
CAA-DRIP: a framework for implementing Coordinated Atomic Actions

A. Capozucca, N. Guelfi, P. Pelliccione
LASSY, University of Luxembourg, Luxembourg

{alfredo.capozucca,nicolas.guelfi,patrizio.pelliccione}@uni.lu

A. Romanovsky
Center for Software Reliability

University of Newcastle upon Tyne - UK
alexander.romanovsky@ncl.ac.uk

A. Zorzo
Faculty of Informatics

Pontifical Catholic University of RS - Brazil
zorzo@inf.pucrs.br

Abstract

This paper presents an implementation framework,
called CAA-DRIP, that has been defined to allow a straight-
forward implementation of dependable distributed applica-
tions designed using the Coordinated Atomic Action (CAA)
paradigm. CAAs provide a coherent set of concepts adapted
to the design of fault tolerant distributed systems that
includes: structured transactions, distribution, coopera-
tion, competition, and forward and backward error recov-
ery mechanisms triggered by exceptions. DRIP (Depend-
able Remote Interacting Processes) is an efficient Java im-
plementation framework, which provides support for im-
plementing “Dependable Multiparty Interactions (DMI)”
which includes a general exception handling mechanism.
As DMI has a softer exception handling semantics with re-
spect to CAA semantics, a CAA design can be implemented
by DRIP. The aim of the CAA-DRIP framework is to pro-
vide a set of Java classes that allows programmers to imple-
ment only the semantics of CAAs with the same terminology
and concepts at the design and implementation levels. The
new framework simplifies the implementation phase and at
the same time reduces the size of the final system since it
requires fewer number of instances for creating a CAA at
runtime. Details of these improvements as well as a precise
description of the CAAs behaviour in terms of Statecharts,
which is used as a reference model to define the CAA-DRIP
framework, are presented in this paper.

1 Introduction
Development of modern software systems needs to en-

sure that such systems meet challenging functional and
quality requirements. In the last years a number of instru-
ments and tools have been proposed to drive the software
development process to satisfy high quality requirements.
Unfortunately the main trend here is to focus on the normal

behaviour of software systems, ignoring abnormal behav-
iour which systems exhibit while facing faults, errors and
failures. It is now becoming clear that rigorous method-
ologies for building dependable software should equally
support dealing with such impairments. Fault tolerance is
the ultimate technology that can be used to build a system
which complies with its specification even when facing the
impairments of various types.

Several mechanisms for dealing with system faults have
been developed in the past, including, Recovery Blocks
(RB) [12], N-Version Programming (NVP) [3], Conversa-
tions [12], Transactions [8], Coordinated Atomic Actions
(CAAs) [15], and so on. CAAs are intended for designing
complex distributed systems with high availability and reli-
ability requirements. More specifically they focus on con-
current systems consisting of cooperative and competitive
components and provide fault tolerance by means of coop-
erative exception handling. CAAs have been successfully
used in several case studies [17, 7, 13] that demonstrate high
usefulness and general applicability of the approach.

The implementation of systems designed using CAAs is
currently supported by the Dependable Remote Interacting
Processes (DRIP) [2] framework. DRIP has been initially
developed to provide implementation of the “Dependable
Multiparty Interactions” (DMIs) abstraction [16]. DMIs is
a scheme that allows executing a set of participants (objects,
threads, processes) together. These participants join in an
interaction to produce a temporal intermediate state, they
use this state to execute some activities, and then they leave
this interaction to continue their normal execution. In many
ways these features are similar to the features of CAAs. As
a matter of fact, the DMI concept was developed by the
same group that proposed the CAA concept. The main dif-
ference between DMIs and CAAs schemes is in the way
they deal with exceptions. DMIs have a more relaxed ex-
ception handling semantics than the CAAs as they support a
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chain of recovery levels for dealing with exceptions. CAAs
only allow one recovery level. This is why a CAA design
can be achieved in terms of DMIs and then implemented
using DRIP.

However, since working with the DRIP framework is an
already complex task for programmers, it is important to
provide elements (classes, interfaces, packages, etc.) di-
rectly supporting the CAA concepts used at the design level
and to facilitate the implementation of the concepts that
DRIP does not directly support. Thus, it is very useful to
have a framework that guarantees that the design abstrac-
tion is going to be implemented correctly. Furthermore,
implementing an application using a clean framework will
facilitate the testing phase. This will not be the case if a pro-
grammer uses the DRIP framework for implementing sys-
tems designed using CAAs. Actually, while using DRIP the
programmer can forget or even decide to ignore some re-
quirements of the CAAs. Furthermore, to implement CAAs
using DRIP programmers need to follow some specific pat-
terns, otherwise the CAA semantics could be lost. In de-
veloping safety-critical applications relying on a program-
mer following specific patterns to implement the application
correctly seems to be a dangerous idea.

In this paper, a new framework named CAA-DRIP is
presented. It is the result of modifications and extensions
made on DRIP to exclusive and completely provide sup-
port for implementing the CAA semantics. Improvements
respect to performance have been also achieved.

In order to provide the reader with a clear understand-
ing of the CAAs abstraction, their characteristics are de-
scribed using Statecharts [9, 10]. There has been a lot of
work on formal description of CAAs, for example, using
Temporal Logic of Actions [14], Stochastic Automata Net-
works [4] and B [6]. Here a clean formal high level descrip-
tion of the CAA behaviour is offered to, first complement
previous CAA formalisations, and second be used for pro-
grammers as a reference to drive the CAA implementation
phase. Statecharts is a simple description language that pro-
vides a good approach to express complex behaviours. It
enables viewing the description at different levels of details
and makes even very large specifications manageable and
comprehensible.

Furthermore, the CAAs concept has been improved in
the past years and several new issues are provided since
its first description. For example, a new composite type of
CAA has been described in [7, 13, 6] and the way external
objects are dealt with is spread throughout several papers
[15, 6]. In this paper, all these features are collected and
described.

After a detailed description of the CAAs mechanism se-
mantics (Section 2), the CAA-DRIP framework (Section 3)
is introduced. In the same section is explained how pro-
grammers have to deal with CAA-DRIP to achieve the im-

plementation and what are the advantages of using it. Sec-
tion 4 provides a small description of a case study in which
the new framework is applied. Finally, the paper closes with
conclusions and future work.

2 Coordinated Atomic Actions
Coordinated Atomic Action (CAA) is a fault-tolerant

mechanism that uses concurrent exception handling to
achieve dependability in distributed and concurrent sys-
tems. Thus, using CAAs systems that comply with their
specification in spite of faults having occurred can be devel-
oped. This mechanism unifies the features of two comple-
mentary concepts: conversation and transaction. Conversa-
tion [12] is a fault-tolerant technique for performing coor-
dinated error recovery in a set of participants that have been
designed to interact with each other to provide a specific
service (cooperative concurrency). Objects that are used to
achieve the cooperation among the participants are called
shared objects. Transactions are used to deal with compet-
itive concurrency on objects that have been designed and
implemented separately from the applications that make use
of them. These kind of objects are named external objects.
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Figure 1. A simple CAA

As it is shown in Figure 1, one CAA characterises an
orchestration of operations executed by a group of roles that
exchange information among themselves, and/or access to
external objects (concurrently with other CAAs) to achieve
a common goal. The CAA starts when all its roles have
been activated and they meet a pre-condition. The CAA
finishes when all of them have reached the CAA end, and a
post-condition is satisfied. This behaviour returns a normal
outcome to the enclosing context.

If for any reason an exception has been raised in at least
one of the roles belonging to the CAA, appropriate recovery
measures have to be taken. Facing this situation, a CAA
provides a quite general solution for fault tolerance based
on exception handling. It consists of applying both forward
error recovery (FER) and backward error recovery (BER)
techniques.

Basically, the CAA exception handling semantics says
that once an exception has been raised the FER mechanism
has to be started. At this point the CAA can finish nor-
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mally if FER can fulfil the original request (normal out-
come) or exceptionally if the original request is partially
satisfied (exceptional outcome). Otherwise, if the same or
another exception is raised during FER, then the FER mech-
anism is stopped and BER is started. BER has a main task
to recover every external object to its last visited error-free
state (roll back). If BER succeed, then the CAA returns
the abort outcome. If for any reason BER cannot be com-
pleted, then the CAA has failed and the failure outcome is
signalled to the enclosing context.

Every external object that is accessed in a CAA must
be able to be restored to its last visited error-free state
(if BER is activated) and it provides its own error recov-
ery mechanism [15]. Therefore when BER takes place,
it restores these external objects using their own recovery
mechanisms. However, sometimes the designer/program-
mer might want to use an external object that does not pro-
vide any recovery mechanism (due to reasons of cost or
physical constraints [11]). Therefore it would be neces-
sary to allow designers/programmers to specify/implement
a hand-made roll back inside the CAA. This can be achieved
by refining the classic BER to deal with external objects that
are restored using their own mechanism (called AutoRe-
coverable external objects -AR-) and also to deal with those
that have to be restored by a hand-made roll back (called
ManuallyRecoverable -MR-).

One of the problem of using BER concerns objects (par-
ticularly external objects) which cannot be restored from
their last known state.

According to the previous information and the CAA se-
mantics, there would be two different places to handle AR
objects (FER and BER) and only one to handle MR objects
(FER). Thus, when FER fails because an exception has been
raised, potentially any external object could have been left
in an unacceptable (non-specified) state. Then, the BER
is executed. If it is successful, the Abort exception is re-
turned. This outcome corresponds to say that the system
has been left at the same state before calling the CAA.

As the BER would only undo effects on AR objects, it is
possible that an MR object is still in an inconsistent state.
Thus, it would not be true that the system would be in the
same state that before calling the CAA (Abort). Basically,
the ACID properties would not be met.

The BER refinement consists of splitting it between au-
tomatic abort (classical roll back) and a hand-made recov-
ery (compensation). Compensation must be used to spec-
ify the explicit manipulation when a CAA has to abort and
there is at least one MR object. Compensation cannot be
automatically executed since only the designer/programmer
knows what are the necessary steps to compensate a par-
ticular MR object. This compensation can even need the
acting of an external agent to help in the recovery (e.g. to
call an operator or a maintenance person to fix something).

Compensation is not the perfect solution to assure the ACID
properties, but at least drive the designers/programmers in
that direction.

Originally, the CAA semantics did not clearly distin-
guish between AR and MR objects. This distinction is made
in order to know what are the external objects that will be
managed by the transactional support when the CAA has to
abort (the AR) and those requiring explicit manipulation to
be left in a consistent state (the MR).
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Figure 2. Coordinated Atomic Actions.

Another important characteristic of CAAs is that they
can be designed in a structured way using nesting and/or
composition (see Figure 2 and 3). Nesting is defined as
a subset of the participants used to carry out the roles of
a CAA (CAA1). These chosen participants define a new
CAA (CAA2) inside the enclosing CAA (CAA1). The
participants in CAA2 are a subset of the participants from
CAA1, but they play different roles in each CAA. The
activities carried out inside of CAA2 are hidden for the
other roles (R3) (and other nested or composed CAAs)
that belong to CAA1. External object accesses within a
nested CAA are performed as nested transactions, so that,
if CAA1 terminates exceptionally, all sub-transactions that
were committed by the nested (CAA2) are aborted as well.
Each participant that is playing a role of a CAA can only
enter one nested CAA at a time. Furthermore, a CAA ter-
minates only when all its nested CAAs have terminated as
well. Note that, if the nested CAA2 terminates exception-
ally, an exception is signalled to the containing CAA1.

An important consideration to take into account is about
the objects that are passed to the nested CAA from the en-
closing context (e.g. O1). These objects are considered as
external for the nested CAA, thus a shared object belong-
ing to the enclosing CAA becomes external for the nested
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CAA. This shows that the terms external and shared are re-
lated to the CAA where they are used.

It is also possible that a nested CAA needs to have access
to an external object that has not been held by its enclosing
CAA. Moreover, a nested CAA may also create new objects
(O4) that are persistent after its completion. In any case, it is
absolutely necessary to keep a track on the accessed/created
objects by the nested CAA and to pass this information onto
the parent CAA. In this way, the enclosing CAA has all the
information to leave the system in a safe state if recovery
error measures are necessary [15].
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O6 O7O5

CAA4

R2’’

R3’’
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Figure 3. Composite CAAs.

Composite CAAs [6] are different from nested CAAs in
the sense that the use of composite CAAs is more flexible.
For example, a nested CAA with two roles can only be used
inside an enclosing CAA that is played by at least two par-
ticipants. Composite CAAs do not have this type of restric-
tion. A composite CAA (CAA3) is an autonomous entity
with its own roles (R1

′, R2
′ and R3

′) and objects (O5, O6

and O7). The internal structure of the composite CAA3

(i.e., participants, accessed objects and roles) is hidden from
the calling CAA1.

A role belonging to CAA1 that calls CAA3 synchro-
nously waits for the outcome. Then, the calling role re-
sumes its execution according to the outcome of CAA3. If
CAA3 terminates exceptionally, its calling role, which be-
longs to CAA1, raises an internal exception that is, if pos-
sible, locally handled. If local handling is not possible, the
exception is propagated to all the peer roles of CAA1 for
coordinated error recovery.

If CAA3 has terminated with a normal outcome, but the
containing CAA1 has to undo its effects (BER has to take
place in CAA1), all the tasks that were executed in CAA3

will not be automatically undone by BER in CAA1. Thus,
CAA1, to guarantee the ACID properties on the external
objects, needs to carry out a specific handling, which may
include a call to another composite CAA (CAA4) to abort
the effects that have been performed by CAA3. Therefore,
every time a composite CAA is being used inside a CAA,
the compensation part of BER must be used. The com-
pensation allows us to specify hand-made recovery during
BER, for example to roll back something that a composite
CAA has modified.

2.1 Formal description of the CAAs be-
haviour

Statecharts [9, 10] is used to formally express the seman-
tics of each possible kind of CAA outcome (normal, excep-
tional, abort and failure).

The specification (Figure 4) is composed of a big state
called Enclosing context that intially is at state S0. The en-
closing context contains a CAA, which has been designed
to provide a specific service. The CAA is called by an ex-
ternal user (it can be another system) where the CAA is em-
bedded. The invocation of the service is represented by the
event runCAA. This event comes from the enclosing con-
text. The state Service represents the execution of the ser-
vice and it is reached once the runCAA has been emitted
and the CAA pre-condition (represented by the preCond
predicate) is true. If the service is able to satisfy its post-
condition (postCond predicate is true), then the CAA termi-
nates normally. Therefore, the CAA reaches state S1, pub-
lishing at the same time the Normal event. Otherwise, if
the post-condition is not met or an exception is raised, the
recovery process is started (going to state Recovery).

ferPartiallyDone(e)
[postCond]

 / Exceptional(e)

Enclosing

context

Exception(e) 
[Resolution]

Exception(e)

runCAA
[preCond]

AbortingError
/ Failure

AbortingOK
   / Abort

caaDone
[not(postCond) 
&& Resolution]

caaDone [postCond]/ NormalCAA

S2S3

S1

Recovery

ferDone
[postCond]
 / Normal

Exception(e) 
[not(Resolution)]

Compensation

Roll back

BER

FER(e)

Service

S0

ferDone(e)
[not(postCond)]

Figure 4. CAA behaviour.

If an exception is raised (Exception(e) event) during the
normal execution of the CAA (state Service), then a process
of exception handling is triggered (state Recovery). This ex-
ception handling process is defined as a combination of FER
and BER. The first step of the exception handling process is
the exception resolution, which consists of finding a com-
mon exception. In fact, due to the concurrent execution of
the roles that takes place in state Service, more than one
exception could be raised at the same time. An algorithm
is used to implement the exception resolution. If it suc-
ceed (Resolution predicate is true), the FER mechanism is
started, otherwise the effects of the CAA have to be undone
(the BER mechanism is triggered).

The FER mechanism is represented by the state FER(e)
and, depending on how successfully it can be executed, the
CAA may still terminate normally. The FER finishes nor-
mally if it fulfils the original request and the post-condition
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(represented by postCond predicate) is met. Therefore state
S1 is reached. Otherwise, if FER(e) satisfies the post-
condition but the result that FER provides to the enclosing
context is partial (or degraded) with respect to the original
request (ferPartiallyDone(e) event), the CAA finishes ex-
ceptionally. Notice that even if the CAA service did not
execute according to its specification (to leave the enclos-
ing context in state S1), the enclosing context is left in a
specified state (S2).
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Figure 5. CAA-DRIP UML model

Finally, if the post-condition cannot be satisfied by FER
or other exceptions have been raised again, the CAA must
roll back using BER (state BER). If BER is applied suc-
cessfully (AbortingOk event), the CAA publishes the event
Abort and the enclosing context reaches the same state (S0)
where it was before calling the CAA service. If BER is un-
successful (AbortingError event), then the CAA must pub-
lish the Failure event. In this case the enclosing context is
left in an unspecified state (S3).

3 The CAA-DRIP framework
A set of Java [1] classes and interfaces called CAA-

DRIP has been defined using as starting point the DRIP
framework [2]. CAA-DRIP allows us to implement the con-
cepts and behaviour described in Section 2. The Statecharts
description in Figure 4 is used as reference to show how the
states that compose the CAA are defined and how each of
them can be reached. As mentioned before, a CAA is de-
fined as a set of participants that come together to do “some-
thing”. This “something” is the service the CAA provides.
The service is carried out by the roles that the participants
will play inside the CAA.

The model in Figure 5 shows a UML diagram of the
classes used to implement a CAA. The Manager class is
the controller for Role, Handler and Compensator classes.
Thus, each role, handler and compensator objects created
are managed by a manager object. As shown in Figure 5,
there is not a class to represent a CAA. It consists of a set of
managers, roles, handlers and compensators linked together
via a leader manager (represented as an association in Fig-
ure 5). The manager object that is chosen as the leader is
the responsible for synchronising roles upon entry and upon
exit, the execution of the exception resolution algorithm and
for keeping information about shared objects. CAA1, from
Figure 2, is used as example to show how the CAA-DRIP
framework has to be used to create a CAA.

3.1 Instantiating a CAA
When a Manager object is created it has to be informed

of its name and the name of the CAA (lines 2-4 in Figure 6).
Once the managers have been created it is necessary to cre-
ate the role objects. Each role upon creation is informed
of its name, which manager will be its controller and the
manager that will act as the leader (lines 7-9).

1 / / Managers
2 mgr1 = new ManagerImpl ("mgr1" ,"CAA1" ) ;
3 mgr2 = new ManagerImpl ("mgr2" ,"CAA1" ) ;
4 mgr3 = new ManagerImpl ("mgr3" ,"CAA1" ) ;
5 / / R o l e s
6 r o l e 1 = new R1 ("role1" , mgr1 , mgr1 ) ;
7 r o l e 2 = new R2 ("role2" , mgr2 , mgr1 ) ;
8 r o l e 3 = new R3 ("role3" , mgr3 , mgr1 ) ;
9 / / Hand ler s

10 hndrE1 R1 = new E1 R1 ("hndrE1_R1" , mgr1 ) ;
11 hndrE1 R2 = new E1 R2 ("hndrE1_R2" , mgr2 ) ;
12 hndrE1 R3 = new E1 R3 ("hndrE1_R3" , mgr3 ) ;
13 / / B i n d i n g E x c e p t i o n−Handler
14 H a s h t a b l e ehR1 = new H a s h t a b l e ( ) ;
15 ehR1 . p u t ( E1 . c l a s s , hndrE1 R1 ) ;
16 H a s h t a b l e ehR2 = new H a s h t a b l e ( ) ;
17 ehR2 . p u t ( E1 . c l a s s , hndrE1 R2 ) ;
18 H a s h t a b l e ehR3 = new H a s h t a b l e ( ) ;
19 ehR3 . p u t ( E1 . c l a s s , hndrE1 R3 ) ;
20 / / B i n d i n g E x c e p t i o n−Handler−Manager
21 mgr1 . s e t E x c e p t i o n A n d H a n d l e r L i s t ( ehR1 ) ;
22 mgr2 . s e t E x c e p t i o n A n d H a n d l e r L i s t ( ehR2 ) ;
23 mgr3 . s e t E x c e p t i o n A n d H a n d l e r L i s t ( ehR3 ) ;
24 / / Compensators
25 cmp1 = new CmpR1("cmp1" , mgr1 ) ;
26 cmp2 = new CmpR2("cmp2" , mgr2 ) ;
27 cmp3 = new CmpR3("cmp3" , mgr3 ) ;

Figure 6. CAA1 definition

For each e exception that the CAA has to handle by FER
the user of the framework has to: (1) create a handler for
each role that the CAA has; (2) link each defined handler
with the exception to handle; (3) pass the link exception-
handler to the object that controls the handler execution.

Now, with this information in mind, how these steps are
applied on CAA1 to handle the E1 exception is shown.
Each handler upon creation (step 1) needs to know its name
and the manager that will control this handler (lines 12-14).
The link between the E1 exception and each handler (step

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00  © 2006

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 16:52:10 UTC from IEEE Xplore.  Restrictions apply. 



2) is implemented by a hashtable that has as key the excep-
tion and as value the handler object that has been defined
in the step 1 (lines 17-22). The method setExceptionAnd-
HandlerList is used to inform the manager about the rela-
tionships exception-handler that have been set in the step 2
(lines 25-27).

If the CAA has to handle manually recoverable objects
(see Section 2), a compensator has to be created also. This
is shown on lines 30-32. Analogously to a handler creation,
each compensator upon creation is informed of its name and
the handler that will drive its execution. This kind of com-
pensator was not part of the original DRIP framework.

3.2 Extending and Implementing the
CAA-DRIP framework classes

The definition of a role is made by creating a new class
that extends the Role class (see the Java code in Figure 7).
The programmer has to re-implement the body method (line
19). This method receives a list of external objects as input
parameter and it does not return any value. The defined op-
erations inside this method are executed by the participant
that activated the role.

When the programmer wants to instantiate the created
new class, it has to be informed of its name, the manager
object that drives its execution and the leader manager ob-
ject used for coordinating the CAA execution (lines 3-4).

Shared objects for coordinating the CAA roles are de-
fined inside the new class that extends the Role class (line
2). Once a shared object has been created (line 9), it can
be exported to be used by other roles of the CAA. In or-
der to export a shared object the programmer has to use the
sharedObject method of the Manager class (line 11).

The other methods that have also to be redefined by the
programmer are preCondition (line 13) and postCondition
(line 28). They return a boolean value and are used as
guard and assertion of the role, respectively. This set of
new classes defines the CAA normal behaviour and their
execution corresponds to state Service in Figure 4.

The second step is to define the CAA behaviour for deal-
ing with exceptions (stateRecovery in Figure 4). This is,
from an implementation point of view, different from the
previous framework, i.e. the DRIP framework. If an excep-
tion has to be handled by FER, then it is necessary to define
a handler for each CAA role. This task is made by creating a
new class that extends the Handler class. The programmer
has to re-implement the body and the postCondition meth-
ods. The operations to deal with only raised exceptions take
place inside the body method. Thus, for each exception that
has to be handled by the CAA, its corresponding handlers
has to be defined (one for each CAA role). State FER(e)
in Figure 4 corresponds to the execution of the handlers for
dealing with exception e.

If the raised exception cannot be handled by FER, then

the CAA has to undo all its effects on the external objects.
This task is done by BER.

1 p u b l i c c l a s s RoleName ex tends RoleImpl {
2 S h a r e d O b j e c t so ; / / d e f i n i n g shared o b j e c t
3 p u b l i c RoleName ( S t r i n g roleName ,
4 Manager mgr , Manager l e a d e r )
5 throws RemoteExcep t ion {
6 / / s e t r o l e w i t h name , manager and l e a d e r
7 super ( roleName , mgr , l e a d e r ) ;
8 / / c r e a t i n g shared o b j e c t
9 so = new S h a r e d O b j e c t ( ) ;

10 / / e x p o r t i n g shared o b j e c t
11 mgr . s h a r e d O b j e c t ("soName" , so ) ;
12 }
13 p u b l i c boolean p r e C o n d i t i o n ( E x t e r n a l O b j e c t s eos )
14 throws Excep t ion , RemoteExcep t ion {
15 boolean guard ;
16 / / c h e c k i n g pre−c o n d i t i o n
17 re turn guard ;
18 }
19 p u b l i c vo id body ( E x t e r n a l O b j e c t s eos )
20 throws Excep t ion , RemoteExcept ion ,
21 I n t e r r u p t e d E x c e p t i o n{
22 t r y{
23 / / code t o be e x e c u t e d by t h e r o l e
24 } catch ( E x c e p t i o n e ) {
25 / / h a n d l e r f o r a l o c a l e x c e p t i o n
26 }
27 }
28 p u b l i c boolean p o s t C o n d i t i o n ( E x t e r n a l O b j e c t s eos )
29 throws Excep t ion , RemoteExcep t ion {
30 boolean a s s e r t i o n ;
31 / / c h e c k i n g pos t−c o n d i t i o n
32 re turn a s s e r t i o n ;
33 }
34 }

Figure 7. Creating a new Role class

As shown in Figure 4, BER is composed of two sub-
states, Roll back and Compensation. Compensation has to
execute a specific task if there is at least one external object
that needs manual recovery or a composite CAA has been
called being at state Service (normal behaviour) or at state
FER. Compensation is achieved by defining a compensator
for each CAA role. A compensator is made by creating a
new class that extends the Compensator class. The recovery
method has to be re-implemented by the programmer. This
method receives, as input parameter, a list with the external
objects that need hand-made recovery. The method has to
contain the operations to leave these external objects in a
consistent state (to keep the ACID properties).

3.3 Executing a CAA
Notice that so far, how the classes in the framework are

instantiated to create a CAA has been shown. Now how
these objects behave when the CAA is activated will be ex-
plained. The CAA activation process begins when each par-
ticipant starts the role that it wants to play. The execute
method (belonging to the Role class) has to be used by a
participant to start playing a role. When the execute method
is called, the role passes the control to its manager. The
Java code in Figure 8 represents the sequence of operations
that each manager will execute once it is activated. The first
activity a manager executes is to synchronise itself with all
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other managers that are taking place in the CAA. This is
done by calling the syncBegin method (line 2). Remember
that there is a leader manager that is responsible for this
task.

1 t r y{
2 syncBeg in ( ) ; / / s y n c h r o n i s i n g upon e n t r y
3 / / i f pre−c o n d i t i o n i s n o t t r u e
4 i f ( ! ro leManaged . p r e C o n d i t i o n ( e x t O b j s ) )
5 throw new P r e C o n d i t i o n E x c e p t i o n ( ) ;
6 / / e x e c u t i n g t h e r o l e
7 ro leManaged . bodyExecute ( t h i s , e x t O b j s ) ;
8 / / w a i t i n g f o r e v e r y o n e b e f o r e
9 / / c h e c k i n g pos t−c o n d i t i o n s

10 syncEnd ( ) ;
11 / / i f pos t−c o n d i t i o n i s n o t t r u e
12 i f ( ! ro leManaged . p o s t C o n d i t i o n ( e x t O b j s ) )
13 throw new P o s t C o n d i t i o n E x c e p t i o n ( ) ;
14 syncEnd ( ) ; / / e x i t i n g s y n c h r o n o u s l y
15 }catch ( E x c e p t i o n exRole ) { / / FER
16 t r y{
17 / / a p p l y i n g e x c e p t i o n r e s o l u t i o n a l g o r i t h m
18 exRole = e x c e p t i o n R e s o l u t i o n ( exRole ) ;
19 / / l a u n c h i n g FER f o r t h e found e x c e p t i o n .
20 h a n d l e r E x e c u t i o n ( ) ;
21 }catch ( E x c e p t i o n exFER ) { / / BER
22 t r y{
23 / / e x e c u t i n g c o m p e n s a t i o n and r o l l back
24 r e s t o r e E x e c u t i o n ( ) ;
25 / / r e t u r n i n g ABORT
26 r o l e E x c e p t i o n = new A b o r t E x c e p t i o n ( ) ;
27 }catch ( E x c e p t i o n exBER){
28 / / t h e r e was a problem i n t h e BER e x e c u t i o n
29 / / r e t u r n i n g FAILURE
30 r o l e E x c e p t i o n = new F a i l u r e E x c e p t i o n ( ) ;
31 }
32 }
33 }

Figure 8. Manager execution

This method blocks until the leader determines that all
the managers have synchronised and the CAA is ready to
begin. Once the syncBegin method returns, the manager
checks if the pre-condition of the role is valid (line 4). The
preCondition method receives all the external objects that
will be passed to the role managed by this manager as para-
meters. If the pre-condition is not satisfied, then a PreCon-
ditionException will be thrown (line 5) and caught by the
catch(Exception e) block (how an exception will be dealt
with, is explained later).

If the pre-condition is met, then the manager will execute
the role that is under its control by calling the bodyExecute
method of the Role object (line 7). The invocation of this
method by each manager can be seen as the implementa-
tion of the arrow that goes from state S0 to state Service in
Figure 4.

After the role has finished its execution, the manager
synchronises with all the other managers (line 10) before
testing its post-condition (line 12). If the post-conditions
are satisfied, then the manager will synchronise with all the
other managers (line 14) and the CAA will finish success-
fully. Executing this sequence of steps corresponds to the
arrow that goes from state Service to state S1 in Figure 4.

The catch(Exception e) block (lines 15-33) will be exe-
cuted if an exception is raised during the execution of any

role belonging to the CAA. In such situation, the role where
the exception was raised notifies its manager. This man-
ager passes the control to leader manager for interrupting1

all the roles that have not raised an exception (exceptions
can be raised concurrently). Once all the roles have been
interrupted the leader executes an exception resolution al-
gorithm to find a common exception2 from those that have
been raised (line 18). When such an exception is found,
the leader informs all managers about that exception and
FER (for the found exception) is activated (line 20). If
the handlerExecution method completes its execution, then
its post-condition has been satisfied and the CAA can fin-
ish. The value set in roleException variable defines how
successfully was the FER execution. If this variable has a
null value means that FER has finished normally (arrow that
goes from state FER to state S1 in Figure 4). Otherwise, it
has achieved a partial solution and roleException variable
that contains the exceptional result that has to be returned
to the enclosing context (arrow that goes from state FER to
state S2 in Figure 4).

Now, if the exception resolution algorithm could not find
a common exception (arrow that goes from state Service to
state BER in Figure 4), or the handlerExecution() method
raised PostConditionException() exception because FER
did not satisfy the post-condition (arrow that goes from state
FER(e) to state BER with label ferDone(e)[not(postCond)]
in Figure 4) or other exceptions were raised in the FER (ar-
row that goes from state FER(e) to state BER with label
Exception(e) in Figure 4), then the BER mechanism will be
started (lines 21-32).

BER calls the restoreExecution method (line 24) to undo
the CAA effects. Once this method has executed, the role-
Exception variable is set with Abort value (line 26) and the
CAA can finish (arrow that goes from state BER to S0 in
Figure 4). If for any reason the BER process could not com-
plete its execution, the CAA will be finished returning Fail-
ure (line 30). This statement corresponds to the arrow that
goes from state BER to state S3 in Figure 4.

3.4 Frameworks comparison
This section summarises the main differences between

DRIP [2] and CAA-DRIP frameworks. As said, the aim
of CAA-DRIP is to provide an easier way to implement
designs based on CAAs, therefore that is the reason why
the main differences are on aspects that take place in the
implementation phase. CAA-DRIP allows programmers to
deal with the same abstractions (Role, Handler, Compen-
sator and so on) managed in the design phase and which
are written on the documentation that drives the implemen-
tation phase. Thus, this direct correlation between design

1Notice that a role will be interrupted only if the role is ready to be
interrupted, i.e. the role is in a state that it can be interrupted.

2In the worst case, the common exception is Exception.
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Characteristics/Framework DRIP [2] CAA-DRIP

Supported abstractions Role Role, Handler, Compensator;
Abort and Failure exceptions

Pre-defined outcomes None Abort and Failure
Normal behaviour implementation instance of Manager class instance of Manager class

and extension of Role class and extension of Role class
FER behaviour implementation instance of Manager class extending Handler class

and extension of Role class
BER behaviour implementation instance of Manager class Combining automatic roll back and hand-made

and extension of Role class recovery (extending Compensator class)
Number of objects to create a CAA, with n roles, that 2 ∗ n + m ∗ (2 ∗ n) + 2 ∗ n 2 ∗ n + m ∗ n

handles m exceptions without manual recovery of external objects
Number of objects to create a CAA, with n roles, that 2 ∗ n + m ∗ (2 ∗ n) + 2 ∗ n 2 ∗ n + m ∗ n + n

handles m exceptions with manual recovery of external objects
Number of threads created at runtime to run a CAA,

with n roles, which deals with an exception, 3 ∗ n n
first by FER and then by BER

Table 1. Comparison between DRIP and CAA-DRIP frameworks

and implementation helps both in the code production and
the modification of already existent code as well as the in-
spection of the code to detect defects (testing).

Other advantage of using CAA-DRIP instead of DRIP is
that the first one requires less number of objects to instanti-
ate a CAA. This reduction in memory use has been achieved
by requiring only one Manager object for each Role, Han-
dler and Compensator object.

But, the main advantage of had reduced the number of
Manager objects consists in requiring less threads (three
time less, in the worst case) for running a CAA. It is because
the Manager class is implemented to manage the execution
of a Role, and part of this management corresponds to cre-
ate a new thread to perform the tasks programmed into the
body method for each class that extends from Role class.

Table 1 surveys the comparison between both frame-
works with respect to the previous discussed aspects.

4 The Fault-Tolerant Insulin Pump (FTIP)
System

The “Insulin Pump” therapy is based on the Continu-
ous Subcutaneous Insulin Injection technique that combines
devices (a sensor and a pump) and software to make glu-
cose sensing and insulin delivery automatic. The idea, with
this therapy, is to copy the way in which the pancreas se-
cretes the insulin. Therefore the pump constantly supply
fast-acting insulin to the patient’s body according to infor-
mation that it receives from the sensor.

The tiny sensor used is only a piece of hardware without
embedded software that has an integrated small transmitter
that communicates wirelessly and continually the patient’s
glucose level to the pump. Every TSensorV alue units of time
the sensor sends an updated glucose value.

The pump has an internal clock that provides the current
time at any instant. Based on this clock, the FTIP system
can control the other parts that compose the pump, as for

instance the motor. This motor works for TDelivery units
of time. The TDelivery value is defined by the FTIP system
according to the patient’s glucose value sent by the sensor
and the individual settings defined by a doctor. The pumps
also contain a cartridge with fast-acting insulin that is sup-
plied to the patient’s body by a cannula that lies under the
patient’s skin. The motor is connected to a piston rod that
sends a plunger forward so that the insulin is delivered to the
body. Therefore, the TDelivery units of time that the motor
works will deliver (by the cannula) the necessary amount
of insulin (deliveredInsulin(m)) in a non-diabetic person.
The plunger only moves to its initial position (by pressing
the Stop button) when the pump user needs to fill the car-
tridge with insulin.

Because the pump delivers insulin almost continuously,
and as said, any interruption or excess in the supplying may
result in serious problems to the patient, it is reasonable to
make checks to be sure that the pump is working properly.

The system makes sure that each amount of insulin that
has to be delivered does not drop out of the safe range pro-
grammed. The pump has an infrared motion detector that
is used by the system to check the correct movement of the
plunger and another one to check the status of the motor.
Both detectors help to determine if the pump is delivering
the insulin properly.

Therefore, the FTIP system, using the internal clock and
the embedded detectors into the pump, is able to detect any
of the following critical conditions: (i) no values have been
received from the sensor for the last TSensor units of time
(E1), (ii) the current patient’s glucose level is out of the
safe range (E2), (iii) the insulin that has to be delivered to
keep the glucose in a safe level does not drop into the safe
range programmed (E3), (iv) the insulin is not being de-
livered properly (E4). When, at least one of these critical
conditions takes place, the FTIP system full stops the pump
works and it sounds an alarm to alert the patient about the

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00  © 2006

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 16:52:10 UTC from IEEE Xplore.  Restrictions apply. 



current situation. The alarm will remain ringing till the pa-
tient switch it off (E5). Instead, when the quantity of insulin
in the cartridge is less than the low limit parameter, the sys-
tem will ring the alarm, as a warning, for only TWarning

units of time.

CAA_Checking 

CAA_Cycle 

Pump

Controller

Sensor

Alarm

CAA_Checking 

CAA_Cycle CAA_Cycle CAA_Cycle 

E5

E2 E5 E5 E5

E1

E2

CAA_
Delivery

CAA_
Calculus

O1

O2

O1

E1

O2

CAA_Calculus

Algorithm_1

Algorithm_2

VotingCheck

Algorithm_3

E3

CAA_Delivery

MotorDetector

PlungerDetector

Motor
E4

O3 O4 O3

AlarmDev

SensorDevO1

MotorDev

Plunger

O2

O3

O4

External
Objects

Figure 9. CAA Design.

In order to satisfy the previous requirements a set of
CAAs that interact cooperatively among them is defined.
Figure 9 represents one possible trace of the CAAs behav-
iour in runtime, in which any exception is raised. In this
Figure is also possible to see where exceptions could take
place. CAA Cycle is the outmost CAA. It is composed of
four roles: Sensor, Controller, Pump and Alarm.

Its main task is to perform repetitively a set of operations
while the safety conditions of the treatment are kept. These
operations are grouped in three basic steps. The first step,
that consists of getting the current patient’s glucose level,
which is carried out by CAA Checking. The second step is
to calculate how much insulin has to be delivered and it is
performed by CAA Calculus. The last step is performed by
CAA Delivery and consists of delivering the insulin into the
patient.

Sensor, Pump and Alarm are the roles used to manage the
access to the SensorDev, MotorDev and AlarmDev devices,
respectively. The Controller role coordinates the other roles
of CAA Cycle to keep on executing these steps.

As shown earlier, the process to deliver insulin into the
patient is achieved by combining several physical devices
(piston rod, plunger) that are activated by a motor work-
ing. Thus, there is a relationship between “insulin deliver-
ing” and “motor working time” that is part of the domain
knowledge embedded in the system. Taking into account
the “insulin delivering-motor working time” relationship,
CAA Calculus has been defined to calculate how long the

motor of the pump has to be working (TDelivery value).
Once the Controller role has received the TDelivery value
from CAA Calculus, CAA Checking and CAA Delivery can
be performed in parallel to improve the system perfor-
mance. Therefore the Controller role has to synchronise the
CAAs to achieve the execution of the previous described
steps. Due to space reasons, only the accesses to external
objects is shown in Figure 9

1 p u b l i c vo id body ( E x t e r n a l O b j e c t s eos )
2 throws Excep t ion , RemoteExcep t ion {
3 t r y{
4 / / G e t t i n g i n f o r m a t i o n from t h e e n c l o s i n g c o n t e x t
5 Loop loop = ( Loop ) eos . g e t E x t e r n a l O b j e c t ("loop" ) ;
6 i f ( l oop . i s f i r s t ( ) ){
7 / / l a u n c h i n g n e s t e d CAA Checking
8 E x t e r n a l O b j e c t s c h e c k i n g =
9 new E x t e r n a l O b j e c t s ("checking" ) ;

10 r o l e C o n t r o l l e r C h e c k i n g . e x e c u t e ( c h e c k i n g ) ;
11 / / g e t t i n g outcome from CAA Checking
12 Senso rVa lue sv =
13 ( Se n s o r V a l u e ) c h e c k i n g . g e t E x t e r n a l O b j e c t ("sv" ) ;
14 / / Send ing i n f o r m a t i o n t o t h e e n c l o s i n g c o n t e x t
15 eos . s e t E x t e r n a l O b j e c t ("sv" , sv ) ;
16 } e l s e {
17 / / g e t t i n g s e n s o r v a l u e
18 Senso rVa lue sv =
19 ( Senso rVa lue ) eos . g e t E x t e r n a l O b j e c t ("sv" ) ;
20 / / l a u n c h i n g composed CAA Calculus
21 E x t e r n a l O b j e c t ca lcu lusREOs =
22 new E x t e r n a l O b j e c t s ("calculus" ) ;
23 c a l c u l u s . s e t E x t e r n a l O b j e c t ("sv" , sv ) ;
24 r o l e V o t i n g C h e c k . e x e c u t e A l l ( c a l c u l u s ) ;
25 / / g e t t i n g outcome from CAA Calculus
26 Time t D e l i v e r y =
27 ( Time ) c a l c u l u s . g e t E x t e r n a l O b j e c t ("tDelivery" ) ;
28 / / p a s s i n g i n f o r m a t i o n t o Pump r o l e
29 pumpQueue . p u t ( t D e l i v e r y ) ;
30 / / l a u n c h i n g n e s t e d CAA Checking
31 E x t e r n a l O b j e c t c h e c k i n g =
32 new E x t e r n a l O b j e c t ("checking" ) ;
33 r o l e C o n t r o l l e r C h e c k i n g . e x e c u t e ( c h e c k i n g ) ;
34 / / g e t t i n g outcome from CAA Checking
35 Senso rVa lue sv =
36 ( Se n s o r V a l u e ) c h e c k i n g . g e t E x t e r n a l O b j e c t ("sv" ) ;
37 / / g e t t i n g v a l u e s from CAA Del ivery by Pump r o l e
38 S t a t u s s t = ( S t a t u s ) pumpQueue . g e t ( ) ;
39 / / Send ing i n f o r m a t i o n t o t h e e n c l o s i n g c o n t e x t
40 eos . s e t E x t e r n a l O b j e c t ("sv" , sv ) ;
41 eos . s e t E x t e r n a l O b j e c t ("st" , s t ) ;
42 }
43 }catch ( E x c e p t i o n e ) {
44 / / Loca l h a n d l i n g f o r C o n t r o l l e r e x c e p t i o n ;
45 throw e ;
46 }
47 }

Figure 10. Body method of Controller class

The Java code in Figure 10 shows how the body method
of the Controller role is implemented for the CAA Cycle.
CAA Cycle is executed repeatedly until the patient stops
manually the delivery (by pressing the Stop button) or a crit-
ical condition has taken place. The Controller role works
as a coordinator of the tasks that have to be carried out in
CAA Cycle. One of these tasks is to launch the composed
CAA Calculus that was described earlier.

The first time that CAA Cycle is called (lines 7-15), the
Controller role starts to execute CAA Checking (line 10) in
order to get the information provided by the sensor. Once
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the role has got the information it returns the value to the
enclosing context (line 15). After CAA Cycle has been ex-
ecuted once, the enclosing context is able to provide the
sv value that has been taken in the previous execution of
CAA Cycle. Thus the Controller role gets the sv value (lines
18-19) and then passes it as an input parameter (line 23) to
CAA Calculus. The CAA Calculus execution (line 24) re-
turns the period of time (tDelivery value) that the motor has
to be running (lines 26-27).

When the tDelivery value is known, it has to be passed
to the Pump role (line 29). After that, the Pump role re-
ceives tDelivery and then it can call CAA Delivery to make
the delivery of insulin. While CAA Delivery is executing,
to improve the performance, the Controller role launches
CAA Checking (line 33) to get information from the sensor
that will be used in the next iteration of CAA Cycle.

When the information returned from CAA Checking and
Pump roles (lines 35-36, and 38 respectively) has been
passed to the enclosing context (lines 40,41) the role can
finish its execution and pass the control to the enclosing
context where CAA Cycle is embedded.

5 Conclusions and Future Work
In this paper all the different concepts that concern CAAs

have been put together. Based on these concepts, a for-
mal description of the CAAs behaviour based on the Stat-
echarts language has been provided. Both the Statecharts
description as well as the DRIP framework were used as
reference to drive the implementation of a new framework.
This framework, named CAA-DRIP, is an object-oriented
solution which provides separated classes (roles, handlers
and compensators) for implementing, by a one-to-one map-
ping, each CAA concept. This separation of concepts, use-
ful for programmers to carry out the implementation phase,
together with the performance improvements, are the main
reasons why CAA-DRIP represents a better cost-effective
solution with respect to its ancestor, DRIP. Cheaper solu-
tions are clearly possible when the CAA support is imple-
mented as a special part of the middleware/run-time. It is
future work to investigate these solutions.

Building a tool to become CAA-DRIP a black-box
framework is part of the future work, too. In fact, even if
the abstraction level of CAA-DRIP is the same of the CAA
design, to use the framework requires a deep knowledge of
its internal composition. Based on this characteristic this
kind of framework can be called white-box. On the con-
trary, the black-box term means that programmers will not
need anymore to know the framework details to implement
a CAA design. This work is being carried out in the context
of the CORRECT project [5].
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