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t. Many ar
hite
tures of autonomous agent have been proposed throughout AI resear
h. The most 
ommon ar
hite
-tures, BDI, are pro
edural in that they do no planning, seriously 
urtailing an agent's ability to 
ope with unforeseen events. Inthis paper, we explore the relationship between propositional planning systems and the pro
ess of means-ends reasoning used byBDI agents and de�ne a mapping from BDI mental states to propositional planning problems and from propositional plans ba
kto mental states. In order to test the viability of su
h a mapping, we have implemented it in an extension of a BDI agent modelthrough the use of Graphplan as the propositional planning algorithm. The implemented prototype was applied to model a 
asestudy of an agent 
ontrolled produ
tion 
ell.Key words. Propositional Planning, Agent Models and Ar
hite
tures, BDI, X-BDI1. Introdu
tion. Development of autonomous rational agents has been one of the main drivers of arti�
ialintelligen
e resear
h for some time [37℄. Initial e�orts fo
used on disembodied means-ends reasoning with thedevelopment of problem-solving systems and generi
 planning systems, su
h as STRIPS [15℄, later evolvinginto the idea of embodied problem solving entities (i.e. agents) [37℄. In this line of resear
h, one of the mostwidely studied models of autonomous agents has been that supported by the mental states of beliefs, desiresand intentions [7℄, or the BDI model. While e�orts towards de�ning BDI ar
hite
tures have been sustained andsigni�
ant, resulting in both theoreti
al [34℄ and pra
ti
al ar
hite
tures [14℄, they have also led to a dis
onne
tbetween them.In parti
ular, theories of autonomous BDI agents often rely on logi
 models that assume in�nite 
omputa-tional power, while ar
hite
tures de�ned for runtime e�
ien
y have 
urtailed an agent's autonomy by for
ingthe agent to rely on a pre-
ompiled plan library. Although simple sele
tion of plans from a plan library is
omputationally e�
ient, at 
ompile time an agent is bound to the plans provided by the designer, limitingan agent's ability to 
ope with situations not foreseen at design time. Moreover, even if a designer is able tode�ne plans for every 
on
eivable situation in whi
h an agent �nds itself, su
h a des
ription is likely to be veryextensive, o�setting some of the e�
ien
y bene�ts from the plan library approa
h. The absen
e of planning
apabilities thus seriously 
urtails the abilities of autonomous agents. In 
onsequen
e, we argue that planningis an important 
apability of any autonomous agent ar
hite
ture in order to allow the agent to 
ope at runtimewith unforeseen situations.Though the e�
ien
y of planning algorithms has been a major obsta
le to their deployment in time-
riti
al appli
ations, many advan
es have been a
hieved in planning [43℄, and developments are ongoing [2℄.Considering that planning is an enabler of agent �exibility, and that there have been signi�
ant advan
es inplanning te
hniques, it is valuable and important for autonomous agent ar
hite
tures to employ planning toallow an agent to 
ope with situations that the designer was not able to foresee. This arti
le des
ribes anddemonstrates one su
h ar
hite
ture, whi
h integrates propositional planning with BDI, allowing agents to takeadvantage of the pra
ti
al reasoning 
apabilities (i.e. sele
ting and prioritising goals) of the BDI model, andrepla
ing the BDI means-ends reasoning (i.e. sele
ting a 
ourse of a
tion to a
hieve goals) with the �exibilityof generi
 planning. Our approa
h is underpinned by a mapping among BDI mental states and propositionalplanning formalisms, allowing any algorithm based on a similar formalism to be used as a means-ends reasoningpro
ess for a BDI agent. In order to demonstrate the viability of su
h an approa
h we take a spe
i�
 BDIagent model, namely the X-BDI model [27℄, and modify it to use propositional planning algorithms to performmeans-ends reasoning [30℄.The paper is organised as follows: Se
tion 2 
ontains an overview of the related work and main 
on
eptsused throughout this paper; Se
tion 3 des
ribes X-BDI and the extensions that allow it to use an externalplanning algorithm; Se
tion 4 
ontains a 
ase study used to demonstrate the implemented prototype; �nally,Se
tion 5 
ontains 
on
luding remarks about the results obtained in this work.2. Agents and Planners. In this se
tion we review ba
kground work on agents and planning systems,and 
on
lude with a dis
ussion of the integration of these te
hnologies in an agent ar
hite
ture, laying thegroundwork for the remainder of this arti
le. Se
tion 2.1 provides an overview of 
omputer agents and the BDImodel, used in the agent ar
hite
ture des
ribed later in this arti
le; Se
tion 2.2 introdu
es generi
 planning15



16 F. R. Meneguzzi, A. F. Zorzo et alalgorithms and problem representation; Se
tion 2.3 des
ribes the parti
ular planning algorithm used in theprototype des
ribed in Se
tion 3; �nally, we dis
uss how these te
hnologies 
an be pie
ed together in order toaddress some of their individual limitations.2.1. Agents. The growing 
omplexity of 
omputer systems has led to the development of in
reasingly moreadvan
ed abstra
tions for their representation. An abstra
tion of growing popularity for representing parts of
omplex 
omputer systems is the notion of 
omputer agents [13℄, so far as to be proposed as an alternative tothe Turing Ma
hine as an abstra
tion for the notion of 
omputation [19, 42℄. Although there is a variety ofde�nitions for 
omputer agents, most resear
hers agree with Jennings' de�nition of an agent as en
apsulated
omputer system, situated in some environment, and 
apable of �exible, autonomous a
tion in that environmentin order to meet its design obje
tives [19℄.In the 
ontext of multi-agent systems resear
h, one of the most widely known and studied models ofdeliberative agents uses beliefs, desires and intentions (BDI) as abstra
tions for the des
ription of a system'sbehaviour. The BDI model originated from a philosophi
al model of human pra
ti
al reasoning [6℄, laterformalised [11℄ and improved towards a more 
omplete 
omputational theory [34, 44℄. Though other approa
hesto the design of autonomous agents have been proposed [16℄, the BDI model or variations of it are used in manynew ar
hite
tures of autonomous agents [13, 31, 4, 40℄. More spe
i�
ally, the 
omponents that 
hara
terise theBDI model 
an be brie�y des
ribed as follows [28℄:
• beliefs represent an agent's expe
tation regarding the 
urrent world state or the possibility that a given
ourse of a
tion will lead to a given world state;
• desires represent a set of possibly in
onsistent preferen
es an agent has regarding a set of world states;and
• intentions represent an agent's 
ommitment regarding a given 
ourse of a
tion, 
onstraining the 
on-sideration of new obje
tives.The operation of a generi
 BDI interpreter 
an be seen as a pro
ess that starts with an agent 
onsidering itssensor input and updating its belief base. With this updated belief base, a set of goals from the agent's desiresis then sele
ted, and the agent 
ommits itself to a
hieving these goals. In turn, plans are sele
ted as the meansto a
hieve the goals through intentions whi
h represent the 
ommitment. Finally, these intentions are 
arriedout through 
on
rete a
tions 
ontained in the instantiated plans (or intentions). This pro
ess is illustrated inthe a
tivity diagram of Figure 2.1, whi
h shows the 
omponents of an agent that are used in ea
h of the mainpro
esses of BDI reasoning, namely: obtaining sensor input and updating beliefs; sele
ting a goal from amongthe desires; and adopting intentions to 
arry out the a
tions required to a
hieve the sele
ted goal.This last pro
ess of sele
ting and adopting intentions to a
hieve a goal is one of the most importantpro
esses of the BDI model, sin
e it a�e
ts not only the a
tions an agent 
hooses, but also the sele
tion of goals,as an agent must drop goals deemed impossible. This problem of determining whether an agent is 
apableof satisfying its obje
tives through some sequen
e of a
tions given an environment and a set of obje
tives issometimes 
hara
terised as the agent design problem [45℄. The most widely known BDI agent implementations[18, 33, 14℄ bypass this problem through the use of plan libraries in whi
h the 
ourses of a
tion for every possibleobje
tive an agent might have are stored as en
apsulated pro
edures. Agents using these approa
hes are said topursue pro
edural goals. However, the theories 
ommonly used to underpin the 
reation of new plans of a
tion atruntime assume an agent with unlimited resour
es, thus making their a
tual implementation impossible [37, 34℄.When an agent sele
ts target world-states and then uses some pro
ess at runtime to determine its 
ourse ofa
tion, it is said to pursue de
larative goals. Re
ent e�orts seek to deal with this problem in various ways, forinstan
e by de�ning alternate proof systems [27, 31℄ or using model 
he
king in order to validate the agent'splan library [5℄. An alternative approa
h to solving the problem is the use of planning algorithms to performmeans-ends reasoning at runtime [37, 26, 47℄.2.2. Planning Algorithms. Means-ends reasoning is a fundamental 
omponent of any rational agent[6℄ and is useful in the resolution of problems in a number of di�erent areas, su
h as s
heduling [38℄, militarystrategy [39℄, and multi-agent 
oordination [12℄. Indeed, the development of planning algorithms has beenone of the main goals of AI resear
h [35℄. In more detail, a planning problem is generi
ally de�ned by three
omponents [43℄:
• a formal des
ription of the start state;
• a formal des
ription of the intended goals; and
• a formal des
ription of the a
tions that may be performed.
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BeliefsBeliefs

ActionsActions

Sensor Update

Goal Selection

DesiresDesires

IntentionsIntentions

Intention Selection

ActionFig. 2.1. A
tivities of a generi
 BDI interpreter.A planning system takes these 
omponents and generates a set of a
tions ordered by some relation whi
h,when applied to the world in whi
h the initial state des
ription is true, makes the goals' des
ription true. Despitethe high 
omplexity proven for the general 
ase of planning problems1, re
ent advan
es in planning resear
hhave led to the 
reation of planning algorithms that perform signi�
antly better than previous approa
hes tosolving various problem 
lasses [43, 2℄. These new algorithms make use of two main te
hniques, either 
ombinedor separately:
• expansion and sear
h in a planning graph [3℄; and
• 
ompilation of the planning problem into a logi
al formula to be tested for satis�ability (SAT) [20℄.One su
h planning algorithm is Graphplan, whi
h we 
onsider in more detail below.2.3. Graphplan. Graphplan [3℄ is a planning algorithm based on the �rst of these te
hniques, expansionand sear
h in a graph. It is 
onsidered to be one of the most e�
ient planning algorithms 
reated re
ently[43, 38, 17℄, having been re�ned into a series of other algorithms, su
h as IPP (Interferen
e Progression Planner)[22℄ and STAN (STate ANalysis) [24℄. The e�
ien
y of Graphplan was empiri
ally demonstrated throughthe very signi�
ant results obtained by instan
es of Graphplan in the planning 
ompetitions of the AIPS(International Conferen
e on AI Planning and S
heduling) [21, 25℄.Planning in Graphplan is based on the 
on
ept of a graph data stru
ture 
alled the planning graph, in whi
hinformation regarding the planning problem is stored in su
h a way that the sear
h for a solution 
an be a

el-erated. Planning graph 
onstru
tion is e�
ient, having polynomial 
omplexity in graph size and 
onstru
tiontime with regard to problem size [3℄. A plan in the planning graph is essentially a �ow, in the sense of a network�ow, and the sear
h for a solution to the planning problem is performed by the planner using data stored in thegraph to speed up the pro
ess. The basi
 Graphplan algorithm (i.e. without the optimisations proposed by otherresear
hers [21, 25℄) is divided into graph expansion and solution extra
tion, whi
h take pla
e alternately until ei-ther a solution is found or the algorithm 
an prove that no solution exists. The way these two parts of Graphplanare used throughout planning is summarised in the a
tivity diagram of Figure 2.2, and explained below.Sin
e a plan is 
omposed of temporally ordered a
tions and, in between these a
tions there are world states,graph levels are divided into alternating proposition and a
tion levels, making it a dire
ted and levelled graph,

1Planning is known to be unde
idable [10℄ and planning problems, in the general 
ase, have PSPACE 
omplexity [9℄.
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Graph Expansion Solution Extraction

Consistent Goals? Yes

No Solution

No Plan FoundSolution ImpossibleFig. 2.2. Graphplan algorithm overview.as shown in Figure 2.3. Proposition levels are 
omposed of proposition nodes labelled with propositions, and
onne
ted to the a
tions in the subsequent a
tion level through pre-
ondition ar
s. Here, a
tion nodes arelabelled with operators and are 
onne
ted to the nodes in the subsequent proposition nodes by e�e
t ar
s.Every proposition level denotes literals that are possibly true at a given moment, so that the �rst propositionlevel represents the literals that are possibly true at time 1, the next proposition level represents the literalsthat are possibly true at time 2 and so forth. Similarly, a
tion levels denote operators that 
an be exe
uted at agiven moment in time in su
h a way that the �rst a
tion level represents the operators that may be exe
uted attime 1, the se
ond a
tion level represents the operators that may be exe
uted at time 2 and so forth. The graphalso 
ontains mutual ex
lusion relations (mutex ) between nodes (at the same graph level) so that they 
annotbe simultaneously present at the same graph level for the same solution. This gives them a fundamental rolein algorithm e�
ien
y, as they allow the sear
h for a solution to 
ompletely ignore a large number of possible�ows in the graph.
Level 0

Mutex

Action

Proposition

Level 4Level 3Level 2Level 1

Fig. 2.3. A planning graph example.After graph expansion, the graph is analysed by the solution extra
tion part of the algorithm, whi
h uses aba
kward 
haining strategy to traverse the graph, level by level, trying to �nd a �ow starting from the goals andleading to the initial 
onditions. An important optimising fa
tor in this phase is never to sear
h for a solution
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onsistent, sin
e they 
annot be mutually ex
lusive at the lastgraph level. Fundamental to Graphplan is its assuran
e that, whenever a plan for the proposed problem exists,the algorithm will �nd it, otherwise the algorithm will determine that the proposed problem is unsolvable [3℄.2.4. Dis
ussion. When one 
onsiders how BDI reasoning operates, it is straightforward to per
eive thatpropositional planning 
an be used as a means-ends reasoning 
omponent. From a representational point of view,BDI mental states 
an be 
onverted to planning problems without 
ompli
ation: beliefs translate into an initialstate spe
i�
ation, a
tions and 
apabilities translate into operator spe
i�
ations and sele
ted goals translate intoa goal state spe
i�
ation. At this simple level, the delegation of means-ends reasoning to an external planningpro
ess 
an improve the runtime e�
ien
y of existing BDI interpreters by leveraging advan
es in planningalgorithms resear
h.3. Introdu
ing pro
edural planning into X-BDI.3.1. Introdu
tion. Given the short
omings of traditional BDI ar
hite
tures in terms of runtime �exibility,and the performan
e problems of alternative ar
hite
tures, we de�ne an extended version of the X-BDI agentmodel [27℄, modi�ed to a

ommodate the use of an external planning 
omponent. Here, we fo
us on STRIPS-like(STanford Resear
h Institute Problem Solver) formalisms [15℄. Our formalism is based on the one introdu
edby Nebel [30℄, and, a

ording to the author, is a SIL formalism, i.e. the basi
 STRIPS plus the possibility touse in
omplete spe
i�
ations and literals in the des
ription of world states. It is important to point out that theformalism de�ned by Nebel [30℄ is more general, but sin
e we do not aim to provide a detailed study of planningformalisms, we use a simpler version. In parti
ular, we use a propositional logi
al language with variables onlyin the spe
i�
ation of operators, and with operators not being allowed to have 
onditional e�e
ts. In Nebel'sdes
ription of the the STRIPS formalism, one 
an noti
e that it deals only with atoms. Nevertheless, within thispaper more expressivity is desirable, in parti
ular, the possibility to use �rst order ground literals. It is possibleto avoid these limitations through the use of synta
ti
 transformations so that planners 
an operate over �rstorder ground literals. The main 
ontribution of our work lies in the e�
ien
y improvement of a de
larativeagent ar
hite
ture. The fa
t that this type of agent ar
hite
ture has traditionally been notoriously ine�
ienthighlights the relevan
e of this e�
ien
y gain.3.2. X-BDI. An X-BDI agent has the traditional 
omponents of a BDI agent, i.e. a set of beliefs, desiresand intentions. The agent model was originally de�ned in terms of the Extended Logi
 Programming with expli
itnegation (ELP) formalism 
reated by Alferes and Pereira [1℄, whi
h in
ludes a revision pro
edure responsiblefor maintaining logi
 
onsisten
y. We do not provide a des
ription of the formalism here, though we assume thepresen
e of its revision pro
edure in our des
ription of X-BDI. Given its extended logi
 de�nition, X-BDI alsohas a set of time axioms de�ned through a variation of the Event Cal
ulus [27, 23℄.The set of beliefs is simply a formalisation of fa
ts in ELP, individualised for a spe
i�
 agent. From theagent's point of view, it is assumed that its beliefs are not always 
onsistent, and whenever an event makes thebeliefs in
onsistent, they must be revised. The details of this pro
ess are unimportant in the understanding ofthe overall agent ar
hite
ture, but 
an be found in [1℄. The belief revision pro
ess in X-BDI is the result of theprogram revision pro
ess performed in ELP.Every desire in an X-BDI agent is 
onditioned to the body of a logi
 rule, whi
h is a 
onjun
tion of literals
alled Body. Thus, Body spe
i�es the pre-
onditions that must be satis�ed in order for an agent to desirea property. When Body is an empty 
onjun
tion, some property P is un
onditionally desired. Desires maybe temporally situated, i.e. 
an be desired at a spe
i�
 moment, or whenever their pre-
onditions are valid.Moreover, a desire spe
i�
ation 
ontains a priority value used in the formation of an order relation among desiresets.There are two possible types of intentions: primary intentions, whi
h refer to the intended properties,and relative intentions, whi
h refer to a
tions able to bring about these properties. An agent may not intendsomething in the past or that is already true, and intentions must in prin
iple be possible, i.e. there must be atleast one plan available whose result is a world state where the intended property is true.Now, we diverge from the original X-BDI ar
hite
ture in several respe
ts. First, the original reasoningpro
ess veri�ed the possibility of a property through the abdu
tion of an event 
al
ulus theory to validate theproperty. In brief, the logi
 representation of desires in the original X-BDI in
luded 
lauses spe
i�
ally markedfor revision in su
h a way that sequen
es of a
tions (whose pre
onditions and e�e
ts were des
ribed in event
al
ulus) 
ould be found true in the pro
ess of revising these 
lauses. This abdu
tion pro
ess was ne
essary



20 F. R. Meneguzzi, A. F. Zorzo et alfor the implementation of X-BDI planning framework in extended logi
, but the implementation of the logi
interpreter was notably ine�
ient for abdu
tive reasoning. In this work, the planning pro
ess is abstra
tedout from the operational de�nition of X-BDI, allowing any planning 
omponent that satis�es the 
onditions ofSe
tion 2.2 to be invoked by the agent. Thus, the notion of possibility of a desire is asso
iated with the existen
eof a plan to satisfy it.The reasoning pro
ess performed by X-BDI begins with the sele
tion of eligible desires, whi
h representunsatis�ed desires whose pre-
onditions are valid, though the elements of this set of desires are not ne
essarily
onsistent among themselves. A set of eligible desires that are both 
onsistent and possible is then sele
ted as
andidate desires, to whi
h the agent 
ommits itself to a
hieving by adopting them as primary intentions. Inorder to a
hieve the primary intentions, the planning pro
ess generates a sequen
e of temporally ordered a
tionsthat 
onstitute the relative intentions. This pro
ess is summarised in Figure 3.1.
Consistency

Maintenance

Perception

Planning

Action

Primary
Intentions

Relative
Intentions

Candidate
Desires

Elligible
Desires

Desires Beliefs

Deliberation

Fig. 3.1. X-BDI operation overview.Eligible desires have rationality 
onstraints that are similar to those imposed by Bratman [6℄ over intentionsin the sense that an agent will not desire something in the past or something the agent believes will happenwithout its interferen
e. Agent beliefs must also support the pre-
onditions de�ned in the desire Body. Withinthe agent's reasoning pro
ess these desires give rise to a set of mutually 
onsistent subsets ordered by a partialorder relation.The pro
ess of sele
ting 
andidate desires seeks to 
hoose from the eligible desires one subset that 
ontainsonly desires that are internally 
onsistent and possible. A possible desire in this sense is one that has a property
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P that 
an be satis�ed through a sequen
e of a
tions. In order to 
hoose among multiple sets of 
andidate desires,the original X-BDI uses ELP 
onstru
ts that allow desires to be prioritised in the revision pro
ess. Althoughwe depart from the original abdu
tion theory, we still use these priority values to de�ne a desire preferen
erelation. Through this preferen
e relation, a desire preferen
e graph that relates all subsets of eligible desires isgenerated.Candidate desires represent the most signi�
ant modi�
ation made in this paper regarding the original X-BDI [27℄. Originally, X-BDI veri�ed the possibility of a desire through the abdu
tion of an event 
al
ulus theoryin whi
h the belief in the validity of a desired property P 
ould be true. Su
h an abdu
tion pro
ess is, a
tually,a form of planning. Sin
e our main obje
tive in this paper is to distinguish the planning pro
ess previouslyhard-
oded within X-BDI, the notion of desire possibility must be re-de�ned. Therefore, we de�ne the set of
andidate desires to be the subset of eligible desires with the greater preferen
e value, and whose properties 
anbe satis�ed. Satis�ability is veri�ed through the exe
ution of a propositional planner that pro
esses a planningproblem in whi
h the initial state 
ontains the properties that the agent believes at the time of planning. The
P properties present in the 
andidate desires are used to generate the set of primary intentions. The modi�edreasoning pro
ess for X-BDI is illustrated in Figure 3.2.

Consistency

Maintenance

Action

Perception

Mapping

Elligible
Desires

Relative
Intentions

Propositional

Planning

Candidate
Desires

Primary
Intentions

Desires Beliefs

Deliberation

Fig. 3.2. Modi�ed X-BDI overview.Primary intentions 
an be seen as high-level plans, similar to the intentions in IRMA [7℄, and representingthe agent's 
ommitment to a 
ourse of a
tion. These primary intentions are systemati
ally re�ned up to the pointwhere an agent has a temporally ordered set of a
tions representing a 
on
rete plan towards the satisfa
tion of



22 F. R. Meneguzzi, A. F. Zorzo et alits goals. Relative intentions then 
orrespond to the temporally ordered steps of the 
on
rete plans generated tosatisfy the agent's primary intentions. Thus the notion of agent 
ommitment results from the fa
t that relativeintentions must not 
ontradi
t or annul primary intentions.3.3. Intention Revision. The 
omputational e�ort and the time required to re
onsider the whole set ofintentions of a resour
e-bounded agent is generally signi�
ant regarding the environment 
hange ratio. Intentionre
onsideration should therefore not o

ur 
onstantly, but only when the world 
hanges in su
h a way as tothreaten the plans an agent is exe
uting or when an opportunity to satisfy more important goals is dete
ted. Asa 
onsequen
e, X-BDI uses a set of re
onsideration triggers generated when intentions are sele
ted, and 
ausesthe agent to re
onsider its 
ourse of a
tion when a
tivated.These trigger 
onditions are de�ned to enfor
e Bratman's [6℄ rationality 
onditions for BDI 
omponents, asfollows. If all of the agent's primary intentions are satis�ed before the time planned for them to be satis�ed, theagent restarts the deliberative pro
ess, sin
e it has a
hieved its goals. On the other hand, if one of the primaryintentions is not a
hieved at the time planned for it, the agent must re
onsider its intentions be
ause its planshave failed. Moreover, if a desire with a higher priority than the 
urrently sele
ted desires be
omes possible, theagent re
onsiders its desires in order to take advantage of the new opportunity. Re
onsideration is 
ompletelybased on integrity 
onstraints over beliefs, and sin
e beliefs are revised at every sensoring 
y
le, it is possiblethat re
onsideration o

urs due the triggering of a re
onsideration restri
tion.3.4. Implementation. The prototype implemented for this work is 
omposed of three parts: the X-BDIkernel, implemented in Prolog; a planning system 
ontaining a C++ implementation of Graphplan; and a Javagraphi
al interfa
e used to ease the operation of X-BDI and to visualise its intera
tion with the environment.The ar
hite
ture is outlined in Figure 3.3.
Socket 2BDI GraphplanAgent Viewer

Java Prolog C++

Plan

Beliefs

Desires

X
IntentionsFig. 3.3. Solution Ar
hite
tureHere, the Agent Viewer interfa
e 
ommuni
ates with X-BDI through so
kets by sending the input from theenvironment in whi
h the agent is embedded and re
eiving the result of the agent's deliberation. Through theAgent Viewer the user 
an also spe
ify the agent in terms of its desires, a
tions and initial beliefs. On
e X-BDIre
eives the agent spe
i�
ation, it 
ommuni
ates with the planning module through operating system �les andthe Prolog/C++ interfa
e. The planner is responsible for generating a set of intentions for the agent. Whenthe agent deliberates, it 
onverts subsets of the agent's desired properties into propositional planning problemsand invokes the planning algorithm to solve these problems until either a plan that solves the highest prioritydesires is found, or the algorithm determines that it is not possible to solve any one of these problems.4. A BDI Produ
tion Cell. In this work we use a BDI agent in order to model a produ
tion 
ell as a
ase study, and as a means to verify the validity of the ar
hite
ture des
ribed in Se
tion 3. In parti
ular, therational utilisation of equipment in industrial fa
ilities is a 
omplex problem, espe
ially s
heduling its use. Thisproblem is 
ompli
ated when the fa
ility produ
es multiple 
omponent types, where ea
h type requires a subsetof the equipment available. In our test s
enario, the proposed produ
tion 
ell [46℄, illustrated in Figure 4.1,is 
omposed of seven devi
es: a feed belt, a deposit belt and four pro
essing units upon whi
h 
omponents aremoved to be pro
essed.Components enter the produ
tion 
ell for pro
essing through the feed belt and, on
e pro
essed by all theappropriate pro
essing units, they are removed from the 
ell through the deposit belt. Every pro
essing unit isresponsible for performing a di�erent kind of operation on the 
omponent being pro
essed, and 
an hold onlyone 
omponent at a given moment. Ea
h 
omponent introdu
ed into the 
ell 
an be pro
essed by one or morepro
essing units, determined by the type of 
omponent being pro
essed, and di�erent 
omponent types havedi�erent pro
essing priorities. The 
ontrol of the produ
tion 
ell is entrusted to a BDI agent implemented using
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Fig. 4.1. A BDI Produ
tion Cell.X-BDI, whi
h should s
hedule the work of the produ
tion 
ell in relation to its beliefs, desires and intentions,re-s
heduling whenever some 
hange in the system o

urs.The �rst step in modelling any problem using a STRIPS-like formalism is the 
hoi
e of the predi
ates usedto represent the problem's obje
t-types and its states. We de�ne the following predi
ates representing obje
tsin the 
ell:
• 
omponent(C) denotes that C is a 
omponent to be pro
essed;
• pro
Unit(P) denotes that P is a pro
essing unit, whi
h is also a devi
e;
• devi
e(D) denotes that D is a devi
e;
• feedBelt represents the feed belt ;
• depositBelt represents the deposit belt.Similarly, we have the following predi
ates representing system states:
• over(C,D) denotes that 
omponent C is over devi
e D;
• empty(P) denotes that pro
essing unit P is empty, i.e. has no 
omponent over it;
• pro
essed(C,P) denotes that 
omponent C has already been pro
essed by pro
essing unit P;
• finished(C) denotes that 
omponent C has already been pro
essed by all appropriate pro
essing unitsand has been removed from the produ
tion 
ell;Next, we de�ne the a
tions the agent is 
apable of performing in the 
ontext of the proposed problem, theseare summarised in Table 4.1. Informally, a
tion pro
ess(C,P) represents the pro
essing that a pro
essing unitP performs on a 
omponent C over it; 
onsume(C) represents the removal of 
omponent C from the produ
tion
ell through the deposit belt; and move(C,D1,D2) represents the motion of 
omponent C from devi
e D1 todevi
e D2. Table 4.1A
tion spe
i�
ation for the produ
tion 
ell agent.A
tion Pre
onditions E�e
tspro
ess(C,P) pro
Unit(P) pro
essed(C,P)
omponent(C)over(C,P)
onsume(C) 
omponent(C) ¬over(C,depositBelt)over(C,depositBelt) empty(depositBelt)finished(C)move(C,D1,D2) over(C,D1) over(C, D2)empty(D2) ¬over(C,D1)
omponent(C) ¬empty(D2)devi
e(D1) empty(D1)devi
e(D2)
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essing requirements of 
omponents and their priorities are modelled through desires. Thus, we 
anmodel an agent, pCell, whi
h needs to pro
ess 
omponent 
omp1 by pro
essing units pro
Unit1, pro
Unit2 andpro
Unit3 as soon as this 
omponent is inserted into the produ
tion 
ell using the spe
i�
ation of Listing 12.Listing 1Spe
i�
ation of desires related to pro
essing 
omp1.des(pCell,finished(
omp1),Tf,[0.7℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, pro
essed(
omp1,pro
Unit1)),bel(pCell, pro
essed(
omp1,pro
Unit2)),bel(pCell, pro
essed(
omp1,pro
Unit3)),bel(pCell, -finished(
omp1)).des(pCell,pro
essed(
omp1,pro
Unit1),Tf,[0.6℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, -pro
essed(
omp1,pro
Unit1)).des(pCell,pro
essed(
omp1,pro
Unit2),Tf,[0.6℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, -pro
essed(
omp1,pro
Unit2)).des(pCell,pro
essed(
omp1,pro
Unit3),Tf,[0.6℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, -pro
essed(
omp1,pro
Unit3)).Similarly, we 
an model the agent's need to pro
ess 
omponent blo
2 by pro
essing unit pro
Unit3 andpro
Unit4 by adding to the agent spe
i�
ation the desires of Listing 2.Listing 2Spe
i�
ation of desires related to pro
essing 
omp2.des(pCell,finished(
omp2),Tf,[0.6℄)if bel(pCell, 
omponent(
omp2)),bel(pCell, pro
essed(
omp2,pro
Unit3)),bel(pCell, pro
essed(
omp2,pro
Unit4)),bel(pCell, -finished(
omp2)).des(pCell,pro
essed(
omp2,pro
Unit3),Tf,[0.5℄)if bel(pCell, 
omponent(
omp2)),bel(pCell, -pro
essed(
omp2,pro
Unit3)).des(pCell,pro
essed(
omp2,pro
Unit4),Tf,[0.5℄)if bel(pCell, 
omponent(
omp2)),bel(pCell, -pro
essed(
omp2,pro
Unit4)).Finally, we model the agent's stati
 knowledge regarding the problem domain, in parti
ular the obje
t's
lasses and the initial world-state with the beliefs spe
i�ed in Listing 3.The arrival of a new 
omponent in the produ
tion 
ell is signalled by the sensors through the in
lusion of
omponent(
omp1) and over(
omp1,feedBelt) in the agent's belief database, a
tivating the agent's re
onsid-eration pro
ess. Given the desire's pre-
onditions previously de�ned, only the desires related to the followingproperties be
ome eligible:
2Tf is the time at whi
h the desire is valid, and the values 0.7 and 0.6 are the desires priorities.
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tion 
ell.bel(pCell, pro
Unit(pro
Unit1)).bel(pCell, pro
Unit(pro
Unit2)).bel(pCell, pro
Unit(pro
Unit3)).bel(pCell, pro
Unit(pro
Unit4)).bel(pCell, devi
e(pro
Unit1)).bel(pCell, devi
e(pro
Unit2)).bel(pCell, devi
e(pro
Unit3)).bel(pCell, devi
e(pro
Unit4)).bel(pCell, devi
e(depositBelt)).bel(pCell, devi
e(feedBelt)).bel(pCell, empty(pro
Unit1)).bel(pCell, empty(pro
Unit2)).bel(pCell, empty(pro
Unit3)).bel(pCell, empty(pro
Unit4)).bel(pCell, empty(depositBelt)).
• pro
essed(
omp1,pro
Unit1);
• pro
essed(
omp1,pro
Unit2);
• pro
essed(
omp1,pro
Unit3);These desires are then analysed by the pro
ess of sele
ting 
andidate desires. In this pro
ess, the agent'seligible desires and beliefs are used in the 
reation of planning problems that are sent to Graphplan for resolution.The result of this pro
essing is a plan that satis�es all the eligible desires, with the following steps:1. move(
omp1,feedBelt,pro
Unit2)2. pro
ess(
omp1,pro
Unit2)3. move(
omp1,pro
Unit2,pro
Unit1)4. pro
ess(
omp1,pro
Unit1)5. move(
omp1,pro
Unit1,pro
Unit3)6. pro
ess(
omp1,pro
Unit3)The existen
e of this plan indi
ates to X-BDI that the spe
i�ed set of eligible desires is possible, thus turningthe previous set of desires into 
andidate desires, whi
h generate primary intentions representing the agent's
ommitment. Next, relative intentions are generated using the steps in the re
ently 
reated plan, with oneintention for ea
h step of the plan. These lead the agent to perform the appropriate a
tions. On
e the a
tionsare exe
uted, the 
andidate desires from the previous deliberation are satis�ed. Moreover, the pre-
onditionof the desire to a

omplish finished(
omp1) be
omes true, rea
tivating the agent's deliberative pro
ess andgenerating the following plan:1. move(
omp1,pro
Unit3,depositBelt)2. 
onsume(
omp1)On
e more, this plan brings about some intentions and, eventually, leads the agent to a
t. Now, suppose thatduring the agent's operation, a new 
omponent in the produ
tion 
ell arrives. If this o

urred immediately afterthe deliberation that 
reated the �rst plan, it would be signaled by the agent's sensors through the in
lusion of
omponent(
omp2) and over(
omp2,feedBelt) in the beliefs database, whi
h would modify the eligible desires
hosen in the se
ond deliberation 
y
le to:
• finished(
omp1);
• pro
essed(
omp2,pro
Unit3);
• pro
essed(
omp2,pro
Unit4);These desires be
ome 
andidate desires be
ause Graphplan is 
apable of generating a plan that satis�es allthe desires. The new plan is:1. move(
omp1,pro
Unit3,depositBelt)2. move(
omp2,feedBelt,pro
Unit4)3. 
onsume(
omp1)



26 F. R. Meneguzzi, A. F. Zorzo et al4. pro
ess(
omp2,pro
Unit4)5. move(
omp2,pro
Unit4,pro
Unit3)6. pro
ess(
omp2,pro
Unit3)7. move(
omp2,pro
Unit3,depositBelt)8. 
onsume(
omp2)The steps of this plan thus generate relative intentions, eventually leading the agent to the exe
ution of itsa
tions.5. Con
lusions. In this paper, we have dis
ussed the relationship between propositional planning algo-rithms and means-end reasoning in BDI agents. To test the viability of using propositional planners to performmeans-ends reasoning in a BDI ar
hite
ture, we have des
ribed a modi�
ation to the X-BDI agent model.Throughout this modi�
ation, new de�nitions of desires and intentions were 
reated in order for the agentmodel to maintain the theoreti
al properties present in its original version, espe
ially regarding the de�nitionof desires and intentions impossibility. Moreover, it was ne
essary to de�ne a mapping between the stru
tural
omponents of a BDI agent and propositional planning problems. The result of implementing these de�nitionsin a prototype 
an be seen in the 
ase study of Se
tion 4, whi
h represents a problem that the means-endreasoning pro
ess of the original X-BDI 
ould not solve.Considering that most implementations of BDI agents use a plan library for means-end reasoning in orderto bypass the inherent 
omplexity of performing planning at runtime, X-BDI o�ers an innovative way of im-plementing more �exible agents through its fully de
larative spe
i�
ation. However, its planning me
hanism isnotably ine�
ient. For example, the 
ase study des
ribed in Se
tion 4 was not tra
table in the original X-BDIplanning pro
ess. Thus, the main 
ontribution of our work 
onsists in addressing this limitation through thede�nition of a mapping from BDI means-end reasoning to fast planning algorithms. Moreover, su
h an approa
henables the agent ar
hite
ture to be extended with any propositional planning algorithm that uses a formalism
ompatible with the proposed mapping, thus allowing an agent to use more powerful planners as they be
omeavailable, or to use more suitable planning strategies for di�erent problem 
lasses.Other approa
hes to performing runtime planning have also been proposed, the most notable re
ent ones bySardina et al. [36℄ and Wal
zak et al. [41℄. Sardina proposes the tight integration of the JACK agent framework[8℄ with the SHOP hierar
hi
al planner [29℄. This approa
h relies on new 
onstru
ts added to an otherwisepro
edural agent representation and takes advantage of the similarity of hierar
hi
al task network (HTN) plan-ning to BDI reasoning. The work of Wal
zak proposes the integration of JADEX [32℄ike℄What is JADEX?to a 
ustomised knowledge-based planner operating in parallel to agent exe
ution, using a similar pro
ess ofagent-state 
onversion to work of Meneguzzi et al. [26, 47℄, as well as the one presented in this paper.Some rami�
ations of this work are foreseen as future work, in parti
ular, the in
orporation of the variousGraphplan improvements, as well as the 
ondu
tion of tests using other propositional planning algorithms, SATbeing an example. It is 
lear that other agent ar
hite
tures 
an bene�t from the usage of planning 
omponentsto allow agents to 
ope with unforeseen events at runtime, as demonstrated by re
ent e�orts in planning agents[36, 41℄. Therefore, investigating how to integrate planning 
apabilities to AgentSpeak-based agents 
ould 
reateagents that 
an take advantage of both the fast response of pre-
ompiled plans and the �exibility of being ableto plan at runtime to 
ope with unforeseen situations.A
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