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ABSTRACT 
 
Background: Narrative discourse (ND) refers to one’s ability to verbally reproduce a sequence of temporally and 
logically-linked events. Impairments in ND may occur in subjects with Amnestic Mild Cognitive Impairment (aMCI) 
and Alzheimer’s Disease (AD), but correlates across this function, neuroimaging and cerebrospinal fluid (CSF) AD 
biomarkers remain understudied. 
Objectives: We sought to measure correlates among ND, Diffusion Tensor Imaging (DTI) indexes and AD CSF 
biomarkers in patients within the AD spectrum. 
Results: Groups differed in narrative production (NProd) and comprehension. aMCI and AD presented poorer 
inference abilities than controls. AD subjects were more impaired than controls and aMCI regarding WB (p<0.01). 
ROIs DTI assessment distinguished the three groups. Mean Diffusivity (MD) in the uncinate, bilateral 
parahippocampal cingulate and left inferior occipitofrontal fasciculi negatively correlated with NProd. Changes in 
specific tracts correlated with T-tau/Aβ1-42 ratio in CSF. 
Conclusions: AD and aMCI patients presented more ND impairments than controls. Those findings were associated 
with changes in ventral language-associated and in the inferior parahippocampal pathways. The latest were 
correlated with biomarkers’ levels in the CSF. 
Methods: AD (N=14), aMCI (N=31) and Control (N=39) groups were compared for whole brain (WB) and regions of 
interest (ROI) DTI parameters, ND and AD CSF biomarkers. 
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INTRODUCTION 
 
Ancillary methods for assessing cognitive impairment 
within the continuum of Alzheimer’s Disease (AD) have 
enabled substantial progress in the understanding of the 
pathophysiology of the disease, which may ultimately 
contribute to the development of strategies for prevention, 
early diagnosis and disease-modifying treatment [1]. 
Measurable indicators of AD pathology comprise an array 
of clinical, biochemical and neuroimaging factors, such 
as: (1) changes in structural MRI (hippocampal and 
entorhinal cortex atrophy, for example); (2) abnormalities 
in the white matter (WM) integrity evidenced by 
Diffusion Tensor Imaging (DTI) [2]; (3) regional glucose 
metabolic reduction, as measured by 2-[18F]-fluoro-2-
deoxy-d-glucose PET (FDG-PET) [3]; (4) cortical 
amyloid load demonstrated through the Carbon-11-
labelled Pittsburgh compound B (11 C-PiB) PET [3]; (5) 
molecular alterations of the brain (metabolomics, 
oxidative stress, beta-amyloid processing, tau-protein 
pathology and insulin signaling) [4–6] and (6) cognitive 
deficits indicated by neuropsychological assessment [7–
9]. In this respect, recent evidence suggested that 
combining results from different categories of AD 
markers may improve the accuracy for both the detection 
of dementia and for the prediction of cognitive decline in 
subjects with Mild Cognitive Impairment (MCI) [10–14]. 
However, experience in multimodal analyses is incipient 
and recommendations for the most useful composite data 
are still not available.  
 
Challenges for progressing research in this field include 
some uncertainties at each measurement level. Although 
MCI subjects with prominent memory impairments 
(amnestic MCI - aMCI) may present higher risk for 
developing dementia than the non-amnestic subtype 
[15], it has become increasingly accepted that early 
deficits in other cognitive domains, such as language, 
could be observed in those cases [16–18]. Yet, research 
on the linguistic aspects of MCI (and early AD) has 
been narrowed down to a limited number of its 
components. For example, in addition to difficulties in 
visual naming [19] and lexical retrieval by semantic 
criteria tasks [20], evidence from the literature indicated 
that subjects with AD may show early impairments in 
narrative discourse [16, 21–25]. Narrative Discourse is 
a complex linguistic function, which refers to one’s 
ability to logically, temporally and casually-integrate 
data. Its assessment usually requires verbal reproduction 
of sequences of logically-interconnected events within a 
specific scenario and characters. This high-order 
linguistic ability requires the conjugation of different 
components of language (phonological, lexical, 
semantic, morphosyntactic and pragmatic) with diverse 
cognitive functions and social demands - such as 
memory, planning, the ability to create mental models 

and draw inferences from different contexts and 
interlocutors [26]. ND is essential for efficient 
communication capacity and the detection of changes in 
those abilities may be early indicators of aging-related 
cognitive decline in clinical practice.  
 
When it comes to identifying MCI, it has been 
suggested that those subjects may not be discernible 
from normal aging using basic screening tasks [27]. 
Hence, assessment of complex cognitive abilities, which 
rely on processing and integrating data from different 
cognitive functions, appears to be of greater value for 
the detection of those cases [28]. 
 
Moreover, knowledge of neural networks underlying 
narrative discourse has been concentrated on its 
comprehensive component (Narrative Comprehension -
NComp), whereas investigations on Narrative Production 
(NProd) have not advanced at the same rate for 
functional magnetic resonance imaging (fMRI) studies 
[29, 30]. On the other hand, data from researches using 
Diffusion Tensor Imaging (DTI) have revealed 
abnormalities in the uncinate fasciculus in MCI patients 
compared to controls, which were associated with high 
risk for progression to dementia [31]. Specific pathways 
have been implicated in language impairments - the 
superior longitudinal fasciculus (SLF), the inferior 
longitudinal fasciculus (ILF), the inferior fronto-occipital 
fasciculus (IFOF), the corpus callosum (CC), and the 
uncinate fasciculus (UNC) [32–39], nevertheless 
evidence for the associations between clinically observed 
language impairments and WM integrity remains scarce 
in the literature. Furthermore, data on the relationships 
among neuropsychological and neuroimaging findings in 
the AD spectrum and cerebrospinal fluid (CSF) 
biomarkers (beta-Amyloid 1-42 – Aβ1-42 - and tau 
protein) of AD pathology are inconclusive across studies 
[40]. Determining correlations between DTI and CSF 
biomarkers could shed light into whether WM 
compromise and neurodegeneration are independent or 
associated features in AD physiopathology [41]. 
 
The rationale for assessing subjects with MCI and AD 
through a multimodal approach resides on the assumption 
that combining neuropsychological, neuroimaging and 
biochemical elements could provide a comprehensive 
appreciation of the underlying basis of the cognitive 
impairments in the early AD-spectrum. Thus, the present 
study aimed to investigate the correlates among narrative 
discourse deficits in aMCI and AD patients, the WM 
circuitry integrity and the levels of AD-related CSF 
biomarkers. We hypothesized that deficits in narrative 
discourse could be related to anatomical damage to the 
fasciculi most directly engaged in language. We also 
predicted that lower WM integrity in those tracts could 
be associated with a higher total-tau (t-tau)/Aβ1-42 ratio, 
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reflecting correspondent neuronal injury due to AD 
pathology. 
 
RESULTS 
 
No significant differences were identified across groups 
regarding sex, age and education (Table 1). As expected, 
mean scores on the MMSE were significantly lower for 
AD subjects compared to controls and aMCI groups; no 
differences were found for this variable between controls 
and aMCI. Groups did not differ on GDS scores (p = 
0.345). All groups performed significantly different in the 
Boston Naming Test, the Digit Span backward and the   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RAVLT (Ratio A7/A5). Participants with aMCI scored 
significantly higher in semantic VF compared to AD 
subjects; in phonemic VF mean scores were lower for 
aMCI than for controls. Table 2 depicts data from 
cognitive and behavioral assessment. 
 
Narrative discourse assessment 
 
All groups differed significantly for all measures of 
NProd and NComp. Regarding inference generation, 
controls performed significantly better than aMCI and 
AD; no differences were found between aMCI and AD 
subjects in this task (Table 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Demographic comparisons of controls and patients. 

 Control  aMCI  AD   
 Mean SD  Mean SD  Mean SD F P 
N (total) 39  31  14   
Age 71.77 4.3  72.16 4.8  75.29 6.8 2.70 0.073 
Years of education 14.26 2.3  13.16 2.5  13.07 2.9 2.15 0.123 
Sex (F/M) 24 / 15  16 / 15      
 

Table 2. Neuropsychological and depression measures. 

 Control  aMCI  AD    

 Mean SD  Mean SD  Mean SD F P Comparisons 
(Bonferroni) 

N (total) 39   31   14    
MMSE (0-30) 27.2 2.0  26.2 1.9  22.4 3.5 22.48 * Control ≈ MCI > AD 
Digit SPAN backward   5.8 1.4  4.9 1.6   3.7 1.2 11.23 * Control > MCI >AD 
RAVLT (A7/A5)     .8   .2    .5   .3     .2   .3 26.04 * Control > MCI >AD 
Boston Naming Test 14.4 0.8  13.4 1.6  11.6 2.5 18.75 * Control > MCI >AD 
Phonemic verbal fluency 
(FAS) 41.8 18.3  31.6 15.8  23.8 10.9 7.25 * Control > MCI ≈ AD 

Semantic verbal fluency 
(animals) 18.4 4.4  15.0 4.5  9.5 5.5 19.71 * Control > MCI > AD 

GDS (0-15) 4.4 3.7  5.3 3.4  3.6 3.1 1.17 0.315  
*p value statistical significance. 
 

Table 3. Narrative discourse comparison of patients and controls. 

  Control    aMCI    AD 
F P Comparisons 

(Bonferroni)   Mean SD   Mean SD   Mean SD 
N (total 39   31   14      
Partial recount – (main ideas) 
(18) 15.7 1.7   13 3.7   8.9 3.9 28.10 * Control > MCI >AD 

Full recount of story (13) 11.5 1   8.4 3.9   4.2 2.9 38.97 * Control > MCI >AD 
Story comprehension (12) 11.4 0.7   9.2 2.6   5.6 3.4 37.02 * Control > MCI >AD 

  
Inference generation (total / %) 

  
38 / 97 %   

  
20 / 64,5 

% 
    

7 / 50 %    Chi-square  
Control > MCI ≈ AD 

*p value statistical significance. 
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DTI analyses  
 
Differences in the whole brain and ROIs parameters 
were analyzed according to diagnostic groups. 
 
Whole brain analysis 
 
Comparisons between groups showed statistically 
significant differences between controls and AD, and 
between aMCI and AD, both for MD values. The AD 
group had globally higher MD than controls (p = 0.005). 
The difference was significant in the bilateral frontal 
region (orbitofrontal), bilateral temporal region (superior, 
middle and inferior), CC and right medial parietal lobe 
(precuneus and posterior cingulate) (Figure 1). We found 
a borderline statistical significance in the FA differences 
between these groups (minimum p = 0.054). The 
comparisons between aMCI and AD groups (p < 0.04) 
showed higher MD values in the AD group involving the 
anterior cingulate and middle frontal gyrus (Figure 1). 
There was no difference in the posterior lobes. We did not 
find differences in FA or MD values between the Control 
and aMCI groups. 
 
Regions of interest analyses 
 
Voxelwise group comparison was performed exploring 
the six ROIs previously defined with statistical 

threshold of significance was α = 0.05. The comparison 
between Control and AD groups showed statistical 
differences in FA values in left ILF, bilateral IFOF, CC 
(genu and body) and right PhC. We also found 
statistical differences between these groups in MD 
values in bilateral UNC, bilateral PhC, bilateral IFOF 
left ILF, right SLF, and in CC (genu and body). The 
aMCI and AD groups showed statistical differences in 
FA values in bilateral SLF, right IFOF, CC (genu and 
body) and in MD values in all bilateral ROIs, except 
bilateral ILF. We found differences between Control 
and aMCI in FA and MD values in left ILF and  
left PhC. 
 
Using a stringent cutoff (false discovery rate [FDR]  
q < 0.01), ROI’s voxelwise t-tests were corrected  
for multiple comparisons. The differences between 
groups were maintained between the Control and AD 
in three fasciculi: right UNC (p < 0.001); right ILF  
(p < 0.001) and bilateral PhC (right p < 0.001) and 
between aMCI and AD groups in right PhC (p < 
0.001). There were no differences between the Control 
and aMCI groups. 
 
On Supplementary Table 1, we added the results 
obtained in the comparison between groups for all 
ROI’s considering the means of FA and MD values 
extracted from each subject. 

 

 
 

Figure 1. Whole brain comparisons between groups. Cluster of voxels significantly different, corrected for multiple 
comparisons (p = 0.05) of MD values shown in blue. (A) Comparison between controls and AD; (B) Comparison between aMCI and AD. 
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Correlation between WM integrity and narrative 
discourse  
 
Whole brain analysis 
In a preliminary analysis, we explored the whole brain 
with no a priori ROIs. There was a significant negative 
relationship between NProd and MD values (p 0.006) in 
bilateral frontotemporal regions and the right parieto-
occipital region including the dorsal and ventral language 
pathways (Figure 2): left SLF (temporal, posterior 
division), right SLF (post central, superior parietal and 
angular gyrus), bilateral UNC (frontotemporal), left ILF 
(temporal medial region, overlapping with SLF), right 
ILF (temporo-parieto-occipital region up to fusiform 
gyrus), bilateral IFOF (orbitofrontal cortex, insula, and 
posterior temporal region) and genu of the corpus 
callosum (CC). We also found a correlation with the PhC 
fasciculus. No correlation was found between NComp 
and any specific tract. 

Regions of interest 
 
Exploring the correlation between NProd and NComp 
scales with different ROI’s, we found a significant 
correlation between NProd with FA (positive 
correlation) and MD (negative correlation) bilaterally 
in UNC and genu of CC. We also found a negative 
correlation between NProd and MD values in bilateral 
ILF, bilateral SLF, bilateral IFOF, genu and body  
of the CC and bilateral PhC. Significant negative 
correlations were found between NComp and  
MD values in the right UNC and left PhC. After 
correcting for multiple comparisons (FDR q < 0.01), 
we found significant correlations between NProd  
and MD values for UNC (left p = 0.003; right  
p = 0.001), PhC (left p = 0.000; right p = 0.002), and 
left IFOF (p = 0.003) (Figure 3). No correlation was 
found between DTI indexes and NComp in those 
analyses. 

 

 
 

Figure 2. Correlation between NProd and whole brain for all groups. Clusters of voxels significantly different MD shown in blue. 
 

 
 

Figure 3. ROIs with statistically significant correlations between MD values and NProd (FDR q < 0.01). UNC is represented in red, 
PhC in blue, and left IFOF in green. 
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A linear regression for narrative discourse and all ROIs 
revealed a moderate negative correlation (≥ 0.3) 
between NProd and MD values in UNC (left r = 0.31; 
right r = 0.33), IFOF (left r = 0.30; right r = 0.30), PhC 
(left r = 0.37; right r = 0.37), and the left ILF (r = 0.36). 
 
Interference of specific cognitive domains on 
narrative discourse activity: dissection of the 
underlying neural network 
 
Our clinical results displayed a moderate to strong 
significant effect on NProd by two cognitive measures: 
working memory (B = 0.357 / adjusted R2 0.117) and 
verbal memory (B = 0.550 / adjusted R2 0.302). 
 
Considering these results and the established importance 
of executive function and memory in narrative discourse 
capacity, we also decided to explore the influence of 
working memory and verbal memory in the neural 
correlation with narrative discourse. The results of the 
RAVLT (verbal memory function - retention) and Digit 
Span (working memory - executive function) were 
included as covariates in the group analysis of DTI.  
 
Correlation analysis among all groups performances in 
narrative discourse task and MD for whole brain 

[including verbal memory (retention A7-A5 on RAVLT) 
and working memory (auditory digit span backward) as 
covariants], indicated that verbal memory (Figure 4A) 
might show stronger relationship with narrative discourse 
than working memory (Figure 4B). NProd was also 
significantly associated with MD values (whole brain) (p 
= 0.02), when verbal memory was included as covariant, 
although restricted to anterior bilateral regions. 
Correlations between NProd and DTI variables (whole-
brain), with working memory as covariant, showed 
similar negative correlation only in MD values (p = 
0.013) and maintained almost the same results in all 
regions and tracts initially observed in the correlation 
between the NProd of all groups and DTI measures (MD 
values). Both domains ― narrative and working memory 
― seem to be related to the same fasciculi and regions. 
 
We also controlled the results of the association 
between narrative discourse and white-matter bundles 
for memory performance. Controlling for working 
memory, the results showed the same correlations 
between NProd and MD and FA values of ROIs observed 
before. In contrast, when verbal memory was considered 
as a covariate, we only observed correlation between 
NProd and MD values in anterior ROI’s. NComp was 
also explored with the two variables of covariance. 

 

 
 

Figure 4. Correlation of all groups performance in narrative discourse and whole-brain analysis. (A) -verbal memory (results of 
RAVLT test – retention A7-A5) and (B) working memory (results of auditory digit span backward) as covariates. Cluster of voxels significantly 
different in MD value is shown in blue. 
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Considering working memory as a covariate, we did not 
find correlation between NComp and DTI metrics of the 
investigated bundles. However, we found the same 
correlation established before amongst NComp and right 
UNC and left PhC (in MD values) when considering 
verbal memory retention as a covariate. 
 
CSF AD biomarkers  
 
A subgroup of thirty-two subjects (13 controls, 11 
aMCI and 8 AD) from the same previously described 
sample underwent CSF analysis for AD biomarkers (t-
tau and Aβ1-42). Ratio t-tau/ Aβ1-42, calculated as an 
index of neurodegeneration, showed significant 
differences between Controls and AD (p = 0.03). Taken 
into account the white matter tracks associated with 
NProd, further analysis showed that CSF Ratio t-tau/ 
Aβ1-42 correlated with FA (UNC, IFOF and PhC) and 
MD values (UNC) for those tracks in ROI analyses 
(Supplementary Table 2). 
 
DISCUSSION 
 
Clinical findings 
 
In this study, we investigated whether narrative 
discourse elicited by a heard story correlated to different 
AD spectrum groups (aMCI and AD). 
 
First, we found that aMCI group presented deficits in (i) 
partial story recount (main ideas) (ii) full story recount 
(main ideas and details) and (iii) NComp, presenting an 
intermediary performance between controls and AD 
group. Moreover, aMCI group showed deficits in drawing 
inference in comparison to the controls, as observed in the 
AD group. Of note, demands involved in this kind of 
narrative tasks are not independent. Assuming a 
sociocognitive approach of discourse based on mental and 
situational models [42, 43], we believe, in agreement with 
[16], that the capacity to understand and memorize the 
main ideas of a heard story is the first step to a literal and 
non-literal understanding of the semantic meaning of the 
narrative such as the capacity to establish the coherent 
relationship between events and to draw inference. These 
processes consequently impact on the capacity to 
formulate ideas in an adequate narrative structure in 
different contexts (macrolinguistic aspects). 
 
According to Ash et al. [22] the narrative deficits in  
AD patients as multifactorial components: episodic 
memory impairment, which affetcs coherence; semantic 
impairment, which impacts word-finding ability and 
limited executive function, associated with poor 
monitoring of the narrative. Here we propose to consider 
the pragmatic level of language as a fourth component. 
The pragmatic level could be considered a link between 

language and Theory of Mind. In our study, narrative 
discourse tasks depended on the literal, but also the non-
literal and implicit content comprehension, the 
understanding of emotions, context, intentions and goals 
of the characters. The pragmatic component of discourse 
allows the integration of the other aspects and the 
generation of inference [44].  
 
The discursive impairment of AD patients were first 
described in the spontaneous discourse by [45], who 
found deficits in local and global coherence. Since then, 
several other studies demonstrated discourse changes in 
AD using different tasks [16, 18, 21–24, 26, 46–51]. 
Some of the most consistent changes in early AD can be 
summarized as intensive repetition of information, fewer 
propositions, difficulties in history comprehension, in 
processing complex information, on establishing global 
coherence and cohesive links, and mental inference 
capacity. 
 
Few studies showed impairments in narrative discourse 
capacity in aMCI subjects. Tsantalli et al. [47] used a 
Brief version of Boston Diagnostic Aphasia Evaluation 
(BDAE) to compare different language abilities in AD, 
aMCI and Controls. They concluded that VF, naming, 
writing narrative and comprehension ability associated 
with working memory were the most important deficits 
present in AD group. Oral narrative capacity was intact 
in aMCI; however, it is noteworthy that the narrative 
task was based on a description of a single visual scene. 
On the other hand, in the task involving semantic 
comprehension of the complex ideational material 
(comprehension of paragraphs), aMCI group presented 
significantly lower scores than Controls, indicating 
deficits in Ncomp. Both NComp and NProd were 
impaired in the aMCI group. Chapman et al. [16], in a 
study of NComp in MCI compared to AD and Controls, 
investigated the importance of the comprehension/ 
retention of the gist and details in complex information 
processing. They found that gist information was 
already impaired in the MCI group with a performance 
similar to AD. Similarly, in our study, aMCI subjects 
presented difficulties in details levels, however they 
also showed significant impairments in main ideas. 
Both findings could differentiate them from Controls. 
 
The ability to draw inference was also impaired in our 
aMCI group and the performance was similar to that of 
the AD group. In a recent study, Gaudreau [49] showed 
that aMCI individuals were impaired in their mental 
inference capacity when compared to Controls. The aMCI 
group presented more difficulties to identify ironic or 
sincere stories. This finding, as the capacity to infer the 
appropriate intentions from the characters of a heard story, 
as seen in our sample, is related to impairment in the 
cognitive subcomponent of the Theory of Mind (ToM). 
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Consistently, a review conducted by Poletti et al. [52] 
reported several studies in which AD patients presented 
more deficits in this component than in the affective one. 
According to those authors, executive function is the most 
significant neuropsychological function related to ToM. 
However, results on MCI subjects are inconclusive 
regarding this aspect. Considering our sample of aMCI, 
we can hypothesize that several patients, besides the 
impairment in episodic memory, also present, to some 
degree, an impairment in at least one of the other 
multifactorial components of narrative (semantic 
processing, executive function or pragmatic component of 
language). Those narrative deficits may have determined 
the observed inferential difficulties and were significantly 
distinct from controls, not only in inference generation but 
also in Nprod and Ncomp. 
 
Classical language tasks 
 
Although the use of classical language tests was not our 
objective, we compared the performance of the three 
groups in naming and VF considering that these two 
tasks, often present in neuropsychological evaluations, 
have been sensitive to early detection of AD [20, 47, 53, 
54]. In agreement with those studies, the results from our 
sample showed that both naming and VF differentiate 
controls and AD group, but only visual naming 
confrontation could differentiate the three groups. There 
is some controversy on the sensitivity of those tests to 
clearly identify MCI group from normal aging subjects 
[24, 55–57]. Although difficulties in VF were previously 
described in MCI [20, 54, 58], which make it an 
important task to detect cognitive impairment [54], there 
are some differences between semantic or phonemic 
performances. Our findings showed that aMCI differs 
from controls only in phonemic VF, which could be 
attributed to more difficulties in executive function than 
in semantic associations to access and evoke words. 
However, those findings should be analyzed with 
caution, considering the wide variability of the results, as 
demonstrated by a large standard deviation on semantic 
VF performances. Accordingly, studies indicated that 
poor phonemic VF scores could be early identified in 
aMCI, indicating higher order dysfunction and risk for 
progression to dementia [59]. 
 
Neuroimaging findings 
 
Comparison between groups 
In relation to neuroimaging findings, first, we 
investigated the integrity of the neural language white 
matter network in aMCI and AD patients applying the 
WB and ROI’s DTI analyses.  
 
Our findings on WB analysis showed that the Control 
and AD groups differed in WM measures, which is in 

agreement with several others studies showing decreased 
FA/Increased MD in AD patients in bilateral 
frontotemporal e parietal regions [31, 33, 60–64]; also, 
they seem to be more pronounced in right regions [65]. 
In our sample, the main differences occurred in MD 
measures. We had a borderline statistical result in those 
bilateral regions (p= 0.054) considering FA measures. 
Moreover, compared to aMCI, AD subjects showed 
increased MD in the language white matter tracks. The 
aMCI and AD groups did not differ in posterior regions, 
suggesting that the differences between Controls x aMCI 
and AD were more evident in the anterior regions 
(anterior cingulate and middle frontal gyrus). Following 
this reasoning, it was expected to find some differences 
between control and aMCI in the posterior regions, but it 
did not reach significance in WB analysis, only in ROI’s 
analysis. 
 
Exploring all six previously specified tracks defined as 
part of the language network, ROIs analysis showed 
differences in both FA and MD values, when AD subjects 
were compared to controls. These differences occurred in 
left ILF, bilateral IFOF, CC (genu) and right PhC in 
agreement to other studies [31, 66]. The aMCI group also 
differed from controls and AD subjects. Compared to 
controls, aMCI patients showed increased MD and 
decreased FA in ILF and PhC, indicating the expected 
differences between these groups in posterior regions. 
While the PhC is a short and inferior cingulate bundle 
specifically related to the medial temporal region, the ILF 
is a visual association pathway with long fibers that 
connect, by ventral pathway, the occipital and temporal 
regions, being one of the main components of WM in this 
posterior region [34]. The differences between aMCI and 
AD were present in FA and MD measures in all ROI’s, 
except in bilateral ILF. Those results confirmed the 
greater WM abnormality presented by clinical groups in 
posterior regions than anterior regions when compared to 
controls, in agreement to consistent findings concerning 
the WM changes in MCI and AD individuals [67, 68]. 
However, the specific location of the WM abnormalities 
in aMCI individuals are not clearly established. Zhuang et 
al. [62] cited several studies in which inconsistent results 
related to the WM integrity of MCI were presented, 
possibly associated to the heterogeneity of MCI groups. 
Another reason would be the different ROI’s studied and 
small sample sizes [63]. 
 
Correlation with narrative discourse 
 
The correlation between narrative discourse and WM 
integrity across all groups was seen in our study both in 
WB and ROI’s analysis. Although the biological basis of 
the DTI derived metrics is not specific and can be 
sensitive to tissue specificity and quality of data 
acquisition and processing, alteration of WM integrity 
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has been correlated to changes in FA and MD values 
[69]. However, while there are few studies correlating 
specific language deficits and WM diffusion in different 
neurological disorders, such as aphasia [70, 71] and 
autism [72, 73], to the best of our knowledge this is the 
first study investigating the relationship between 
narrative discourse and WM integrity in aMCI and AD 
groups. 
 
The correlations found between NProd and WM integrity 
in WB assessment in following bilateral regions were 
expected, considering the dimensional analysis of the 
sample and the multifactorial components associated in 
discourse performance: the left fronto-temporal regions 
directly involved in language, memory and executive 
processes and the right hemisphere involved in discursive 
practices. Some studies using fMRI have shown that 
NComp recruits the bilateral superior temporal areas 
implicated in word and sentence comprehension [74], but 
also other cortical regions such as prefrontal cortex, 
anterior temporal lobe, temporo-parietal junction and 
cingulated areas [44, 75, 76]. Involvement of those areas 
on the left and/or right hemispheres depends on the type 
and the complexity of the task. The more complex the 
demand on narrative discourse, the greater the 
participation of the right hemisphere [29]. When a task 
demands inferences drawing (e.g., of a third party’s 
intentions or feelings), similarly to our task, there is 
recruitment of prefrontal cortex, right temporo-parietal 
junction and anterior cingulate [44, 76]. A fronto-parietal 
network is related to inferential process and global 
coherence [75]. The posterior cingulate cortex, which is 
associated with different cognitive domains such as 
memory, language, executive function and visuospatial 
perception [77], is recruited by both comprehension and 
production of narrative. It has been also implicated in 
memory processing during communication [78] and 
global coherence of narrative [79, 80]. The severity of the 
deficits in comprehension and narrative production in AD 
probably increases according to the progression of 
damage in cerebral cortex and related subcortical 
structures [81]. Findings based on fMRI studies 
suggested the existence of a specific fronto-temporal-
parietal network underpinning discourse processing 
which is represented in both cerebral hemispheres.  
 
ROI’s analysis allowed the distinction of more specific 
networks involved in NProd than in NComp. After a 
stringent correction for multiple comparisons, the 
correlation with NProd persisted in three fasciculi: 
bilateral UNC, bilateral PhC and left IFOF. The UNC 
integrates a ventral pathway and connects the anterior 
temporal lobe to the frontal lobe. It has been described as 
supportive of “sound to meaning maps” [82] and it is 
associated with sentence comprehension, linking the 
syntactic to the semantic domains [37, 83]; semantic 

processing [37] and episodic memory [31]. The left IFOF 
is a long fiber connecting the occipito-temporal regions 
to anterior temporal until the orbito-frontal cortex and 
also participates in the semantic network of semantic 
memory [84] and visual and auditory associations [34]. 
The two pathways (IFOF and UNC), are associated with 
semantic processing and episodic memory which are 
important subcomponents of narrative discourse. The 
PhC, a division of the cingulate bundle, is part of an 
important network connecting the temporal, parietal and 
frontal regions [81, 85]. Its functional connectivity differs 
according to the involvement of the anterior and posterior 
regions, and the visual, spatial and contextual 
associations. The importance for scene understanding and 
recognition depends on the interaction among different 
cortical networks [86]. In order to provide an adequate 
NProd, the individual needs to establish a mental 
representation involving the association of a large 
number of contextual information and for this, the 
declarative memory – both episodic and semantic – must 
be recruited. The mesial temporal lobe comprising the 
entorrinal, perirrinhal and parahipocampal subregions, 
along with the hippocampus, plays an important role in 
declarative memory [87]. The participation of bilateral 
parahippocampal area in the contextual associative 
memory was demonstrated in a recent fMRI study [88]. 
Therefore, the bilateral pathways comprising UNC and 
PhC seem to be the WM network involved in narrative 
discourse elicited by a heard story. The left hemisphere is 
involved in literal comprehension and other cognitive 
processes, such as memory, whereas the right hemisphere 
is more implicated with inference generation and non-
literal meaning [75]. The bilateral frontal regions, 
connected to posterior regions by UNC and IFOF, are 
involved in semantic-pragmatic and executive function 
components of NProd. 
 
Our additional covariance analysis demonstrated that 
episodic and working memories (Figure 3) contributed 
differently to the correlation between WM and narrative 
discourse. As expected, the correlation disappeared in 
posterior regions where we could find a structural cortical 
and WM association with episodic memory [87, 89]. We 
did not find significant differences in the correlations 
using working memory as a covariate. Previous studies 
have shown that working memory is an important 
predictor of narrative comprehension [75]. Working 
memory and narrative discourse are parts of the same 
construct – the executive function [90] and they share the 
same neural substrates: frontotemporal and parietal 
regions [75, 90, 91]. Differently from working memory, 
episodic memory demonstrated independent correlations 
with the pathways associated with narrative.  
 
Finally, CSF AD biomarkers (t-tau/Aβ1-42 index) were 
significantly associated with DTI measures (FA and MD) 
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in language-related tracts (UNC, IFOF and PhC). This 
finding suggested a relationship between WM damage 
and primary neuronal loss in subjects with different 
levels of cognitive impairment within the AD spectrum. 
Our findings are in line with previous reports, which 
indicated associations among CSF AD biomarkers (t-tau, 
phosphorylated –tau; Aβ-42 and t-tau/ Aβ-42 ratio) and 
decreased FA or increased MD in specific ROI’s bundles, 
such as the cingulum [92], the parahippocampal gyrus, 
the precuneus and the inferior temporal regions [93].  
 
This study had some limitations. First, this is a cross-
sectional study with a somewhat small sample. For this 
reason, we could not investigate different clusters within 
the aMCI group (e.g., single or multiple affected 
domains). Second, since inference generation is measured 
as a dichotomous variable, correlation analysis between 
this parameter and the DTI measures could not be 
performed. New studies using a larger number of patients 
will be important to support our initial results. Finally, 
data on CSF AD biomarkers were only available for a 
subset of subjects in our sample, which might limit the 
validity of those results. Those shortcomings should be 
considered for future studies in the field. 
 
To conclude, our findings indicate that aMCI individuals, 
similarly to what has been observed in those with AD, 
portray difficulties in narrative discourse elicited by a 
heard story involving oral comprehension, production and 
ability to inference generation. Such ecological language 
assessment could contribute to early identification of 
cognitive decline. The intermediary performance 
presented by aMCI when compared to controls and AD 
groups reveals a dimensional characteristic of the 
narrative discourse impairment in this neurodegenerative 
disease. These deficits could be correlated to the 
abnormalities observed in white matter integrity in ventral 
pathways for language processing (IFOF and UNC) and 
inferior segment of cingulum (parahipocampal) in 
bilateral frontotemporal and parietal regions. In 
conclusion, our study indicated that the severity of deficits 
in narrative discourse was mirrored by neuroimaging and 
CSF biomarkers changes in the AD continuum.  
 
MATERIALS AND METHODS 
 
Participants 
 
From a total sample of 225 individuals initially enrolled 
for a research project on aging and cognition, developed 
at the D’Or Institute of Research and Education (IDOR) 
in Rio de Janeiro, Brazil, eighty-four participants were 
included. Almost 10% of the sample (20 individuals) 
gave up before completing the defined time length 
research protocol and 88 participants were excluded 
according to the criteria specified below. 

Subjects were volunteers referred to the service by 
physicians or other health professionals. All individuals 
underwent psychiatric and neurological evaluation, 
followed by neuropsychological and language 
assessments. The latest included a narrative discourse 
task which was videotaped and rated by an experienced 
speech-language therapist according to objective 
criteria. All participants were assessed for vision and 
hearing disabilities.  
 
Subjects were categorized as healthy control, aMCI or 
AD in a weekly based meeting coordinated by a senior-
certified psychiatrist (P.M.). The Winblad et al. criteria 
[94] were adopted for the diagnosis of aMCI. Memory 
impairment was objectively defined as performance 
below 1.5 SD for age on the delayed recall Logical 
Memory and Visual Reproduction subtests of the 
Wechsler Memory Scale (WMS-III). AD was diagnosed 
according to criteria included in the fifth edition of the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5) for probable major neurocognitive disorder 
due to AD [95].  
 
The eighty-four volunteers (39 controls, 31 aMCI and 14 
AD – (Figure 5) were matched for age, sex and 
education. They qualified for the study according to 
inclusion criteria: native Brazilian Portuguese as their 
first language; aged between 60 and 85 years, formal 
education equal to or greater than eight years; completed 
language and neuropsychological batteries and MRI 
evaluation. Exclusion criteria were Clinical Dementia 
Rating (CDR) scores higher than 1, frontotemporal 
dementia, primary progressive aphasia, dementia with  
 

 
                 

          Figure 5. Sample selection diagram. 
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Lewy bodies, advanced cerebrovascular disease, non-
amnestic MCI and any major neuropsychiatric disorder 
report (schizophrenia or other psychotic illness, bipolar 
disorder, epilepsy, alcohol and drug abuse, current 
severe depressive disorder and severe head injury). 
 
All participants provided written informed consent 
before entering the study, which was previously 
approved by the IDOR Research Ethics Committee 
(CEP 226/11). 
 
Cognitive and behavioral assessments 
 
Narrative discourse was evaluated with the story “Mark 
and his wheel” adapted and standardized for the 
Brazilian population (MAC Battery - Montreal 
Communication Evaluation Battery – [95, 96]). This 
story evaluates the NProd and Ncomp elicited by 
auditory-verbal stimuli. The story has five paragraphs 
following a chronological sequence. The task had four 
subsequent steps: 

 
a) Partial Recount: the story was told by paragraphs. 
The participant was asked to recount the paragraph in 
his own words immediately at the end of each 
paragraph. We recorded all the information – main 
ideas and details (maximum 29) and the total of 
essential information (main ideas) of the story 
(maximum 23). 
 
b) Full Recount: After the recount by paragraphs, the 
participant was asked to hear again the complete story 
without breaks. At the end, he was asked to recount the 
full story with his own words. We registered the total 
information reported based on 13 previously determined 
units considered necessary for adequate recount of the 
story. 
 
c) NComp: The participants answered 12 predefined 
questions of narrative understanding. Correct, incorrect 
and missing answers were registered.  
 
d) Inference: After the full recount of the story, the 
participant was asked to provide a title for the story. 
The ability to draw a correct inference (classified as 
“correct” or “incorrect”) was based on two out of three 
objective indexes: overt expression during the task 
(laugh, facial expression or comment denoting the 
moment of the experience of insight into the gist of the 
story), title given to the story, and response to the last 
two questions (item c, above). 
 
The researcher who conducted the experiment was 
trained to administer, analyze and score the assessment 
protocol; evaluations of the first six patients were 

checked by the author of the standardized test who 
endorsed the researcher’s analyses. 
 
Boston Naming Test (short form) [97] was used to 
evaluate visual confrontation naming. The unconstrained 
verbal fluency (VF) [96], semantic VF (animals) and 
phonemic VF(FAS) [98] were used to evaluate lexical 
retrieval. Neuropsychological assessment included a test 
of verbal memory – Rey Auditory Verbal Learning Test 
(RAVLT) [99] and verbal working memory (digit span 
backward). General cognitive screening was evaluated 
through the Mini-Mental State Examination (MMSE) 
[100]. Depressive symptoms were investigated with the 
Geriatric Depression Scale (GDS) [101]. As previously 
cited, participants were staged for the presence of 
cognitive impairment and dementia using the CDR.  
 
Neuroimaging acquisition and processing  
 
Data acquisition 
All subjects underwent imaging acquisition protocol in 
a 3 Tesla magnetic resonance scanner (Achieva, Philips 
Medical Systems) including isotropic high-resolution 
3D T1-weighted sequence (TR/TE 13/ 1.4 ms; matrix 
256 x 256 mm; FOV 240 mm; slice thickness 1 mm; 
140 slices) and a DTI sequence (axial single-shot, spin-
echo, echoplanar sequence; isotropic voxel size of 2.5 
mm, 60 slices, repetition time (TR)/echo time (TE): 
5582/65 ms; field of view (FOV) 240 mm; matrix 96 x 
96 mm. Diffusion sensitization gradients were applied 
in 32 non-collinear directions, with a factor of 1000 
s/mm². 
 
DTI processing and analyses 
Prior to analysis, patients and control datasets were 
anonymized. To ensure for quality of acquired data, for 
each subject, and before estimating the specific 
diffusion maps, all diffusion images were visually 
inspected for artifacts detection. DTI data processing 
was carried out using FMRIB’s Diffusion Toolkit 
(FDT), part of FMRIB software Library (FSL, 
RRID:SCR_002823; http://www.fmrib.ox.ac.uk/fsl/) 
version 5.0, using standard well established protocols, 
including all steps related to quality control in post-
processing analyses. Non-diffusion and diffusion 
images were co-registered to correct for movement 
artifacts and eddy current distortion effects on EPI 
readout. The six independent elements (three 
eigenvectors - v1, v2, v3 - and three eigenvalues - λ1, λ2, 
λ3) of the diffusion tensor were calculated from each 
diffusion-weighted image after removing non-brain 
tissue with Brain Extraction Tool (BET - Brain 
Extraction Tool, RRID:SCR_014586; http://poc.vl-
e.nl/distribution/manual/fsl-3.2/bet2/) as a part of FSL 
software. After the fractional anisotropy (FA) and mean 
diffusivity (MD) maps were calculated from the 

http://www.fmrib.ox.ac.uk/fsl/
http://poc.vl-e.nl/distribution/manual/fsl-3.2/bet2/
http://poc.vl-e.nl/distribution/manual/fsl-3.2/bet2/
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eigenvalues, color-coded maps were generated from the 
FA values and three vector elements of v1 to visualize 
the WM tract orientation. 
 
To preserve the original white matter structure, 
keeping the overall tracts intact as much as possible, a 
voxelwise specifically tuned nonlinear registration 
method was used to align FA images of all subjects 
into a standard space. For each statistical analysis, FA 
data of each subject were aligned to every other one 
and the most representative was used as the target 
image. This target image was affine-aligned into 
standard space and every image was transformed into 
a 1mm x 1mm x 1mm standard space by combining 
the nonlinear registration to the target FA image with 
affine transform from target to standard space. All the 
registration steps were submitted to a batch system for 
parallel processing. The upsampled FA maps were 
averaged to create the mean FA from all subjects. The 
mean FA was then used to generate the ‘‘skeleton 
tract’’, which represents the tracts shared by all 
subjects (mean FA thresholded to 0.2). Finally, 
registered FA data from each subject were 
‘‘projected’’ onto the mean FA skeleton mask to 
generate the final skeletonized FA data. The nonlinear 
warps and skeleton projection obtained from FA 
images transformations were also applied to 
individual MD maps. 
 
Usually, even indirectly, values of DTI metrics are 
correlated to the brain microstructure tissue organiza-
tion. And, although not specific, usually increased MD 
and decreased FA in WM tracts can be associated to 
changes in the tract organization, such as less 
myelination and /or decreased axonal integrity [69]. To 
explore the WM integrity and differences among AD, 
aMCI and controls, we analyzed FA and MD WM 
tracks values, based on ROI analysis that were chosen 
according to their relationship with language 
performance: UNC, SLF (arcuate), ILF, IFOF, CC, and 
the parahippocampal division of the cingulate bundle 
[102], from now on called “parahippocampal cingulate” 
(PhC) using the JHU DTI-based WM atlases, included 
in FSL database (http://www.hopkinsmedicine.org).  
 
In addition, to examine the relationships between WM 
integrity and narrative discourse, analyzed correlations 
between narrative measurements and all groups FA or 
MD values calculated from the same ROIs. These 
analyses were also performed taking to account the 
verbal memory, working memory and executive function 
confounding effect (applying regression analysis). 
 
To compare groups’ differences in the 6 fasciculi 
previously defined and to investigate the relationship 
between tracts and narrative performance we applied a 

statistical significance level of α = 0.05, corrected for 
multiple comparisons analyses. 
 
To test for significant FA and MD global differences 
among AD, aMCI and control, a voxelwise cross-
subject statistical analysis was also carried out using 
permutation-based non-parametric inference with 5,000 
random permutations (FSL Randomise tool) on each 
voxel of the resulting ‘‘mean FA skeleton’’ mask of the 
whole brain. The results were considered significant at 
p < 0.05, using Threshold-Free Cluster Enhancement 
(TFCE) fully corrected for multiple comparisons 
(Family-wise Error Rate, FWE). The thresholded-
skeletonized resulting image was thickened for better 
visualization. Further we have looked for correlations 
between narrative and all groups FA or MD values at 
each voxel of the mean-FA skeleton mask (whole-brain 
analysis). 
 
CSF AD biomarkers 
 
CSF samples (15 ml) were collected through lumbar 
puncture at the L3–4 or L4–5 interspace by a trained 
neurologist and were immediately stored at 4°C. 
Within 2 hours collected CSF was centrifuged at 2,000 
g for 10 minutes at room temperature. Samples were 
aliquoted in 0.5 ml aliquots and stored immediately at 
-80°C till use.  
 
All lumbar punctures were performed around 11 a.m. to 
minimize possible circadian fluctuations in the 
biomarker levels. Aβ1-42 and t-tau concentrations were 
measured using Euroimmun enzyme immunoassays 
with single antigen (ELISA) kits.  
 
Statistical analyses 
 
Data analysis were performed using the Statistical 
Package for the Social Sciences (SPSS, 
RRID:SCR_002865; http://www-01.ibm.com/software/ 
uk/analytics/spss/, https://www.ibm.com) software, 
version 21.0. ANOVA with post-hoc Bonferroni tests 
were used for all parametric variables’ analyses. For the 
categorical variables (inference generation), we used 
Pearson’s Chi‐square test. Comparisons between groups 
and correlations between narrative discourse and white 
matter integrity considering FA and MD values were 
performed for the entire sample and for each group in 
separate. Linear regression was performed to verify the 
correlation between performance in narrative discourse 
and other cognitive functions, such as memory and 
executive functions. Stepwise regression analysis of 
verbal memory and working memory were performed to 
define the main predictors to the narrative discourse 
(dependent variable). For all statistical tests, we adopted 
a level of significance (α) of 0.05, with corrections. 

http://www.hopkinsmedicine.org/
http://www-01.ibm.com/software/uk/analytics/spss/
http://www-01.ibm.com/software/uk/analytics/spss/
https://www.ibm.com/
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SUPPLEMENTARY MATERIALS 
 

 

 

Supplementary Table 1. Summary of comparison between all groups in different ROI’s: mean and standard error in 
FA and MD. 

ROIs 
Controls aMCI DA Comparison 

p< 0.05 FA MD FA MD FA MD 
Mean (SE) FA *    MD ** 

UNC 
L 

0.350  
(±0.006) 

0.850 
(±0.009) 

0.346  
(±0.006) 

0.858 
(±0.009) 

0.333 
(±0.008) 

0.895 
(±0.020) 

Control < AD** 

R 
0.349 

(±0.005) 
0.824 

(±0.008) 
0.344 

(±0.006) 
0.845 

(±0.009) 
0.322 

(±0.010) 
0.901 

(±0.025) 
Control < AD** 
aMCI< AD ** 

SLF 
L 

0.386  
(±0.004) 

0.761 
(±0.006) 

0.383 
(±0.005) 

0.757 
(±0.010) 

0.362  
(±0.10) 

0.801 
(±0.018) 

Control < AD** 
aMCI< AD ** 

R 
0.403  

(±0.005) 
0.738 

(±0.005) 
0.404  

(±0.007) 
0.748 

(±0.010) 
0.374  

(±0.014) 
0.805 

(±0.030) 
Control < AD** 
aMCI< AD ** 

ILF 
L 

0.324  
(±0.003) 

0.780 
(±0.005) 

0.316  
(±0.004) 

0.796 
(±0.006) 

0.303 
(±0.008) 

0.829 
(±0.030) 

Control > AD*  
Control < AD**      
aMCI < AD** 

R 
0.360 

(±0.003) 
0.753 

(±0.005) 
0.360 

(±0.004) 
0.767 

(±0.007) 
0.351 

(±0.08) 
0.785 

(±0.014) 
Control < AD** 

IFOF 
L 

0.360 
(±0.003) 

0.798 
(±0.005) 

0.354 
(±0.005) 

0.812 
(±0.005) 

0.344 
(±0.008) 

0.843 
(±0.018) 

Control < AD** 

R 
0.355 

(±0.004) 
0.807 

(±0.006) 
0.360 

(±0.005) 
0.811 

(±0.008) 
0.340 

(±0.010) 
0.867 

(±0.025) 
Control < AD**  
aMCI < AD** 

CC 

genu 
0.409 

(±0.005) 
0.970 

(±0.010) 
0.411 

(±0.006) 
0.958 

(±0.013) 
0.381 

(±0.010) 
1.025 

(±0.024) 
Control > AD*  

Control < AD** 

body 
0.435 

(±0.006) 
1.096 

(±0.014) 
0.450 

(±0.007) 
1.103 

(±0.015) 
0.415 

(±0.128) 
1.180 

(±0.028) 
Control > AD* 
Control < AD**    
aMCI < AD** 

splenium 
0.436 

(±0.005) 
0.920 

(±0.012) 
0.444 

(±0.006) 
0.925 

(±0.016) 
0.416 

(±0.015) 
0.970 

(±0.034) 
 

PhC 

L 
0.272 

(±0.005) 
0.979 

(±0.012) 
0.266 

(±0.005) 
0.820 

(±0.011) 
0.256 

(±0.010) 
0.891 

(±0.027) 
Control < AD** 
aMCI < AD** 

R 

0.303 
(±0.006) 

0.827 
(±0.010) 

0.303 
(±0.006) 

0.843 
(±0.017) 

0.270 
(±0.010) 

0.994 
(±0.043) 

Control > AD*   
aMCI > AD* 

Control < AD**   
aMCI < AD** 

P-value <0.05 / MD values (10-3 mm/s). 
*p value statistical significance. 
Abbreviations: aMCI: Amnestic Mild Cognitive Impairment; AD: Alzheimer’s Disease; CC: corpus callosum; CDR: Clinical 
Dementia Rating; CSF: cerebrospinal fluid; DTI: Diffusion Tensor Imaging; FA: fractional anisotropy; fMRI: functional magnetic 
resonance imaging; GDS: Geriatric Depression Scale; IDOR: D’Or Institute of Research and Education; IFOF: inferior fronto 
occipital fasciculus; ILF: inferior longitudinal fasciculus; MCI: Mild Cognitive Impairment; MD: mean diffusivity; MMSE: Mini-
Mental State Examination; NComp: narrative comprehension; NProd: narrative production; PhC: parahipocampal cingulate; 
RAVLT: Rey Auditory Verbal Learning Test; ROI: regions of interest; SLF: superior longitudinal fasciculus; ToM: Theory of Mind; 
UNC: uncinate fasciculus; VF: verbal fluency; WB: Whole brain; WM: White Matter. 
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Supplementary Table 2. Association between ROIs and Ratio t-tau/ Aβ1-42. 

Correlation 
T-tau /Aβ1-42 x ROI’s Min corrected p (α =0,05) 

ROI’s Correlation FA MD 

UNC 
(R) 

positive 0,62452 0,001212* 
negative 0,000806* 0,95617 

UNC 
(L) 

positive 0,904262 0,110281 
negative 0,076752 0,977378 

IFOF 
(R)  

positive 0,757019 0,066855 
negative 0,026863* 0,767724 

IFOF 
(L) 

positive 0,935569 0,075742 
negative 0,089073 0,997172 

PhC 
(R) 

positive 0,719451 0,09998 
negative 0,533428 0,864472 

PhC 
(L) 

positive 0,931529 0,175318 
negative 0,036962* 0,932337 

*p value statistical significance. 
 


