
Salable Computing: Pratie and ExperieneVolume 8, Number 1, pp. 15�28. http://www.spe.org ISSN 1895-1767© 2007 SWPSINCORPORATING PLANNING INTO BDI SYSTEMSFELIPE RECH MENEGUZZI, AVELINO FRANCISCO ZORZO,MICHAEL DA COSTA MÓRA AND MICHAEL LUCKAbstrat. Many arhitetures of autonomous agent have been proposed throughout AI researh. The most ommon arhite-tures, BDI, are proedural in that they do no planning, seriously urtailing an agent's ability to ope with unforeseen events. Inthis paper, we explore the relationship between propositional planning systems and the proess of means-ends reasoning used byBDI agents and de�ne a mapping from BDI mental states to propositional planning problems and from propositional plans bakto mental states. In order to test the viability of suh a mapping, we have implemented it in an extension of a BDI agent modelthrough the use of Graphplan as the propositional planning algorithm. The implemented prototype was applied to model a asestudy of an agent ontrolled prodution ell.Key words. Propositional Planning, Agent Models and Arhitetures, BDI, X-BDI1. Introdution. Development of autonomous rational agents has been one of the main drivers of arti�ialintelligene researh for some time [37℄. Initial e�orts foused on disembodied means-ends reasoning with thedevelopment of problem-solving systems and generi planning systems, suh as STRIPS [15℄, later evolvinginto the idea of embodied problem solving entities (i.e. agents) [37℄. In this line of researh, one of the mostwidely studied models of autonomous agents has been that supported by the mental states of beliefs, desiresand intentions [7℄, or the BDI model. While e�orts towards de�ning BDI arhitetures have been sustained andsigni�ant, resulting in both theoretial [34℄ and pratial arhitetures [14℄, they have also led to a disonnetbetween them.In partiular, theories of autonomous BDI agents often rely on logi models that assume in�nite omputa-tional power, while arhitetures de�ned for runtime e�ieny have urtailed an agent's autonomy by foringthe agent to rely on a pre-ompiled plan library. Although simple seletion of plans from a plan library isomputationally e�ient, at ompile time an agent is bound to the plans provided by the designer, limitingan agent's ability to ope with situations not foreseen at design time. Moreover, even if a designer is able tode�ne plans for every oneivable situation in whih an agent �nds itself, suh a desription is likely to be veryextensive, o�setting some of the e�ieny bene�ts from the plan library approah. The absene of planningapabilities thus seriously urtails the abilities of autonomous agents. In onsequene, we argue that planningis an important apability of any autonomous agent arhiteture in order to allow the agent to ope at runtimewith unforeseen situations.Though the e�ieny of planning algorithms has been a major obstale to their deployment in time-ritial appliations, many advanes have been ahieved in planning [43℄, and developments are ongoing [2℄.Considering that planning is an enabler of agent �exibility, and that there have been signi�ant advanes inplanning tehniques, it is valuable and important for autonomous agent arhitetures to employ planning toallow an agent to ope with situations that the designer was not able to foresee. This artile desribes anddemonstrates one suh arhiteture, whih integrates propositional planning with BDI, allowing agents to takeadvantage of the pratial reasoning apabilities (i.e. seleting and prioritising goals) of the BDI model, andreplaing the BDI means-ends reasoning (i.e. seleting a ourse of ation to ahieve goals) with the �exibilityof generi planning. Our approah is underpinned by a mapping among BDI mental states and propositionalplanning formalisms, allowing any algorithm based on a similar formalism to be used as a means-ends reasoningproess for a BDI agent. In order to demonstrate the viability of suh an approah we take a spei� BDIagent model, namely the X-BDI model [27℄, and modify it to use propositional planning algorithms to performmeans-ends reasoning [30℄.The paper is organised as follows: Setion 2 ontains an overview of the related work and main oneptsused throughout this paper; Setion 3 desribes X-BDI and the extensions that allow it to use an externalplanning algorithm; Setion 4 ontains a ase study used to demonstrate the implemented prototype; �nally,Setion 5 ontains onluding remarks about the results obtained in this work.2. Agents and Planners. In this setion we review bakground work on agents and planning systems,and onlude with a disussion of the integration of these tehnologies in an agent arhiteture, laying thegroundwork for the remainder of this artile. Setion 2.1 provides an overview of omputer agents and the BDImodel, used in the agent arhiteture desribed later in this artile; Setion 2.2 introdues generi planning15



16 F. R. Meneguzzi, A. F. Zorzo et alalgorithms and problem representation; Setion 2.3 desribes the partiular planning algorithm used in theprototype desribed in Setion 3; �nally, we disuss how these tehnologies an be pieed together in order toaddress some of their individual limitations.2.1. Agents. The growing omplexity of omputer systems has led to the development of inreasingly moreadvaned abstrations for their representation. An abstration of growing popularity for representing parts ofomplex omputer systems is the notion of omputer agents [13℄, so far as to be proposed as an alternative tothe Turing Mahine as an abstration for the notion of omputation [19, 42℄. Although there is a variety ofde�nitions for omputer agents, most researhers agree with Jennings' de�nition of an agent as enapsulatedomputer system, situated in some environment, and apable of �exible, autonomous ation in that environmentin order to meet its design objetives [19℄.In the ontext of multi-agent systems researh, one of the most widely known and studied models ofdeliberative agents uses beliefs, desires and intentions (BDI) as abstrations for the desription of a system'sbehaviour. The BDI model originated from a philosophial model of human pratial reasoning [6℄, laterformalised [11℄ and improved towards a more omplete omputational theory [34, 44℄. Though other approahesto the design of autonomous agents have been proposed [16℄, the BDI model or variations of it are used in manynew arhitetures of autonomous agents [13, 31, 4, 40℄. More spei�ally, the omponents that haraterise theBDI model an be brie�y desribed as follows [28℄:
• beliefs represent an agent's expetation regarding the urrent world state or the possibility that a givenourse of ation will lead to a given world state;
• desires represent a set of possibly inonsistent preferenes an agent has regarding a set of world states;and
• intentions represent an agent's ommitment regarding a given ourse of ation, onstraining the on-sideration of new objetives.The operation of a generi BDI interpreter an be seen as a proess that starts with an agent onsidering itssensor input and updating its belief base. With this updated belief base, a set of goals from the agent's desiresis then seleted, and the agent ommits itself to ahieving these goals. In turn, plans are seleted as the meansto ahieve the goals through intentions whih represent the ommitment. Finally, these intentions are arriedout through onrete ations ontained in the instantiated plans (or intentions). This proess is illustrated inthe ativity diagram of Figure 2.1, whih shows the omponents of an agent that are used in eah of the mainproesses of BDI reasoning, namely: obtaining sensor input and updating beliefs; seleting a goal from amongthe desires; and adopting intentions to arry out the ations required to ahieve the seleted goal.This last proess of seleting and adopting intentions to ahieve a goal is one of the most importantproesses of the BDI model, sine it a�ets not only the ations an agent hooses, but also the seletion of goals,as an agent must drop goals deemed impossible. This problem of determining whether an agent is apableof satisfying its objetives through some sequene of ations given an environment and a set of objetives issometimes haraterised as the agent design problem [45℄. The most widely known BDI agent implementations[18, 33, 14℄ bypass this problem through the use of plan libraries in whih the ourses of ation for every possibleobjetive an agent might have are stored as enapsulated proedures. Agents using these approahes are said topursue proedural goals. However, the theories ommonly used to underpin the reation of new plans of ation atruntime assume an agent with unlimited resoures, thus making their atual implementation impossible [37, 34℄.When an agent selets target world-states and then uses some proess at runtime to determine its ourse ofation, it is said to pursue delarative goals. Reent e�orts seek to deal with this problem in various ways, forinstane by de�ning alternate proof systems [27, 31℄ or using model heking in order to validate the agent'splan library [5℄. An alternative approah to solving the problem is the use of planning algorithms to performmeans-ends reasoning at runtime [37, 26, 47℄.2.2. Planning Algorithms. Means-ends reasoning is a fundamental omponent of any rational agent[6℄ and is useful in the resolution of problems in a number of di�erent areas, suh as sheduling [38℄, militarystrategy [39℄, and multi-agent oordination [12℄. Indeed, the development of planning algorithms has beenone of the main goals of AI researh [35℄. In more detail, a planning problem is generially de�ned by threeomponents [43℄:
• a formal desription of the start state;
• a formal desription of the intended goals; and
• a formal desription of the ations that may be performed.
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ActionFig. 2.1. Ativities of a generi BDI interpreter.A planning system takes these omponents and generates a set of ations ordered by some relation whih,when applied to the world in whih the initial state desription is true, makes the goals' desription true. Despitethe high omplexity proven for the general ase of planning problems1, reent advanes in planning researhhave led to the reation of planning algorithms that perform signi�antly better than previous approahes tosolving various problem lasses [43, 2℄. These new algorithms make use of two main tehniques, either ombinedor separately:
• expansion and searh in a planning graph [3℄; and
• ompilation of the planning problem into a logial formula to be tested for satis�ability (SAT) [20℄.One suh planning algorithm is Graphplan, whih we onsider in more detail below.2.3. Graphplan. Graphplan [3℄ is a planning algorithm based on the �rst of these tehniques, expansionand searh in a graph. It is onsidered to be one of the most e�ient planning algorithms reated reently[43, 38, 17℄, having been re�ned into a series of other algorithms, suh as IPP (Interferene Progression Planner)[22℄ and STAN (STate ANalysis) [24℄. The e�ieny of Graphplan was empirially demonstrated throughthe very signi�ant results obtained by instanes of Graphplan in the planning ompetitions of the AIPS(International Conferene on AI Planning and Sheduling) [21, 25℄.Planning in Graphplan is based on the onept of a graph data struture alled the planning graph, in whihinformation regarding the planning problem is stored in suh a way that the searh for a solution an be ael-erated. Planning graph onstrution is e�ient, having polynomial omplexity in graph size and onstrutiontime with regard to problem size [3℄. A plan in the planning graph is essentially a �ow, in the sense of a network�ow, and the searh for a solution to the planning problem is performed by the planner using data stored in thegraph to speed up the proess. The basi Graphplan algorithm (i.e. without the optimisations proposed by otherresearhers [21, 25℄) is divided into graph expansion and solution extration, whih take plae alternately until ei-ther a solution is found or the algorithm an prove that no solution exists. The way these two parts of Graphplanare used throughout planning is summarised in the ativity diagram of Figure 2.2, and explained below.Sine a plan is omposed of temporally ordered ations and, in between these ations there are world states,graph levels are divided into alternating proposition and ation levels, making it a direted and levelled graph,

1Planning is known to be undeidable [10℄ and planning problems, in the general ase, have PSPACE omplexity [9℄.
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No Plan FoundSolution ImpossibleFig. 2.2. Graphplan algorithm overview.as shown in Figure 2.3. Proposition levels are omposed of proposition nodes labelled with propositions, andonneted to the ations in the subsequent ation level through pre-ondition ars. Here, ation nodes arelabelled with operators and are onneted to the nodes in the subsequent proposition nodes by e�et ars.Every proposition level denotes literals that are possibly true at a given moment, so that the �rst propositionlevel represents the literals that are possibly true at time 1, the next proposition level represents the literalsthat are possibly true at time 2 and so forth. Similarly, ation levels denote operators that an be exeuted at agiven moment in time in suh a way that the �rst ation level represents the operators that may be exeuted attime 1, the seond ation level represents the operators that may be exeuted at time 2 and so forth. The graphalso ontains mutual exlusion relations (mutex ) between nodes (at the same graph level) so that they annotbe simultaneously present at the same graph level for the same solution. This gives them a fundamental rolein algorithm e�ieny, as they allow the searh for a solution to ompletely ignore a large number of possible�ows in the graph.
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Fig. 2.3. A planning graph example.After graph expansion, the graph is analysed by the solution extration part of the algorithm, whih uses abakward haining strategy to traverse the graph, level by level, trying to �nd a �ow starting from the goals andleading to the initial onditions. An important optimising fator in this phase is never to searh for a solution



The Role Of Planning In Bdi Systems 19unless all the goal propositions are present and onsistent, sine they annot be mutually exlusive at the lastgraph level. Fundamental to Graphplan is its assurane that, whenever a plan for the proposed problem exists,the algorithm will �nd it, otherwise the algorithm will determine that the proposed problem is unsolvable [3℄.2.4. Disussion. When one onsiders how BDI reasoning operates, it is straightforward to pereive thatpropositional planning an be used as a means-ends reasoning omponent. From a representational point of view,BDI mental states an be onverted to planning problems without ompliation: beliefs translate into an initialstate spei�ation, ations and apabilities translate into operator spei�ations and seleted goals translate intoa goal state spei�ation. At this simple level, the delegation of means-ends reasoning to an external planningproess an improve the runtime e�ieny of existing BDI interpreters by leveraging advanes in planningalgorithms researh.3. Introduing proedural planning into X-BDI.3.1. Introdution. Given the shortomings of traditional BDI arhitetures in terms of runtime �exibility,and the performane problems of alternative arhitetures, we de�ne an extended version of the X-BDI agentmodel [27℄, modi�ed to aommodate the use of an external planning omponent. Here, we fous on STRIPS-like(STanford Researh Institute Problem Solver) formalisms [15℄. Our formalism is based on the one introduedby Nebel [30℄, and, aording to the author, is a SIL formalism, i.e. the basi STRIPS plus the possibility touse inomplete spei�ations and literals in the desription of world states. It is important to point out that theformalism de�ned by Nebel [30℄ is more general, but sine we do not aim to provide a detailed study of planningformalisms, we use a simpler version. In partiular, we use a propositional logial language with variables onlyin the spei�ation of operators, and with operators not being allowed to have onditional e�ets. In Nebel'sdesription of the the STRIPS formalism, one an notie that it deals only with atoms. Nevertheless, within thispaper more expressivity is desirable, in partiular, the possibility to use �rst order ground literals. It is possibleto avoid these limitations through the use of syntati transformations so that planners an operate over �rstorder ground literals. The main ontribution of our work lies in the e�ieny improvement of a delarativeagent arhiteture. The fat that this type of agent arhiteture has traditionally been notoriously ine�ienthighlights the relevane of this e�ieny gain.3.2. X-BDI. An X-BDI agent has the traditional omponents of a BDI agent, i.e. a set of beliefs, desiresand intentions. The agent model was originally de�ned in terms of the Extended Logi Programming with expliitnegation (ELP) formalism reated by Alferes and Pereira [1℄, whih inludes a revision proedure responsiblefor maintaining logi onsisteny. We do not provide a desription of the formalism here, though we assume thepresene of its revision proedure in our desription of X-BDI. Given its extended logi de�nition, X-BDI alsohas a set of time axioms de�ned through a variation of the Event Calulus [27, 23℄.The set of beliefs is simply a formalisation of fats in ELP, individualised for a spei� agent. From theagent's point of view, it is assumed that its beliefs are not always onsistent, and whenever an event makes thebeliefs inonsistent, they must be revised. The details of this proess are unimportant in the understanding ofthe overall agent arhiteture, but an be found in [1℄. The belief revision proess in X-BDI is the result of theprogram revision proess performed in ELP.Every desire in an X-BDI agent is onditioned to the body of a logi rule, whih is a onjuntion of literalsalled Body. Thus, Body spei�es the pre-onditions that must be satis�ed in order for an agent to desirea property. When Body is an empty onjuntion, some property P is unonditionally desired. Desires maybe temporally situated, i.e. an be desired at a spei� moment, or whenever their pre-onditions are valid.Moreover, a desire spei�ation ontains a priority value used in the formation of an order relation among desiresets.There are two possible types of intentions: primary intentions, whih refer to the intended properties,and relative intentions, whih refer to ations able to bring about these properties. An agent may not intendsomething in the past or that is already true, and intentions must in priniple be possible, i.e. there must be atleast one plan available whose result is a world state where the intended property is true.Now, we diverge from the original X-BDI arhiteture in several respets. First, the original reasoningproess veri�ed the possibility of a property through the abdution of an event alulus theory to validate theproperty. In brief, the logi representation of desires in the original X-BDI inluded lauses spei�ally markedfor revision in suh a way that sequenes of ations (whose preonditions and e�ets were desribed in eventalulus) ould be found true in the proess of revising these lauses. This abdution proess was neessary



20 F. R. Meneguzzi, A. F. Zorzo et alfor the implementation of X-BDI planning framework in extended logi, but the implementation of the logiinterpreter was notably ine�ient for abdutive reasoning. In this work, the planning proess is abstratedout from the operational de�nition of X-BDI, allowing any planning omponent that satis�es the onditions ofSetion 2.2 to be invoked by the agent. Thus, the notion of possibility of a desire is assoiated with the existeneof a plan to satisfy it.The reasoning proess performed by X-BDI begins with the seletion of eligible desires, whih representunsatis�ed desires whose pre-onditions are valid, though the elements of this set of desires are not neessarilyonsistent among themselves. A set of eligible desires that are both onsistent and possible is then seleted asandidate desires, to whih the agent ommits itself to ahieving by adopting them as primary intentions. Inorder to ahieve the primary intentions, the planning proess generates a sequene of temporally ordered ationsthat onstitute the relative intentions. This proess is summarised in Figure 3.1.
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Fig. 3.1. X-BDI operation overview.Eligible desires have rationality onstraints that are similar to those imposed by Bratman [6℄ over intentionsin the sense that an agent will not desire something in the past or something the agent believes will happenwithout its interferene. Agent beliefs must also support the pre-onditions de�ned in the desire Body. Withinthe agent's reasoning proess these desires give rise to a set of mutually onsistent subsets ordered by a partialorder relation.The proess of seleting andidate desires seeks to hoose from the eligible desires one subset that ontainsonly desires that are internally onsistent and possible. A possible desire in this sense is one that has a property
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P that an be satis�ed through a sequene of ations. In order to hoose among multiple sets of andidate desires,the original X-BDI uses ELP onstruts that allow desires to be prioritised in the revision proess. Althoughwe depart from the original abdution theory, we still use these priority values to de�ne a desire preferenerelation. Through this preferene relation, a desire preferene graph that relates all subsets of eligible desires isgenerated.Candidate desires represent the most signi�ant modi�ation made in this paper regarding the original X-BDI [27℄. Originally, X-BDI veri�ed the possibility of a desire through the abdution of an event alulus theoryin whih the belief in the validity of a desired property P ould be true. Suh an abdution proess is, atually,a form of planning. Sine our main objetive in this paper is to distinguish the planning proess previouslyhard-oded within X-BDI, the notion of desire possibility must be re-de�ned. Therefore, we de�ne the set ofandidate desires to be the subset of eligible desires with the greater preferene value, and whose properties anbe satis�ed. Satis�ability is veri�ed through the exeution of a propositional planner that proesses a planningproblem in whih the initial state ontains the properties that the agent believes at the time of planning. The
P properties present in the andidate desires are used to generate the set of primary intentions. The modi�edreasoning proess for X-BDI is illustrated in Figure 3.2.

Consistency

Maintenance

Action

Perception

Mapping

Elligible
Desires

Relative
Intentions

Propositional

Planning

Candidate
Desires

Primary
Intentions

Desires Beliefs

Deliberation

Fig. 3.2. Modi�ed X-BDI overview.Primary intentions an be seen as high-level plans, similar to the intentions in IRMA [7℄, and representingthe agent's ommitment to a ourse of ation. These primary intentions are systematially re�ned up to the pointwhere an agent has a temporally ordered set of ations representing a onrete plan towards the satisfation of



22 F. R. Meneguzzi, A. F. Zorzo et alits goals. Relative intentions then orrespond to the temporally ordered steps of the onrete plans generated tosatisfy the agent's primary intentions. Thus the notion of agent ommitment results from the fat that relativeintentions must not ontradit or annul primary intentions.3.3. Intention Revision. The omputational e�ort and the time required to reonsider the whole set ofintentions of a resoure-bounded agent is generally signi�ant regarding the environment hange ratio. Intentionreonsideration should therefore not our onstantly, but only when the world hanges in suh a way as tothreaten the plans an agent is exeuting or when an opportunity to satisfy more important goals is deteted. Asa onsequene, X-BDI uses a set of reonsideration triggers generated when intentions are seleted, and ausesthe agent to reonsider its ourse of ation when ativated.These trigger onditions are de�ned to enfore Bratman's [6℄ rationality onditions for BDI omponents, asfollows. If all of the agent's primary intentions are satis�ed before the time planned for them to be satis�ed, theagent restarts the deliberative proess, sine it has ahieved its goals. On the other hand, if one of the primaryintentions is not ahieved at the time planned for it, the agent must reonsider its intentions beause its planshave failed. Moreover, if a desire with a higher priority than the urrently seleted desires beomes possible, theagent reonsiders its desires in order to take advantage of the new opportunity. Reonsideration is ompletelybased on integrity onstraints over beliefs, and sine beliefs are revised at every sensoring yle, it is possiblethat reonsideration ours due the triggering of a reonsideration restrition.3.4. Implementation. The prototype implemented for this work is omposed of three parts: the X-BDIkernel, implemented in Prolog; a planning system ontaining a C++ implementation of Graphplan; and a Javagraphial interfae used to ease the operation of X-BDI and to visualise its interation with the environment.The arhiteture is outlined in Figure 3.3.
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IntentionsFig. 3.3. Solution ArhitetureHere, the Agent Viewer interfae ommuniates with X-BDI through sokets by sending the input from theenvironment in whih the agent is embedded and reeiving the result of the agent's deliberation. Through theAgent Viewer the user an also speify the agent in terms of its desires, ations and initial beliefs. One X-BDIreeives the agent spei�ation, it ommuniates with the planning module through operating system �les andthe Prolog/C++ interfae. The planner is responsible for generating a set of intentions for the agent. Whenthe agent deliberates, it onverts subsets of the agent's desired properties into propositional planning problemsand invokes the planning algorithm to solve these problems until either a plan that solves the highest prioritydesires is found, or the algorithm determines that it is not possible to solve any one of these problems.4. A BDI Prodution Cell. In this work we use a BDI agent in order to model a prodution ell as aase study, and as a means to verify the validity of the arhiteture desribed in Setion 3. In partiular, therational utilisation of equipment in industrial failities is a omplex problem, espeially sheduling its use. Thisproblem is ompliated when the faility produes multiple omponent types, where eah type requires a subsetof the equipment available. In our test senario, the proposed prodution ell [46℄, illustrated in Figure 4.1,is omposed of seven devies: a feed belt, a deposit belt and four proessing units upon whih omponents aremoved to be proessed.Components enter the prodution ell for proessing through the feed belt and, one proessed by all theappropriate proessing units, they are removed from the ell through the deposit belt. Every proessing unit isresponsible for performing a di�erent kind of operation on the omponent being proessed, and an hold onlyone omponent at a given moment. Eah omponent introdued into the ell an be proessed by one or moreproessing units, determined by the type of omponent being proessed, and di�erent omponent types havedi�erent proessing priorities. The ontrol of the prodution ell is entrusted to a BDI agent implemented using
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Fig. 4.1. A BDI Prodution Cell.X-BDI, whih should shedule the work of the prodution ell in relation to its beliefs, desires and intentions,re-sheduling whenever some hange in the system ours.The �rst step in modelling any problem using a STRIPS-like formalism is the hoie of the prediates usedto represent the problem's objet-types and its states. We de�ne the following prediates representing objetsin the ell:
• omponent(C) denotes that C is a omponent to be proessed;
• proUnit(P) denotes that P is a proessing unit, whih is also a devie;
• devie(D) denotes that D is a devie;
• feedBelt represents the feed belt ;
• depositBelt represents the deposit belt.Similarly, we have the following prediates representing system states:
• over(C,D) denotes that omponent C is over devie D;
• empty(P) denotes that proessing unit P is empty, i.e. has no omponent over it;
• proessed(C,P) denotes that omponent C has already been proessed by proessing unit P;
• finished(C) denotes that omponent C has already been proessed by all appropriate proessing unitsand has been removed from the prodution ell;Next, we de�ne the ations the agent is apable of performing in the ontext of the proposed problem, theseare summarised in Table 4.1. Informally, ation proess(C,P) represents the proessing that a proessing unitP performs on a omponent C over it; onsume(C) represents the removal of omponent C from the produtionell through the deposit belt; and move(C,D1,D2) represents the motion of omponent C from devie D1 todevie D2. Table 4.1Ation spei�ation for the prodution ell agent.Ation Preonditions E�etsproess(C,P) proUnit(P) proessed(C,P)omponent(C)over(C,P)onsume(C) omponent(C) ¬over(C,depositBelt)over(C,depositBelt) empty(depositBelt)finished(C)move(C,D1,D2) over(C,D1) over(C, D2)empty(D2) ¬over(C,D1)omponent(C) ¬empty(D2)devie(D1) empty(D1)devie(D2)



24 F. R. Meneguzzi, A. F. Zorzo et alThe proessing requirements of omponents and their priorities are modelled through desires. Thus, we anmodel an agent, pCell, whih needs to proess omponent omp1 by proessing units proUnit1, proUnit2 andproUnit3 as soon as this omponent is inserted into the prodution ell using the spei�ation of Listing 12.Listing 1Spei�ation of desires related to proessing omp1.des(pCell,finished(omp1),Tf,[0.7℄)if bel(pCell, omponent(omp1)),bel(pCell, proessed(omp1,proUnit1)),bel(pCell, proessed(omp1,proUnit2)),bel(pCell, proessed(omp1,proUnit3)),bel(pCell, -finished(omp1)).des(pCell,proessed(omp1,proUnit1),Tf,[0.6℄)if bel(pCell, omponent(omp1)),bel(pCell, -proessed(omp1,proUnit1)).des(pCell,proessed(omp1,proUnit2),Tf,[0.6℄)if bel(pCell, omponent(omp1)),bel(pCell, -proessed(omp1,proUnit2)).des(pCell,proessed(omp1,proUnit3),Tf,[0.6℄)if bel(pCell, omponent(omp1)),bel(pCell, -proessed(omp1,proUnit3)).Similarly, we an model the agent's need to proess omponent blo2 by proessing unit proUnit3 andproUnit4 by adding to the agent spei�ation the desires of Listing 2.Listing 2Spei�ation of desires related to proessing omp2.des(pCell,finished(omp2),Tf,[0.6℄)if bel(pCell, omponent(omp2)),bel(pCell, proessed(omp2,proUnit3)),bel(pCell, proessed(omp2,proUnit4)),bel(pCell, -finished(omp2)).des(pCell,proessed(omp2,proUnit3),Tf,[0.5℄)if bel(pCell, omponent(omp2)),bel(pCell, -proessed(omp2,proUnit3)).des(pCell,proessed(omp2,proUnit4),Tf,[0.5℄)if bel(pCell, omponent(omp2)),bel(pCell, -proessed(omp2,proUnit4)).Finally, we model the agent's stati knowledge regarding the problem domain, in partiular the objet'slasses and the initial world-state with the beliefs spei�ed in Listing 3.The arrival of a new omponent in the prodution ell is signalled by the sensors through the inlusion ofomponent(omp1) and over(omp1,feedBelt) in the agent's belief database, ativating the agent's reonsid-eration proess. Given the desire's pre-onditions previously de�ned, only the desires related to the followingproperties beome eligible:
2Tf is the time at whih the desire is valid, and the values 0.7 and 0.6 are the desires priorities.



The Role Of Planning In Bdi Systems 25Listing 3Domain knowledge for the prodution ell.bel(pCell, proUnit(proUnit1)).bel(pCell, proUnit(proUnit2)).bel(pCell, proUnit(proUnit3)).bel(pCell, proUnit(proUnit4)).bel(pCell, devie(proUnit1)).bel(pCell, devie(proUnit2)).bel(pCell, devie(proUnit3)).bel(pCell, devie(proUnit4)).bel(pCell, devie(depositBelt)).bel(pCell, devie(feedBelt)).bel(pCell, empty(proUnit1)).bel(pCell, empty(proUnit2)).bel(pCell, empty(proUnit3)).bel(pCell, empty(proUnit4)).bel(pCell, empty(depositBelt)).
• proessed(omp1,proUnit1);
• proessed(omp1,proUnit2);
• proessed(omp1,proUnit3);These desires are then analysed by the proess of seleting andidate desires. In this proess, the agent'seligible desires and beliefs are used in the reation of planning problems that are sent to Graphplan for resolution.The result of this proessing is a plan that satis�es all the eligible desires, with the following steps:1. move(omp1,feedBelt,proUnit2)2. proess(omp1,proUnit2)3. move(omp1,proUnit2,proUnit1)4. proess(omp1,proUnit1)5. move(omp1,proUnit1,proUnit3)6. proess(omp1,proUnit3)The existene of this plan indiates to X-BDI that the spei�ed set of eligible desires is possible, thus turningthe previous set of desires into andidate desires, whih generate primary intentions representing the agent'sommitment. Next, relative intentions are generated using the steps in the reently reated plan, with oneintention for eah step of the plan. These lead the agent to perform the appropriate ations. One the ationsare exeuted, the andidate desires from the previous deliberation are satis�ed. Moreover, the pre-onditionof the desire to aomplish finished(omp1) beomes true, reativating the agent's deliberative proess andgenerating the following plan:1. move(omp1,proUnit3,depositBelt)2. onsume(omp1)One more, this plan brings about some intentions and, eventually, leads the agent to at. Now, suppose thatduring the agent's operation, a new omponent in the prodution ell arrives. If this ourred immediately afterthe deliberation that reated the �rst plan, it would be signaled by the agent's sensors through the inlusion ofomponent(omp2) and over(omp2,feedBelt) in the beliefs database, whih would modify the eligible desireshosen in the seond deliberation yle to:
• finished(omp1);
• proessed(omp2,proUnit3);
• proessed(omp2,proUnit4);These desires beome andidate desires beause Graphplan is apable of generating a plan that satis�es allthe desires. The new plan is:1. move(omp1,proUnit3,depositBelt)2. move(omp2,feedBelt,proUnit4)3. onsume(omp1)



26 F. R. Meneguzzi, A. F. Zorzo et al4. proess(omp2,proUnit4)5. move(omp2,proUnit4,proUnit3)6. proess(omp2,proUnit3)7. move(omp2,proUnit3,depositBelt)8. onsume(omp2)The steps of this plan thus generate relative intentions, eventually leading the agent to the exeution of itsations.5. Conlusions. In this paper, we have disussed the relationship between propositional planning algo-rithms and means-end reasoning in BDI agents. To test the viability of using propositional planners to performmeans-ends reasoning in a BDI arhiteture, we have desribed a modi�ation to the X-BDI agent model.Throughout this modi�ation, new de�nitions of desires and intentions were reated in order for the agentmodel to maintain the theoretial properties present in its original version, espeially regarding the de�nitionof desires and intentions impossibility. Moreover, it was neessary to de�ne a mapping between the struturalomponents of a BDI agent and propositional planning problems. The result of implementing these de�nitionsin a prototype an be seen in the ase study of Setion 4, whih represents a problem that the means-endreasoning proess of the original X-BDI ould not solve.Considering that most implementations of BDI agents use a plan library for means-end reasoning in orderto bypass the inherent omplexity of performing planning at runtime, X-BDI o�ers an innovative way of im-plementing more �exible agents through its fully delarative spei�ation. However, its planning mehanism isnotably ine�ient. For example, the ase study desribed in Setion 4 was not tratable in the original X-BDIplanning proess. Thus, the main ontribution of our work onsists in addressing this limitation through thede�nition of a mapping from BDI means-end reasoning to fast planning algorithms. Moreover, suh an approahenables the agent arhiteture to be extended with any propositional planning algorithm that uses a formalismompatible with the proposed mapping, thus allowing an agent to use more powerful planners as they beomeavailable, or to use more suitable planning strategies for di�erent problem lasses.Other approahes to performing runtime planning have also been proposed, the most notable reent ones bySardina et al. [36℄ and Walzak et al. [41℄. Sardina proposes the tight integration of the JACK agent framework[8℄ with the SHOP hierarhial planner [29℄. This approah relies on new onstruts added to an otherwiseproedural agent representation and takes advantage of the similarity of hierarhial task network (HTN) plan-ning to BDI reasoning. The work of Walzak proposes the integration of JADEX [32℄ike℄What is JADEX?to a ustomised knowledge-based planner operating in parallel to agent exeution, using a similar proess ofagent-state onversion to work of Meneguzzi et al. [26, 47℄, as well as the one presented in this paper.Some rami�ations of this work are foreseen as future work, in partiular, the inorporation of the variousGraphplan improvements, as well as the ondution of tests using other propositional planning algorithms, SATbeing an example. It is lear that other agent arhitetures an bene�t from the usage of planning omponentsto allow agents to ope with unforeseen events at runtime, as demonstrated by reent e�orts in planning agents[36, 41℄. Therefore, investigating how to integrate planning apabilities to AgentSpeak-based agents ould reateagents that an take advantage of both the fast response of pre-ompiled plans and the �exibility of being ableto plan at runtime to ope with unforeseen situations.Aknowledgments. We wish to aknowledge X, Y and Z for the support in this work.REFERENCES[1℄ J. J. Alferes and L. M. Pereira, Reasoning with Logi Programming, Springer Verlag, 1996.[2℄ S. Biundo, K. L. Myers, and K. Rajan, eds., Proeedings of the Fifteenth International Conferene on AutomatedPlanning and Sheduling (ICAPS 2005), June 5-10 2005, Monterey, California, USA, AAAI, 2005.[3℄ A. L. Blum and M. L. Furst, Fast planning through planning graph analysis, Arti�ial Intelligene, 90 (1997), pp. 281�300.[4℄ R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouhni,Multi-Agent Programming: Languages, Platformsand Appliations, vol. 15 of Multiagent Systems, Arti�ial Soieties, and Simulated Organizations, Springer, 2005.[5℄ R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge, Model heking AgentSpeak, in Proeedings of the2nd International Conferene on Autonomous Agents and Multiagent Systems (AAMAS-03), Melbourne, Australia, July2003, ACM Press, pp. 409�416.[6℄ M. E. Bratman, Intention, Plans and Pratial Reason, Harvard University Press, Cambridge, MA, 1987.[7℄ M. E. Bratman, D. J. Israel, and M. E. Pollak, Plans and resoure-bounded pratial reasoning, ComputationalIntelligene, 4 (1988), pp. 349�355.
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