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Abstract
The technology nodes reduction enabled the emergence of NoC-based many-cores with dozens to hundreds of processing

elements (PEs). Despite the processing power offered by a large number of processors and communication flexibility due to

the adoption of NoCs, it is necessary to manage the many-core resources to ensure scalability. The execution of the

management tasks requires a PE reserved exclusively to execute such actions. These processors are named managers PE–

MPE. A centralized approach would induce a significant load to the MPE in large-scale systems, and a permanent fault in

the MPE would compromise the entire system. The adoption of a distributed approach, organization adopted in this work,

with MPEs hierarchically organized, reduces the management load, and a fault in an MPE would compromise only the PEs

managed by the faulty MPE. The literature presents several fault-tolerant proposals targeting the NoC or the processors.

However, there is a significant gap related to fault-tolerant methods at the system level, i.e., related to fault-tolerant

techniques regarding the MPEs. The goal of this paper is to present a recovery method when an MPE became faulty, and

propose a protocol to migrate the management software safely to a new PE. The method adopts task migration to release a

processor if there is no processor to receive the kernel that was executing in a faulty processor. The proposal is transparent

to the applications running in the many-core, with an overhead in the execution time varying between 1.5 and 1.65 ms

during the management and task migration.
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1 Introduction

Modern NoC-based many-core Systems-on-Chip (MCSoCs)

enable embedded systems with dozens of processors. Large

MCSoCs demand one or more dedicated

Processing Element (PE) for management actions, as task

mapping, task migration, power management (DVFS), QoS

management, self-awareness adaptation, system monitoring

(energy, temperature, deadlines). The management of a

MCSoC may be centralized or hierarchically organized in

clusters (Definition 1) [6, 9].

Definition 1 Cluster—an MCSoC virtual region, with a

set of PEs and one manager MPE. The cluster size is a

design-time parameter, but a cluster can borrow resources

from other clusters at runtime when all clusters resources

are busy—reclustering process [9].

With the ever-increasing reduction in the devices’

geometry, transistors, vias, and wires degrade faster over

time, causing transient and permanent faults to occur ear-

lier, thereby decreasing the lifetime of integrated circuits

[17]. For these reasons, reliability become a critical design
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issue in MCSoCs [15]. Classical fault-tolerant approaches,

as Triple Module Redundancy (TMR) or spare components

[21], do not comply with today’s requirements of silicon

area and power dissipation. By construction, an MCSoC

contains a set of replicated structures (the PEs), where a

healthy component can replace the faulty component

functions, with minimal performance reduction.

How to deal with a fault on MPEs opens a set of new

challenges and opportunities in the field of many-core

systems research. In a centralized approach, if the MPE

presents a permanent fault, the entire system halts. In the

hierarchical organization when an MPE became unre-

sponsive, only a many-core region is affected.

Thus, MCSoCs need management mechanisms to per-

form different control tasks at the system level, and the

technology evolution from one side enables to increase the

number of PEs and from the other side accelerates the

emergence of faults. The literature presents different

approaches at the system level: power management (e.g.,

DVFS), performance and QoS management, resource

management, and security [1, 7, 12, 25]. A rich literature

with methods to test PEs is also available, with approaches

adopted at different levels (hardware or software) or

modules (Network-on-Chip (NoC), processors, memory).

However, there is a significant gap related to fault-tolerant

methods at the system level, i.e., related to the processors

with the function to manage the system. Therefore, the

MCSoC management requires monitoring and actuation

policies to recover the system when one of these processors

presents a permanent fault.

The goal of this paper is to present a recovery method

when an MPE becomes faulty and proposes a protocol to

migrate the management software safely to a new PE. The

method does not require redundant structures, as TMR or

software replicas. This work uses task migration and

heuristics to select the new MPE position. The fault model

assumes permanent faults on processors, and the NoC and

memory have fault-tolerant mechanisms.

The paper is organized as follows. Section 2 presents related

work. Section 3 details the system architecture and the fault

model. Section 4 overviews the recovery method. Section 5

presents the actions executed by the recovery protocol. Sec-

tion 6details the recoveryprotocol steps. Section 7presents the

results, and Sect. 8 concludes this paper.

2 Related work

This sections reviews and discusses system management

and fault-tolerance related work, summarized in Table 1.

The 1st column contains the reference. The 2nd column

shows the constraints applied to the system, which is

management or fault-tolerance. The 3rd column presents

the architecture (homogeneous, heterogeneous or only

NoC) and the core counting given by the number of pro-

cessor elements or the NoC size. The 4th column is the

method or technique main goals under the constraint (2nd

column). The 5th column lists the techniques used to

control the system according to the Authors definitions.

The last column presents the experimental setup used by

the Authors and the abstraction level of the system mod-

eling which the results are produced according to the fol-

lowing standard: (1) cycle-accurate simulation, only the

execution time result is exact, and the others are estimated;

(2) FPGA prototyping, cycle-accurate simulation for FPGA

devices.

The literature presents distinct management and fault-

tolerant approaches for MCSoCs that can be applied to the

PE modules. According to Table 1, several techniques are

used to manage the system with different goals, as power,

resources, and performance. Fault-tolerance may be

applied at different levels, as routing-algorithm, link level,

processor level, system level. However, solutions that

encompass a fault tolerance focused on the system man-

agement are scarce. Table 1 presents two works with fault-

tolerance at the management cores [11, 26].

Domingues et al. [11], propose a system management

technique targeting only the communication between PEs.

The Authors propose a lightweight fault recovery mecha-

nism for brokers (their MPEs) of a publish-subscribe mid-

dleware. The proposed approach uses the existing brokers to

backup sensitive data of its neighbor brokers, which provides

high availability to the system because when a fault is

detected in a broker’s processor, its neighbor broker

promptly assumes the responsibility of managing the appli-

cations of the faulty broker. This method differs from our

proposal since it targets only the communication manage-

ment and not resources’ management.

Tsoutsouras et al. [26] is the work most similar with our

proposal. Tsoutsouras et al. [26] present a run-time

resource management framework which can dynamically

adapt the system to permanent faults in a self-organized,

workload-aware manner. They proposed a self-organiza-

tion that allows resource management agents to recovery

from a fault electing a new agent to replace the faulty

management agent, while workload awareness optimizes

the election according to the status of each core. The work

is hierarchically organized in: (1) controller cores:

responsible for monitoring the system status sending this

data to the set of the PEs; (2) manager core: responsible for

managing one application; (3) worker cores: execute the

applications’ tasks. The cluster area is monitored by a

controller core defined at system startup, but cannot change

at runtime. To execute the recovery method in [26] it is

necessary a communication protocol to update and leave

the system in a safe state.
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This paragraph describes the main differences from [26]

to our work. Our proposal adopts one MPE per cluster, able

to monitor several applications simultaneously, making the

management infrastructure simpler. The management

structure in [26] is complex, implying a penalty for system

recovery in the order of seconds, against some milliseconds

in our approach. The selection of the core to receive the

faulty MPE is simpler in our method (Sect. 4), while [26]

adopts a consensus agreement algorithm.

Most works on Table 1 present fault-tolerant methods

focusing on the applications’ execution, using methods

well established in distributed systems. Fault-tolerance at

the system level is a gap observed in the literature. The

present work fulfills this gap, by proposing a runtime

method to migrate the management functions assigned to a

given MPE to a healthy PE.

3 System architecture and fault model

Figure 1 presents the reference many-core platform. It is an

adaptation of the public-available HeMPS many-core [8].

The architecture contains a set of PEs interconnected by a

data NoC and a control NoC [27]. The PE’s hardware is the

same, being the role assigned to the PEs made by software:

• MPEs PEs with management functions. The system

contains Cluster Managers (CMs), responsible for

managing a given cluster, and one CM with an interface

with the external environment to receive new applica-

tions named

Virtual Global Manager Processor (VGM);

• Slave PEs (SPs) execute applications’ tasks, with an

operating system supporting multitasking and message

exchanging.

Each PE contains one processor (CPU), a Direct Memory

Network Interface (DMNI, combining the functions of a

Network Interface and a DMA module) [22], a dual-port

private memory, the data and control routers, and a wrap-

per control module (WC) responsible for isolating the CPU

in the presence of a fault using wrappers—W.

Two similar descriptions model the platform: (1) syn-

thesizable VHDL, for characterization purposes; (2) RTL

SystemC, with clock-cycle accuracy, enabling the simula-

tion of systems with dozens of PEs.

The data NoC main features includes: (1) 2-D mesh

topology; (2) 8-flit buffer depth input buffering; (3)

wormhole packet-switching; (4) support for deterministic

XY and source routing; (5) credit-based flow control; (6)

duplicated physical channels (two 16-bit channels per link),

enabling full adaptive routing.

The control NoC [27] transfers the control messages.

The current work uses the control NoC to transmit mes-

sages with the following purposes:

• Notify the status of the MPEs;

• Freeze application(s) managed by a given MPE;

• Notify an SP that it will become a new MPE;

• Notify a DMNI module to transfer the memory contents

of an SP to a new system address;

• Notity the SPs about a new MPE address;

• Unfreeze application(s) after the MPE migration.

An important architectural feature is that the memory is

accessible by the data NoC, even if the processor has a

permanent fault. The control NoC configures the DMNI

module to transfer the memory contents to another PE.

This feature of moving the memory contents when the

processor has a permanent fault is commonly adopted in

fault-tolerant approaches [19].

(a) (b)

Fig. 1 a 696 MCSoC instance, with four 393 clusters. b Internal PE structure
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The method herein presented may be applied to homo-

geneous or heterogeneous MCSoCs. The proposed method

requires the following architectural features: (1) a set of

PEs with the same architecture; (2) at least two disjoint

NoCs, one for application data and one for management

purposes [29]; (3) a memory module that can be read/write

directly by the network interface [19].

The paper focus is not the fault detection, but the pro-

tocol for fault recovery. This work assumes:

• PE healthy modules memory, DMNI, data and control

NoCs, wrapper control module. A usual method to

protect the memory is the usage of ECC (Error

Correction Codes). The DMNI is a small hardware

module, with two state machines and a buffer. This

module may be protected by hardware replication and

adoption of ECC in the buffer. Besides the NoCs be

considered healthy, it is possible to detect transient

faults [14], and according to the transient faults

severity, trigger the proposed protocol.

• PE faulty module The detection of a permanent fault in

an MPE fires the proposed recovery method. The fault

notification holds the faulty MPE and signalizes to the

control NoC to send the fault notification. The control

NoC [27] has an average latency of 14 clock cycles per

hop, resulting in a minimal latency to deliver the fault

message to the processor responsible for executing the

recovery method.

• Fault detection mechanisms A rich literature with

methods to test the modules of the processing elements

is available, with approaches adopted at different levels

or modules. Fault detection at the system level [4, 19],

fault detection at the router level [13, 30, 31], fault

detection at the processor level [5, 28]. Our proposal

can adopt these mechanisms since fault detection is out

of the scope of this work.

4 Proposed recovery method overview

Figure 2 exemplifies two possible situations handled by the

proposed recovery method, using as example a 492 many-

core instances, with 292 clusters. In Fig. 2a, CM 2;0 is

faulty and SP 3;0 is free, i.e., there is no tasks executing on

it. In this case, the proposed recovery method migrates the

kernel (operating system) from CM 2;0 to SP 3;0. In Fig. 2b

all SPs of the cluster managed by the faulty CM execute

tasks. In this scenario, the recovery method migrates tasks

executing in the cluster to another cluster, before migrating

the kernel.

The method defines at the system startup that two MPEs

horizontally aligned are MPEs pairs. At runtime, an MPE

may migrate to another position, changing the original

configuration of the MPE pair. As there is no guarantee

that the MPE pair continue to be physically aligned, the

usage of broadcast messages enables the communication

between the MPEs belonging to the pair. When a fault

occurs, one MPE of the pair is healthy (Definition 2) and

the other one is faulty (Definition 3).

Definition 2 MPh—healthy MPE.

Definition 3 MPf—faulty MPE.

Figure 3 overviews the recovery protocol. When a per-

manent fault is detected in an MPE, the processor is

promptly isolated by wrappers to avoid Byzantine faults,

and the control NoC notifies the fault to the MPh by a

broadcast control message. The MPh starts the recovery

method. It immediately injects a freeze message to all the

0 1 2 30 1 2 3

SPSP T1 T2

SP

T2

SPVGM CM T30

1

VGM

SP

SP CM

T1SP

0

1

SP Available Cluster Full(a) (b)

Fig. 2 Scenarios handled by the recovery method: a cluster with

available SPs; b cluster with all SPs executing tasks.

Available SPs 
in the cluster?

No

Find a PE to receive a task

Migrate task(s) 

Migrate Kernel and  
Unfreeze task(s)

Yes

Freeze all applications 
managed by the faulty MPE

Fault Detected 
in an MPE

Fig. 3 High-level flow chart, with the actions executed by the

recovery protocol
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PEs. All tasks managed by MPf stop their execution. Next,

MPh evaluates the PE location to receive the functions

executed by MPf . If there is an available SP in the cluster,

i.e., with no tasks assigned to it, the kernel migration

process starts. Otherwise, it is necessary to release an SP of

the cluster managed by MPf to another cluster. This action

is done by migrating one or more tasks to a free SP. When

the task migration finishes, the kernel migration begins.

After the kernel migration, the PE that received the kernel

assumes the role of the previous MPf .

5 Actions executed by the recovery protocol

This section presents the actions executed by the recovery

protocol. The criteria to select an SPcand (Sect. 5.1), the

method to freeze and unfreeze tasks (Sect. 5.2), the tech-

nique for task migration (Sect. 5.3) and the method to

migrate the MPE memory contents (Sect. 5.4).

5.1 MPE candidate selection

At system startup, the closest SP to its MPE is the SP

candidate—SPcand, Definition 4. When the MPE maps a

new application into the cluster, it verifies if the SPcand has

tasks assigned to it. In this case, the rule to select a new

SPcand is the SP with the minimum number of tasks

assigned to it. Thus, after any application mapping, the

MPE computes the SPcand address and transmits it to its

pair. The number of tasks executing in the SPcand is also

transmitted because if it’s different from zero, the MPE

pair will manage the migration of the tasks executing in the

SPcand .

Definition 4 SPcand—an SP selected by its MPE to receive

the management kernel, if this MPE fails.

5.2 Freeze/unfreeze process

When an MPE fails, the tasks it manages are suspended to

prevent control messages from being lost. This suspension

process is called freezing. Since the MPE is faulty, its pair

executes this action.

Freeze and unfreeze are control actions to stop or release

the execution of a set of tasks. Figure 4 presents the

freezing process that starts with a MPh (CM1) transmitting

in broadcast a freeze_message, by the control NoC,

having in its payload the address of the MPf (VGM). Any

SP receiving a freeze message verifies if it has tasks

managed by MPf . In this case, all tasks of these SPs are

freezed (blue region in the figure). Otherwise, the message

is discarded. The transmission of the freeze message

enables to stop tasks in SPs managed by MPf executing in

other clusters, due to the reclustering process. The freeze

message does not stop the tasks immediately. To avoid

messages losses, the task must be in a safe state. A safe

state is defined as: the task to freeze should be ready to be

scheduled by the kernel, and there is no pending request for

messages. For example, if a task is in a waiting state, this

means that the task requested a message to a producer task.

Thus, the producer receives the request and at some

moment inject messages into the NoC. Such procedure

ensures that when a given task stops, there are no messages

generated by the task in the data NoC. Thus, all tasks

managed by MPf goes to the freeze state, avoiding their

scheduling by the kernel.

After the recovery process, the new MPE sends an

unfreeze_message, also in broadcast. This message

unfreezes the tasks managed by the new MPE and also

transmits the new MPE address to the SPs of the cluster.

5.3 Task migration

The MPh starts the task migration process. First, the MPh

sends a task migration message to the SP, notifying that the

tasks it is running must migrate to a new PE—the target

PE. Next, the SP operating system sends a set of messages

to the target PE related to the tasks executing in the SP:

(i) Task code;

(ii) TCB (Task Control Block): a data structure that

stores the task state, including the values stored at

each register, PC (Program Counter), SP (Stack

Pointer), size of the object code and data (for

migration purposes);

(iii) Message Requests: a structure with the received

requests for messages;

(iv) Stack data: data stored in the memory correspond-

ing to the stack;
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(v) Pipe: all messages produced by the task but not yet

delivered;

(vi) Data: includes the local data and BSS memory

segments;

(vii) Tasks location: addresses of the tasks that com-

municate with the task being migrated.

The target PE after receiving all task messages related to

the task migration execute the following actions: (1) sends

a message to all SPs that communicate with the migrated

task with the new task address; (2) sends a message to MPh

notifying that the migration process ended.

Figure 5 presents a possible scenario handled by the

recovery protocol with task migration. In this scenario, it

was detected a permanent fault at CM1. All SPs of this

cluster have at least one task in execution, being SP2;1 the

SPcand . In Fig. 5a occurs the fault detection at CM1. The

wrapper control module (WC, in Fig. 1) notifies the fault

by injecting a fail_CPU_message in the control NoC. The

VGM knows that the SPcand is executing task C. Thus, it is

necessary a task migration before the recovery process. In

Fig. 5b task C migrates from SP2;1 to SP1;1, in another

cluster. When the task migration finishes, the kernel

migrates to SP2;1 (Fig. 5c).

5.4 Kernel migration

The kernel (operating system) migration differs from task

migration. While in task migration it is possible to optimize

the amount of data to be transmitted, the kernel migration

requires the transmission of complete memory contents

from the MPf to the SPcand.

Another difference between migration methods is the

migration management. While in task migration the kernel

itself executes this process, in the kernel migration this is

not possible because the processor is faulty and isolated by

wrappers. Thus, it was added in the DMNI module the

ability to treat specific packets, which starts the process of

transferring the memory contents.

The first step of the kernel migration process is to pre-

pare the SPcand to receive the MPf memory contents (code

and data). The MPh, notifies the SPcand that it will receive

the kernel executing in MPf , through a wait_ker-

nel_message. A field in the packet header of this

message defines that the DMNI module will process the

message payload, not the processor. This message induces

in the PE the following actions: (i) hold the processor and

configure the DMNI module to write incoming packets into

the memory, from address zero; (ii) after configuring the

DMNI to write packets directly into the memory, the DMNI

sends a wait_kernel_acknowledge message to

MPH .

Once received the wait_kernel_acknowledge

message, the MPh notifies MPf to send the kernel to SPcand

through a send_kernel_message. The kernel migra-

tion is simpler than the task migration in the sense that only

one message is transmitted with the complete memory

contents.

An issue to discuss is how the recovery method affects

the traffic in the NoC, which could penalize the perfor-

mance of applications. A fault in an MPE (VGM or CM)

affects applications running on the cluster managed by this

MPf . The MPh stopped all applications managed by MPf ,
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but all other applications continue to run in their clusters,

without being disturbed. A slight perturbation may occur

during task migration. Consequently, the recovery method

has a minimal impact in the NoC traffic, occurring only

when it is necessary to migrate a task to a neighbor cluster.

Figure 6 presents how the MPf handles the

send_kernel_message. It is important to remind that

the fault detection mechanism already isolated the CPU by

wrappers. The DMNI of the MPf handles this message

(event 1 in the figure), transferring the memory contents to

the SPcand (2), using the data NoC.

6 Recovery protocol steps

Figure 7 presents the recovery method, assuming:

• A many-core with two clusters, being CM0 and CM1

the managers of clusters 0 and 1, respectively;

• SP7: SPcand , executing 1 task;

• SP1: an idle processor from another cluster that will

receive the task executing in SP7.

Cluster 1 receives application mapping requests (1 in

Fig. 7), assigning a task to each SP in its cluster. In this

example, all SPs execute at least one task. After assigning

the tasks in the cluster, SP7 is elected as a new SPcand , and

CM1 notifies CM0 that SP7 is the SPcand , executing one

task (2).

At a given moment (3), a permanent fault is detected in

the processor of CM1. The control NoC receives the fault

notification, and broadcast a Fail CPU service message,

targeting the CM pair, in this case, CM0. The first action of

the protocol, after the fault notification message, is to

broadcast a freeze message (Sect. 5.2) to all tasks managed

by CM1 (4).

The next protocol action is to migrate tasks, if neces-

sary. In this example, it is necessary to migrate the task

executing on SP7 to SP1. The CM0 sends a message to SP7

to migrate the task it is executing to SP1 (5). As detailed in

Sect. 5.3, SP7 sends to SP1 a set of messages with the task

contents. After receiving all messages related to the task

migration, SP1 notifies to all application tasks the new

location of the migrated task (6). The task migration ends

with SP1 notifying theMPh (CM0) the end of the migration

process (7).
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With the availability of a PE in the cluster, the kernel

migration starts. Actions represented in event 8 correspond

to the kernel migration protocol (Sect. 5.4): notification of

the SP that will assume the CM role (SP7); the acknowl-

edgment message to CMH ; and the message to transfer the

memory contents from the CMF to SPcand . Next, the CMF

DMNI transfers the memory contents to SPcand (9). Once

the kernel received, the SPcand restarts, assuming the role of

a new CM. After restarting, the new CM sends an unfreeze

message to the stopped task (10). This message unfreezes

the tasks managed by the new CM and also transmits the

CM address to the SPs.

Note that when the kernel is restarted, the processor

knows that it is a restart from a migration. In this case, the

contents of all data structures are preserved, without exe-

cuting the kernel initialization.

7 Results

This section presents results related to the recovery pro-

tocol. Experiments are executed using a clock-cycle

accurate RTL SystemC model of the reference many-core

platform. Applications and kernel are described in C lan-

guage, compiled from C code and executed over the plat-

form model. The experiments adopt a 696 many-core

instance, organized in 393 clusters. To evaluate the

recovery protocol, five benchmarks execute in the MCSoC:

MPEG decoder (5 tasks), Prod Cons (2 tasks), DTW (6

tasks), Synthetic (6 tasks) and Dijkstra (6 tasks).

This section evaluates the Workload Execution Time

(WET) and the recovery method overheads, in milliseconds

(@100 MHz). A common overhead in the experiments is

the time required to migrate the kernel (64 KB), 1.5 ms

(average value), and the time to migrate one task (10 KB,

code and data), 0.3 ms (average value). These overheads

vary proportionally with the kernel and task sizes. The

reason to keep the same kernel and task sizes in the

experiments comes from the fact that they do not impact in

the remaining protocol steps.

7.1 Recovery results from a fault in a manager

This section presents a scenario when the fault is injected

in an MPE. This first evaluation corresponds to the best-

case scenario for the protocol, since the SPcand is free

(without any task assigned to it).

Figure 8 presents the test-case to recover the VGM.

Figure 8a presents the MCSoC state before the recovery

method, being SP2;2 the SPcand . When the fault is detected

by CM1 (VGM pair), the manager recovery method starts.

Figure 8b presents the system state after the VGM migra-

tion to the SPcand(2,2).

Table 2 details the time spent at each recovery protocol

step. The 1st line contains the time when a fault was

inserted and detected, 2.8 ms. The 2nd line shows the

moment when the kernel migration starts. The 4th line

corresponds to the moment when the recovery ended, 4.32

ms. The difference, 1.52 ms, is the delay mentioned above

to migrate the kernel.
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Fig. 8 Recovery method for the VGM

Table 2 Overhead—VGM recovery

Time (ms)

Fail CPU 2.8

Freeze 2.81

Wait Kernel 2.97

Unfreeze 4.32

WET (with recovery) 10.13

WET (baseline) 8.35
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The last two lines correspond to the WET, with (5th) and

without (6th) the recovery method. The difference (1.78

ms) is slightly higher than the kernel recovery time. The

reason for explaining the increase in the total execution

time is mainly due to the rescheduling of tasks. Figure 9

illustrates the task scheduling of the Synthetic application,

which was running in the left-most cluster. It is possible to

observe the moment when all tasks were suspended due to

the freeze message, and later the moment of reactivation

(unfreeze message). Given the interdependence between

the tasks, there is an overhead for the resynchronization

between them.

It is worthwhile to mention that there is no relationship

between the number of tasks and the WET. The additional

overhead (0.26 ms in the experiment) is due to the

resynchronization between the tasks of the applications

affected by the freezing process during the kernel recovery.

Table 3 shows the time when each application starts and

ends its execution. Note that all applications were execut-

ing when the fault was injected into the VGM (2.8 ms). The

tstart in Table 3 corresponds to the moment that application

should be deployed into the MCSoC. The VGM executes

the cluster selection, in the sequence occurs the task

mapping, the transmission of the object code of the tasks to

the SPs, and finally, the task is scheduled. Thus, even if

tstart ¼ 0, as for the Synthetic application, this application

actually starts at 0.5 ms.

Results to recover a CM is similar to the VGM recovery,

1.52 ms to migrate the CM1 kernel. Table 4 details the

time spent at each recovery protocol step. Table 5 shows

the time when each application starts and ends its execu-

tion. TheWET, with and without recovery, is the same. The

reason for explaining the same WET is that the application

affected during the recovery method (MPEG-1) finishes its

execution before the Synthetic application (9.05 ms). The

overhead occurs only in the MPEG-1 execution time, 5.02

ms to 6.64 ms, resulting in an overhead equal to 1,62 ms.

This result presents an advantage of the method, which is

the fact the recovery method overhead can be masked if the

set of applications executing on the MPh clusters takes

longer to execute than the applications executing on the

MPf cluster.

Fig. 9 Scheduling of the Synthetic tasks, showing the moment when the application is suspended

Table 3 Applications’ execution time

Application tstart (ms) tend (ms)

DTW 0.00 8.32

Synthetic 0.00 10.08

Dijkstra 1.50 7.98

Mpeg 2.54 7.04

Prod_cons 2.17 5.30

Table 4 Overhead—CM recovery

Time (ms)

Fail CPU 2.5

Freeze 2.51

Wait Kernel 2.67

Unfreeze 4.02

WET (R—with recovery) 9.06

WET (B—baseline) 9.06

Table 5 Applications’ execution time

Application tstart (ms) tend (ms)

B–R

MPEG-1 2.00 7.02–8.54

Synthetic 0.00 9.05–9.05

Dijkstra 1.50 7.09–7.09

MPEG-2 0.00 5.06–5.06
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In both scenarios, with faults injected into the VGM or

CM, the overhead is the time to migrate the memory

contents (code and data of the MPf ) to the SPcand. When an

MPE fails, the tasks it manages should be suspended to

prevent control messages from being lost (freeze), delaying

applications. For both VGM or CM recovery, the overhead

was the same, corresponding to 1.5 ms@100 MHz, or

150,000 clock cycles.

7.2 Recovery results from a fault in an mpe
with task migration

This section presents a scenario when the fault is injected

in an MPE, and the cluster has all resources in use. Thus,

the SPcand is not free. i.e., it has tasks assigned to it, being

necessary to execute task migration before the recovery

method starts.

Figure 10 shows the test case to recover the VGM,

executing task migration before kernel migration. Fig-

ure 10a presents the MCSoC state before the recovery

protocol, being SP1;0 the SPcand . When the fault is detected

by CM1 (VGM pair), the manager recovery method starts.

The task TC migrates from SP1;0 to SP5;2. After task

migration, the SPcand(1,0) receives the VGM kernel. Fig-

ure 10b presents the system state after the VGM kernel

migration.

Figure 11 illustrates the task scheduling of TC, which

was allocated and running in SP1;0 up to 3.0 ms, and

migrated to SP5;2. It is possible to observe when the task

was suspended due to the freeze message in SP1;0 at

3.0 ms, migrated, and later the moment of reactivation

(unfreeze message) in the SP5;2 at the 4.5 ms.
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Table 6 Overhead—VGM recovery and task migration

Time (ms)

Fail CPU 3.00

Freeze 3.01

Migration 3.29

Wait Kernel 3.30

Unfreeze 4.65

WET (with recovery) 9.92

WET (baseline) 8.61
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Table 6 details the time spent at each recovery protocol

step. The 1st and 2nd lines present when the fault was

inserted and detected, 3.0 and 3.01 ms, respectively. The

3rd line shows the moment when task migration ended. The

4th line shows the moment when kernel migration starts.

The 5th line shows the moment when the recovery ended.

Table 7 shows the time when each application starts and

ends its execution.

The overhead induced by the recovery method and a

task migration was 1.65 ms. However the WET with

recovery presents an overhead equal to 1.31 ms. The

overhead is lower than expected due to the fact that task TC

is originally in a position with high data traffic, and with

migration, its mapping reduced the network congestion.

This experiment shows that a reduced number of hops

between tasks, the primary function of the mapping

heuristics, may impact negatively in the application

performance.

Table 8 details the time spent at each recovery protocol

step when CM1 fails. The 1st and 2nd lines present when

the fault was inserted and detected, 3.0 and 3.01 ms,

respectively. The 3rd line shows the moment when task

migration ended. The 4th line shows the moment when

kernel migration starts. The 5th line shows the moment

when the recovery ended. Table 9 shows the time when

each application starts and ends its execution. In this

experiment, the overhead induced by the recovery method

and a task migration was 1.65 ms, and the WET overhead

1.66 ms. They are, in practice, the same because the

affected application by the CM1 fault is the one with the

longest execution time.

In both VGM or CM1 fault scenarios, the overhead is

the time spend to migrate the memory contents (code and

data of theMPf ) to the SPcand and the task migration. When

an MPE fails, the tasks it manages should be suspended to

prevent control messages from being lost (freeze). The

freezing process delays the application. For both VGM or

CM1 recovery and the task migration, the time overhead

was 1.65 ms or 165,000 clock cycles.

The requirement to initiate the recovery method is to

select a free SP to become a new manager. The SP can-

didate can have tasks assigned to it, and the cost to free the

SP is the migration cost.

7.3 Final remarks

Table 10 summarizes the results presented in this sec-

tion. It is possible to state that a fault in an MPE induces a

runtime overhead of around 1.5 ms (150,000 clock cycles),

and it increases according to the size of the kernel memory

footprint.

Table 7 Applications’ execution time

Application tstart (ms) tend (ms)

DTW 0.00 8.33

Synthetic 0.30 9.89

Dijkstra 1.50 7.11

Mpeg 2.50 7.04

Prod_cons 2.17 5.24

Prod_cons 2.00 7.01

Table 8 Overhead—CM recovery and task migration

Time (ms)

Fail CPU 3.00

Freeze 3.01

Migration 3.29

Wait Kernel 3.30

Unfreeze 4.65

WET (with recovery) 11.86

WET (baseline) 10.20

Table 9 Applications’ execution time

Application tstart (ms) tend (ms)

Synthetic 2.50 11.82

Mpeg 0.03 5.07

DTW 0.00 8.21

Dijkstra 1.50 7.10

Prod_cons 2.17 5.29

Prod_cons 2.00 5.12

Prod_cons 2.00 7.02

Table 10 Summary of results
Fault Location Relevant protocol feature Protocol overhead (kernel: 64KB/task: 10 KB) (ms)

VGM Without task migration 1.5

CM

VGM With task migration 1.65

CM
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The evaluation made in this section focused on the

method overhead in terms of performance. There are two

implementation costs: software and hardware. The cost of

the software refers to the increase in memory required by

the kernels running on VGM/CM, from 12 to 43 KB, and on

SP kernel, from 19 to 34 KB.

The hardware costs associated with the methods can be

listed as follows: (i) control NoC network, area equivalent

to 20% of a data network router; (ii) wrappers, it require

only logic gates to isolate control signals; (iii) it is assumed

that the memory is protected by ECC (error-correcting

codes) and that the network interface has access to this

memory in case of processor fault. Therefore, the hardware

cost is minimal, being portable for other MCSoC

architectures.

8 Conclusion

This work presented a runtime protocol for management

recovery in NoC-based many-core. The proposal includes a

method to safely migrate the management software to a

new processing element, assuming a protected memory and

a task migration method to release an SP candidate. The

results displayed a small overhead for the task migration,

as well as a small impact on the execution time of the

applications when they are stopped to migrated the man-

agement functions to another PE (1.5 to 1.65 ms).

Future works include: (i) extend the method to faults in

slave processing elements, enabling to recover applications

from faults; (ii) add multiple interfaces to the external

environment to avoid a single point of failure, i.e., enable

multiple CMs to receive application requests.
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