between the CPUs. Other attributes are used for management

purposes and are described in the next chapter.

route_element. This element is associated to a route, to describe one specific type of network

connection between the elements that belong to the route. It is represented by a name, which

is a type of network link.

The described elements are used to determine the actual and emulated environment. The

input files, however, also contains elements that are used to describe the experiment—process and

argument. They are discussed in the next chapter, when AEF components responsible by controlling

and monitoring experiments are detailed.

An example of a virtual element description is given in Figure 4.3. The corresponding virtual

network is depicted in Figure 4.4. This example shows a simple system composed of two sites.

One site—called Site 1—contains four machines, whereas the second site—Site 2—contains three.

Internally, site nodes are connected by an Ethernet network. Both sites are connected by a WAN

network with 12ms of latency and 150kbps.

Information submitted by testers via XML files are processed by AEF. Next, AEF modules and

their functions are described.

Parser. This module processes the XML input files and generates an internal representation of the

correspondent objects (CPUS, links, and so on). Other AEF modules work with this internal

representation.

Mapper. This module uses both actual environment and emulated environment internal description

to create a map from emulated nodes, which are virtual machines, to cluster nodes (i.e.,

determines which cluster node will host each virtual machine) and also a map from virtual

links (i.e., links between virtual nodes) to paths in the physical network. Virtual links are

mapped to paths because VMs might be placed in nodes that are not directly connected. In

this case, the path corresponding to the virtual link passes through intermediate nodes until

reaching the destination node. Also, if VMs are mapped to the same cluster node, the link is

handled internally in it. In this case, the virtual link is not mapped to a physical path. This

mapping information is sent to other AEF modules to build the virtual environment.

Deployer. This module receives the mapping of VMs to cluster nodes from the Mapper and uses

this information to create the virtual machines with the specified configuration in the nodes

chosen by the Mapper.
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Figure 4.3 – Example of an environment description.
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Figure 4.4 – Virtual environment corresponding to the description given in Figure 4.3.

Table 4.1 – Summary of AEF modules and their function.
Name Task Interacts with

Parser Parses XML input files Mapper
Mapper Maps the virtual environment to

the physical one
Deployer, Network Manager, and
Experiment Manager

Deployer Installs the VMs in the cluster VMM (or VMM manager)
Network Manager Configures the virtual network Management agent in the VMM
Experiment Manager Installs, configures, and monitors

the virtual environment
Management agent in the VMM

Network Manager. This module receives mapping of virtual links to paths and sets the network

configuration, making it behave like the virtual network required by the tester.

Experiment Manager. After VMs deployment and network configuration, the emulated environ-

ment is ready to receive distributed systems experiments. Even though applications can be

manually triggered by testers, the Experiment Manager module does the same in an auto-

matically manner. It also manages the environment, making sure configurations required by

testers are kept during the whole experiment.

Table 4.1 summarizes AEF modules, their goals, and the element in the cluster they interact with,

whereas Figure 4.5 depicts this initial installation and configuration workflow, which encompasses

activities from the Mapper, Deployer, and Network Manager modules. Notice that AEF has been

designed to support one tester at a time. Thus, the whole cluster is available for a tester to scale

his or her experiment. Nevertheless, support of sharing of cluster resources is also possible. During

description of each module, we describe requirements for supporting sharing of cluster resources

among concurrent tests. Details on Mapper, Deployer, and Network Manager modules are provided

in the rest of this chapter. Operation of the Experiment Manager module is detailed in the next

chapter.

4.3 Mapper module

The Mapper module receives from the Parser a description of both the cluster and the system

to be emulated and defines where (maps) each virtual machine, representing each virtual node of

the experiment, runs in the experiment. The Mapper architecture is depicted in Figure 4.6.
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Figure 4.5 – AEF’s installation and configuration workflow.

Figure 4.6 – Mapper module.

Each emulation node corresponds to one virtual machine that is created in the cluster. The

number of virtual machines created is typically orders of magnitude greater than the number of

cluster nodes. Therefore, a bad mapping of virtual machines to cluster nodes may lead to frag-

mentation problems, when there is enough resource in the cluster to create more VMs, but the
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amount of resources required by a single virtual machine is not present in any host2. To avoid such

a fragmentation problem, and because the number of virtual machines to be mapped may be in the

order of thousands of VMs, the mapping must be performed automatically. Furthermore, because

AEF allows only one user at a time, the goal of the mapping is to perform the experiment as quick

as possible, to reduce the waiting time of other AEF users. This limitation of one tester at a time is

a design decision. Nonetheless, there is no technological limitation for sharing of cluster resources

among concurrent testers. If sharing is required, other mapping goal is preferred. For example, if

resources are going to be space-shared, a mapping that minimizes the number of hosts used by a

single tester is preferred because more hosts are available for other testers.

Another important aspect of the Mapper module concerns strategies for mapping VMs to hosts.

Different strategies can be applied for the mapping problem, and each one tends to behave differently

depending on the input parameters. Therefore, depending on the cluster infrastructure and the

virtual platform, one strategy may be more appropriate than others. Thus, the Mapper module has

to support not only inclusion of new mapping strategies, but also selection of available strategies.

The selected strategy is used by the Mapper’s Actor component, which uses the heuristic and the

environment description to define the mapping.

The mapping problem addressed by AEF’s Mapper module encompasses two activities. The first

one is mapping of VMs to hosts, balancing the load among hosts taking into account available host

resources and required VM resources. The second activity concerns mapping of virtual links between

VMs to physical paths in the physical cluster. In this mapping, it is also important to consider both

limitations in network resources availability, in this case the bandwidth of the physical links, and

limitation in the maximum acceptable latency in the emulated network.

One virtual link may correspond to zero or more physical links. Consider the situation where

there is a virtual link connecting two VMs that are mapped to the same host. In this case, the virtual

link is not mapped to any physical link, because this connection is handled internally by the VMM.

If a virtual link connects two VMs that are mapped to two hosts that have a physical connection

between them, the virtual link can be mapped to such a physical link. If the hosts that run the

VMs are not connected by a physical link, then the virtual link will correspond to a path connecting

the two hosts. These three cases are represented in Figure 4.7, where a virtual distributed system

containing two sites is mapped to a cluster with a SCI network [GUS92], which has a ring topology.

In this case, virtual links between VMs that are not mapped to adjacent nodes pass by the nodes

between those ones hosting the VMs.

Next, we formally define the mapping problem addressed by the Mapper module and present

heuristics to perform the mapping.

2In virtualization terminology, the physical machine that runs a VMM is called host. Because in AEF cluster
nodes run a VMM, we use both terms—host and cluster node—interchangeably throughout the rest of this thesis.
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Figure 4.7 – Example of a mapping of a virtual distributed system to a cluster with a ring topology.

4.3.1 Mapping problem definition

Formal definition of AEF’s mapping problem models both the cluster and the emulated network.

The cluster is modeled as a graph c= (C,Ec), where C is a set of n hosts and Ec = {(si,di)|si,di ∈

C} is the set of links between hosts.

Host capacity is defined by functions proc :C→R,mem :C→N, and stor :C→R that describe

the processing capacity, amount of memory, and storage capacity, respectively. The processing

capacity of a host may be described either in terms of a benchmark such as SPEC CPU3 or in

terms of relative performance among various hosts in the cluster. As an example of the latter case,

an arbitrary value may be assigned to a base machine, for example, the most powerful machine in

the heterogeneous cluster. So, suppose such a machine receive a value proc= 1000. Then, all the

machines with similar capacity receive the same value. Machines whose capacity are about half of

that receive cpu= 500 and so on. The same method may be used using any cluster machine as the

base machine, not only the most powerful one as in the previous example.

Link capacity is defined by functions bw :Ec→R and lat :Ec→R that describe link’s bandwidth

and latency. For all ci ∈ C, bw((ci, ci)) =∞ and lat((ci, ci)) = 0. It means that virtual machines

running in the same host have as much bandwidth as they require for communicating, and the

latency of this communication is null. This is a reasonable assumption considering that, because in

this case communication is handled by the VMM itself, it is quicker and with less contention than

in the case when communication goes through the physical network.

A virtual environment is represented by a graph v = (V,Ev), where V is a set of m VMs and

Ev = {(sj,dj)|sj ,dj ∈ V } is the set of links between VMs.

VM capacity is defined by functions vproc : V → R, vmem : V → N, and vstor : V → R that

3http://www.spec.org/cpu2006/
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describe the processing capacity, amount of memory, and storage capacity, respectively. The pro-

cessing demand of a VM g, proc(g), is described in terms of units of the expected performance of

the VM comparing to a base machine, disregarding the method used for assigning the values for

the hosts (i.e., by performance collected through benchmarks or by relative capacity). Therefore,

vproc is assigned by testers according to the capacity of some host chosen by the tester to be the

base machine, and VMs have fractions of the capacity of such a machine. For example, if the host

chosen as the base machine has proc= 2400 and tester wants to create VMs with a quarter of this

capacity, VMs will have vproc= 600.

The links’ capacities are defined by functions vbw :Ev→R and vlat :Ev→R that describe the

bandwidth and the latency respectively.

The mapping problem consists in finding, for each ci ∈ C a set Gi ⊆ V where:

1. Each host is mapped once and only once;

⋂

i

Gi = ∅ and
⋃

i

Gi = V (4.1)

2. The amount of memory available in the host is greater or equal than the amount of memory

required by each VM;

mem(ci)≥
∑

g∈Gi

vmem(g),∀ci ∈ C (4.2)

3. The amount of storage available in the host is greater or equal than the amount of storage

required by each VM.

stor(ci)≥
∑

g∈Gi

vstor(g),∀ci ∈ C (4.3)

In this formulation, CPU usage is the variable to be optimized, and not a constraint. This model

has been chosen because (i) in the current VMMs it is easier to control exact amount of memory and

storage than the amount of CPU; and (ii) CPU capacity is intrinsically harder to measure, define,

and account for utilization. Furthermore, by minimizing the use of CPUs by each host we expect

the execution time of the experiment decreases. This hypothesis is validated by the experiments

presented later in Chapter 7.

For the network mapping, the goal is to find, for each pair (sj ,dj) ∈ Ev, a sequence Pj =

((s1,d1),(s2,d2), ...,(sp,dp)),(si,di) ∈Ec where:

1. The origin s1 of the physical path is the host where the virtual machine sj is hosted;

2. The destination dp of the physical path is the host where the virtual machine dj is hosted;

3. The origin sk of a link in the physical path is the destination dk−1 of the previous link;

sk = dk−1,k = 2, ...p (4.4)
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4. There are no loops in the physical path;

sl 6= sm, l 6=m (4.5)

5. The latency of the virtual link is greater or equal than the sum of the latencies of all the

physical links in the physical path;

vlat((sj ,dj))≥
∑

(sk,dk)∈Pj

lat((sk,dk)),∀(sj ,dj) ∈Ev (4.6)

6. The bandwidth of a physical link is greater than the sum of the bandwidth of all virtual links

that passes through such a physical link.

bw((si,di))≥
∑

j

vbw((sj ,dj))× [(si,di) ∈ Pj ] (4.7)

where [] is the Iversonian bracket operator [KNU92], which returns 1 when the enclosed

condition is true and returns 0 otherwise.

Because in AEF the entire cluster is available for a single tester per time, it is desirable that the

execution of the experiment takes the minimum time possible. Moreover, it is undesirable that a

host has a high load, because it decreases the performance of the virtual machines running on it,

delaying the experiment. The objective function of the mapping tries to balance the utilization of

CPU on each host, considering that it can be applied in a heterogeneous environment, where hosts

may have different processing powers. Thus, instead of considering the amount of virtual machines

in each host as a load-balance metric, it is used the amount of CPU available on each host, after

the mapping, as the load-balance metric. The objective function aims at minimizing the standard

deviation of the residual CPU in each host:

minimize





√

∑n
i=1(rproc(ci)− rproc)2

n



 where (4.8)

rproc(ci) = proc(ci)−
∑

g∈Gi

vproc(g) (4.9)

(rproc) =

∑n
i=1 rproc(ci)

n
(4.10)

If sharing of cluster resources among testers is required, availability of resources of hosts and

links must be updated after every tester start its application, in order to take into account the use

of resources by the already running experiments. The rest of the mapping processing, as well as the

rest of the AEF installation, configuration, and execution proceed without modifications.
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Sundararaj et al. [SUN05] showed that the Generic Adaptation Problem in Virtual Execution

Environments (GAPVEE) is an NP-Hard problem. Because of similarities between GAPVEE and the

mapping problem solved by AEF, we decided to seek heuristics solutions for our problem instead of

exact solutions. This way, we are giving up obtaining the optimal mapping, but we are obtaining a

more timely solution for the problem. Next, we present heuristics we developed to solve the AEF’s

mapping problem.

4.3.2 Heuristics for solving the mapping problem

Four heuristics were proposed to solve AEF’s mapping problem. Even though there are two map-

ping problems (VMs and virtual links) to be solved simultaneously, the second problem is considered

only to avoid failure in the mapping caused by lack of network resources, because the function to

be optimized, load-balancing, relates to the first problem. The rationale behind this decision is that

the most optimized is the use of network, the biggest the chance that mapping succeeds.

In this direction, heuristics try to map VMs with higher communication to the same host, saving

physical network resources that would be consumed by high-bandwidth virtual links. To achieve

such a goal, a list containing the virtual links (Ev) is created by all the heuristics. Elements in this

list are sorted in descending order of bandwidth (ascending order of latency in case of draws). So,

the first elements from the list are the links with higher communication, and the hosts belonging to

these links are preferentially kept together.

Then, starting from the first element of the list, the unmapped VMs related to such a link are

chosen to be mapped. If none of the VMs was mapped, the heuristics try to map them to the same

host. The criterion to select the host varies on each heuristic. If VMs do not fit a single host, the

VM that requires more resources is mapped first. If the chosen host does not support the VM, the

next host, according to the heuristic criterion, is tested. If no host supports the VM, the mapping

fails.

If both VMs belonging to a link were already mapped, the link is removed from the list and the

process continues. If one of the VMs was already mapped, the other one is mapped in the same

host than the already mapped VM, if the host supports the new VM. Otherwise, the next host,

according to the heuristic criterion, is tested. If no host supports the VM, the mapping fails.

In all the heuristics, resources availability ra : C → R of a host ci is given by Equation 4.11,

while demand dem : V →R of a VM vj , when selecting the first one to be mapped, is measured as

a normalized sum of resources availability, as shown in Equation 4.12.

ra(ci) =
mem(ci)

2×maxci∈C(mem(ci))
+

stor(ci)

2×maxci∈C(stor(ci))
(4.11)

dem(vj) =
vmem(vj)

2×maxci∈C(mem(ci))
+

vstor(vj)

2×maxci∈C(stor(ci))
(4.12)

Proposed heuristics use different strategies to select the host to a given VM and different decisions
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on whether a load-balance strategy is used after the initial mapping or not. To select the host to be

assigned to a given VM, a list of preferential hosts is built. Elements of such a list are tested from

the beginning of the list until a host with enough resources to receive the VM is found. How this

list is built is different on each heuristic:

HMN. In this heuristic, the host list is built in descending order of CPU capacity (proc(ci)) and

descending order of resources availability (Equation 4.11) in case of tie. A migration step is

performed after the initial mapping to increase the system load-balance. Because the goal of

this algorithm is to improve the load balance, a version of this heuristic without migration is

not evaluated. This was the first heuristic to be developed in the context of this thesis. It

has been named after the three stages of its operation: Hosting (where original placement

of VMs to hosts is defined), Migration (where the original placement is modified in order to

increase load-balance), and Networking (where virtual links are mapped to physical paths).

LM. In this heuristic, host list is built in descending order of resources availability, according to

Equation 4.11 (descending order of proc(ci) in case of ties), what means a worst-fit approach.

It means that the preferred host to receive the VMs (or VM) is the least used one, i.e., the

host that has more free resources. In this heuristic, after the mapping of all VMs, a migration

stage takes place. This heuristic, and the following ones, were named after strategy for hosting

and whether migration is used or not (Least used host with Migration).

LN. (Least used host and No migration). In this heuristic, host list is built in descending order

of resources availability (Equation 4.11), similarly to the previous heuristic. However, no

migration takes place after the initial mapping.

MN. (Most used host and No migration). In this heuristic the host list is built in ascending order

of resources availability (ascending order of proc(ci) in case of ties), what means a best-fit

approach. In this heuristic, the preferred host to receive the VMs (or VM) is the one that

has less availability of resources. The rationale is using the same hosts as much as possible.

Also, no migration happens after the initial mapping. Even though it leads to an imbalance

regarding the objective function, the hypothesis is that it could enable finding of valid mappings

when the amount of resources required by the virtual system is close to the physical resources

availability. Considering that the rationale behind this heuristic is reducing the number of used

hosts, and that application of migration would increase the number of used hosts, a version

of this heuristic with migration is not evaluated.

If a heuristic applies a load-balance strategy, it consists of a migration stage whose goal is to

enforce the load-balance among all hosts. In each iteration step, the most loaded host is selected

as the origin of the migration. The VM chosen to be migrated is the one with the smallest sum

of bandwidth of links to other VMs in the same host, in order to minimize utilization of physical

links. Then, starting from the least-loaded host, the objective function value (Equation 4.8) of the
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Table 4.2 – Heuristics for mapping VMs to hosts.
name hosts list sorted in... load-balance

migration in
use?

bandwidth reser-
vation algorithm

LM descending order of ca-
pacity

yes A*Prune

LN descending order of ca-
pacity

no A*Prune

MN ascending order of ca-
pacity

no A*Prune

HMN descending order of
CPU power

yes A*Prune

environment if the migration had happened is calculated. If this value is smaller than the current

objective function value, and the chosen VM fits in the new host, the reassignment is performed.

Otherwise, the next least loaded host is considered. The process is repeated until a reassignment

happen or all the hosts are tested. The whole process is repeated while the objective function

improves.

After selection of hosts to each VM and eventual migration to load-balancing the hosts, it is

necessary to map the links of the required virtual environment. Because several links have to be

mapped, it is desirable that, after mapping each link, the bottleneck bandwidth, i.e., the smallest

residual bandwidth among all the physical links, is as big as possible, to keep the possibility of

mapping more virtual links over the physical links. One step towards this direction is achieved

during the mapping of VMs, by mapping the ones with high communication demand in the same

host. The other step towards this direction is achieved with the choice of a suitable strategy for

mapping the links.

The strategy is the following: if the VMs are mapped to the same host, no further action is

required; otherwise, the chosen strategy is the modified A*Prune [LIU01] algorithm presented in

Algorithm 1. A*Prune is an algorithm used to QoS routing in networks subject to technical con-

straints. In our heuristics, A*Prune has been modified to select the path with the biggest bottleneck

bandwidth [SUN05]. The distance metric for pruning inadmissible paths is the accumulated latency

in the path with the smallest latency, calculated with Dĳkstra’s algorithm, between a given host and

the link destination. During the pruning process, links whose available bandwidth is smaller than

the required bandwidth are also pruned. Table 4.2 summarizes the four heuristics.

If in a given moment a path for a virtual link cannot be found, the heuristic fails and the tester

is notified about the event. If the mapping succeeds, the Deployer and Network Manager modules

use this information about placements of nodes and links to install the VMs in the chosen hosts and

to configure the network routes of the VMs, respectively. This process is detailed next.
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Algorithm 1: Modified 1-constrained A*Prune.
Data: origin, destination, bandwidth, latency
Result: a path from origin to destination respecting bandwidth and latency constraints
for ci ∈ C do

ar[ci] ← latency of shortest path from ci to destination, obtained with Dĳkstra’s
algorithm;
set ← (origin,∞) (set of feasible paths and their bottleneck bandwidths);
while set 6= ∅ do

bestPath ← path with the greatest bottleneck bandwidth, removed from set;
bbw ← bottleneck bandwidth of bestPath;
d ← last element of bestPath;
if d=destination then

return bestPath;
end
for all hosts h connected to d do

if h 6∈ bestPath then
if bw((d,h))≥ bandwidth and lat((d,h))+ar[h]≤ latency then
set← set∪ (bestPath∪h,min(bw((d,h)), bbw));

end
end

end
end

end

4.4 Deployer module

After the mapping of VMs to hosts, it is necessary to start the virtual machines in the selected

hosts. This task is carried out by the AEF’s Deployer module (Figure 4.8). It receives the abstract

representation of the virtual environment generated by the Mapper module and uses this information

to trigger the process of creation of VMs, with the configuration specified by the user, in the hosts.

To make this module as independent as possible from specific deployment tools, and at same time

to allow selection of the deployment tools to be used, the Deployer is composed of two components:

the Converter and the Actor. The first one is part of AEF and translates the internal representation

of the distributed system, received from the Mapper, to the language of the specific Actor in use.

The internal representation contains the machine specifications: name, amount of memory, relative

amount of CPU, disk image to be loaded, and MAC address (required to allow IP configuration

though a virtual DHCP server that is part of the services offered by the Network Manager module,

as explained in the next section).

The Actor is the component that actually performs the deployment operations, starting the VMs

in the hosts. It can be either an AEF module or a script invoked by the Converter to perform the

deployment.

Because there are several tools available for efficient deployment of virtualized environment, it

may be desirable to use such tools instead of using some solution built in AEF. In this case, the
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Figure 4.8 – Deployer module.

Actor is a script that invokes tools to perform the deployment and the Converter has to generate

all the configuration files required by the tool that is actually performing the deployment.

In either case, for the deployment stage to succeed, it is necessary initialization of virtual machine

images in the hosts. If these images are not stored in the hosts, it is necessary the transfer of VM

images from the place where they are stored in the cluster, to the host assigned to the VM. These

images contain a customized pre-configured operating system able to host the tester’s application.

Because each processing element may have a specific function in the experiment (e.g., for a grid

emulation there are worker nodes, user machine nodes, and middleware nodes), the software and

VM requirements of each component may be different. So, different virtual machine images may be

used in a single experiment.

To transfer VM images to the hosts, methods such as unicast, multicast, and BitTorrent can be

used. Although an external tool may handle this task automatically, if the Actor is an AEF module

than the module itself have to implement the image transferring. Also, images can be kept in the

local disks of cluster nodes for future utilization, reducing the deployment time in the next execution

of the experiment. Further reduction in the deployment time may be achieved by techniques such

as copy-on-write and virtual storage volumes.

When images transfer is completed and the VM images are available in the designed hosts, the

Deployer has to initialize VMs in the hosts. This task is performed by the Actor, either through the

VMM management API (if some is available) or through remote connection with the host (e.g., rsh

or ssh). The advantage of using the VMM management API is that it is accessible via Web services

or other high-level approaches, even though it may vary among releases of the VMM, what requires

an update in the Actor if a new version of VMM is installed in the cluster. Initialization of VMs

is made in such a way that, at the end of the process, VMs have the amount of resources defined

by the tester. After initialization of VMs to the assigned hosts, the Deployer module completed its
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tasks. The next stage in the process of building and configuration of the emulated environment is

configuration of the network, which is performed by the Network Manager module and detailed in

the next chapter.

Notice that it is the possibility of replacing either the Converter or the Actor that makes AEF

independent of a specific virtualization technology: any VMMs can be used in AEF if there are

compatible deployment tools to be triggered by the Actor. Other AEF modules do not handle directly

virtual machines, and thus they are unaware of the specific virtualization technology executing in

the cluster nodes.

Sharing of cluster resources among testers does not affect the Deployer module: because it just

performs operations determined by the Mapper in the system (creation of VMs in the specified

hosts), operation of the Deployer module is independent of decisions regarding resource sharing.

4.5 Network Manager module

After the deployment of the virtual environment, the next step in the process of building and

configuration of the emulated environment is the configuration of the network. The AEF module

responsible for it is the Network Manager module. It has two functions. The first one is to provide

virtual links with network behavior. To provide such a behavior, the module isolates VMs that

virtually belong to different networks, and allows direct communication between machines that

virtually belong to the same site. Furthermore, virtual links that represent WAN connections are set

with the latency and bandwidth specified by the tester.

The second function of this module is to offer virtual services to the virtual environment. These

services are confined DHCP and DNS servers that run as threads of the emulator and thus avoid the

need of real DHCP and DNS servers to serve virtual nodes. Thus, every time virtual nodes want to

obtain their IP addresses, or want to make a DNS request, the corresponding network packets are

captured in the VMM and forwarded to the virtual services running with AEF. These virtual servers

answer the request according to emulation parameters (i.e., the IP assigned by the VM according

to its virtual network).

The Network Manager architecture is presented in Figure 4.9. It has a Converter component

whose task is to interpret the environment description received from the Mapper and to generate

the set of configuration tasks that have to be executed to generate the virtual environment. These

configuration instructions are converted to management protocol-specific instructions by the Con-

verter. Then, they are forwarded from the management Manager inside the module to management

agents in the VMM on each node. Communication between Manager and agents happen according

to the management protocol in use, and so AEF does not have to handle it directly.

Support to different virtual machine monitors is provided with implementation of a management

agent that implements network configuration operations applied by AEF to the target VMM, making

possible isolation of machines and setting up of network links parameters.

Regarding enabling resource sharing among testers, the only modification required in the Network
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Figure 4.9 – Network Manager module.

Manager module is creation of new virtual services threads to other testers, so possible conflicts in

names of emulated servers are avoided. Other operations (configuration of links and networks) of

this module are determined by the Mapper, so only the latter have to be aware of resource sharing.

4.6 Chapter remarks

Emulation is a technique for computer science experimentation that is suitable for evaluation of

distributed system software. In emulation, actual software is executed in a model of a distributed

system. Building of such a model in such a way that some requirements are met can be made easier

with application of virtualization technologies.

In this chapter, we described the requirements we sought to meet when developing a distributed

system emulator. This emulator—called Automated Emulation Framework (AEF)—builds and con-

figures an emulated distributed system in a cluster of workstations in an automated manner.

To achieve such a goal, three activities have to be accomplished. The first one is the mapping

of virtual machines to hosts and virtual links to physical paths in the cluster. The problem related

to this step was formally defined. Furthermore, four heuristics were proposed to solve the problem.

The second activity is deployment of virtual machines in the cluster. These virtual machines,

which have a 1:1 relation with emulated computing nodes, have to be created in the hosts assigned

to them and have to be set according to tester definitions.

Finally, network has to be configured, in order to enable isolation among machines that virtually

belong to different networks, WAN behavior in specific links, and virtual DNS and DHCP services.

It is achieved with the use of a management protocol.

Three AEF modules perform these tasks: Mapper, Deployer, and Network Manager, respectively.

After execution of these three steps, a cluster of workstations is hosting an emulated distributed

system. From this point, the system is ready to receive an emulation experiment. Execution of the
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experiment may be manually triggered by testers. However, because the goal of AEF is to enable

automated installation and execution of the experiment, there is an AEF module, the Experiment

Manager module, which is responsible for automating the experiment execution and management

process. This module is discussed in the next chapter.
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5. MANAGEMENT AND RECONFIGURATION OF EMULATION

EXPERIMENTS

In the last chapter, designing goals of AEF and the activities related to building and configuration

of the emulated environment were discussed. These activities—mapping, deployment, and network

configuration—are carried out by three AEF modules, Mapper, Deployer, and Network Manager.

In the end of the building and configuration process, the cluster is hosting a set of virtual

machines, which may have different configuration and different operating systems, organized in one

or more virtual networks. Furthermore, connections between virtual networks have a specific latency

and bandwidth.

This virtual environment supports tester application that is part of the emulation experiment.

However, it is necessary some mechanism to start applications in the specified machines. Depend-

ing on the way applications are configured, they start to run when virtual machines are initiated.

Alternatively, testers have to access each machine and trigger applications. Because an experiment

may require initialization of applications in hundreds of virtual machines, it is unpractical doing it

manually, and so an automated mechanism for initialization of applications is required.

Another concern is about enforcing of configuration parameters. Because the emulated environ-

ment may contain hundreds or thousands of virtual machines and virtual network connections, it is

possible that some misconfiguration situation arises. Then, it is necessary a mechanism to detect

such a problem and to react in order to fix it.

Finally, another possible scenario is one where a tester wants to explore the resources as much

as possible, but he or she may be unsure on the requirements of the application. So, if it is detected

that usage of resources on each virtual machine is low, resources used by each VM may be reduced,

number of virtual machine may be increased, and the experiment may proceed in a higher scale.

Conversely, if it is detected that resources allocated to VMs are not enough to a proper execution

of the application, amount of resources may be increased and the number of VMs decreased, to fit

the bigger VMs in the cluster. Once again, automated mechanisms to provide monitoring of use

of resources, to detect utilization rate and reconfigure the experiment if usage is not according to

tester requirements are useful because of the scale experiments achieve.

Mechanisms to support each scenario are provided by AEF’s Experiment Manager module. In

this chapter, this module is detailed. Initially, a general overview of the module is provided. Then,

each component of the module is detailed.

5.1 Experiment Manager module: general overview

The Experiment Manager module is the AEF module responsible for all the aspects of the

emulation experiment after the initial configuration and installation process. As already stated, it

encompasses three main activities:
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Application execution management. The Experiment Manager module configures and monitors

application execution. It starts the applications in the VMs specified by the tester with the

required parameters. Furthermore, the module copies files generated by the experiments to a

repository where testers can access them. Similarly, files required by the experiment that are

not stored in the virtual machines are transferred from the AEF repository to the destination

virtual machines.

Environment monitoring. The Experiment Manager module enforces configuration required by

testers. Thus, it periodically monitors usage of resources by VMs and network links, in order

to make sure the required behavior is kept. Violations of configuration are fixed as soon as

detected. Furthermore, these violations are logged and presented to testers at the end of

experiment.

Experiment reconfiguration. The Experiment Manager module dynamically reconfigures the ex-

periment, scaling the system or resources up or down in order to make experiment compliant

with experiment parameters.

The latter activity arises from a situation where testers are not sure about resources requirements

of applications. Because the amount of physical resources is fixed, number of virtual machines

that can be created in the environment depends on their resources requirements. So, if testers

overestimate the requirements of the application, virtual machines will have more resources than

what they actually need, and the experiment will have less VMs than the actual limit for the

experiment. Conversely, if testers underestimate requirements of applications, the lack of resources

for applications may compromise experiment results.

Because tester may be unsure of the exact requirements of a platform for his or her application,

AEF allows a partial description of the environment. With this strategy, an initial amount of resources

is allocated to each VM. Then, depending on the amount of resources actually used by applications,

the system is reconfigured, in order to scale the environment according to resources usage. It is

feasible because of the monitoring capabilities of the Execution Manager module.

Uncertainty about the requirements of a virtual machine is represented through a partial descrip-

tion of the experiment. In the partial description, the tester specifies, for each site, the minimum

and the maximum number of machines that are allowed to be deployed. Testers are also able to

specify the amount of resources from a site in relation to another site. Then, it is possible, for

example, to say that a given site will have twice the amount of resources of another one. In either

case, an initial guess of the number of machines in each site must be supplied by the tester. This

initial guess is used in the first deployment of the system.

Other input from the user are limits in resource usage by VMs and network accepted in the

experiment. For example, the tester can specify that use of CPU by virtual machines must stay

below 90%. When this limit is achieved, AEF tries to reconfigure the system in order to reduce rate of

CPU usage, for example by increasing the amount of CPU of the VM. Because some reconfiguration



81

actions may require changing the number of virtual machines in the environment, AEF has to decide

which networks will lose or get more VMs. Definition of priorities when changing number of site

resources is also done through the input description file.

All these features are described in the input file. Figure 5.1, which is a reproduction of Figure

4.2 presented in last chapter, contains description of elements and attributes relevant to partial

description of experiments and execution of applications. They are highlighted in the figure and are

the following:

network. In this element, tester includes the minimum and maximum number of CPUs that can be

created in the site (min_elements and max_elements attributes, respectively). The initial

number of elements for the site is also supplied by testers (elements attribute). If the number

of elements is defined in relation to other site, then only the elements attribute is used, with

an expression describing the number of elements. For example, to say that a site called site1

has twice the number of machines of a site site2, the attribute elements of site1 has the

value 2*site2.

cpu. In this element, tester may specify thresholds for utilization of CPU and memory. These values

may be set both to hosts and VMs. Thresholds vary between 0.0 and 1.0, and they can relate

to maximum or minimum percentage of used resources allowed to each element.

route. In this element, it is possible to specify thresholds for utilization of bandwidth.

process. This element represents an application to be executed in a virtual machine. It can have

parameters that are part from the command line related to execution of the application. Other

relevant attributes of this element are the host where the application runs, command to be

executed, input and output data to be copied from and to the AEF repository, time to start

and stop execution of application, and command to stop application (if any).

argument. This element represents one string that is part of a parameter of an application.

These elements and attributes are also parsed by the Parser module and sent to the Mapper. The

latter only forwards these information together with the mapping information, so the Experiment

Manager can keep track of the position of VMs in the cluster and of virtual links in the cluster

network, which is necessary for management purposes. Communication also happens in the opposite

direction—from the Experiment Manager to the Mapper—when it is detected violations in use of

resources that lead to system reconfiguration, in which case the latter process is activated.

Each of the relevant actions taken by the Experiment Manager—virtual environment manage-

ment, system monitoring, and reconfiguration—is performed by a specific component of the module.

These components and their function are the following:

Virtual Environment Manager. This component from AEF’s Experiment Manager interacts with

actual elements, virtual elements, and applications, in order to obtain information about
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Figure 5.1 – Document Type Definition (DTD) of AEF input. Lines in bold represent elements
relevant for management and reconfiguration of experiments.
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Figure 5.2 – Experiment Manager module components (boxes). Also, it is shown the role of each
component in the reconfiguration process. Arrows show flow of information between components.
Arrow labels show the order on which interactions take place and the nature of information ex-
changed.

resources usage and also to allow changing in configurable parameters and control over the

experiments being executed.

Monitor. This component monitors the environment, receiving information about state of emulation

elements and verifying and enforcing that states are compliant with tester requests. It also

generates logs about resources utilization, which may be accessed by testers.

Rebuilder. This component generates new virtual environments whenever usage of resources is

outside the intervals defined by testers. It interacts with the Mapper to verify if the proposed

new configuration is valid, and try new configurations either if the proposed one cannot be

mapped or if the new configuration does not meet tester requirements on usage of resources.

These components and their relation to the reconfiguration cycle are presented in Figure 5.2 and

are detailed in the rest of this chapter.

5.2 Virtual Environment Manager

The Virtual Environment Manager is the component from the Experiment Manager that acts

directly on both the physical and virtual environments. This component supplies Monitor with

services and controls the life cycle of virtual machines, i.e., activities related to creation, pause,

resume, configuration, and destruction of virtual machines. Moreover, it provides services to control

applications executing inside the virtual machines—start and stop of applications, transfer of input

files, and output retrieval.

Similarly to the Network Manager, this component uses a management protocol to perform its

operations in the emulation elements it controls. So, this component runs distributively through the

cluster running AEF: a part runs in the cluster frontend, and interacts with other AEF modules to

receive requests for management operations, while other part runs on each managed component,
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Figure 5.3 – Virtual Environment Manager.

which may be virtual machines or cluster nodes, in order to control both configuration of the ele-

ments and applications. Communication between these parts is performed through the management

protocol in use.

Figure 5.3 presents the architecture of the Virtual Environment Manager component. It has two

parts:

Services Manager. This part runs in the cluster frontend, together with other Experiment Manager

components and AEF modules. Services Manager receives requests for management operations

to be performed in physical machines, emulated machines, and applications and activates the

process for execution of the operation. To execute the required management operation,

the Nodes Manager able to perform the task is contacted by an agent of the management

protocol that is part of this component. The contacted managers, on the other hand, are part

of the Nodes Manager component. When the requested operation encompasses returning a

response (e.g., current utilization of CPU by a VM), Service Manager also returns the required

information to the requester.

Nodes Manager. One instance of this component runs on virtual machine manager of each cluster

node. It is composed of a manager of a management protocol. It reacts to requests for

management operations, contacting the managed elements to perform the required operations.

Because some operations, like control of applications, require interaction with virtual machines,

a component from the management may be required inside the VMs to perform operations such
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as trigger of an application, interruption of the application or transfer of files. Decision regarding

whether the managers are required inside the VMs or not depends not only on the exact management

technology in use but also on specific implementation of the virtualization technology used. If

managers are inside VMs, then an Agent from the management protocol may also be required in

the Node Manager.

While modification of VM attributes (e.g., changing the amount of memory of a VM) is performed

by the manager in the VMM, other operations in the VM, such as monitoring of resources usage,

may, depending on the VMM and management technology in use, be performed by a manager

inside the VM. Managers of applications running in VMs can be either specific providers for specific

applications or general application providers that receive some string representing the command to

be executed and execute the command in the VM.

Support to different VMMs in this module is obtained with implementation of managers and

agents to the specific VMM. Furthermore, applications may require their own managers in order to

allow their management. Support for sharing of resources among testers does not affect this module,

because it just reacts to requests from other modules. So, operation of the Virtual Environment

Manager is the same if resources are shared or exclusively allocated to a tester.

5.3 Monitor

The Monitor is the part of the Experiment Manager that is responsible for accounting and

monitoring of usage of resources in both physical and virtual environments.

Accounting is performed in order to allow testers to know amount of resources required by their

experiments or applications. Resources used by virtual machines, physical machines, and network

are stored in a log in AEF repository. This log file can be retrieved by testers after experiment

execution.

Monitoring is performed in order to ensure that resources usage respects the limits defined by

the tester during experiment configuration. This operation is performed in virtual machines, physical

machines, and network.

Monitor architecture is presented in Figure 5.4. Because both virtual and physical elements can

be managed, there are specific parts to handle each type of resource. Furthermore, manipulation

of the data, in order to log it or activate reconfiguration procedures, is carried out by the Data

Handling service.

Definition of minimum and maximum fraction of resources that are allowed to be used in physical

and virtual components of the experiment is recorded in the experiment description file supplied by

testers. The Monitor works in order to ensure these limits are respected. In the event of violations

in usage of resources by the experiment, this component generates an alarm and forwards it to the

Rebuilder, which tries to change configuration of virtual machines and virtual network in order to

avoid further violations in usage of resources.

Alarms are caused both by events related to physical components of the infrastructure and by
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Figure 5.4 – Monitor.

Table 5.1 – Events managed by the Monitor and their IDs.
ID Event Location

1 CPU under utilization VMs and hosts
2 CPU over utilization VMs and hosts
4 Memory under utilization VMs and hosts
8 Memory over utilization VMs and hosts
16 Bandwidth under utilization physical and virtual links
32 Bandwidth over utilization physical and virtual links
64 Component not responding VMs and hosts
1024 End of the experiment experiment

events related to virtual components of the infrastructure. Furthermore, events are cause either be-

cause resources are underutilized or over utilized. Moreover, more than one event may be associated

to a single component of the experiment at a time.

To allow Rebuilder to handle properly these different cases that generate alarms, a unique number

that is a power of two is assigned for each different condition that triggers an alarm. The use of

powers of two facilitates the identification of combined events by the Rebuilder component. These

combined events are identified as the sum of the number assigned to each related event. Table 5.1

lists the events monitored by the Monitor and their identification. So, for example, the ID associated

to an event of use of bandwidth above the specified by the tester is 32, while the ID associated

to an event when it is detected that both the memory and CPU of a virtual machine is above the

specified is 10. Notice the presence of a special event, End of the experiment, with ID 1024, which

is used to indicate that the experiment is over and so the cluster has to be cleaned for the next

tester: VMs have to be destroyed, output files have to be send to repository, and virtual services

have to be stopped.

The other information relevant for rebuilding of environments is the location where the violations

occur. It is possible that more than one element is facing the same type of violation of resources

usage. In this case, the message that is built and sent to the Rebuilder is the list of all the elements

that have the same type of violation.

Because different elements may have different thresholds for resources usage, and because some

attributes may be not monitored, the Monitor keeps a list of experiment elements and their managed

attributes. Two methods can be applied for monitoring. The first method is polling. In this
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method, in a specific time interval, the list of monitored elements and attributes is queried and the

corresponding values are checked in other to verify if it is inside the limits defined by testers.

In the second method, mechanisms for alarms may be configured. In this case, the mechanism

for alarms (such as the traps from SNMP or events from WBEM) is used to return a message every

time limits are violated. The specific method to be used depends on services offered by the Virtual

Environment Manager, because this is the component that actually accesses VMs and hosts.

After all the relevant information is obtained, elements that caused similar alarms are grouped

together to generate a single alarm related to that specific violation. Subsequently, each alarm

generated, together with the elements that caused them, is passed to the Rebuilder component to

take some action in order to fix the violation.

Use of different virtualization technologies or different management protocols does not affect the

Monitor, because it does not handle directly the elements. Instead, all the management operations

requested by this component are processed by the Virtual Environment Manager. Regarding support

for sharing of resources among testers, it also does not require modification in this component.

5.4 Rebuilder

The Rebuilder component is responsible for reconfiguring the environment in the event of vi-

olation in resources utilization. This component determines the characteristics of the new virtual

environment and verifies if such a new virtual environment can be mapped to the real environment.

To handle these tasks, Rebuilder receives the alarms from the Monitor, and, considering the

specific alarm, defines the action to be taken.

Alarms are caused both by resources under utilization and by resources over utilization. If the

monitored resource belongs to hosts, fixing the violation may require modification in the number of

virtual machines in the host. In the case of resources belonging to virtual machines, actions may

require modification in the amount of resources allocated to the VM. Nevertheless, there may have

exceptions: consider, for example, if the Monitor detects that the amount of CPU used by two VMs

is below the threshold. At the same time, Monitor detects that the bandwidth usage of the virtual

link between these VMs is overloaded. In this case, both violations may be fixed with a single action:

by increasing the bandwidth of the link, more communication between the VMs may flow, and it

may result in more work to the applications in the VM, what leads to increase in utilization of CPU

in the hosts.

If actions require more VMs to be assigned to a host, or if they require resources in the VMs

to be increased, the number of virtual machines in the environment may change. In this case, the

Rebuilder has to decide which site VMs are inserted, or removed from. The order in which the sites

are listed in the configuration file determines the preference for receiving more machines: first, they

are created in the first site, then in sites whose number of VMs depends on the previous site. For

removal of VMs, the inverse order is considered, and the Rebuilder starts from the last site described,

then from sites that have a relative amount of VMs. In any case, Rebuilder ensures that minimum
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Figure 5.5 – Events and actions list, handled by the Rebuilder.

and maximum number of VMs in sites are respected.

The set of actions Rebuilder chooses from in response to an alarm are either simple actions,

caused by single alarms, or complex actions, caused by the activation of more than one alarm. This

information is received from the Monitor as an event number. For each event number, there is a

list of actions to be taken, as depicted in Figure 5.5. These actions are composed of operations

under the virtual environment: creation and/or destruction of virtual machines, changing in the VM

parameters, or changing in the virtual network parameters. Actions are considered in the order they

appear in the list.

The first elements of action list related to the event are selected to be applied in the emulated

environment. The Rebuilder determines the new configuration—number of VMs in each site, amount

of resources in these VMs, and characteristics from the emulated network.

The new virtual environment configuration is sent to the Mapper to try to map the new environ-

ment in the cluster. If the requested environment cannot be mapped to the cluster, the Rebuilder

selects the next action from the list and the process is repeated.

When the new mapping is found, execution of the experiment is suspended and the whole building

and configuration cycle (described in Chapter 4) is executed and the experiment is started in the

new emulated distributed system.

If the action does not solve the problem, the next action from the list is applied. To avoid

instabilities in this case, i.e., that after a change from a configuration A, which causes over utilization

of resources, to a configuration B, which causes under utilization of resources, the system go back

to configuration A, the Rebuilder contains a mechanism that removes contradictory actions (i.e.,

actions that perform the reverse of the applied action) from the actions list of the new configuration.

It works by linking such contradictory actions in a list, even if they belong to different events. Thus,

when an action is chosen to be executed and its mapping succeeds, all the actions that are linked

by such a list are also removed from the action lists. Therefore, when the system goes to the next

configuration, the actions that could bring the system back to the previous state are not part of the

actions to be taken in case of violations in the new configuration, and loops can be avoided.
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If the actions list is exhausted and either the problem cannot be resolved or the proposed new

environment cannot be mapped, the experiment runs with the last configuration found and a report

describing the violations during experiment execution is generated to the tester together with the

regular experiment output.

The Rebuilder is independent from virtualization technology and management protocol, because

it only interacts with other the Mapper and the Monitor. Furthermore, because the mapping is

performed by the Mapper, presence or absence of cluster sharing among testers does not affect the

Rebuilder.

5.5 Chapter remarks

In this chapter, we presented the Experiment Manager module from AEF, which supports auto-

mated execution of experiments and monitoring of resources in emulated experiments. It is composed

of three components—Virtual Environment Manager, Monitor, and Rebuilder—that together allow

monitoring of use of resources by virtual and actual elements, execution of applications, detection

and correction of misconfiguration, and logging of events found in the experiment.

The information required as input by the Experiment Manager to perform these tasks, despite

environment and experiment description, is the interval of values (maximum and minimum values)

in which the utilization of resources (e.g., memory, bandwidth) is acceptable in the experiment.

With this information, the Monitor Module builds lists to determine which services from the Virtual

Environment Manager Module have to be accessed and periodically access them to verify system

behavior.

Thus, at a regular time interval defined by the tester, each service from the list is invoked. The

value received in response is analyzed to verify whether it is within the interval specified by the tester

or not. If not, a new alarm is generated, and the element in the system that caused the alarm is

associated to it.

After all the relevant information is obtained, elements that caused similar alarms are grouped

together to generate a single alarm related to that specific violation (e.g., CPU over utilization).

Subsequently, each alarm generated is passed to the Rebuilder Module.

Rebuilder receives all the alarms and queries its internal tables to look for the actions related to

the specific alarm. A new virtual environment, which contains the modifications proposed by the

action, is built and forwarded to the Mapper.

If a new mapping for a given environment is not found, the Rebuilder tries to apply another

action from the list. If the actions list is exhausted and either the problem cannot be resolved or

the proposed new environment cannot be mapped, the experiment runs with the last configuration

found and a report describing the violations during experiment execution is generated to the tester

together with the regular experiment output.

When the new mapping is found, services from the Virtual Environment Manager Module that

allow modification of VMs (destruction, migration or change of configuration, depending on the
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action) are invoked by the Rebuilder Module. These commands are translated in management

actions that actually change the environment. When the new environment is ready, the Rebuilder

invokes services related to applications triggering in the VMs and the experiment starts again.

When the experiment runs from the beginning until the end without violations in the usage of

resources, only the regular experiment output and the execution logs are generated. If no further

actions is required, the cluster is cleared (VMs are destroyed) by the Virtual Environment Manager,

virtual DHCP and DNS servers are stopped and the AEF becomes available to the next tester.

So far, AEF has been discussed only in an abstract manner—no consideration has been made

regarding specific virtualization technology, management protocol, programming language, or virtu-

alization management tool to be used to develop AEF. In the next chapter, we describe a concrete

implementation of AEF, which is a prototype based in Java, Xen, SNMP and WBEM management

protocols. Results presented later in Chapter 7 are based in such a prototype.
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6. AEF REALIZATION

The last two chapters presented an architecture for building and configuration of an emulated

distributed system and automated execution and management of the system and applications running

on it. The architecture and concepts presented so far do not consider any specific technology for

system virtualization, system management, or virtualization support.

This chapter presents a prototype of AEF that was developed in order to show that concepts

and architecture presented in the previous chapters are feasible to be implemented. The prototype

implements a subset of the whole architecture presented so far. During description of implementation

details, it is explained which functionalities are present in the prototype and which functionalities

are not.

Furthermore, during description of each AEF module prototype we present relevant technologies

that were useful for its development. Validation of the prototype is discussed in the next chapter.

6.1 AEF prototype overview

The AEF prototype is developed in Java. Modules are developed in different packages, in such

a way they can be replaced in case a more suitable implementation for a specific task is found.

Interaction between modules happens through invocation of methods from a class that implements

a specific module. The virtual machine manager used is Xen [BAR03], which is an open source virtual

machine manager that supports different processor architectures and different operating systems.

The prototype does not support sharing of cluster resources among testers, which means that testers

have exclusive access to AEF cluster during the experiment.

Two management protocols are used: SNMP [STA99] and WBEM [HOB04]. The former is used

for management of networks during the initial configuration and installation of the system, whereas

the latter is used for management of the emulated system and application and also is an alternative

for deployment of virtual machines. Reasons for this decision are given in the corresponding sections

of the chapter.

Regarding techniques for deployment, network management, and experiment management, tools

were developed in the context of this work, but with broader application than distributed systems

emulation. They were presented elsewhere [ALE09,CAR09,STO08].

General activity from the prototype is depicted in Figure 6.1. Coordination of invocation of each

module happens in a main Java method that calls the Parser twice: the first time to parse the

cluster description and generate the internal representation of the environment; the second time to

parse the experiment description and store it using a proper data structure.

Output from the Parser is submitted to a Mapper. The mapping heuristic is chosen by instanti-

ation of the class that implements the selected heuristic. Mapper output is recorded in another data

structure, which is passed sequentially to each class that represents AEF modules. All the classes
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Figure 6.1 – General operation of AEF prototype.

return a value indicating failure in performing the operation. If it happens, it is communicated to

testers. Otherwise, each class performs the operation from the module it implements and returns

the control to the main method. Next, implementation of each module is detailed.

6.2 Mapper prototype

The Mapper is implemented as an abstract Java class. So, the Actor in Figure 4.6 corresponds

to the AbstractMapper from the prototype, whereas mapping heuristics are concrete classes that

extend AbstractMapper and implement the abstract method doMapping(). This method receives

parsed description of cluster and virtual environment, applies the mapping heuristic it implements,

and returns the mapping in an appropriate data structure. Then, the result is used by other modules

to actually perform the required actions in the system.

Internally, both cluster and the distributed system are represented by objects of PhysicalNetwork

class. This class contains two lists: one is the list of computing elements (that represent either

hosts or VMs). Computing elements (which are represented by the class Host) store description

of machines, including their capacities. The second list is the list of objects of type Route, which

contain, for each element, origin, destination, and the list of links that belong to such a route.

Mapping heuristics have to query these lists from both cluster and distributed system to have all
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the information required for the mapping process. Decision on which host receives a given machine

can be taken considering host capacities (which are obtained through get() methods associated

to each attribute), considering VM capacities, or considering link characteristics, which are also

obtained through appropriate get() methods. VMs are mapped to specific Hosts through the

invocation of method addGuest() called from the Host receiving the VM. Parameter of such a

function is the object representing the VM.

Similarly, routes are created with addRoute() method. It adds a new link in the list of links

that compose the route. Therefore, when the path the represents a virtual link is created, each

physical link is added to the route with the invocation of addRoute() method. One of such a

Route object exists in the output for each virtual link, and these routes are sent to the network

manager to configure the network.

As the mapping output, the new mapping class has to provide an object of type VirtualNetwork

as the return for the doMapping() call. This class extends PhysicalNetwork and contains, besides

network information described before, a hash table of String and Hosts objects. Hosts in such a table

are the cluster hosts, which received the VMs to be mapped through invocation of addGuest()

method during the mapping process. The list of hosts with the mapped guests is sent to the Deployer

to build the distributed system.

Both network and hosts information are forwarded to the Experiment Manager, so it knows

where VMs are running, information that is required for execution and control of experiments.

6.3 Deployer prototype

Different technologies for deployment are supported by the AEF’s prototype Deployer module.

The first one is a standalone deployer that does not require any specific virtualization support tool.

This simple Deployer requires that tester makes VM images available in AEF repository.

The Converter of this approach translates the output from the Mapper into a bash script that

makes deployment of Xen virtual machines. The bash script generates the files containing configura-

tion of each virtual machine. The script also copies the virtual machine images (via scp) from AEF

repository to the cluster hosts where they will run. To start the virtual machines, another script,

which acts as the Actor in the Deployer architecture, is executed by the Converter. This script logs

in (via ssh) in each node that run virtual machines and run Xen management commands on it to

start virtual machines.

Even though this solution does not require the use of any other tool for deployment of virtual

machines, it has some limitations. First, it requires copy of virtual machines from AEF repository

to nodes. These transfers are sequential, so, depending on the size of the image, it requires a

considerable amount of time to finish. The second limitation is that the script makes transfer and

execution of management commands to start virtual machines through a secure login. So, it is

required a user account in the cluster to perform these tasks.

The second approach for deployment requires the use of the XSM (Xen Site Manager) tool
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[FRA07] as the Actor. XSM is a tool for deployment and management of Xen virtual images in

Linux clusters. It applies widely-available Linux tools, such as SystemImager (for creation and

installation of Linux disk images), Ganglia (for monitoring), and the Xen management interface to

create and deploy the images in the cluster. Furthermore, a component called XSMd runs in each

cluster node to aid in the monitoring and further configuration of the system.

XSM operation has two main stages. In the first stage, a pre-configured image of the Xen VMM

is distributed to each node, installed, and executed. After this stage, each cluster node runs a VMM

that contains the XSMd and a description of the system. Such a description contains the virtual

machines in the cluster and location of each one in the cluster.

Further configuration requests are made with the dispatch of a new file with the new config-

uration. By comparing the previous configuration with the new one, XSMd decides the actions

to be taken: creation of VM—if the VM is listed in the file and in the previous configuration it

was not present—destruction of VM—if the VM is not listed in the file and it was in the previous

configuration—or VM migration—if the VM was listed in another host in the previous configuration,

or if VM is listed in another VM in the previous configuration. When the system is initialized there

is no previous configuration, so the configuration required is directly applied by each XSMd.

To use XSM as the Actor, Converter translates the output of the Mapper to a XSD system

description file, copies VM images to the VMM image, and triggers XSD. The drawback of this

approach is that it requires installation of the whole VMM image in the cluster, using unicast or

multicast, prior the experiment, what makes it slower than the previous method. However, this

method does not require either copy of VMs—because they are included in VMM image—or the use

of user accounts in the cluster, and is more tolerant to faults in the image transmissions, because

the underlying Linux tools used by XSM handle it automatically.

XSD (Xen Site Deployer), the third Actor supported by the Deployer, is an extension of XSM. It

makes transfer of VMM images quicker by the application of the BitTorrent P2P Protocol for im-

ages distribution. XSD does not use XSMd, so all the operations for deployment of the environment

is centralized in the cluster frontend. Similarly to the Converter used in the XSM approach, the

Converter used in this method also copies VM images to the VMM image, and triggers XSD. Never-

theless, this approach does not require a configuration file. Similarly to the XSM approach, images

of virtual machines are included in the VMM image, therefore when transferring and installation of

VMMs are finished, VM images are also available in the hosts. However, because distribution of

VMM images happens through BitTorrent, VM images distribution also benefits from this protocol

to be quickly spread to cluster nodes.

Finally, the fourth method supported for VM deployments is a WBEM-based deployer. In this

approach, the Converter translates the Mapper’s output to the Actor, via a Java API. The Actor acts

as a WBEM Manager, and forwards requests to WBEM Servers running in the VMM in each cluster

node. These WBEM servers are also used to support the Experiment Manager, as discussed later

in this chapter. So, this approach does not require a deployment tool, and uses the same software

required by other AEF modules. This approach requires distribution of VM images before VM
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Table 6.1 – Comparison among deployment methods supported by AEF prototype.
standalone XSM XSD WBEM

VMM image transfer required? no yes yes no
Methods for VMM image transfer — unicast, multicast BitTorrent —
VM transfer required? yes no no yes
User account required? yes no no no
Use of available tools? no yes yes no

creation. Nevertheless, it does not require transfer of VMM images before deployment or creation

of user accounts in the cluster.

A comparison among strategies is provided in Table 6.1. From the data presented in the table,

we conclude that the XSD-based Deployer is the most suitable method for VM deployment, because

it does not require copy of VM images in the nodes and does not require creation of accounts in

the cluster. Furthermore, it uses existent Linux tools to operate, and so important operations are

performed by dependable tools.

6.4 Network Manager prototype

The Network Manager module prototype is based in the architecture for management of networks

in virtualized clusters proposed by Storch [STO08]. The architecture is based in Linux, Xen, and

the SNMP management protocol.

Storch’s manager requires Linux because configuration of network links, to provide both isolation

among virtual sites and WAN behavior, uses standard Linux tools, such as iptables for route config-

uration and the tc tool for determination of links parameters—bandwidth and latency. Instructions

are passed to cluster nodes via SNMP, from SNMP managers in the cluster frontend to SNMP

agents in the VMM.

The manager has three levels, as depicted in Figure 6.2. In the first level, there are the input

files. This level is composed of two files, similarly to AEF. Nevertheless, these files contain only

information regarding network from the cluster and from the virtual clusters—which corresponds to

a description of a virtual distributed system. The information required are names, IPs, MACs, and

network elements. The latter corresponds to the cluster for physical machines or the virtual network

for VMs.

Information is processed by the second level of the architecture, which generates a list of

SNMP commands to each SNMP agent that composes the third level from the architecture. The

Management Information Base used for apply network configuration in the virtual elements is the

vMIB [ROD08], which is a VMM-independent information management base.

In our Xen-based AEF prototype, the Converter is responsible by translating the output from

Mapper module to the two input files required by Storch’s manager and by invoking the proper

Java API for activating configuration operations. In our prototype, Manager is replaced by Storch’s

manager, which is invoked through the Java API.
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Figure 6.2 – Storch’s virtual network management architecture [STO08].

SNMP agents are installed in Xen’s dom0, a special domain that has high privileges accessing

the system. Set up of bandwidth and latency is performed by the SNMP agents in the hosts’ VMM

with the execution of Linux network management tools—TBF for bandwidth control and NetEm

for latency control. Both are part of the Linux Traffic Control (tc) command for controlling network

traffic in the operating system kernel.

The SNMP protocol was chosen because it is a fast and simple system management protocol,

even though powerful enough to support the low-level configuration required by the module.

Regarding implementation of network services for virtual machines during the experiment in the

AEF prototype, virtual DHCP runs as a thread of the AEF in the cluster frontend. To access this

service, the corresponding DHCP requests leaving the virtual machines are forwarded to a TCP port

listened by the virtual service in the cluster frontend, through configuration of the network in the

host’s VMM. Virtual DNS is not implemented, therefore machines are accessed via IP address in the

prototype. Virtual DHCP is started before the deployment of the virtual machines. Forwarding of

packets from VMs to this service is achieved with configuration of VMM’s firewall through iptables.

This is also performed by the network module. The virtual DHCP uses the pairs MAC and IP of

each virtual machine, received from the Mapper, to create the tables later used to reply requests for

IP addresses.

6.5 Experiment Manager prototype

Operation of the Experiment Manager prototype and the whole cycle of managing and reconfig-

uration of experiments are based in the WBEM management specification. This protocol is used not

only to monitor both cluster nodes and virtual machines but also to control experiment execution

in the virtual machines. In this section, implementation details of the three components of the

Experiment Manager (Virtual Environment Manager, Monitor, and Rebuilder) are described. This

section also shows how automated management and reconfiguration of the emulated environment

is achieved.
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Figure 6.3 – Alexandre’s architecture for management of virtual machines [ALE09].

6.5.1 Virtual Environment Manager prototype

Virtual Environment Manager prototype uses WBEM management specification to implement

management of virtual elements, cluster nodes, and application. It is based in the architecture for

management of virtual machines proposed by Alexandre [ALE09] and depicted in Figure 6.3.

The architecture for management of virtual machines is implemented in Java and C++. It has an

API to receive instructions of operations to be performed in the managed elements and instructions

of querying elements states. Management of elements uses the OpenPegasus implementation of the

WBEM specification1. Because OpenPegasus is implemented in C++, most code of Alexandre’s

architecture is written in this language. Nevertheless, a Java API is available to allow integration of

the architecture with other tools written in Java.

As shown in Figure 6.3, the architecture uses a WBEM server and providers located in Xen’s

dom0. Providers control virtual elements and perform management operations through the Xen

management API. Management of applications in the virtual machines is performed by remote

providers located in the VM’s operating systems. Providers are threads that wait for services requests

from the server.

Services offered by the architecture are the following:

• Creation, destruction, pause, resume, and restart of virtual machines;

• Modification in the amount of memory allocated to a VM;

1http://www.openpegasus.org
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• Localization of a VM in the virtual infrastructure;

• Query of amount of memory, storage, and CPU used by a virtual machine;

• Query of amount of memory, and CPU allocated to a virtual machine;

• Query of amount of memory and CPU used by a host;

• Query of amount of storage available in a host;

• Execution of an application in a VM;

• Copy of files to and from VMs.

This architecture is incorporated to AEF by the development of a class that is able to invoke

the architecture’s API. Moreover, providers are installed in the VM images used in the experiment

and WBEM server and providers are also installed in Xen’s dom0 in cluster nodes. Therefore, when

virtual machines are created they have already the required providers that respond to management

requests from the server installed in dom0.

WBEM server is invoked by the architecture API. Nevertheless, other Experiment Manager

components do not access this API directly: to allow a replacement of the current architecture by

a new one in case of a better solution for monitoring of environment and application is available,

Monitor uses an AEF API that is translated to Alexandre architecture’s API.

6.5.2 Monitor prototype

Monitor prototype is based in the Architecture for Monitoring and Control of Virtual Environ-

ments proposed by Carmo [CAR09]. This architecture, depicted in Figure 6.4 aims at providing vir-

tual environments management based in the five functional areas of network management [STA99]—

FCAPS, for Failure, Configuration, Accounting, Performance, and Security management.

It is worth noting that the general architecture of the Monitor presented in the previous chapter

is a subset of Carmo’s architecture. Nevertheless, Carmo’s architecture was designed to support

management of general virtualized environments. Therefore, it contains some management functions

that are not used in the context of AEF.

The architecture was developed in Java, and therefore its integration with AEF was straightfor-

ward. In the application of Carmo’s architecture in the development of AEF prototype, both User

and Infrastructure Administrator presented in Figure 6.4 are replaced by an integration class that

translates Mapper’s output to management commands that is send to Carmo’s architecture API.

When the Experiment Manager receives Mapper output, it generates a series of commands that

are sent to Monitor in order to specify which elements have to be monitored and which range of

values are allowed for them. These actions are performed by the integration element that replaces

Infrastructure Administrator.
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Figure 6.4 – Carmo’s Architecture for Monitoring and Control of Virtual Environments [CAR09].

Communication between this architecture and the Virtual Environment Manager happens through

an interface API, which is implemented in the management interface that composes the bottom

layer of each management service from the architecture. Carmo’s architecture generates an output

that is independent from any management tool. These instructions are translated to Alexandre’s

architecture by an adapter running in the Communication Interface.

Management in this architecture happens via polling. So, periodically Monitor activates a routine

for elements monitoring and checks whether use of resources is according to tester specification.

Monitor checks amount of resources used by the element and the amount of available resources, in

order to calculate usage rate.

Alarms detected by the architecture are returned to the integration layer that replaces Infras-

tructure Administrator in Figure 6.4, which translates alarms to an AEF’s alarm and forwards it to

the Rebuilder.

6.5.3 Rebuilder prototype

Figure 6.5 depicts the organization of the Rebuilder prototype. It has two components: the core,

which implements the API which Monitor uses to inform problems with the system configuration,

and the Environment Designer, which is responsible for creating the new environment and passing

the new configuration to the Mapper.

This design was chosen because it enables replacement of the Environment Designer without

changing the other components of AEF. A different Environment Designer could apply different

policies for creation of the Actions list that is used to store reconfiguration instructions.

Whenever the core receives an alarm from the Monitor, it simply forwards it to the Environment

Designer through the invocation of a method from the latter. This method, processAlarm()
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Figure 6.5 – Rebuilder prototype.

receives as parameter the list of alarms received from the monitor. This alarm is a data structure

data contains the ID of the alarm (as defined in Table 5.1) and the elements where this event was

observed.

When the method processAlarm() is called, the Environment Designer queries the array of IDs

of alarms and gets the list of actions configured to handle that alarm. The set of actions present

on each alarm is a characteristic of the concrete implementation of the Environment Designer. In

our prototype, only under utilization of memory and CPU by VMs are handled. The list of actions

includes doubling the amount of the resource; doubling the amount of the resource and reducing

the number of VMs by 50%; and doubling the amount of the resource and reducing the number of

VMs by 70%.

When Environment Designer decides the new system configuration, it invokes the doMapping()

method of Mapper. If mapping fails, the method returns false and the next action from the list is

tried. If the mapping succeeds, procedures for reconfiguration are called, and the whole cycle of

deployment, network management, and experiment manager is repeated.

6.6 Chapter remarks

In this chapter, an actual implementation of AEF architecture presented in the last chapters was

presented. This prototype is based in consolidated technologies such as the Linux operating system,

Xen virtual machine monitor, SNMP management protocol, OpenPegasus WBEM specification

implementation, and Java and C++ programming languages. Furthermore, tools for management

of virtualized environments such as XSM/XSD and other tools developed in the context of this project

were also used to perform activities related to deployment, network management, and experiment

management.

Parts are put together with adapters developed in Java, in such a way that these connectors

or the connected parts act according to roles specified in the AEF architecture description. Even

though this prototype does not implement all the cases AEF is supposed to support, it implements

enough features to be possible to show that AEF architecture is feasible and therefore it is possible



101

application of virtualization and system management to automate distributed systems emulated

experiments.

In the next chapter, experiments aiming at demonstrating the last statement are presented and

discussed.
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7. EVALUATION

In order to validate design decisions presented in this thesis and to evaluate mapping heuristics

and AEF prototype, some experiments were performed. For each component under evaluation, we

intended to answer specific questions. These questions are the following:

Regarding mapping problem and its heuristic solutions:

Does the proposed objective function achieve its purpose? Goal of the mapping problem de-

scribed in Chapter 4 is to balance the load among hosts, making the amount of residual avail-

able CPU on each host as close as possible from the value found in other hosts. The rationale

behind this decision is accelerating execution of an experiment. Therefore, if load balance

does reduce execution time of an experiment, then the objective function reaches its goal and

it is suitable to be applied in AEF.

How each heuristic stage contributes to the mapping process? Heuristic solutions for AEF

mapping problem contain three distinct stages: in the first stage (Mapping), VMs are assigned

to hosts. In the second stage (Migration), VMs are relocated to optimize mapping. Finally,

in the third stage (Networking) virtual links are mapped to physical paths. However, it is

important to measure impact of each stage in the mapping process, to decide whether each

stage is required or not and how a different strategy for the particular stage would impact in

the mapping.

Is there a “best” heuristic? If not, when to use each one? If none of the proposed heuristics

provides a better mapping than the others, how to select the one to be used? To answer these

questions, it is important to understand performance of each heuristic in different scenarios.

By performance, we mean both time to solve the mapping problem and quality of the mapping.

By quality of the mapping we mean the relative quality comparing to other heuristics. An

optimal mapping is not sought because there is no other known solutions for this specific

problem, and an optimal solution to it requires solution of an NP-hard problem [SUN05].

Regarding AEF prototype operation:

Is AEF able to build and configure an emulated distributed system? Does the AEF archi-

tecture presented in Chapter 4 and implemented as described in Chapter 6 actually build an

emulated system? Does the network behave as expected? Is it possible to run applications in

this environment? Does these applications behave similarly both in the emulated environment

and in the real environment?
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What type of experiments AEF supports? Is there a type of experiment that is more appro-

priate to be performed in AEF than others? Different experiments may have different goals.

Therefore, depending on the experiment goal and the experiment output, AEF may be not

suitable, because of the assumption made during the mapping that CPU is not a constraint.

Is AEF able to monitor and reconfigure an experiment? Does the architecture presented in

Chapter 5 and implemented as described in Chapter 6 actually perform the tasks it is intend

to perform? In other words, is it possible, with application of system management and virtu-

alization, to build a system able to monitor and reconfigure an emulated environment when

its operation does not follow tester specification?

In the rest of this chapter, experiments aiming at answering the questions above are described

and discussed. The first experiments presented aimed at evaluating mapping heuristics. Next,

experiments aimed at comparing the four proposed heuristics are presented.

Later, experiments showing application of AEF to build and configure an emulated distributed

system is presented. Finally, an experiment demonstrating management and reconfiguration of

experiments is presented.

7.1 Mapping problem and its heuristic solutions

This section presents the experiments aiming at evaluating (i) effectiveness of the proposed

objective function for its goal, (ii) contribution of each heuristic stage to the mapping, and (iii)

efficacy of each mapping heuristic.

Among the mapping heuristics developed in the context of this work, HMN was the first one

to be conceived. Therefore, it has been thoroughly evaluated in order to check contribution of its

different stages (Hosting, Migration, and Networking) in the mapping process. Findings of this initial

evaluation of HMN motivated development of other heuristics presented in Chapter 4. Furthermore,

the same experiments allowed us to evaluate whether load balance among hosts, which is the goal of

the mapping problem solved by AEF, actually results in reduction in experiment time. We sought to

reduce experiment time because AEF was designed to allow only one tester to perform an experiment

at a time. Therefore, by reducing experiment time we want to reduce waiting time of other testers

willing to use AEF.

In the first part of this section we present methodology, results, and conclusion of HMN evalua-

tion. Later, methodology, results, and conclusions of the comparison between all the heuristics are

presented.

7.1.1 Experiment set up

Experiments aimed at evaluating the mapping problem and its heuristics were run with the use

of discrete-event simulation. As already stated in Chapter 2, simulation is a suitable methodology to

be applied in projects in its early stages, because it does not require the presence of an implemented
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Figure 7.1 – 40 nodes cluster with 2-D torus network topology used in the evaluations.

software in the evaluation: a model of the software artifact is enough for simulation purposes, and

development of a model tends to be quicker than the development of the whole software. Further-

more, because the hardware is also modeled, this methodology allows repeatability and scalability

of experiments. The software used in the simulations is the CloudSim toolkit [BUY09b], which was

briefly described in Chapter 2.

All the experiments for evaluation of heuristics use the same scenario. The simulation scenarios

are created by a random generator that receives as input the number of hosts, number of VMs, and

virtual network density and generates an output by creating links between nodes and assigning a

given amount of resources to each one. Amount of resources (memory, storage, CPU) are generated

randomly, based in a uniform distribution.

The simulated physical environment is composed of two different cluster topologies. The first

one is a 2-D torus topology, as depicted in Figure 7.1. The second cluster topology is a switched

topology, where hosts are connected to a 64-port switch. These topologies were chosen because

they represent two widely-adopted cluster topologies, and allowed us to analyze two cases for the

mapping: presence of a few different links between hosts for the mapping (in the switched topology)

and the presence of several links in each host, what allows more paths to be searched (in the 2-D

torus topology). In both cases, connections between hosts (or connections between a host and

a switch) have 1GB of bandwidth and 5ms of latency. The former represent the capacity of a

Gigabit Ethernet link, whereas the latter is the average latency value measured through 50 ICMP

echo requests between virtual machines in the local area network where the cluster used in the

experiments is located.

Both cluster topologies contain 40 hosts. To represent heterogeneity in the cluster, and because

of the lack of characterization of workloads in emulation environments, resources of each host in

the clusters are randomly generated. Host memory varies uniformly between 1GB and 3GB. Storage

varies between 1TB and 3TB and CPU capacity between 1000MIPS and 3000MIPS. We think

this number of hosts and amount of resources represent a reasonable amount of resources for a

small-scale cluster to be used exclusively for emulation of distributed systems.

The 40 heterogeneous hosts generated with the discussed method are used both in the switched

and 2-D torus clusters.
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Regarding the distributed systems emulated in the cluster, two different use cases are considered:

a virtual environment for high-level applications and a virtual environment for low-level applications.

The first case, which we refer as high-level scenario throughout this section, encompasses applica-

tions such as grid computing middleware, cloud computing middleware, and other cases where the

application runs in a system containing the operating system, the application, libraries, and sup-

porting software for applications (e.g., a database management system or a Java virtual machine),

which demand large amount of memory and storage. In this scenario, less VMs are created, but

each one uses a considerable amount of resources from the host they are running on. This scenario

is based in the emulation experiments aiming at evaluating AEF [CAL08] and presented in the next

section.

The second case considers an environment where the virtual machines run, for example P2P

protocols. In this case, there is no need for VMs running several applications demanding many

resources. Instead, smaller VMs with only the basic software can be used. Thus, in this case the

virtual machines require less memory and storage, and more VMs run on each host. This scenario

was based in emulation experiments presented by Quétier et al. [QUE07] and is referred throughout

this section as low-level scenario.

7.1.2 HMN evaluation and results

The goal of HMN experiments presented next is twofold. The first goal was investigating whether

load balancing among hosts, which is the mapping goal, reduces experiment time or not. The second

goal was analyzing contribution of each mapping stage to mapping.

The first goal can be achieved with the evaluation of the simulation results, by the analysis of

the correlation between the mapping and the execution time.

To allow us to evaluate effectiveness of the Hosting stage of HMN, it is replaced by a mapping

algorithm that randomly tries to map the guests to hosts. The random algorithm fails if it cannot

find a valid mapping after 100000 tries. Networking is replaced by an algorithm that, for each link

in Ev, applies a depth-first search (DFS) algorithm to find a path connecting the hosts of si and di.

These alternative strategies for hosting and networking are combined with HMN in the following

way: first, a heuristic that applies both Random instead of HMN’s Hosting and DFS instead of

A*Prune is tested. This approach is referred as Random + DFS in the rest of this section. Another

applied approach replaces HMN’s hosting by the Random heuristic and keeps Networking as in

original HMN. This approach is referred as Random + A*Prune in the rest of this section. The

third alternative heuristic applies Hosting from HMN and DFS for networking, and is referred as

Hosting + DFS in the rest of this section. Evaluation of these mixed strategies allows us to evaluate

effectiveness of each stage of the HMN algorithm in the mapping process.

Tables 7.1 and 7.2 summarize the experiment setup for HMN evaluation. Clusters configura-

tions were explained before. Regarding the virtual distributed system, in the high-level experiment

workload, the virtual networks have 100, 200, 300, and 400 nodes. Memory of each guest varies

uniformly between 128MB and 256MB. Storage of each guest is uniformly distributed between
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Table 7.1 – Simulation setup for HMN evaluation: clusters configuration.
Cluster topology

2-D torus Switched
bandwidth 1Gbps 1Gbps
latency 5ms 5ms
nodes 40 40
memory 1GB–3GB 1GB–3GB
storage 1TB–3TB 1TB–3TB
CPU 1000MIPS–3000MIPS 1000MIPS–3000MIPS

Table 7.2 – Simulation setup for HMN evaluation: distributed systems configuration.
Virtual distributed systems

Low-level workload High-level workload
topology graph, density 1% graph, density 1.5%, 2.0%, 2.5%
bandwidth 87kbps–175kbps 0.5Mbps–1Mbps
latency 30ms-60ms 30ms–60ms
nodes 800–2000 100–400
memory 19MB–38MB 128MB–256MB
storage 19GB–38GB 100GB–200GB
CPU 19MIPS–38MIPS 50MIPS–100MIPS

100GB and 200GB. The MIPS required by each guest varies uniformly between 50 and 100 MIPS.

Links between guests have bandwidth defined randomly, with bandwidth values between 0.5Mbps

and 1Mbps and latency between 30ms and 60ms. Similarly to the case for definition of simulated

clusters characteristics, randomly generated workloads were used because there is no characterized

workloads available for modeling of emulation experiments. Nevertheless, the range of values used to

model VM resources is compatible with the values found in the equivalent emulated experiments—

experiments by Quétier et al. [QUE07] for low-level experiments and our AEF experiments [CAL08]

for the high-level workload.

In the low-level experiment workload, virtual elements have 800, 1200, 1600, and 2000 elements.

Memory of each guest varies uniformly between 19MB and 38MB. Storage of each guest is uniformly

distributed between 19GB and 38GB. The MIPS required by each guest varies uniformly between

19 and 38 MIPS. The links between guests have bandwidth defined randomly, with values between

87kbps and 175kbps and latency between 30ms and 60ms.

In both workloads, links between guests are randomly set. The number of links created is

determined by the graph density, which is an input parameter to the graph generator. The algorithm

used to generate the graph topology guarantees that the output graph is connected. Three scenarios

are considered for the high-level experiments: connectivity of 1.5%, 2.0%, and 2.5%. In the low-

level experiment, connectivity is 1.0%. Each heuristic for each cluster with each number of VMs is

simulated 30 times.

For each heuristic, we collected average value of the objective function for the given mapping, if

a valid one is found. Furthermore, by simulating execution of the emulation experiment in CloudSim,
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Figure 7.2 – HMN evaluation: average objective function for low-level scenarios (a) 2-D torus cluster
(b) switched cluster.

we could evaluate impact of the mapping in the execution time of experiment. In the simulation

of application execution, it is considered that each VM executes a job whose size is given by the

number of MIPS required in the VM definition. In this case, average execution time is collected.

Objective functions for both simulated clusters obtained for the low-level experiment are pre-

sented in Figure 7.2. Objective functions for different high-level scenarios are given in Figure 7.3.

Simulation times for both simulated clusters obtained for the low-level experiment are presented in

Figure 7.4. Simulation times for different high-level scenarios are given in Figure 7.5. Heuristics are

represented by different bars, and group of bars represent a different number of VMs. Each cluster

is presented in a different graph.

Figures 7.2 and 7.3 show that HMN achieves a considerable reduction in the objective function,

even though its efficacy decreases as the number of guests to be mapped increases. HMN out-

performs other heuristics in all but one scenario: for 2000 VMs in low-level workload for the 2-D

torus cluster, where Random + A*Prune presented a better average mapping. It happens because

more guests reduce the chance of migrations during the migration stage. Therefore, initial mapping

of HMN is not improved. In a situation where there is no opportunities for load balancing, initial

mapping oh HMN may be worst than a random mapping.

By the analysis of the figures, it is also possible to notice that Hosting + DFS is always the

worst mapping strategy. This fact, together with bad performance of HMN in big workloads, shows

that Migration stage is paramount, in HMN, for load-balanced mappings.

Table 7.3 presents the number of times each heuristic could not find a valid mapping for a specific

input. Each scenario in each workload is simulated 30 times, therefore in the total 480 simulations

for each cluster for each heuristic were run.

Even though Random heuristic combined with A*Prune is able to find slightly more valid map-

pings than HMN, we argue that an initial hosting by network affinity is still the best choice. That is

because in the case of mapping virtual environment with a few links with high bandwidth demand,
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Figure 7.3 – HMN evaluation: average objective function for high-level scenarios (a) 2-D torus
cluster, connectivity 1.5% (b) switched cluster, connectivity 1.5% (c) 2-D torus cluster, connectivity
2.0% (d) switched cluster, connectivity 2.0% (e) 2-D torus cluster, connectivity 2.5% (f) switched
cluster, connectivity 2.5%.
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Figure 7.4 – HMN evaluation: average simulation time for low-level scenarios (a) 2-D torus cluster
(b) switched cluster.

Table 7.3 – Failures in finding a valid mapping for each heuristic.
2-D torus

HMN Random + DFS Random + A*Prune Hosting + DFS
Failures 5 322 4 461

Switched
HMN Random + DFS Random + A*Prune Hosting + DFS

Failures 5 3 3 5

or even with a demand that exceeds the capacity of the real links, HMN is able to produce a valid

mapping (by assigning these VMs to the same host), while an algorithm that does not group guests

with high communication might not be able to find a valid mapping.

Results presented in Table 7.3 suggest that the main responsible for the success in finding a

mapping to the virtual environment is the A*Prune algorithm. It is evidenced both by the large

number of failures for Hosting + DFS heuristic, where A*Prune is not used for mapping of network

connections, and by the success rate of Random + A*Prune heuristic. The large number of failures

of Hosting + DFS compared to Random + DFS is because in the latter approach, both mapping

of guests and of virtual links are retried, while in the former approach only the last one are retried;

therefore, if the initial mapping of guests does not allow a mapping of links, Hosting + DFS fails to

find a solution.

These observations altogether with and Figures 7.2 to 7.5 and Table 7.3, allow us to present the

following answers to the questions related to the mapping problem and its solution:

Effectiveness of the objective function

Regarding the initial hypothesis that the chosen objective function reduces the experiment ex-

ecution time, there is a correlation of 0.7 between the objective function and the execution time

of experiments in the simulated environment, what means that when objective function decreases,
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Figure 7.5 – HMN evaluation: average simulation time for high-level scenarios (a) 2-D torus cluster,
connectivity 1.5% (b) switched cluster, connectivity 1.5% (c) 2-D torus cluster, connectivity 2.0%
(d) switched cluster, connectivity 2.0% (e) 2-D torus cluster, connectivity 2.5% (f) switched cluster,
connectivity 2.5%.
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execution time of experiments running in AEF also tends to decrease. It supports the assumption

that load balancing residual CPU availability on hosts collaborates to reduction in the experiment

time, and therefore the objective function used by AEF effectively achieves the purpose it has been

designed to.

Contribution of each stage in the mapping

Contributions of each stage to the mapping are the following:

Hosting. The Hosting stage, where the initial mapping of VMs to hosts is performed, is not the more

critical stage in the mapping process. Nevertheless, this stage contributes to mapping success

by grouping hosts with high communication demand that could exhaust network resources in

the network stage.

Migration. This stage, where VMs are relocated from heavily-loaded hosts to lightly-loaded ones,

has a significant contribution to load balancing among hosts, therefore it has an important role

to improve the objective function. Nevertheless, this stage has little contribution for solution

of the mapping problem.

Networking. This stage, where virtual links are mapped to physical paths, helps the mapping

process by using preferentially links that have the least used path, regarding the smallest

residual bandwidth among physical links in the path. This way, network bandwidth is saved

for future mappings and it is high likely that there will be room for the links yet to be mapped.

Therefore, any networking heuristic that tries to save bandwidth tend to contribute to success

of the mapping process.

Even though HMN is effective to solve the problem it was designed for, it may fail in finding

a mapping in scenarios where the requirements of the virtual system are close to the resource

availability. Therefore, we sought better approaches for handling these specific cases. Because the

Migration stage has little contribution to the mapping success, and the A*Prune algorithm used in

the Networking stage is effective in its job, new heuristics to solve AEF’s mapping problem should

focus in the Hosting stage.

Research towards this direction led to development of LM, LN, and MN heuristics presented in

Chapter 4. Experiments aiming at comparing these heuristics and HMN are presented next.

7.1.3 Heuristics comparison and results

In this section we present evaluation and comparison among the heuristics presented in Chapter

4. Tables 7.4 and 7.5 summarize the experiment setup. Clusters configurations were explained

in the beginning of this chapter. Regarding the virtual environment, in the high-level experiment

workload, the virtual networks have 100, 200, 300, 400, 450, and 500 nodes. Memory of each guest

varies uniformly between 128MB and 256MB. Storage of each guest is uniformly distributed between
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Table 7.4 – Simulation setup for heuristics comparison: clusters configuration.
Cluster topology

2-D torus Switched
bandwidth 1Gbps 1Gbps
latency 5ms 5ms
nodes 40 40
memory 1GB–3GB 1GB–3GB
storage 1TB–3TB 1TB–3TB
CPU 1000MIPS–3000MIPS 1000MIPS–3000MIPS

Table 7.5 – Simulation setup for heuristics comparison: distributed systems configuration.
Virtual distributed systems

Low-level applications High-level applications
topology graph, density 2.5% graph, density 2.5%
bandwidth 87kbps–175kbps 0.5Mbps–1Mbps
latency 30ms-60ms 30ms–60ms
nodes 100–1000 100–500
memory 19MB–38MB 128MB–256MB
storage 19GB–38GB 100GB–200GB
CPU 19MIPS–38MIPS 50MIPS–100MIPS

100GB and 200GB. The MIPS required by each guest varies uniformly between 50 and 100 MIPS.

Links between guests have bandwidth defined randomly, with bandwidth values between 0.5Mbps

and 1Mbps and latency between 30ms and 60ms.

In the low-level applications workload, the number of VMs is between 100, 400, 600, and 1000.

Memory of each VM varies uniformly between 19MB and 38MB. Storage of each VM is uniformly

distributed between 19GB and 38GB. The MIPS required by each VM varies uniformly between

19 and 38 MIPS. The links between VMs have randomly defined bandwidth, with values between

87Kbps and 175Kbps and latency between 30ms and 60ms. In both workloads, links between VMs

are randomly set and graph density is 2.5%. The algorithm used to generate the graph topology

guaranteed that the output graph is connected.

Each scenario is simulated with each workload 50 times. Each time, a new cluster and a new

distributed system were randomly generated, according to the scenario parameters. The average

value of each output—mapping time and objective function—was collected.

Figure 7.6 depicts the average objective function (Equation 4.8) observed for each heuristic in

each scenario.

In scenarios with less VMs, there are more opportunities for load-balancing migrations, and the

migrations contribute for improvements in the objective function of HMN and LM. Because LN and

MN do not have a load-balancing stage, the objective function for these heuristics is higher than

for the other heuristics. Also, because MN minimizes the number of hosts used, the imbalance, and

consequently the objective function, is higher regardless the number of machines used. Nevertheless,

MN was the only heuristic able to map 500 machines in the high-level scenario.
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Figure 7.6 – Objective function for different heuristics (a)Low-level workload, 2-D torus cluster
(b) Low-level workload, switched cluster (c) High-level workload, 2-D torus cluster (d) High-level
workload, switched cluster.

When the number of VMs is high, there are a few opportunities for migrations and then the

performance of LM and LN approaches. It happens because the initial mapping is the same for

both heuristics, and because only a few migrations happen, therefore heuristics tend to finish the

mapping with almost the same configuration.

The different approach for selecting the hosts in the HMN heuristics leads to better mappings

when the number of hosts is small. However, in the presence of a bigger number of VMs, and less

opportunities for migrations, the initial choice of VMs performed by HMN leads to worst mappings.

Figure 7.7 shows the mapping time in each scenario. The time showed was obtained in a

Pentium 4 2.8GHz with 1MB of cache and 2560MB of RAM memory running Linux Debian Etch.

The mapping time is dominated by the time to execute the A*Prune algorithm and, ultimately, by

the determination of the shortest path for each virtual link. In the torus topology the number of

possible paths is bigger and then it requires more time comparing to the same scenarios with a

switched topology.
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Figure 7.7 – Mapping time for different heuristics (a)Low-level workload, 2-D torus cluster (b) Low-
level workload, switched cluster (c) High-level workload, 2-D torus cluster (d) High-level workload,
switched cluster. Notice that each chart has a different scale on y axis.

The large amount of time required by MN in the torus topology makes it not suitable for

utilization in some practical scenarios. Nevertheless, MN outperforms the other heuristics in the

switched cluster, and so it may be used in such topologies. LM is slower than LN because of the

migrations. HMN performs better than the other heuristics in most experiments in the torus cluster.

However, it is worst than LM and LN in some scenarios.

Mapping 1000 VMs (12487 virtual links) in a torus topology with 80 physical links requires up

to half an hour for LM and LN, two and a half hours in MN, and 45 minutes in HMN. In the

switched topology, as there is only one possible mapping for each virtual link (from the first host to

the cascaded switches and then to the second host), the mapping time is less than five seconds in

all scenarios.

The mapping time is not dependent on the number of hosts, or even on the number of links. In

fact, the mapping of VMs to hosts determines the mapping time. It is because when two VMs are

mapped to the same host, the link between them does not have to be mapped using the A*Prune



116

algorithm. Also, the use of the available bandwidth by the previous mapped links gradually reduces

the search space of the A*Prune algorithm when virtual links are successively mapped. So, the more

the links are used, the less they are likely to be used further, and with a smaller solution space to

be searched on, the execution time of A*Prune reduces, and so do the overall mapping time. That

is the reason why the mapping time reaches a peak at 400 VMs in the low-level workload and 200

VMs in the high-level scenario and then becomes smaller for greater number of VMs. And this is

another factor for the poor performance of MN: as more VMs are mapped to the same host in this

heuristic, the search space for the A*Prune is reduced in a smaller rate than in other strategies.

Results of this experiment allowed us to answer the question related to the existence of a best

mapping heuristic, as detailed next.

Is there a heuristic that is better than the others?

Results of the experiment allows us to conclude that no single heuristic is better than the others

in all the scenarios. Therefore, some criteria must be applied to choose the fittest heuristic for each

instance of the mapping problem. If the amount of resources required by the virtual system is close

to the amount of available resources, MN is the best heuristic. For a small number of VMs, HMN

provides a better mapping than the other heuristics. However, HMN mapping is not stable, in the

sense that when the number of VMs increases the mapping looses quality, while LM keeps a nearly

constant mapping quality. Hence, if the rate VM/host is lower, HMN is a good choice. Otherwise,

LM is the preferred heuristic. LN performs always worst or equal as LM, and it is only slightly faster

than LM. Thus it does not worth applying such a heuristic in any scenario.

7.2 AEF prototype operation

In this section, we evaluate the two activities of AEF, as implemented in the prototype presented

in Chapter 6. First, we present evaluation of AEF’s building and configuration stage. Later, we

present evaluation of AEF’s management and reconfiguration stage.

7.2.1 Evaluation of building and configuration stage

In order to evaluate AEF prototype’s capacity of building and configuring a virtual distributed

environment, and also to investigate what kind of experiment is more suitable to be executed in

AEF, a grid computing experiment executed by the AEF prototype presented in the last chapter

was compared with an in-situ experiment. Such an in-situ experiment evaluates the measurement

of makespan of jobs running in an OurGrid [CIR06] grid using the SRS scheduler [CAL09a].

The environment used for the in-situ experiment is composed of 50 machines in two OurGrid

sites, each one located 4000 Km apart. One site is used as a resource consumer, and the other is used

as a resource provider. The resource provider hosts a cluster whose machines are opportunistically

delivered to the grid. The supplier has 48 grid machines plus one OurGrid peer. The machines are
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11 Pentium 3 1.0GHz with 256MB of RAM memory, 10 Pentium 4 1.6GHz with 256MB of memory,

9 Dual Pentium 3 550MHz with 256MB of memory, 4 Dual Pentium 3 1GHz with 256MB of RAM

memory, 8 Pentium 4 2.8GHz with 2.5GB of RAM memory, and 6 Dual Xeon 3.6GHz with 2GB of

memory. Only one CPU of the dual machines is used. The consumer site has only one machine,

which contains both the OurGrid peer and the OurGrid broker.

The grid job executed in both experiments contains 12 tasks, each one sends a file, executes a

sleep call of 5 minutes, and receives a file of the same size of the file sent. The job is executed four

times: the first one without file transferring and the others with different file sizes: 100kB, 1MB,

and 10MB. To simulate the dynamism of a grid environment, resources are randomly removed from

the grid every ten minutes.

Network parameters used in the virtual network are obtained with the observation of the band-

width obtained in a data transfer between the two actual sites using scp (for the bandwidth) and with

the latency measured by the hping2 tool, which were respectively 2Mbps and 200ms. Each node in

the virtual network has 256 MB of RAM memory and 1GB of storage. Even though some machines

from the real environment have more memory than the machines in the emulated environment, it

does not compromise the experiment, because the application used less than 128MB of memory.

The cluster used to host the emulated environment is composed of eight Pentium 4 2.8GHz with

1MB of cache and 2560MB of RAM memory. Cluster machines are connected by a dedicated Fast

Ethernet switch. Machines run Xen VMM 3.1, and the Xen’s dom0 uses 328MB of the available

RAM memory. Thus, 2232MB were available to the VMs on each host. No network traffic but the

one generated by this experiment was present in the physical environment during the tests.

AEF builds, in the installation and configuration stage, the virtual environment using the whole

cluster. System reconfiguration is not used in this experiment, because the goal of this experiment

is evaluate installation and configuration of the distributed, and not the execution, monitoring, and

reconfiguration stage.

Table 7.6 presents the observed makespan of the job in both in-situ and emulated environment.

It also shows the deviation, i.e., the percentage’s difference between the result observed in the real

environment and the result from the emulated environment. The deviation between the in-situ and

emulated results is less than 10% for all the cases. However, this value increases with the size of

the file being transferred. It happens because of cumulative error in the network emulation: when

small files are transferred, the network is less demanded, and the difference between the real and the

virtual network becomes smaller. However, the emulated network is faster than the real network. So,

when larger files are transferred, the difference between the emulated and the real network causes a

bigger influence in the results of the experiment. Causes of the deviation in the behavior of emulated

and real networks are the following:

Error in the acquisition of network parameters: Measurement of network parameters (latency

and bandwidth) is a difficult task, especially when it involves machines belonging to several

administrative domains, in which common methods to evaluate it (e.g., ICMP echo request

to measure latency) are blocked by systems administrators. To circumvent it, tools running
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Table 7.6 – Observed makespan of jobs.
File size In-situ Emulated Deviation

0 313s 309s 1.28%
100kB 398s 387s 2.76%
1MB 1283s 1227s 4.36%
10MB 10100s 9138s 9.52%

in the application layer were used. So, it is expected an inaccuracy in the values used to set

the emulated environment. It is possible to reduce this error using more accurate methods to

acquire bandwidth and latency values.

Fluctuation in the real network traffic: The network parameters are not static, and variation

in the network traffic leads to variation in the available latency and bandwidth. Hence, the

measured values of latency and bandwidth vary during the execution of the real environment.

In the emulated environment, on the other hand, these parameters are statically defined, in

such a way that reproduction of experiment conditions is enabled.

Error in the network emulation: Finally, there are differences between the configured network

parameters and the values obtained in the emulated network. Also, I/O isolation in current

Xen implementation is not as effective as CPU isolation. Thus, emulation of CPU-bound

application, which requires little communication, has a behavior in the emulated system closer

to its behavior in real environments. Nevertheless, for I/O-bound applications, performance

degrades as I/O utilization increases. The mapping heuristics help in avoiding this effect by

scattering VMs among hosts. Because the heuristics try to use many hosts, the number of

VMs per host tends to decrease and so does the interference caused by I/O requisitions from

virtual machines running in the same host.

Even though all these factors interfere in the results, results are close to the ones observed in

the in-situ experiment. As data showed in Table 7.6 suggest, the error tends to accumulate in time.

So, short-time experiments tend to have better results than long-time experiments. Nevertheless,

even an experiment that took almost three hours to complete in an in-situ environment presented a

deviation below 10%, what shows that AEF is able to successfully emulate distributed systems.

Furthermore, experiments that evaluate makespan are typically performance experiments. How-

ever, because CPU is shared among virtual machines during AEF experiments and it is not con-

strained during the mapping stage, it is not likely that quantitative performance experiments are

suitable for AEF. The experiment presented in this section is not CPU-intensive, and therefore CPU

sharing does not interfere in the results. In the case of applications that demand high amount of

computation, results obtained in AEF would tend to be not so close to real results.

Nevertheless, there are experiments that do not rely on performance measures. Consider, for

example, the experiment presented by Quétier et al. for evaluation of the V-DS emulator [QUE07].

In such an experiment, a peer-to-peer system is emulated and the routing structures generated by
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three P2P libraries are compared. Even though time can be considered in this experiment, to allow

the evaluation of the strategy that builds the overlay in the smallest amount of time (as the authors

of such experiment actually considered), it is also possible to look only at qualitative aspects of

the results, e.g., connectivity reached by the overlay on each library, distance among neighbors, etc.

Because results from the latter kind of experiments are independent from performance of virtual

machines, this kind of experiment is suitable to be performed in AEF.

These findings allow us to answer the questions regarding initial stage of AEF prototype:

Is the proposed architecture able to build and configure an emulated distributed system?

Even though some of the features presented in the general architecture were not implemented in

the prototype, the implemented subset of features present in AEF prototype were enough to allow

automated building and configuration of an emulated distributed system in a cluster of workstations.

This evidence suggests that the proposed architecture achieves its designing goals and therefore it

is an interesting approach for distributed systems experimentation.

What kind of experiments AEF supports?

From the experiment results and the above discussion, we conclude that AEF is a suitable

platform for qualitative distributed systems experiments. In the case of quantitative experiments,

especially those that are based in time measurement, AEF might be used if they require a few

processing capacity, as in the case presented in this section.

7.2.2 Evaluation of execution, monitoring, and reconfiguration stage

In this section we present results of an experiment to show that the AEF prototype’s Experiment

Manager Module effectively detects violations in resource usage by applications and reacts accord-

ingly, creating a new environment able to comply with tester’s specification. Four machines of the

cluster used to host the emulated environment described previously are used in this experiment.

The experiment input for the framework is a partial description of a local area network. The

original configuration proposed by the tester is composed of 32 virtual machines with 256MB of

memory each. According to the input rules, the system can be scaled down to two machines, and

can be scaled up without restrictions, as long as the use of memory on each virtual machine is

kept below 80%. Since each physical node has a limited memory capacity, to increase the memory

capacity of individual virtual machines mapped to this node AEF has to reduce the number of VMs

per host.

To force the alarm mechanism to be activated, experiment description includes instructions to

run an application that allocates 200MB of RAM memory on each virtual machine. With this

allocation request, it is assured that memory utilization on virtual machines is above the threshold

(in this case 80%) and consequently the alarm and reconfiguration mechanism will be activated.
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Figure 7.8 – Resources used in the experiments (a) Memory utilization of one virtual machine (b)
Number of virtual machines.

Additionally, it enables observation of the mechanism for automatic triggering of applications inside

virtual machines in action.

The experiment description and the virtual environment description are supplied to the Auto-

mated Emulation Framework. The latter builds the virtual environment through the regular instal-

lation and configuration stage described in Section 4.3. Then, the Experiment Manager is invoked

to run the experiment. The Experiment Manager, through the Virtual Environments Manager com-

ponent, triggers the application in the virtual machines.

Figure 7.8(a) shows the memory utilization of one virtual machine during the experiment and

Figure 7.8(b) shows the number of virtual machines running in the experiment. Initially, there is no

information about resource usage because this data has not been collected in any of the running

virtual machines. After three minutes (as defined by the tester in this experiment), information about

memory utilization is collected. The Monitor detects that memory utilization in the virtual machines

is above the configured threshold of 80% and triggers an alarm that activates the Rebuilder. The

first reconfiguration action considered (doubling the amount of memory on each VM) fails because

there are no enough physical hosts to accommodate 32 VMs with 512MB of RAM. The second

action, doubling the memory and reducing the number of VMs from 32 to 16, allows the Mapper to

find a valid mapping. In the new mapping, four virtual machines run in each host. Because a valid

mapping was found, reconfiguration procedures were triggered in the system.

After the reconfiguration of the environment, which finished at t=480s, the experiment and the

Monitor were started again. With this new configuration, the memory usage in the virtual machines
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(detected three minutes later) was below the defined threshold and the experiment finished without

further reconfigurations, which is the expected behavior of the system.

This experiment allows us to answer the last question regarding AEF:

Is the proposed architecture able to monitor and reconfigure an experiment?

Even though the experiment we performed executes an artificial application, it gives strong ev-

idences that the proposed architecture for monitoring and reconfiguration of distributed system,

which uses virtualization and system management, is able to perform the tasks it has been designed

for. Therefore, AEF is a valuable solution for emulation experiments, allowing automated installa-

tion and configuration of a virtual distributed system and automated deployment of applications,

monitoring and reconfiguration of environments that do not comply with tester specifications.

7.3 Chapter remarks

In this section, experiments aimed at evaluating each one of the three main activities of AEF—

namely mapping of VMs to hosts and virtual links to physical paths, building and configuration

of emulated distributed system, and experiment execution, monitoring, and reconfiguration—were

presented.

Regarding experiments aimed at evaluating mapping strategies executed by AEF prototype,

the first series of tests showed that grouping VMs that have large communication requirements

between them, together with the A*Prune algorithm for networking are paramount for enabling

mapping of large systems in a cluster. Nevertheless, limitations found in HMN, the first heuristics

developed, motivated development of new heuristics. However, heuristics behave differently in

different scenarios, therefore each algorithm has scenarios where it should be preferred among others.

Experiment aimed at evaluating building and configuration of emulated distributed systems

showed that it is possible, by the use of virtualization and system management, to automatically

build an emulated distributed system. Furthermore, the emulated environment behaved similarly

to an actual distributed system used in a previous in-situ experiment. Results of both in-situ and

emulated experiment are similar. Hence, an emulated distributed system built with the techniques

presented in this thesis can replace in-situ experiments, with the advantage of giving testers better

control of experiments and capacity of reproducing and scaling their experiments.

Finally, tests aimed at evaluating experiment execution, monitoring, and reconfiguration showed

that techniques of virtualization and system management with WBEM architecture allow automated

execution of applications in an emulated distributed system. Use of resources by virtual machines

was monitored and violations in usage of resources by virtual elements were correctly detected and

fixed with reconfiguration of the environment. Hence, it is possible to free testers from the tasks

of controlling execution of applications and managing an emulated environment. This capacity is

especially useful in cases of large emulated environments, where management of the elements would

require considerable effort from the tester.
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Results of the experiments presented in this chapter altogether show that AEF architecture

presented in Chapter 4 and Chapter 5, which is partially implemented by the prototype presented

in Chapter 6, is an effective tool for automated emulation of distributed systems and automated

execution of emulation experiments, and therefore it is a valuable tool for computer science experi-

mentation that may contribute to better practices for development of distributed systems software

artifacts.
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8. CONCLUSIONS

Test and evaluation of distributed software artifacts are challenging tasks. Issues related to the

nature of distributed system, namely distributed control over computing elements, unpredictable

behavior of Internet, and big scale distributed systems tend to achieve, make hard execution of

repeatable, controllable, and scalable experiments in these platforms. Therefore, experiments that

require execution of real software in the actual system—known as in-situ experiments—are not

effective in case of distributed systems. Other approaches are available, but their application depends

on the stage of development of the artifact.

In early stages of conception of algorithms and protocols, analytical methods and simulation may

be applied. Nevertheless, when a prototype of the artifact is available, emulation is a more suitable

methodology for experimentation. In such a methodology, actual software is executed in a model of

the hardware platform. In case of distributed systems emulation, the model of the hardware platform

is built in a cluster of workstations.

Distributed systems emulation is leveraged by the use of virtualization technology, because the

latter supports isolation and multiplexing of resources from cluster nodes, in such a way that it

is possible to create several virtual machines, each one with its own resources, in a same host.

Logically, these VMs can belong to different networks, and therefore a virtual distributed system

composed of many sites can be built in cluster nodes.

Even though virtualization enhances capacity of building emulated distributed systems, there is

still the need for operation of virtualization tools in order to build the emulated system. Because

this task diverts testers from the main purpose of their work, a tool that automatically builds a

system and executes experiments in the emulated environment is paramount for widely adoption of

emulation as a methodology for testing and evaluation of distributed software artifacts.

To achieve such a goal, three main activities have to be automatically performed:

Mapping of the virtual environment to the physical environment. This activity is composed

of two tasks: mapping of virtual machines to cluster nodes and mapping of virtual network

links to physical network paths. This issue has to be addressed because the virtual system may

contain hundreds or thousands of elements. Manual mapping of resources not only requires a

considerable amount of time, but also leads to fragmentation problems caused by inappropriate

placement of VMs in the hosts. Good mappings, on the other hand, optimize use of cluster

resources for the experiment and reduce execution time of experiments.

Building and configuration of emulated distributed system. This activity encompasses tasks

related to deployment of VMs in the cluster and configuration of the virtual network. Both

tasks have to be performed according to the mapping output. In the end of this activity, a vir-

tual distributed system is available for testers to perform emulation experiments of distributed

software artifacts.
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Execution, monitoring, and reconfiguration of experiment. Finally, experiments have to be

automatically executed in the virtual distributed system. Furthermore, mechanisms aiming

at ensuring that the required configuration is kept are also required. In case of violations in

meeting tester requirements, environment has to be reconfigured and application has to be

restarted. Furthermore, events have to be logged to be presented to tester in the end of the

experiment.

In this thesis, an architecture able to perform these three activities was proposed. This architec-

ture, called Automated Emulation Framework (AEF), applies virtualization and system management

technologies to achieve its goals. In AEF, the problem of mapping virtual environment to the cluster

is tackled with heuristics. Mapping of VMs to hosts happens according to four different criteria that

characterize each proposed heuristic. Mapping of virtual links to physical paths, on the other hand,

is performed using the same algorithm in all the heuristics. Contribution of this thesis in this field

includes not only heuristics definition, evaluation, and comparison but also a formal definition of the

mapping problem.

The last two activities are tackled with an architecture for building, configuration, execution,

and management of applications and virtual environment. The architecture is composed by several

modules, each one with a specific function. Some of these modules use system management tech-

nologies to work, whereas other modules use virtualization tools. Such an architecture for automated

emulation of distributed systems and experimentation is another major contribution of this thesis.

To validate AEF architecture, a prototype has been implemented. Evaluation of this prototype

showed that the goals that motivated design of the architecture are achieved with proper application

of the cited technologies and therefore AEF is a valuable tool for computer science experimentation

that may contribute to better practices for development of distributed systems software artifacts.

AEF architecture is able to address all the attributes of distributed systems experimentation

methodologies presented by Gusted et al. [GUS09], listed in Chapter 2, as follows:

Reproducibility. By applying deterministic heuristics for mapping VMs to hosts, and by receiving

input via XML files that may be stored, AEF allows reproduction of experiments if the same

cluster is used to host the experiment. Therefore, testers may trust that the emulated compo-

nents are mapped to the same hosts in different executions of the experiment, and therefore

the same conditions are available for experiment reproduction.

Extensibility. Application of AEF in other clusters just requires replacement of the physical envi-

ronment description file, whereas application of AEF for other distributed system scenarios

requires replacement of virtual distributed system description. Therefore, experiments ex-

tension is simpler as replacement of XML files, and thus AEF is a very extensible tool for

distributed systems emulation.

Applicability. AEF does not restrict data sets used in experiments. Furthermore, by using virtu-

alization, virtually any operating system can be used to host experiments. It makes AEF a
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higher applicable experimentation tool.

Revisability. Revisability is achieved in AEF by the generation of logs by the Experiment Manager.

Both conditions measured in the physical and virtual environments are logged, and so testers

are able to analyze experiments conditions that lead experiments to failure or success.

By the analysis of such achievements of AEF, it is possible to see that it allows repeatable and

controllable experimentation at the same time it hides intricacies of virtualized environments from

testers. Experts in other areas can use AEF without having to learn about virtualization and without

knowing environment requirements, allowing them to focus on the problem they are handle, not on

the platform. For all of this, AEF has the potential to drive distributed systems experimentation to

a level not achieved so far.

8.1 Future directions

Next, we list and comment future directions of research derived from this work.

Application of AEF modules in autonomic Cloud Computing. Both AEF and a Cloud data

center share the same basic underlying infrastructure, namely a cluster containing a number

of hosts running a virtualization software. AEF’s Experiment Manager is able to monitor and

reconfigure the environment at the same time it is able to interact and manage virtual machines

running in the hosts. Therefore, it is likely that the same framework can be applied to enable

autonomic Cloud Computing, in such a way that the system monitors itself to guarantee that

virtual machines are meeting requirements of their owners.

Combination of AEF and CloudSim to support mixed experiments. Because of the similar-

ities between Cloud platforms and AEF platform, it can be used to leverage Cloud Computing

experimentation. AEF can be combined with CloudSim to support mixed emulation and sim-

ulation experiments. In this approach, depending on the current stage of the software artifact,

one method may be selected automatically. Another approach is having a system able to

execute one application in an emulated environment in order to capture its characteristics and

automatically model the application to be used in future simulation experiments.

Design of an architecture for interactive experimentation. AEF architecture supports auto-

mated execution of experiments in emulated distributed systems. Nevertheless, these experi-

ments are standalone applications that execute without tester intervention. In some situations,

testers might be interested in interact with the application in execution time, in order to pro-

vide other input, observe some graphical output or reconfigure applications. Currently, there

is no support in AEF for interactive execution of experiments, and improvements in the archi-

tecture in order to support it would add value to AEF, by expanding applicability scenarios of

the architecture.
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Development of new mapping heuristics. New mapping heuristics can be developed. Heuristics

may consider other functions to be optimized, for example, reduction of number of used hosts.

Another point to be explored is other strategies for the networking stage of resolution of

the mapping problem. Even though modified A*Prune is effective in enabling generation of

valid mappings, it is slow. Therefore, other approaches for networking quicker than modified

A*Prune would allow timely mapping in large-scale clusters, what contributes for a broader

applicability of AEF.

Abstraction layer for software testing. Even though AEF makes easy execution of emulated

experiments by releasing testers from the task of accessing virtualization management tools,

it still required that testers have knowledge in distributed system, in such a way that they are

able to describe the system in details. Nevertheless, depending on the use case where AEF is

applied, testers may have no knowledge, or no interest, in describing the emulated distributed

system. A layer that abstracts distributed systems details would be useful in such scenarios

and is another possible future direction of AEF research.

Support for fault injection. AEF may be extended to support fault injection. Testers could be

able to specify the moment a link is going to fail, or a given VM is going to become non-

responsive. This strategy would allow a broader utilization of AEF, in more scenarios than the

current architecture supports.

Integration with development tools. Finally, AEF might be integrated to Eclipse, JUnit, and

other consolidated tools for testing and development. This way, using of AEF would become

even easier for testers, because it would allow utilization of software they are already familiar

with.

8.2 Publications

In this section, we list scientific production that derived from this thesis. Works are sorted in

chronological order.

Journal papers

Rodrigo N. Calheiros, Rajkumar Buyya, César A. F. De Rose, Building an automated and self-

configurable emulation testbed for grid applications, Software: Practice & Experience, 2010,

Wiley, New York, USA (in press, acceptance on Dec. 5, 2009).

Rodrigo N. Calheiros, Tiago Ferreto, César A. F. De Rose, Scheduling and management of virtual

resources in grid sites: the site resource scheduler, Parallel Processing Letters, 19(1):3–18,

World Scientific, March, 2009.
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César A. F. De Rose, Tiago Ferreto, Rodrigo N. Calheiros, Walfredo Cirne, Lauro B. Costa, Daniel

Fireman,Allocation strategies for utilization of space shared resources in Bag-of-Tasks grids,

Future Generation Computer Systems, 25(5):331–341, Elsevier, May, 2008.

Conferences in English

Bhathiya Wickremasinghe, Rodrigo N. Calheiros, Rajkumar Buyya, CloudAnalyst: A CloudSim-

based Visual Modeller for Analysing Cloud Computing Environments and Applications, Pro-

ceedings of the 24th IEEE International Conference on Advanced Information Networking and

Applications (AINA 2010), Perth, Australia, April, 2010.

Rodrigo N. Calheiros, Rajkumar Buyya, César A. F. De Rose, A Heuristic for Mapping Virtual

Machines and Links in Emulation Testbeds, Proceedings of the 38th International Conference

on Parallel Processing (ICPP 2009), Vienna, Austria, September, 2009.

Rodrigo N. Calheiros, Everton Alexandre, Andriele B. do Carmo, César A. F. De Rose, Rajkumar

Buyya, Towards Self-Managed Adaptive Emulation of Grid Environments, Proceedings of the

14th IEEE Symposium on Computers and Communications (ISCC 2009), Sousse, Tunisia,

July, 2009.

Rajkumar Buyya, Rajiv Ranjan, Rodrigo N. Calheiros, Modeling and Simulation of Scalable Cloud

Computing Environments and the CloudSim Toolkit: Challenges and Opportunities, Keynote

Paper, Proceedings of the 7th High Performance Computing and Simulation Conference

(HPCS 2009), Leipzig, Germany, June, 2009.

Rodrigo N. Calheiros, Mauro Storch, Everton Alexandre, César A. F. De Rose, Marcus Breda,

Applying virtualization and system management in a cluster to implement an automated

emulation testbed for grid applications, Proceedings of the 20th IEEE Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD 2008), Campo Grande, Brazil,

October, 2008.

Conferences in Portuguese

Rodrigo N. Calheiros, Guilherme Rodrigues, Tiago Ferreto, César A. F. De Rose, Avaliando o am-

biente de virtualização Xen utilizando aplicações de bancos de dados (Evaluating Xen virtual-

ization environment using database applications), VIII Workshop em Sistemas Computacionais

de Alto Desempenho (WSCAD 2007), Gramado, Brazil, October, 2007.
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