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Abstract

The technology nodes reduction enabled the emergence of NoC-based many-cores with dozens to hundreds of processing
elements (PEs). Despite the processing power offered by a large number of processors and communication flexibility due to
the adoption of NoCs, it is necessary to manage the many-core resources to ensure scalability. The execution of the
management tasks requires a PE reserved exclusively to execute such actions. These processors are named managers PE—
MPE. A centralized approach would induce a significant load to the MPE in large-scale systems, and a permanent fault in
the MPE would compromise the entire system. The adoption of a distributed approach, organization adopted in this work,
with MPEs hierarchically organized, reduces the management load, and a fault in an MPE would compromise only the PEs
managed by the faulty MPE. The literature presents several fault-tolerant proposals targeting the NoC or the processors.
However, there is a significant gap related to fault-tolerant methods at the system level, i.e., related to fault-tolerant
techniques regarding the MPEs. The goal of this paper is to present a recovery method when an MPE became faulty, and
propose a protocol to migrate the management software safely to a new PE. The method adopts task migration to release a
processor if there is no processor to receive the kernel that was executing in a faulty processor. The proposal is transparent
to the applications running in the many-core, with an overhead in the execution time varying between 1.5 and 1.65 ms
during the management and task migration.

Keywords Many-core - NoC - System management - Fault-recovery protocol - Task migration - Fault-tolerance

1 Introduction (energy, temperature, deadlines). The management of a
MCSoC may be centralized or hierarchically organized in
Modern NoC-based many-core Systems-on-Chip (MCSoCs)  clusters (Definition 1) [6, 9].
enable embedded systems with dozens of processors. Large
MCSoCs demand one or  more dedicated
Processing Element (PE) for management actions, as task
mapping, task migration, power management (DVES), QoS
management, self-awareness adaptation, system monitoring

Definition 1 Cluster—an MCSoC virtual region, with a
set of PEs and one manager MPE. The cluster size is a
design-time parameter, but a cluster can borrow resources
from other clusters at runtime when all clusters resources
are busy—reclustering process [9].

With the ever-increasing reduction in the devices’
geometry, transistors, vias, and wires degrade faster over
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issue in MCSoCs [15]. Classical fault-tolerant approaches,
as Triple Module Redundancy (TMR) or spare components
[21], do not comply with today’s requirements of silicon
area and power dissipation. By construction, an MCSoC
contains a set of replicated structures (the PEs), where a
healthy component can replace the faulty component
functions, with minimal performance reduction.

How to deal with a fault on MPEs opens a set of new
challenges and opportunities in the field of many-core
systems research. In a centralized approach, if the MPE
presents a permanent fault, the entire system halts. In the
hierarchical organization when an MPE became unre-
sponsive, only a many-core region is affected.

Thus, MCSoCs need management mechanisms to per-
form different control tasks at the system level, and the
technology evolution from one side enables to increase the
number of PEs and from the other side accelerates the
emergence of faults. The literature presents different
approaches at the system level: power management (e.g.,
DVES), performance and QoS management, resource
management, and security [1, 7, 12, 25]. A rich literature
with methods to test PEs is also available, with approaches
adopted at different levels (hardware or software) or
modules (Network-on-Chip (NoC), processors, memory).
However, there is a significant gap related to fault-tolerant
methods at the system level, i.e., related to the processors
with the function to manage the system. Therefore, the
MCSoC management requires monitoring and actuation
policies to recover the system when one of these processors
presents a permanent fault.

The goal of this paper is to present a recovery method
when an MPE becomes faulty and proposes a protocol to
migrate the management software safely to a new PE. The
method does not require redundant structures, as TMR or
software replicas. This work uses task migration and
heuristics to select the new MPE position. The fault model
assumes permanent faults on processors, and the NoC and
memory have fault-tolerant mechanisms.

The paper is organized as follows. Section 2 presents related
work. Section 3 details the system architecture and the fault
model. Section 4 overviews the recovery method. Section 5
presents the actions executed by the recovery protocol. Sec-
tion 6 details the recovery protocol steps. Section 7 presents the
results, and Sect. 8 concludes this paper.

2 Related work

This sections reviews and discusses system management
and fault-tolerance related work, summarized in Table 1.
The 1st column contains the reference. The 2nd column
shows the constraints applied to the system, which is
management or fault-tolerance. The 3rd column presents
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the architecture (homogeneous, heterogeneous or only
NoC) and the core counting given by the number of pro-
cessor elements or the NoC size. The 4th column is the
method or technique main goals under the constraint (2nd
column). The 5th column lists the techniques used to
control the system according to the Authors definitions.
The last column presents the experimental setup used by
the Authors and the abstraction level of the system mod-
eling which the results are produced according to the fol-
lowing standard: (1) cycle-accurate simulation, only the
execution time result is exact, and the others are estimated;
(2) FPGA prototyping, cycle-accurate simulation for FPGA
devices.

The literature presents distinct management and fault-
tolerant approaches for MCSoCs that can be applied to the
PE modules. According to Table 1, several techniques are
used to manage the system with different goals, as power,
resources, and performance. Fault-tolerance may be
applied at different levels, as routing-algorithm, link level,
processor level, system level. However, solutions that
encompass a fault tolerance focused on the system man-
agement are scarce. Table 1 presents two works with fault-
tolerance at the management cores [11, 26].

Domingues et al. [11], propose a system management
technique targeting only the communication between PEs.
The Authors propose a lightweight fault recovery mecha-
nism for brokers (their MPEs) of a publish-subscribe mid-
dleware. The proposed approach uses the existing brokers to
backup sensitive data of its neighbor brokers, which provides
high availability to the system because when a fault is
detected in a broker’s processor, its neighbor broker
promptly assumes the responsibility of managing the appli-
cations of the faulty broker. This method differs from our
proposal since it targets only the communication manage-
ment and not resources’ management.

Tsoutsouras et al. [26] is the work most similar with our
proposal. Tsoutsouras et al. [26] present a run-time
resource management framework which can dynamically
adapt the system to permanent faults in a self-organized,
workload-aware manner. They proposed a self-organiza-
tion that allows resource management agents to recovery
from a fault electing a new agent to replace the faulty
management agent, while workload awareness optimizes
the election according to the status of each core. The work
is hierarchically organized in: (1) controller cores:
responsible for monitoring the system status sending this
data to the set of the PEs; (2) manager core: responsible for
managing one application; (3) worker cores: execute the
applications’ tasks. The cluster area is monitored by a
controller core defined at system startup, but cannot change
at runtime. To execute the recovery method in [26] it is
necessary a communication protocol to update and leave
the system in a safe state.
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This paragraph describes the main differences from [26]
to our work. Our proposal adopts one MPE per cluster, able
to monitor several applications simultaneously, making the
management infrastructure simpler. The management
structure in [26] is complex, implying a penalty for system
recovery in the order of seconds, against some milliseconds
in our approach. The selection of the core to receive the
faulty MPE is simpler in our method (Sect. 4), while [26]
adopts a consensus agreement algorithm.

Most works on Table 1 present fault-tolerant methods
focusing on the applications’ execution, using methods
well established in distributed systems. Fault-tolerance at
the system level is a gap observed in the literature. The
present work fulfills this gap, by proposing a runtime
method to migrate the management functions assigned to a
given MPE to a healthy PE.

3 System architecture and fault model

Figure 1 presents the reference many-core platform. It is an
adaptation of the public-available HeMPS many-core [8].
The architecture contains a set of PEs interconnected by a
data NoC and a control NoC [27]. The PE’s hardware is the
same, being the role assigned to the PEs made by software:

e MPEs PEs with management functions. The system
contains Cluster Managers (CMs), responsible for
managing a given cluster, and one CM with an interface

Each PE contains one processor (CPU), a Direct Memory
Network Interface (DMNI, combining the functions of a
Network Interface and a DMA module) [22], a dual-port
private memory, the data and control routers, and a wrap-
per control module (WC) responsible for isolating the CPU
in the presence of a fault using wrappers—W.

Two similar descriptions model the platform: (1) syn-

thesizable VHDL, for characterization purposes; (2) RTL
SystemC, with clock-cycle accuracy, enabling the simula-
tion of systems with dozens of PEs.

The data NoC main features includes: (1) 2-D mesh

topology; (2) 8-flit buffer depth input buffering; (3)
wormhole packet-switching; (4) support for deterministic
XY and source routing; (5) credit-based flow control; (6)
duplicated physical channels (two 16-bit channels per link),
enabling full adaptive routing.

The control NoC [27] transfers the control messages.

The current work uses the control NoC to transmit mes-
sages with the following purposes:

Notify the status of the MPEs;

Freeze application(s) managed by a given MPE;
Notify an SP that it will become a new MPE;

Notify a DMNI module to transfer the memory contents
of an SP to a new system address;

Notity the SPs about a new MPE address;

Unfreeze application(s) after the MPE migration.

An important architectural feature is that the memory is

with the external environment to receive new applica-

tions

Virtual Global Manager Processor (VGM);
e Slave PEs (SPs) execute applications’ tasks, with an

accessible by the data NoC, even if the processor has a
permanent fault. The control NoC configures the DMNI
module to transfer the memory contents to another PE.
This feature of moving the memory contents when the
processor has a permanent fault is commonly adopted in

operating system supporting multitasking and message
exchanging.

fault-tolerant approaches [19].

snﬂ:‘sﬂ:‘sp SP SPHSP
11 L1 11 L1 L1 11
SP’:‘SP’:‘SPHSP SPHSP
1 L1 11 11 i i
CMHSPHSP cm SPHSP
11 11 11 11 11 11
SPHSPHSPHSP SPHSP
11 |l 11 11 i i
SP}:(SP':‘SP sP SPHSP
11 11 11 L1 L1 11
VGMH SP H SP Hcm SP H SP

(@

YV

Data

Router

A4

PE
Processing Element

(b)

Fig. 1 a 6x6 MCSoC instance, with four 3x3 clusters. b Internal PE structure
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The method herein presented may be applied to homo-
geneous or heterogeneous MCSoCs. The proposed method
requires the following architectural features: (1) a set of
PEs with the same architecture; (2) at least two disjoint
NoCs, one for application data and one for management
purposes [29]; (3) a memory module that can be read/write
directly by the network interface [19].

The paper focus is not the fault detection, but the pro-
tocol for fault recovery. This work assumes:

e PE healthy modules memory, DMNI, data and control
NoCs, wrapper control module. A usual method to
protect the memory is the usage of ECC (Error
Correction Codes). The DMNI is a small hardware
module, with two state machines and a buffer. This
module may be protected by hardware replication and
adoption of ECC in the buffer. Besides the NoCs be
considered healthy, it is possible to detect transient
faults [14], and according to the transient faults
severity, trigger the proposed protocol.

e PE faulty module The detection of a permanent fault in
an MPE fires the proposed recovery method. The fault
notification holds the faulty MPE and signalizes to the
control NoC to send the fault notification. The control
NoC [27] has an average latency of 14 clock cycles per
hop, resulting in a minimal latency to deliver the fault
message to the processor responsible for executing the
recovery method.

e Fault detection mechanisms A rich literature with
methods to test the modules of the processing elements
is available, with approaches adopted at different levels
or modules. Fault detection at the system level [4, 19],
fault detection at the router level [13, 30, 31], fault
detection at the processor level [5, 28]. Our proposal
can adopt these mechanisms since fault detection is out
of the scope of this work.

4 Proposed recovery method overview

Figure 2 exemplifies two possible situations handled by the
proposed recovery method, using as example a 4x2 many-
core instances, with 2x2 clusters. In Fig. 2a, CM , is
faulty and SP 3 is free, i.e., there is no tasks executing on

1| sp SP ™ T2
0|vem SP CM T3
0 1 2 3

(a) SP Available (b) Cluster Full

Fig. 2 Scenarios handled by the recovery method: a cluster with
available SPs; b cluster with all SPs executing tasks.

it. In this case, the proposed recovery method migrates the
kernel (operating system) from CM , to SP 3. In Fig. 2b
all SPs of the cluster managed by the faulty CM execute
tasks. In this scenario, the recovery method migrates tasks
executing in the cluster to another cluster, before migrating
the kernel.

The method defines at the system startup that two MPEs
horizontally aligned are MPEs pairs. At runtime, an MPE
may migrate to another position, changing the original
configuration of the MPE pair. As there is no guarantee
that the MPE pair continue to be physically aligned, the
usage of broadcast messages enables the communication
between the MPEs belonging to the pair. When a fault
occurs, one MPE of the pair is healthy (Definition 2) and
the other one is faulty (Definition 3).

Definition 2 MP;,—healthy MPE.
Definition 3 MP;—faulty MPE.

Figure 3 overviews the recovery protocol. When a per-
manent fault is detected in an MPE, the processor is
promptly isolated by wrappers to avoid Byzantine faults,
and the control NoC notifies the fault to the MP;, by a
broadcast control message. The MP;, starts the recovery
method. It immediately injects a freeze message to all the

Fault Detected
in an MPE

v

Freeze all applications
managed by the faulty MPE

Available SPs
in the cluster?

Find a PE to receive a task

‘ Yes

Migrate task(s)

\ 4
Migrate Kernel and
Unfreeze task(s)

Fig. 3 High-level flow chart, with the actions executed by the
recovery protocol
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PEs. All tasks managed by MPy stop their execution. Next,
MP;, evaluates the PE location to receive the functions
executed by MP;. If there is an available SP in the cluster,
i.e., with no tasks assigned to it, the kernel migration
process starts. Otherwise, it is necessary to release an SP of
the cluster managed by MP; to another cluster. This action
is done by migrating one or more tasks to a free SP. When
the task migration finishes, the kernel migration begins.
After the kernel migration, the PE that received the kernel
assumes the role of the previous MPy.

5 Actions executed by the recovery protocol

This section presents the actions executed by the recovery
protocol. The criteria to select an SP.q,s (Sect. 5.1), the
method to freeze and unfreeze tasks (Sect. 5.2), the tech-
nique for task migration (Sect. 5.3) and the method to
migrate the MPE memory contents (Sect. 5.4).

5.1 MPE candidate selection

At system startup, the closest SP to its MPE is the SP
candidate—SP 4,4, Definition 4. When the MPE maps a
new application into the cluster, it verifies if the SP.4,q has
tasks assigned to it. In this case, the rule to select a new
SP.ana 1s the SP with the minimum number of tasks
assigned to it. Thus, after any application mapping, the
MPE computes the SP.,,; address and transmits it to its
pair. The number of tasks executing in the SP 4,4 is also
transmitted because if it’s different from zero, the MPE
pair will manage the migration of the tasks executing in the
SP cand +

Definition 4 SP,,,,—an SP selected by its MPE to receive
the management kernel, if this MPE fails.

SP SP SP SP Ta;(Sk H SP
1 1 1 1 I1 I1
Task Task Task
SP A B SP Y H SP
1 1 1 I1

Task Task
CM2 C H cM3 W
i i 11
SP SP SP SP SP
1 1 1 1 1T
Task Task Task SP Task Task
B A C H U
T 11 1 1
Task Task Task

Fig. 4 Freeze process on the cluster managed by the VGM. CMI
injects the freeze_message
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5.2 Freeze/unfreeze process

When an MPE fails, the tasks it manages are suspended to
prevent control messages from being lost. This suspension
process is called freezing. Since the MPE is faulty, its pair
executes this action.

Freeze and unfreeze are control actions to stop or release
the execution of a set of tasks. Figure 4 presents the
freezing process that starts with a MP; (CM1) transmitting
in broadcast a freeze_message, by the control NoC,
having in its payload the address of the MP; (VGM). Any
SP receiving a freeze message verifies if it has tasks
managed by MP;. In this case, all tasks of these SPs are
freezed (blue region in the figure). Otherwise, the message
is discarded. The transmission of the freeze message
enables to stop tasks in SPs managed by MP; executing in
other clusters, due to the reclustering process. The freeze
message does not stop the tasks immediately. To avoid
messages losses, the task must be in a safe state. A safe
state is defined as: the task to freeze should be ready to be
scheduled by the kernel, and there is no pending request for
messages. For example, if a task is in a waiting state, this
means that the task requested a message to a producer task.
Thus, the producer receives the request and at some
moment inject messages into the NoC. Such procedure
ensures that when a given task stops, there are no messages
generated by the task in the data NoC. Thus, all tasks
managed by MP; goes to the freeze state, avoiding their
scheduling by the kernel.

After the recovery process, the new MPE sends an
unfreeze_message, also in broadcast. This message
unfreezes the tasks managed by the new MPE and also
transmits the new MPE address to the SPs of the cluster.

5.3 Task migration

The MP), starts the task migration process. First, the MP,
sends a task migration message to the SP, notifying that the
tasks it is running must migrate to a new PE—the target
PE. Next, the SP operating system sends a set of messages
to the target PE related to the tasks executing in the SP:

(i) Task code;

(ii)) TCB (Task Control Block): a data structure that
stores the task state, including the values stored at
each register, PC (Program Counter), SP (Stack
Pointer), size of the object code and data (for
migration purposes);

(iii) Message Requests: a structure with the received
requests for messages;

(iv)  Stack data: data stored in the memory correspond-
ing to the stack;
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3 SP#SPM A ﬁprod 3rSPHSP

H A HProd 3] sP

SP ﬁ A ﬁProd

Cons

B ﬁCons 2| sp SP ﬁ B

#Free# E 1] SP

11 [N |
#[Eﬁfﬁ o ofen

c HomiH E

11 11
S @

I I | N | I I

2 SP#SP# B ﬁCons 2 Spﬁspﬁ
11 11 I I -
1fsPHsPH c HE 1L~I‘,Ipﬁlc,:
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Fig. 5 Task migration to release an SP. a Fault detect at CM1; b task C migrated from SP;; to SP; ;; ¢ CM1 migration from address (2, 0) to (2,

D

(v)  Pipe: all messages produced by the task but not yet
delivered;

(vi) Data: includes the local data and BSS memory

segments;

Tasks location: addresses of the tasks that com-

municate with the task being migrated.

(vii)

The target PE after receiving all task messages related to
the task migration execute the following actions: (1) sends
a message to all SPs that communicate with the migrated
task with the new task address; (2) sends a message to MP,
notifying that the migration process ended.

Figure 5 presents a possible scenario handled by the
recovery protocol with task migration. In this scenario, it
was detected a permanent fault at CM1. All SPs of this
cluster have at least one task in execution, being SP; ; the
SP.ana- In Fig. 5a occurs the fault detection at CM1. The
wrapper control module (WC, in Fig. 1) notifies the fault
by injecting a fail_CPU_message in the control NoC. The
VGM knows that the SP,,, is executing task C. Thus, it is
necessary a task migration before the recovery process. In
Fig. 5b task C migrates from SP,; to SP;;, in another
cluster. When the task migration finishes, the kernel
migrates to SP,; (Fig. 5¢).

5.4 Kernel migration

The kernel (operating system) migration differs from task
migration. While in task migration it is possible to optimize
the amount of data to be transmitted, the kernel migration
requires the transmission of complete memory contents
from the MP; to the SP 44

Another difference between migration methods is the
migration management. While in task migration the kernel
itself executes this process, in the kernel migration this is
not possible because the processor is faulty and isolated by
wrappers. Thus, it was added in the DMNI module the
ability to treat specific packets, which starts the process of
transferring the memory contents.

The first step of the kernel migration process is to pre-
pare the SP.,, to receive the MP; memory contents (code
and data). The MP;, notifies the SP,,,, that it will receive
the kernel executing in MPy, through a wait_ker-
nel_message. A field in the packet header of this
message defines that the DMNI module will process the
message payload, not the processor. This message induces
in the PE the following actions: (i) hold the processor and
configure the DMNI module to write incoming packets into
the memory, from address zero; (ii) after configuring the
DMNI to write packets directly into the memory, the DMNI
sends a wait_kernel_acknowledge message to
MPy.

Once received the wait_kernel_ acknowledge
message, the MP;, notifies MPy to send the kernel to SPc4nq
through a send_kernel_message. The kernel migra-
tion is simpler than the task migration in the sense that only
one message is transmitted with the complete memory
contents.

An issue to discuss is how the recovery method affects
the traffic in the NoC, which could penalize the perfor-
mance of applications. A fault in an MPE (VGM or CM)
affects applications running on the cluster managed by this
MP;. The MPj, stopped all applications managed by MP;,

44 4
Manager: H
Faulty : v
Control
< NOC_|@-+-|--- &
outer
Memory x5 (1)
=
(2e Data - .
O
D Router [*” g
LK 2
Processing Element :
vV v

Fig. 6 Kernel migration process in an MPy
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( Cluster 0 1 Cluster 1
SP1 CMo (l cmMi | [ spz ][ sp8 | ... SP13
@ application
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g -
P13 - Task N _JE

@) CM Candidate SP13 - Tas >

SP7 - Task A -/
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time 2
&
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@ Fail CPU service 2

@ Freeze q > >
(5) |——Migrate Task A to SP1 > =
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@ Update Task Location R > > 3
Q
[}
@ Task Migrated =
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Fig. 7 Sequence diagram of the recovery protocol steps. Black arrows:

transmitted through the Control NoC

but all other applications continue to run in their clusters,
without being disturbed. A slight perturbation may occur
during task migration. Consequently, the recovery method
has a minimal impact in the NoC traffic, occurring only
when it is necessary to migrate a task to a neighbor cluster.

Figure 6 presents how the MP; handles the
send_kernel_message. It is important to remind that
the fault detection mechanism already isolated the CPU by
wrappers. The DMNI of the MP; handles this message
(event 1 in the figure), transferring the memory contents to
the SP.uuq (2), using the data NoC.

6 Recovery protocol steps

Figure 7 presents the recovery method, assuming:

e A many-core with two clusters, being CM0 and CM1
the managers of clusters 0 and 1, respectively;

e SP7: SP 44, executing 1 task;

e SPI1: an idle processor from another cluster that will
receive the task executing in SP7.

@ Springer

messages transmitted through the Data NoC. Red arrow: messages

Cluster 1 receives application mapping requests (1 in
Fig. 7), assigning a task to each SP in its cluster. In this
example, all SPs execute at least one task. After assigning
the tasks in the cluster, SP7 is elected as a new SP,,,,4, and
CM1 notifies CMO that SP7 is the SP 4.4, executing one
task (2).

At a given moment (3), a permanent fault is detected in
the processor of CM1. The control NoC receives the fault
notification, and broadcast a Fail CPU service message,
targeting the CM pair, in this case, CMO0. The first action of
the protocol, after the fault notification message, is to
broadcast a freeze message (Sect. 5.2) to all tasks managed
by CM1 (4).

The next protocol action is to migrate tasks, if neces-
sary. In this example, it is necessary to migrate the task
executing on SP7 to SP1. The CMO0 sends a message to SP7
to migrate the task it is executing to SP1 (5). As detailed in
Sect. 5.3, SP7 sends to SP1 a set of messages with the task
contents. After receiving all messages related to the task
migration, SP1 notifies to all application tasks the new
location of the migrated task (6). The task migration ends
with SP1 notifying the MP;, (CMO) the end of the migration
process (7).
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With the availability of a PE in the cluster, the kernel
migration starts. Actions represented in event 8 correspond
to the kernel migration protocol (Sect. 5.4): notification of
the SP that will assume the CM role (SP7); the acknowl-
edgment message to CMy; and the message to transfer the
memory contents from the CMg to SP,,,4. Next, the CMp
DMNI transfers the memory contents to SP.q,q (9). Once
the kernel received, the SP.,,q restarts, assuming the role of
a new CM. After restarting, the new CM sends an unfreeze
message to the stopped task (10). This message unfreezes
the tasks managed by the new CM and also transmits the
CM address to the SPs.

Note that when the kernel is restarted, the processor
knows that it is a restart from a migration. In this case, the
contents of all data structures are preserved, without exe-
cuting the kernel initialization.

7 Results

This section presents results related to the recovery pro-
tocol. Experiments are executed using a clock-cycle
accurate RTL SystemC model of the reference many-core
platform. Applications and kernel are described in C lan-
guage, compiled from C code and executed over the plat-
form model. The experiments adopt a 6x6 many-core
instance, organized in 3x3 clusters. To evaluate the
recovery protocol, five benchmarks execute in the MCSoC:
MPEG decoder (5 tasks), Prod Cons (2 tasks), DTW (6
tasks), Synthetic (6 tasks) and Dijkstra (6 tasks).

This section evaluates the Workload Execution Time
(WET) and the recovery method overheads, in milliseconds
(@100 MHz). A common overhead in the experiments is
the time required to migrate the kernel (64 KB), 1.5 ms
(average value), and the time to migrate one task (10 KB,
code and data), 0.3 ms (average value). These overheads
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Fig. 8 Recovery method for the VGM
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Table 2 Overhead—VGM recovery

Time (ms)
Fail CPU 2.8
Freeze 2.81
Wait Kernel 2.97
Unfreeze 4.32
WET (with recovery) 10.13
WET (baseline) 8.35

vary proportionally with the kernel and task sizes. The
reason to keep the same kernel and task sizes in the
experiments comes from the fact that they do not impact in
the remaining protocol steps.

7.1 Recovery results from a fault in a manager

This section presents a scenario when the fault is injected
in an MPE. This first evaluation corresponds to the best-
case scenario for the protocol, since the SP.,, is free
(without any task assigned to it).

Figure 8 presents the test-case to recover the VGM.
Figure 8a presents the MCSoC state before the recovery
method, being SP; > the SP.uq. When the fault is detected
by CM1 (VGM pair), the manager recovery method starts.
Figure 8b presents the system state after the VGM migra-
tion to the SP.,4(2,2).

Table 2 details the time spent at each recovery protocol
step. The 1st line contains the time when a fault was
inserted and detected, 2.8 ms. The 2nd line shows the
moment when the kernel migration starts. The 4th line
corresponds to the moment when the recovery ended, 4.32
ms. The difference, 1.52 ms, is the delay mentioned above
to migrate the kernel.

5 | dij3 print p2
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Fig. 9 Scheduling of the Synthetic tasks, showing the moment when the application is suspended

Table 3 Applications’ execution time

Table 5 Applications’ execution time

Application tstare (MS) tena (MS)
DTW 0.00 8.32
Synthetic 0.00 10.08
Dijkstra 1.50 7.98
Mpeg 2.54 7.04
Prod_cons 2.17 5.30

The last two lines correspond to the WET, with (5th) and
without (6th) the recovery method. The difference (1.78
ms) is slightly higher than the kernel recovery time. The
reason for explaining the increase in the total execution
time is mainly due to the rescheduling of tasks. Figure 9
illustrates the task scheduling of the Synthetic application,
which was running in the left-most cluster. It is possible to
observe the moment when all tasks were suspended due to
the freeze message, and later the moment of reactivation
(unfreeze message). Given the interdependence between
the tasks, there is an overhead for the resynchronization
between them.

It is worthwhile to mention that there is no relationship
between the number of tasks and the WET. The additional
overhead (0.26 ms in the experiment) is due to the

Table 4 Overhead—CM recovery

Time (ms)
Fail CPU 2.5
Freeze 2.51
Wait Kernel 2.67
Unfreeze 4.02
WET (R—with recovery) 9.06
WET (B—baseline) 9.06

@ Springer

Application tsrare (MS) teng (MS)
B-R
MPEG-1 2.00 7.02-8.54
Synthetic 0.00 9.05-9.05
Dijkstra 1.50 7.09-7.09
MPEG-2 0.00 5.06-5.06

resynchronization between the tasks of the applications
affected by the freezing process during the kernel recovery.

Table 3 shows the time when each application starts and
ends its execution. Note that all applications were execut-
ing when the fault was injected into the VGM (2.8 ms). The
tsare 1n Table 3 corresponds to the moment that application
should be deployed into the MCSoC. The VGM executes
the cluster selection, in the sequence occurs the task
mapping, the transmission of the object code of the tasks to
the SPs, and finally, the task is scheduled. Thus, even if
taarr = 0, as for the Synthetic application, this application
actually starts at 0.5 ms.

Results to recover a CM is similar to the VGM recovery,
1.52 ms to migrate the CM1 kernel. Table 4 details the
time spent at each recovery protocol step. Table 5 shows
the time when each application starts and ends its execu-
tion. The WET, with and without recovery, is the same. The
reason for explaining the same WET is that the application
affected during the recovery method (MPEG-1) finishes its
execution before the Synthetic application (9.05 ms). The
overhead occurs only in the MPEG-1 execution time, 5.02
ms to 6.64 ms, resulting in an overhead equal to 1,62 ms.
This result presents an advantage of the method, which is
the fact the recovery method overhead can be masked if the
set of applications executing on the MP; clusters takes
longer to execute than the applications executing on the
MP; cluster.
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Fig. 10 Recovery method for the VGM and a task migration
In both scenarios, with faults injected into the VGM or  Table 6 Overhead—VGM recovery and task migration
CM, the overhead is the time to migrate the memory Time (ms)
contents (code and data of the MPy) to the SP.4,q. When an
MPE fails, the tasks it manages should be suspended to  Fail CPU 3.00
prevent control messages from being lost (freeze), delaying  Freeze 3.01
applications. For both VGM or CM recovery, the overhead  Migration 3.29
was the same, corresponding to 1.5 ms@100 MHz, or Wait Kernel 3.30
150,000 clock cycles. Unfreeze 4.65
WET (with recovery) 9.92
7.2 Recovery results from a fault in an mpe WET (baseline) 8.61

with task migration

This section presents a scenario when the fault is injected
in an MPE, and the cluster has all resources in use. Thus,
the SP..,q is not free. i.e., it has tasks assigned to it, being
necessary to execute task migration before the recovery
method starts.

Figure 10 shows the test case to recover the VGM,
executing task migration before kernel migration. Fig-
ure 10a presents the MCSoC state before the recovery
protocol, being SPi o the SP.,,;. When the fault is detected
by CM1 (VGM pair), the manager recovery method starts.
The task TC migrates from SP;y to SPs,. After task

migration, the SP.,,4(1,0) receives the VGM kernel. Fig-
ure 10b presents the system state after the VGM kernel
migration.

Figure 11 illustrates the task scheduling of TC, which
was allocated and running in SP;o up to 3.0 ms, and
migrated to SPs,. It is possible to observe when the task
was suspended due to the freeze message in SP;, at
3.0 ms, migrated, and later the moment of reactivation
(unfreeze message) in the SPs, at the 4.5 ms.
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Table 7 Applications’ execution time

Application tsare (MS) tena (MS)
DTW 0.00 8.33
Synthetic 0.30 9.89
Dijkstra 1.50 7.11
Mpeg 2.50 7.04
Prod_cons 2.17 5.24
Prod_cons 2.00 7.01
Table 8 Overhead—CM recovery and task migration

Time (ms)
Fail CPU 3.00
Freeze 3.01
Migration 3.29
Wait Kernel 3.30
Unfreeze 4.65
WET (with recovery) 11.86
WET (baseline) 10.20
Table 9 Applications’ execution time
Application tsare (MS) teng (MS)
Synthetic 2.50 11.82
Mpeg 0.03 5.07
DTW 0.00 8.21
Dijkstra 1.50 7.10
Prod_cons 2.17 5.29
Prod_cons 2.00 5.12
Prod_cons 2.00 7.02

Table 6 details the time spent at each recovery protocol
step. The 1st and 2nd lines present when the fault was
inserted and detected, 3.0 and 3.01 ms, respectively. The
3rd line shows the moment when task migration ended. The
4th line shows the moment when kernel migration starts.
The 5th line shows the moment when the recovery ended.

Table 7 shows the time when each application starts and
ends its execution.

The overhead induced by the recovery method and a
task migration was 1.65 ms. However the WET with
recovery presents an overhead equal to 1.31 ms. The
overhead is lower than expected due to the fact that task 7C
is originally in a position with high data traffic, and with
migration, its mapping reduced the network congestion.
This experiment shows that a reduced number of hops
between tasks, the primary function of the mapping
heuristics, may impact negatively in the application
performance.

Table 8 details the time spent at each recovery protocol
step when CM1 fails. The Ist and 2nd lines present when
the fault was inserted and detected, 3.0 and 3.01 ms,
respectively. The 3rd line shows the moment when task
migration ended. The 4th line shows the moment when
kernel migration starts. The Sth line shows the moment
when the recovery ended. Table 9 shows the time when
each application starts and ends its execution. In this
experiment, the overhead induced by the recovery method
and a task migration was 1.65 ms, and the WET overhead
1.66 ms. They are, in practice, the same because the
affected application by the CM1 fault is the one with the
longest execution time.

In both VGM or CM1 fault scenarios, the overhead is
the time spend to migrate the memory contents (code and
data of the MPy) to the SP,,, and the task migration. When
an MPE fails, the tasks it manages should be suspended to
prevent control messages from being lost (freeze). The
freezing process delays the application. For both VGM or
CM1 recovery and the task migration, the time overhead
was 1.65 ms or 165,000 clock cycles.

The requirement to initiate the recovery method is to
select a free SP to become a new manager. The SP can-
didate can have tasks assigned to it, and the cost to free the
SP is the migration cost.

7.3 Final remarks

Table 10 summarizes the results presented in this sec-
tion. It is possible to state that a fault in an MPE induces a
runtime overhead of around 1.5 ms (150,000 clock cycles),
and it increases according to the size of the kernel memory
footprint.

Table 10 Summary of results Fault Location

Relevant protocol feature

Protocol overhead (kernel: 64KB/task: 10 KB) (ms)

VGM Without task migration 1.5
CM

VGM With task migration 1.65
CM
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The evaluation made in this section focused on the
method overhead in terms of performance. There are two
implementation costs: software and hardware. The cost of
the software refers to the increase in memory required by
the kernels running on VGM/CM, from 12 to 43 KB, and on
SP kernel, from 19 to 34 KB.

The hardware costs associated with the methods can be
listed as follows: (i) control NoC network, area equivalent
to 20% of a data network router; (i) wrappers, it require
only logic gates to isolate control signals; (i) it is assumed
that the memory is protected by ECC (error-correcting
codes) and that the network interface has access to this
memory in case of processor fault. Therefore, the hardware
cost is minimal, being portable for other MCSoC
architectures.

8 Conclusion

This work presented a runtime protocol for management
recovery in NoC-based many-core. The proposal includes a
method to safely migrate the management software to a
new processing element, assuming a protected memory and
a task migration method to release an SP candidate. The
results displayed a small overhead for the task migration,
as well as a small impact on the execution time of the
applications when they are stopped to migrated the man-
agement functions to another PE (1.5 to 1.65 ms).

Future works include: (i) extend the method to faults in
slave processing elements, enabling to recover applications
from faults; (/) add multiple interfaces to the external
environment to avoid a single point of failure, i.e., enable
multiple CMs to receive application requests.
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