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Abstract—Real-time networks-on-chips (RT-NoCs) were pro-
posed to suit the needs of communication-intensive systems
with real-time requirements. However, most of the current
implementations found in the literature are based on custom
routers, thus requiring a complete redesign of the interconnect
architecture. This work presents a novel approach to tackle
the analysis and scheduling of real-time traffic that requires no
special mechanism to be implemented within the NoC design. Our
solution relies on an auxiliary hardware module to synchronize
the injection of packets into the network instead of custom
routers, benefiting existing non-RT NoC designs. Our approach
guarantees scheduled traffic to be congestion-free by using a
design-time optimization process. Results present a didactic
proof-of-concept using a synthetic application mapped onto a
small NoC design.

Index Terms—real-time analysis, scheduling, system simulation

I. INTRODUCTION AND MOTIVATION

Networks-on-chips (NoCs) are the preferred interconnection
media in many-core systems due to their potential for mas-
sively parallel communication and scalability while inserting
low overhead for area and energy consumption into the design.
The organization of a typical NoC mimics conventional com-
puting networks, where routers provide the communication
infrastructure, allowing multiple data streams to traverse the
system simultaneously. As routers represent a tiny portion of
the chip area, NoCs can suit the communication needs of
resource-constrained systems.

An important aspect of NoC technology is the support for
real-time communication provided by real-time (RT-) NoCs.
RT-NoCs are particularly important in application domains
such as control-theoretic systems, cyber-physical systems, and
robotics. These applications, e.g., autonomous driving systems
(self-driving cars), must comply with stringent safety con-
straints and rules [1, 2] as failures in these systems may result
in catastrophic outcomes, e.g. financial loss, environmental
damage, and risk to human lives. Supporting the operation of
RT systems becomes even more pressing during the COVID-
19 pandemic, where robots could replace humans to avoid
potential contamination [3, 4]. In such a scenario, RT-NoCs
appear as an alternative to guarantee timing in many-cores.

The community proposed RT-NoCs in the last two decades,
as shown in Section II. In NoC-based systems, communica-
tion behavior becomes difficult to predict due to the non-
determinism imposed by several components such as buffers,
arbiters, routing algorithms, and internal cross-bar. Although

it is possible to predict the timing behavior of some of these
components individually, their models rarely scale to a system-
wide level. Designers often assume a worst-case scenario
and treat non-deterministic components as black-boxes. RT-
NoCs mainly focus on eliminating black-box components by
modifying routers to achieve determinism.

The goal of this work is to schedule real-time traffic in
NoC-based systems, targeting non-RT NoCs. Our approach
differs from the NoC RT literature as it requires no particular
NoC architecture. Instead, we attach a time-controlled network
interface (TCNI) to routers local ports to synchronize the time
in which packets enter the network, enforcing contention-free
traffic. The configuration of the TCNI modules matches the
results of a fully automated, off-line optimization process,
which makes our approach close to the ones adopted in
contention-free NoCs [5, 6]. We dissociate our optimization
model from the target NoC architecture zero-load latency
(ZLL) model. The dissociation between both models makes
it possible to apply our approach to different NoC designs.

We organize this paper as follows. Section II presents a
short review on RT-NoCs. Section III presents an overview
of our approach, its requirements, and its scope. We detail
the adopted flow model in Section III-A, and the proposed
optimization process in Section III-D. In Section IV, we
present a didactic example for a synthetic application. Finally,
we present the conclusion of this work in Section V.

II. A SHORT REVIEW ON RT-NOCS

We present a brief review of the state-of-the-art for RT-
NoCs research. This section aims to guide the reader through
the available approaches to guarantee real-time communication
in NoC-based systems and highlight the community’s interest
in the topic. It is important to note that most RT-NoC studies
rely on specialized architectures. Our work goes towards the
opposite direction, as discussed throughout this paper.

A. RT-NoC Architectures

Hesham et al. [7] group NoC architectures into two cate-
gories: (i) best-effort, and (ii) guaranteed service. While best-
effort NoCs focus on delivering correctness and completion
of transmission, guaranteed service NoCs have performance
bounds and predictability as their main concern. Guaranteed
service NoCs are referred as RT-NoCs (when timing is the
underlying non-functional requirement), further categorized as
(i) ad hoc networks, (ii) packet-switching networks with pri-
orities, (iii) circuit-switching networks, and (iv) time-division978-1-6654-8128-1/22/$31.00 ©2022 IEEE
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multiplexing networks. Please note that some designs might
fall in more than one category, often named hybrid NoCs [7].

1) Ad hoc networks: One of the first approaches for achiev-
ing guaranteed response time is to handcraft an NoC design
to meet specific timing requirements by dimensioning NoC
parameters such as buffer width and depth. Xpipes [8] is
among the first studies to explore ad hoc NoCs. However, man-
ually tuning the NoC can be error-prone and time-consuming,
aggravated by nowadays applications complexity.

2) Packet-Switched Networks with Priorities (PS-NoCs):
Packet-switching is a connection-less communication scheme
in which data traverse the network fragmented in one or more
packets [7, 9]. In PS-NoCs, the path and transmission time
of a packet are bound to the control flow mechanism, routing
algorithm, arbitration rules, and traffic volume [7]. Since it
is hard to predict the behavior of packet-switched NoCs [7],
prioritization mechanisms were proposed [10]. These mecha-
nisms permit high priority flows to preempt low priority flows,
commonly implemented through virtual channels (VC) [11].

3) Circuit-switched Networks (CS-NoCs): In circuit switch-
ing, the network establishes a dedicated connection between
source and destination routers so that packets can freely
traverse the network without interruptions [12]. Three phases
compose the circuit-switching process [7]: (i) path setup,
where the network check for path availability and allocate the
necessary nodes and links; (ii) data transfer; and (iii) path
release. Another important concept in CS-NoCs lies in spatial-
division multiplexing (SPM). In SPM, flows are physically
separated, occupying one or more lanes, a subdivision of the
communication channel between two routers [12].

4) Time-Division Multiplexing NoCs (TDM-NoCs): TDM
NoCs can combine VCs and circuit-switching techniques in
a single approach, simultaneously supporting best-effort and
real-time flows to traverse the network concurrently [13]. For
instance, in this approach, the reservation of routers in a
path affects only a couple of virtual channels, so the path
is still available to handle other flows. Time-slots orchestrate
links sharing, whose assignments are kept into slot tables.
Each router has its slot table, updated through configuration
messages. These tables store flit information, which could be
forwarded using either circuit- or packet-switching [14].

B. Scheduling Mechanisms in RT-NoCs

Heisswolf et al. [15] classifies scheduling mechanisms in:
(i) synchronous TDM, (ii) asynchronous TDM, (iii) prior-
ity, (iv) round-robin, and (v) weighted round-robin. Except
for Synchronous TDM, all other mechanisms perform asyn-
chronous scheduling, which requires routers to implement
buffering [15].

1) Synchronous TDM (S-TDM): The scheduling (path al-
location) is performed over the same virtual channel for all
routers in the path. Although it reduces the degree of freedom
with the possibilities of paths becoming more restricted, it has
simpler hardware when compared to asynchronous TDM (A-
TDM). However, compared to A-TDM, S-TMD can reduce
overall NoC utilization as it requires all virtual channels to be
scheduled, even if they are idle.

2) Asynchronous TDM (A-TDM): Asynchronous TDM
scheduling allows distinct virtual channels for path allocation.
Consequently, the A-TDM overhead tends to be higher than
S-TDM, although it has better overall utilization due to its
flexibility on the path allocation.

3) Prioritization: As an asynchronous scheduling mecha-
nism, prioritization does not require the reservation of virtual
channels as higher traffic preempts lower priority traffic during
runtime.

4) Round-robin (RR) and Weighted Round-Robin (W-RR):
VCs are served one after another in round-robin scheduling,
with guaranteed fair bandwidth distribution [15]. W-RR breaks
service fairness and allows some VCs to be scheduled more
often than others, using a weight parameter.

C. Other Classifications

1) Resource Allocation in RT-NoCs: Heisswolf et al. [15]
categorize resource allocation as (i) static [16] and (ii)
dynamic. For the former, resources are allocated to either
real-time or best-effort traffic at design time. For the latter,
allocation is performed at the runtime.

2) Requirements for Traffic Scheduling Algorithms in RT-
NoCs: Grot et al. [17] and Stiliadis et al. [18] suggest some
requirements for scheduling algorithms in RT-NoCs: (i) low
end-to-end delays; (ii) fairness (flows with the same priority
should have the same bandwidth reserve); (iii) isolation of
flows (flows should cause none or minimum interference to
each-other’s delays); (iv) real-time composability; (v) efficient
bandwidth utilization (network utilization should be maxi-
mized whenever possible); (vi) flexible bandwidth allocation;
(vii) low performance overhead; (viii) delay proportional to
bandwidth usage; (ix) low area overhead; (x) low energy over-
head; (xi) escalability; and (xii) facility of implementation.

D. Our Approach

We propose an optimization technique to schedule RT traffic
in NoCs. Instead of designing another RT-NoC, we tackle
the problem of real-time traffic scheduling by attaching a
TCNI module to the target NoC, which potentially does not
provide guarantees of periodic real-time communication by
default. We configure TCNIs at design time as we assume
the traffic parameters to be static for the application lifetime
as this is the default behavior of the applications mentioned
above (control-theoretic systems, cyber-physical systems, and
robotics). Besides, we understand that best-effort traffic can be
handled by an auxiliary NoC, thus we treat only RT traffic in
our approach. Our approach also guarantees congestion-free
traffic whenever possible. Additional advantages include: (i)
no additional end-to-end delays, (ii) no virtual channels or
priority system required, (iii) guaranteed isolation of flows,
and (iv) fully-automated traffic analysis.

III. THE PROPOSED APPROACH

Figure 1 presents our proposal, organized in five steps:
(i) traffic analysis and characterization, (ii) flow unwrapping,
(iii) network delay analysis, (iv) schedulability analysis and
optimization, (v) TCNI configuration, and (vi) deploy or
simulation. We present these steps throughout this section.
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Fig. 1. The steps of the proposed approach (white rectangles), their outcomes
(blue shapes), and A – D subsections of this section.

A. Traffic Analysis and Characterization

We model a periodic traffic flow as a 5-tuple fi =
(p, c, d, s, t), where p is the period of the flow, c is the amount
of data to traverse the network for each packet in that flow
(worst-case packet size), d is the relative deadline, and s and t
are the source and destination nodes for that flow. Period and
deadline can be represented in any time unit, although we use
cycles in Section IV. The same applies to data size (we use
bytes as the unit). Source and target nodes are labeled accord-
ing to their position in the topology. Finally, the flow model
of the whole system is a set of flows F = {f0, f1, ..., fn}.

We restrict our analysis to the hyperperiod. Ripoll and
Ballester-Ripoll [19] define hyperperiod as “the smallest in-
terval of time after which the periodic patterns of all tasks is
repeated”. We borrow this definition while replacing the word
tasks by flows. In our context, the hyperperiod is given by
the least common multiplier among the periods of all flows,
i.e., H = lcm(Fp). As the lcm function tends to “misbehave”
for larger sets, we suggest practitioners to manipulate packets
period to reduce the value of H as much as possible, e.g.
adjusting periods to the nearest multiple factor.

Traffic characterization can be expressed by means of a
(potentially) cyclic direct graph, or simply digraph. We label
edges on flow data, and nodes on tasks, as Figure 2 shows. For
each flow, information on their period, data size, and deadline
must be presented.

F2F4

Task 
C 

Task 
B

F1

F3

F5

Flow Period Data Deadline
F1 55 20 55
F2 55 52 55
F3 55 24 55
F4 55 32 55
F5 55 16 55

(a) (b)

Task 
D

Task 
A 

Fig. 2. Example of application characterization using a digraph. The ap-
plication synthetic-flow-A comprises four tasks, labeled from A to D and
represented by nodes in the graph. Edges indicate flows (a), and are labeled
with the corresponding period, data size, and deadline information (b). In this
application, flow have their period equals to their relative deadline, although
this is not a limitation of our approach.

B. Flow Unwrapping

The set of all packets injected into the network during the
hyperperiod is given by P , whose size k = |P | is shown in
Equation (1), where n is the number of flows and fp

i is the
period of the ith flow f ∈ F . Each flow can be unwrapped to
generate a finite number of packets for a given hyperperiod.
Generated packets have the same data size, although they
necessarily differ in their minimum release time and absolute
deadline. A packet p ∈ P is a 3-tuple p = (f ∈ F, r, a),
where f is the corresponding flow, r is the minimum release
time, and a is the absolute deadline. By unwrapping all flows
using an unwrapping function, we achieve the set of packets
P = {p0, p1, ..., pk}.

|P | =
n∑

i=0

H

fp
i

(1)

For instance, one flow with a period equals 10 time units
(u) would generate three packets for a hyperperiod of 30u.
The first packet must be release after zero time units (at
the startup). Thus, the minimum release time (pri ) for this
packet is zero. The second packet must be released after 10u,
and the last packet must be released after 20u, so they are
evenly distributed within the hyperperiod. Absolute deadline
is given by pai = pri + fd, i.e. their minimum release time,
plus the relative deadline of the corresponding flow. Finally,
the deadline of packets p1, p2, and p3 would be 10u, 20u
and 30u, respectively. Figure 3 presents an example of flow
unwrapping.

Task 
X 

Task 
Y

F1 Flow Period Data Deadline
F1 10 8 10(a)

(b)

Packet Min. rel. t. Data Abs. D.
p1 0 8 10
p2 10 8 20
p3 20 8 30

0u 30u

p1 p2 p3

(c)time

sl
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k 
tim

e
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k 
tim

e
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k 
tim

e

Fig. 3. Example application and flow unwrapping for a hyperperiod of 30u
(a). Three packets were generated: p1, p2, and p3 (c). Packets are evenly
distributed in time (b).

C. Network Delay Analysis

We assume an NoC system to be a pair S = (G,Z),
where G = E × V is a directed graph representing the
network topology, and Z is the set of all network resources.
Edges (E) and vertices (V ) represent network links and nodes,
respectively. Full-duplex links must be denoted as two directed
edges. We do not discuss half-duplex links in this work,
although a single double-directed edge can represent them
without harm to the approach. Finally, the links connecting
network nodes to processing elements must be in the graph.

The routing function θ : V × V → A ⊂ E enumerates the
path of links traversed by a packet departing from one node
to another in the network. Such a function must be complete.
We assume XY routing algorithm (function) for the rest of the
paper, although any deterministic algorithm suits our approach.
For the sake of simplicity, we also assume the network to
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have a 2D-mesh topology, although our approach does not
restrict the topology as long as the network has a digraph
representation. Figure 4 depicts a digraph generated from an
example network.

2-L
L-2

1 2

4

(a)
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1-2

5-4
4-5

6-5
5-6

(b)
4-LL-4

1-L
L-1

L-3
3-L

L-6

L-6

L-5
5-L

Fig. 4. Illustration of a 2D-mesh topology (a) and a digraph representing
the same topology (b). Paths from/to local ports are treated as if they were
connected to the same node L (omitted from the illustration).

The zero-load latency (ZLL) model is required for the
given topology representation. This model is the only part of
our approach that strictly depends on the NoC architecture.
For instance, the target NoC (Section IV) permits multiple
packets to traverse the same network node if their source and
target ports are not the same due to its crossbar capabilities.
Other system characteristics must be accounted for, e.g., link
bandwidth, routing time, port arbitration.

The ZLL model for the target NoC is shown in Equation
(2), where M is the Manhattan distance between source and
destination nodes, q is the routing time, j is the number of
flits to transport the data (payload). Routing time is up to 6
cycles, and packets must be routed once per node in the path
(M.q). Links are 32-bit wide; one flit corresponds to 32 bits.
Each router takes up to 6 cycles to route the first flit of the
packet, and 1 cycle to route each following flit. Finally, the
NoC protocol adds 2 flits of overhead (header). The first flit
(header) takes M.q cycles to route, the second flit (size flit)
takes 1 cycle, and payload flits (j) take 1 cycle each.

ZLL = M.q + j + 1 (2)

D. Constraint Model and Optimization

This step determines the allocation of resources for each
packet to traverse the network during the hyperperiod. Each
resource z ∈ Z represents either a link or a router. In this
work, we consider only links due to the capabilities of the
NoC (Section IV). We define occupancy as the allocation
time of a single resource in the system for the transmission
of one packet. The goal is to determine the time window in
which resources will be busy and organize packets so that the
following constraints hold:

(C1) Packet release time must be greater or equals than their
minimum release time (3). Since packets are evenly distributed
in the hyperperiod, we cannot inject packets into the network
until the last packet of that flow reaches its destination. Please
note that resources are treated individually, and one packet
may require more than a single resource at the same time.
For this reason, min release is represented as a matrix,
denoting the minimum point in time where each resource can
be allocated for a given packet.

∀(z ∈ Z, p ∈ P )(release[z, p] ≥ min release[z, p]) (3)

(C2) Two packets cannot share the same resource at the same
time (4). We call this constraint the “nonoverleap constraint”,
as it enforces resources to be allocated only to a single packet.
This constraint can also be written as a predicate (5) on the
release time and occupancy of packets.

∀(p1, p2 ∈ P ).nonoverlap(p1, p2) (4)

nonoverlap(pa, pb ∈ P ) = ∀(z ∈ Z).(

release[z, pa] + occupancy[z, pa] ≤ release[z, pb] ∨
release[z, pb] + occupancy[z, pb] ≤ release[z, pa]) (5)

(C3) Each packet must meet its deadline (6). Since we treat
resources individually, each pair (p, r) (packet and resource)
has its own deadline.

∀(z ∈ Z, p ∈ P )(release[z, p] + occupancy[z, p]

≤ deadline[z, p]) (6)

(C4) For the same packet, all resources must be allocated at
the same time (optional). This constraint forks our analysis
into two possibilities. For the first, we could create a strict
network model representing the behavior of links as close
as possible to the real operation of the target NoC. This
model will generate minimal waste (possibly none) of network
bandwidth, although it can be tricky to develop depending on
the target NoC (e.g., due to buffer modeling). The second
possibility is to design a heuristic constraint, accepting some
waste of network bandwidth. In the former case, the constraint
carries out the complexity of the network, and the allocation
time for all packets is only the necessary time for the packet
to traverse without congestion.

For the sake of simplicity, we design a non-strict, heuristic
model. The heuristic assumes that, if a link is necessary for
the transmission of a packet, the link will be allocated during
all the lifetime of that packet (7), roughly corresponding to the
behaviour of circuit-switching (even for a wormhole network).

∀(za, zb ∈ Z, p ∈ P )(release[za, p] = release[zb, p]) (7)

Release Time Computation: Formally, occupancy is a func-
tion O : P × Z → T ⊂ N, where P is the set of all packets
in the model, Z is the set of all resources of the target, and
T corresponds to the discrete-time domain. Occupancy gives
us the amount of time that each packet requires from each of
the resources in the subject system. The problem of “finding
the release time of packets” can be interpreted as a variant
of the classical “Job Shop Problem” (JSP), an optimization
problem studied in the scheduling theory, where occupancy
maps to the time spent by each machine to process a job.
In our approach, machines are the network resources, and
the packets are the jobs. The constraints enforce the many
machines (links) to work on packets in the right order, thus
representing the dependency between flits, to be transmitted
one after another. The ZLL model represent the properties (and
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computing power) of each machine (links). The reduction of
our problem to JSP is out of the scope of this paper as the
proof can be extensive. However, it is important to note that
JSP is an NP-complete problem and it may not be suitable
for “large” problems. Finally, our approach aims to solve the
problem formalized as “Given the relations occupancy (O),
minimum start, and deadline over P ×R, determine a relation
S : P × R → T that satisfies C1, C2, C3, and C4.” It is
important to note that more than one solution can be found in
most cases, and the set of all valid solutions is not countable,
although finite. We do not rank solutions as we propose a
decision problem (not a minimization problem).

IV. PROPOSAL EVALUATION

This section illustrates our approach through a didactic
example using a synthetic application on an open-source NoC
design [20]. The NoC has the following features: 2D-mesh
topology, input buffering, wormhole packet switching, 5 I/O
ports, and round-robin arbitration.

A. Application Characterization and Optimization
We use the Synthetic-flow-A application to demonstrate the

basic mechanics of our approach. Figure 5 shows the applica-
tion characterization and task mapping for this application for
a 2x2 NoC instance. Please note that our analysis is sensitive
to task mapping, which is performed before characterization.
Discussing task mapping is out of the scope of this paper since
task mapping is a well-established field of study [21].

F2F4

Task 
C 

Task 
B

F1

F3

F5

Flow Period Cp. Flits ZL latency
F1 55 20 5 1q+5+1
F2 55 52 13 2q+13+1
F3 55 24 6 1q+6+1
F4 55 32 8 2q+8+1
F5 55 16 4 2q+4+1

(a) (b)
*absolute deadline equals to period

Task 
D

Task 
A 

0 1

2 3

Fig. 5. The Synthetic-flow-A application mapped onto a 2x2 NoC and its
flows (a) and flows characterization including zero-load latency calculation
(b).

Using Minizinc (https://www.minizinc.org/), we developed
a constraint model description using Minizinc language. The
inputs for the model consist of a table, shown in Table I. We
excluded unused links from the input since it positively impact
the performance of the solver. We also set the occupancy of all
links to the latency of each packet, and the minimum release
time values match the heuristic defined in Section III-D (C4).

Table II shows the results generated by Minizinc solver
(Gecode 6.3). Since occupation and minimum start values for
all links in the same packet are the same, the results indicate
that all resources (links) must be allocated simultaneously.
Although the target NoC does not implement a mechanism
for allocating links, the packets can be released at the time
indicated in the results for the first link in the path as there
is no congestion in the network. Congestion avoidance is
guaranteed by the non-overlap constraint in the model, thus
the path is free during the allocation time.

As one can observe from Table II, the solver indicates that
packets P1 and P3 must be released at cycle 33. Other packets

TABLE I
SYNTHETIC-FLOW-A CHARACTERIZATION.

Pck. Links
0-1 1-3 2-3 2-0 3-1 3-2 0-L L-0 1-L L-2 3-L L-3

oc
cu

pa
nc

y P1 18 – – – – – – 18 18 – – –
P2 32 32 – – – – – 32 – – 32 –
P3 – – 19 – – – – – – 19 19 –
P4 – – 27 – 27 – – – 27 27 – –
P5 – – – 23 – 23 23 – – – – 23

m
in

.s
ta

rt

P1 0 – – – – – – 0 0 – – –
P2 0 0 – – – – – 0 – – 0 –
P3 – – 0 – – – – – – 0 0 –
P4 – – 0 – 0 – – – 0 0 – –
P5 – – – 0 – 0 0 – – – – 0

de
ad

lin
e

P1 55 – – – – – – 55 55 – – –
P2 55 55 – – – – – 55 – – 55 –
P3 – – 55 – – – – – – 55 55 –
P4 – – 55 – 55 – – – 55 55 – –
P5 – – – 55 – 55 55 – – – – 55

TABLE II
OPTIMIZATION RESULTS FOR SYNTHETIC-FLOW-A

Pck. Links
L-0 0-1 1-L 1-3 3-L L-2 2-3 3-1 L-3 3-2 2-0 0-L

al
lo

c.
be

gi
n P1 33 – – – – – – 33 33 – – –

P2 0 0 – – – – – 0 – – 0 –
P3 – – 33 – – – – – – 33 33 –
P4 – – 0 – 0 – – – 0 0 – –
P5 – – – 0 – 0 0 – – – – 0

must be released at the startup (cycle zero). Conflicting flows
were set to enter the network one after another. In Figure 5
(a), we observe that flow F3 conflicts with flows F2 and F4

because they share at least one link in their traversal path,
including input/output operations of local links (omitted from
Figure 5). The same stands for flow F1, which also conflicts
with flows F2 and F4. One possibility (the one generated by
Minizinc) consists of injecting P1 and P3 prior to P2 and
P4. Although P2 and P4 have distinct data sizes, they can
be released in the network simultaneously as there is enough
resource time to do so.

B. RTL Simulation, Discussion and Lessons Learned
As a proof-of-concept, we simulate the Synthetic-flow-A

application at the register-transfer level (RTL) using Questa
Sim [22], configuring the injectors following the results gen-
erated by Minizinc (Table II). The configuration consists of
programming TCNIs to delay packets injection.

The waveform in Figure 6 shows signals for the local
ports of routers in the target NoC system. We simulated 55
cycles, corresponding to the computed hyperperiod. For each
processing element (PE), the figure shows their transmitting
(tx) and receiving (rx) activity. Packets P2, P4 and P5 are
injected at cycle zero, and P1 and P3 are injected at cycle 33,
following the results shown in Table II. No receiving signal is
active after cycle 55, and no packets deadlines were missed.

The adopted constraint C4 represents a pessimistic estima-
tion of the resources usage, as seem in Figure 7. In practice,
resources should be allocated one after another, following the
path of the packet in the network. Similarly, resources should
be released in that same order. By adopting the constraint C4,
we allocate all the links in the path, increasing the network
usage by m cycles per packet, where m is the Manhattan
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Fig. 6. Waveform depicting the activity of the local ports of routers in the
target NoC. Colors denote signals of the same ports. Receiving activity (rx)
is presented in the bottom waves. Local links, PEx.local, correspond to L-x
in Figure 7.
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Fig. 7. Link utilization considering the allocation of all links in the path for
all flows during the hyperperiod. The gray area represents the unused network
time (< 39%).

distance between source and target routers. The waste of
networks resources increases as the distance between nodes
increase (expected in large NoCs), although representing, in
the worst case, M+N cycles per packet, the worst Manhattan
distance between two nodes in a 2D mesh-based NoC. We
understand that the waste is negligible in applications with
large packets size, e.g. the application shown in [23].

V. CONCLUSION

In this work, we presented an approach for scheduling real-
time traffic in (potentially non-RT) NoCs. Our contributions
include the presented models, the formulation of the opti-
mization problem, and the automation tools. We demonstrate
our approach for a synthetic application while briefly dis-
cussing the applicability of our approach for larger applica-
tions (e.g. [23]).

Future works include experimenting with larger applica-
tions, explore other NoC topologies and designs, and evaluate
other approaches for searching the solution space (e.g. using
heuristics). Next steps also include evaluating area and energy
consumption overhead added to the design by the inclusion of
the TCNI module.

Finally, it would come in hand to include real-time com-
putation analysis in the approach. Our approach assumes that
packets strictly enter the network at a given periodic time, and

this can only be enforced at the origin of the packet, e.g. at
the processing element attached to the TCNI.
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