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Abstract—Real-time analysis is an ever-increasing branch of
computer science whose study supports the development of
peripheral areas such as embedded systems and robotics. As more
and more approaches for real-time analysis emerge, it becomes
challenging to choose among the variety of available tools.
Such tools include both academic and industrial tools, mostly
implementing just a small set of scheduling algorithms. This
situation is aggravated when practitioners and academics must
recondition such tools to meet specific purposes, e.g., implement
new algorithms, as most tools present poor documentation or no
support for their extension. In this work, we present a reference
architecture for real-time scheduling simulators. The goal of our
work is to accelerate the development of in-house scheduling
simulators and teaching tools. By providing a set of models and a
core implementation, we establish a framework from which both
engineers and teachers can quickly implement and test scheduling
algorithms without requiring entire operating system kernels or
outdated tools.

Index Terms—real-time systems, discrete-event simulation,
software architecture

I. INTRODUCTION AND MOTIVATION

Real-time systems are an ever-increasing branch of com-
puter science. As such, it has delivered to the community a
massive set of models, techniques, and tools to aid in the
construction and analysis of the so-called real-time systems
– systems in which deterministic behavior and predictability
are core to their operation. One way of guaranteeing the
timing behavior of tasks in a real-time system is through
scheduling, in which an algorithm decides which task would
occupy a determined resource such that all tasks fairly share
that resource’s time and none of them fail. Specifically for hard
real-time applications, missing any deadline may jeopardize
that application’s operation. In some cases, a failing system
may result in catastrophic outcomes such as financial loss,
environmental damage, and risk to human lives.

A substantial amount of scheduling algorithms exist. As
far as we know, there is no review or list to enumerate
all algorithms. However, any quick search on the literature
would bring up algorithms for dealing with uni-processed and
multi-processed systems, soft- and hard-real time applications,
static and dynamic algorithms, and multi-objective algorithms.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nivel Superior – Brasil (CAPES) – Finance Code 001, and
CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico)
grant 309605/2020-2.

Practitioners and academics may rely on simulators to support
the development and study of scheduling algorithms. We call
a scheduling simulator any tool capable of generating the
schedule for a specific algorithm without requiring imple-
menting a whole system kernel or operating system. The
goal of a scheduler simulator is to reduce the complexity of
experimenting with real-time operating systems, accelerating
the study of scheduling algorithms.

We searched the literature for tools and frameworks that
could be used to simulate scheduling algorithms. Although we
found many tools, most of the tools are outdated or are not
supported anymore. Most of the tools implement a restricted
set of algorithms, providing no support for further extension.
For instance, none of the tools provide documentation to
support the implementation of new algorithms. More specific
issues make some of the tools unusable in some scenarios, e.g.,
the lack of support for simulation traces, statistics, interruption
emulation, and outdated technology/tool-chain.

A. Goals and Scope

This work aims to support academics and practitioners in
developing, analyzing, and validating scheduling algorithms
by providing a reference architecture (RA) [1] for scheduling
simulators. Our RA is both a stand-alone simulator and
framework whose components can be reprogrammed to form
new simulators. Due to the variety of scheduling algorithms,
we limit the scope of our RA to the simulation of algorithms
targeting uni-processed systems. Additional goals of this work
include:
• Accelerate the analysis of existing real-time systems by

providing features to emulate specific characteristics of
that systems. For instance, our RA permits accounting for
scheduling time (the time taken by the scheduler to select
the next task to run), interruptions, and system calls. We
present the features of our simulator in Section IV.

• Provide a core implementation of a simulator for
the canonical scheduling algorithms to help academic
projects in graduate and undergraduate courses. We
present the implemented algorithms in Section IV-E.

• Present a method for performance assessment of discrete
event-based simulators, which could be used as part of
other schedulers such as online schedulers [2, 3]. We
present our performance model in Section IV-D.
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We organize the rest of this paper as follows. In Section II,
we highlight our findings when searching the literature for
scheduling simulators. We present our reference architecture
in Section III, briefly discussing each of its building blocks.
Section IV presents ORCA-RT Bench, the tool that we im-
plemented to validate our architecture, where we demonstrate
some of the options to implement the components of our
architecture. In Section V, we construct a performance model
for our tool, taking into account the models in our reference
architecture. Finally, we present our last considerations and
future work in Section VI.

II. RELATED WORK

We searched the literature for tools, frameworks, and reports
on scheduling simulation. For instance, we found 12 simula-
tors only by searching the term “CPU scheduling simulator”
in GitHub. We gathered information on each project from
their websites, reference papers, and “readme” files from
repositories. We included in our research only open-source
tools with documentation/paper/website written in English and
directed to the simulation of uni-processed systems. Due to
space limitations, we highlight only some of these tools below.

Yaashuwanth and Ramesh [4] propose an academic tool
for teaching real-time scheduling, implementing a couple of
scheduling algorithms, e.g., EDF (earliest deadline first), LLF
(least laxity first), RM (rate monotonic), and DM (deadline
monotonic). In contrast to our environment, their tool relies ex-
clusively on a GUI to interact with the user. Our environment is
intended to provide programmers and students with an insight
into the internal structures of a real-time scheduler. Thus, we
provide an uncoupled, stand-alone back-end program.

Casile et al. [5] propose a tool for distributed real-time
systems. Similar to our work, they provide trace files as output,
a GUI arrangement for displaying simulation steps, and an
uncoupled backend. However, they do not present any analysis
on simulation performance, nor do they report the information
necessary to characterize applications. We provide a model
for assessing simulation performance, allowing our tool to be
deployed as a component of a larger system.

The RTSim tool [6] is a simulator based on metasim,
an discrete-event simulation library. They provide a GUI
tool for visualizing simulation traces, called RTTracer. This
environment is very similar to ours, as our simulator has
its built-in discrete-event module, which is a modification of
another engine used in a previous work [7]. For the GUI,
our tool generates output for ORB KProfiller and KProfiler
tools, both similar to RTTracer. RTSim website has not been
updated since 2011, and the last public version of their tool
was released in 2007. We could not find any documentation
supporting the extension of the tool.

Manacero et al. [8, 9] proposed RTsim (lower case S),
another academic simulator. Their website reports that the
simulator supports RM scheduling for single processors and
other multiprocessor systems algorithms. However, we could
not evaluate the simulator as the download link is broken.

III. A REFERENCE ARCHITECTURE FOR SCHEDULING
SIMULATORS

The proposed reference architecture relies on five building
blocks, which are sufficient to represent the implementation of
any scheduling simulator: (i) event model, (ii) system model,
(iii) simulation model, (iv) scheduling algorithm, and (v)
performance model. The event model can be further split into
task model and interruption model, the latter being optional.
The performance model is optional as well. We dedicate the
remainder of this section to explain each of the building
blocks, depicted in Figure 1.

Simulation Model

System ModelEvent Model Scheduling 
Algorithm

Task Model

Interruption Model
Performance 

Model

optional block required block

Fig. 1. Building blocks of the proposed reference architecture, comprising
optional and mandatory blocks.

A. Event Model

Our proposed RA uses event-driven simulation to mimic
the behavior of real-time schedulers. By doing so, we must
describe the behavior of a real scheduler in terms of events. In
our RA, specifically, we are interested in two kinds of events.
First, we look into events triggered by tasks, the system calls.
The second kind of event relates to interruptions. We observed
that two events are necessary for scheduling simulation: (i)
TASK_END, a system call that indicates that the executing task
has finished; and (ii) IRQ_SCHED, a periodic interruption that
calls the scheduler at the end of each time slice (the time given
by the scheduler to the execution of tasks). System calls and
interruptions become events in the simulation.

1) Task Model: The task model corresponds to the repre-
sentation of tasks within the simulator. We assume that task
models include the necessary information for the simulation
of the TASK_END system call, that is, that must be possible
to calculate the time in which the task ends. Note that the
representation of tasks is a requirement of the algorithms
instead of a requirement of the simulator. Other system calls
can be included in the simulator. For example, if modeling
for resource-aware scheduling [10], a system calls such as
TASK_SLEEP may come in hand, permitting other tasks to
run until the required resources are available.

2) Interruption Model: The interruption model corresponds
to the emulation of interruption events and their character-
ization. The goal of the scheduler is to release tasks so
that tasks will not miss their deadline. The scheduler often
rely on interruption. For instance, the scheduling interruption
IRQ_SCHED dictates the periodic call to the scheduler. Other
interruptions may be required if considering hardware inter-
ruption, e.g. IRQ_IN and IRQ_OUT (synchronous read/write
to peripherals).
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B. System Model and Scheduling Algorithm
The system model corresponds to the control of states of

tasks within real systems and is often implemented through
lists of tasks. Our system model assumes a system to be a
set of interconnected lists of tasks Q = {q1, q2, ...qn}, where
|Q| ≥ 2 always holds because the system must distinguish
between running and idle tasks. More lists can be added as
necessary. A graph G = V ×E represents the transition system
(movement of tasks between lists), where E is the set of edges
and V is the set of vertices. Finally, the scheduling algorithm
(function) Φ : Q→ Q sorts one of the lists such that the next
task to execute is on top.

C. Simulation Model
The simulation model is the method used by the simulator

to generate the simulation trace. Simulation trace is the result
of a simulation session. It usually includes the name of events
and annotations indicating the time they would occur. For
uni-processor systems, no two events can occur at the same
time. Consequently, there must be an order of precedence that
determines which event executes first in case of a conflict —
failing in resolving conflicts between events results in non-
determinism.

D. Performance Model
A performance model is a tool for achieving the assessment

of simulation performance. This model must include the timing
evaluation of events, as well as the scheduling algorithm. The
goal of the performance model is to predict how much time
the simulation will take and assert simulation determinism.

IV. ORCA RT-BENCH TOOL

ORCA RT-Bench1 is an open-source scheduling simulator
tool written in C++ and developed to validate our reference
architecture. For simplicity, we limit the tool’s scope to the
simulation of hard real-time applications in uni-processed
systems.

A. Task Model
We assume an application be a set of hard-real time,

independent, periodic tasks T = {t0, ...tn} running in a uni-
processed system. Each task is a 3-tuple ti =< p, c, d >,
where p is the period, c is the capacity, and d is the deadline, all
them expressed in terms of discrete time units (u). This model
is a simplification over other models presented in books [11]–
[13] and implemented within the Linux kernel [14].

Our tool implements a file parser in which applications
are described as directed graphs. Each node represents one
task, which we label with the information required by our
task model (period, capacity, and deadline), added to some
extra information (e.g., task name). Edges are unused in this
work. However, we are aware of approaches that consider
task dependency and real-time communication [15], so we
keep this structure for future use. Our parser also allows for
more information to be added to the file without much effort.
Figure 2 shows an example of an application description file.

1https://github.com/andersondomingues/orca-rt-bench

Fig. 2. Example of an application description file depicting an application
taken from [12].

B. System Model

The system model corresponds to a set of lists of tasks, and a
transition system coordinates the movement of tasks between
lists. Our simulator implements three lists: (i) running, (ii)
ready, and (iii) blocked, as shown in Figure 3. The behavior
of the transitioning system assumes task preemption and is
briefly discussed below.

1) Scheduling: The running list stores the only executing
task in the system if any. Every time a task leaves the running
list, another one (can be the same task) must take its place.
The scheduling algorithm has to sort the ready list and move
one task from the ready list to the running list. If no suitable
task exists, an idle task is artificially introduced until at least
one task arrives at the ready list.

2) Preemption: The running task resides in the running list
until the next scheduling event (in real systems, determined
by a scheduling interruption) or until it finishes, whichever
happens first. If the scheduling interruption happens before
the task end, that task is moved back to the ready list.

3) Sleeping: If the running task ends before the scheduling
interruption, that task is moved on the blocked list.

4) Awakening: Tasks in the blocked list move to the ready
list as soon as they reach their next period window.

bl
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nn
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g

scheduled

preempted

sleep awake

sort

Fig. 3. System model implemented as an interconnected list system. Arrows
indicate the direction in which tasks can move between lists. The sorting
algorithm (scheduling) applies only to the ready list.

C. Simulation Model

The implemented simulation model relies on the discrete-
event simulation [7, 16, 17]. In this model, events are pushed
into a list and sorted by their release time (priority queue).
Events occur instantaneously, allowing the simulation to skip
the remaining simulation time until the next event. For this
reason, simulating a discrete-event system is indeed faster
than executing any operating system kernel or scheduler. We
represent events as 3-tuples e =< t, f, T >, where t is the
release time of that event, f is an activation function, and
T is a period increment. For periodic events, T adds to t at
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each successive release of e (period). The activation function
f : L→ L corresponds to the movement of tasks in the system
model, where L is the set of all lists in that model.

A simulation (1) is represented by a 5-tuple, where t0 is
the initial simulation time (usually equals to zero), n is the
maximum simulation time, P is a priority-queue of events, E
is the set of all events, and g is the computation function. The
next state of the simulation can be achieved by applying g over
the current state. Successive applications of g generate a trace
of computation steps, ending when tm ≥ n, at the mth step.
We have applied a similar simulation model in our previous
work [7].

SIM =< t0, n, P,E, g > | SIM ′ = g(SIM) (1)

The simulation engine, a component of our simulator,
implements the g function as an algorithm, which takes the
current state of the simulation as input and updates that state,
generating the next state. This operation repeats until the end
of the simulation.

D. Performance Model

Our performance model (2) can estimate the time taken to
simulate a task set for a given hyper-period. Our estimation
relies on the fact that we can predict the effort of the simulation
model if we know the task set a priori. We must calculate the
number of events to be simulated for that task set and multiply
the resulting value for the effort of simulating a single event.
In this case, our simulator must be deterministic, and the effort
to simulate one event must be constant.

(O(Sortn) + k)×

(
n∑
i

HP

Pi
+

HP

time slice

)
(2)

Our simulator implements a routine that generates a trace
of computation steps for a given initial simulation state. In
that routine, the effort to simulate one event is constant (k),
corresponding to moving the running task from the running
list to another list and moving one task from the ready list
to the running list. Before moving the one task back to the
running list, the scheduling algorithm sorts the ready list. The
cost of sorting the ready list is bound to the execution of
the underlying sorting algorithm, which we denote O(Sortn),
where n is the number of tasks in the ready list. A conservative
approach would take n as the number of tasks in the whole
system, which is always greater than the size of the ready list.
In a few words, the effort of calling the scheduler once is
given by O(Sortn) + k.

The last component of our performance model corresponds
to the number of simulated events, that is, the number of
calls to the scheduler during the hyper-period (HP ), which
corresponds to the “the smallest interval of time after which
the periodic patterns of all tasks is repeated” [18]. The number
of events must be at least HP

time slice , as the simulator calls the
scheduler at the end of each time slice (IRQ_SCHED). Finally,
we must consider the invocation of the scheduler at the end of

each task, equals to
∑n

i
HP
Pi

, where n is the number of tasks
in the model and Pi is the period of the ith task.

E. Scheduling Algorithms and Other Features

Our tool implements the following scheduling algorithms:
Deadline Monotonic (DM), Earliest Deadline First (EDF),
Least Laxity First (LLF), Least Slack Time (LST), and Rate
Monotonic (RM) [12, 19]. One may select the algorithm
by entering the corresponding acronym of the algorithm as
a parameter, e.g., -EDF selects the Earliest Deadline First
algorithm. At the startup, the simulation engine selects the
proper scheduling algorithms, that is, the algorithm sorting
the ready list.

F. Application Interface

Due to performance reasons, our simulator runs in console
mode, producing a trace file as output. The trace file stores a
list of events produced during the simulation, indicating the
time in which tasks enter and leave the running list and their
absolute deadline. Our trace file can serve as input for two
visualization tools: KProfiler2 and ORB KProfiller3. The for-
mer is a tool for visualizing system events for the HellfireOS
operating system. Calling our tool with the -kprofiler
parameter format the trace file to match the input of KProfiler.
The latter, ORB KProfiller, is a front end to our tool, capable
of interactively generate information on the simulation, e.g.,
number of missed deadlines, schedulability tests, multiple
simulation charts. Figure 4 displays ORB Kprofiller. Figure 5
shows an example of trace file.

Fig. 4. ORB Kprofiller interface depicting a simulation trace. Horizontal axis
represents time, while vertical axis represents tasks. Performance estimation
result (pink) and schedulability test (gray) are shown at the right-upper corner.

V. PERFORMANCE MODEL VALIDATION

This Section validates the performance model presented in
Section IV-D. The goal is to assert simulation determinism,
which is key for applications such online-scheduling (sim-
ulator as part of another scheduler), and edge computing
(simulation is performed at the processing node). We simulated
seven applications, 30 times each, collecting their execution

2https://github.com/sjohann81/hellfireos/tree/master/usr/kprofiler
3https://github.com/bennoXav/ORB KProfiller
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Fig. 5. Trace file reporting the result of a simulation. The id field matches
the one in the input file. Other fields are presented in discrete time units.

time. Table I shows the characterization of applications, the
simulated hyper-period, and their mean execution time. The
hyper-period is given by HP = lcm(Tp), where Tp is the set
of all periods of all tasks in application T , and lcm is the
least common multiplier function. We arbitrarily choose EDF
as the scheduling algorithm for the experiment, and the value
of O(Sortn) depends only on the number of tasks of each
application.

To eliminate noise during the experiment, we configured the
simulator to collect the time tags (in milliseconds) in which
the first and last events left the event queue for each run.
Subtracting both tags give us the amount of time spent by
the simulator to process the simulation events, ignoring file
manipulation and startup routines in the process.

TABLE I
CHARACTERIZATION OF APPLICATIONS A TO G

App.1 Task Period Cp.2 HP3 Mean Exec. Time (ms)

A
T1 90 1

1260 3.406T2 4 2
T3 21 5

B

T1 4 1

1540 8.438
T2 14 2
T3 28 7
T4 10 1
T5 44 11

C

T1 10 2

3600 11.689
T2 12 2
T3 16 2
T4 18 2
T5 20 2
T6 200 2

D

T1 90 10

6300 42.372
T2 60 12
T3 105 19
T4 50 25
T5 150 5

E

T1 30 5

50400 218.885
T2 35 9
T3 45 15
T4 100 10
T5 800 40

F
T1 24 8

840 3.737T2 30 10
T3 7 2

G

T1 64 8

960 4.192
T2 80 10
T3 20 2
T4 30 5
T5 60 20

1application, 2capacity, 3hyper-period
∗period, capacity and hyper-period expressed in discrete time units (u)

Fig. 6. Approximation of the collected data to a power series function. Points
are sorted by execution time (ascending).

A. Results

As discussed in Section IV-D, the performance of our
simulator is bound to the number of simulated events. When
simulating shorter time slices, the number of calls to the
scheduler (IRQ_SCHED) increases. Consequently, the number
of events to be simulated increases, degrading the performance
of the simulation. The worst performance is achieved when
time slice is 1u. For the experiment, we applied a normalized
time slice of 1u for all applications.

Execution time increases linearly to the number of events.
This is true as long the number of tasks remains the same.
The time taken to simulate a single event depends only on the
number of tasks in the ready list. We observe that the ratio
ET
HP grows linearly on the number of events, where ET is
the execution time of the simulation. Figures 6 and 7 show
the approximation of collected data to a power series and
linear functions, respectively. The average time to simulate
one event roughly approximates 0.00448ms. Please note that
this time is bound to the performance of the machine in which
the experiments were executed, as well as the configuration of
the installed tool-chain and compilation scripts.

The ratio ET
e , where e is the number of simulated events,

presents the same linear behavior as the ET
HP ratio. In this

case, for a constant number of events, the time to simulate an
application grows linearly to the number of tasks. This is true
as long as the time slice is 1u and HP = e. We omit the
charts as they would be trivially similar to the ones shown in
Figures 6 and 7.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a reference architecture for
scheduling simulators for uni-processed systems. Our contri-
butions include the building blocks of our architecture and its
models. To validate our RA, we developed a simulation tool
named ORCA RT-Bench. The tool implements the building
blocks of our architecture. From the results, we showed that
our performance model holds for our tool. Below we enumer-
ate some research opportunities and further improvement of
the proposed RA.
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Fig. 7. Approximation of the collected data to a linear function. Points are
sorted by execution time (ascending).

A. Future Work

Our RA can be further extended to support other task mod-
els. However, we did not develop an interface to support such a
feature. In the future, we intend to create a meta-model where
multiple task models can co-exist within the tool, supplying a
larger class of applications, including heterogeneous systems.

The performance of our tool takes into consideration the ex-
ecution of the tool in a single-threaded environment. We intend
to extend our tool to simulate a single system using multiple
processors, which we achieved in the past for non real-time
systems [7]. We also intend to modify our performance model
to support the analysis of multi-threaded simulation.

We intend to improve the usability features of
ORB Kprofiller, adding interactive simulation (e.g., pause
and recording), system-level sensing emulation (for resource-
aware simulation), and simulation statistics (e.g., energy
characterization and consumption estimation) to the tool.
We also intend to study the applicability of the tool with
undergraduate students.

Finally, our RA is directed to the simulation of scheduling
algorithms for uni-processed systems. It is of our interest
to support distributed scheduling in multi-processed systems
in the future. Other potential features include kernel time
emulation and dynamic application admission in the system.
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