Scheduling Divisible Workloads Using the Adaptive
Time Factoring Algorithm*

Tiago Ferreto and César De Rose

Catholic University of Rio Grande do Sul (PUCRS),
Faculty of Informatics, Porto Alegre, Brazil
{ferreto, derose}@inf.pucrs.br

Abstract. In the past years a vast amount of work has been done in order to im-
prove the basic scheduling algorithms for master/slave computations. One of the
main results from this is that the workload of the tasks may be adapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmeti-
cal or geometrical ratio) or a more sophisticated function to adapt the workload.
Currently, the most efficient solutions are all based on some kind of evaluation of
the slaves’ capacities done exclusively by the master. We propose in this paper the
Adaptive Time Factoring scheduling algorithm, which uses a different approach
distributing the scheduling between slaves and master. The master computes, us-
ing the Factoring algorithm, a time slice to be used by each slave for processing,
and the slave predicts the correct workload size it should receive in order to ac-
complish this time slice. The prediction is based on a performance model located
on each slave which is refined during the execution of the application in order to
provide better predictions. We evaluated the proposed algorithm using a synthetic
testbed and compared the obtained results with other scheduling algorithms.

1 Introduction

Load balancing has been an ongoing issue for decades. Algorithms based on list-
scheduling which manage a list of ready to execute tasks that are sent to slave proces-
sors are mainly used because of their suitability to dynamically evolving computations,
and also because they cope with heterogeneous resources, since when one processor
has finished his work it simply gets more work from the list. This is a simply way to
automatic compensate for the differences in the performance of the slaves.

A vast amount of work has been done in order to improve the basic algorithms
for master/slave computations. One of the main features concerning load balancing
that resulted from this is that the workload of the tasks may be adapted during the
execution, using either a fixed increment or decrement (e.g. based on an arithmetical or
geometrical ratio) or a more sophisticated function to adapt the workload. We present a
briefly review of some of these techniques in Section

Yet the solutions presented are all based on some evaluation by the master of the
slaves’ capacities and of the tasks workload. This implies a significant overhead since
the master has to maintain some kind of information about its slaves. We present in

* This research was done in cooperation with HP-Brazil.

M. Hobbs, A. Goscinski, and W. Zhou. (Eds.): ICA3PP 2005, LNCS 3719, pp. 232-239 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Scheduling Divisible Workloads Using the Adaptive Time Factoring Algorithm 233

this paper the Adaptive Time Factoring scheduling algorithm, which uses a differ-
ent approach distributing the scheduling between slaves and master. The master com-
putes, using the Factoring algorithm, a time slice to be used by each slave for pro-
cessing, and the slave predicts the correct workload size it should receive in order to
accomplish this time slice. The prediction is based on a performance model located on
each slave which is refined during the execution of the application in order to provide
better predictions.

In this paper we review in Section 2] some scheduling algorithms used for mas-
ter/slave applications with a brief state of the art for each one. Section [3] presents our
algorithm and the way each slave can evaluate its capacities. In order to validate our
algorithm we devised a synthetic small testbed and Section [shows the measurement
results that we have obtained using the algorithm proposed in comparison to other al-
gorithms. At last we draw some conclusions about our contribution.

2 Related Work

We present below some classic self-scheduling algorithms proposed in the literature.
Self-scheduling [1]] represents a large class of dynamic centralized loop scheduling
methods. These methods divide the total workload based on a specific distribution, pro-
viding a natural load balancing to the application during its execution. We present also
some adaptive algorithms that add extensions to the classic self-scheduling algorithms
in order to support heterogeneity and adaptability. They consider the load variation in
the system environment and adjust the size of the chunks delivered to each processor
dynamically. This class of algorithms presents a good performance on dynamic and
heterogeneous environments based on its ability to adapt itself to the changes in the
environment during the execution of an application.

The Pure Self-scheduling or Workqueue scheduling algorithm divides equally the
workload in several chunks. A processor obtains a new chunk whenever it becomes idle.
Due to the scheduling overhead and communication latency incurred in each scheduling
operation, the overall finishing time may be greater than optimal.

The Fixed-size Chunking scheduling algorithm [2] proposes that each processor
receives chunks with size K each time it becomes idle. Although it is hard to determine
the best K value in realistic applications due to the high number of dependable variables,
the authors give an approximation for an acceptable fixed chunk-size K (using Pth order
statistics to model the last P chunks).

The Guided Self-scheduling algorithm [3]], schedules large chunks initially, imply-
ing reduced communication/scheduling overheads in the beginning, but at the last steps
too many small chunks are assigned generating more overhead [[1]]. Each time a proces-
sor requests for more work, the algorithm assigns to it a chunk of size equal to the size
of the remaining workload divided by the total number of processors being used for
the computation.

Factoring [4] was specifically designed to handle iterations with execution-time
variance. With factoring, iterations are scheduled in batches of P equal-sized chunks.
The total size of the chunk per batch is a fixed ratio («) of the remaining workload, i.e.
Remaining Workload / oo x Number Of Processors.

