
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/225151610

Mutation-Like Oriented Diversity for Dependability Improvement: A Distributed

System Case Study

Conference Paper in Lecture Notes in Computer Science · October 2004

DOI: 10.1007/978-3-540-30182-0_92 · Source: DBLP

CITATIONS

0
READS

16

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Usa-DSL: Usability Evaluation Framework for Domain-Specific Languages View project

CORRECT View project

Avelino F. Zorzo

Pontifícia Universidade Católica do Rio Grande do Sul

138 PUBLICATIONS 1,212 CITATIONS

SEE PROFILE

Eduardo Bezerra

Federal University of Santa Catarina

111 PUBLICATIONS 464 CITATIONS

SEE PROFILE

Flávio M De Oliveira

43 PUBLICATIONS 228 CITATIONS

SEE PROFILE

All content following this page was uploaded by Avelino F. Zorzo on 29 November 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/225151610_Mutation-Like_Oriented_Diversity_for_Dependability_Improvement_A_Distributed_System_Case_Study?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/225151610_Mutation-Like_Oriented_Diversity_for_Dependability_Improvement_A_Distributed_System_Case_Study?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Usa-DSL-Usability-Evaluation-Framework-for-Domain-Specific-Languages?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CORRECT-2?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia-Universidade-Catolica-do-Rio-Grande-do-Sul?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo-Bezerra-6?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo-Bezerra-6?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Santa-Catarina2?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo-Bezerra-6?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio-Oliveira-6?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Avelino-Zorzo?enrichId=rgreq-86f21bb2b57da41e73c25aaf8324b1a9-XXX&enrichSource=Y292ZXJQYWdlOzIyNTE1MTYxMDtBUzozMDExNTc2NTUzMDIxNDZAMTQ0ODgxMjk4ODcwMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Mutation-like Oriented Diversity for

Dependability Improvement: A Distributed
System Case Study�

D. O. Bortolas, A. F. Zorzo ��, E. A. Bezerra, and F. M. de Oliveira

Hewlett-Packard/PUCRS - Research Centre on Software Testing (CPTS)
and Research Centre on Embedded Systems (CPSE)

Faculdade de Informática (FACIN/PPGCC)
Pontif́ıcia Universidade Católica do Rio Grande do Sul

Av. Ipiranga, 6681 – Prédio 30, 90619-900, Porto Alegre, RS, Brazil
{dbortolas,zorzo,eduardob,flavio}@inf.pucrs.br

Abstract. Achieving higher levels of dependability is a goal in any soft-
ware project, therefore strategies for software reliability improvement are
very attractive. This work introduces a new technique for reliability and
maintainability improvement in object-oriented systems. The technique
uses code mutation to generate diverse versions of a set of classes, and
fault tolerance approaches to glue the versions together. The main ad-
vantages of the technique are the increase of reliability, and the proposed
scheme for automatic generation of diverse classes. The technique is ap-
plied to a distributed application which uses CORBA and RMI. First
results show promising conclusions.

1 Introduction

The use of computer systems is growing fast and becoming more pervasive in
every day life. This is frequently called ubiquitous computing [1]. As a con-
sequence, computers are each time more needed and it has become difficult to
picture the modern world without them. Computers are so widespread that they
are used even in places where responsibility is huge and failures may result in
a tragedy, e.g. airplanes, trains or air traffic control systems. Computer high
reliability is essential in these type of systems, and fault tolerance is a strategy
used to minimize the effects of possible faults occurring in such systems.

Redundancy is the main mechanism employed in the construction of fault-
tolerant systems at both, hardware and software levels. Replication of a hardware
component ensures that when a failure happens, another component replaces the
defective one [2].

The main problem in hardware components are the physical failures, e.g.
broken wires or short cuts. Therefore, a failure in a hardware component does
not imply that another “copy” of the same component will produce the same
� This work was developed in collaboration with HP Brazil R&D.

�� Partially supported by CNPq Brazil (grant 350.277/2000-1).

failure. This same strategy cannot be applied directly to software components.
If a software component is replicated, its faults (bugs) will also be replicated.
This is true as faults in software components are classified as design faults [2],
and each time a problem happens, the replaced component will have the same
behaviour. Although hardware faults could be also the result of design mistakes,
this is not common and therefore will not be considered in this work.

Design diversity is an approach used to overcome the replication problem in
software [3]. Components conceived diversely have the same interface and func-
tionality, but are designed and implemented using different techniques by sepa-
rate groups of programmers, working independently. It is expected that groups
working independently do not make the same mistakes. Thus, redundancy of
software components might not present the same faults under the same environ-
mental conditions.

Although design diversity has clear benefits to software dependability im-
provement, they do not come cheap. The high costs of this technique are mainly
due to the need of several development teams working simultaneously. There-
fore, this research is directed towards the automation of some steps of diversity
programming, in order to minimize its cost.

The main objective of this work is dependability improvement of object-
oriented systems using automatic code generation mechanisms. Dependability
of a system is the ability to deliver services that can be trusted [4]. The con-
cept includes several attributes [4], but this work targets mainly “reliability”
and “maintainability”. It will be shown also that automatic generation can help
to ease the development and maintainability activities in software fault-tolerant
systems, and can even decrease the total cost of these systems. Automatic gen-
eration can be used to reduce the amount of faults introduced during the imple-
mentation of diverse versions of a software.

In the proposed approach, traditional software fault tolerance mechanisms as,
for instance, N-version programming (NVP) [5] and recovery block [6], are used
to improve the reliability of software systems. The innovative aspect introduced
in this paper is not the use of these fault tolerance mechanisms, but the whole
process for automatic generation of new diverse classes of a system.

This approach is called Mutation-like Oriented Diversity (MOD). It uses a
controlled sort of mutation, and not the one existing in nature and employed as
a model in the traditional Mutant Analysis testing technique [7]. The approach’s
central idea is the modification of some specific parts of the source code of an
application, targeting the generation of new diverse versions. Existing compo-
nents are used as basic building blocks, and the generation of diverse versions is
performed by applying ad-hoc mutant operators to the original code. The whole
process was conceived to ease the automation process, and a tool aiming this
objective is under development.

The remaining of this paper is organized as follows. Section 2 presents some
related work. Section 3 describes the proposed approach. Section 4 discusses
a distributed system used as a case study, presenting some interesting results.
Section 5 presents the conclusions and future work.

2 Related Work

Mutation Analysis [7] is a testing technique that has as goal the evaluation of a
set of test cases selected to a particular application. The technique uses a large
number of modified programs, called mutants, that may be automatically gen-
erated by performing small modifications in the original code, producing new
syntactically correct programs. The modifications are performed by mutant op-
erators [8], which are specifically designed to certain constructions of a language
and, consequently, each language has its own set of mutant operators. These
operators have as objective to produce a wrong behaviour in resultant mutants,
which are used to distinguish good from bad test cases. In this way, the set of test
cases can be reduced and, as a consequence, the testing time is also shortened.
However, this is not always true, as it is the case of the equivalent mutants [9].

MOD has some similarities to Demillo’s Mutation Analysis, as the objective
is to automatically create new diverse versions of some classes of an applica-
tion, and these versions are generated by a set of mutant operators. Differently,
however in MOD the new versions are produced to have a similar behaviour as
the original part of the code from which they were generated. In MOD, mutant
operators perform replacements in statements of the original application source
code, by statements that are intended to have the same functionality as the
original one.

Software fault tolerance applied to object-oriented systems is not a new re-
search topic in Computer Science. For instance, [10] states that software fault
tolerance cannot be achieved by just implementing traditional fault tolerance
schemes in object-oriented systems. They propose a new system structure to
deal with problems that arise from the fault tolerance applied to object-oriented
software. Their framework to develop fault-tolerant software is based on di-
versely designed components that provide two types of redundancy: masking
redundancy and dynamic redundancy. [11] proposes a new N-version program-
ming strategy in which the diversity of the components is applied at the class
level. The classes are developed separately and independently, and are encapsu-
lated into a diversely designed object. This new NVP approach uses the general
framework proposed in [10].

MOD tries to tolerate faults in a similar way to those approaches. It provides
support for masking and dynamic redundancy, and it is also applied to the level
of classes. The main difference in MOD is that the diverse classes are generated
automatically. This feature reduces the complexity of incorporating new designed
components to the system during its lifetime.

3 Mutation-like Oriented Diversity (MOD)

The proposed approach has as a main objective to significantly enhance the
reliability and maintainability figures of object-oriented (OO) systems. Figure 1
shows the design of a non-fault-tolerant OO software, which is divided in layers
to better describe some particularities of the strategy. The component classes

layer is where the basic building classes, or basic building components, of the
system are located. The intermediate classes layer is composed of classes that
will be diversely replicated. Finally, the user classes layer contains the remaining
classes of the system. The starting point to understand MOD is to comprehend
that it needs to be applied to an initial piece of software. This means that it is
necessary to have, at least, the components shown in all of the three layers of
Figure 1. The process is then carried out in two stages. First the mutants are
generated, and next an extra layer, the controller classes layer, is added to the
system, in order to attach the newly created mutant classes.

InterfaceXXX

ComponentXComponentY

InterfaceYYY InterfaceZZZ

ComponentZ

Component Classes Layer

Intermediate Classes Layer

User Classes Layer

<<realize>><<realize>> <<realize>>

User
Classes

Set of

Set of
Intermediate
Classes

Fig. 1. Software Design.

3.1 Mutant Generation

In this phase the set of classes in the intermediate layer of the original soft-
ware are replicated diversely, generating the intermediate layer of the new fault-
tolerant system. Figure 2 shows the class diagram of a fault-tolerant system
generated using MOD. The new controller classes layer shown in Figure 2 is
discussed in the next section.

The generated classes in the intermediate layer are called mutants. They
represent the new diverse versions obtained from the mutation of the intermedi-
ate classes layer. In the mutation process, mutant operators are used to replace
constructions and instructions in the source code.

Changes in single instructions as, for instance, arithmetic or relational expres-
sions, are not sufficient to introduce diversity to the newly generated mutated
software versions. For this reason, a coarse grain mutation should be performed.
In MOD, the mutation takes place at the class level, which means that the mu-
tated instruction is an entire class. These classes are represented by elementary
components in the component classes layer (Figure 1).

The elementary components in the component layer are essential to the ap-
proach. They must implement the interfaces used by the intermediate layer
classes, and they must be developed according to the design diversity method-
ology. In this work it is assumed that at the time of applying the proposed

technique the diverse versions of components to be used are already available.
An important point is that the source code of the components is not required,
which means that commercial-off-the-shelf (COTS) components can be used.

An interesting point to be noticed is that since system diversity is provided
by elementary components, the more components used the better the diversity of
the new generated classes. Another point is that, since the process of generating
mutants is automatic and therefore cheaper, new elementary components can be
easily incorporated to the system during its lifetime, thus opening the possibility
for new reliability improvements.

ComponentZ

InterfaceZZZ InterfaceXXX

ComponentX

InterfaceYYY

ComponentYComponentYV2

Component Classes Layer

Intermediate Classes Layer

Controller Classes Layer

User Classes Layer

<<realize>> <<realize>><<realize>><<realize>>

Set of
Mutant
Classes

Set of
Intermediate
Classes

M
O
D

Set of
Controller
Classes

User
Classes

Set of

Fig. 2. Mutant Generation.

3.2 Controller Construction

Having the new intermediate classes layer, the next step is to join the several
mutants and to use them in a software fault tolerance mechanism. The controller
layer implements the software fault tolerance mechanism used to join the gen-
erated mutants. Any technique based on diversity can be used as, for instance,
N-version programming or recovery block.

The controller layer must have exactly the same interface as the intermediate
layer in the original system, since the user layer is not modified at all. The
process can be better structured using, for example, reflection as in [12]. This
will certainly reduce the modification that the approach has to perform in the
original system. This may also improve the final result as it will allow the user
interface to be any class that makes access to the intermediate classes. This
alternative is under investigation and is the subject of a future work.

4 Using MOD in the Design of a Distributed Application

The selected case study to explain MOD’s usage, and also for its initial evalu-
ation, is a Reverse Polish Notation (RPN) calculator for a distributed environ-
ment. The motivations for choosing this case study are straightforward. First,
the model of an RPN calculator matches perfectly with MOD. Second, an RPN
calculator is not difficult to implement, as the basic building block is a stack.
Finally, it has some facilities to test and make measurements from resulting data.

Although the case study is not complex, it can be seen as an ambitious
implementation. Two types of distributed objects are used, RMI and CORBA.
Specific mutant operators have been created in order to accomplish with the task
of translating a user class of RMI objects into a user class of CORBA objects.

Considering the architecture shown in Figure 1, the original version of the
case study has three main classes: the MainProgram class in the user layer; the
Calculator class in the intermediate layer; and the StackImpl class, which is a
component in the component layer.

The case study is implemented in Java and an obvious choice to distribute
the application is the use of Java RMI. Thus, the StackImpl class is an imple-
mentation of an RMI object and the Calculator class is a user of this distributed
RMI object. Having the first version of the calculator program, the next step is
to get hold of additional diverse components (Stack programs) that implement
the Stack interface. After that, the program mutation in the Calculator class
is conducted aiming the generation of diverse Calculator classes. This mutation
is performed based on the new elementary components. Finally, the controller
classes (controller layer) are created.

4.1 Diverse Components (Component Layer)

Diverse components are required in the component layer in order to introduce
diversity to the intermediate layer. As discussed in Section 3.1, COTS could
be used in this layer. However, for this case study, a faster option was an in-
house implementation of extra versions for the Stack interface. In addition to
the original RMI StackImpl class, five extra components have been built: two
more RMI classes and three CORBA classes. A total of six diverse components
are used in this case study.

A stack implementation is relatively simple and it is not likely to present a
faulty behaviour. As it might be difficult to observe reliability improvements, it
has been decided to inject faults in the source code of each implemented stack.
The fault injection was designed aiming a failure rate of 2% in all method calls
of the different stacks. A possible observed failure in a pop call is the situation
in which instead of the correct value, a new integer is randomly generated and
returned to the caller of the method. Another situation is when instead of the
value, an exception is returned to the caller of the method. A problem in a
push call could be when pushing the correct value, another number is randomly
generated and pushed back into the stack.

4.2 Mutation Approach (Intermediate Layer)

The mutation happens in the classes belonging to the intermediate Layer, in
order to generate new diverse replicated classes. Two mutant operators are very
common and may take part in almost any system that uses MOD. They are the
Instantiation Operator (InOp) and the Import Operator (ImOp).

In general, the InOp operator creates a new mutant by replacing component
instantiations in intermediate layer classes, by new diverse component instanti-
ations. For example, if the Java code in the original program is “Stack st = new
StackImplA();” the InOp operator will change this line into “Stack st = new
StackImplB();”.

The ImOp operator is used to replace or to insert Java import instructions
in intermediate layer classes. Each time a new package is requested by the ap-
plication, an import instruction is inserted in the source code. When a package
is not any longer needed, the mutant operator removes the respective import
instruction from the code. This operator is usually applied right after an InOp.
For example, an intermediate class that uses a package called StackA has the in-
struction “import br.pucrs.cpts.StackA.*;”. As a result of a mutation performed
by an InOp operator, a new package StackB is needed, and the previous pack-
age has to be removed. The ImOp operator will make the change, replacing the
original import instruction by “import br.pucrs.cpts.StackB.*;”.

In the distributed application, in this paper, the classes belonging to the
intermediate layer do not create instances of objects, instead, they obtain in-
stances of distributed objects from some sort of service directory. As a result,
the InOp operator could not be used straight away and it had to be split into
two operators, the RMI to RMI operator (R2ROp) and the RMI to CORBA
operator (R2COp). R2ROp reads an intermediate layer class having RMI object
references and creates a mutant intermediate layer class having other RMI ob-
ject references. Basically, R2ROp performs the replacement of the URL of the
original intermediate layer class by the URL of the new mutant class.

The R2COp operator reads an RMI intermediate layer class and produces
a CORBA intermediate layer class. The translation of an RMI object reference
into a CORBA object reference is not direct. In this case, the R2COp operator
translates an RMI instruction into a set of CORBA instructions, in order to
modify the calls to get the object references. The translation is not straightfor-
ward, but it is feasible to be accomplished. Another aspect to be observed is
that an RMI object reference has a different type when comparing to a CORBA
object reference. The original InOp operator is used here to solve the differences.

For the case study, the mutation process generates a total of six versions
of the intermediate layer classes. These new classes are obtained after having
applied the necessary mutant operators to the original intermediate layer classes
of the distributed RPN calculator program.

4.3 Adding Fault Tolerance Mechanisms (Controller Layer)

The new diverse versions generated in the previous section are used by the con-
troller layer to introduce fault tolerance capabilities to the system. The controller

layer is created using the N-version programming model. This fault tolerance
technique was chosen as a consequence of the case study distributed features.
The controller layer classes are built in a way that they offer the same names
for the user layer, and therefore the classes do not need to be modified.

There are some options to automate the generation process of the controller
layer classes as, for instance, templates for some pre-defined fault tolerance mech-
anisms. However, in the present version this process is not completely automated,
and the controller construction is the module of MOD that needs the larger
amount of manual intervention.

4.4 Preliminary Results

First, in order to observe the behaviour of the original program, a total of 104 test
sets were created to feed the distributed calculator. Each test set is an expression
having 2, 3, 4, 5, 6 or 7 operands (expression “3 4+5+”, for instance, has three
operands, which are underlined). The result of this experiment is represented by
the dotted line in Figure 3.

 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

 7

 6

 5

 4

 3

O
pe

ra
nd

s

original Program
new Program

Percentage of Results Returned

 2

Fig. 3. All returned results vs. number of
operands in an expression.

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

 6

 5

 7

 4

 3

new Program
original Program

O
pe

ra
nd

s

Percentage of Correct Results

 2

Fig. 4. Correct results vs. number of
operands in an expression.

Considering the selected expressions, one could expect the stack to present
a correct behaviour in 98% of the method calls. However, this figure is never
observed when running the experiment, as it is necessary more than one method
call to perform a calculation. It is observed also that as the number of method
calls increases, so does the chance of getting erroneous output. As shown in
Figure 3, the percentage of responses, both correct and incorrect, in the origi-
nal program (dotted line), decreases as the number of operands increases (the
number of calculations and, therefore, the method calls increase).

The dotted line in Figure 3 represents all the results that do not raise excep-
tions during the evaluation of an expression. However, there is yet a chance that
the returned result is erroneous. For this reason a gold calculator was designed
and used to verify the returned results from the original calculator program. The
dotted line in Figure 4 shows the percentage of only the correct results returned

from the execution of the original calculator program, employing the same 104

test cases executed previously.
The same set of test cases was applied to the new program generated by

MOD. Observing the solid lines in Figures 3 and 4, it is possible to conclude
that the number of all returned results and the number of only correct outputs
are identical.

The diagram shown in Figure 3, is the most significative one as it represents
all the responses provided to the user, both the correct and the incorrect ones.
Comparing the original program to the new generated one, it is possible to see
that for the majority of the test cases (4, 5, 6 and 7 operands), the original
program returns more results than the generated one. In the worst case, the 7
operands test cases, the new generated program could only return a result in a
few more than 50% of all calculated expressions.

However, it is necessary to know if the returned results (Figure 3) can be
trusted. When they are compared against the correct ones (Figure 4) it is pos-
sible to observe that the percentage of results in the original program vary too
much and, therefore, they are not as reliable as the returned results of the new
generated one.

5 Conclusions and Future Work

This work introduces a new strategy for developing systems having high relia-
bility requirements. First results are still incipient, but the main idea could be
verified through a case study. Several enhancements are under investigation and
they will be discussed in a future work.

The results of applying the proposed methodology appear to be as reliable
as traditional fault tolerance software approaches. However, the advantages of
applying the methodology are not only related to the level of reliability reached,
but also to the ease of maintainability of code and the level of automation of
the strategy. The intermediate classes of the program are replicated through
the mutation mechanism, in other words, the logic of the replicated code is the
same, and no extra maintaining is needed for this code. The automation is an
important feature, as it can accelerate the development phase and even decrease
the chance of introducing hand made modification faults.

The approach also has some disadvantages. As the methodology uses tradi-
tional fault tolerance software strategies, the drawbacks are similar. For example,
the problems related to the use of fault-tolerant software in object-oriented lan-
guages [10], or even the restrictions imposed by the nature of the application
[2]. Another drawback concerns shared resources. As mutant versions are gen-
erated from a single set of classes, in case several mutants have access to the
same resource (e.g. file, I/O), it may result in a system failure. Other problems
are mainly related to the design of the software, which must follow strict rules
(see Section 3). For instance, the system shall be designed aiming high cohe-
sion and low coupling. The mutant generation task may become difficult or even
impossible to be accomplished in highly coupled systems.

Finally, there is a large amount of future work to be done. It is necessary
to implement tools to support the automatic generation of the mutant mech-
anism, and also to design/implement new case studies. Another research issue
under investigation is the possibility of increasing the reliability of a system by
combining parts of different components to build a new class.

References

1. Weiser, M.: Ubiquitous Computing. IEEE Computer - Hot Topics. 26 (1993) 71–72.
2. Jalote, P.: Fault Tolerance in Distributed Systems. Prentice Hall. (1994) 432p.
3. Litlewood, B., Popov, P., Strigini, L.: Modeling Software Design Diversity - A

review. ACM Computing Surveys. 33 (2001) 177–208.
4. Laprie, J. C.: Dependable Computing and Fault Tolerance: Concepts and Termi-

nology. In Digest of FTCS-15. (1985) 2–11.
5. Avizienis, A.: The N-version Approach to Fault-tolerant Software. IEEE Transac-

tions on Software Engineering. 11 (1985) 1491–1501.
6. Randell, B.: System Structure for Software Fault Tolerance. Proceedings of the

International Conference on Reliable software. (1975) 437–449.
7. Demillo, R. A., Lipton, R. J., Sayward, F.G.: Hints on Test Data Selection: Help

for the Practicing Programmer. Computer. 11 (1978) 34–41.
8. Offutt, A. J., Lee, A., Rothermel, G., Untch, R., Zapf, C.: An Experimental De-

termination of Sufficient Mutant Operators. ACM Transactions on Software Engi-
neering and Methodology. 5 (1996) 99–118.

9. Offutt, A. J., Pan, J.: Automatically Detecting Equivalent Mutants and Infeasible
Paths. The Journal of Software Testing, Verification, and Reliability. 7 (1997) 165–
192.

10. Xu, J., Randell, B., Rubira-Casavara, C.M.F., Stroud, R.J.: Toward an Object-
oriented Approach to Software Fault Tolerance. in Recent Advances in Fault-
Tolerant Parallel and Distributed Systems (eds. D.K. Pradhan and D.R. Avresky)
IEEE Computer Society Press. (1995) 226–233.

11. Romanovsky, A.: Diversely Designed Classes for Use by Multiple Tasks. ACM
SIGAda Ada Letters. 20 (2000) 25–37.

12. Xu, J., Randell, B., Zorzo, A. F.: Implementing Software Fault Tolerance in
C++ and Openc++: An Object-Oriented and Reflective Approach. International
Workshop on Computer Aided Design, Test and Evaluation for Dependability
(CADTED). (1996) 224–229.

View publication statsView publication stats

https://www.researchgate.net/publication/225151610

