
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

LUIS AUGUSTO DIAS KNOB

IMPROVING CONTAINER DEPLOYMENT LATENCY IN
DISTRIBUTED EDGE INFRASTRUCTURES

Porto Alegre
2022

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

IMPROVING CONTAINER
DEPLOYMENT LATENCY IN

DISTRIBUTED EDGE
INFRASTRUCTURES

LUIS AUGUSTO DIAS KNOB

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Tiago Coelho Ferreto

Porto Alegre
2022

LUIS AUGUSTO DIAS KNOB

IMPROVING CONTAINER DEPLOYMENT
LATENCY IN DISTRIBUTED EDGE

INFRASTRUCTURES

This Doctoral Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Ph. D. in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on August 30, 2021.

COMMITTEE MEMBERS:

Prof. Dr. César Augusto Fonticielha De Rose (PPGCC/PUCRS)

Prof. Dr. Weverton Luis da Costa Cordeiro (PPGC/UFRGS)

Prof. Dr. Rodrigo da Rosa Righi (PPGCA/UNISINOS)

Prof. Tiago Coelho Ferreto (PPGCC/PUCRS - Advisor)

Inicialmente, gostaria de agradecer a minha família pelo total apoio e incentivo
durante minha caminhada acadêmica. Em especial, a minha mãe, Dinah, pela educação e
valores ensinados, tendo sido sempre um exemplo para mim. Para você mãe, meu eterno
agradecimento.

Agradeço também ao amor da minha vida, Natália, pelo apoio, pela compreensão
e pela infinita paciência durante este período. Obrigado por ser minha amada companheira
tanto nos momentos alegres, quanto naqueles não tão felizes. Saiba que te amo incondi-
cionalmente.

Agradeço ao professor Tiago Ferreto pela oportunidade de realizar um doutorado
em uma das melhores instituições de ensino do país. Também agradeço por todas as lições,
ensinamentos e momentos de conversa que sem dúvidas foram essenciais na minha for-
mação acadêmica. Também agradeço pela confiança em mim depositada, durante os di-
versos trabalhos que realizamos juntos neste período e que espero que continuemos re-
alizando. Aos demais professores do PPGCC, agradeço pela qualidade das disciplinas
ministradas e por sempre esperarem o melhor de mim. Tenho muito orgulho de ter sido
aluno de um grupo tão distinto de professores.

Sou muito grato a todos os amigos que conquistei durante esses cinco anos, prin-
cipalmente aqueles que tiveram que me aguentar nos primeiros anos de disciplinas obri-
gatórias e visitas esparsas ao laboratório. Obrigado Paulo, Ângelo, Felipe, Carlos e todos
os outros pelo companheirismo. Agradeço também aos demais colegas de PUCRS que,
embora não estejam aqui nomeados, foram fundamentais para esse momento.

Sono grato anche alla Fondazione Bruno Kessler, che mi ha accolto in uno dei
momenti più complicati della storia e che, anche durante la quarantena, mi ha fatto avere
la città di Trento come seconda casa. In particolare, ma non esclusivamente, ringrazio
Domenico Siracusa, Silvio Cretti e Francescomaria Faticanti.

Finalmente, gostaria de agradecer a todos que de alguma forma incentivaram ou
participaram, direta ou indiretamente de minha formação acadêmica.

“Isn’t it enough to see that a garden is beau-
tiful without having to believe that there are
fairies at the bottom of it too?”
(Douglas Adams)

ACKNOWLEDGMENTS

This thesis was supported by the Federal Institute of Education, Science and Tech-
nology of Rio Grande do Sul (IFRS) and the PDTI Program, funded by Dell Computadores
do Brasil Ltda (Law 8.248/91).

The author acknowledge the High-Performance Computing Laboratory of the Pon-
tifical Catholic University of Rio Grande do Sul (LAD-IDEIA/PUCRS, Brazil) for providing
support and technological resources, which have contributed to the development of this
project and to the results reported within this research.

This thesis was financed in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior – Brasil (CAPES) – Finance Code 001.

APRIMORANDO A LATÊNCIA NA INSTANCIAÇÃO DE CONTÊINERES
EM INFRASTRUTURAS DE BORDA DISTRIBUÍDAS

RESUMO

Novos serviços, como realidade aumentada e processamento de linguagem natu-
ral, necessitam de níveis de processamento e comunicação que não são alcançáveis com
Computação em Nuvem. Novos paradigmas, como Multi-Access Edge Computing e Com-
putação em Névoa, ou genericamente Computação na Borda, surgem como solução para
atender os requisitos destas aplicações. Entretanto, este paradigma apresenta diversos
desafios, como o rápido e contínuo provisionamento de aplicações distribuídas geografi-
camente em equipamentos heterogêneos na borda, muitas vezes com recursos limitados.
Atualmente, existem algumas estratégias para diminuir o tempo de provisionamento de apli-
cações em infraestruturas baseada em contêineres. Entretanto, as especificidades de um
cenário utilizando Computação na Borda e os diversos componentes presentes nestas to-
pologias possuem questões que precisam ser otimizadas antes da larga adoção deste pa-
radigma. Desta forma, esta tese apresenta as seguintes contribuições. Primeiro, é apre-
sentado um simulador baseado em eventos para orquestração de contêineres na borda.
Depois, são apresentadas três contribuições em diferentes componentes destas infraestru-
turas, um algoritmo de posicionamento utilizando comunidades fluidas para os repositórios
de contêineres, uma nova prioridade para o kube-scheduler baseada na disponibilidade de
rede e, por último, um novo escalonador com foco no nível de garantia no tempo total de
instanciação de contêineres utilizando um algoritmo genético multiobjetivo.

Palavras-Chave: Gerenciamento de Contêineres, Computação na Borda, Orquestração,
Escalonamento de Contêineres.

IMPROVING CONTAINER DEPLOYMENT LATENCY IN DISTRIBUTED
EDGE INFRASTRUCTURES

ABSTRACT

New services, such as augmented reality and natural language processing, re-
quire some network and processing thresholds that aren’t possible with Cloud Computing.
New paradigms near the end-user, like Multi-Access Edge Computing and Fog Computing,
or generically speaking Edge Computing, emerged to bring these requisites to such appli-
cations. However, this new paradigm presents several challenges, such as the fast and
continuous provision of applications on geographically distributed heterogeneous devices at
the edge, often with constraint resources. Currently, there are few strategies to decrease ap-
plication deployment time in container-based infrastructure. However, the specificities of an
Edge scenario and the several components presents in these topologies have several points
that need to be optimized before a large adoption of this paradigm. With that in mind, this
thesis presents four main contributions. First, the development of an event-driven simulator
to edge container orchestration. After, we give three contributions on distinct components, a
fluid communities placement for the container registries, a new priority to the kube-scheduler
based on the network availability, and a new Deployment SLA-driven scheduler using a multi-
objective genetic algorithm.

Keywords: Container Management, Edge Computing, Orchestration, Container Schedul-
ing.

LIST OF FIGURES

2.1 Services business model and management responsibility (adapted from
[Mell and Grance, 2011]) . 32

2.2 C-RAN Architecture (adapted from [Rost et al., 2014]) 35

2.3 MEC Framework (adapted from [ETSI MEC-ISG, 2020]) 37

2.4 MEC Architecture (adapted from [ETSI MEC-ISG, 2020]) 38

2.5 Fog Computing Architecture . 39

2.6 Differences between VMs and Containers (adapted from [Tosatto et al., 2015]) 41

2.7 Docker Communications Components . 42

2.8 Docker Architecture . 43

2.9 Kubernetes default controllers . 46

3.1 Topology example . 52

3.2 ECOS Framework . 54

3.3 Examples of Max-min Fairness Flow Model . 56

3.4 Node and Edge Attributes . 58

3.5 Relationship between the DockerHub API and the Image and Layer Abstrac-
tion . 59

4.1 GARR Network Topology . 73

4.2 Random Topology - Random Scheduler . 75

4.3 GARR Topology - Random Scheduler . 76

4.4 GARR Topology - PESS Scheduler . 77

5.1 Ipê Brazilian Research Network Topology . 87

5.2 Provision time by scheduling algorithm . 88

5.3 Node storage utilization by each scheduling algorithm 89

6.1 Visual representation of a Pareto Front [Ascione et al., 2018]. 97

6.2 Chromosome Representation. 100

6.3 Number of applications that do not fulfill the SLA. 105

6.4 Average time over the SLA to not fulfilled applications. 106

6.5 Average distribution between Edge and Worker Nodes. 107

LIST OF TABLES

3.1 Terms used in the problem formalization . 52

4.1 Main notation used throughout the chapter . 67

4.2 Simulation parameters . 74

4.3 Additional statistics from the simulations . 79

5.1 Simulation parameters . 88

5.2 Additional statistics from the simulations . 91

6.1 Summary of notation used in this chapter. 95

6.2 Simulation parameters. 104

6.3 Additional statistics from the simulations. 108

7.1 Papers published during the PhD degree. 112

LIST OF ALGORITHMS

3.1 Network Simulation . 57

4.1 FluidC-Placement . 71

5.1 Least Congested Node Priority . 84

6.1 Fitness function. 101

6.2 Crossover function. 102

CONTENTS

1 INTRODUCTION . 25

1.1 CONTAINER ORCHESTRATION ON EDGE INFRASTRUCTURES 25

1.2 CHALLENGES TO DECREASE THE DEPLOYMENT LATENCY ON EDGE IN-
FRASTRUCTURES . 26

1.3 GOALS, RESEARCH QUESTIONS, AND APPROACHES 27

1.3.1 GOALS . 27

1.3.2 RESEARCH QUESTIONS AND APPROACHES . 27

1.4 ORGANIZATION AND KEY CONTRIBUTIONS . 29

2 BACKGROUND ON EDGE INFRASTRUCTURES AND CONTAINER ORCHES-
TRATION . 31

2.1 CLOUD COMPUTING . 31

2.2 EDGE-CENTRIC COMPUTING . 33

2.3 CLOUDLETS OR SMALL CLOUDS . 33

2.4 CLOUD RADIO AREA NETWORK (C-RAN) . 34

2.5 MULTI-ACCESS EDGE COMPUTING . 35

2.6 FOG COMPUTING . 38

2.7 VIRTUALIZATION . 39

2.8 CONTAINERIZATION . 40

2.8.1 DOCKER . 41

2.8.2 DOCKER CONTAINER ORCHESTRATION . 43

2.8.3 CONTAINER LIFECYCLE OPERATIONS . 44

2.8.4 KUBERNETES . 45

2.9 CLOSING REMARKS . 47

3 CONTAINER ORCHESTRATION SIMULATION ON LARGE DISTRIBUTED
INFRASTRUCTURES . 49

3.1 INTRODUCTION . 49

3.2 RELATED WORK . 50

3.3 PROBLEM DEFINITION . 51

3.4 FORMALIZATION . 52

3.5 SIMULATOR IMPLEMENTATION . 53

3.6 INFRASTRUCTURE MODULE . 54

3.6.1 MODELING THE NETWORK BEHAVIOR . 55

3.6.2 MODELING THE NODE MANAGEMENT . 57

3.7 IMAGE AND LAYER ABSTRACTION . 58

3.8 APPLICATIONS’ ABSTRACTION . 59

3.9 MODELING THE CONTAINER ORCHESTRATION . 60

3.9.1 SCHEDULER IMPLEMENTATION . 60

3.10 SIMULATION INPUT . 62

3.11 SIMULATION LOGS . 63

3.11.1 REPORTS AND GRAPHS . 63

3.12 CLOSING REMARKS . 64

4 REGISTRY PLACEMENT TO SPEED UP APPLICATION DEPLOYMENT 65

4.1 INTRODUCTION . 65

4.2 RELATED WORK . 66

4.3 PROBLEM FORMULATION . 67

4.3.1 REGISTRIES PLACEMENT PROBLEM . 67

4.3.2 SYSTEM MODEL . 68

4.4 ALGORITHMIC SOLUTION . 70

4.5 EVALUATION . 72

4.5.1 SIMULATOR . 72

4.5.2 SIMULATION SCENARIOS . 72

4.5.3 APPLICATION SCHEDULER . 74

4.5.4 EXPERIMENTAL RESULTS . 75

4.6 CLOSING REMARKS . 78

5 CONTAINER SCHEDULING BASED ON NETWORK BANDWIDTH AVAIL-
ABILITY . 81

5.1 INTRODUCTION . 81

5.2 CONTAINER SCHEDULE STRATEGIES . 81

5.2.1 DEPENDENCY AWARE STRATEGY . 82

5.2.2 OTHERS EDGE SCHEDULERS . 82

5.3 INFRASTRUCTURE AWARE SCHEDULING . 83

5.4 EVALUATION . 85

5.4.1 SIMULATOR . 85

5.4.2 TOPOLOGY . 86

5.4.3 WORKLOAD . 86

5.4.4 RESULTS . 87

5.5 CLOSING REMARKS . 90

6 ENSURING SERVICE LEVEL AGREEMENT ON APPLICATION DEPLOY-
MENT IN AN EDGE INFRASTRUCTURE . 93

6.1 INTRODUCTION . 93

6.2 RELATED WORK . 93

6.3 PROBLEM FORMULATION . 94

6.4 DEPLOYMENT LATENCY SLA ENFORCEMENT SCHEDULER 97

6.4.1 POPULATION INITIALIZATION . 98

6.4.2 DOWNLOAD QUEUE IMPLEMENTATION . 98

6.4.3 CHROMOSOME REPRESENTATION . 99

6.4.4 FITNESS FUNCTION . 99

6.4.5 GENETIC OPERATORS . 100

6.4.6 SCHEDULER SCORE AND RANKING . 101

6.5 EVALUATION . 102

6.5.1 SIMULATION SCENARIO . 103

6.5.2 WORKLOAD . 103

6.5.3 RESULTS . 104

6.6 CONCLUSION . 109

7 FINAL CONSIDERATIONS . 111

7.1 CONTRIBUTIONS . 111

7.2 REVISITING THE GOALS AND RESEARCH QUESTIONS 111

7.3 PROSPECTS FOR FUTURE RESEARCH . 113

REFERENCES . 115

25

1. INTRODUCTION

1.1 Container Orchestration on Edge Infrastructures

Edge Computing is an enabler technology to the new 5G networks. These networks
seek to implement an infrastructure that allows applications, like augmented reality and natu-
ral language processing, to be used in real-time through low latency, positioning awareness,
and geo-distributed processing power infrastructure. Edge applications usually need to be
instantiated in highly distributed and heterogeneous scenarios, far from the well-managed
Cloud Providers, increasing the complexity and the management cost.

Although having distinct architectures and being standardized by several consortia
with different names, like Fog Computing[Bonomi et al., 2012] and Multi-Access Edge Com-
puting (MEC)[Hu et al., 2015], generally speaking, Edge Computing aims at pushing com-
putational capacity closer to the end-user. Despite its similarities with Cloud Computing, this
creates a scenario that shows several new challenges in management and orchestration.
Today, both academia and industry are working hard to implement solutions that improve
the deployment of applications on the edge [Santoro et al., 2017][Wang et al., 2021].

Initially implemented on Virtual Machines (VMs) [Satyanarayanan et al., 2009], edge
applications are rapidly changing to use containerization, enabling faster deployment, smaller
footprint, and scalability. However, the geographic distribution, the heterogeneity of the phys-
ical infrastructures, and the applications’ demands in these scenarios present management
requirements that are not fully met by any solution currently available. In several works
[Carella and Magedanz, 2016][Schiller et al., 2018], the use of containers is considered an
essential technology for the implementation of near-to-user solutions. Still, its orchestration
is today firmly focused on traditional data center infrastructure, within a specific location and
low latency between nodes.

Despite being the de facto standard orchestrator in almost every cloud, the Kuber-
netes behavior lies on the same problems. Its default scheduling algorithm, called Kube-
scheduler, distributes the applications on the topology almost equally between the set of
available nodes without considering the heterogeneity of the network edge links. Unfor-
tunately, this approach can increase the total time needed to deploy a given application
(deployment latency), mainly because nodes with constrained links may receive the same
volume of applications as nodes with high-capacity links.

Typically, container images are stored on registries as small reusable parts or lay-
ers requested by worker nodes when a container image or layer not cached needs to be
deployed. This download phase mostly consists of the time needed to instantiate a con-
tainer, and applications that have a large set of microservices or replicas may require several

26

downloads on different nodes simultaneously. That, in edge scenarios, is the main reason
for the deployment latency, which lies in the image download from an external registry and
can take several seconds on constrained-resource nodes.

1.2 Challenges to Decrease the Deployment Latency on Edge Infrastructures

There are many characteristics of edge computing that hinder the decrease in de-
ployment latency [Fu et al., 2020, Wong et al., 2019], including but not limited to: i. resource-
constrained and heterogeneous infrastructure; ii. geo-distributed nodes with several mil-
liseconds round-trip time; iii. distinct necessities on scheduler and runtimes; iv. difficulties in
validating new solutions. These issues can be summarized in the three challenges below.

• Challenge 1: Validation of new solutions for container orchestration in large-
scale infrastructures. Simulation is a common ground on the experimentation of new
solutions on infrastructure that are near impossible to be evaluated in real topologies or
testbeds. Cloud and Fog computing are broadly attended by several simulators, mainly
focused on resource utilization, like CPU, memory, and energy [Calheiros et al., 2011]
[Varga, 2010]. However, container orchestration is not easily replicated on these sim-
ulators, largely because it is the pivot on the messages exchange between the sev-
eral components on the infrastructure. Therefore, researchers usually develop custom
simulators [Fu et al., 2020], that increase the difficulties on simulating new algorithm
implementations and functionalities in this scenario.

• Challenge 2: Implementation of a scheduler and runtime optimization algorithm
to reduce the time needed to deploy and maintain applications on edge com-
puting. Some methods to decrease the deployment latency were already proposed
in the literature, with a focus on the cache usage [Darrous et al., 2019] or changes
on the container runtime [Ahmed and Pierre, 2018]. In addition, new scheduling algo-
rithms were also presented by [Santos et al., 2019] and [Fu et al., 2020]. These works
extend the Kube-scheduler adding new priorities based on latency and cache usage,
showing promise results in constrained scenarios.

• Challenge 3: Evaluation of registry placement and new image distribution strate-
gies. Some approaches propose improvements on how the containers are stored
in or distributed to nodes. Pulling simultaneously the same image by multiple reg-
istries is presented in [Nathan et al., 2017], which also discusses a cooperative im-
plementation of a set of registries. Solutions based on peer-to-peer communication
are also presented in [Uber, 2021] [Kangjin et al., 2017]. However, these implemen-
tations rely on powerful worker nodes placed on high-speed networks, usually not
replicable on edge scenarios, with geo-distributed topologies. Furthermore, adding

27

a new daemon on a resource-constrained node can generate bottlenecks, as shown in
[Ahmed and Pierre, 2020], where even simple applications running on it can generate
high latency in the deployment of new applications.

1.3 Goals, Research Questions, and Approaches

1.3.1 Goals

On the basis of the challenges listed in Section 1.2, we define the set of research
goals of this thesis as follows:

ò
Goal 1: To investigate the container deployment process on edge computing,
learn how the schedulers’ solutions works, and understand how other compo-
nents can impact this operation

ò
Goal 2: To investigate if there is any solution to simulate or emulate the or-
chestration of container-based large-scale edge infrastructure, and if necessary,
evaluate the requirements to implement a simulator

ò
Goal 3: To improve the deployment process on edge infrastructure through new
solutions on several phases of the deployment

All these goals have as main focus, the improvement of the Deployment Latency in
Edge Computing.

1.3.2 Research Questions and Approaches

In the first goal, we expressed that we want to investigate container orchestration’s
state of the art, mainly in edge scenarios. This leads to our first research question:

�
RQ 1: What are the differences between the cloud and the edge on the ap-
plication deployment process? Are the actual solutions adapted to this largely
heterogeneous and constrained-resource scenario?

We address RQ 1 in all chapters of this thesis.

28

Our next research question is a direct consequence to the first one, where after
understanding the differences in the deployment process and the edge computing specific
necessities, we investigate if:

�
RQ 2: Is it possible to optimize the deployment process and reduce the latency
created by them? If yes, what components should be optimized?

We address RQ 2 in Chapters 4, 5, and 6.

After, based on the second goal, we want to research the main methods that can
be used to validate the solutions implemented in this scenario. This leads us to the third
research question:

�
RQ 3: How can we evaluate distinct solutions on edge scenarios? Is there any
simulator that can be used? What are the main requisites for the simulation?

We address RQ 3 in Chapter 3.

The next three questions are related to the third goal and are all generated as a
result of the first two research questions, being them:

�
RQ 4: How the registry placement influence the deployment latency? How can
we distribute the network load between several registries on the topology?

We address RQ 4 in Chapter 4.

�
RQ 5: Does the scheduler uses any network information as input to sched-
ule applications? Is it possible to implement a solution that uses the available
bandwidth as input to the application schedule? How this impacts the other’s
priorities?

We address RQ 5 in Chapter 5.

�
RQ 6: How the download queue on a node can be optimized to improve the
deployment latency? Can the scheduler use the queue manipulation to ensuring
service level agreements on the deployment total time?

We answer RQ 6 in Chapter 6.

29

1.4 Organization and Key Contributions

This thesis is organized into seven chapters. In the following, we provide a sum-
mary for each chapter with corresponding publications and key contributions.

Chapter 2: Background on Edge Infrastructures and Container Orchestration

In this chapter, we explain the basic concepts for the best understanding of the
remainder of the text. It starts with an overview of Edge computing technologies and related
frameworks. After, we present a background to container virtualization and its orchestration.

Chapter 3: Container orchestration simulation on large distributed infrastructures

In this chapter, we underline the requirements to simulate container orchestration
on a large distributed infrastructure after we briefly discuss why the current simulators are
not fit for the majority of our scenarios. Finally, we present ECOS, a simulator focused on
the container orchestration and communication between the several components, such as
network abstractions, container nodes, and registries.

Chapter 4: Registry placement to speed up application deployment

This chapter discusses the importance of registry placement on the deployment
latency on a distributed infrastructure. Furthermore, we present a Community-based place-
ment strategy to instantiate on the topology a given number of registries. To evaluate its
effectiveness, we carried a series of experiments on realistic and random networks with
distinct container schedulers.

This chapter is based on the part of the following peer-reviewed paper:

Luis Augusto Dias Knob, Francescomaria Faticanti, Tiago Ferreto, Domenico Sir-
acusa. Community-based placement of registries to speedup application deployment on
Edge Computing. 9th IEEE International Conference on Cloud Engineering (IC2E 2021).

Chapter 5: Container scheduling based on network bandwidth availability

In this chapter, we investigate the use of network bandwidth availability as a priority
on the scheduling process. In addition, we propose a new scheduling algorithm, called
Infrastructure Aware, that seeks to reduce the deployment latency through a better container
placement by using the download queue and available network bandwidth as priorities to the
scheduler. At last, we evaluate our scheduling algorithm against the image and layer match
schedulers, as also the Kube-scheduler, in a simulated scenario using a large number of
applications generated using the Top 24 downloaded images from DockerHub.

This chapter is based on the part of the following peer-reviewed paper:

Luis Augusto Dias Knob, Carlos Henrique Kayser, Tiago Ferreto. Improving Con-
tainer Deployment in Edge Computing Using the Infrastructure Aware Scheduling Algorithm.
26th IEEE Symposium on Computers and Communications (ISCC 2021).

30

Chapter 6: Ensuring Service Level Agreement on Application Deployment in an
Edge Infrastructure

Chapter 6 aims to ensure a soft Service Level Agreement (SLA) to the total time
needed to instantiate each application on a multi-level edge infrastructure. To accomplish
that, we implement a new scheduler using a multi-objective genetic algorithm. We also
modify how the container node implements the download queue, allowing containers that
have not started to be downloaded to shift their orders. Finally, we validated our solution
through a series of experiments using the Ipê Network.

This chapter is based on the part of the following peer-reviewed paper:

Luis Augusto Dias Knob, Carlos Henrique Kayser, Paulo Silas Severo de Souza,
Tiago Ferreto. Ensuring SLA Deployment Latency on Container Edge Infrastructure. 14th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2021).

Chapter 7: Final Considerations

The last chapter summarizes the conclusions of the studies which have led to this
thesis. We also revisit the goals and re-state the answers to the research questions. In
addition, we outline some possible directions for future work.

31

2. BACKGROUND ON EDGE INFRASTRUCTURES AND
CONTAINER ORCHESTRATION

This chapter describes the existing paradigms in the space between the cloud and
the edge devices, or Cloud-to-Things continuum, to demonstrate the application’s manage-
ment complexity increase in a much broader spectrum than it is currently available. In addi-
tion, this chapter seeks to provide a better understanding on the relationship between those
paradigms and how they can benefit from new technologies in the implementation of new
and modern applications.

2.1 Cloud Computing

Cloud Computing is a model that allows ubiquitous, and on-demand access of a
configurable set of computational resources that can be provided with a minimum of man-
agement effort [Mell and Grance, 2011]. This model has generated a significant impact in
the IT industry through several companies, like Google, Amazon, IBM, and Microsoft that,
when creating cloud platforms, sought to promote a more powerful, efficient, and reliable
environment for new applications that may benefit from this model [Armbrust et al., 2010].

These platforms, called public clouds, are offered by major providers and are based
on a model where computing capacity, storage, networks, and other resources are paid on
demand. The private clouds designation is used to describe private infrastructures not avail-
able to the general public, but which have the characteristics presented by public clouds,
such as allocation on demand for resources. Halfway, there are hybrid clouds, which repre-
sent the integration of services between a public and a private cloud managed by a company,
and community clouds, where several companies share the same cloud infrastructure, which
may or may not be managed by a third-party agent [Mell and Grance, 2011].

Regarding the business model, we can divide the services available in Cloud Com-
puting into three categories: Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). In the SaaS model, the application is made avail-
able to the user through the Internet and can be accessed from several devices using a
simple interface, usually a browser. The user does not control or manage the application in
this model, leaving this responsibility to the application provider. In the PaaS model, the user
manages only the implementation of the application over the infrastructure maintained by the
cloud. The management authority over the operating system and the libraries required rests
with the platform operator. Finally, in the IaaS model, the cloud provider makes available the
CPU, storage, and network infrastructure, usually through virtualization methods, and the
user is responsible for maintaining the operating system, dependencies, and the applica-

32

tion [Mell and Grance, 2011]. Figure 2.1 shows the differences between the three business
models presented, taking into account management concerning on-premises infrastructure.

Figure 2.1: Services business model and management responsibility (adapted from
[Mell and Grance, 2011])

Resource virtualization is one of Cloud Computing’s key technologies, mainly be-
cause virtualization enables the scalability necessary for the deployment of services and
applications in these infrastructures. However, because they are instantiated in isolate vir-
tual resources, virtual machines (VM) require memory and disk space for the libraries and
binaries of the hosted operational system OS. As a result, if several VMs are instantiated
with the same OS or base library, e.g., Python or Java, this can generate redundancy on
the hypervisor. It should also be noted that VMs usually have a slow startup and generally
run a single process/service per instance [Pahl, 2015]. For this reason, several other solu-
tions were presented aiming to improve the implementation of services in the cloud, such as
containerization and serverless computing.

For the successful implementation of an application in the cloud, the orchestration
and management of available resources have significant importance, both for scalability
success and fast instantiation. However, resource management in the cloud is not trivial, as
each platform uses different ways to describe resources, services, and tools. Thus, migrating
an application between platforms is a task with great complexity since there is no standard
for orchestrating and migrating resources. Recent efforts try to unify or approximate the
implementation of resources between different cloud providers, such as Terraform1, Apache
Libcloud2, and AWS CloudFormation3.

Cloud Computing has revolutionized the deployment of applications, enabled sev-
eral new market models, and accelerated the implementation of new technologies. How-
ever, some characteristics that can present downgrades in Cloud Computing, such as
privacy, misuse, or lack of use of resources at the edge [Garcia Lopez et al., 2015], la-
tency, and massive use of the network backbone communication by applications used

1Terraform, https://www.terraform.io
2Apache Libcloud, https://libcloud.apache.org
3AWS CloudFormation, https://aws.amazon.com/cloudformation

33

by many users. Hence, several authors and organizations [Garcia Lopez et al., 2015]
[Satyanarayanan et al., 2009] [ETSI MEC-ISG, 2020] argue that there is a new decentral-
ization era in the infrastructure, focusing on the use of equipment resources at the edge or
using underused resources on the path between the cloud and the end-user.

In the following sections, several proposals are presented, both from industry and
academia, which seek to improve the application infrastructure by integrating the cloud with
technologies and equipment closer to the end-user.

2.2 Edge-Centric Computing

While Cloud Computing seeks to centralize computing power and application pro-
cessing control in dense environments with an elastic infrastructure that could be expanded
indefinitely, several studies [Garcia Lopez et al., 2015] [Satyanarayanan et al., 2009] empha-
size that a new decentralization era can emerge by the constant growth of the computing
power on users’ equipment, sensors, and actuators. Privacy and control of the data gener-
ated by the end-user are among the main objectives mentioned by these works, since there
is no guarantee that the network environment between the edge and the Cloud cannot be
attacked, denied, or intercepted.

In the study presented by Lopez et al. [Garcia Lopez et al., 2015], the authors de-
scribe a new paradigm, where the processing and transfer of information between different
equipment must occur primarily at the edge of the network, the cloud being used as com-
putational support only when necessary. This concept, named Edge-centric Computing,
predicts that proximity, intelligence, trust, and control of applications are characteristics that
are located at the edge. Thus, with the constant increase of computational power in the actu-
ators, sensors, and user equipment, it makes sense that they will again perform control and
processing functions in addition to the cloud. Ultimately, the main feature that differentiates
Edge-Centric Computing from technologies such as P2P is that services must be imple-
mented jointly between edge devices and the cloud, while maintaining privacy and control in
the userspace.

2.3 Cloudlets or Small Clouds

Cloud Computing presents several challenges that are impossible to be solved
when used to instantiate applications that require low latency and high bandwidth, mainly
because it has a high point-to-point latency, traffic congestion points, and high cost of com-
munication over long distances [Wang et al., 2018]. Thus, for satisfactory implementation

34

of these solutions, it is necessary to bring the application closer to the user through small
servers or data centers.

Under those circumstances, Satyanarayanan introduced the concept of cloudlets
[Satyanarayanan et al., 2009], which corresponds to a set of computers that are reliable,
resource-rich, connected to the Internet, and available close to the edge, that serve as inter-
mediaries between users and the Cloud. Positioned at strategic points, such as Shopping
Centers, Regional Centers, or even offices, cloudlets function as a ’Datacenter in a box or
small clouds, offering to process only to users close to them. Thus, when requesting an
application that need a real-time interaction, with low latency or high bandwidth, the device
searchs for the nearest cloudlet, which reduces the bandwidth used to communicate with
the Cloud, the execution time, and consequently saving energy.

Based on virtual machines, a cloudlet can use two different approaches for manag-
ing applications. First, when necessary, the final device suspended a virtualized application
and sent it to the cloudlet, which continues the application execution from there. Second,
the user device maintains only the difference in the state between the template virtual ma-
chine already stored in the cloudlet and its unique data. Thus, the device only sent the delta
between the image and the template running on the cloudlet, which refactors the VM and
instantiates it.

Although it is one of the first works to present the use of computing at the edge of
the network, cloudlets offer several implementation and scalability problems, in addition to
relying on storage and constant interaction with mobile devices. Some of these problems
are investigated in the literature [Fesehaye et al., 2012] [Jararweh et al., 2014].

2.4 Cloud Radio Area Network (C-RAN)

Like in Cloud Computing, the Radio Area Network (RAN) evolution converges to-
wards the centralization of processing and services. A new architecture called Cloud Radio
Area Network (C-RAN), presented in Figure 2.2, seeks to aggregate the computational re-
sources of a set of base stations in a centralized virtualized pool. In this scenario, we can
divide the base station services into two: Remote Radio Heads (RRH), which are the an-
tennas responsible for receiving the mobile frequencies, performing signal amplification and
digital/analog and analog/digital conversion; and the Baseband Units (BBU) that process
these packets and forward them to the core of the data network [Wu et al., 2015].

Being a fundamental technology to the bandwidth increase needed in 5G networks,
C-RAN can implement smaller access cells while consuming less energy and making the
connection environment denser. The use of smaller cells has two main advantages: in-
creased connection bandwidth and more efficient use of radio wave spectrum. However,
denser networks can cause problems such as interference, and for this reason, the man-

35

Figure 2.2: C-RAN Architecture (adapted from [Rost et al., 2014])

agement and processing solutions of nearby cell resources need to operate as a single
infrastructure [Rost et al., 2014].

The implementation of C-RAN offers the potential to decrease energy costs for
the operator, mainly due to the decrease in the number of BBUs compared to traditional
base stations. In addition, during periods of low traffic (e.g., at dawn), some BBUs can
be turned off without affecting network performance. Hence, savings with others infras-
tructure costs, such as cooling and hardware maintenance, can also be noted. The paper
[Checko et al., 2015] shows that it is possible to decrease CAPEX and OPEX in the imple-
mentation of the structure by about 70%.

2.5 Multi-access Edge Computing

Multi-access Edge Computing (MEC), or until 2016, Mobile Edge Computing, is
defined by a set of standards organized by the European Telecommunications Standards In-
stitute (ETSI) and Industry Specification Group (ISG). Emerged in 2014, this framework pro-
vides an environment for applications, with the same characteristics as the Cloud Computing
environment, together with the Radio Access Network (RAN) and close to the end-user. In
addition, MEC is seen, together with Software-Defined Networks (SDN) and Network Func-
tion Virtualization (NFV), by the European 5GPPP (5G Infrastructure Public Private Partner-
ship) research group, as one of the key emerging technologies for creating new 5G mobile
networks.

36

Although the change from Mobile to Multi-access has brought a broader meaning
to the standards defined by ETSI, the main focus of the specifications is on the availability
of these MEC environments by mobile phone companies, which, together with technologies
such as C-RAN, can provide access for applications by third parties to unused infrastructure
close to the base stations [et al., 2018]. Among the benefits of using MEC as a compo-
nent of an application’s infrastructure, we can describe the reduction in latency and Internet
access backbone bandwidth usage. In addition, it opens new opportunities for the devel-
opment of applications, usually called local context awareness applications, that can benefit
from information about the infrastructure such as user’s position, moving pattern, or network
traffic characteristics [Taleb et al., 2017].

The first white paper published by ETSI on MEC [Patel et al., 2014], presents the
characteristics that define this new paradigm, namely:

• On-premises: A MEC platform can run in isolation from the rest of the network, only
with access to local resources;

• Proximity: Because it is located close to the user, MEC is particularly useful for data
processing and big data;

• Lower latency: Because it is located close to the user, it is possible to decrease the
access time to a service, in addition to decrease congestion on the network core;

• Location awareness: By usually working close to distributed network devices, the net-
work can leverage low-level signaling information to assist locating devices on the net-
work;

• Network context information: Applications providing information about the network can
take advantage of the MEC application model, since they can estimate the use and
congestion of radio cells close to the user.

Among the several guiding documents made available by ETSI as a method to as-
sist the development of Multi-access Edge Computing solutions, the Mobile Edge Comput-
ing (MEC); Framework and Reference Architecture (GS MEC 003) [ETSI MEC-ISG, 2020]
presents a generic architecture and framework definition that determines a MEC infrastruc-
ture. Both are described in detail below.

The MEC framework consists of three levels: system, host, and network, as illus-
trated in Figure 2.3. They compose the entities and functions existing in the ecosystem of
the infrastructure. At the host level, the MEC host provides the virtualized infrastructure for
implementing MEC applications and the management platform. There are different access
networks to the MEC infrastructure at the network level, such as local networks, mobile net-
works, and the Internet in general. At the top level, it describes the communication between
the management system, user equipment, and third-party software.

37

Figure 2.3: MEC Framework (adapted from [ETSI MEC-ISG, 2020])

Figure 2.4 presents a simplified version of the architecture proposed by ETSI
[ETSI MEC-ISG, 2020]. The main objective of the architecture is to present the relation-
ship between the different agents/modules present in the framework to facilitate its modeling
and implementation. First, the entities are grouped in two different levels, system and host.
At the system level, there are the operational support system (OSS/BSS), the Multi-access
Edge (ME) orchestrator, the CFS portal, and the applications on users’ equipment, with the
first two being responsible for generating an interface between the user and the infrastruc-
ture on the host MEC [Sabella et al., 2016]. Meanwhile, the host level is formed by the MEC
host itself, the MEC management platform, and the virtualized infrastructure platform. The
MEC platform is located on the host, which the features required for the applications, called
ME services. This set of features is responsible for instantiating, controlling ME applications
(ME Apps), and interacting with the virtualized infrastructure. This layer also presents the
interaction interface of the MEC platform with the same module of another host, used for the
instantiation of services between multiple domains or equipment.

With the definition of the architecture and framework for a MEC infrastructure, ETSI
also provides other guiding documents related to this technology. Among the available docu-
ments, are the definitions of requirements for management APIs, use cases, and interactions
with other technologies, such as NFV. In addition, MEC and similar technologies, like Fog
Computing, share several characteristics. With that, new standards and research in the area
are constantly published and updated.

38

Figure 2.4: MEC Architecture (adapted from [ETSI MEC-ISG, 2020])

2.6 Fog Computing

Fog Computing, a terminology introduced by Cisco in 2012, extends the Cloud
Computing paradigm to the edge of the network, allowing a new set of applications and ser-
vices. Serving as an intermediary between the Cloud and users, Fog Computing is defined
by characteristics of low latency, location awareness, broad geographic distribution, mobility,
predominant wireless access, and heterogeneity [Bonomi et al., 2012].

Although they present similar services, such as processing, storage, and network
services, the Fog and the Cloud have significant differences. Fog Computing seeks to attend
a specific geographic space, solves communication problems in real-time, and the applica-
tion’s location awareness. In comparison, although it presents a greater availability, Cloud
Computing is usually centralized and distant from the end-user, struggling to serve applica-
tions with these characteristics.

Thus, Figure 2.5 presents the architecture that illustrates the role of Fog Computing
in the connection between the Cloud and a Sensor Network or IoT. This configuration uses
its intermediate position in the communication to allow the Fog to be monitored in real-time,
allowing data analysis with low latency. In addition, there is a decrease in traffic that is

39

Figure 2.5: Fog Computing Architecture

forwarded to the Cloud by the core of the network, reducing the load and enabling new
applications.

Other authors have expanded this initial definition of Fog Computing. Vaquero
[Vaquero and Rodero-Merino, 2014] defines Fog Computing as a scenario where many het-
erogeneous and decentralized devices communicate and potentially cooperate with the net-
work to provide storage and data processing without human intervention. Although this new
definition may be questionable, it extends the concept of Fog, not only to auxiliary equipment
interconnected to wireless network systems, but also to complete data centers on the edge
of mobile and Internet networks. Therefore, there is a certain similarity with the concepts of
Multi-access Edge Computing previously seen.

2.7 Virtualization

Virtualization is one of the oldest ways to share infrastructures, having fundamen-
tal importance for implementing Cloud Computing and other paradigms close to the edge.
Satyanarayanan [Satyanarayanan et al., 2009], in one of the first works that deal with pro-
cess computing on Edge, uses the distribution and maintenance of virtual machines (VMs)
to provide services on small servers in offices, shopping malls, or wireless access points.
Likewise, guiding documents for both Multi-access Computing and Fog Computing describe
the use of a virtualized infrastructure, mainly through VMs.

Thus, several works that seek to solve problems in the instantiation and develop-
ment of applications on edge, when linked to infrastructure issues, use virtualization so-
lutions. The work presented by Osanaiye [Osanaiye et al., 2017] discusses different types
of algorithms for live migration in Xen, presenting an optimized proposal for Fog Comput-

40

ing, based on the pre-copy of information to the destination infrastructure, taking into ac-
count the resource prediction and the provisioning algorithm used. In the same way, Ha
[Ha et al., 2017] presents a solution that tries to predict which will be the next access point
that the user will use to accelerate the VM migration process, while Zhang [Zhang et al., 2018]
presents a solution that optimizes the migration of VMs between different devices performing
the caching of the image in advance.

In addition to the migration and instantiation of resources, some works show so-
lutions to other questions, like the use of accelerators, such as NetFPGAs and GPG-
PUs, in edge infrastructures [Varghese et al., 2018a], the use of Blockchain for the distri-
bution of applications at the edge [Varghese et al., 2018b], and VM placement algorithms
[Aryal and Altmann, 2018] [Jain and Tata, 2017]. Other technologies that can improve the
instantiation of resources in the cloud can also be used at the edge. In the paper presented
by Xavier [Xavier et al., 2016], for example, the difference in the provisioning time for VMs,
Containers, and Unikernels is evaluated.

2.8 Containerization

Virtualization through Hypervisors provides complete isolation between services
and applications using virtual machines. So, the network services to information exchange
between applications are similar to those available between physical machines. Meanwhile,
modern operating systems present weak isolation solutions, usually through process ab-
straction, but that allow through some mechanisms, the sharing of information, the file sys-
tem, or access to global processes [Soltesz et al., 2007]. This trade-off, between complete
isolation and the abstraction of processes, has always had a central point, the impact that
each process could generate on others by dividing the same kernel. Thus, recent advances
in both Linux, with the cgroups and namespaces [Tosatto et al., 2015], and the new versions
of Windows Server, have consolidated an existing technology that is present for more than
ten years, with the tools Linux-VServer 4 and OpenVz 5, called Containerization, or virtual-
ization at the operating system level.

When instances of virtual machines are used to provide services in cloud environ-
ments, they are allocated through large isolated files, which usually run a single service.
Although isolation guarantees a high level of security, the necessary cost for this is the com-
plete instantiation of a new operating system. That happens even if this operating system
has already been installed in another VM on the same server, causing the highest consump-
tion of both RAM, CPU time, and disk. In addition, virtual machines are slow to start and

4Linux- VServer, http://linux-vserver.org
5OpenVz, https://openvz.org/

41

may take more than 10 minutes to boot up [Pahl, 2015]. Figure 2.6 presents the architectural
differences between VMs and Containers.

Figure 2.6: Differences between VMs and Containers (adapted from [Tosatto et al., 2015])

As can be seen in Figure 2.6, unlike virtual machines, when containers are used,
applications share the same operating system, which leaves their images significantly smaller
than when instantiating via Hypervisor. That allows the provisioning of hundreds of contain-
ers on a single host compared to the limited number of VMs that usually can be maintained in
a single node. Because they use the same operating system as the host and, consequently,
already have the kernel and shared libraries already allocated in memory, the instantiation
time of a container is also shorter, only requiring to initialize the application inside the con-
tainer [Bernstein, 2014].

Container provisioning provides several benefits for instantiating a heterogeneous
IoT environment, allowing the implementation of services on demand through the availability
of nodes and the dynamic configuration of devices. Among the main advantages of using a
container to provide services at the edge, there is the low overhead of the applications, the
fast instantiation of new services, and the high density of different applications on a single
host [Morabito et al., 2017].

2.8.1 Docker

Docker is an open-source project started in 2013 by the dotCloud company, which
worked primarily with platform development as a service solution. Developed in Go, a lan-
guage made by Google, the project soon grew with the community’s support, and after a
few months, the company joined the Linux Foundation and changed its name to Docker Inc.
Docker is also one of the largest projects hosted on Github [Merkel, 2014]. Currently, the
organization maintains client versions for Linux, Windows, and macOS, with constant devel-
opment on all platforms. Recently, in addition to the default Linux Container, it started the

42

development of the Windows Server Container in partnership with Microsoft, which uses the
same concept, but running on a Windows [Casalicchio, 2019] kernel.

Figure 2.7: Docker Communications Components

The Docker functionalities are based on the container engine, called Docker En-
gine, which is responsible for the containerization technology and includes all the software
components for managing the Docker containers. In addition, it provides a series of APIs,
which, among other factors, is one of the reasons for the high adoption of this technol-
ogy [Morabito et al., 2017]. Figure 2.7 presents the different layers of the architecture im-
plemented by Docker. After defining the necessary settings for creating the container, the
Docker Engine sends the settings to the containerd, which is responsible for the system-level
management of the containers. It then uses one of the runtimes to execute it. Although runC
is traditionally used, other projects such as Kata Containers 6, seek to present alternatives,
mainly in terms of security and service isolation.

Each container in Docker is based on an image and a set of settings stored in a
configuration file called Dockerfile. Images are static snapshots containing a series of layers,
being each layer stored in read-only mode and upper layers work incrementally through a
file system called UnionFS [Tosatto et al., 2015]. Each time a container is started, a new
layer with read and write permission is added, which keeps the files changed at the time of
execution. By default, data is not kept after the destruction of a container. So, it is necessary
to link a static volume to the Docker container for stateful storage. This volume can be
either a folder on the host, a network map, or a disk partition. In this way, the layered disk
image system allows for a significant saving of disk space used by the containers, since
each image is loaded only once in the system, through the read-only common layers, even
if used by several containers.

Another important feature of Docker is that all images can be stored in a central
server, called Registry. This server keeps the distinct layers for each application and sends
them to the container node when requested. The Docker officially maintains the Docker
Hub, a community library, where the world’s largest companies keep containers for various
services, such as Apache, Oracle DB, or NodeJS. It is also possible for a company to main-
tain closed container repositories, or even a private Registry [Truyen et al., 2016]. Figure 2.8
presents a view of the three actors in the life cycle of a container, the Docker Client, Host
Docker, and Docker Registry.

6Kata Containers, https://katacontainers.io/.

43

Figure 2.8: Docker Architecture

2.8.2 Docker Container Orchestration

Docker container orchestration systems represent a central element in the instan-
tiation and management of multiple containerized applications distributed on different hosts,
whether physical or virtual, especially in Data Center environments [Taleb et al., 2017]. That
happens due to the characteristics of containerized applications, which are traditionally elas-
tic and replicable. The most popular solutions for Container orchestration are Kubernetes 7,
Docker Swarm 8, and Apache Mesos 9.

These solutions, although they have independent characteristics and management
using objects with different models for each service, have as common point the objective
of providing mechanisms that allow instantiation, maintenance, and scale of applications
between multiple hosts, facilitating access to them through a proxy, regardless of the host
the container is hosted on [Velasquez et al., 2018]. This is usually done through a structure
with two well-defined logical entities: the manager node, responsible for maintaining the
state of the cluster and distributing the containers among the multiple hosts, and the worker
node, responsible for receiving and instantiating the containers in the infrastructure.

7Kubernetes, https://kubernetes.io
8Docker Swarm, https://docs.docker.com/engine/swarm
9Apache Mesos, http://mesos.apache.org

44

Although the benefits of using containers are already seen in several applications
and researches when used as an auxiliary technology for the implementation of Fog/Edge
Computing [Ismail et al., 2015] [Yousefpour et al., 2019]. Several issues remain open in the
application’s orchestration in highly distributed environments, such as the implementation
of live migration, monitoring [Varghese et al., 2016], data persistence, container distribution,
and access between multiple regions and federation resources.

2.8.3 Container Lifecycle Operations

The container orchestration relies on a series of lifecycle operations to manage
the application on the infrastructure, usually maintained by a controller responsible for the
application from its deployment until the complete deletion from the topology. The three main
operations are the deployment, the update, and the delete [Ahmed and Pierre, 2018]. The
last is straightforward, and after the orchestrator receives the command, it removes every
information and configuration related to the application on the infrastructure.

However, the deployment has a more elaborated path before the execution of the
container runtime. First, one common mistake is believing that all replicas from an appli-
cation are treated as a single instance. Each replica will have a separate scheduler and
lifecycle that is distinct from the application one. After selecting the node that will receive
a given replica, the orchestrator sends a message to this node, starting the deployment
process.

The deployment process on the container node usually has a series of steps as
follows:

• Find on cache the container manifest from the application, if not find, download it from
the registry;

• Find on cache each layer from the given image, if not find, download it from registry
sequentially;

• If more than three layers need to be download, and it creates a queue that waits until
the next download slot be available;

• Each downloaded layer are downloaded as a gzip file that needs to be decompress;

• When all layers are available, create the read-write layer and start the container;

• Applies all the resources constraints and creates the network bonds;

• Warn the orchestrator that the deployment was complete.

45

From all these steps, the more network-intensive is the one that downloads the
layers from the registry to the node, and the most CPU-intensive process is the gzip files
decompress [Ahmed and Pierre, 2018]. Since cloud infrastructure usually relies on pow-
erful servers with large bandwidth, these processes are typically neglected on the total
cost from the deployment. However, on edge resource-constrained nodes with small band-
width, the deployment process can take several seconds or even minutes to be done.
This total time to deploy a container is also called Deployment Latency [Fu et al., 2020].
Several small tweaks were already developed to decreased this latency, on the runtime
[Ahmed and Pierre, 2020], on the image creation [Huang et al., 2019] and even on the or-
chestrator scheduler [Darrous et al., 2019]. Still, we understand that this latency continues
to be a majorly open problem on edge infrastructures.

Finally, the update process works basically as an integration between the delete
and deployment. Since there is no update on the running container, each newly updated
replica needed to be created as a new application, been the old one deleted after it starts.

2.8.4 Kubernetes

Kubernetes is an open-source orchestration system for automating deployment,
scaling, and management of containerized applications, initially developed by Google and
maintained by the Cloud Native Computing Foundation (CNCF) [Kubernetes, 2021b]. Ku-
bernetes is built from a set of composable modules through a standard API that can be
extended by the users, alongside the core components [Burns et al., 2016], allowing the
development of several applications, like function-as-a-service frameworks[Ellis, 2021], and
multi-cluster management [Rancher-Labs, 2021].

Kubernetes uses controllers to manage their objects, composed of three basic
fields: metadata, specification, and status. The object metadata contains information about
the object, such as UID, name, and labels. The specification describes the desired state of
the object, and the status provides read-only information about the current state of the object
[Burns et al., 2016]. Thus, these controllers attempt to ensure the desired state described
in the object specification and, when necessary, return the current state in the object status
field.

The smallest deployable object on Kubernetes is the Pod. Pod is a group of one
or more containers that share resources, shown as a single access point for the other ob-
jects in the cluster. Pods are designed to be ephemeral and represent a single instance
of an application in Kubernetes. They are rarely created as an individual object and usu-
ally use a more complex controller, such as StatefulSets and Deployments, to manage their
instantiation and replication on the cluster nodes.

46

Deployment is the main controller used by Kubernetes to create elastic stateless
applications. The Deployment Controller organizes Pods, automatically adjusts the number
of instances, using a ReplicaSet, based on the desired state described in the configuration
object YAML file. Deployments also control the update of the template used to create Pods
through two different techniques, recreate and rolling update, and enabling rollback to an
early deployment revision, if necessary.

For stateful applications, Kubernetes has the StatefulSet controller, that differently
from the Deployment, maintains the order and uniqueness of each Pod created. To do that,
the StatefulSet does not use ReplicaSet to control the desired number of replicas for each
application, doing it by itself. To ensure data integrity, each Pod is instantiated with its own
Persistent Volume Claim (PVC) and maintains its state. So, in an update, for every old
Pod that terminates, a new Pod is created. But, since it does not use a ReplicaSet, it is
impossible to rollback to an early StatefulSet revision after the update.

StatefulSet

Pods Pods

DaemonSet

Pods Pods

Deployment

ReplicaSet

Pods

Volume

Kubernetes Standard Controllers for Cloud Applications

Figure 2.9: Kubernetes default controllers

For applications that need to be instantiated and maintained on all nodes, such
as networking, monitoring, or logging applications, Kubernetes introduces a third controller
named DaemonSet. These three controller types, with their peculiarities, are presented
in Figure 2.9. Kubernetes standard controllers are designed for a Cloud Computing envi-
ronment with low latency and high bandwidth between nodes, and several papers present
issues in using Kubernetes for distributed and heterogeneous environments, such as Edge
Computing [Fahs and Pierre, 2019][Faticanti et al., 2019][Wobker et al., 2018].

47

These works describe solutions related to the access of services through dis-
tributed points in the network [Fahs and Pierre, 2019], the placement of the applications
[Faticanti et al., 2019], the definition of the hardware requirements, and the implementation
of these applications in different processor architectures. However, no work presents a so-
lution for instantiating applications in a distributed topology, allowing to manage the number
of replicas in different regions from a single controller.

2.9 Closing Remarks

This chapter discussed the main technologies that make up the Cloud-to-Things
continuum, from the Cloud to the framework and technologies closest to the user, such as
Edge Computing and Fog Computing. In addition, we also present the several components
from the container deployment process. Based on these technologies and paradigms, the
next chapters seek to present a series of solutions to speed up the container deployment at
the edge.

48

49

3. CONTAINER ORCHESTRATION SIMULATION ON LARGE
DISTRIBUTED INFRASTRUCTURES

3.1 Introduction

Edge computing is one of the key technologies for new applications, like augmented
reality and natural language processing. However, given its high complex and heteroge-
neous infrastructure, it becomes onerous to emulate or implement an extensive and close-
to-real testbed to validate new solutions quickly. Simulators are highly tailor-made tools that
enable rapid changes in configurations for modeling and analyzing a diversity of policies and
options. These tools are fundamental to new research, since they simplify the validation
step, and may be used to stress new algorithms before a more costly validation stage on
real scenarios.

While application scheduling and node utilization simulators have already been
extensively discussed in academia with several stable and well-documented solu-
tions [Calheiros et al., 2011] [Nikdel et al., 2017], container orchestration still lacks better
support. This happens mainly because the container orchestration relies on the middle
ground between network and node utilization, and a large amount of simultaneous applica-
tion scheduling with specific configurations, like image overlay and registry placement. So,
actual solutions are hard to adapt or become highly complex to use in this type of scenario.
Some authors (e.g., [Fu et al., 2020] and [Fahs and Pierre, 2019]) prefer to implement cus-
toms simulators to validate their works. However, this approach still increases the validation
time since a well-implemented simulator takes time to be developed.

In this chapter, we present a discrete-event simulator focused on container schedul-
ing in highly heterogeneous and distributed infrastructures, called ECOS (Edge Container
Orchestration Simulator). First, we rapidly describe the solutions on container and edge sim-
ulation scenarios, detailing their main limitations. After, we formalize the problem definition,
describe the design, and present details on the implementation of each component of our
simulator. The simulator is used in the experiments to validate the contributions presented
in Chapters 4, 5, and 6.

Also, in this chapter, we want to answer the following research questions:

• How can we evaluate distinct solutions on edge scenarios? Is there any simulator that
can be used? What are the main requisites for the simulation?

50

3.2 Related Work

Simulation is a common ground in cloud and network research. Based
on distinct objectives and features, several simulators are widely used like CloudSim
[Calheiros et al., 2011] and OMNet++ [Varga, 2010]. These simulators tend to focus on the
core functionalities of their respective scenarios, delegating new features to extensions or
derived works. So, it is not strange that both simulators present related works that address
container usage in their contexts.

ContainerCloudSim [Piraghaj et al., 2016] is an extension to the CloudSim Simula-
tor that implements containers management on a Cloud infrastructure, mainly focusing on
the node resource management and usage after deployment. As well as CloudSim, this
work presents several functionalities that simulate aspects like memory, CPU time-sharing,
and storage usage. Although it has a scheduling module, some implementations such as
image download are not implemented. Meanwhile, based on the iCanCloud OMNet++ sim-
ulator, the DockerSim presented in [Nikdel et al., 2017], is a simulator that seeks to simulate
the Docker behavior in a well-defined and fully integrated network scenario, implementing all
TCP/IP stacks, daemon functionalities, and communication between containers on the net-
work. However, like the ContainerCloudSim, this simulator does not implement orchestration
functionalities, being focus on the containerization as a solution to sharing a giving node be-
tween several applications. Both simulators does not have, for example, the communication
between the container host and the registry where the image are download. This behavior
is fundamental to us, since the bandwidth between the registry and the node is one of the
most important factor to the deployment latency.

YAFS, presented in [Lera et al., 2019], is a simulator of Fog applications, focusing
mainly on the transfer of messages between applications, latency, and mobility between
nodes. However, YAFS does not abstract the application management process, making it
impossible to measure the orchestration cost and delays related to the application deploy-
ment or update. Another limitation of YAFS is in the network management, since it provides
little control over the sharing of the network infrastructure between messages. This can be a
problem when a large number of applications is instantiated at the same time. This creates
limitations impossible to be surpassed, making it impossible to use to simulate application
orchestration.

In [Fu et al., 2020], the authors implemented a Kubernetes cluster simulator to vali-
date a scheduler based on dependencies. This is one of the first simulations related to large
container orchestration. Among the reasons to develop a custom simulator described by
the authors was the fined-grained control on parameters to improve the validation. However,
the simulator developed has several limitations, with no concurrent transmission and direct
connection between all nodes. Although the authors made available the source code, it is

51

strongly bound to the scheduler developed, making it almost impossible to generalize it to
other schedulers or scenarios.

After reviewing the main simulators present in the literature, it is clear that the avail-
able simulators are not adequate to our needs in a container orchestration scenario without
requiring extensive modifications and abstractions. We can cite as limitations from the cur-
rent simulators: i.) The container deployment process implementation, with the registry
communication, including the cache validation, layers control, and version availability on the
registries nodes; ii.) A well-defined scheduling template enables complex algorithms, like
the default implementation from Kubernetes (Kube-scheduler); and, iii.) The lack of main-
tenance in the current solutions. Therefore, this work aims to simulate aspects on several
objects and steps from the deployment process, and the only way to guarantee that is by
implementing a new simulator.

3.3 Problem Definition

The simulation scenario is a container edge infrastructure composed of a set of
nodes, whether bare metal or virtual, which are geographically distributed. Bidirectional
links connect the nodes, and the communication between any two nodes uses the shortest
path algorithm based on the bandwidth available between the nodes. We abstract the or-
chestrator as a global entity with direct communication to each node, and a registry node
is locally connected to the infrastructure. The infrastructure is managed in a multi-tenant
single-orchestrator mode and populated by a set of applications.

Periodically, a set of applications’ lifecycle operations is performed. Usually, each
application’s first operation will be scheduled and may have a = 1, ... ,∞ number of replicas
and generate a load on the network. This load occurs because a new image has to be de-
ployed from the registry to each node defined by the scheduling algorithm. On Data centers,
this problem is dismissed by the virtually unlimited network resource available. Still, in an
edge scenario, with the heterogeneity on the network links and edge nodes, and the appli-
cation location awareness, bottlenecks can be created on the infrastructure, increasing the
expected amount of time needed to instantiate multiple containers simultaneously. Even a
single congested link can consistently degrade all operations on the infrastructure. Although
running applications can generate background traffic that may reflect on the updates, in our
base simulation scenario, we disregard this traffic from the model, taking into account only
the management load used by these operations.

52

3.4 Formalization

Table 3.1 presents a description of each term used in the problem formalization.

Term Description

N set of nodes
s image registry node
L set of network links

T = (N, L) graph representing the network composed by N nodes and L links
(x , y , bw) represents of a link l ∈ L from nodes x and y ∈ N ∪ s | x ̸= y , with bandwidth

bw
R set of lifecycle operation requests

(t , D, m) represents of a operation request r ∈ R, with t equals to the timestamp, D a
set of node ∈ N and m the container image

ttr the total time to instantiate the request r
ctr ,d the amount of time need to provision request r on node d
lr ,t represents the set of r operation that pass-trough a given link l on time t

rbw ,t the total bandwidth available to the operation r on time t
ndque the active download queue on node n

Table 3.1: Terms used in the problem formalization

Let N be the set of edge nodes deployed by the applications and s the image
registry in the topology. A set of bidirectional links connects all nodes L. Each link l ∈ L is
defined by (x , y , bw), where x and y are nodes ∈ N ∪ s|x ̸= y and bw being the bandwidth
capacity in both directions. We consider the edge topology defined by T = (N, L) as an
undirected graph with no self-loops and parallel links. Figure 3.1 shows a topology example
based on the formal definition.

Figure 3.1: Topology example

53

Periodically, a set of lifecycle operations R are provisioned on the infrastructure.
Each r ∈ R is defined by (t , D, m), where t is the time when the request is submitted, D is
the set of nodes ∈ N where the operation will be executed, and m is the container image.
Finally, the path between a node n to the registry s is defined by Pd = (l |l ∈ L) where d ∈ N
uses the shortest path algorithm.

We assume that ttr is the total time for provisioning request r and ctr ,d is the time
when the provisioning of request r is completed for node d where ttr = max({ctr ,d |∀d ∈
Dr}). This total time is influenced by the amount of operations that need to be executed
simultaneously. For each l ∈ L we can have a set of r = 0, ... ,∞ active in a given time.
We understand that the best way to divide the bandwidth between several operations is a
fairness distribution between all active operations in a link at certain time, or ∃r ∈ lr ,t |rbw ,t =
lbw ÷ len(lr ,t). However, this behavior can generate a network sub-utilization, because each
Pd can have distinct links and each link will generate a different value to rbw ,t . To solve this
problem, we use a max-min fairness algorithm to fairly share all the links on the topology
taking into account all r active on a given time t . More information about this implementation
can be see on Section 3.6.1.

Finally, when provisioning lifecycle operations, if one node has more than one op-
eration performed at the same time, it creates a queue based on the order in which the
operations arrive, called ndque. This queue works in a First-In-First-Out (FIFO) mode, where
older operations are first attended. So, a large image can maintain the infrastructure busy for
several seconds or even minutes, delaying the other operations. The validation of solutions
that decreases the amount of time an operation r stays on this queue is one of the main
objectives of this thesis.

3.5 Simulator Implementation

Aiming to validate the formal description presented before, we implemented a
discrete-event simulator called ECOS (Edge Container Orchestration Simulator) using
Python 3. Figure 3.2 presents the ECOS framework, showing the relationship between
the several modules that compose the simulator framework.

The main element present in the framework is the Simulation module that imple-
ments the discrete-event model and glue together all the other ones. This module is also
responsible for maintaining the simulation time and the looping until the end of the simula-
tion. The next three are the Scheduler, Infrastructure, and Application modules, responsible
respectively for managing the different scheduler algorithms, controlling the network sharing
and resource management, and managing the status of the applications, replicas’ instantia-
tion, and version control.

54

Figure 3.2: ECOS Framework

The module Topology uses the NetworkX library to implement the connected graph
that represents the network topology and store the information that will be used either by the
Infrastructure or the Scheduler modules. The Images and Layers are usually imported from
an external source, like the DockerHub API, to the simulator and are used by the application
to define the container that needs to be deployed. Finally, all modules generate logs that
are stored in the Logs Modules and can be exported as reports or images using respec-
tively, JSON and MatplotLib. In the following sections, each module from the framework is
described in detail.

3.6 Infrastructure Module

The Infrastructure module has two main functions: first, simulate the network be-
havior regarding the links’ sharing between the several flows deployed on the topology, and
second, manage the node resources, like CPU, memory, and storage. The node, link con-
figurations, and attributes are implemented as a directed graph via the NetworkX library to
facilitate the implementation. We execute all management functions over this graph object,
which is also used to calculate the best path between the nodes, using the bandwidth as
weight, through the Dijkstra algorithm.

55

3.6.1 Modeling the Network Behavior

One of the main limitations of Edge Computing simulators is the network sharing
between several flows with distinct sources and destinations. These communications can
generate bottlenecks that are usually disregarded in cloud scenarios with large bandwidth
and fast switching equipment. However, on Edge scenarios with long route paths and con-
strained resource connections, that is a question that cannot be set aside. So, we implement
an option on the infrastructure to define the network sharing policy, an implement a default
algorithm based on the Max-Min Fairness.

Max-min Fairness

We implement a fair sharing schedule policy based on max-min fairness (MMF) as
a default network sharing algorithm. The MMF control algorithm presents similarities with
the TCP congestion control algorithm fairness and a good approximation with the normal
network behavior[Bertsekas et al., 1992]. The main properties from MMF are: i) flows have
the same priority over the available bandwidth, ii) flows get an equal share of the link band-
width, iii) links are always using the maximum bandwidth possible based on the active flows.
Figures 3.3a and 3.3b present two examples of the MMF model. The first one presents two
flows, one from N3-N1 and the other from N3-N2. There are no bottlenecks on the net-
work and each flow can use the total bandwidth for the small link in its path. In the second
scenario, with four flows, two edges (N2-N1 and N2-N4) act as bottlenecks on the network,
limiting the bandwidth use by edges N4-N5 and N3-N2.

Given a set of network links with respective bandwidth and a set of paths, it is
possible to obtain the available bandwidth for each transmission in a given time using a
progressive filling algorithm that respects the MMF model. In our implementation, we use
a solution close to that presented in [Bertsekas et al., 1992]. The algorithm initializes the
bandwidth available to each flow with 0. Then, it calculates the MMF to all interfaces with
active flows and updates the bandwidth equally to each transmission until one link becomes
saturated or the total amount of data to a given communication is satisfied. The saturated
links serve as a bottleneck for all transfers using them, and the transmissions that do not
need all the bandwidth available transfer the free space to the biggest ones. The algorithm
executes until all links are saturated or all flows are satisfied.

We use the max-min fairness to set the max bandwidth available between events
with different times on the simulation. To calculate the amount of time until the next event, we
find the minimum value between three situations: next schedule application, minimum time
until one download finishes, and minimum time until one deadline is defined. The pseudo-
code of our network sharing algorithm is shown in Algorithm 3.1.

56

(a) 2 Messages - No Bottleneck

(b) 4 Messages - 2 Bottlenecks

Figure 3.3: Examples of Max-min Fairness Flow Model

In lines 1-12, we prepare the data that will be used by the max-min fairness algo-
rithm, from the topology graph. We select all the links that have active flows, the available
bandwidth per link, and the number of flows per link. After this information is set, in line
13, we run the max-min fairness and set the array R with the available bandwidth per flow.
Finally, in lines 14-25, we calculate the minimum time to the next event on the simulation and
consolidate the transfer data on each flow based on the multiplication between the time and
the bandwidth available per flow.

One of the main advantages of this approach is that the network sharing algorithm
is decoupled from the simulation core and can be altered with a simple extension on the in-
frastructure module. Finally, although we use only the management flows as an entry on the
simulation in the following chapters, the actual solution is capable of processing flows of dif-
ferent applications. It can also be used to simulate network noise or concurrent background
traffic.

57

3.6.2 Modeling the Node Management

We also implemented a simple node management on the infrastructure module.
Figure 3.4 presents the attributes that need to be managed on each node and link present on
the Topology implemented on the NetworkX graph. Related to the nodes, we have three dif-
ferent nodes types: one generic representing the network abstractions like switches, routers,
and autonomous systems in the middle of the network. This type of node is only used to
determine the best route between the node and the registries and has no attribute, like CPU
or memory.

Input : G = (V , E): network graph; M: messages active on topology; mat : Next time that a
new message need to be started

Output: Time spent until next event and update transfer data from each message

1 sA← ∅
2 C←
3 sP← ∅
4 l← ∅
5 for m ∈ M do
6 for v ∈ path(m) do
7 a← e ∈ E(u, w)(u,v) ∈ V |u=v ∧ w=next(v)

8 l.append((m, a))
9 if a ̸∈ sA then

10 sA.append(a)
11 Ca = bandwidth(a)

12 sP.append(m)

13 {Rm}m∈M ← MaxMin(sA, C, sP, l)
14 o ← ∅
15 d ← ∅
16 for m ∈ M do
17 om ← dataToTransmit(m)/Rm

18 dm ← deadline(m)
19 o.append(om)
20 d .append(dm)

21 nft ← min(o)
22 mdt ← min(d)
23 time← min(nft , mdt , mat)
24 for m ∈ M do
25 transferData(m, Rm ∗ time)

26 return time,M

Algorithm 3.1: Network Simulation

58

The second one, called ContainerHost, is responsible for deploying the container
working as the runtime machine on the containerization infrastructure. So, ContainerHost is
the set of nodes available to the scheduler, and all the lifecycle operations happen on these
nodes. The main attributes in the ContainerHost nodes are the CPU, memory, and storage,
which are managed as a container with a given size. As the simulator has the mainly focus
on the applications’ orchestration phase, the resource’s usage management is simplified.
However, this module part is also decoupled from the simulator core and can be extended
in the future. In this node type, the infrastructure also manages the network configurations
like the registries, the number of simultaneous downloads and maximum download queue
sizes, and the running application’ replicas (or containers).

The last node type is called Registry and works as an abstraction of the registry
server responsible for storing the images and layers before the ContainerHosts requests. All
ContainerHosts need to have at least one Registry configured on their network configura-
tions to download the images when required. These nodes only have the image and layers
available as an attribute and, does not have storage, CPU, and memory limitations.

Figure 3.4: Node and Edge Attributes

Finally, the Link is the connection between the distinct type of nodes and has only
attributed the bandwidth available to him. All calculations made by the network abstraction
use this information to determine the amount of bandwidth available to each flow.

3.7 Image and Layer Abstraction

The container images and layers are implemented as an abstraction from the data
available on the default Docker registry implementation. Figure 3.5 shows the relationship
between the JSON image index and JSON image manifest pulled from the Docker Registry
API, and the Image and Layer objects on the simulator implementation.

59

Figure 3.5: Relationship between the DockerHub API and the Image and Layer Abstraction

The first manifest pulled from the API contains the images available from each
architecture, operational system, and tag from a given repository. We use this information
to set all the versions available from a given image. After, we get all the images manifest
available from the image index and use the latest tag to get the configuration options. We
also set an estimate startupDelay for the application based on how much time is need to get
the application running after completed download. All the layers presented on each image
manifest are also created on the simulation, and we reuse the layers with the same hash ID.

3.8 Applications’ Abstraction

As explained in Section 2.8.4, Kubernetes implements applications in several ways
depending on the deployment needs. However, the default instantiation controller, called
Deployment , is responsible for almost every application in a common cluster. The main ad-
vantages of using the Deployment controller are the rollback options, and the fast upgrade
and downgrade on the number of replicas on stateless applications. For stateful applica-
tions, the default controller is the StatefulSet , which has the main difference in the persistent
storage for each container, making rollback impossible.

However, both rely on the same steps from instantiation in a given node, and as a
way to simplify our simulator, all applications present a single controller, called Application.
The Application controller keeps the replica number recorded for a given application, the
current image, and additional options like CPU and memory usage for each replica. As the

60

simulator does not take care of the application after the deployment, so there is no practical
difference between stateless and stateful applications.

Finally, all the applications are controlled by lifecycle operations, like deployment
or update, described in the simulation configuration file. All lifecycle operations have a time
used as an entry for the simulator, which means the moment when this action should be
executed. One lifecycle example can be update a given application increasing the replica
number by one. These operations acting as time controllers from the simulation, and when
there are no more operations to be performed, the simulation is ended.

3.9 Modeling the Container Orchestration

In the default container orchestration model, one node, usually called "master",
is responsible for storing all the worker nodes’ information and maintaining the scheduler
and applications logs. To simplify our implementation and take into account that we do not
use latency between the communication as input in our simulation, we do not implement
this node. All tasks that are usually running on the master are implemented through the
infrastructure module. The description of the scheduler and the operation logs are described
in the following sections.

3.9.1 Scheduler Implementation

The Scheduler module is responsible for implementing the algorithms used to place
the containers on the infrastructure. We develop a generic scheduler interface, where the
scheduler algorithm needs only to deliver for each container a given node where it can be
deployed. This is the only pattern that the scheduler policy needs to follow, and the scheduler
module has access to all the infrastructure and applications’ data. It is important to note that
the scheduler algorithm is always running over the replicas object and not on the application.

Kubernetes Scheduling Strategy

The default schedule in ECOS is the Kubernetes default scheduler implementation.
In this framework, an application (i.e., microservices) is provisioned and managed by the
Kubernetes as a pod. A pod consists of a group of one or more containers with shared
resources, such as network and storage, and definitions of how to run each container.

Kube-scheduler [Kubernetes, 2021b] is the component responsible for finding the
best node to host a pod in the Kubernetes cluster. It is the default component of the Ku-
bernetes cluster for scheduling decisions. This scheduling mechanism uses policies based

61

on predicates and priorities to delimit the eligible nodes and prioritize them to select the
node to host container-based applications. It determines the most appropriate node in two
phases: a) the filtering process; and b) the scoring process. The first one selects eligible
nodes based on predicates policies, while the second one ranks nodes based on priorities.

Kube-scheduler supports predicate-based policies. Some examples include:

1. PodFitsResources: This policy checks if the free computational resources of the
node, such as CPU and memory, are enough to support the pod requirements. Other-
wise, it classifies the node as ineligible and removes it from the ranking step;

2. MatchNodeSelector: This policy allows to filter the set of nodes based on labels
across pod’s node selector and node’s labels;

3. NoDiskConflict: This policy checks if the node has capacity enough in terms of vol-
umes requested by the pod;

After the filtering process, Kube-scheduler uses policies based on priorities to rank
the nodes. Some of the policies supported are:

1. SelectorSpreadPriority: This policy tends to spread the pods across nodes, taking
into account the pods that belong to the same service;

2. LeastRequestedPriority: The score of the node is calculated taking into account the
amount of free computational resources, such as CPU and memory, balancing the
workload between nodes;

3. MostRequestedPriority: In this policy, the score of the node is calculated similarly to
the LeastRequestedPriority policy; the main difference is that this policy prioritizes the
nodes with the most requested resources;

4. NodeAffinityPriority: The node that has the labels specified by the pod’s node selec-
tor are ranked with the highest scores; that is, this policy favors them;

5. InterPodAffinityPriority: Unlike the previous policy, this policy favors the nodes that
already have some pod allocated based on pod affinity rules. If the node has a pod
allocated defined in the pod affinity rules of the requested pod, it will receive a higher
score;

At the end of the filtering and ranking process, Kube-scheduler selects the node
with the highest score to provision the pod. If there is a tie, Kube-scheduler chooses one of
these at random. In the ECOS Simulator, we implemented all the predicates and priorities
that are previously presented, based on the source code available on the Kube-scheduler
GitHub Repository [Kubernetes, 2021a].

62

Other Strategies

We also already implemented other generic strategies, like a simple random and a
worst-fit scheduler. As previously said, the main objective of this module is to create an inter-
face for the development of new scheduler algorithms, so this module is highly customizable,
and new options can also be added to the configuration file to provide fine-grained control to
the simulation execution.

3.10 Simulation Input

To configure the simulator, we use a JSON file with all the objects and options we
want to use as input. The Listing 3.1 presents the minimum configuration needed to run
a simulated scenario. The file is divided into several arrays, each one gives information
related to some module or object on the framework. Lines 2-11 present the nodes and
links configuration, lines 12-29 show the image and layers options. Lines 30-39 present
the applications managed during the simulation, with their respective lifecycle operations.
Finally, the last lines (40-50) describe the infrastructure configuration, like the scheduler
used, the log level, and the reports that will be generated at the end of the simulation.

Listing 3.1: Simulation Configuration File
1 {
2 " nodes " : [
3 { " type " : " netabs " , "name" : " switchA " } ,
4 { " type " : " r e g i s t r y " , "name" : " r e g i s t r y " , " p o s i t i o n " : [0 , 0] ,
5 { " type " : " chost " , "name" : " worker1 " , " r e g i s t r y " : [" r e g i s t r y "] , " p o s i t i o n " : [0 , 0] , "

cpuCapacity " : 8000 ,
6 " memoryCapacity " : " 32GB" , " s torageCapaci ty " : " 10GB" , " simultaneousDownload " : 1 }
7] ,
8 " l i n k s " : [
9 { " bandwidth " : " 100Mb" , " from " : " switchA " , " to " : " r e g i s t r y " , " b i d i r e c t i o n a l " : t r ue } ,

10 { " bandwidth " : " 100Mb" , " from " : " switchA " , " to " : " worker1 " , " b i d i r e c t i o n a l " : t r ue }
11] ,
12 " l aye rs " : [
13 { " s ize " : " 50MB" , " d iges t " : " 1111 " } ,
14 { " s ize " : " 50MB" , " d iges t " : " 3333 " } ,
15 { " s ize " : " 50MB" , " d iges t " : " 2222 " } ,
16 { " s ize " : " 50MB" , " d iges t " : " 4444 " }
17] ,
18 " images " : [
19 {
20 "name" : " postgres " , " s ta r tDe lay " : 15 ,
21 " vers ions " : [{ " d i ges t " : " 6666 " , " tag " : " l a t e s t " , " l aye rs " : [" 2222 " , " 1111 "] }]
22
23 } ,
24 {
25 "name" : " mysql " , " s t a r tDe lay " : 15 ,
26 " vers ions " : [{ " d i ges t " : " 7777 " , " tag " : " l a t e s t " , " l aye rs " : [" 3333 " , " 4444 "] }]
27
28 }

63

29] ,
30 " a p p l i c a t i o n s " : [
31 { "name" : " postgres " , " image " : " postgres " , " cpuRequired " : 500 , " memoryRequired " : " 256MB" } ,
32 { "name" : " mysql " , " image " : " mysql " , " cpuRequired " : 500 , " memoryRequired " : " 256MB" } ,
33] ,
34 " l i f e c y l e O p e r a t i o n s " : [
35 { " a p p l i c a t i o n " : " postgres " , "name" : " deployment " , " type " : " c rea t i on " , " tag " : " l a t e s t " ,
36 " numReplicas " : 1 , " t ime " : 0 , " l a b e l s " : { " s la " : 20 } } ,
37 { " a p p l i c a t i o n " : " mysql " , "name" : " deployment " , " type " : " c rea t i on " , " tag " : " l a t e s t " ,
38 " numReplicas " : 1 , " t ime " : 2 , " l a b e l s " : { " s la " : 25 } }
39] ,
40 " i n f r a s t r u c t u r e " : {
41 " scheduler " : {
42 "name" : " KubeScheduler " ,
43 " con f i g " : {
44 " p red ica tes " : [] ,
45 " p r i o r i t i e s " : []
46 }
47 } ,
48 " logLeve l " : "DEBUG" ,
49 " log " : [" n e t s t a t "]
50 }
51 }

3.11 Simulation Logs

The Logs module is responsible for storing all information that needs to be kept
until the end of the simulation. Each other module can generate a specific log object that
can be configured as required. A generic log is generated during the simulation based on
the log level specified on the configuration file. Lastly, the simulator uses these logs to create
reports and graphs at the end of the simulation.

3.11.1 Reports and Graphs

There are two main ways to export information from the simulation to other appli-
cations. The first one is via the reports generation in JSON using the log generated by the
simulation. Several reports are implemented on the simulator. Examples can be seen below:

1. LinkUsage: This report returns the usage of all links during the simulation. Each link
has an array of tuples that store the time and the bandwidth usage every time a new
value is set by the network sharing policy algorithm.

2. CacheStatus: This report returns the number of cache miss and cache hit by Contain-
erHost;

64

3. RegistryUsage: This report shows the number of times a registry was used to down-
load a container;

4. ContainerTimes: This report presents the time usage to all steps on the deployment
time, showing how much time the container takes to be download, on the download
queue, and active;

The second option is to generate graphs using the matplotlib direct from the simu-
lation. The primary usage of these options is the creation of network maps and flow visual-
ization.

3.12 Closing Remarks

In this chapter, we presented ECOS, a simulator for edge infrastructures. ECOS
focuses on orchestrating container applications and trying to meet several objectives that
are not present on the other available simulators. We implemented a complete modular
framework focused on three components: infrastructure, scheduler algorithm, and applica-
tion lifecycle. The first enables the network and node sharing management, making possible
fine-grained control over the topology, easing to find bottlenecks and resource limitation on
nodes. The second creates an extended interface that allows the experimentation of a new
scheduler solution using any information available on the topology. The last one is used to
validate new components on the orchestration infrastructure, placement, and network cost.
In the following chapters, ECOS is used to validate new solutions to decrease the deploy-
ment latency on edge container infrastructure.

65

4. REGISTRY PLACEMENT TO SPEED UP APPLICATION
DEPLOYMENT

4.1 Introduction

It is common sense that current container orchestration solutions do not present
an optimal method for distributing the applications on Edge Computing. Hence, several
works aim at optimizing it by reducing the amount of time needed to instantiate, or dimin-
ishing the load generated on the infrastructure through better usage of the nodes based on
peer-to-peer communication [Nathan et al., 2017], distributed caches [Darrous et al., 2019]
or new placement algorithms [Faticanti et al., 2019]. However, these solutions usually pro-
pose many changes in the current orchestration frameworks that are not so easy to achieve
in a multi-tenant infrastructure with several distinct actors. Moreover, no one of them consid-
ers the importance of the registry placement in this distribution and the load that it generates
on the infrastructure.

We present a novel approach to strive the deployment latency generated on edge
infrastructures. The proposed approach can be used without significant alterations in the
topology or container orchestration. To achieve that, we focus on a specific component
from the container architecture, i.e., the registry nodes, which are responsible for storing the
images used to deploy the containers on worker nodes. Further, we study how the registries
placement on edge infrastructure can affect the network load and generate bottlenecks.
Given the NP-hardness of the registries placement problem, we propose a heuristic solution
based on fluid communities to find the best place to set a k number of registry nodes. To
evaluate our solution’s effectiveness, we carried a series of experiments on realistic and
random networks with distinct container schedulers.

This chapter want to answer the main research question:

• How the registry placement influence the deployment latency? How can we distribute
the network load between several registries on the topology?

This chapter is based on our previously published paper "Luis Augusto Dias Knob,
Francescomaria Faticanti, Tiago Ferreto, Domenico Siracusa. Community-based placement
of registries to speedup application deployment on Edge Computing. 9th IEEE International
Conference on Cloud Engineering (IC2E 2021)".

66

4.2 Related Work

Current solutions to decrease the container deployment latency are dis-
tributed on distinct areas, mainly with large modifications on the container runtime
[Ahmed and Pierre, 2018] or new services that need to be added to the topology
[Harter et al., 2016].

Some approaches propose improvements on how the containers are stored in or
distributed to nodes. Pulling the same image by multiple registries simultaneously is pre-
sented in [Nathan et al., 2017], which also discusses a cooperative implementation of a
set of registries. Solutions based on peer-to-peer communication are also presented in
[Uber, 2021] and [Kangjin et al., 2017]. However, these implementations rely on powerful
worker nodes placed on high-speed networks, usually not replicable on edge scenarios, with
geo-distributed topologies. Furthermore, adding a new daemon on a resource-constrained
node can generate bottlenecks, as shown in [Ahmed and Pierre, 2020], where even simple
applications running on it can generate high latency in the deployment of new applications.

The use of distributed file systems to share images between several nodes is pre-
sented with slight changes in [Littley et al., 2019], and [Zheng et al., 2018]. In both papers,
the nodes share a given folder that acts as a centralized cache for the images. This imple-
mentation usually shows a significant improvement on the total amount of time needed to
instantiate a new container, together with a small redundancy on the layers, since all the
shared images are stored in the same place. However, that solution also relies on high-
speed networks, with negligible downtime and near-allocated nodes.

There are also proposals of new placement algorithms focusing on geo-
distribution [Rossi et al., 2020], and the sharing of microservices between cloud and edge
[Faticanti et al., 2019] to decrease the deployment time, using latency or bandwidth as input
to define the application’s placement. Nevertheless, these works’ primary objective is to
improve the number of containers that can stay active in the topology. However, no one con-
siders the deployment latency on the topology and how this latency can cause congestion
on the network and affect the placement results.

In [Darrous et al., 2019], the authors discuss that in edge computing, due to the
limited node storage, it is impossible to have many images locally stored. Hence, to im-
prove the deployment latency, it is necessary to retrieve the images on the topology faster.
Therefore, they propose a sharing algorithm called KCBP, which finds the closest node with
a given layer and uses it to forward it to the requester. Although this chapter is the first
to discuss the positioning of the layers on the topology and its impact on the deployment
latency, its implementation has several limitations. Some of them include the necessity of
direct connections between nodes and assumptions that are not feasible in the real world,
such as nodes sharing images.

67

Symbol Meaning

G = (V , E) network graph
Bu,v available bandwidth on link (u, v) ∈ E
K set of communities on graph G
K = |K| number of communities in the graph
{Vk}k∈K partition of graph G identified by the communities

Table 4.1: Main notation used throughout the chapter

Finally, changes on how the Docker runtime download and start new images are
also proposed in [Ahmed and Pierre, 2018], where the authors suggest a set of tweaks to
improve the several steps executed on the deployment focusing on resource constrained
nodes. However no one of the works consider the impact of the application deployment in
large-scale distributed topologies, exploring the possible bottlenecks that this network load
can generate in the infrastructure. So, it is, to the best of our knowledge, the first attempt
to tackle the challenges of registries placement in an edge computing environment using
infrastructure’s constraints, seeking to decrease the total amount of time needed, namely
the deployment latency, to fully implement these services on the topology.

4.3 Problem Formulation

4.3.1 Registries Placement Problem

This chapter’s main objective is to design an efficient algorithmic solution for the
placement of container registries among the network nodes to speed up the download
time in each node from the placed registries. The main objective is represented by the
minimization of the maximum download time from the registries to each node of the net-
work. When trying to solve this problem, usually we may think to a vertex k-center prob-
lem[Hsu and Nemhauser, 1979], where a set of facilities must be deployed on a complete
graph in order to minimize the maximum distance between each node and its closest facility.
In our case, the concept of distance can be viewed as the download time from a container
registry to each node in the network. However, there are some differences concerning the
problem we need to solve. The first is the type of graph we are dealing with. Indeed, the
vertex k -center requires a complete graph, whilst, in our case, we do not always have such
a case. The second main difference is represented by the computation of the download time
between each node and the facilities placed on the graph. In fact, this time is not easily
computable since it depends on the placement of facilities and the bandwidth occupation of
each link leading to a combinatorial explosion of possible configurations.

68

For this reason, we tackle the problem from a different perspective. We aim to
partition the network graph placing a container registry in each subset (community) of the
partition. The graph partitioning should be performed in such a way that the total bandwidth
of the graph is fairly balanced among the partition. The graph partitioning and the bandwidth
load balancing should be performed in order to: i) speed up the download time for each node
inside each community and ii) avoid bottlenecks in the network, such as putting containers
registries in a few and close nodes of the network. Hence, the main question that we want to
answer in this problem is the following: where can we place container registries in order to
have load-balanced distribution, in terms of bandwidth, of containers among the network’s
nodes?

In order to tackle the problem described above, we assume that the desired number
of communities in the graph is given as input of our problem. In order to have a load-balanced
solution in terms of bandwidth, we use the concept of standard deviation between the total
bandwidth of each community. In Figure 4.1 we present the notation used throughout the
chapter. Above, we provide a formal description of the problem.

4.3.2 System Model

We consider a network infrastructure consisting of a set of nodes V and a set of
edges E . Therefore, we represent the network topology as a weighted graph G = (V , E),
where E ⊆ V × V . Each edge (u, v) ∈ E of the graph is characterized by the bandwidth
available on the link, namely Bu,v . Further, we indicate a partition of the graph with {Vk}k∈K,
i.e., a family of subsets of V where Vk ⊆ V , ∀k ∈ K, and Vk ∩ Vk ′ = ∅, ∀k ̸= k ′. For the
sake of a clear explanation of the algorithmic solution, we call these subsets communities.
The cardinality of K, |K| = K , also indicates the number of desired container registries to be
deployed on the network as the algorithm will place a container registry for each community
of the input graph.

Variables

We introduce the following decision variables for each node of the network:

xv ,k =

1, if node v is placed in community k

0, otherwise,

∀v ∈ V .

69

Objective

The objective function is represented by the standard deviation of the total band-
width available in each community (Equations 4.1 - 4.3):√∑

k∈K(αk − ᾱ)
K − 1

, (4.1)

where
αk =

∑
(u,v)|u,v∈Vk

Bu,v ∀k ∈ K, (4.2)

and
ᾱ =

∑
k∈K αk

K
. (4.3)

Summarizing, the problem we aim to solve is the following

minimize

√∑
k∈K(αk − ᾱ)

K − 1
(4.4)

subject to:

αk =
∑

(u,v)∈E

Bu,v xu,k xv ,k , ∀k ∈ K, (4.5)

αk > 0, ∀k ∈ K, (4.6)∑
k∈K

xu,k = 1, ∀u ∈ V , (4.7)

xu,k ∈ {0, 1}, ∀u ∈ V ,∀k ∈ K, (4.8)

where constraint (4.6) ensures that each community has at least two adjacent nodes, i.e.,
the total bandwidth inside the community is greater than zero. Constraint (4.7) imposes that
each node of the network is assigned to exactly one community.

Computational Complexity

Looking at the minimization presents in the Equation 4.4, it is easy to see that
our problem falls under the class of graph partitioning problems [Andreev and Racke, 2004].
These particular problems are typically NP-hard requiring approximate solutions to be solved.
Furthermore, defining the optimal number of communities to cover all the network graph
adds another complexity dimension to the problem. The investigation of the optimal num-
ber of communities is left for future works. So, here we want to define, given a number of
registries, the best placement to each one of them.

70

4.4 Algorithmic Solution

Given the NP-hardness of the problem described in the previous section,
we propose a heuristic method based on general search algorithms such as Hill-
Climbing [Russell and Norvig, 2002].

For the graph partition problem, we resort on the fluid communities algo-
rithm [Parés et al., 2017], namely FluidC. The algorithm takes as input a graph G = (V , E)
and the desired number K of communities. Initially, it randomly selects K vertices from
V . These single vertices form the initial K communities. Each community has a density
δ ∈ (0, 1]. For each community k , its density is given by

δ(k) =
1

|v ∈ Vk |
.

At each step of the algorithm, the community of each vertex is updated and when
the assigned communities to vertices do not change for two consecutive steps, the proce-
dure terminates. The update rule for each vertex v computes the community with maximum
total density within the neighbourhood of v (including v as well). If more than one com-
munity is found for a vertex v , then a random community is chosen within the candidate
ones [Parés et al., 2017].

As shown in [Parés et al., 2017], the main advantage of the FluidC algorithm is the
scalability. Indeed, this algorithm provides good communities for large graph in reasonable
time. However, this kind of solution is not thought to work with weighted graphs. For this
reason, we perform a Hill-Climbing search to find the partition of the graph that has the best
standard deviation of the total bandwidth available on each community. The pseudocode of
our main algorithm is shown in Algorithm 4.1.

In the first part of Algorithm 4.1, lines 7-17, the FluidC algorithm is repeatedly ap-
plied to the input graph until no better communities are found in terms of bandwidth available
on each single community. This part follows the Hill-Climbing search approach where we al-
ways move towards a better configuration until a termination condition is met. In the second
part of the algorithm, lines 18-25, for each community computed in the previous step, a par-
ticular node for the registry placement is selected. In this case, the algorithm selects the
node with the highest eigenvector centrality degree [Latora et al., 2017]. This kind of mea-
sure provides, for each node, an indication about node centrality and connectivity towards
nodes with high centrality degree within the same community.

71

Input : G = (V , E): network graph; k : desired number of communities
Output: Set of nodes where to place container registries

1 place← ∅
2 final_comm← ∅
3 sd← +∞
4 it← 0
5 while True do
6 b̄ ← []
7 {Vk}k∈K ← FluidC(G, K)
8 for k ∈ K do
9 Bk ←

∑
(u,v)|u,v∈Vk

Bu,v

10 b̄.append(Bk)

11 if stdv(b̄) < sd then
12 final_comm← {Vk}k∈K
13 it← 0

14 else
15 it← it + 1;

16 if it ≥ 100 then
17 break

18 for k ∈ final_comm do
19 c̄ ← []
20 Gk ← (Vk , {(u, v) ∈ E |u, v ∈ V})
21 for v ∈ Vk do
22 cv ← eigenvector_centrality(Gk)
23 c̄.append(cv)

24 u ← sort(c̄).pop()
25 place← place ∪ {u}
26 return place

Algorithm 4.1: FluidC-Placement

72

Time Complexity

The complexity of the algorithm is mainly dominated by the number of iterations
required to reach the last local maximum from the starting point (as it can be noticed from
Algorithm 4.1, if after 100 iterations no better move is performed the while loop is terminated)
in the first part. However, all the operations inside the while loop are polynomially bounded.
Indeed, the FluidC algorithm presents a linear cost equal to O(E) [Parés et al., 2017]. In the
second part of the algorithm, to compute the eigenvector centrality, it is sufficient to solve
a linear system of equations of the size of subgraph Gk . Finally, the sort operation has a
cost of O(|V | log(|V |)) in the worst case. Hence, assuming a constant number of iterations
required to reach a local maximum, Algorithm 4.1 presents a polynomially bounded time
complexity. This confirms the scalability of the proposed algorithm.

4.5 Evaluation

4.5.1 Simulator

To evaluate the FluidC algorithm, we use the ECOS simulator presented on the
Chapter 3. Before starting the simulation, first we run the registry placement algorithm
(Random or the FluidC) and calculate the best path between the nodes and all the registry
node, or the registries if more than one is configured. After choosing the closest registry, all
the container downloads occurs from the same Registry Node.

4.5.2 Simulation Scenarios

To perform the simulations, we used two topologies. The first one is a random
topology with 100 nodes using the Erdös - Rényi model [Erdos, 1961]. The topology is fully
connected, and each node has a downlink and uplink with the same bandwidth (1 Gbps).
This topology is also highly connected with 242 links, and each registry added in the topology
has bandwidth available 10 times bigger than the worker nodes (10 Gbps). This guarantees
that registries do not represent a bottleneck for the simulation.

We also validated the placement algorithm with the Italian education and research
network (GARR) topology. The GARR topology is composed by 70 operational zones and
112 links and covers all the Italian territory. The topology is presented in Figure 4.1. We
used the GARR topology as an isolated network, and we assumed that each operational
zone is a worker node available to deploy a new application. Each operational zone can

73

Figure 4.1: GARR Network Topology

also be used to deploy a registry using the FluidC algorithm. We also set the band-
width available to the registries node as 10 Gbps. Besides, we limited the total capacity
used by the communication between the nodes to 10% of the total bandwidth described
in [Consortium-GARR, 2021], and even with that limitation, the average size to each link is
close to 2Gbps.

Each node has a cache of fixed size that reduces the amount of data that needs
to be transmitted. As we want to verify the impact of a large amount of containers deployed
on the topology, we set a cache size of 600MB in all the nodes in all the simulations. For
the sake of simplicity, each container image has only one layer, and all the images have the
same size (200 MB). In these scenarios, the impact caused by an application on a node is not
considered, so we used a small number of specific applications (13). With that, the cache
corresponds to 23% of the total (2.6GB). The policy usage to replace the current images

74

on cache is the LeastRecentlyUsed . Whenever a new container download is requested, if
the image is already in the cache, the application starts instantaneously, and the cache is
updated.

One of the limitations of our simulation is that the cache takes into account only the
download phase, regardless of whether the application continues to run on the node or not.
The parameters used for all the simulations are summarized in Table 4.2.

Parameter Value

Number of distinct containers 13
Size of each container 200 MB

Cache size 600 MB
Cache policy LRU

Worker node bandwidth 1 Gbps
Registry node bandwidth 10 Gbps

Table 4.2: Simulation parameters

4.5.3 Application Scheduler

To understand the impact of a high density of applications on the topology, we use
two distinct schedulers to instantiate an application on the edge nodes. In both cases, we run
the scheduler by one simulated hour (3600 seconds) with an average number of requests
close to 5 operations per second.

Each deployment may have a deadline time, that is, the instant wherein the applica-
tion no longer needs the container. By default, the smallest deadline used in our simulation
was 25 seconds. If this value is not present, we understand that this container will run until
the end of the simulation. If the simulation time is longer than the deadline to a given con-
tainer, it returns as an error to the simulation, and the container is counted as non-started.

The placement algorithms selected to choose each container’s destination node
are: Random and the PESS Scheduler presented in [Doriguzzi-Corin et al., 2020]. The
Random scheduler tries to show a non-bias distribution on the topology with a fair amount
of containers between all worker nodes. With the PESS Scheduler, we want to validate
the same algorithm with a more realistic scenario focused on the application placement at
the Edge, improving the node utilization. The PESS Scheduler, was initially developed to
Security Function Chains, where based in a heuristic solution, takes into account security
and QoS requirements of user applications, while ensuring that computing and network re-

75

sources are accurately utilised. However, in our scenario we use this scheduler to provide a
series of chained-applications acting like microservices from an edge application.

4.5.4 Experimental Results

We executed three simulations. The first one was the Random Topology with a Ran-
dom Scheduler. Then, we run both PESS and Random Scheduler with the GARR Topology.
In all cases, we executed our FluidC-based algorithm in contrast with a random selection of
nodes to distribute 1, 2, 4, and 8 registries on the network, and on the GARR Topology sce-
narios we used the same placement results to both schedulers. This number of registries
was manually defined to understand the impact of an increasing number of registries on
several points, such as the total deployment time, the distribution of requests among distinct
registries, and the bottlenecks generated on the network. When the simulation runs with
more than one registry, each worker node chooses the registry with the shortest path based
on the available bandwidth. If the shortest path return a draw between several registries, it
randomly chooses one.

Random Topology

Figure 4.2: Random Topology - Random Scheduler

In Figure 4.2 we have depicted the CDF of the container deployment latency ac-
cording to the Random Scheduler. As expected, when the number of registries on the topol-
ogy increases in both cases, random or FluidC algorithm, we have an improvement on the

76

Figure 4.3: GARR Topology - Random Scheduler

deployment latency, and the difference between them decreases as we increase the num-
ber of registries that are located on the network. However, the FluidC algorithm presents
a deployment latency of 1.59 and 1.55 times smaller in scenarios with 1 or 2 registries and
12.5% in the eight registries scenario. As the Random Topology is highly connected, in a
scenario with more than four registries, more than 90% of the containers start with less than
10 seconds. However, it is important to note that we used all the available bandwidth to
deploy the containers, which is not feasible in real infrastructures.

We also summarize the simulation results in Table 4.3, showing that in this scenario,
with four or more registries, the number of non-started containers is zero, and FluidC has
slightly better results with two or one registries. Finally, we can see that the high number of
connections on the random topology enables a good distribution of the deployment requests
between the registries with the FluidC performing better in all number of registries.

GARR Topology

In Figure 4.3 and Figure 4.4, we present the results from the simulations made on
the GARR Topology. The first one used the random scheduler to distribute the containers.
We can see that the faster 80% requests are deployed in less than 100 seconds in all sce-
narios until four registries, in a pretty similar distribution. However, the network generates
specific bottlenecks as we place the registries with both placement heuristics, showing that
the 20% slower requests have better results consistently with the FluidC in contrast with the
random placement.

77

Figure 4.4: GARR Topology - PESS Scheduler

Furthermore, with four and eight registries, the FluidC almost mitigates the bottle-
necks on the network, showing a decrease of 58% and 78%, respectively, in deployment
time. At last, with one registry, both placements present the same results. In these cases,
the bottleneck is the connection between the node where the registry is connected with the
rest of the network.

The PESS Scheduler tends to schedule the application on the center of the net-
work with the largest bandwidth connection possible. In fact, in our simulation, 67% of all
containers are scheduled in only 6 worker nodes. Even with that small distribution on the
network core, as shown in the Figure 4.4, FluidC presents consistently better results than
the random scheduler, that besides the scenario with one registry, the deployment time was
24%, 65%, and 80% smaller using 2, 4, and 8 registries.

Finally, from these figures, we can notice our placement algorithm’s independence
with respect to the scheduling algorithm. Indeed, we can notice that the curves of FluidC
related to 4 and 8 registries in both cases (Random Scheduler and PESS Scheduler) are
pretty similar. This confirms that our container registries placement algorithm is agnostic to
the specific scheduler used to distribute applications among the network. This confirms the
possibility of improving the applications’ instantiation time without modifying the orchestra-
tion mechanisms of the applications.

We summarize both experiments in Table 4.3, presenting results similar to the ran-
dom topology, showing the decrease of non-started containers and a shorter average de-
ployment time in every scenario using FluidC. We can highlight the cases with 4 and 8
registries that have in average 32% better results with the random scheduler, and 71% with
the PESS scheduler.

78

4.6 Closing Remarks

In this chapter, we present a novel deployment community-based placement to
distribute container registries on an edge topology. Our solution optimizes the registries’
distribution on the topology like communities in a relation graph. To do that, we implement a
two-phase algorithm that first generates a set of communities based on the fluid communities
algorithm and then chooses, in each community, the most central node that will be used as
the host for the new registry. We validated the solution with a series of simulations using
two distinct topologies, and a random and realistic application scheduler, showing enhanced
performance in both cases. The total instantiation time was optimized in the best case in
more than 70%, and the small number of non-started containers can be noted even with the
best placement of just two registries.

79

S
ce

na
rio

N
um

be
ro

f
D

ep
lo

ym
en

ts
S

td
D

ev
R

eq
.

R
eg

is
tr

ie
s

(u
n.

)
N

on
-s

ta
rt

ed
C

on
ta

in
er

s
(%

)
A

ve
ra

ge
D

ep
lo

ym
en

tT
im

e
(s

)

R
an

do
m

To
po

lo
gy

R
an

do
m

S
ch

ed
ul

er

R
an

do
m

1
R

eg
is

tr
y

19
79

0

-
19

.3
7

21
.4

3
2

R
eg

is
tr

ie
s

35
83

.6
1.

11
5.

14
4

R
eg

is
tr

ie
s

10
88

.4
5

0.
00

2.
09

8
R

eg
is

tr
ie

s
13

71
.5

4
0.

00
1.

53

Fl
ui

dC

1
R

eg
is

tr
y

-
13

.2
6

13
.4

6
2

R
eg

is
tr

ie
s

92
9.

1
0.

12
3.

31
4

R
eg

is
tr

ie
s

10
65

.8
6

0.
00

1.
81

8
R

eg
is

tr
ie

s
38

5.
3

0.
00

1.
34

G
A

R
R

To
po

lo
gy

R
an

do
m

S
ch

ed
ul

er

R
an

do
m

1
R

eg
is

tr
y

19
64

9

-
47

.8
6

27
3.

62
2

R
eg

is
tr

ie
s

10
82

0.
9

44
.6

4
20

7.
8

4
R

eg
is

tr
ie

s
56

94
.0

38
.0

9
10

6.
72

8
R

eg
is

tr
ie

s
38

82
.0

33
.4

2
75

.6
5

Fl
ui

dC

1
R

eg
is

tr
y

-
47

.8
6

27
3.

62
2

R
eg

is
tr

ie
s

58
31

.5
44

.3
5

13
2.

72
4

R
eg

is
tr

ie
s

85
7.

3
31

.3
4

45
.4

2
8

R
eg

is
tr

ie
s

89
7.

23
7.

93
15

.8
9

G
A

R
R

To
po

lo
gy

P
E

S
S

S
ch

ed
ul

er

R
an

do
m

1
R

eg
is

tr
y

19
12

9

-
40

.5
2

75
.1

5
2

R
eg

is
tr

ie
s

11
85

7.
5

35
.2

3
64

.9
3

4
R

eg
is

tr
ie

s
70

46
.5

24
.2

9
46

.0
6

8
R

eg
is

tr
ie

s
48

35
.7

17
.6

1
38

.2
5

Fl
ui

dC

1
R

eg
is

tr
y

-
40

.5
2

75
.1

5
2

R
eg

is
tr

ie
s

85
56

.7
24

.9
5

49
.9

1
4

R
eg

is
tr

ie
s

33
07

.9
3.

18
16

.3
4

8
R

eg
is

tr
ie

s
21

11
.8

0.
87

7.
76

Ta
bl

e
4.

3:
A

dd
iti

on
al

st
at

is
tic

s
fro

m
th

e
si

m
ul

at
io

ns

80

81

5. CONTAINER SCHEDULING BASED ON NETWORK BANDWIDTH
AVAILABILITY

5.1 Introduction

In edge scenarios, the main reason for the deployment latency lies in the image
download from an external registry, which can take several seconds on constrained-resource
nodes. Therefore, we understand the scheduler must know the bandwidth available and the
current non-finished requests on each node to speed up the deployment process on edge
computing. However, existing scheduling algorithms do not consider these two constraints
in their allocation process.

With that in mind, we propose in this chapter a new scheduling algorithm, called
Infrastructure Aware, that seeks to reduce the deployment latency through a better container
placement by using the download queue and available network bandwidth as priorities to the
scheduler. Furthermore, we also integrate the layer match as proposed by [Fu et al., 2020] in
our solution. At last, we evaluate our scheduling algorithm against the image and layer match
schedulers, as also the Kube-scheduler, in a simulated scenario using a large number of ap-
plications generated using the Top 24 downloaded images from DockerHub [Docker, 2021].

Besides that, we want so answer the following research question:

• Does the scheduler uses any network information as input to schedule applications?
Is it possible to implement a solution that uses the available bandwidth as input to the
application schedule? How this impacts the other’s priorities?

This chapter is based on our previously published paper "Luis Augusto Dias Knob,
Carlos Henrique Kayser, Tiago Ferreto. Improving Container Deployment in Edge Comput-
ing Using the Infrastructure Aware Scheduling Algorithm. 26th IEEE Symposium on Com-
puters and Communications (ISCC 2021)."

5.2 Container Schedule Strategies

The default Kubernetes scheduling strategy, called Kube-scheduler, has a generic
and modular implementation that can be use in several distinct cloud topologies. However,
in an edge computing scenario composed of heterogeneous devices, these policies may not
be enough to deploy container-based applications. For instance, they do not consider poten-
tially scarce resources at the edge, such as network bandwidth, to meet the requirements of

82

applications without compromising their quality of service. In this section we describe new
strategies proposed in the literature to schedule edge applications.

5.2.1 Dependency Aware Strategy

Fu et al. [Fu et al., 2020] propose new dependency scheduling policies to rank the
nodes based on how much their cache overlaps with those of the requested pod. It aims to
take advantage of the nodes’ local cache and speed up the provisioning time of container-
based applications. The authors propose two approaches: a) image-match approach; and
b) layer-match approach.

As the name suggests, the image-match approach favors the nodes that already
have locally the image(s) of the pod requested. So, for example, considering deploying a
pod composed by the image mongodb:4.4.6, this policy gives to a node that already has this
dependency locally a higher score.

The second one, the layer-match approach, has practically the same behavior.
However, this policy favors the nodes with the most dependencies locally at the layer level
rather than the image level, i.e., the nodes with more dependencies attended locally will
receive the higher scores.

Considering that some dependencies are already allocated in the node, this strat-
egy presents benefits concerning the application provisioning time and the overall cluster
storage utilization. That relies on the fact that container images are created from a base
image and may share equal layers.

Although these policies reduce the total provisioning time of applications, their ef-
ficiency may be impacted by network infrastructure heterogeneity. For instance, it may be
faster to deploy an entire container with all layers in a new node with high bandwidth capacity
instead of sending a single layer to a constrained node. In addition, these policies do not
consider the download queue on the nodes since more applications can be waiting to be
downloaded at the node, increasing the provisioning time.

5.2.2 Others Edge Schedulers

Other schedulers were proposed based on distinct objectives that can also affect
an edge infrastructure. For example, in [Santos et al., 2019] the authors introduce a policy
that makes use of round trip time (RTT) labels attached to the nodes to decide the most
suitable place to deploy an application based on its configuration (i.e., target location). Ad-
ditionally, the policy checks if the most appropriate node has enough bandwidth capacity to

83

support the application’s requirements. Results show that the proposed approach compared
to the Kube-scheduler achieved a reduction of 80% in terms of network latency. However, it
only considers the application’s latency requirement during execution in a given destination
region, but it does not consider its deployment phase.

In [Faticanti et al., 2019], the authors propose a greedy scheduling algorithm called
FPA (Fog Placement Algorithm) to improve the total throughput between all applications in
a Fog Computing scenario. It allocates the Fog modules on the same region where the
control microservice resides, which is usually placed in a bigger server, in the fog or the
cloud. Although the authors do not use information about the bandwidth on the scheduler,
the paper presents results showing that one of the main problems to a more significant
throughput was the intra-region connections that can create bottlenecks on communication.
Furthermore, we understand that the same problem may happen in the instantiation phase,
where the bottlenecks increase the total amount of time needed to deploy the applications.

5.3 Infrastructure Aware Scheduling

In Edge Computing, placing container-based microservices in edge nodes that can
guarantee minimal latency is essential. This characteristic is the main reason for its adoption,
instead of only relying on the cloud. However, choosing the right edge nodes that minimize
the time required to deploy the containers is also necessary, especially when dealing with
microservices that may present a short-term existence.

Kube-scheduler is the default component in Kubernetes responsible for choosing
the edge nodes to deploy a container. As presented in Section 5.2, it provides different
scheduling policies to handle several cases. However, no policy considers metrics, such as
the network bandwidth, which may significantly impact the deployment time.

We propose the Infrastructure Aware scheduling algorithm for reducing deployment
time while considering different metrics such as download queue on each node and available
network bandwidth.

The main goal of the Infrastructure Aware scheduling algorithm is to speed up the
application deployment time while avoiding congesting the network interface of the edge
nodes. Furthermore, it can be easily implemented in container orchestration frameworks,
such as Kubernetes since it does not require any modification in the infrastructure.

Algorithm 5.1 presents the Infrastructure Aware scheduling algorithm. Initially, it
creates a dictionary (aL) composed of the layer digest (key) and the layer size (value) (lines
1-3). After that, it computes, for every eligible node, the time to instantiate the application
(ttInst). It considers the layers already cached locally, the queue of layers waiting to be
downloaded by the node, and the bandwidth between the container register (e.g., Docker

84

Hub, GitHub Container Registry) and the node (lines 4-15). Finally, it sets the time to instan-
tiate the application between zero and w, where w is the weight of this policy on the other
predicates (lines 16-24).

Input : application: application to be scheduled; chosts: list of the container nodes; w :
default weight

Output: List of the container hosts with updated score

1 aL← {}
2 for layer ∈ applicationimage do
3 aLdigest ← size(layer)

4 ttInst← {}
5 for c ∈ chosts do
6 mL← {}
7 for app ∈ cscheduleApps do
8 for layer ∈ applayers do
9 mLapp ← size(layer)

10 cL← {}
11 for image ∈ ccache do
12 for layer ∈ imagelayers do
13 cLimage ← size(layer)

14 s←
∑

i∈(aL\mL\cL) i

15 ttInstc ← s ÷ bandwidth(c)

16 minTime← min∀t∈ttInst ttime

17 maxTime← max∀t∈ttInst ttime

18 if minTime = maxtime then
19 for c ∈ chosts do
20 cscore+ = w

21 else
22 for c ∈ chosts do
23 score← (w − ((w − 0)÷ (maxTime −minTime)× (ttInstc −minTime))
24 cscore+ = score

25 return chosts

Algorithm 5.1: Least Congested Node Priority

85

5.4 Evaluation

Some considerations can be made on the algorithm:

1. Empty cache: If at any time there are no images stored locally in the nodes’ cache
and also no images to be download in the queue, the algorithm will favor the nodes
with the higher network bandwidth to decrease the application’s deployment time;

2. Queue with applications: The algorithm gives the highest scores for nodes that,
even having applications in their download queue, can download all dependencies in
the shortest time;

3. Node bandwidth: The algorithm considers that the network bandwidth between the
edge node and the registry is periodically calculated since it is hard to determine with
precision the bandwidth between nodes due to the variability of links’ utilization.

Even if a node has the most bandwidth, it does not mean it can provision the given
application in the shortest time as other nodes may already have locally or in the download
queue the dependencies of the requested application. However, since the proposed policy
ends up centralizing the applications on a given set of nodes, the high availability of services
is affected, which also entails the load imbalance between nodes. In addition, it does not
check whether the node has sufficient bandwidth capacity to support the requirements of
the requested application.

This section presents an evaluation of the Infrastructure Aware scheduling algo-
rithm. The algorithm is compared to the Kube-scheduler, and the algorithms presented
in [Fu et al., 2020] (Image and layer locality) in a simulated scenario based on the Brazil-
ian research network topology using Docker Hub images. The metrics used for comparison
include deployment latency, node storage utilization, cache hit, and application distribution
between the nodes.

5.4.1 Simulator

In order to perform the evaluation, we use the ECOS simulator presented in Chap-
ter 3. This experiment’s main focus is the deployment process and image distribution from
a registry to the edge nodes considering network topology behavior. This approach, based
on the max-min fairness, results in a more realistic simulation considering the network bot-
tlenecks when provisioning containers in edge nodes.

The ECOS simulator allows the implementation of different scheduling strategies
(e.g., kube-scheduler and random scheduler). In the case of the Kubernetes scheduler,

86

we simplify the official implementation [Kubernetes, 2021a], where we can add and remove
predicates, priorities, and set different weights to each one. This process allows fine-grained
control of the simulation scenario and a better understanding of how priorities affect con-
tainer distribution in the infrastructure. We also implemented the priority Infrastructure-
Aware, that can be activate or deactivate as any other default priority on the Kube-scheduler.

5.4.2 Topology

In order to evaluate the policies in a more realistic scenario, we configured the edge
simulator to simulate the Ipê (Brazilian Research Network) network topology, including all
the points of presence (PoPs), network connections, link’ speeds and latency. This topology
interconnects all Brazilian universities and research institutes through 28 Points of Presence
(PoPs) distributed over the country (Figure 5.1). The topology also connects to several
international research networks, such as Clara (Latin America), Internet2 (United States),
and Géant (Europe). In the experiments, the actual bandwidth and latency for each link
were used, as described in [RNP, 2021b].

To enable the comparison with the other scheduling algorithms (Kube-scheduler,
Image and Layer locality [Fu et al., 2020]), we extended the Ipê topology. Each PoP included
a large node named Server Node and five small nodes named Edge Nodes. The nodes differ
in the bandwidth available on each one. For instance, the server node has 100 Mbps, and
the smaller nodes have between 10 and 60 Mbps of bandwidth (distributed uniformly). For
simplicity, the simulation only considers the network utilization for container provisioning,
from the registry to the server or edge nodes. Any other communication that would be active
in a real network is ignored.

The registry, where all container images are located, was placed on PoP-São Paulo
(SP). This PoP is a central one in the topology and is the primary connection to cloud
providers [RNP, 2021a]. It was given a bandwidth of 10Gbps to avoid having the Registry
Node as a bottleneck on the simulation.

5.4.3 Workload

The workload used in the simulation is based on real images on the Docker
Hub [Docker, 2021]. Therefore, we selected the twenty four most downloaded images, ex-
cluding base images, and allocated them in the Registry Node. The images have a total size
of 3436.45 MB (an average of 143.19 MB per image). However, since several images share
layers, the maximum amount that a given node needs to download to have all applications
is 2152.78 MB (37% of similarity between images).

87

Figure 5.1: Ipê Brazilian Research Network Topology

A random number of applications between 5 and 25 (distributed uniformly) is cre-
ated for each image. And, for each application, a random number of replicas between 2
and 5 (distributed uniformly) is configured. Furthermore, each application has a random
scheduling time between 0 and 1000 seconds (distributed uniformly), which defines when
the application will be considered for scheduling in the topology. Table 5.1 presents the
parameters used in the experiments.

5.4.4 Results

Deployment Latency

Figure 5.2 presents the CDF of the deployment latency for each application replica
on the topology. The results show the gains of using information about the infrastructure
on the container scheduling in edge computing. Even with a small number of containers
allocated in each host node, all algorithms present a better result than the default behavior

88

Parameter Value

Server Nodes 28
Server Links 100 Mbps
Edge Nodes 140
Edge Links 10 - 60 Mbps

Number of Images 24
Number of Applications 350

Number of Replicas 1250

Table 5.1: Simulation parameters

Figure 5.2: Provision time by scheduling algorithm

on the Kube-scheduler. As expected, when we increase the information’s granularity used
by the scheduler, the total amount of time needed to instantiate the applications decrease.
On average, the Image Locality deploys the replicas 6% faster than Kube-scheduler, while
the Layer Locality is 25% better. Furthermore, with the download queue and the expected
download duration predicates, the Infrastructure Aware is 37% and 52% smaller than the
Layer Locality and the Kube-scheduler, respectively. Almost the same results can be seen
on the 99% percentile. The containers are deployed at most in 90.69 seconds in the Infras-
tructure Aware, while spent 192.11 and 207.27 seconds to be deployed with Layer Locality
and Kube Scheduler.

It is important to notice that the Image and Layer locality only present consistent
results after a long period on the topology, i.e., after several containers become fully down-
loaded on the edge nodes and the layers be available on the cache. Furthermore, cache sub-

89

stitution policies can also decrease the performance of these schedulers, while pre-cached
images can positively influence that. However, these problems do not affect Infrastructure
Aware since it can reduce the deployment latency even when the container is not available
in any node of the region by allocating them to a less congested node.

Node Storage Utilization

Figure 5.3: Node storage utilization by each scheduling algorithm

Usually, Kube-scheduler has as default behavior to equally distribute containers
between the nodes that surpass the filtering phase on the scheduler. In Figure 5.3, this can
be seen by the well-distributed percentiles presented by this algorithm on the node storage
usage. However, the Image and Layer Locality schedulers tend to centralize on few nodes
that already contain the image or layers from that given application. It can be identified
by the decrease of the average storage used on each node, with the Layer Locality hav-
ing the best results in comparison to the Kube-scheduler, using only 595.535 MB instead
of 749.31 MB. This result is also present in the network utilization, with the total amount of
data transferred on the infrastructure been 25% bigger on Kube-scheduler than Layer Local-
ity. However, the Infrastructure Aware scheduling has a more dynamic behavior, adapting
between both trends, sometimes spreading the applications to ensure the best network uti-
lization and sometimes using the cache nodes to decrease the provision time. This behavior
is represented in the figure by the most significant differences between percentiles, where
the storage utilization was largely distinct on each node. However, even with this, the total

90

amount of data transferred on the network was only 0.8% bigger, and the average storage
used was more than 11 MB smaller than the Layer Locality.

Additional Metrics

We also verified the distribution in applications deployed per node. The Layer Lo-
cality and the Infrastructure Aware present the worst distribution with a standard deviation of
3.09 and 5.46 from the average, respectively. Finally, we also collected the cache hits and
misses from the simulation, i.e., when a layer can be found in the nodes’ cache during provi-
sioning. As expected, the best results also occur on the Layer Locality and the Infrastructure
Aware, with 37.29% and 38.31% of the cache hit, respectively. Table 5.2 summarizes the
results obtained in the simulation.

5.5 Closing Remarks

This chapter presents the Infrastructure Aware scheduling algorithm, a novel ap-
proach to decrease the deployment latency of containers on an edge topology. It ex-
cels current algorithms by using the network bandwidth and the downloading queues on
each node as priorities for the scheduling process. Together with the Layer locality algo-
rithm [Fu et al., 2020], these new priorities can, on average, decrease the deployment la-
tency by more than 52% compared to the Kubernetes default behavior. Notwithstanding,
Infrastructure Aware is 40% better than using just the Layer locality priority, mainly because
it optimizes the deployment process even in regions where a given image has no cached
layers.

We understand that the Infrastructure Aware scheduling algorithm may lead to an
over-utilization of nodes with a large number of network resources, limiting the benefits
shown by adding more constrained nodes in a given region. We also evaluated that, as
we score the network priority by a snapshot in a given moment on the bandwidth usage, this
may lead to undesired results.

In the future, these problems can be addressed by tweaking the ratio used by each
priority on the scheduler and the substitution from instantaneous bandwidth snapshot by the
average network usage on the policy. Besides that, we also want to improve the simula-
tion scenarios, adding more constraints and node limitations, like limited cache size, and
implement the predicate on Kubernetes to evaluate our scheduler in a real cluster.

91

A
lg

or
ith

m
P

ro
vi

si
on

tim
e

(s
)

C
ac

he
(u

n)
S

to
ra

ge
U

sa
ge

(M
B

)
D

is
tr

ib
ut

io
n

(u
n)

av
g

99
%

m
ax

hi
t

m
is

s
m

in
av

g
m

ax
st

dD
ev

m
in

m
ax

us
ed

no
de

s

K
ub

e-
sc

he
du

le
r

28
.0

3
20

7.
27

27
9.

31
20

42
81

69
9.

94
74

9.
31

14
23

.7
7

2.
57

2
12

16
8

Im
ag

e
Lo

ca
lit

y
26

.5
6

22
1.

84
27

9.
31

26
18

75
93

9.
94

70
1.

40
12

66
.6

0
2.

60
2

12
16

8

La
ye

r
Lo

ca
lit

y
22

.2
0

19
2.

11
27

9.
31

38
08

64
03

9.
94

59
5.

35
13

14
.1

6
3.

09
2

16
16

8

In
fr

as
tr

uc
tu

re
A

w
ar

e
13

.4
7

90
.6

9
13

6.
04

39
13

62
48

0.
00

58
4.

31
14

90
.3

0
5.

46
0

16
15

0

Ta
bl

e
5.

2:
A

dd
iti

on
al

st
at

is
tic

s
fro

m
th

e
si

m
ul

at
io

ns

92

93

6. ENSURING SERVICE LEVEL AGREEMENT ON APPLICATION
DEPLOYMENT IN AN EDGE INFRASTRUCTURE

6.1 Introduction

This chapter investigates the requirements to implement a solution that ensures
a maximum time to deploy an application on the Edge. To achieve that, we propose a
novel container scheduler based on a multi-objective genetic algorithm. This scheduler has
the main objective of ensuring the Service Level Agreement set on each application that
defines the time when the application is expected to be effectively active in the infrastructure.
We also evaluate the scheduler against the Kube-scheduler and the Infrastructure-Aware
presented in Chapter 5 using the ECOS simulator.

Besides that, we want so answer the following research question:

• How the download queue on a node can be optimized to improve the deployment
latency? Can the scheduler use the queue manipulation to ensuring service level
agreements on the deployment total time?

This chapter is based on our previously published paper "Luis Augusto Dias Knob,
Carlos Henrique Kayser, Paulo Silas Severo de Souza, Tiago Ferreto. Ensuring SLA Deploy-
ment Latency on Container Edge Infrastructure". 14th IEEE/ACM International Conference
on Utility and Cloud Computing (UCC 2021).

6.2 Related Work

Several works present scheduling strategies considering the SLA of deployments
[Katsalis et al., 2016, Yao and Ansari, 2018]. In [Katsalis et al., 2016], the authors propose
an SLA-driven scheduling strategy for VM placement in order to maximize the revenue of
edge infrastructure-as-a-service (IaaS) providers and minimizing SLA violations, fairly be-
tween the various service providers using the Lyapunov optimization. The simulation-based
results present benefits compared to the First Fit algorithm.

Yao and Ansari [Yao and Ansari, 2018] propose a Weighted Best Fit Decreasing
(WBFD) algorithm to tackle a resource provisioning problem at the edge of the network,
considering the possibility of resource failures happening while minimizing the system cost
incurred by resources rentals without violating the SLA requirement. The resource provi-
sion problem is formulated as an Integer Linear problem (ILP). Simulation results show that

94

the proposed heuristic algorithm performs close to the optimal solutions of ILP with lower
computational complexity.

Some works propose evolutionary algorithms to improve the placement pro-
cess at the edge of the network [Maia et al., 2021, Abbasi et al., 2020] and cloud
[Guerrero et al., 2017]. In [Guerrero et al., 2017], the authors propose the utilization of
the evolutionary algorithm Non-dominated Sorting Genetic Algorithm II (NSGA-II) for multi-
objective container allocation optimization in cloud computing. Some of the objectives of
the proposed strategy are: a) balanced cluster utilization; b) threshold distance; c) system
failure; and d) reduction of the network overheads. Compared to the Kubernetes sched-
uler mechanism, the proposed strategy presents improvements in relation to the objectives
addressed.

In [Maia et al., 2021], the authors propose a multi-objective genetic algorithm based
on Biased Random-Key Genetic Algorithm (BRKGA) and NSGA-II to enhance the service
placement and load distribution in an Internet of Things (IoT) and Edge Computing environ-
ment. For this, a Mixed-Integer Linear Programming (MILP) problem optimization problem
is formulated to minimize the potential occurrence of SLA violations. The efficiency of the
proposed algorithm is analyzed through simulation, and the proposed algorithm achieves
values close to the optimum of the MILP formulation.

However, this solution aims to speed up the provisioning time of container-based
application at the edge of the network avoiding provisioning time SLAs violations.

6.3 Problem Formulation

In this section, we describe the edge application provisioning problem targeted in
this work. Firstly, we describe the main elements of the edge infrastructure considered in our
modeling. Then, we formulate the several steps that comprehend provisioning applications
in the edge nodes alongside our optimization objectives. Notations used in this chapter are
summarized in Table 6.1.

We consider an edge computing network infrastructure modeled as an undirected
graph G = (N ,S), where N = {N1,N2, ...,Nn} represents a set of n edge nodes, in which
the capacity of an edge node Ni is given by zi , and S = {S1,S2, ...,Sm} is the set of m
links connecting the edge nodes. The set of u applications deployed in the edge nodes is
represented by A = {A1,A2, ...,Au}, where an application Aj ∈ A has a provisioning time
SLA ℘j and is comprised by rj replicasRj = {R1

j ,R2
j , ...,Rrj

j }, and a replicaRk
j has a demand

hk
j . The placement of application replicas on edge nodes is represented by a N × A × R

tensor κ ∈ {0, 1}, where:

95

Table 6.1: Summary of notation used in this chapter.

Notation Description

G Network topology, comprised of edge nodes and links
N Set of n edge nodes in the infrastructure
zi Capacity of edge node Ni

qi Download queue of edge node Ni

ci Cache memory of edge node Ni

bi Bandwidth available for edge node Ni

S Set of m links comprising the network infrastructure
A Set of u applications
℘j Provisioning time SLA of application Aj

∂j Provisioning time of application Aj

Rj Set of rj replicas from application Aj

hk
j Demand of replica Rk

j
κi ,j ,k Replicas placement scheme
β Container registry node
Lk

j Set of container layers from replica Rk
j

t j ,k
v Size of container layer Lj ,k

v

ϑi ,j ,k ,v Matrix that informs whether layer Lv
j ,k is available in cache ci or not

wk
j Waiting time of replica Rk

j
dk

j Download time of replica Rk
j

κi ,j ,k =

1 if edge node Ni hosts replica Rk
j

0 otherwise.

As instances of containerized applications, replicas are built on top of container
layers that provide specific functionalities. For instance, a database replica could be made
of 2 layers, one containing the operating system (e.g., “ubuntu:latest”) and the other the
database itself (e.g., “mysql:latest”). As edge nodes can receive provisioning requests from
multiple applications, a download queue qi defines the order in which container layers of
each replica hosted by an edge node Ni will be downloaded from the registry edge node β.

Although container layers may contain application-specific settings, many are generic,
used in common by different applications. Accordingly, when provisioning a containerized
application replica Rk

j , an edge node Ni checks if Rk
j layers Lk

j have not been recently
downloaded and are accessible in its cache ci . Consequently, only not cached layers are
downloaded from the registry node β, avoiding unnecessary traffic in the network and po-
tentially shortening applications’ provisioning time. We can check whether container layer
Lv

j ,k is available in cache ci through a N ×L matrix ϑ, where:

96

ϑi ,j ,k ,v =

1 if layer Lv
j ,k is available in ci

0 otherwise.

We assume that edge nodes download container layers from the registry sequen-
tially given their queues. Therefore, a replica Rk

j located at position ρ in a download queue
qi has to wait for wk

j units of time before getting downloaded, where wk
j represents the time

needed to download all previous items in qi . When its turn comes, downloading replica Rk
j

takes dk
j units of time, as denoted in Equation 6.1.

dk
j =

|Lk
j |∑

v=1

t j ,k
v

bi
· (1− ϑi ,j ,k ,v) (6.1)

More specifically, dk
j accounts for the time needed to download all container layers

Lk
j of replica Rk

j not available in ci from the container registry β. The download time of an
uncached layer Lj ,k

v depends on its size t j ,k
v and bi , which denotes the available bandwidth for

edge node Ni . We assume that the provisioning of an application Aj is only complete when
all its replicas Rj are successfully provisioned in the infrastructure. Therefore, the overall
provisioning time of Aj can be described as ∂j =

∑rj
k=1 wk

j + dk
j .

Our goal consists in defining the placement of application replicas and the arrange-
ment of the edge nodes’ download queues to minimize the number of SLA violations due
to prolonged provisioning times. Accordingly, the objective function can be formulated as
in Equation 6.2, where constraint 1 (Equation 6.3) guarantees that each replica is only pro-
visioned once, constraint 2 (Equation 6.4) sets the lower bound of provisioning times, and
constraint 3 (Equation 6.5) certifies that edge nodes are not overloaded.

Minimize
u∑

j=1

[∂j > ℘j] (6.2)

Subject To:

u∑
j=1

rj∑
k=1

κi ,j ,k = 1, ∀i ∈ {1, 2, ..., n} (6.3)

∂j ⩾ 0, ∀j ∈ {1, 2, ..., u} (6.4)

u∑
j=1

rj∑
k=1

hk
j · κi ,j ,k ⩽ zi , ∀i ∈ {1, 2, ..., n} (6.5)

97

6.4 Deployment Latency SLA Enforcement Scheduler

Defining placement schemes for application replicas and finding proper arrange-
ments for edge nodes’ download queues, which is a variant of the Application Scheduling
Problem [Topcuoglu et al., 2002], is an NP-hard optimization problem. For that reason, ap-
proximation algorithms represent viable alternatives to find acceptable solutions within a
bounded time. As finding the optimal solution is infeasible given the problem complexity,
we calculate a Pareto Front to find a set of non-dominated solutions (i.e., none of the so-
lutions found beat them in all objectives) [Fard et al., 2014]. Figure 6.1 presents a visual
representation of a Pareto Front in a sample bi-objective optimization.

Figure 6.1: Visual representation of a Pareto Front [Ascione et al., 2018].

There are several single and multi-objective algorithms that can find pareto-optimal
solutions [Deb et al., 2002, Hao et al., 2006, Deb and Jain, 2013]. We employ the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al., 2002], as it reaches superior
results compared to other meta-heuristics [Zambrano-Vega et al., 2017]. In the remaining of
this section, we present a novel scheduling algorithm called Deployment Latency SLA En-
forcement Scheduler (DLSLA), which leverages NSGA-II functionality to minimize the num-
ber of SLA violations due to overextended provisioning time of multi-replica applications in
edge computing environments.

98

6.4.1 Population Initialization

Our scheduling algorithm takes as input each container node that passes from the
Kube-scheduler Filter stage. First, we evaluate the download queue from the node, and if
the download queue has less than three containers, we run a score function based on a
simplified fitness function implementation to define the scoring values. To queues with 3
or more applications, we send the node to DLSLA, setting the number of population and
generation to minqueue_size − 1)!, 100 and min(queue_size − 2)!, 100) respectively.

Running DLSLA to nodes with a download queue smaller than three containers is
not cost-effective, so we only run it when necessary. After receiving the scoring values to all
nodes, we send them to a custom-made ranking and bind implementation that chooses the
node that will deploy the given application replica.

6.4.2 Download Queue Implementation

When a container node receives several container lifecycle operations simultane-
ously or close in time, it needs to create a queue to manage the order in which operations
will be processed. This queue works in a FIFO (First-In-First-Out) model, where each con-
tainer layer, when not in the cache, will be downloaded based on the manifest order (usually
first the base layer until the top layer). Typically, the container runtime can manage three
simultaneous downloads that will share the connection. However, this value is configurable
so that it can be decreased to one, for example. After finishing all layers for one container,
the runtime starts to download the next one.

So, in an overcrowded cluster, with many applications and lifecycle operations, this
can generate situations where large applications (like Java-based or databases) will take
several seconds or even minutes to be deployed, halting the application instantiation in a
set of nodes. In cloud computing, with large bandwidth links, usually, it is not a problem.
Still, edge computing with small links and highly-shared infrastructure can generate bottle-
necks (for example, 1GB image in a 20Mbps network will take more than 5 minutes to be
downloaded using all available bandwidth). Hence, driving the need for availability and mo-
bility between nodes at the edge, we understand that some applications need to be deployed
faster than others, and one way to do this is to take a better position on a busy node’s queue.

By default, in the current runtime implementations, this queue can not be altered.
So the only way to manage the order of waiting operations is to remove them from the
scheduler and re-add them in a new order. However, these operations will redo the sched-
uler process and can return a new set of distinct nodes. Furthermore, sometimes we only
want to change the queue order in one busy node and not in the managed cluster. There-

99

fore, we propose a new implementation of the operations queue, where the queue can be
altered respecting the currently active operation. We implemented a simple modification
where, when we schedule a new operation to a node, we send the new order for the waiting
operations, which can be entirely different from the currently active order.

This provides fine-grained control over the lifecycle operations and enable new poli-
cies and scheduler algorithms to ensure the amount of time needed to instantiate or update
an application, improving the overall cluster utilization. So, together with the scoring values,
the DLSLA returns to the ranking and bind modules, the best waiting queue to the node. If
the scheduler selects the node with the container bind, it also reconfigures the waiting queue
based on that return by the GA.

6.4.3 Chromosome Representation

We represent each possible solution (so-called chromosome) as an array, called
containers, which can be correlated with the node’s deployment queue. Each value on the
queue, called gene, is set by the unique identifier representing the containers that need
to be downloaded and deployed. No container can appear more than once on the queue,
and all containers need to be present on each chromosome. If several applications use the
same container, the algorithm will put only the one with the smallest SLA value since all
applications that use the same container will start together after the image download. Fig-
ure 6.2 presents a graphic representation from the chromosomes and the relation between
the containers images, layers, download queue, and the chromosome.

6.4.4 Fitness Function

Since DLSLA is based on NSGA-II, which is designed for multi-objective optimiza-
tion problems, the expected result from the fitness function is a dictionary containing the val-
ues for each optimization objective. In our case, the fitness value is represented by the three
functions to be minimized, namely sla_violations, total_time, changes_on_queue. Since we
already receive the node after the Filter stage, it is impossible that a given constraint has an
infinite or negative result, so we do not define default values for any criteria.

Algorithm 6.1 presents the fitness function implementation, where we first calcu-
late, to a given queue, the amount of time needed to deploy all the containers. We also
validate how many SLA violations that a given chromosome will generate. Finally, we verify
the number of changes between the original queue and the queue presented on the chro-
mosome.

100

Figure 6.2: Chromosome Representation.

6.4.5 Genetic Operators

Selection. As DLSLA is based on NSGA-II, it uses three concepts to select the
best chromosomes in the population [Guerrero et al., 2017]. The first is dominance, where a
chromosome dominates another if the fitness values for all objectives is better than the dom-
inated. Second, the optimal fronts that group the chromosomes non-dominated by other
ones using the Pareto distribution. Finally, the crowding distance is calculated by the aver-
age distance along each objective between the chromosome in the same front. This average
distance is used to sort the chromosomes. After these three operations, we have a popula-
tion with len(population)∗2−1 chromosomes. Then, the algorithm selects the len(population)
best chromosomes.

Crossover. After selecting the fittest chromosomes, DLSLA employs a mating
process (called crossover) to evolve the population. The crossover process used by DLSLA
can be seen on Algorithm 6.2. First, we run the algorithm len(population)−1 times, selecting
the chromosomes populationx and populationx+1 as parents for each new child. Then, for

101

Input : node_queue: Node download queue; bandwidth: Network bandwidth available on
node; inital_time: Simulation time where the new application need to be instantiate;
chromosome: Chromosome that needs to compute; original_app_queue: Current
application queue on node

Output: Fitness score to the chromosome
1 sla_violations← 0
2 total_time← {}
3 changes_on_queue← 0
4 for gene ∈ chromosomegenes do
5 for digest , size ∈ genelayers do
6 if digest ̸∈ node_queue then
7 total_time+ = size ÷ bandwidth
8 node_queue.append(digest)

9 if total_time > genesla then
10 sla_violations+ = 1

11 for app ∈ original_app_queue do
12 temp_index ← node_queue.index(app)
13 node_queue.pop(temp_index)
14 changes_on_queue+ = temp_index

15 fitness← {sla_violations, total_time,
changes_on_queue}

16 return fitness

Algorithm 6.1: Fitness function.

each child gene, we randomly select a gene in the same position from one of the parents.
We also store the gene not chosen, so in case of conflict or if the gene is already on the
child, we pop one storage gene and complete the queue with a unique gene since no gene
appears more than one time on the chromosome. This crossover function guarantees that
if a gene is equal in both parents, it stays the same on the child. So, only distinct genes
between parents are randomly selected for the child.

Mutation. We mutate chromosomes generated in the crossover process to avoid
local optimum. Our mutation function is applied in a random number of new individuals,
executing number_of_elements/2 swaps on the queue order.

6.4.6 Scheduler Score and Ranking

After the GA runs for a given number of generations, we return the high classified
chromosome as the best solution to that given node. After executing the scoring algorithm to
all nodes, be it the simplified version or the GA, we rank all nodes by the following weights:

weight ← 0

102

Input : population: population of chromosomes;
Output: New population with original chromosomes plus children

1 for x < len(population)− 1 do
2 child← ∅
3 father1← populationx

4 father2← populationx+1

5 cache← ∅
6 for y < len(father1genes) do
7 gene1, gene2← random(father1genes[y], father2genes[y])
8 if gene1 ̸∈ childgenes then
9 childgene[y] ← gene1

10 if gene1 ∈ cache then
11 cache.delete(gene1)

12 if gene2 ̸∈ cache ∧ gene2 ̸∈ childgenes ∧ gene1 ̸= gene2 then
13 cache.append(gene2)

14 else if gene2 ̸∈ childgenes then
15 childgene[y] ← gene2
16 if gene2 ∈ cache then
17 cache.delete(gene2)

18 else
19 childgene[y] ← cache.pop()

20 if random() < mutation_rate then
21 child← mutation(child)

22 childfitness ← fitness(child)
23 population.append(child)

24 return population

Algorithm 6.2: Crossover function.

weight+ = 10− sla_violations ∗ 0.5

weight+ = min_time/time_on_chost ∗ 10

weight+ = 10− number_of_apps_on_node

weight+ = 10− changes_on_queue ∗ 0.5

We select the node with the highest score to host the container. If more than one
has the same final weight, we randomly select a node between them.

6.5 Evaluation

This section presents an evaluation of the DLSLA scheduling algorithm. The al-
gorithm is compared to the Kube-scheduler and the algorithms presented in Chapter 5
(Infrastructure-Aware Scheduler) in a simulated scenario based on the Brazilian research

103

network topology using Docker Hub images. We choose these two algorithms as a baseline
because the first is the default scheduler enabled on Kubernetes. The second implements
network availability as a priority, decreasing the deployment latency without considering the
SLA. The metrics used for comparison include the number of applications that do not fulfill
the SLA deployment latency, scheduling distribution, among others.

6.5.1 Simulation Scenario

To simulate an edge computing topology, we used the Brazilian Research Net-
work, called Ipê. This topology interconnects all Brazilian universities and research institutes
through 28 Points of Presence (PoPs) distributed over the country (Figure 5.1). The topology
also connects to several international research networks, such as Clara (Latin America), In-
ternet2 (United States), and Géant (Europe). In the experiments, the actual bandwidth and
latency for each link were used, as described in [RNP, 2021b]. We implemented this topol-
ogy in the ECOS simulator presented in Chapter 3.

To compare our solution with the other two schedulers, we deployed a set of con-
tainer nodes on the Ipê topology. Each PoP included a large node named Worker Node and
five small nodes named Edge Nodes. The main difference between the nodes is the band-
width available to each one. For instance, the worker node has 100 Mbps, and the smaller
nodes have between 10 and 60 Mbps of bandwidth (distributed uniformly). For simplicity, the
simulation only considers the network utilization for container provisioning, from the registry
to the worker or edge nodes. Other communications that may occur in a real network are
ignored.

The registry, where all nodes request the images, is placed on PoP-São Paulo.
This PoP is one of the most connected in the topology and is the primary connection to
cloud providers [RNP, 2021a]. We also set the bandwidth of the Registry Node to 10Gbps
to avoiding it to represent a bottleneck on the simulation.

6.5.2 Workload

The workload used in the simulation is based on the Docker Hub [Docker, 2021]
twenty four most downloaded images, excluding base images. The images have a total size
of 3436.45 MB (an average of 143.19 MB per image). However, since several images share
layers, the maximum amount a given node needs to download to have all applications is
2152.78 MB (37% of similarity between images). We create a random number of applica-
tions between 5 and 25 (distributed uniformly) for each image. And for each application,
we deploy a random number of replicas between 2 and 5 (distributed uniformly). Finally,

104

each application has a random scheduling time between 0 and 1000 seconds (distributed
uniformly), which defines the exact moment the application needs to be scheduled in the
topology.

After setting the topology and the applications that need to be deployed, we create
three scenarios with distinct types of Service Level Agreements related to the amount of
time needed to full instantiate the applications on the topology:

• Random Distribution: We set random SLAs with values between 30 and 150 sec-
onds for each application.

• Normal Distribution: We set five possible SLAs (30, 60, 90, 120, 150 seconds) with
different weights (5%, 20%, 50%, 20%, 5%) for each application.

• 60 Sec SLA: We set a 60 seconds SLA for each application without distinction.

It is important to note that this SLA is not hard defined, so the application is al-
ways deployed, even if it is not fulfilled. After preparing the scenarios, we run the simulation
30 times for each algorithm (DLSLA, Infrastructure-Aware, and Kube-scheduler). All results
present next use the arithmetic average between the runs. Table 6.2 presents the parame-
ters used in the experiments.

Parameter Value

Server Nodes 28
Server Links 100 Mbps
Edge Nodes 140
Edge Links 10 - 60 Mbps

Registry Node Link 10 Gbps
Number of Images 24

Number of Applications 350
Number of Replicas 1258

Table 6.2: Simulation parameters.

6.5.3 Results

With the simulation, we want to evaluate three main variables: the number of ap-
plications that do not fulfill the SLA; on this applications’ set, we want to know how much
was the average time over the SLA; and finally, we want to understand how the applications’
scheduling distribution was an impact between the worker and edge nodes. Since a com-
plete centralization on the worker nodes, probably will decrease the time needed to deploy
the application, but will decrease the total utilization from the topology. We also summarize

105

the simulation results in Table 6.3, and present additional information like average time to all
applications and number of replicas that do not fulfill the SLA.

We understand that one application does not achieve the SLA if any replica that
composes this application does not start until the expected time defined by the SLA. We
also want to clarify that, as the SLA is not hard ensured, the download queue created on
each node with more than one container deployed simultaneously will cumulatively impact
all the new applications’ schedule. With that in mind, in Figure 6.3 we present the average
number of applications that do not fulfill the SLA on each scenario.

Figure 6.3: Number of applications that do not fulfill the SLA.

The results show that both the DLSLA and the Infrastructure-Aware managed to
decrease the amount of not fulfilled applications in all scenarios, having as results 73.80%,
62.89%, 67.06% and 69.16%, 62.25%, 62.97% smaller, respectively to the Random, Normal
Distribution and the 60 Sec SLA scenarios in comparison with the Kube-scheduler. While
DLSLA has more than 90.88% of the application that achieves the SLA, the Infrastructure-
Aware has a slightly inferior with 88.97% ensure SLA applications. Kube-scheduler presents
that the percentage of fulfilling applications in the best scenario (Normal Distribution) was
only 71.55%. This was an expected result since the Kube-scheduler does not consider the
network availability or the SLA deadline time as a priority to the scheduling.

This also reflects in our second experiment presented in Figure 6.4, where we plot
the average time over the SLA to each application that was not deployed within the time
defined by the SLA. With fewer applications ensuring the SLA, Kube-scheduler expected to

106

Figure 6.4: Average time over the SLA to not fulfilled applications.

have the biggest average time on each scenario, with a value close to 100 seconds in all
three experiments (97.25, 91.52, 109.94). Meanwhile, the DLSLA has a better average time
than the Infrastructure-Aware in all scenarios but with a bigger standard deviation over the
runs. This happened for two reasons, first, the number of applications that do not fulfill the
SLA is about 40% smaller using DLSLA than Infrastructure Aware. Smaller samplings will
have a more significant standard deviation if the values are close to the average. Second,
the infrastructure tends to be deterministic by always selecting the same nodes with more
bandwidth available presenting a more consistent behavior between runs.

Finally, we want to understand the distribution impact between the worker and edge
nodes based on the number of container schedules. Figure 6.5 presents a violin distribution
to the container scheduler per node. In a worst-fit distribution, all nodes have 7.5 containers
scheduled on average. Kube-scheduler shows the closest gap to this value, both on the edge
and worker nodes, with a slightly bigger average on the worker node in all scenarios. While
DLSLA and Infrastructure Aware present quite distinct values to the worker and edge nodes.
On average, the worker nodes were selected by the Infrastructure-Aware scheduler 13.94,
14.75, and 14.21 times on average for the Random, Normal, and 60 Sec SLA, respectively.
Meanwhile, the worker nodes were chosen by the DLSLA 15.29, 15.24, and 15.20 times on
average.

Although the worker nodes have been chosen 2.25, 2.71, 2.72 times with the Infras-
tructure Aware and 2.57, 2.85, 2.99 times with the DLSLA more than the edge nodes, these

107

Figure 6.5: Average distribution between Edge and Worker Nodes.

nodes still allocated 68.95%, 64.79% and 64.72% of the applications with the Infrastructure-
Aware scheduler and 65.98%, 63.68% and 62.51% with the DLSLA. That happened be-
cause there were five times more edge nodes in the infrastructure than worker nodes. In
comparison, the edge nodes with the Kube-scheduler were chosen at 82.95%, 81.05%, and
79.79% of the time. Lastly, it is possible to visualize in the distribution that in all scenarios,
the Infrastructure-Aware concentrate more on a set of nodes than the DLSLA, having, for
example, more edge nodes with zero container schedule (5.2, 15.8, 17.7 versus 4.2, 3.0,
1.2 on average). We summarize the experiments in Table 6.3, presenting more elaborated
statistics for each one of the nine running sets.

108

S
ce

na
ri

o
C

on
ta

in
er

S
ch

ed
ul

in
g

W
or

ke
r

N
od

es
(t

ot
al

)
E

dg
e

N
od

es
(t

ot
al

)
P

ro
po

rt
io

n
on

To
po

lo
gy

(%
)

W
or

ke
r

N
od

e
(a

vg
)

W
or

ke
r

N
od

e
(%

pe
r

no
de

)
E

dg
e

N
od

e
(a

vg
)

E
dg

e
N

od
e

(%
pe

r
no

de
)

R
an

do
m

D
is

tr
ib

ut
io

n
K

ub
e-

S
ch

ed
ul

er
10

43
.5

1
21

4.
48

82
.9

5-
17

.0
5

7.
66

0.
59

7.
45

0.
59

In
fra

st
ru

ct
ur

e-
A

w
ar

e
86

7.
44

39
0.

55
68

.9
5-

31
.0

5
13

.9
5

1.
11

6.
19

0.
49

D
LS

LA
82

9.
96

42
8.

03
65

.9
8-

34
.0

3
15

.2
9

1.
22

5.
93

0.
47

N
or

m
al

D
is

tr
ib

ut
io

n
K

ub
e-

S
ch

ed
ul

er
10

19
.6

23
8.

4
81

.0
5-

18
.9

5
8.

51
0.

68
7.

28
0.

58
In

fra
st

ru
ct

ur
e-

A
w

ar
e

81
5.

1
44

2.
9

64
.7

9-
35

.2
1

15
.8

2
1.

26
5.

82
0.

46
D

LS
LA

80
1.

06
45

9.
93

63
.6

8-
36

.3
2

16
.3

2
1.

30
5.

72
0.

45

60
S

ec
S

LA
K

ub
e-

S
ch

ed
ul

er
10

03
.7

25
4.

3
79

.7
9-

20
.2

1
9.

08
0.

72
7.

17
0.

57
In

fra
st

ru
ct

ur
e-

A
w

ar
e

81
4.

13
44

3.
86

64
.7

2-
35

.2
8

15
.8

5
1.

26
5.

81
0.

46
D

LS
LA

78
6.

4
47

1.
6

62
.5

1-
37

.4
9

16
.8

4
1.

34
5.

62
0.

45

S
ce

na
ri

o
S

LA
Fu

lfi
llm

en
t

A
pp

lic
at

io
n

D
ep

lo
ym

en
tL

at
en

cy

av
g

(n
)

st
d

(n
)

N
ot

Fu
lfi

ll
O

ve
r

S
LA

av
g

(s
ec

)
N

ot
Fu

lfi
ll

S
LA

st
d

(n
)

A
ll

A
pp

s
av

g
(s

ec
)

A
ll

A
pp

s
st

d(
n)

R
an

do
m

D
is

tr
ib

ut
io

n
K

ub
e-

S
ch

ed
ul

er
21

1.
90

5.
00

97
,2

5
5,

65
82

.9
1

2.
91

In
fra

st
ru

ct
ur

e-
A

w
ar

e
31

3.
21

1.
15

29
,9

9
1,

60
26

.4
7

0.
40

D
LS

LA
32

5.
79

2.
30

25
,4

8
3,

50
25

.4
2

0.
59

N
or

m
al

D
is

tr
ib

ut
io

n
K

ub
e-

S
ch

ed
ul

er
22

1.
24

6.
10

91
,5

2
7,

37
84

.4
8

3.
80

In
fra

st
ru

ct
ur

e-
A

w
ar

e
33

1.
69

1.
20

34
,5

5
1,

86
25

.0
4

0.
30

D
LS

LA
33

8.
93

1.
83

33
,9

7
7,

76
26

.8
9

0.
65

60
S

ec
S

LA
K

ub
e-

S
ch

ed
ul

er
19

5.
76

4.
86

10
9,

94
6,

14
88

.6
8

3.
38

In
fra

st
ru

ct
ur

e-
A

w
ar

e
30

9.
76

2.
29

40
,7

1
3,

46
26

.8
4

0.
85

D
LS

LA
32

6.
17

2.
35

36
,2

2
7,

58
24

.8
7

0.
88

Ta
bl

e
6.

3:
A

dd
iti

on
al

st
at

is
tic

s
fro

m
th

e
si

m
ul

at
io

ns
.

109

6.6 Conclusion

In this chapter, we have addressed the problem of container deployment time en-
suring through SLA (that means ensuring the expected time that a given application needs
to be running on the topology). We want to achieve that based on a three-objective opti-
mization: (i) decrease the total time to deploy all containers, (ii) fulfill the biggest possible
number of SLAs, and (iii) implement that with the smaller changes in the download queue as
possible. To that, we developed a novel approach using a multi-objective genetic algorithm
called DLSLA.

The results demonstrate that our approach provides a suitable solution for ensuring
the SLAs, and it found optimized solutions within a reasonable population size and number of
generations (100 and 200, respectively). We compared the results against Kube-scheduler
and Infrastructure Aware through a set of simulations. As the Kube-scheduler does not
consider the network infrastructure on the scheduler, our solution presents results of al-
most 200% better in ensuring the application SLA. We also show that the DLSLA scheduler
presents better results than the Infrastructure-Aware while having a more consistent distri-
bution between the edge nodes.

110

111

7. FINAL CONSIDERATIONS

This chapter summarizes and concludes our research presented in earlier chap-
ters. First, the contributions are presented. After, we revisited the goals and research ques-
tions introduced in the first chapter. Finally, we discussed possible future works that can
build on the research presented in this thesis.

7.1 Contributions

Among the contributions presented in this thesis, it is possible to identify the follow-
ing items:

• Review of background technologies that define edge computing and containerization
(Chapter 2).

• Review of the state-of-the-art in container orchestration focusing on decreasing de-
ployment latency (Chapters 4, 5, and 6).

• Definition and implementation of an event-driven simulator to container edge orches-
tration (Chapter 3).

• Implementation of a registry placement algorithm based on fluid communities, includ-
ing simulation with the GARR Topology (Chapter 4).

• Implementation of a new priority to kube-scheduler based on network availability, in-
cluding simulation with the Ipê Network (Chapter 5).

• Definition and implementation of a new SLA-driven scheduler using genetic algorithm
(Chapter 6).

Besides the thesis, during the Ph.D. we published four scientific papers as shown in
7.1. Also, this thesis was awarded with a PUCRS-PrInt scholarship to be developed partially
in Italy. It was developed with the Fondazione Bruno Kessler - Trento. This collaboration has
strengthened the relationship between the PUCRS and the FBK.

7.2 Revisiting the Goals and Research Questions

In the first chapter of this thesis, we described that one of the most critical chal-
lenges on containerization in edge computing is the deployment latency that may occur on

112

Year Authors Work Title Conference

2018 LAD Knob, BG Xavier,
T Ferreto An unikernels provisioning architecture for OpenStack ISCC

2021 LAD Knob, F Faticanti,
T Ferreto, D Siracusa

Community-based placement of registries to speedup
application deployment on Edge Computing IC2E

2021 LAD Knob, C Kayser,
T Ferreto

Improving Container Deployment in Edge Computing Using
the Infrastructure Aware Scheduling Algorithm ISCC

2021 LAD Knob, P Souza,
C Kayser, T Ferreto

Ensuring SLA Deployment Latency on Container
Edge Infrastructure UCC

Table 7.1: Papers published during the PhD degree.

heterogeneous and resource-constrained scenarios. So, the main contribution of this thesis
is to investigate all the main components of the container orchestration and how each one
can be optimized. We also believe that the efforts to improve the deployment latency are
indispensable contributions to the popularization of edge computing. Our goals, which we
will revisit now, are related to this challenge. So, below, we draw our conclusions for each of
the three goals presented at the start of this thesis.

ò
Goal 1: To investigate the container deployment process on edge computing,
learn how the schedulers’ solutions works, and understand how other compo-
nents can impact this operation

The first goal focused on understanding the background technologies that depict
the concept of edge computing and containerization. The background information has been
described in Chapter 2. After understanding the deployment process, it became more ap-
parent that the network has a larger impact on edge infrastructure than cloud computing.
So, every contribution presented here has as main characteristic the network usage during
the deployment process. Finally, more information on how each component can impact the
total time to instantiate a new application can be seen in Chapters 4,5, and 6.

This goal is also highly related to the Research Questions "What are the differences
between the cloud and the edge on the application deployment process? Are the actual
solutions adapted to this largely heterogeneous and constrained-resource scenario?" and
"Is it possible to optimize the deployment process and reduce the latency created by them?
If yes, what components should be optimized?", been the first answered by Chapter 2 and
the second by the introduction and related work from Chapters 4,5, and 6.

ò
Goal 2: To investigate if there is any solution to simulate or emulate the or-
chestration of large container edge infrastructure, and if necessary, evaluate
the requirements to implement a simulator

113

Large and distributed infrastructure is hard to replicate, so we knew that we would
need to use simulation to validate our contributions. Our second goal was defined with that
in mind. This also raised the Research Question "How can we evaluate distinct solutions on
edge scenarios? Is there any simulator that can be used? What are the main requisites for
the simulation?" that was answered in Chapter 3.

After evaluating the present solutions on edge/fog computing simulation, we de-
cided to develop a new event-driven simulator focused on the container orchestration pro-
cess. As far as we know, this was the first solution focused on this criteria. We also imple-
mented a network sharing policy to investigate the main bottlenecks created by the deploy-
ment of simultaneous applications on distinct edge regions.

ò
Goal 3: To improve the deployment process on edge infrastructure through new
solutions on several phases of the deployment

The last goal is synthesized in our last three Research Questions presented in
Chapter 1: "How the registry placement influence the deployment latency? How can we dis-
tribute the load network between several registries on the topology?", "Does the scheduler
uses any network information as input to schedule applications? Is it possible to implement
a solution that uses the available bandwidth as input to the application schedule? How this
impacts the other’s priorities?", and "How the download queue on a node can be optimized to
improve the deployment latency? Can the scheduler use the queue manipulation to ensuring
service level agreements on the deployment total time?". This question relies on optimiza-
tion on several components and steps from the orchestration process and is answered in
Chapters 4, 5, and 6.

The solutions present in these chapters are: a registry placement algorithm based
on fluid communities, a priority to the kube-scheduler based on the network availability, and
an SLA-driven scheduler using a genetic algorithm. These works have not fully stressed
the optimizations on each of their components, and experimentation in real scenarios or
testbeds still needs to be done.

7.3 Prospects for future research

In this final section of our final chapter, we discuss prospects for future research.
We imagine several improvements that can be made on current works, including new simula-
tor features and advanced techniques on infrastructure placement and application scheduler.

114

Ç
Implementation of bandwidth control on the worker node runtime: Today,
all the QoS and limits implemented on container runtime mainly focus on the
interference and requisites that can conflict when several applications run on
the same node. However, the runtime itself is not limited by these configura-
tions. Our first investigations prove that it is possible to generate a DoS attack
spamming several lifecycle operations simultaneously on a orchestrate infras-
tructure, including application traffic. However, even if it appears promising, it
needs further investigation to achieve significant results.

Ç
Dynamic registry placement: The registry placement is a challenging problem
on the container orchestration since a well-positioning distribution can create a
more robust infrastructure, with small latency enabling fast migration and many
concurrent applications. In this thesis, we manually set the number of registries
that need to be deployed in a given topology. A more dynamic scenario, may
need a more fluid algorithm that can add and remove registries based on the
topology operations. An improvement on our algorithm to fulfill this requirement
is a future work that needs further investigation.

Ç
Improvements on the Simulator: We developed our simulator to provide an
experimentation scenario to the deployment orchestration process. However,
we focused on a generic solution that can be extended to distinct contexts. New
modules and algorithms can be added to almost every component, improving
the actual implementation. Possible solutions that can be developed are a more
fine-grained control on the node resource, like CPU, memory, and energy man-
agement.

115

REFERENCES

Abbasi, M. Pasand, E. M. and Khosravi, M. R. (2020). Workload allocation in iot-fog-cloud
architecture using a multi-objective genetic algorithm. Journal of Grid Computing, vol. 1,
pp. 1–14.

Ahmed, A. and Pierre, G. (2018). Docker container deployment in fog computing
infrastructures. In: IEEE International Conference on Edge Computing (EDGE), pp. 1–8.
IEEE.

Ahmed, A. and Pierre, G. (2020). Docker-pi: Docker container deployment in fog computing
infrastructures. International Journal of Cloud Computing, vol. 9, pp. 6–27.

Andreev, K. and Racke, H. (2004). Balanced graph partitioning. Theory of Computing
Systems, vol. 39, pp. 929–939.

Armbrust, M. Fox, A. Griffith, R. Joseph, A. D. Katz, R. Konwinski, A. Lee, G. Patterson, D.
Rabkin, A. Stoica, I. and Zaharia, M. (2010). A view of cloud computing. Communications
of the ACM, vol. 53, pp. 50–58.

Aryal, R. G. and Altmann, J. (2018). Dynamic application deployment in federations of
clouds and edge resources using a multiobjective optimization AI algorithm. In: Third
International Conference on Fog and Mobile Edge Computing (FMEC), pp. 147–154. IEEE.

Ascione, F. Bianco, N. De Stasio, C. Mauro, G. M. and Vanoli, G. P. (2018). 5.21 energy
management in hospitals. In: Dincer, I., editor, Comprehensive Energy Systems, pp. 827–
854. Elsevier, Oxford.

Bernstein, D. (2014). Containers and cloud: From LXC to docker to kubernetes. IEEE
Cloud Computing, vol. 1, pp. 81–84.

Bertsekas, D. P. Gallager, R. G. and Humblet, P. (1992). Data networks, vol. 2. Prentice-Hall
International New Jersey.

Bonomi, F. Milito, R. Zhu, J. and Addepalli, S. (2012). Fog computing and its role in the
internet of things. In: First Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, pp. 13–16. ACM.

Burns, B. Grant, B. Oppenheimer, D. Brewer, E. and Wilkes, J. (2016). Borg, omega, and
kubernetes. Communications of the ACM, vol. 59, pp. 50–57.

Calheiros, R. N. Ranjan, R. Beloglazov, A. De Rose, C. A. F. and Buyya, R. (2011).
Cloudsim: a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software: Practice and Experience, vol. 41,
pp. 23–50.

116

Carella, G. A. and Magedanz, T. (2016). Open baton: A framework for virtual network
function management and orchestration for emerging software-based 5g networks. IEEE
Newsletter, vol. 2016, pp. 190–190.

Casalicchio, E. (2019). Container orchestration: A survey. In: Puliafito, A. and Trivedi,
K. S., editors, Systems Modeling: Methodologies and Tools, vol. 1, pp. 221–235. Springer
International Publishing, Cham, 1 ed..

Checko, A. Christiansen, H. L. Yan, Y. Scolari, L. Kardaras, G. Berger, M. S. and
Dittmann, L. (2015). Cloud ran for mobile networks - 2014; a technology overview. IEEE
Communications Surveys Tutorials, vol. 17, pp. 405–426.

Consortium-GARR (2021). Consortium garr. WebPage.
https://www.garr.it/it/infrastrutture/rete-nazionale/infrastruttura-di-rete-nazionale. Date of
access: 08/2021.

Darrous, J. Lambert, T. and Ibrahim, S. (2019). On the importance of container image
placement for service provisioning in the edge. In: 28th International Conference on
Computer Communication and Networks (ICCCN), pp. 1–9.

Deb, K. and Jain, H. (2013). An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, vol. 18, pp. 577–601.

Deb, K. Pratap, A. Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, vol. 6, pp. 182–
197.

Docker (2021). Docker Hub. WebPage. https://hub.docker.com. Date of access: 08/2021.

Doriguzzi-Corin, R. Scott-Hayward, S. Siracusa, D. Savi, M. and Salvadori, E. (2020).
Dynamic and application-aware provisioning of chained virtual security network functions.
IEEE Transactions on Network and Service Management, vol. 17, pp. 294–307.

Ellis, A. (2021). Openfaas. WebPage. https://docs.openfaas.com. Date of access: 08/2021.

Erdos, P. (1961). On the evolution of random graphs. Bulletin of the Institute of International
Statistics, vol. 38, pp. 343–347.

ETSI MEC-ISG (2020). Mobile edge computing (mec); framework and reference
architecture, etsi gs mec 003 v2.2.1. ETSI, DGS MEC, no 3, pp. 1–21.

Fahs, A. J. and Pierre, G. (2019). Proximity-aware traffic routing in distributed fog computing
platforms. In: 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp. 478–487. IEEE.

117

Fard, H. M. Prodan, R. and Fahringer, T. (2014). Multi-objective list scheduling of workflow
applications in distributed computing infrastructures. Journal of Parallel and Distributed
Computing, vol. 74, pp. 2152–2165.

Faticanti, F. De Pellegrini, F. Siracusa, D. Santoro, D. and Cretti, S. (2019). Cutting
throughput with the edge: App-aware placement in fog computing. In: 6th IEEE
International Conference on Cyber Security and Cloud Computing (CSCloud)/ 5th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 196–
203. IEEE.

Fesehaye, D. Gao, Y. Nahrstedt, K. and Wang, G. (2012). Impact of cloudlets on interactive
mobile cloud applications. 16th IEEE International Enterprise Distributed Object Computing
Conference, vol. 1, pp. 123–132.

Fu, S. Mittal, R. Zhang, L. and Ratnasamy, S. (2020). Fast and efficient container startup
at the edge via dependency scheduling. In: 3rd USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 20), pp. 1–6. USENIX.

Garcia Lopez, P. Montresor, A. Epema, D. Datta, A. Higashino, T. Iamnitchi, A. Barcellos,
M. Felber, P. and Riviere, E. (2015). Edge-centric computing: Vision and challenges.
SIGCOMM Computer Communication Review, vol. 45, pp. 37–42.

Guerrero, C. Lera, I. and Juiz, C. (2017). Genetic algorithm for multi-objective optimization
of container allocation in cloud architecture. Journal of Grid Computing, vol. 16, pp. 113–
135.

Ha, K. Abe, Y. Eiszler, T. Chen, Z. Hu, W. Amos, B. Upadhyaya, R. Pillai, P. and
Satyanarayanan, M. (2017). You can teach elephants to dance: agile vm handoff for edge
computing. In: Second ACM/IEEE Symposium on Edge Computing - SEC '17, pp. 1–14.
ACM Press.

Hao, J. Jin-hua, Z. et al. (2006). Multi-objective particle swarm optimization algorithm based
on enhanced ε-dominance. In: IEEE International Conference on Engineering of Intelligent
Systems, pp. 1–5. IEEE.

Harter, T. Salmon, B. Liu, R. Arpaci-Dusseau, A. C. and Arpaci-Dusseau, R. H. (2016).
Slacker: Fast distribution with lazy docker containers. In: 14th USENIX Conference on File
and Storage Technologies (FAST 16), pp. 181–195, Santa Clara, CA. USENIX Association.

Hsu, W.-L. and Nemhauser, G. L. (1979). Easy and hard bottleneck location problems.
Discrete Applied Mathematics, vol. 1, pp. 209–215.

Hu, Y. C. Patel, M. Sabella, D. Sprecher, N. and Young, V. (2015). Mobile edge computing
— a key technology towards 5g. ETSI White Paper No. 11, vol. 11, pp. 1–16.

118

Huang, Z. Wu, S. Jiang, S. and Jin, H. (2019). Fastbuild: Accelerating docker image
building for efficient development and deployment of container. In: 35th Symposium on
Mass Storage Systems and Technologies (MSST), pp. 28–37. SCU.

Ismail, B. I. Goortani, E. M. Karim, M. B. A. Tat, W. M. Setapa, S. Luke, J. Y. and Hoe, O. H.
(2015). Evaluation of docker as edge computing platform. In: IEEE Conference on Open
Systems (ICOS), pp. 130–135. IEEE.

Jain, R. and Tata, S. (2017). Cloud to edge: Distributed deployment of process-aware IoT
applications. In: IEEE International Conference on Edge Computing (EDGE), pp. 182–189.
IEEE.

Jararweh, Y. Tawalbeh, L. Ababneh, F. Khreishah, A. and Dosari, F. (2014). Scalable
cloudlet-based mobile computing model. Procedia Computer Science, vol. 34, pp. 434
– 441.

Kangjin, W. Yong, Y. Ying, L. Hanmei, L. and Lin, M. (2017). Fid: A faster image distribution
system for docker platform. In: IEEE 2nd International Workshops on Foundations and
Applications of Self* Systems (FAS*W), pp. 191–198. IEEE.

Katsalis, K. Papaioannou, T. G. Nikaein, N. and Tassiulas, L. (2016). Sla-driven vm
scheduling in mobile edge computing. In: IEEE 9th International Conference on Cloud
Computing (CLOUD), pp. 750–757. IEEE.

Kubernetes (2021a). Kube-scheduler component configs. WebPage.
https://github.com/kubernetes/kube-scheduler. Date of access: 08/2021.

Kubernetes (2021b). Production-grade container orchestration. WebPage.
https://kubernetes.io/. Date of access: 08/2021.

Latora, V. Nicosia, V. and Russo, G. (2017). Complex networks: principles, methods and
applications. Cambridge University Press.

Lera, I. Guerrero, C. and Juiz, C. (2019). Yafs: A simulator for iot scenarios in fog computing.
IEEE Access, vol. 7, pp. 91745–91758.

Littley, M. Anwar, A. Fayyaz, H. Fayyaz, Z. Tarasov, V. Rupprecht, L. Skourtis, D. Mohamed,
M. Ludwig, H. Cheng, Y. and Butt, A. R. (2019). Bolt: Towards a scalable docker registry via
hyperconvergence. In: IEEE 12th International Conference on Cloud Computing (CLOUD),
pp. 358–366. IEEE.

Maia, A. M. Ghamri-Doudane, Y. Vieira, D. and de Castro, M. F. (2021). An improved
multi-objective genetic algorithm with heuristic initialization for service placement and load
distribution in edge computing. Computer Networks, vol. 194, pp. 108–146.

119

Mell, P. M. and Grance, T. (2011). The NIST definition of cloud computing. Standard
publication, National Institute of Standards & Technology, Gaithersburg, MD, United States.

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and
deployment. Linux Journal, vol. 2014, pp. 1–6.

Morabito, R. Farris, I. Iera, A. and Taleb, T. (2017). Evaluating performance of containerized
IoT services for clustered devices at the network edge. IEEE Internet of Things Journal,
vol. 4, pp. 1019–1030.

Nathan, S. Ghosh, R. Mukherjee, T. and Narayanan, K. (2017). Comicon: A co-operative
management system for docker container images. In: IEEE International Conference on
Cloud Engineering (IC2E), pp. 116–126. IEEE.

Nikdel, Z. Gao, B. and Neville, S. W. (2017). Dockersim: Full-stack simulation of container-
based software-as-a-service (saas) cloud deployments and environments. In: IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp.
1–6. IEEE.

Osanaiye, O. Chen, S. Yan, Z. Lu, R. Choo, K.-K. R. and Dlodlo, M. (2017). From cloud
to fog computing: A review and a conceptual live VM migration framework. IEEE Access,
vol. 5, pp. 8284–8300.

Pahl, C. (2015). Containerization and the paas cloud. IEEE Cloud Computing, vol. 2, pp.
24–31.

Parés, F. Gasulla, D. G. Vilalta, A. Moreno, J. Ayguadé, E. Labarta, J. Cortés, U.
and Suzumura, T. (2017). Fluid communities: A competitive, scalable and diverse
community detection algorithm. In: International Conference on Complex Networks and
their Applications, pp. 229–240. Springer.

Patel, M. Naughton, B. Chan, C. Sprecher, N. Abeta, S. Neal, A. et al. (2014). Mobile-edge
computing introductory technical white paper. White paper, ETSI.

Piraghaj, S. F. Dastjerdi, A. V. Calheiros, R. N. and Buyya, R. (2016). Containercloudsim:
An environment for modeling and simulation of containers in cloud data centers. Software:
Practice and Experience, vol. 47, pp. 505–521.

Rancher-Labs (2021). Run kubernetes everywhere. WebPage. https://rancher.com/. Date
of access: 08/2021.

Reznik, A. et al. (2018). Cloud ran and mec: a perfect pairing. White paper, ETSI.

RNP (2021a). Ix.br. WebPage. https://ix.br/particip/sp. Date of access: 08/2021.

120

RNP (2021b). Rede ipê. WebPage. https://www.rnp.br/sistema-rnp/rede-ipe. Date of
access: 08/2021.

Rossi, F. Cardellini, V. Lo Presti, F. and Nardelli, M. (2020). Geo-distributed efficient
deployment of containers with kubernetes. Computer Communications, vol. 159, pp. 161–
174.

Rost, P. Bernardos, C. J. Domenico, A. D. Girolamo, M. D. Lalam, M. Maeder, A. Sabella,
D. and Wübben, D. (2014). Cloud technologies for flexible 5g radio access networks. IEEE
Communications Magazine, vol. 52, pp. 68–76.

Russell, S. and Norvig, P. (2002). Artificial intelligence: a modern approach. Pearson.

Sabella, D. Vaillant, A. Kuure, P. Rauschenbach, U. and Giust, F. (2016). Mobile-edge
computing architecture: The role of mec in the internet of things. IEEE Consumer
Electronics Magazine, vol. 5, pp. 84–91.

Santoro, D. Zozin, D. Pizzolli, D. De Pellegrini, F. and Cretti, S. (2017). Foggy: A platform for
workload orchestration in a fog computing environment. In: IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 231–234. IEEE.

Santos, J. Wauters, T. Volckaert, B. and De Turck, F. (2019). Towards network-aware
resource provisioning in kubernetes for fog computing applications. In: IEEE Conference
on Network Softwarization (NetSoft), pp. 351–359. IEEE.

Satyanarayanan, M. Bahl, P. Caceres, R. and Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing, vol. 8, pp. 14–23.

Schiller, E. Nikaein, N. Kalogeiton, E. Gasparyan, M. and Braun, T. (2018). CDS-MEC:
NFV/SDN-based application management for mec in 5g systems. Computer Networks, vol.
135, pp. 96–107.

Soltesz, S. Potzl, H. Fiuczynski, M. E. Bavier, A. and Peterson, L. (2007). Container-based
operating system virtualization. ACM SIGOPS Operating Systems Review, vol. 41, pp. 275.

Taleb, T. Samdanis, K. Mada, B. Flinck, H. Dutta, S. and Sabella, D. (2017). On multi-
access edge computing: A survey of the emerging 5g network edge cloud architecture and
orchestration. IEEE Communications Surveys & Tutorials, vol. 19, pp. 1657–1681.

Topcuoglu, H. Hariri, S. and Wu, M.-Y. (2002). Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems, vol. 13, pp. 260–274.

Tosatto, A. Ruiu, P. and Attanasio, A. (2015). Container-based orchestration in cloud: State
of the art and challenges. In: Ninth International Conference on Complex, Intelligent, and
Software Intensive Systems, pp. 70–75. IEEE.

121

Truyen, E. Landuyt, D. V. Reniers, V. Rafique, A. Lagaisse, B. and Joosen, W. (2016).
Towards a container-based architecture for multi-tenant SaaS applications. In: 15th
International Workshop on Adaptive and Reflective Middleware - ARM, pp. 1–6. ACM Press.

Uber (2021). Kraken - p2p-powered docker registry. WebPage.
https://github.com/uber/kraken. Date of access: 08/2021.

Vaquero, L. M. and Rodero-Merino, L. (2014). Finding your way in the fog: Towards a
comprehensive definition of fog computing. SIGCOMM Computer Communication Review,
vol. 44, pp. 27–32.

Varga, A. (2010). OMNeT++, chap. 1, pp. 35–59. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Varghese, B. Reano, C. and Silla, F. (2018a). Accelerator virtualization in fog computing:
Moving from the cloud to the edge. IEEE Cloud Computing, vol. 5, pp. 28–37.

Varghese, B. Villari, M. Rana, O. James, P. Shah, T. Fazio, M. and Ranjan, R. (2018b).
Realizing edge marketplaces: Challenges and opportunities. IEEE Cloud Computing,
vol. 5, pp. 9–20.

Varghese, B. Wang, N. Barbhuiya, S. Kilpatrick, P. and Nikolopoulos, D. S. (2016).
Challenges and opportunities in edge computing. In: IEEE International Conference on
Smart Cloud (SmartCloud), pp. 20–26. IEEE.

Velasquez, K. Abreu, D. P. Assis, M. R. M. Senna, C. Aranha, D. F. Bittencourt, L. F.
Laranjeiro, N. Curado, M. Vieira, M. Monteiro, E. and Madeira, E. (2018). Fog orchestration
for the internet of everything: state-of-the-art and research challenges. Journal of Internet
Services and Applications, vol. 9, pp. 1–23.

Wang, K. Xu, F. Ding, Y. and Xing, L. C. (2021). Kubeedge.io. WebPage.
https://kubeedge.io/en. Date of access: 08/2021.

Wang, N. Matthaiou, M. Nikolopoulos, D. S. and Varghese, B. (2018). Dyverse:
Dynamic vertical scaling in multi-tenant edge environments. WebPage. arXiv.
http //arxiv.org/pdf/1810.04608v1:PDF.

Wobker, C. Seitz, A. Mueller, H. and Bruegge, B. (2018). Fogernetes: Deployment and
management of fog computing applications. In: NOMS - IEEE/IFIP Network Operations
and Management Symposium, pp. 1–7. IEEE.

Wong, W. Zavodovski, A. Zhou, P. and Kangasharju, J. (2019). Container deployment
strategy for edge networking. In: 4th Workshop on Middleware for Edge Clouds and
Cloudlets, MECC ’19, pp. 1–6, New York, NY, USA. ACM Press, Association for Computing
Machinery.

122

Wu, J. Zhang, Z. Hong, Y. and Wen, Y. (2015). Cloud radio access network (c-ran): a
primer. IEEE Network, vol. 29, pp. 35–41.

Xavier, B. Ferreto, T. and Jersak, L. (2016). Time provisioning evaluation of KVM, docker
and unikernels in a cloud platform. In: 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 277–280. IEEE.

Yao, J. and Ansari, N. (2018). Reliability-aware fog resource provisioning for deadline-
driven iot services. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6.
IEEE.

Yousefpour, A. Fung, C. Nguyen, T. Kadiyala, K. Jalali, F. Niakanlahiji, A. Kong, J. and
Jue, J. P. (2019). All one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture, vol. 98, pp. 289–330.

Zambrano-Vega, C. Nebro, A. J. García-Nieto, J. and Aldana-Montes, J. F. (2017).
Comparing multi-objective metaheuristics for solving a three-objective formulation of
multiple sequence alignment. Progress in Artificial Intelligence, vol. 6, pp. 195–210.

Zhang, Y. Niu, K. Wu, W. Li, K. and Zhou, Y. (2018). Speeding up VM startup by cooperative
VM image caching. IEEE Transactions on Cloud Computing, vol. 9, pp. 360–371.

Zheng, C. Rupprecht, L. Tarasov, V. Thain, D. Mohamed, M. Skourtis, D. Warke, A. S. and
Hildebrand, D. (2018). Wharf: Sharing docker images in a distributed file system. In: ACM
Symposium on Cloud Computing, SoCC ’18, pp. 174–185, New York, NY, USA. Association
for Computing Machinery.

	Introduction
	Container Orchestration on Edge Infrastructures
	Challenges to Decrease the Deployment Latency on Edge Infrastructures
	Goals, Research Questions, and Approaches
	Goals
	Research Questions and Approaches

	Organization and Key Contributions

	Background on Edge Infrastructures and Container Orchestration
	Cloud Computing
	Edge-Centric Computing
	Cloudlets or Small Clouds
	Cloud Radio Area Network (C-RAN)
	Multi-access Edge Computing
	Fog Computing
	Virtualization
	Containerization
	Docker
	Docker Container Orchestration
	Container Lifecycle Operations
	Kubernetes

	Closing Remarks

	Container orchestration simulation on large distributed infrastructures
	Introduction
	Related Work
	Problem Definition
	Formalization
	Simulator Implementation
	Infrastructure Module
	Modeling the Network Behavior
	Modeling the Node Management

	Image and Layer Abstraction
	Applications' Abstraction
	Modeling the Container Orchestration
	Scheduler Implementation

	Simulation Input
	Simulation Logs
	Reports and Graphs

	Closing Remarks

	Registry placement to speed up application deployment
	Introduction
	Related Work
	Problem Formulation
	Registries Placement Problem
	System Model

	Algorithmic Solution
	Evaluation
	Simulator
	Simulation Scenarios
	Application Scheduler
	Experimental Results

	Closing Remarks

	Container scheduling based on network bandwidth availability
	Introduction
	Container Schedule Strategies
	Dependency Aware Strategy
	Others Edge Schedulers

	Infrastructure Aware Scheduling
	Evaluation
	Simulator
	Topology
	Workload
	Results

	Closing Remarks

	Ensuring Service Level Agreement on Application Deployment in an Edge Infrastructure
	Introduction
	Related Work
	Problem Formulation
	Deployment Latency SLA Enforcement Scheduler
	Population Initialization
	Download Queue Implementation
	Chromosome Representation
	Fitness Function
	Genetic Operators
	Scheduler Score and Ranking

	Evaluation
	Simulation Scenario
	Workload
	Results

	Conclusion

	Final Considerations
	Contributions
	Revisiting the Goals and Research Questions
	Prospects for future research

	References

