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Abstract

In this paper we discuss the difficulties involved in the 
scheduling of applications on computational grids. We 
highlight two main sources of difficulties: firstly, the 
size of the grid rules out the possibility of using a cen-
tralized scheduler; secondly, since resources are man-
aged by different parties, the scheduler must consider 
several different policies. Thus, we argue that schedul-
ing applications on a grid require the orchestration of 
several schedulers, with possibly conflicting goals. We 
discuss how we have addressed this issue in the context 
of PAUÁ, a grid for Bag-of-Tasks applications (i.e. 
parallel applications whose tasks are independent) that 
we are currently deploying throughout Brazil. 

1 Introduction 

The use of computational grids as platform to exe-
cute parallel applications is a promising research area. 
The possibility to allocate unprecedent amounts of 
resources to a parallel application and to make it with 
lower cost than traditional alternatives (based in paral-
lel supercomputers) is one of the main attractives in 
grid computing. On the other hand, the grid character-
istics, such as high heterogeneity, complexity and wide 
distribution (traversing multiple administrative do-
mains), create many new technical challenges.  

In particular, the area of scheduling faces entirely 
new challenges in grid computing. Traditional schedul-
ers (such as the operating system and the supercom-
puter scheduler) control all resources of interest. In a 
grid, such a central control is not possible. First, the 
grid is just too big for a single entity to control. Sec-

ond, the resources that comprise a grid are owned by 
many different entities, rendering it administratively 
unacceptable that a single entity controls all resources. 
In a grid, a scheduler must strive for its traditional 
goals (improve system and application performance), 
while realizing that most of the system is not under its 
control. In fact, most of the system will be under con-
trol of other schedulers. Therefore, a given scheduler 
must interact with (or at least consider) other schedul-
ers in order to achieve its goals. In a way, the multiple 
schedulers present in a grid form an ecology, where 
individual schedulers compete and/or collaborate with 
other schedulers, and the overall system behavior 
emerges from the decisions made by all schedulers. 

This paper discusses the scheduling ecology found in 
PAUÁ, a 250-node grid that supports the execution of 
Bag-of-Tasks applications. Bag-of-Tasks (BoT) appli-
cations are those parallel applications whose tasks are 
independent of each other. Despite their simplicity, 
BoT applications are used in a variety of scenarios, 
including data mining, massive searches (such as key 
breaking), parameter sweeps [1], simulations, fractal 
calculations, computational biology [34], and computer 
imaging [31] [32]. Moreover, due to the independence 
of their tasks, BoT applications can be successfully 
executed over widely distributed computational grids, 
as has been demonstrated by SETI@home [2]. In fact, 
we can argue that BoT applications are the applications 
most suited for computational grids, where communi-
cation can easily become a bottleneck for tightly-
coupled parallel applications.  

Focusing in BoT applications is interesting because 
the problem is simplified, but remains useful and rele-
vant. The major simplification introduced by focusing 
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on BoT applications is that we do not need Quality-of-
Services guarantees. Since the tasks that compose a 
BoT application are independent, having a task making 
progress very slowly (or even stopping!) can be dealt 
with no major problems. At worst, the task can be 
resubmitted elsewhere. 

The scheduling ecology found in PAUÁ was de-
signed to (i) respect site autonomy, (ii) cater for the 
user’s priorities, (iii) enable multilateral collaboration 
(in contrast to the much more common bilateral col-
laboration), (iv) support both dedicated and non-
dedicated resources, and (v) explicitly separate archi-
tectural components from implementation (thus easing 
the addition of new schedulers to the ecology).  

These design goals were achieved by separating the 
grid scheduling concerns in three main aspects, 
namely: (i) improve the performance of the application 
over the whole grid, (ii) manage resources within a site
(i.e. a set of resources within a single administrative 
domain), and (iii) gain access to resources throughout 
the grid. Concern (i) is the responsibility of a job 
scheduler, whereas concern (ii) is the responsibility of 
a site scheduler. The grid has many job schedulers, as 
well as many site schedulers. A user has rights of use 
(i.e., an account) in one or more sites. Moreover, sites 
can dynamically grant access to foreign users via a 
peer-to-peer mechanism called network of favors, thus 
addressing concern (iii).  

Section 2 surveys the area and discusses related 
work. Section 3 describes the experience in building 
the PAUÁ’s community. We present PAUÁ’s schedul-
ing ecology in Section 4. Section 5 presents a set of 
experiments that gauges the performance one can ex-
pect from PAUÁ. Section 6 contains our conclusions 
and delineates future work. 

2 Related Work 

Grid computing is a very active area of research [8] 
[19]. Although it has started within High Performance 
Computing, people have realized that Grid technology 
could be used to deliver computational services on-
demand. This observation has brought about the merge 
between Grid and Web Services technologies, as seen 
in standards like OGSA/OGSI [35] and its successor 
WSMF [16]. These standards are currently being im-
plemented by both academia and industry. Most nota-
bly, these standards are being implemented by Globus 
[22], maybe the project with greatest visibility in Grid 
Computing. 

However, it is important to realize that WSMF-like 
technologies do not address scheduling or resource 
management directly. They rather provide the grid 
building blocks, the common foundation on which 
grids are built. Scheduling is thought to happen perva-

sively throughout the grids, with each service making 
its own scheduling decisions (which may be delegated 
to specialized services) [15]. That is, the overall grid 
scheduling is a result of the scheduling decisions made 
by multiple autonomous (yet related) entities. In par-
ticular, the scheduling decisions made by a given ser-
vice s must take into account the quality of service 
provided by the services invoked by s.

The idea that a single scheduler cannot deal with the 
entire grid dates from the mid 1990s, with Berman et al 
seminal work on application-level scheduling [7]. 
Since then, there has been a number of works on the 
many aspects of scheduling in grids. These aspects 
include, for example, coping with the dynamicity of 
grid resource availability (e.g.[36]), the impact of large 
data transfers (e.g.[17]), coordination among many 
schedulers to deliver a combined service (e.g.[33]), and 
virtualization as a way to ease scheduling (e.g.[9]). 

Closer to our work, there are scheduling efforts that 
target BoT applications, such as APST [12] [13], Nim-
rod/G [1] and Condor [18] [24]. In particular, APST 
and Nimrod/G are similar to MyGrid, our job sched-
uler, in intent and architecture. However, they require 
much more information than MyGrid for scheduling. 
Moreover, they also differ from MyGrid in the assump-
tions about the application and the grid. APST targets 
divisible workloads, whereas in MyGrid the user is the 
responsible for breaking the application’s work into 
tasks. Nimrod/G assumes that the user is going to pay 
for resources and hence scheduling is based on a grid 
economy model [10]. 

Condor was initially conceived for campus-wide net-
works [24], but has been extended to run on grids [18]. 
Whereas MyGrid, APST and Nimrod/G are user-
centric schedulers, Condor is system-centric scheduler. 
Condor is thus closer to OurGrid, our site scheduler. 
The major difference between OurGrid and Condor is 
that OurGrid was designed to encourage people to 
donate their resources to the community (since re-
sources received are made proportional to resources 
donated), whereas in Condor this issue is taken off-line 
(e.g. altruism or administrative orders lead people into 
a Condor pool). 

Condor and OurGrid create grids on which resource 
providers and resource consumers are roles played by 
the same people. As an alternative, public computing
efforts suggest a more asymmetrical view, on which 
many people voluntarily donate resources to a few 
projects of great public appeal. Arguably, public com-
puting originated from the huge success achieved by 
SETI@home [2], which has harvested close to 
2,000,000 years of CPU so far [30]. SETI@home 
makes no distinction between the application itself 
(search of extraterrestrial intelligence evidence in radio 
signals) from its grid support. However, BOINC [3] 

Proceedings of the 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’04) 
1550-6533/04 $ 20.00 IEEE 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:41:54 UTC from IEEE Xplore.  Restrictions apply. 



has been introduced as a SETI@home sequel, promis-
ing exactly such as separation. BOINC aims to create a 
public computing infrastructure that can be used by 
different applications. The Bayanihan project also aims 
to create a public computing infrastructure and carries 
a very interesting contribution on tolerating sabotage 
(i.e. bogus volunteer results) [29].  

3 The PAUÁ Community 

PAUÁ, which means “everything” in Tupi-Guarani 
(an ancient language spoken by native Brazilians), is 
an initiative created by HP Brazil R&D to build a 
countrywide Brazilian Grid. PAUÁ currently involves 
11 different universities and research centers that col-
laborate with HP Brazil R&D in what we call the “HP 
Brazil’s research ecosystem”. The goals of PAUÁ are 
twofold. The first goal is to take advantage of a number 
of computational resources available on the different 
research centers as well as HP Brazil R&D itself, creat-
ing a wide, geographically distributed Grid along the 
country. The second goal to foster grid research, so that 
the solution currently being developed is constantly 
improved based on its own usage and experience.  

UFCG is responsible for the MyGrid and OurGrid as 
well as research on independent auditing of SLAs 
(Service Level Agreements) in Grids, integration with 
supercomputers, among others. Instituto Atlântico 
focuses on security aspects in the Grid. UNISINOS is 
also focusing on security as well as management as-
pects. Instituto Eldorado is adding Windows support as 
well as helping the community on the configuration 
management and training. Hewlett Packard Brazil 
R&D is doing research on idle cycle exploitation and 
applications’ execution security (sandboxing). IPT/SP 
is working on testing, applications development and 
web services. CPAD/PUC-RS is performing research 
on clusters’ integration so that cluster’s resources can 
be used in a transparent manner. CAP/PUC-RS is de-
veloping Grid applications. LNCC is working on the 
field of Bioinformatics applications. Finally, UNIFOR 
and UNISANTOS are doing research on using grids to 
perform data mining. 

There are several challenges that arise when coping 
with the decentralized administration of such geo-
graphically distributed community. Just to cite a few, 
one must take into account the evolution of each re-
search being carried out, synchronize the correct time 
each research institution joins the community, in-
creases or decreases the resources allocated to a given 
institution, and plan the integration of a new piece of 
technology into the community common software. To 
cope with these challenges, the grid’s policies are man-
aged and defined by a general committee, which is 
formed by research center’s representatives. The com-

mittee is responsible for establishing and defining a 
flexible, dynamic and non-anarchical community, as 
well as synchronizing and attuning all the different 
activities being developed. The committee has regular 
tele-conference meetings, which are used to track inte-
gration activities and define the next steps. Because of 
the number of different people involved, besides hav-
ing regular tele-conference meeting, the committee 
also meets face-to-face a couple of times a year. 

4 Scheduling in PAUÁ 

A grid such as PAUÁ poses many challenges for its 
schedulers. The resources are widely spread, making it 
very difficult to have an efficient global snapshot of the 
grid. Also, there are multiple users and multiple re-
source owners, each with particular wishes and priori-
ties. This scenario creates the need for the system to 
have multiple schedulers. We thus have designed and 
implemented a set of schedulers that are collectively 
responsible for the scheduling in PAUÁ. As discussed 
before, these schedulers must respect the autonomy of 
each site, considering the priorities associated to dif-
ferent users. Further, it must support both dedicated 
and non-dedicated resources. Finally, their interaction 
needs to be so that facilitates the addition of new 
schedulers to the grid. 

We achieved the above design goals by separating 
the grid scheduling concerns in three main aspects. A 
key aspect is the improvement of the performance of 
the application over the whole grid. This is achieved by 
a job scheduler that does so by following a very effi-
cient and lightweight approach, as will be explained 
shortly. The next aspect is the definition of the concept 
of a site, within which resources are managed follow-
ing a particular policy (i.e. a site comprises a set of 
resources within a single administrative domain). A 
site scheduler is in charge of imposing the site policy. 
The final aspect is that of providing a way to gain 
access to resources throughout the grid (i.e. resources 
of a foreign site). This is the responsibility of a peer-to-
peer resource exchange network involving all site 
schedulers. 

The user submits a BoT job to a job scheduler, which 
sends a request for resources to all sites the user has an 
account on. Each of these sites is controlled by a site 
scheduler, which allocates resources to the job sched-
uler in a best-effort basis. These resources may be local 
resources (which are controlled by the site scheduler 
itself) or foreign resources (which are obtained via the 
network of favors). As the job scheduler begins to 
receive resources from the site schedulers, it starts to 
farm out the tasks that compose the application. The 
goal of the job scheduler is to minimize the application 
execution time. Note that resources are offered to the 
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job scheduler in a best-effort basis. That is, resources 
may “disappear” at any time. As such, the job sched-
uler itself must guarantee that tasks finish by resubmit-
ting them whenever necessary. 

In PAUÁ parlance, the peer-to-peer resource ex-
change network of favors is called OurGrid. Therefore, 
the site scheduler is an OurGrid peer. The job sched-
uler is termed MyGrid.

4.1 Job Scheduler 
Despite the simplicity of BoT applications, schedul-

ing BoT applications on grids is difficult. Grids intro-
duce two issues that complicate matters. First, efficient 
schedulers depend on a lot of information about appli-
cation (such as estimated execution time) and resources 
(processor speed, network topology, and so on), how-
ever this kind of information is typically difficult to 
obtain [11]. Second, since many important BoT appli-
cations are also data-intensive applications, consider-
ing data transfers is paramount to achieve good per-
formance. Thus, in order to achieve efficient schedules, 
one must provide a coordinated data and computation 
scheduling, which is a non-trivial task.  

MyGrid’s first scheduler (Workqueue with Replica-
tion, or WQR) dealt only with the first issue. WQR 
uses task replication to recover from bad task to ma-
chine allocations (which are inevitable, since it uses to 
information). WQR performance is as good as tradi-
tional knowledge-based schedulers fed with perfect 
information, at the cost of consuming more cycles [26]. 
However, WQR does not take data transfers into ac-
count.

With version 2.0 of MyGrid, we released an alterna-
tive scheduler for MyGrid: Storage Affinity [27], 
which does tackle both problems simultaneously. But 
note that WQR is still available within MyGrid be-
cause it does quite a good job with CPU-intensive BoT 
applications. 

Storage Affinity is designed to schedule PHD (Proc-
essor of Huge Data) applications on grids. Storage 
Affinity takes into account the fact that input data is 
frequently reused either by multiple tasks of a PHD

application or by successive executions of the applica-
tion. It tracks the location of data to produce schedules 
to avoid, as much as possible, large data transfers. 
Further, it reduces the effect of inefficient task-
processor assignments via the judicious use of task 
replication. 

Storage Affinity was conceived to exploit data reuti-
lization to improve the performance of the application. 
Data reutilization appears in two basic flavors: inter-
job and inter-task. The former arises when a job uses 
the data already used by (or produced by) a job previ-
ously executed, while the latter appears in applications 
whose tasks share the same input data. 

In order to cope with lack of information about envi-
ronment and data placement concerns, we introduce 
the storage affinity metric. This metric determines how 
close to a site a given task is. By how close we mean 
how many bytes of the task input dataset are already 
stored at a specific site. Thus, storage affinity of a task 
to a site is the number of bytes within the task input 
dataset that are already stored in the site.

We claim that information (data size and data loca-
tion) can be obtained a priori without difficulty and 
loss of accuracy, unlike, for example, CPU and net-
work loads or the completion time of tasks. For in-
stance, this information can be obtained if a data server 
at a particular site is able to answer requests about 
which data elements it stores and how large is each 
data element. Alternatively, an implementation of a 
Storage Affinity heuristic can easily store a history of 
previous data transfer operations containing the re-
quired information. 

Naturally, since Storage Affinity does not use dy-
namic information about the grid and the application, 
inefficient task-to-processor assignments may occur. 
In order to circumvent this problem, Storage Affinity 
uses a task replication strategy similar to that used by 
WQR [26]. Replicas have a chance to be submitted to 
faster processors than those processors assigned to the 
original task, thus increasing the chance of the task 
completion time to be decreased. 

There are a few grid schedulers that take data trans-
fers into account in order to improve the performance 
of the applications. Of those, the one that likely had 
greater visibility is XSufferage [11]. As its name sug-
gest, XSufferage is an extension of the Sufferage 
scheduling heuristic, and therefore, is a knowledge-
based scheduler. 

A total of 3,000 simulations were performed to inves-
tigate the efficiency of Storage Affinity against other 
heuristics. Each simulation consisted of a sequence of 
6 executions of the same job. These executions are 
repeated for each of the 3 analyzed scheduling heuris-
tics (WQR, XSufferage and Storage Affinity). There-
fore, we have 18,000 execution time values for each 
scheduling heuristic analyzed. 

Table 1 presents a summary of the simulation results. 
It is possible to note that, in average, Storage Affinity 
and XSufferage achieve comparable performances. 
The results show that both data-aware heuristics attain 
much better performance than WQR. This is because 
data transfer delays dominate the execution time of the 
application, thus not taking them into account severely 
hurts the performance of the application. In the case of 
WQR, the execution of each task is always preceded 
by a costly data transfer operation (as can be inferred 
from the large bandwidth and small CPU waste). This 
impairs any improvement that the replication strategy 
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of WQR could bring. On the other hand, the replication 
strategy of Storage Affinity is able to cope with the 
lack of dynamic information and yields a performance 
very similar to that of XSufferage. The main inconven-
ience of XSufferage is the need for knowledge about 
dynamic information, whereas the drawback of Storage 
Affinity is the consumption of extra resources due to 
its replication strategy (an average of 59% of extra 
CPU cycles and a negligible amount of extra band-
width). Naturally, we do not report any wasting values 
for XSufferage because this heuristic does not apply 
any replication strategy.  

Table 1 - Storage Affinity simulation results 

Storage 
Affinity 

WQR XSufferage 

Mean 14377 42919 14665 Execution Time 
(sec) Std Dev 10653 24542 11451 

Mean 59.24 1.08 N/A Wasted CPU 
due to replica-

tion (%) 
Std Dev 52.71 4.12 N/A 

Mean 3.19 130.88 N/A Wasted
Bandwidth (%) Std Dev 8.57 135.82 N/A 

From this result we can state that the Storage Affinity 
task replication strategy is a feasible technique to obvi-
ate the need for dynamic information when scheduling 
data-intensive BoT applications, although at the ex-
penses of consuming more CPU. We refer the reader to 
[27] for a complete performance analysis of Storage 
Affinity. 

4.2 Site Scheduler 
Computational Grids are composed by resources 

from several sites. Such resources can have different 
processor architectures and use diverse operating sys-
tems. Consequently they may also differ in perform-
ance, ranging from desktop machines to supercomput-
ers. In BoT grids we consider only two types of re-
sources: (i) space-shared parallel machines, such as 
MPPs (Massive Parallel Processors) and clusters; and 
(ii) time-shared resources, such as desktop-machines 
that can be accessed at any time.  

The access to site resources cannot be made without 
a request. For example, in a MPP system, the access to 
nodes cannot be made without a request to the resource 
manager. This happens because the resource manager 
decides when a job will be executed and on which 
machine nodes it will run. Strictly speaking, this is also 
true for desktop machines, since there is no resource 
that can be shared without the intervention of a re-
source scheduler. In this last case the operating system 
will be the resource scheduler. 

According to the Global Grid Forum Scheduling Dic-
tionary Working Group [21] there are two types of 
resource schedulers involved at site level. The Local 

Scheduler determines how the system processes its job 
queue in the case of space shared resources like a MPP 
or cluster. It is implemented usually in the system 
resource manager. The Machine Scheduler is used 
when the resource is just one machine (i.e. a desktop 
computer). This type of scheduler uses some criteria to 
schedule jobs, such as priority, length of time in the job 
queue and available resources. It is implemented in the 
operating system of the machine. 

In this paper we are introducing a new type of re-
source scheduler called Site Scheduler. It represents the 
site resources in the grid making them available to the 
higher schedulers. Thus, access to the schedulers de-
scribed above (local and machine) must go through the 
site scheduler. The main responsibilities for a site 
scheduler are: (i) verification of access rights for grid 
jobs; (ii)  abstraction of site resource types for the grid; 
and (iii) arbitration between site demand and grid de-
mand. 

The verification of access rights is needed for secu-
rity reasons (i.e. to block grid users that are not eligible 
to use site resources). Access rights can also be used to 
impose limitations related to the maximum number of 
allocated resources or the exclusion of some specific 
resource types. Time related restrictions are also possi-
ble like the exclusion of grid accesses in peak hours. 
The resource abstraction is an interesting feature since 
grid users do not have to care about site resource types. 
The negotiations the site manager has to do with the 
local and machine schedulers to allocate the site re-
sources should be transparent to the grid. Arbitration is 
also a key aspect since local users and grid users will 
be competing for the same resources. The site manager 
has to find a good balance between them to maintain 
the external interference to a reasonable level, and thus 
not delay local users too much. A priority policy could 
be used to guarantee a better response to special users. 

Additional services may include caching for tasks 
and executables (so the site scheduler would function 
as a proxy), resource monitoring and performance 
prediction of the whole site (to be used in higher re-
source levels). Another interesting issue is to consider 
the site scheduler the only known IP of a site. In this 
case the grid would see the site as one virtual resource 
that would have the sum of a site’s available resources.   

4.3 Network of Favors  
To form a grid that shares resources between multi-

ple organizations, it is not only necessary to have an 
infrastructure that allows the site schedulers to use 
each other’s resources: it is also necessary for the re-
source owners to make their resources available to the 
grid. Making this happen is not straightforward. Our 
experience shows that making people contribute their 
resources to the community is one of the hardest tasks 
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in assembling a grid. This experience is backed up by 
empirical studies of several peer-to-peer resource shar-
ing communities, showing that in the absence of incen-
tives for resource donation, most users only consume 
resources from the system, donating nothing back [23] 
[28]. 

To provide incentives for donating resources to the 
grid, OurGrid implements a scheme called the network 
of favors [4] [5]. Each site offers to the community 
access to its idle resources, expecting to gain access to 
the idle resources of other participants when its work 
exceeds its local capacity. To motivate sites to share as 
many resources as possible, the network of favors is 
designed to promote fairness in the resource sharing; 
that is, the more a site donates to the community, the 
more it should expect to receive from the community. 
In the network of favors, when one site consumes re-
sources owned by another site, that is regarded as a 
favor paid by the resource owner to the consumer. 
Each site in the system stores a local balance of favors 
received minus favors given for each other known site, 
based on its past interactions with the other site. This 
balance is updated on providing or consuming favors. 
When there are conflicting requests for resources, the 
resource owner prioritizes requests made by sites with 
higher balances. The quantification of each favor's 
value is done locally and independently – negotiations 
and agreements are not used –and affects only deci-
sions of future resource allocations made by the two 
sites involved.  

Sites that do not reciprocate favors satisfactorily will 
over time be given lower priority by the community. 
The non-retribution may happen for several reasons, 
such as local resource failures, the absence of resources 
at the site, or the use of the desired resources locally or 
by other users at the moment of the request. Free-
riding sites may even choose not to reciprocate favors. 
In any case, the non-retribution of the favors gradually 
diminishes the ability of the site to access the grid's 
resources. This behavior is illustrated in Figure 1. This 
figure shows the results of a simulation of a 100-site 
community with different proportions f of free-riders. 
The timeline goes in turns, and on each turn, consum-
ing peers that are free-riders and collaborators compete 
for the resources made available by the community. It 
can be seen that the fraction of the community re-
sources obtained by the free-riders (epsilon) diminishes 
over time, tending to a very small value. 

Figure 1 – Resources obtained by free riders 

We have also verified through simulations that the 
amount of resources that a collaborator receives di-
vided by the amount it donates (denoted FR) is ap-
proximately 1. Figure 2 illustrates this for a 100-site 
community in which the amount a site donates is given 
by a uniform distribution U(1,19). The histogram pre-
sents the distribution of the values of FR for all peers 
after 3000 rounds of simulation. This result demon-
strates that the more a peer donates in the community, 
the more it gets back when needed. Since the cost of 
donating a resource is smaller than the utility gained by 
receiving it, it is in the interest of sites to donate as 
many resources as they can. 

Figure 2 – Distribution of Favor Ratio 

Decentralized exchanges of resources between sites 
are also enabled in the SHARP infrastructure  [14] 
[20], where sites can securely barter claims on re-
sources valid for set time intervals, and in Balazinska 
et al's load management [6], where resources are ex-
changed according to bilateral contracts negotiated 
offline. The Network of Favors operates without off-
line negotiations, aiding system scalability. Unlike 
SHARP it does not require sites to estimate the time 
needed to run a task, which is difficult in an environ-
ment where tasks are run on many heterogeneous and 
possibly non-dedicated machines. 

5 Running on PAUÁ 

We have just started running BoT applications over 
PAUÁ. Here we present the results attained by a very 
simple experiment we have conducted. The application 
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used is a CPU-bound BoT application that finds the 
divisors of a very large number. The experiment was 
conducted in a small subset of PAUÁ, composed of 
four different sites. Each site has a peer acting as a site 
scheduler providing nodes to grid users. Table 2 shows 
the sites used, their localizations, the maximum num-
ber of nodes available, nodes configuration and peers 
names. 

Table 2. Testbed configuration 

Site Location Max. Number 
of Nodes 

Peers
names 

CPAD Porto Alegre 24 marfim 

LSD Campina Grande 30 
lula,

robalo 

LCC Campina Grande 5 seulunga 

Lab-
Petri

Campina Grande 3 bandolim 

Site schedulers communicate with the resource 
schedulers within their sites in order to obtain re-
sources. The peers LSD, LCC and LabPetri have to 
deal with only machine schedulers (the O.S. of their 
machines). The CPAD site scheduler is more complex; 
its major resources are controlled by CRONO [25], a 
local scheduler for clusters. In this way, this peer 
communicates with two types of resource schedulers: 
the O.S. of desktop machines and the CRONO local 
scheduler of its cluster nodes. 

The experiments were executed as follows. A My-
Grid running on a desktop machine at the CPAD site 
acts as the job scheduler. We performed two sets of 
experiments with the environment described above in 
order to analyze the speed up attained by the grid when 
compared to the execution of the application on a 
standalone setting. The first set of experiments was 
composed by jobs with small tasks (1 minute on a 
dedicated Pentium III 733 MHz). The second set has 
tasks that were 5.2 times longer than the tasks of the 
first task. The first set obtained speedup ranging from 
6.2 to 11.1, with an average of 7.5. The peak number 
of machine gained by the site scheduler to its job 
scheduler was 33, in the fastest job executed. The set 
of longer tasks had speedup ranging from 14 to 31.3, 
with an average of 22.3. This set reached a peak of 35 
machines in utilization. 

As it was expected, we obtained an improvement in 
the application performance. However, they also high-
lighted the overhead impact of the PAUÁ structure. 
The set with small tasks does not present a speedup as 
good as the second set due to the latency to gain a grid 
machine (communication between peers) and prepare 
an environment (e.g. transfer the binary of task) to 
execute the tasks. This implies that, at least for the 
moment, application must have reasonable large granu-
larity to execute well in PAUÁ. 

6 Conclusions and Future Work

We have presented a strategy to deal with the sched-
uling of BoT application on large scale grids. The 
strategy proposed is supported by a set of schedulers 
divided in two distinct classes and a peer-to-peer re-
source harnessing mechanism. Site schedulers are 
responsible for providing grid resources to job sched-
ulers that, in turn, provide efficient scheduling of BoT 
applications over the available resources. We currently 
have two job schedulers that use a replication mecha-
nism to achieve efficient scheduling without requiring 
any information about the grid or the applications be-
ing scheduled. Site schedulers ensure the implementa-
tion of policies set by the resource owner. They also try 
to find remote resources using a peer-to-peer resource 
trading protocol (the network of favors protocol). Our 
results show that the ecology of schedulers work as 
intended, although they require parallel applications of 
course grain to fully benefit from the grid.

It is important to point out that the scheduling prob-
lem is just one of the many problems that need to be 
tackled in order to deploy a grid such as PAUÁ. In 
particular, security issues are very challenging as well. 
We are currently working a virtual-machine-based 
sandbox technology to address some of these issues. 
Another clear avenue for improvement is the relaxation 
of the BoT requirement we currently pose for the ap-
plication. Our strategy is to relax the application con-
straints incrementally, supporting a broader class of 
applications at each step. Our next step will be what we 
call workflow applications, i.e. parallel applications 
with tasks whose input comes from another task out-
put. 

As described here, PAUÁ is currently deployed in 4 
of the 11 institutions that compose the grid. The other 7 
institutions currently use MyGrid alone, i.e. they form 
a grid with (local and remote) resources they have an 
account on. They are installing OurGrid and moving to 
the architecture herein described in the next three 
months.  

Although PAUÁ is (at least for now) a closed grid, 
all the software described in this paper is open source. 
MyGrid and OurGrid are available at www.ourgrid.org,
whereas CRONO is available at source-

forge.net/projects/crono.
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