
Scheduling in Bag-of-Task Grids: The PAUÁ Case

Walfredo Cirne Francisco Brasileiro Lauro Costa
Daniel Paranhos Elizeu Santos-Neto Nazareno Andrade

Universidade Federal de Campina Grande
{walfredo,fubica,lauro,danielps,elizeu,nazareno}@dsc.ufcg.edu.br

César De Rose Tiago Ferreto
PUCRS

{derose,ferreto}@inf.pucrs.br

Miranda Mowbray Roque Scheer João Jornada
Hewlett Packard

{miranda.mowbray,roque.scheer,joao.jornada}@hp.com

Abstract

In this paper we discuss the difficulties involved in the
scheduling of applications on computational grids. We
highlight two main sources of difficulties: firstly, the
size of the grid rules out the possibility of using a cen-
tralized scheduler; secondly, since resources are man-
aged by different parties, the scheduler must consider
several different policies. Thus, we argue that schedul-
ing applications on a grid require the orchestration of
several schedulers, with possibly conflicting goals. We
discuss how we have addressed this issue in the context
of PAUÁ, a grid for Bag-of-Tasks applications (i.e.
parallel applications whose tasks are independent) that
we are currently deploying throughout Brazil.

1 Introduction

The use of computational grids as platform to exe-
cute parallel applications is a promising research area.
The possibility to allocate unprecedent amounts of
resources to a parallel application and to make it with
lower cost than traditional alternatives (based in paral-
lel supercomputers) is one of the main attractives in
grid computing. On the other hand, the grid character-
istics, such as high heterogeneity, complexity and wide
distribution (traversing multiple administrative do-
mains), create many new technical challenges.

In particular, the area of scheduling faces entirely
new challenges in grid computing. Traditional schedul-
ers (such as the operating system and the supercom-
puter scheduler) control all resources of interest. In a
grid, such a central control is not possible. First, the
grid is just too big for a single entity to control. Sec-

ond, the resources that comprise a grid are owned by
many different entities, rendering it administratively
unacceptable that a single entity controls all resources.
In a grid, a scheduler must strive for its traditional
goals (improve system and application performance),
while realizing that most of the system is not under its
control. In fact, most of the system will be under con-
trol of other schedulers. Therefore, a given scheduler
must interact with (or at least consider) other schedul-
ers in order to achieve its goals. In a way, the multiple
schedulers present in a grid form an ecology, where
individual schedulers compete and/or collaborate with
other schedulers, and the overall system behavior
emerges from the decisions made by all schedulers.

This paper discusses the scheduling ecology found in
PAUÁ, a 250-node grid that supports the execution of
Bag-of-Tasks applications. Bag-of-Tasks (BoT) appli-
cations are those parallel applications whose tasks are
independent of each other. Despite their simplicity,
BoT applications are used in a variety of scenarios,
including data mining, massive searches (such as key
breaking), parameter sweeps [1], simulations, fractal
calculations, computational biology [34], and computer
imaging [31] [32]. Moreover, due to the independence
of their tasks, BoT applications can be successfully
executed over widely distributed computational grids,
as has been demonstrated by SETI@home [2]. In fact,
we can argue that BoT applications are the applications
most suited for computational grids, where communi-
cation can easily become a bottleneck for tightly-
coupled parallel applications.

Focusing in BoT applications is interesting because
the problem is simplified, but remains useful and rele-
vant. The major simplification introduced by focusing

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

on BoT applications is that we do not need Quality-of-
Services guarantees. Since the tasks that compose a
BoT application are independent, having a task making
progress very slowly (or even stopping!) can be dealt
with no major problems. At worst, the task can be
resubmitted elsewhere.

The scheduling ecology found in PAUÁ was de-
signed to (i) respect site autonomy, (ii) cater for the
user’s priorities, (iii) enable multilateral collaboration
(in contrast to the much more common bilateral col-
laboration), (iv) support both dedicated and non-
dedicated resources, and (v) explicitly separate archi-
tectural components from implementation (thus easing
the addition of new schedulers to the ecology).

These design goals were achieved by separating the
grid scheduling concerns in three main aspects,
namely: (i) improve the performance of the application
over the whole grid, (ii) manage resources within a site
(i.e. a set of resources within a single administrative
domain), and (iii) gain access to resources throughout
the grid. Concern (i) is the responsibility of a job
scheduler, whereas concern (ii) is the responsibility of
a site scheduler. The grid has many job schedulers, as
well as many site schedulers. A user has rights of use
(i.e., an account) in one or more sites. Moreover, sites
can dynamically grant access to foreign users via a
peer-to-peer mechanism called network of favors, thus
addressing concern (iii).

Section 2 surveys the area and discusses related
work. Section 3 describes the experience in building
the PAUÁ’s community. We present PAUÁ’s schedul-
ing ecology in Section 4. Section 5 presents a set of
experiments that gauges the performance one can ex-
pect from PAUÁ. Section 6 contains our conclusions
and delineates future work.

2 Related Work

Grid computing is a very active area of research [8]
[19]. Although it has started within High Performance
Computing, people have realized that Grid technology
could be used to deliver computational services on-
demand. This observation has brought about the merge
between Grid and Web Services technologies, as seen
in standards like OGSA/OGSI [35] and its successor
WSMF [16]. These standards are currently being im-
plemented by both academia and industry. Most nota-
bly, these standards are being implemented by Globus
[22], maybe the project with greatest visibility in Grid
Computing.

However, it is important to realize that WSMF-like
technologies do not address scheduling or resource
management directly. They rather provide the grid
building blocks, the common foundation on which
grids are built. Scheduling is thought to happen perva-

sively throughout the grids, with each service making
its own scheduling decisions (which may be delegated
to specialized services) [15]. That is, the overall grid
scheduling is a result of the scheduling decisions made
by multiple autonomous (yet related) entities. In par-
ticular, the scheduling decisions made by a given ser-
vice s must take into account the quality of service
provided by the services invoked by s.

The idea that a single scheduler cannot deal with the
entire grid dates from the mid 1990s, with Berman et al
seminal work on application-level scheduling [7].
Since then, there has been a number of works on the
many aspects of scheduling in grids. These aspects
include, for example, coping with the dynamicity of
grid resource availability (e.g.[36]), the impact of large
data transfers (e.g.[17]), coordination among many
schedulers to deliver a combined service (e.g.[33]), and
virtualization as a way to ease scheduling (e.g.[9]).

Closer to our work, there are scheduling efforts that
target BoT applications, such as APST [12] [13], Nim-
rod/G [1] and Condor [18] [24]. In particular, APST
and Nimrod/G are similar to MyGrid, our job sched-
uler, in intent and architecture. However, they require
much more information than MyGrid for scheduling.
Moreover, they also differ from MyGrid in the assump-
tions about the application and the grid. APST targets
divisible workloads, whereas in MyGrid the user is the
responsible for breaking the application’s work into
tasks. Nimrod/G assumes that the user is going to pay
for resources and hence scheduling is based on a grid
economy model [10].

Condor was initially conceived for campus-wide net-
works [24], but has been extended to run on grids [18].
Whereas MyGrid, APST and Nimrod/G are user-
centric schedulers, Condor is system-centric scheduler.
Condor is thus closer to OurGrid, our site scheduler.
The major difference between OurGrid and Condor is
that OurGrid was designed to encourage people to
donate their resources to the community (since re-
sources received are made proportional to resources
donated), whereas in Condor this issue is taken off-line
(e.g. altruism or administrative orders lead people into
a Condor pool).

Condor and OurGrid create grids on which resource
providers and resource consumers are roles played by
the same people. As an alternative, public computing
efforts suggest a more asymmetrical view, on which
many people voluntarily donate resources to a few
projects of great public appeal. Arguably, public com-
puting originated from the huge success achieved by
SETI@home [2], which has harvested close to
2,000,000 years of CPU so far [30]. SETI@home
makes no distinction between the application itself
(search of extraterrestrial intelligence evidence in radio
signals) from its grid support. However, BOINC [3]

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

has been introduced as a SETI@home sequel, promis-
ing exactly such as separation. BOINC aims to create a
public computing infrastructure that can be used by
different applications. The Bayanihan project also aims
to create a public computing infrastructure and carries
a very interesting contribution on tolerating sabotage
(i.e. bogus volunteer results) [29].

3 The PAUÁ Community

PAUÁ, which means “everything” in Tupi-Guarani
(an ancient language spoken by native Brazilians), is
an initiative created by HP Brazil R&D to build a
countrywide Brazilian Grid. PAUÁ currently involves
11 different universities and research centers that col-
laborate with HP Brazil R&D in what we call the “HP
Brazil’s research ecosystem”. The goals of PAUÁ are
twofold. The first goal is to take advantage of a number
of computational resources available on the different
research centers as well as HP Brazil R&D itself, creat-
ing a wide, geographically distributed Grid along the
country. The second goal to foster grid research, so that
the solution currently being developed is constantly
improved based on its own usage and experience.

UFCG is responsible for the MyGrid and OurGrid as
well as research on independent auditing of SLAs
(Service Level Agreements) in Grids, integration with
supercomputers, among others. Instituto Atlântico
focuses on security aspects in the Grid. UNISINOS is
also focusing on security as well as management as-
pects. Instituto Eldorado is adding Windows support as
well as helping the community on the configuration
management and training. Hewlett Packard Brazil
R&D is doing research on idle cycle exploitation and
applications’ execution security (sandboxing). IPT/SP
is working on testing, applications development and
web services. CPAD/PUC-RS is performing research
on clusters’ integration so that cluster’s resources can
be used in a transparent manner. CAP/PUC-RS is de-
veloping Grid applications. LNCC is working on the
field of Bioinformatics applications. Finally, UNIFOR
and UNISANTOS are doing research on using grids to
perform data mining.

There are several challenges that arise when coping
with the decentralized administration of such geo-
graphically distributed community. Just to cite a few,
one must take into account the evolution of each re-
search being carried out, synchronize the correct time
each research institution joins the community, in-
creases or decreases the resources allocated to a given
institution, and plan the integration of a new piece of
technology into the community common software. To
cope with these challenges, the grid’s policies are man-
aged and defined by a general committee, which is
formed by research center’s representatives. The com-

mittee is responsible for establishing and defining a
flexible, dynamic and non-anarchical community, as
well as synchronizing and attuning all the different
activities being developed. The committee has regular
tele-conference meetings, which are used to track inte-
gration activities and define the next steps. Because of
the number of different people involved, besides hav-
ing regular tele-conference meeting, the committee
also meets face-to-face a couple of times a year.

4 Scheduling in PAUÁ

A grid such as PAUÁ poses many challenges for its
schedulers. The resources are widely spread, making it
very difficult to have an efficient global snapshot of the
grid. Also, there are multiple users and multiple re-
source owners, each with particular wishes and priori-
ties. This scenario creates the need for the system to
have multiple schedulers. We thus have designed and
implemented a set of schedulers that are collectively
responsible for the scheduling in PAUÁ. As discussed
before, these schedulers must respect the autonomy of
each site, considering the priorities associated to dif-
ferent users. Further, it must support both dedicated
and non-dedicated resources. Finally, their interaction
needs to be so that facilitates the addition of new
schedulers to the grid.

We achieved the above design goals by separating
the grid scheduling concerns in three main aspects. A
key aspect is the improvement of the performance of
the application over the whole grid. This is achieved by
a job scheduler that does so by following a very effi-
cient and lightweight approach, as will be explained
shortly. The next aspect is the definition of the concept
of a site, within which resources are managed follow-
ing a particular policy (i.e. a site comprises a set of
resources within a single administrative domain). A
site scheduler is in charge of imposing the site policy.
The final aspect is that of providing a way to gain
access to resources throughout the grid (i.e. resources
of a foreign site). This is the responsibility of a peer-to-
peer resource exchange network involving all site
schedulers.

The user submits a BoT job to a job scheduler, which
sends a request for resources to all sites the user has an
account on. Each of these sites is controlled by a site
scheduler, which allocates resources to the job sched-
uler in a best-effort basis. These resources may be local
resources (which are controlled by the site scheduler
itself) or foreign resources (which are obtained via the
network of favors). As the job scheduler begins to
receive resources from the site schedulers, it starts to
farm out the tasks that compose the application. The
goal of the job scheduler is to minimize the application
execution time. Note that resources are offered to the

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

job scheduler in a best-effort basis. That is, resources
may “disappear” at any time. As such, the job sched-
uler itself must guarantee that tasks finish by resubmit-
ting them whenever necessary.

In PAUÁ parlance, the peer-to-peer resource ex-
change network of favors is called OurGrid. Therefore,
the site scheduler is an OurGrid peer. The job sched-
uler is termed MyGrid.

4.1 Job Scheduler
Despite the simplicity of BoT applications, schedul-

ing BoT applications on grids is difficult. Grids intro-
duce two issues that complicate matters. First, efficient
schedulers depend on a lot of information about appli-
cation (such as estimated execution time) and resources
(processor speed, network topology, and so on), how-
ever this kind of information is typically difficult to
obtain [11]. Second, since many important BoT appli-
cations are also data-intensive applications, consider-
ing data transfers is paramount to achieve good per-
formance. Thus, in order to achieve efficient schedules,
one must provide a coordinated data and computation
scheduling, which is a non-trivial task.

MyGrid’s first scheduler (Workqueue with Replica-
tion, or WQR) dealt only with the first issue. WQR
uses task replication to recover from bad task to ma-
chine allocations (which are inevitable, since it uses to
information). WQR performance is as good as tradi-
tional knowledge-based schedulers fed with perfect
information, at the cost of consuming more cycles [26].
However, WQR does not take data transfers into ac-
count.

With version 2.0 of MyGrid, we released an alterna-
tive scheduler for MyGrid: Storage Affinity [27],
which does tackle both problems simultaneously. But
note that WQR is still available within MyGrid be-
cause it does quite a good job with CPU-intensive BoT
applications.

Storage Affinity is designed to schedule PHD (Proc-
essor of Huge Data) applications on grids. Storage
Affinity takes into account the fact that input data is
frequently reused either by multiple tasks of a PHD

application or by successive executions of the applica-
tion. It tracks the location of data to produce schedules
to avoid, as much as possible, large data transfers.
Further, it reduces the effect of inefficient task-
processor assignments via the judicious use of task
replication.

Storage Affinity was conceived to exploit data reuti-
lization to improve the performance of the application.
Data reutilization appears in two basic flavors: inter-
job and inter-task. The former arises when a job uses
the data already used by (or produced by) a job previ-
ously executed, while the latter appears in applications
whose tasks share the same input data.

In order to cope with lack of information about envi-
ronment and data placement concerns, we introduce
the storage affinity metric. This metric determines how
close to a site a given task is. By how close we mean
how many bytes of the task input dataset are already
stored at a specific site. Thus, storage affinity of a task
to a site is the number of bytes within the task input
dataset that are already stored in the site.

We claim that information (data size and data loca-
tion) can be obtained a priori without difficulty and
loss of accuracy, unlike, for example, CPU and net-
work loads or the completion time of tasks. For in-
stance, this information can be obtained if a data server
at a particular site is able to answer requests about
which data elements it stores and how large is each
data element. Alternatively, an implementation of a
Storage Affinity heuristic can easily store a history of
previous data transfer operations containing the re-
quired information.

Naturally, since Storage Affinity does not use dy-
namic information about the grid and the application,
inefficient task-to-processor assignments may occur.
In order to circumvent this problem, Storage Affinity
uses a task replication strategy similar to that used by
WQR [26]. Replicas have a chance to be submitted to
faster processors than those processors assigned to the
original task, thus increasing the chance of the task
completion time to be decreased.

There are a few grid schedulers that take data trans-
fers into account in order to improve the performance
of the applications. Of those, the one that likely had
greater visibility is XSufferage [11]. As its name sug-
gest, XSufferage is an extension of the Sufferage
scheduling heuristic, and therefore, is a knowledge-
based scheduler.

A total of 3,000 simulations were performed to inves-
tigate the efficiency of Storage Affinity against other
heuristics. Each simulation consisted of a sequence of
6 executions of the same job. These executions are
repeated for each of the 3 analyzed scheduling heuris-
tics (WQR, XSufferage and Storage Affinity). There-
fore, we have 18,000 execution time values for each
scheduling heuristic analyzed.

Table 1 presents a summary of the simulation results.
It is possible to note that, in average, Storage Affinity
and XSufferage achieve comparable performances.
The results show that both data-aware heuristics attain
much better performance than WQR. This is because
data transfer delays dominate the execution time of the
application, thus not taking them into account severely
hurts the performance of the application. In the case of
WQR, the execution of each task is always preceded
by a costly data transfer operation (as can be inferred
from the large bandwidth and small CPU waste). This
impairs any improvement that the replication strategy

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

of WQR could bring. On the other hand, the replication
strategy of Storage Affinity is able to cope with the
lack of dynamic information and yields a performance
very similar to that of XSufferage. The main inconven-
ience of XSufferage is the need for knowledge about
dynamic information, whereas the drawback of Storage
Affinity is the consumption of extra resources due to
its replication strategy (an average of 59% of extra
CPU cycles and a negligible amount of extra band-
width). Naturally, we do not report any wasting values
for XSufferage because this heuristic does not apply
any replication strategy.

Table 1 - Storage Affinity simulation results

Storage
Affinity

WQR XSufferage

Mean 14377 42919 14665 Execution Time
(sec) Std Dev 10653 24542 11451

Mean 59.24 1.08 N/A Wasted CPU
due to replica-

tion (%)
Std Dev 52.71 4.12 N/A

Mean 3.19 130.88 N/A Wasted
Bandwidth (%) Std Dev 8.57 135.82 N/A

From this result we can state that the Storage Affinity
task replication strategy is a feasible technique to obvi-
ate the need for dynamic information when scheduling
data-intensive BoT applications, although at the ex-
penses of consuming more CPU. We refer the reader to
[27] for a complete performance analysis of Storage
Affinity.

4.2 Site Scheduler
Computational Grids are composed by resources

from several sites. Such resources can have different
processor architectures and use diverse operating sys-
tems. Consequently they may also differ in perform-
ance, ranging from desktop machines to supercomput-
ers. In BoT grids we consider only two types of re-
sources: (i) space-shared parallel machines, such as
MPPs (Massive Parallel Processors) and clusters; and
(ii) time-shared resources, such as desktop-machines
that can be accessed at any time.

The access to site resources cannot be made without
a request. For example, in a MPP system, the access to
nodes cannot be made without a request to the resource
manager. This happens because the resource manager
decides when a job will be executed and on which
machine nodes it will run. Strictly speaking, this is also
true for desktop machines, since there is no resource
that can be shared without the intervention of a re-
source scheduler. In this last case the operating system
will be the resource scheduler.

According to the Global Grid Forum Scheduling Dic-
tionary Working Group [21] there are two types of
resource schedulers involved at site level. The Local

Scheduler determines how the system processes its job
queue in the case of space shared resources like a MPP
or cluster. It is implemented usually in the system
resource manager. The Machine Scheduler is used
when the resource is just one machine (i.e. a desktop
computer). This type of scheduler uses some criteria to
schedule jobs, such as priority, length of time in the job
queue and available resources. It is implemented in the
operating system of the machine.

In this paper we are introducing a new type of re-
source scheduler called Site Scheduler. It represents the
site resources in the grid making them available to the
higher schedulers. Thus, access to the schedulers de-
scribed above (local and machine) must go through the
site scheduler. The main responsibilities for a site
scheduler are: (i) verification of access rights for grid
jobs; (ii) abstraction of site resource types for the grid;
and (iii) arbitration between site demand and grid de-
mand.

The verification of access rights is needed for secu-
rity reasons (i.e. to block grid users that are not eligible
to use site resources). Access rights can also be used to
impose limitations related to the maximum number of
allocated resources or the exclusion of some specific
resource types. Time related restrictions are also possi-
ble like the exclusion of grid accesses in peak hours.
The resource abstraction is an interesting feature since
grid users do not have to care about site resource types.
The negotiations the site manager has to do with the
local and machine schedulers to allocate the site re-
sources should be transparent to the grid. Arbitration is
also a key aspect since local users and grid users will
be competing for the same resources. The site manager
has to find a good balance between them to maintain
the external interference to a reasonable level, and thus
not delay local users too much. A priority policy could
be used to guarantee a better response to special users.

Additional services may include caching for tasks
and executables (so the site scheduler would function
as a proxy), resource monitoring and performance
prediction of the whole site (to be used in higher re-
source levels). Another interesting issue is to consider
the site scheduler the only known IP of a site. In this
case the grid would see the site as one virtual resource
that would have the sum of a site’s available resources.

4.3 Network of Favors
To form a grid that shares resources between multi-

ple organizations, it is not only necessary to have an
infrastructure that allows the site schedulers to use
each other’s resources: it is also necessary for the re-
source owners to make their resources available to the
grid. Making this happen is not straightforward. Our
experience shows that making people contribute their
resources to the community is one of the hardest tasks

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

in assembling a grid. This experience is backed up by
empirical studies of several peer-to-peer resource shar-
ing communities, showing that in the absence of incen-
tives for resource donation, most users only consume
resources from the system, donating nothing back [23]
[28].

To provide incentives for donating resources to the
grid, OurGrid implements a scheme called the network
of favors [4] [5]. Each site offers to the community
access to its idle resources, expecting to gain access to
the idle resources of other participants when its work
exceeds its local capacity. To motivate sites to share as
many resources as possible, the network of favors is
designed to promote fairness in the resource sharing;
that is, the more a site donates to the community, the
more it should expect to receive from the community.
In the network of favors, when one site consumes re-
sources owned by another site, that is regarded as a
favor paid by the resource owner to the consumer.
Each site in the system stores a local balance of favors
received minus favors given for each other known site,
based on its past interactions with the other site. This
balance is updated on providing or consuming favors.
When there are conflicting requests for resources, the
resource owner prioritizes requests made by sites with
higher balances. The quantification of each favor's
value is done locally and independently – negotiations
and agreements are not used –and affects only deci-
sions of future resource allocations made by the two
sites involved.

Sites that do not reciprocate favors satisfactorily will
over time be given lower priority by the community.
The non-retribution may happen for several reasons,
such as local resource failures, the absence of resources
at the site, or the use of the desired resources locally or
by other users at the moment of the request. Free-
riding sites may even choose not to reciprocate favors.
In any case, the non-retribution of the favors gradually
diminishes the ability of the site to access the grid's
resources. This behavior is illustrated in Figure 1. This
figure shows the results of a simulation of a 100-site
community with different proportions f of free-riders.
The timeline goes in turns, and on each turn, consum-
ing peers that are free-riders and collaborators compete
for the resources made available by the community. It
can be seen that the fraction of the community re-
sources obtained by the free-riders (epsilon) diminishes
over time, tending to a very small value.

Figure 1 – Resources obtained by free riders

We have also verified through simulations that the
amount of resources that a collaborator receives di-
vided by the amount it donates (denoted FR) is ap-
proximately 1. Figure 2 illustrates this for a 100-site
community in which the amount a site donates is given
by a uniform distribution U(1,19). The histogram pre-
sents the distribution of the values of FR for all peers
after 3000 rounds of simulation. This result demon-
strates that the more a peer donates in the community,
the more it gets back when needed. Since the cost of
donating a resource is smaller than the utility gained by
receiving it, it is in the interest of sites to donate as
many resources as they can.

Figure 2 – Distribution of Favor Ratio

Decentralized exchanges of resources between sites
are also enabled in the SHARP infrastructure [14]
[20], where sites can securely barter claims on re-
sources valid for set time intervals, and in Balazinska
et al's load management [6], where resources are ex-
changed according to bilateral contracts negotiated
offline. The Network of Favors operates without off-
line negotiations, aiding system scalability. Unlike
SHARP it does not require sites to estimate the time
needed to run a task, which is difficult in an environ-
ment where tasks are run on many heterogeneous and
possibly non-dedicated machines.

5 Running on PAUÁ

We have just started running BoT applications over
PAUÁ. Here we present the results attained by a very
simple experiment we have conducted. The application

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

used is a CPU-bound BoT application that finds the
divisors of a very large number. The experiment was
conducted in a small subset of PAUÁ, composed of
four different sites. Each site has a peer acting as a site
scheduler providing nodes to grid users. Table 2 shows
the sites used, their localizations, the maximum num-
ber of nodes available, nodes configuration and peers
names.

Table 2. Testbed configuration

Site Location Max. Number
of Nodes

Peers
names

CPAD Porto Alegre 24 marfim

LSD Campina Grande 30
lula,

robalo

LCC Campina Grande 5 seulunga

Lab-
Petri

Campina Grande 3 bandolim

Site schedulers communicate with the resource
schedulers within their sites in order to obtain re-
sources. The peers LSD, LCC and LabPetri have to
deal with only machine schedulers (the O.S. of their
machines). The CPAD site scheduler is more complex;
its major resources are controlled by CRONO [25], a
local scheduler for clusters. In this way, this peer
communicates with two types of resource schedulers:
the O.S. of desktop machines and the CRONO local
scheduler of its cluster nodes.

The experiments were executed as follows. A My-
Grid running on a desktop machine at the CPAD site
acts as the job scheduler. We performed two sets of
experiments with the environment described above in
order to analyze the speed up attained by the grid when
compared to the execution of the application on a
standalone setting. The first set of experiments was
composed by jobs with small tasks (1 minute on a
dedicated Pentium III 733 MHz). The second set has
tasks that were 5.2 times longer than the tasks of the
first task. The first set obtained speedup ranging from
6.2 to 11.1, with an average of 7.5. The peak number
of machine gained by the site scheduler to its job
scheduler was 33, in the fastest job executed. The set
of longer tasks had speedup ranging from 14 to 31.3,
with an average of 22.3. This set reached a peak of 35
machines in utilization.

As it was expected, we obtained an improvement in
the application performance. However, they also high-
lighted the overhead impact of the PAUÁ structure.
The set with small tasks does not present a speedup as
good as the second set due to the latency to gain a grid
machine (communication between peers) and prepare
an environment (e.g. transfer the binary of task) to
execute the tasks. This implies that, at least for the
moment, application must have reasonable large granu-
larity to execute well in PAUÁ.

6 Conclusions and Future Work

We have presented a strategy to deal with the sched-
uling of BoT application on large scale grids. The
strategy proposed is supported by a set of schedulers
divided in two distinct classes and a peer-to-peer re-
source harnessing mechanism. Site schedulers are
responsible for providing grid resources to job sched-
ulers that, in turn, provide efficient scheduling of BoT
applications over the available resources. We currently
have two job schedulers that use a replication mecha-
nism to achieve efficient scheduling without requiring
any information about the grid or the applications be-
ing scheduled. Site schedulers ensure the implementa-
tion of policies set by the resource owner. They also try
to find remote resources using a peer-to-peer resource
trading protocol (the network of favors protocol). Our
results show that the ecology of schedulers work as
intended, although they require parallel applications of
course grain to fully benefit from the grid.

It is important to point out that the scheduling prob-
lem is just one of the many problems that need to be
tackled in order to deploy a grid such as PAUÁ. In
particular, security issues are very challenging as well.
We are currently working a virtual-machine-based
sandbox technology to address some of these issues.
Another clear avenue for improvement is the relaxation
of the BoT requirement we currently pose for the ap-
plication. Our strategy is to relax the application con-
straints incrementally, supporting a broader class of
applications at each step. Our next step will be what we
call workflow applications, i.e. parallel applications
with tasks whose input comes from another task out-
put.

As described here, PAUÁ is currently deployed in 4
of the 11 institutions that compose the grid. The other 7
institutions currently use MyGrid alone, i.e. they form
a grid with (local and remote) resources they have an
account on. They are installing OurGrid and moving to
the architecture herein described in the next three
months.

Although PAUÁ is (at least for now) a closed grid,
all the software described in this paper is open source.
MyGrid and OurGrid are available at www.ourgrid.org,
whereas CRONO is available at source-

forge.net/projects/crono.

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

References
[1] D. Abramson, J. Giddy, L. Kotler. High Performance

Parametric Modeling with Nimrod/G: Killer Application
for the Global Grid? IPDPS'2000, pp. 520-528, 2000.

[2] D. Anderson, J. Cobb, E. Korpela. SETI@home: An
Experiment in Public-Resource Computing. Comm.
ACM, vol. 45, no. 11, pp 56-61, Nov. 2002.

[3] D. Anderson. Public Computing: Reconnecting People
to Science. Conference on Shared Knowledge and the
Web, Madrid, Spain, 2003.

[4] N. Andrade, W. Cirne, F. Brasileiro, P. Roisenberg.
OurGrid: An Approach to Easily Assemble Grids with
Equitable Resource Sharing. JSSPP’2003.

[5] N. Andrade, F. Brasileiro, W. Cirne, M. Mowbray.
Discouraging Free Riding in a Peer-to-Peer CPU-
Sharing Grid. HPDC’2004, June 2004.

[6] M. Balazinska, H. Balakrishnan, M. Stonebraker. Con-
tract-Based Load Management in Federated Distributed
Systems. 1st NSDI, March 2004.

[7] F. Berman et al. Application-Level Scheduling on
Distribute Heterogeneous Networks. Supercomput-
ing’96, Pittsburgh, 1996.

[8] F. Berman, G. Fox, T. Hey (Editors). Grid Computing:
Making The Global Infrastructure a Reality. John Wiley
& Sons, 2003.

[9] L. Burchard et al. The Virtual Resource Manager: An
Architecture for SLA-aware Resource Management. 4th
International Symposium on Cluster Computing and the
Grid, 2004.

[10] R. Buyya, D. Abramson, J. Giddy. An Economy Driven
Resource Management Architecture for Global Compu-
tational Power Grids. PDPTA 2000.

[11] H. Casanova et al. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments. 9th HCW, pp
349-363, 2000.

[12] H. Casanova, J. Hayes, Y. Yang. Algorithms and Soft-
ware to Schedule and Deploy Independent Tasks in Grid
Environments. Workshop on Distributed Computing,
Metacomputing, and Resource Globalization. Aussois,
France. December 2002.

[13] H. Casanova and F. Berman. Parameter Sweeps on the
Grid with APST. In [8], April 2003.

[14] B. Chun, Y. Fu, A. Vahdat. Bootstrapping a Distributed
Computational Economy with Peer-to-Peer Bartering.
Workshop in Economics of Peer-to-Peer Systems, June
2003.

[15] K. Czajkowski et al. A Resource Management Architec-
ture for Metacomputing Systems. JSSPP’1998, pp. 62-
82, 1998.

[16] K. Czajkowski et al. From Open Grid Services Infra-
structure to WS-Resource Framework: Refactoring and
Extension. http://www-106.ibm.com/ developer-

works/library/ws-resource/ogsi_to_ wsrf_1.0.pdf
[17] W. Elwasif, J. Plank, R. Wolski. Data Staging Effects in

Wide Area Task Farming Applications. IEEE Interna-
tional Symposium on Cluster Computing and the grid,
pp. 122-129, May 2001,

[18] J. Frey et al. Condor-G: A Computation Management
Agent for Multi-Institutional Grids. 10th HPDC, August
7-9, 2001.

[19] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann,
1998.

[20] Y. Fu et al. SHARP: An Architecture for Secure Re-
source Peering. 19th SOSP, October 1993.

[21] Global Grid Forum. Grid Scheduling Dictionary of
Terms and Keywords. http://www.fz-juelich.de/

zam/RD/coop/ggf/sched-sd.html

[22] Globus Web Site. http://www.globus.org
[23] N. Leibowitz, M. Ripeanu, A. Wierzbicki. Deconstruct-

ing the KaZaA Network. 3rd IEEE Workshop on Internet
Applications, June 2003.

[24] M. Litzkow, M. Livny, and M. Mutka. Condor: A
Hunter of Idle Workstations. 8th ICDCS, 1988.

[25] M. Netto, C. De Rose. CRONO: A Configurable and
Easy to Maintain Resource Manager Optimized for
Small and Mid-Size GNU/Linux Cluster. 32nd ICPP'03,
pp. 555-562, 2003.

[26] D. Paranhos, W. Cirne, F. Brasileiro. Trading Cycles for
Information: Using Replication to Schedule Bag-of-
Tasks Applications on Computational Grids. Euro-Par
2003.

[27] E. Santos-Neto, W. Cirne, F. Brasileiro, A. Lima. Ex-
ploiting Replication and Data Reuse to Efficiently
Schedule Data-intensive Applications on Grids. 10th
JSSPP, June 2004.

[28] S. Saroiu, P. Gummadi, S. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. MMCN’02,
Jan 2002

[29] L. Sarmenta. Sabotage-Tolerance Mechanisms for Vol-
unteer Computing Systems. Future Generation Computer
Systems, 18:4, Elsevier, 2002.

[30] SETI@home Statistics Page. http://setiathome.

ssl.berkeley.edu/totals.html
[31] S. Smallen et al. Combining Workstations and Super-

computers to Support Grid Applications: The Parallel
Tomography Experience. HCW’2000.

[32] S. Smallen, H. Casanova, and F. Berman. Applying
Scheduling and Tuning to On-line Parallel Tomography.
Supercomputing’2001, Nov. 2001.

[33] W. Smith, I. Foster, V. Taylor. Scheduling with Ad-
vanced Reservations. IPDPS’2000.

[34] J. R. Stiles et al. Monte Carlo Simulation of Neuromus-
cular Transmitter Release Using MCell, a General
Simulator of Cellular Physiological Processes. Comp.
Neuroscience, pp. 279-284, 1998.

[35] S. Tuecke et al. Open Grid Services Infrastructure
(OGSI) Version 1.0. Global Grid Forum Draft Recom-
mendation, 6/27/2003. http://www.globus.org/ re-

search/papers.html
[36] L. Yang, J.M. Schopf, I. Foster. Conservative Schedul-

ing: Using Predicted Variance to Improve Scheduling
Decisions in Dynamic Environments. Supercomputing
2003, Nov. 2003.

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04)
1550-6533/04 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore. Restrictions apply.

