PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ADMINISTRAÇÃO, CONTABILIDADE E ECONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA

CÉSAR FOLETTO

RADARES FIXOS E MÓVEIS: UMA ANÁLISE DE DADOS EM PAINEL SOBRE OS ACIDENTES DE TRÂNSITO NO MUNICÍPIO DE PORTO ALEGRE.

PORTO ALEGRE

CÉSAR FOLETTO

RADARES FIXOS E MÓVEIS: UMA ANÁLISE DE DADOS EM PAINEL SOBRE OS ACIDENTES DE TRÂNSITO NO MUNICÍPIO DE PORTO ALEGRE.

Dissertação apresentada como requisito para a obtenção do grau de Mestre pelo Programa de Pós-Graduação da Faculdade de Administração, Contabilidade e Economia da Pontifícia Universidade Católica do Rio Grande do Sul.

Orientador: Prof. Dr. Marco Túlio Aniceto França

PORTO ALEGRE

Dados Internacionais de Catalogação na Publicação (CIP)

F724r Foletto, Cesar

Radares fixos e móveis : uma análise de dados em painel sobre os acidentes de trânsito no município de Porto Alegre / Cesar Foletto ; orientador Dr. Marco Túlio Aniceto França. – 2014

122 f.: il.; 31 cm

Bibliografia: f. 99-103

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2014.

1. Acidentes de trânsito – Porto Alegre – Estatística. 2. Desenvolvimento econômico. I. Título. II. França, Marco Túlio Aniceto (Orientador).

CDD - 363.12570981651

CDU - 351.78(816.5)

Bibliotecária responsável: Hadra Mônica Kuester – CRB 14/971

CÉSAR FOLETTO

RADARES FIXOS E MÓVEIS: UMA ANÁLISE DE DADOS EM PAINEL SOBRE OS ACIDENTES DE TRÂNSITO NO MUNICÍPIO DE PORTO ALEGRE.

Dissertação apresentada como requisito para a obtenção do grau de Mestre pelo Programa de Pós-Graduação da Faculdade de Administração, Contabilidade e Economia da Pontifícia Universidade Católica do Rio Grande do Sul.

Aprovada em: 19 de Março de 2014.

BANCA EXAMINADORA

Prof. Dr. Marco Tulio Aniceto França

Presidente da Sessão

Prof. Dr. Gustavo Inacio de Moraes

Prof. Dr. Guilherme Diniz Irff

Prof Dr. Osmar Tomaz de Souza Coordenador do Programa de Pós-Graduação em Economia

PORTO ALEGRE

AGRADECIMENTOS:

A minha noiva, Cíntia Rocha Medeiros, pela compreensão de minha ausência e pelo apoio incondicional recebido.

Aos meus familiares, meu Pai Danilo Foletto, minha Mãe Valentina Foletto e meu irmão André Foletto, por tudo o que aprendi com eles.

A Deus, pela saúde para concretização deste trabalho e por tudo que sempre me provém.

À Pontifícia Universidade Católica do Rio Grande do Sul pela qualidade do ensino.

Ao professor e orientador Marco Túlio Aniceto França pelas lições para o desenvolvimento deste trabalho.

Ao Professor Gustavo Inácio de Moraes, bem como a todos os professores do Programa de Pós-Graduação em Economia do Desenvolvimento pelos ensinamentos.

Aos colegas do curso de Mestrado em Economia do Desenvolvimento da PUCRS pela ótima convivência nestes anos.

Aos Amigos que me acompanham em diversas atividades alheias, mas que contribuíram para o desenvolvimento deste trabalho.

RESUMO

O presente trabalho se originou na possibilidade de avaliar a eficácia de radares fixos e móveis como forma de redução de vítimas no trânsito nas principais ruas e avenidas da capital do Rio Grande do Sul, a cidade de Porto Alegre. Para efetuar tal utilizados dados do Departamento de análise foram Estadual (DETRAN/RS), Departamento Autônomo de Estradas e Rodagem (DAER) e das entidades de controle de tráfego que atuam na cidade de Porto Alegre: a Empresa Pública de Transporte e Circulação (EPTC) e o Departamento Estadual de Polícia Judiciária de Trânsito (DPTRAN), estando estes dados, disponíveis no portal #DATAPOA. O período extraído do portal foi de janeiro de 2008 a dezembro de 2012, tornando possível identificar a relação entre fiscalização de avenidas com radares fixos e móveis e as consequências dos acidentes nas mesmas, principalmente no que diz respeito a feridos, mortos e severidade dos acidentes. O estudo organizou tais dados na forma de painel longitudinal, permitindo análise através da regressão de Poisson, que busca as diferenças entre os grupos de tratamento e controle ao longo do tempo. Os resultados encontrados foram muito relevantes em termos da análise de feridos e também possibilitaram a observação da severidade dos acidentes pela metodologia da unidade padrão de severidade. Os radares fixos foram capazes de reduzir o número de feridos e a severidade em alguns trechos das avenidas, mas não modificaram o nível de ocorrências ao longo de toda ela. Os radares móveis modificaram o nível de feridos ao longo de toda avenida apenas fora do horário de pico, quando os acidentes podem ser influenciados mais pelo fator humano que pela velocidade dos veículos. Por fim, este estudo pôde ainda utilizar diversas variáveis relacionadas ao trânsito, tais como, o tipo do veículo, o período do dia, as condições climáticas e o tipo do acidente, verificando como cada uma delas afeta o desfecho dos acidentes.

Palavras-chave: Análise em Painel, Radares Fixos, Radares Móveis, Controle de velocidade, Feridos, Severidade, Regressão de Poisson.

ABSTRACT

The present study has origins in the possibility to evaluate the efficacy of the fixed and mobile speed cameras as a mean to reduce the number of victims in the transit of the biggest streets in the capital city of the state of Rio Grande do Sul, Porto Alegre. To perform such analysis we used data from the Departamento Estadual de Trânsito (DETRAN/RS), Departamento Autônomo de Estradas e Rodagem (DAER) and from authorities that work in the control of the traffic in the city of Porto Alegre, the Empresa Pública de Transporte e Circulação (EPTC) and the Departamento Estadual de Polícia Judiciária de Trânsito (DPTRAN), these data is available at the portal #DATAPOA. The period extracted from the portal was from January 2008 to December 2012, which makes possible to identify the relation between fixed and mobile enforcement in avenues and the consequences of accidents on these streets, mainly on the severity of the crashes and on the number of injured people. This study has organized the data in a longitudinal panel, allowing the analysis using the Poisson regression technique, which searches for differences between control and treatment groups over time. The results found were very relevant for the analysis of the injuries, and make possible an outlook on the severity of the crashes by the methodology of the severity standardized unit (UPS). The fixed position speed cameras were able to reduce the number of injured and the severity only at the specific location, but did not affect the overall street outcomes. The mobile speed Camera program was able to reduce the number of injuries but only at non rush hours, when the accidents and its outcomes might be influenced more by human factors other than the speed of vehicles. At last, this study could use many variables related to urban transit and verify how each one affect the consequences of an accident, such as, the type of vehicle, the period of the day, climatic conditions and the type of the accident.

Key-words: Panel Analysis, Fixed Speed Cameras, Mobile Speed Cameras, Speeding Control, Injuries, Severity, Poisson Regression.

LISTA DE ILUSTRAÇÕES

Figura 1 – I	Publicação da Inf	endência Municip	oal. Edital 84 o	de 1929	16
Figura 2 –	Relação entre ve	locidade e risco r	elativo de mo	rte	26
Figura 3 –	Modelo de Exterr	nalidades Adapta	do às multas d	de trânsito	35
Figura 4 –	Mapeamento par	cial dos Feridos r	no trânsito em	Porto Alegr	e49
Figura 5 –	Histograma da va	ariável feridos de	2008 a 2012.		51
Figura 6 –	- Densidade da	distribuição para	feridos em	relação ao	radar fixo na
avenida, pra	a tratamento (azı	ıl) e controle (veri	melho)		61
Figura 7 –	Densidade de d	istribuição para a	a UPS nos gr	upos Tratar	nento (Azul) e
Controle (V	ermelho)				61
Figura 8 –	Densidade de di	stribuição para a	cidentes Fata	is nos grup	os Tratamento
(Azul) e Coi	ntrole (Vermelho)			62
Figura 9 -	- Densidade de	distribuição dos	feridos dos	grupos cor	itrole (Azul) e
tratamento	(Vermelho)				68
Figura 10	 Densidade de 	distribuição Varia	ável UPS dos	grupos co	ntrole (Azul) e
tratamento	(Vermelho)				69
Figura 11 -	- Densidade de d	distribuição Variá	el feridos ser	m horário de	e pico da tarde
dos	grupos	controle	(Azul)	е	tratamento
(Vermelho).					88

LISTA DE TABELAS

Tabela 1 – Vítimas fatais no Rio Grande do Sul	18
Tabela 2 – Mortalidade no trânsito por Estado	.19
Tabela 3 – Evolução na Frota de veículos, por tipo, no município de Porto Alegre	e de
2001 a 2012	20
Tabala 4 Número total de gaidentes de trânsite esercidos em Porto Ale	aro
Tabela 4 – Número total de acidentes de trânsito ocorridos em Porto Ale	_
segundo o mês, entre os anos de 2008 2012	e 21
Tabela 5 – Número de Acidentes com vítimas Fatais por mês, entre os anos de 2	
e 2012, em Porto Alegre	
Tabela 6 – Número de Feridos mensal no trânsito de Porto Alegre entre os anos	
2008 e 2012	
Tabela 7 – Multas aplicadas no Ano de 2011 em Porto Alegre	
Tabela 8 – Principais estudos consultados sobre Radares Fixos	
Tabela 9 – Principais estudos consultados sobre Radares Móveis	
Tabela 10 –UPS dos acidentes na cidade de porto alegre de 2008 à 2012	
Tabela 11 – Avenidas que compõe os grupos tratamento (T) e controle (C)	
Tabela 12 – Média e Desvio padrão dos grupos tratamento e controle das variá	
dependentes	
Tabela 13 – Tipos de veículos envolvidos nos acidentes	
Tabela 14 – Evolução mensal em relação às variáveis: número de Aciden	
número de feridos, número de mortos e severidade (UPS)	
Tabela 15 – Acidentes, feridos, mortos e severidade anual	
Tabela 16 – Acidentes por faixa horária de 2008 a 2012	
Tabela 17 – Tipologia dos acidentes	
Tabela 18 – Avenidas que compõe o estudo de radares móveis	
Tabela 19 – Média e Desvio padrão dos grupos tratamento e controle das variá	
dependentesdependentes	70
Tabela 20 – Tipos de veículos envolvidos nos acidentes	
Tabela 21 – Evolução mensal no número de acidentes entre janeiro de 2011 e ju	ılho
de 2012	71
Tabela 22 – Evolução no número de acidentes por horário nas avenidas	71

Tabela 23 – Tipologia dos acidentes	72
Tabela 24 – Resultados para Feridos com uso de Radares Fixos	74
Tabela 25 – Regressão de Poisson para Unidade Padrão de Severidade	79
Tabela 26 – Regressão de Poisson para vítimas fatais em Acidentes	83
Tabela 27 – Feridos de janeiro 2011 a julho 2012 em das 07:00h às 20:00h	86
Tabela 28 – Feridos em horário de operação móvel sem horário de pico	89
Tabela 29 – Modelo de UPS em horário comercial 07:00h às 20:00h	90
Tabela 30 – UPS em horário de operação móvel sem horário de pico	92

LISTA DE TESTES

1.1 – Teste de Adequação para Variável Feridos	104
1.2 – Teste de adequação para a Váriavel Fatais	105
1.3 – Teste de adequação para a Variável UPS	106
1.4 – Teste de adequação para Feridos no modelo de Radares Móveis	107
1.5 – Teste de adequação para UPS no modelo de Radares Móveis	108
2.1 – Teste de Hausman para Feridos na avaliação de Radares Fixos	109
2.2 – Teste de Hausman para Fatais no modelo de Radares Fixos	111
2.3- Teste de Hausman para UPS no modelo de Radares Fixos	112
2.4– Teste de Hausman para Feridos no modelo de Radares Móveis	113
2.5– Teste de Hausman para UPS no modelo de Radares Móveis	114
3.1 – Radares Fixos Resultados do modelo para feridos	115
3.2 – Radares Fixos Resultados do modelo para UPS	116
3.3 - Radares Fixos Resultados do modelo para fatais	117
3.4 - Radares Móveis Resultados do modelo para feridos	118
3.5 - Radares Móveis Resultados do modelo para feridos sem horário de pico	119
3.6 - Radares Móveis Resultados do modelo para UPS	120
3.7 - Radares Móveis Resultados do modelo para UPS sem horário de pico	121

LISTA DE ABREVIATURAS E SIGLAS:

Abair. - Abairoamento

ABS - Antilock Braking System

Atrop. – Atropelamento

AUTO – Automóveis e Caminhonetas

Capot. - Capotagem

CEMT - Comissão Européia de Ministros do Transporte

CONTRAN – Conselho Nacional de Trânsito

CTB –Código de Trânsito Brasileiro

DAER – Departamento Autônomo de Estradas e Rodagem

DENATRAN – Departamento Nacional de Trânsito

DETRAN/PR – Departamento de Trânsito do Paraná

DETRAN/RS – Departamento Estadual de Trânsito do Rio Grande do Sul

DPTRAN – Departamento Estadual de Polícia Judiciária de Trânsito

EPTC– Empresa Pública de Transporte e Circulação

GPS - Global Positioning System

IBGE - Instituto Brasileiro de Geografia e Estatística

IGP-M - Índice geral de Preços Médios

IPCA – Índice de preços ao consumidor amplo

IPEA –Instituto de Pesquisa Econômica Aplicada.

Km/h – Kilometros por Hora

MOTO – Motocicletas e Motonetas

NSW - New South Wales

OMS – Organização mundial da Saúde

OCDE – Organização para Cooperação e Desenvolvimento Econômico

Ônibus Urb. – Ônibus de Transporte urbano de passageiros

PIB - Produto Interno Bruto

SIM – Sistema de Informação sobre Mortalidade

SINTAXI - Sindicato dos Taxistas de Porto Alegre

TRA - Transport Research Authority

TRB - Transport Research Bureau

UFPR - Universidade Federal do Paraná

UFRGS – Universidade Federal do Rio Grande do Sul

UPS - Unidade Padrão de severidade

SUMÁRIO

IN	TRODUÇÃO	16
	- EVIDÊNCIAS EMPÍRICAS SOBRE O USO DE INSTRUMENTOS ONTROLE DE VELOCIDADE:	
	1.1 - LIMITES DE VELOCIDADE E ACIDENTALIDADE	26
	1.2 - LEGISLAÇÃO DE TRÂNSITO E VELOCIDADE NO BRASIL	31
	1.3 - COMPORTAMENTO DOS CONDUTORES E A VELOCIDADE	33
	1.3.1- A Microeconomia e os Incentivos ao Excesso de Velocidade	33
	1.4 - OS RADARES FIXOS DE CONTROLE DE VELOCIDADE	38
	1.4.1- Principais Estudos Sobre Radares Fixos	39
	1.5 - OS RADARES MÓVEIS DE CONTROLE DE VELOCIDADE	.44
	1.5.1– Principais Estudos sobre Radares Móveis	45
2 -	- METODOLOGIA E BASE DE DADOS	49
	2.1- FONTE DOS DADOS	49
	2.2 - DISTRIBUIÇÃO DE POISSON	51
	2.2.1 - Teste Chi-Quadrado da Adequação dos Dados	53
	2.2.2 - A regressão de Poisson	54
	2.3 - DADOS EM PAINEL	55
	2.3.1 O Modelo de Efeitos Fixos	56
	2.3.2 - O Modelo de Efeitos Aleatórios	56
	2.3.3 - O Teste de Especificação de Hausman	57
	2.3.4 - Grupos de Tratamento e Controle	58
	2.4 – APLICAÇÃO DA METODOLOGIA À BASE DE DADOS DE RADAI	

	2.4.1 - Aspectos Estatisticos Da Base De Dados De Radares fixos	64
	2.5 - APLICAÇÃO DA METODOLOGIA À BASE DE DADOS DE MÓVEIS	67
3 -	- RESULTADOS DOS MODELOS	
	3.1- RESULTADOS PARA RADARES FIXOS	73
	3.1.1 - Resultados para feridos no modelo de radares fixos	73
	3.1.2 - Resultados para UPS no modelo de radares fixos	79
	3.1.3 - Resultados para Mortes no modelo de radares fixos	82
	3.2 - RADARES MÓVEIS	86
	3.2.1 - Resultados para feridos no modelo de radares móveis	86
	3.1.2 - Resultados para UPS no modelo de radares móveis	90
4 -	- CONCLUSÕES E RECOMENDAÇÕES	95

INTRODUÇÃO

Acidentes de trânsito e a necessidade de políticas de segurança viária são fatos tão antigos quanto o próprio trânsito. Em Porto Alegre no início do século 20, a condução de veículos já era uma preocupação, sendo devidamente regulamentada como pode ser observado na figura 1. Em 1929 a diretoria de tráfego alterou o sentido do fluxo nas vias da cidade, extinguindo a mão inglesa. Desde a época, o documento demonstra atenção com os acidentes e cuidado com a velocidade.

Figura 1 – Edital 84 de 1929.

INTENDENCIA MUNICIPAL Directoria do Trafego EDITAL N. 84

A nova direcção dos Vehiculos

De ordem do sr. Intendente, aviso a todos os condutores de automoveis, carros, carroças, etc. que, a partir do dia 12 de dezembro proximo vindouro, em toda a area do município, será alterado o trafego da esquerda para a direita dos respectivos conductores que, assim, darão a esquerda aos que correm em sentido contrario.

De 12 a 20 do mesmo mez de dezembro, fica expressamente estabelecido que todos os vehículos deverão ter sua velocidade reduzida ao minimo possível no entroncamento das ruas.

Em qualquer caso de duvida quanto á direcção a ser tomada, ficam os respectivos conductores expressamente obrigados a parar seus vehículos, evitando-se, assim, quaesquer accidentes.

Directoria do Trafego da Intendencia de Porto Alegre, em 27 de novembro de 1929.

HENRIQUE DE FREITAS LIMA Director.

Fonte: Extraído do Jornal: A Federação, edição 279, dezembro de 1929.

Atualmente os acidentes de trânsito continuam sendo foco de preocupação, não só em Porto Alegre, mas em grande parte das cidades, sendo objeto de estudos e pesquisas de profissionais das mais variadas áreas de atuação.

A maioria dos estudos sobre acidentes existentes têm como fonte, as áreas da engenharia de transportes e da saúde. No caso da economia, a origem do interesse é nos custos econômicos decorrentes da perda de vidas e dos feridos no trânsito. No Brasil a bibliografia ainda é muito restrita, e este estudo pode ser importante fonte de informação para trabalhos dirigidos a esta área.

O crescimento econômico brasileiro e as políticas de estímulo ao setor automotivo propiciaram o aumento das vendas de veículos e concomitantemente a elevação da frota em circulação. A aceleração do crescimento brasileiro fez com que a frota de veículos duplicasse, assim como o crescente número de vítimas, se contrapondo aos demais países, aonde o número de vítimas vem diminuindo ao longo dos anos.

Com isto, os acidentes são hoje, fato constante no cotidiano das rodovias brasileiras e nas vias das principais cidades. Seus efeitos afetam a vida de todos envolvidos, sejam eles pedestres, motoristas, instituições públicas de saúde, de trânsito e também instituições privadas.

O Brasil está no grupo de países com elevado número de mortes no trânsito. O critério de avaliação usado pela Organização Mundial da Saúde (OMS) em seu relatório de 2013¹ é a taxa de mortos para cada 100.000 habitantes. Embora esta taxa no Brasil seja próxima de 21 mortos para cada 100 mil habitantes, a meta almejada pelo país seria a redução para 11 mortos para cada 100 mil habitantes entre os anos 2004 e 2014.

No total, oitenta e oito países membros da OMS conseguiram reduzir o número de vítimas fatais no ano de 2010. Por outro lado, esse número cresceu em outros oitenta e sete países, incluindo o Brasil. Segundo a revista *Economist*, a mortalidade tem crescido muito em países pobres ou em desenvolvimento, enquanto que nos países desenvolvidos o trânsito não é mais uma fonte de grande preocupação, principalmente na Suécia, que é modelo em segurança viária.

A estimativa de perda do PIB brasileiro por acidentes de trânsito é de 1,2% ao ano, de acordo com o estudo do IPEA (2005), sendo a principal causa de mortalidade e invalidez entre a população brasileira abaixo de 40 anos.

_

¹ World Health Organization Report on Traffic Safety, 2013.

Em 2005, o país possuía 3,3% da frota mundial de veículos e era responsável por 5,5% dos acidentes fatais. Esta destruição de capital econômico e humano ocasionada pelos acidentes de trânsito no Brasil foi objeto do cálculo do IPEA em 2005. E ao aplicarmos o percentual estimado (1,2%) ao PIB com preços de mercado de 2012, representaria uma perda de 26,6 bilhões de dólares no PIB brasileiro.

No estado do Rio Grande do Sul estavam registrados 5,3 milhões de veículos em 2012. Com uma população em torno de 10,8 milhões neste mesmo ano, sendo que destes, 4,2 milhões eram condutores habilitados. O estado do Rio Grande do Sul tem elevado índice de veículo por habitante, sendo que a cada dois habitantes existe um veículo automotor.

Quanto à fatalidade no estado, de acordo com relatório do DETRAN-RS (2013), o número de mortos no estado do Rio Grande do Sul apresentou crescimento até 2010. E após tem decrescido lentamente. Em 2012 a taxa de vítimas fatais no estado foi de aproximadamente 19,5 para cada 100 mil habitantes. A tabela 1 abaixo apresenta a evolução e posterior involução no número de mortos no trânsito no Rio Grande do Sul.

Tabela 1 – Vítimas fatais no trânsito do Rio Grande do Sul.

	Total De Vítimas Fatais no Trânsito no RS												
Mês	2007	2008	2009	2010	2011	2012							
Janeiro	152	137	158	182	180	143							
Fevereiro	137	168	141	162	154	159							
Março	150	191	155	198	163	191							
Abril	182	184	187	219	192	168							
Maio	150	187	159	201	177	200							
Junho	159	157	159	186	143	148							
Julho	149	135	142	177	156	189							
Agosto	130	147	180	162	182	165							
Setembro	124	131	150	172	144	187							
Outubro	147	128	155	173	195	192							
Novembro	151	168	167	134	171	161							
Dezembro	203	167	174	225	181	188							
Total	1.834	1.900	1.927	2.191	2.038	2.091							

Fonte: DETRAN-RS

Em comparação aos demais estados Brasileiros, utilizando como base o Sistema de Informações de Mortalidade (SIM), que possuí pequenas divergências² metodológicas em relação aos números de mortes registrados pelo DETRAN-RS, o Rio Grande do Sul estava na décima primeira posição entre os estados brasileiros com menos mortes em 2010, apresentando índices *per capita* melhores que os outros estados da região Sul do Brasil, ver tabela 2 abaixo, que apresenta o ranking dos 10 estados com menor mortalidade e os estados da região sul em 2010.

Tabela 2 – Mortalidade no trânsito por Estado.

UF/Mortos	2000	2010	Taxa% de 2000 a 2010	População 2010	Índice de Mortalidade	Classificação
AM	324	469	44,8%	3.480.937,00	13,5	1°
RJ	2.596	2.296	-11,6%	15.993.583,00	14,4	2°
BA	1.205	2.263	87,8%	14.021.432,00	16,1	3°
SP	5.978	6.946	16,2%	41.252.160,00	16,8	4°
PA	639	1.355	112,1%	7.588.078,00	17,9	5°
AP	94	120	27,7%	668.689,00	17,9	6°
AC	88	134	52,3%	732.793,00	18,3	7°
RN	456	596	30,7%	3.168.133,00	18,8	8°
MA	438	1.270	190%	6.569.683,00	19,3	9°
MG	2.247	4.044	80%	19.595.309,00	20,6	10°
RS	1.875	2.233	19,1%	10.695.532,00	20,9	11°
SC	1.496	1.847	23,5%	6.249.682,00	29,6	18°
PR	2.472	3.436	39%	10.439.601,00	32,9	23°
Brasil	28.995	40.989	41,4%	190.732.694,00	21,5	-

Fonte: IBGE e SIM-DATASUS

O único estado brasileiro que apresentou redução no índice de mortalidade ao longo da década foi o Rio de Janeiro com uma queda de 11.6%. Enquanto que o Rio Grande do Sul teve um crescimento (19,1%), porém, inferior à média nacional (41,4%). Observa-se que, estados com baixos índices de mortalidade em 2000 como o Pará e a Bahia, apresentaram um substancial aumento no número de mortos entre os anos de 2000 e 2010, e o Maranhão foi o estado com maior aumento na mortalidade. Os veículos são parte do crescimento econômico, mas, também geram mortes e acidentes.

De acordo com a Confederação Nacional dos Municípios (CNM) (2009), em um comparativo entre as capitais, Porto Alegre, possuía índice de mortalidade

-

² Estas divergências ocorrem, pois na metodologia do DETRAN somente são considerados óbitos até 30 dias após o acidente.

menor que a maioria das metrópoles brasileiras entre 2005 e 2007. A cidade apresentava índice de 13,3 mortes para cada 100 mil habitantes e ficou em quarto lugar entre as vinte sete capitais, atrás apenas de Natal (8,5), Salvador (10,6) e Belém (11,5). Sendo ainda, a melhor classificada entre as capitais da região sul, com Florianópolis (23,4) e Curitiba (24,0), em 20° e 21°, respectivamente. Porém, este índice ainda está distante dos padrões de países com alto desenvolvimento humano, principalmente a Suécia, onde ocorreram apenas três mortes no trânsito para cada 100 mil habitantes.

Em relação à frota de veículos, Porto Alegre possuía 768.069 veículos em 2012 e população de 1, 409 milhões de habitantes, de acordo com o último censo IBGE (2010), resultando em índice de 0,54 veículos por habitante. E esta quantidade de veículos aumentou em média 4% ao ano entre 2001 e 2012, com um expressivo acréscimo de 11,24% de 2008 para 2009. Isso ocorreu em virtude das políticas de estímulo ao setor por parte do governo federal que renunciou ao IPI sobre veículos automotores de diversas categorias, conforme demonstra a tabela 3.

Tabela 3 – Evolução na Frota de veículos, por tipo, no município de Porto Alegre de 2001 a 2012.

ANO	MUNICÍPIO	FROTA	AUTO.	CAMINHÃO	МОТО	ÔNIBUS	% EVOL. ANUAL
2001	Porto Alegre	481.914	380.051	11.876	28.506	2.773	-
2002	Porto Alegre	500.384	392.417	12.008	32.106	3.126	3,83%
2008	Porto Alegre	604.641	452.933	13.055	56.422	3.855	20,84%
2009	Porto Alegre	672.624	495.915	14.115	67.384	4.161	11,24%
2010	Porto Alegre	701.273	510.987	14.651	71.809	4.457	4,26%
2011	Porto Alegre	733.871	529.906	15.284	75.681	4.690	4,65%
2012	Porto Alegre	768.069	550.289	15.605	79.946	4.776	4,66%
%TOTAL	Porto Alegre	59%	45%	31%	180%	72%	-

Fonte: DENATRAN

Observa-se com destaque a frota de motocicletas que quase triplicou entre 2001 e 2012, sendo que este veículo não dispõe de um nível de segurança elevado. As estatísticas oficiais do trânsito de Porto Alegre de 2008 a 2012 são fornecidas pela Empresa Pública de Transporte e Circulação – EPTC, órgão gestor do trânsito em Porto Alegre. O portal DATAPOA³, mantido pela prefeitura municipal possui registro geográfico de todos os acidentes ocorridos nas vias municipais. A tabela 4 demonstra os acidentes de trânsito por mês e ano na cidade de Porto Alegre,

³ www.datapoa.com.br

_

demonstrando um pico de acidentalidade em 2010 e redução na taxa de variação anual em 2011 e 2012.

Tabela 4 – Número total de acidentes de trânsito ocorridos em Porto Alegre, segundo o mês, entre os anos de 2008 e 2012.

Ano/Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total	Variação%
2008	1654	1305	2046	2007	1974	2061	1822	1952	2162	2192	2064	2087	23326	
2009	1582	1339	1989	1957	2025	1935	2004	1989	1998	2104	1959	2165	23046	-1%
2010	1721	1572	2402	2247	2335	2318	2260	2375	2313	2477	2153	2345	26518	15%
2011	1780	1739	1987	2098	2120	1966	2097	2246	2042	2195	2141	2079	24490	-8%
2012	1672	1419	2100	1949	1965	1804	2013	2084	1955	2736	2085	1849	23631	-4%

Fonte: EPTC

Já a tabela 5 por sua vez, apresenta o número de acidentes com vítimas fatais no período. Enquanto que, entre 2008 e 2009 houve um crescimento de 15% no número de acidentes com vítimas fatais, entre 2008 e 2012 observou-se uma queda de 28%. Cabe destacar que, acidentes fatais no perímetro urbano são eventos incomuns, sendo apenas 105 vítimas em 23.631 acidentes em 2012, valor correspondente a um percentual de 0,44%.

Tabela 5 – Número de Acidentes com vítimas Fatais por mês, entre os anos de 2008 e 2012, em Porto Alegre.

Ano/Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total	%ANUAL
2008	11	13	16	16	14	11	6	10	10	15	14	12	148	-
2009	8	12	14	16	7	18	19	15	14	16	21	10	170	15%
2010	15	5	12	17	10	12	8	17	19	13	4	11	143	-16%
2011	10	14	8	9	13	15	9	20	7	16	11	14	146	2%
2012	6	11	8	6	12	6	8	11	12	9	10	6	105	-28%

Fonte: EPTC

Apesar da redução no número de mortes em 2011 e 2012, o número de feridos não acompanhou esta redução nos últimos anos e não decresceu muito após o pico em 2010, conforme se observa na tabela 6. A seguir, parece haver uma estabilização no número de feridos em um nível próximo de 9000 pessoas por ano. É importante destacar que, para tentar reduzir estes índices, a partir de dezembro de 2010, implantaram-se inúmeros controladores fixos de velocidade no município de Porto Alegre, e a evolução ao longo dos últimos cinco anos no número de feridos em ocorrências de trânsito segue a distribuição abaixo:

Tabela 6 – Número de Feridos mensal no trânsito de Porto Alegre entre os anos de 2008 e 2012.

Ano/Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total	Variação%
2008	573	475	657	614	563	572	535	628	695	598	644	647	7201	
2009	535	440	638	645	673	638	674	634	619	696	652	732	7576	5%
2010	674	666	855	768	775	747	685	839	830	887	723	821	9270	22%
2011	682	632	667	748	747	670	696	729	703	822	812	840	8748	-6%
2012	712	603	840	757	829	699	758	786	698	799	783	741	9005	3%

Fonte: EPTC

Muitos países investiram em controladores de velocidade eletrônicos (lombadas eletrônicas, radares fixos, radares móveis e radares de velocidade média) para mudar esta situação, aumentar a segurança e reduzir os riscos e o número de vítimas. A queda nos índices parece coincidir com a implantação dos novos radares em Porto Alegre. E neste trabalho são apresentados resultados de estudos econométricos de avaliação dos radares fixos e móveis na capital do estado do Rio Grande do Sul, Porto Alegre, compreendendo os anos de 2008 até 2012 para radares fixos e janeiro de 2011 à julho de 2012 para radares móveis, através da aplicação de metodologias de regressão de Poisson, utilizando a base de dados geográfica dos acidentes ocorridos.

A percepção geral da OMS sobre a qualidade da aplicação de todos os tipos de controles de trânsito no Brasil recebeu nota 6 numa escala de 0 a 10, elaborada pela própria organização. Para simples comparação, o Brasil apresentou 40.989 mortes em 2010, enquanto a Inglaterra apresentou 1.905 mortes no mesmo período e a Suécia menos de 300. Pode-se inferir que, o número de feridos seja maior nestes países, porém, este não foi objeto do estudo da OMS.

As variáveis dependentes de estudo são o número de mortos, de feridos e a severidade dos acidentes que segue metodologia do DENATRAN descrita no capítulo 2. Estas são comparadas antes e após a instalação de radares fixos e móveis nas principais avenidas de Porto Alegre. A principal variável dependente é a variável Feridos, o motivo se deve aos acidentes com feridos serem muito mais comuns que acidentes fatais em regiões metropolitanas e vias urbanas. Ademais, o considerável número de ocorrências permite estimar com maior robustez os

resultados das ações para a redução de vítimas de trânsito por meio dos instrumentos de controle de velocidade.

Quanto às variáveis independentes, será possível mensurar os coeficientes de diversas variáveis sobre os resultados dos acidentes, como os tipos de veículos envolvidos (ônibus, moto, automóvel e bicicleta), variáveis de ambiente (clima bom, chuvoso ou nublado), de horário (noturno, diurno e faixa de horário) e de tipo dos acidentes (abalroamento, incêndio, colisão, choque, capotagem, tombamento, queda ou atropelamento). Estas características foram registradas nas ocorrências de trânsito por obrigatoriedade do código de trânsito brasileiro, e foram organizados na forma de dados em painel, viabilizando aplicação da regressão de Poisson para encontrar o seu efeito marginal sobre a probabilidade do número de feridos, mortes e severidade. Principalmente da variável que registra instalação ou não de radar.

O trabalho está dividido em três capítulos, sendo que o primeiro faz uma revisão teórica e empírica das diversas experiências internacionais sobre o uso de instrumentos de controle de velocidade. O segundo capítulo apresenta e justifica a metodologia utilizada de regressão de Poisson aplicada aos dados em painel, bem como detalha a fonte dos dados utilizada. O terceiro capítulo apresenta os resultados da aplicação dos modelos e, por conseguinte, apresentaremos as principais conclusões e recomendações.

1 - EVIDÊNCIAS EMPÍRICAS SOBRE O USO DE INSTRUMENTOS DE CONTROLE DE VELOCIDADE:

Esta seção se concentra na revisão dos estudos publicados em periódicos nacionais e internacionais sobre acidentes de trânsito, suas causas e consequências, e o uso de radares eletrônicos. O assunto tem vasta literatura no exterior, pois, a maioria dos países da Europa, da Oceania e América do Norte tem agências e institutos especializados em estudos de segurança viária. Estes órgãos originaram diversas recomendações sobre formas de aumentar a segurança no trânsito, uma delas é o uso de fiscalização eletrônica, como forma de coibir os motoristas dos excessos de velocidade, sob o risco de multas.

Dentre os dispositivos utilizados na fiscalização eletrônica, estão os coloquialmente chamados de "Pardais", que são controladores eletrônicos discretos com dispositivos fixos de medição de velocidade, que visam o cumprimento da velocidade regulamentar para um determinado trecho viário, objetivando diminuir o risco de acidentes relacionado ao excesso de velocidade nestes locais (CONTRAN, 2001).

A instalação desses Controladores Eletrônicos de velocidade discretos é recomendada em trechos homogêneos de vias, onde se pretende manter o respeito à velocidade de segurança, sendo que o condutor que estiver trafegando abaixo da velocidade permitida, não necessitará reduzi-la.

Outro dispositivo utilizado é o controlador eletrônico móvel, que consiste em uma câmera móvel com radar que mede velocidade pelo efeito Doppler⁴ ou raio Laser⁵, que pode ser movimentada ao longo das avenidas durante o dia, e seu uso é recomendado em locais que demandem fiscalização, porém não em tempo integral, como uma forma de surpreender motoristas infratores e discipliná-los através das multas, produzindo mudança sustentada em seu comportamento.

Os radares eletrônicos começaram a ser utilizados no princípio da década de 1990 na Inglaterra, Holanda e Austrália como uma tecnologia experimental. Todavia, somente após apresentarem resultados promissores no mundo, em análises que são citadas neste trabalho, foram regulamentados no Brasil através da resolução Nº 23 de 1998, do novo código de trânsito do Conselho Nacional de Trânsito (CONTRAN). Com isto, houve uma grande disseminação no uso destes equipamentos no país. Aliado a exigência do Departamento Nacional de Trânsito (DENATRAN) de coleta de dados detalhados de acidentes, o novo código de trânsito criou bases de dados para estudos técnicos objetivando avaliações e a localização ideal para ações de controle de velocidade no Brasil.

No Estado do Rio Grande do Sul, o Departamento de Estradas e Rodagem (DAER) iniciou o Programa de Fiscalização Eletrônica no ano de 1998. Embora não tenham efetuado uma avaliação completa dos impactos dos controladores, duas

_

⁴ Efeito da reflexão das ondas magnéticas no veículo, o aparelho mede o tempo de retorno das ondas e assim calcula sua velocidade.

⁵ Método mais moderno e preciso de detecção, pois, não é afetado por condições climáticas e massa dos veículos.

experiências foram efetuadas por este órgão, logo após a primeira aplicação de radares fixos no estado em dois trechos distintos de rodovias. Ambas apresentaram bons resultados na redução do número absoluto de acidentes: na BR-290, no trecho que passa pelo município de Butiá e na RS-122, no trecho de São Vendelino; no período de 1997 a 2000, logo após a introdução do código de trânsito. A redução observada no número de feridos foi de 100% no primeiro trecho e de 45% no segundo. Já o número de mortos (3) não variou no primeiro trecho e foi reduzido em 100% no segundo trecho.

Em Porto Alegre, todos os radares fixos controlam avenidas com velocidades de 60 km/h, exceto pela Avenida Castelo Branco, com radares e velocidade limite de 80 km/h. Já a operação dos radares móveis está a cargo da EPTC e na época em que foi extraída a base de dados, havia a divulgação diária das avenidas monitoradas pelo radar, normalmente, cinco ou seis avenidas por dia.

A eficácia dos radares dependerá da capacidade de produzir mudança pró segurança no comportamento dos motoristas. Os fatores que causam o desrespeito aos limites de velocidade têm origem no comportamento humano e dependem de uma complexa interação de fatores sociais e técnicos, tais como aspectos psicológicos da sensação de velocidade, legislação de trânsito, tecnologia automotiva e estrutura viária.

Somado a isto, nos centros urbanos brasileiros, falta infraestrutura do sistema viário, o que gera conflito entre fluidez de tráfego e segurança. Existem interesses conflitantes entre os usuários das vias (motoristas de automóveis, ônibus, pedestres e ciclistas), portanto, os radares seriam uma tentativa de melhoria da segurança viária através do comportamento dos condutores, sem interferência na mobilidade urbana dentro dos limites de velocidade pré-estabelecidos.

1.1 - LIMITES DE VELOCIDADE E ACIDENTALIDADE.

A relação entre a velocidade do veículo e a gravidade do acidente é muito grande. Quanto maior a velocidade de impacto, maior a quantidade de energia cinética que deve ser absorvida pela estrutura do veículo. Sendo que a quantidade de energia cinética é o quadrado da velocidade do veículo, e a probabilidade de

morte ou lesão num acidente aumenta exponencialmente em relação à velocidade do veículo.

Considerado um estudo seminal na avaliação entre velocidade e risco de acidentes, Kloeden et al. (1997) efetuaram um estudo de caso controlado comparando 83 veículos acidentados em Adelaide (Austrália) com 830 veículos controle, através da reconstrução dos detalhes de cada acidente baseado nas suas características. Para uma via com limite de 60 km/h, o risco relativo de acidentes duplicou a cada 5 km/h no aumento da velocidade. Kloeden et al., (1997) também afirmam que, mesmo uma redução de velocidade modesta pode prevenir a ocorrência de colisões e reduzir significativamente a severidade dos acidentes. Particularmente, aqueles que envolvem usuários vulneráveis como: idosos, crianças e doentes, que são presença constante no ambiente urbano. A figura 2 abaixo apresenta o resumo dos resultados de Kloeden et al. (1997):

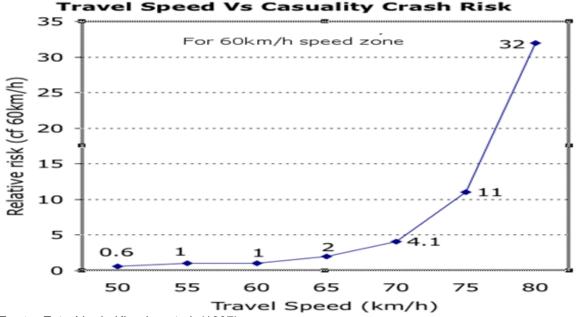


Figura 2 – Relação entre velocidade e risco relativo de morte.

Fonte: Extraído de Kloeden et al. (1997)

De acordo com este calculo em Adelaide, um veículo a 70 km/h apresenta 4,1 vezes mais risco de se envolver em um acidente com morte do que um veículo a 60 km/h. Certamente as principais avenidas de Porto Alegre têm características distintas das vias australianas deste estudo, o que poderia alterar o cálculo de risco relativo, mas, a relação entre excesso de velocidade e risco permanece semelhante.

Diversos outros estudos internacionais afirmam que a velocidade é um fator determinante na ocorrência de acidentes. Em rodovias e áreas urbanas, a relação entre a velocidade do veículo e a gravidade dos acidentes é um tema já bem sedimentado e foi objeto de debate nos países da Organização para Cooperação e Desenvolvimento Econômico (OCDE). O relatório intergovernamental da Comissão Européia de Ministros do Transporte (CEMT) publicado pela OCDE em 2006, afirma que o excesso de velocidade era o maior problema da segurança viária nos países membros, e que a diminuição da velocidade em 5% renderia uma redução de até 20% na severidade dos acidentes. Estes resultados são baseados em extensa revisão de estudos anteriores realizados em países membros da OCDE. A CEMT evoluiu e se tornou *International Transport Forum* (ITF) que conta atualmente com 54 países membros, porém, o Brasil não participa deste grupo.

É inegável que há uma resistência por parte de muitos condutores às ações das autoridades de trânsito que visam o controle de velocidade, ainda que saibam que veículos em alta velocidade apresentam maior risco de acidentes. Um pesquisador brasileiro que se dedicou ao tema foi Yamada (2005), que afirma:

Novos estudos vêm sendo realizados pelo mundo para investigar a relação entre velocidade e acidentes, buscando evidenciar a influência da velocidade na frequência e na gravidade dos acidentes de trânsito. O assunto é polêmico, pois envolve aspectos psicológicos importantes, como o prazer de dirigir em altas velocidades e o desejo de vencer distâncias no menor tempo possível, presentes numa parcela considerável dos motoristas. Além disso, há também, interesses econômicos da indústria automobilística e petrolífera, pressionando no sentido de evitar medidas limitadoras ao uso do automóvel. (YAMADA, 2005, p 07)

Em rodovias, a relação entre velocidade e tempo de viagem é evidente, mas no trânsito urbano, a velocidade não tem uma relação tão direta. O Relatório publicado pelo *Transportation Research Board* (TRB), em (1998), com sede em Washington e com a participação de diversos pesquisadores dos EUA e que foi denominado *The Costs of Sprawl - Revisited*, ou, Os Custos da Dispersão Revisitados ⁶, afirma que o tempo de viagem depende muito mais de fatores geométricos das estradas e dos bairros que geram congestionamentos, do que propriamente do limite de velocidade. Em situação de congestionamento, o limite de

⁶ Em tradução livre

velocidade estabelecido tem pouco efeito na velocidade que o condutor dirige. Deste modo, pode-se argumentar que, reduzindo um limite de velocidade de 5 km/h ou 10 km/h durante o horário de pico (quando o nível de congestionamento é alto), será pouco provável obter qualquer benefício de segurança significativo. O TRB afirma que os limites de velocidades menores devem impactar mais na segurança em situações de congestionamento médio, onde regularmente consegue-se viajar próximo ao limite de velocidade, ou ainda, em períodos de baixo congestionamento.

Em Unley, cidade do Sul da Austrália, o limite de velocidade foi reduzido e passou a ser de 40 km/h em áreas urbanas. Com isso, pesquisadores como Dyson et al. (2001), estudaram o tempo que os habitantes levavam para seus deslocamentos diários. Eles observaram que o tempo total das viagens aumentou muito pouco, não sendo diretamente proporcional à redução do limite de velocidade. Neste caso, os autores concluíram que um tráfego mais suave pode ter contribuído para diminuir as perdas de tempo de viagem e também a acidentalidade.

Archer et al. (2008), também podem ser citados como tendo dado subsídio ao debate da velocidade urbana. Eles realizaram uma análise dos custos e benefícios da redução de velocidade de 60 km/h para 50 km/h nas vias urbanas, e para 30 km/h em áreas residenciais, na cidade de Estocolmo, Suécia. Em uma política pública conhecida como *Vision Zero* e que foi iniciada em 1997 com o slogan: "nenhuma perda de vida no trânsito é aceitável", que pretendia levar a mortalidade no trânsito sueco à zero, as principais conclusões de Archer foram:

- A velocidade de pico menor provocada por uma redução no limite de velocidade em áreas urbanas e metropolitanas trouxe reduções consideráveis na quantidade de acidentes;
- Um impacto relativamente pequeno sobre o tempo de viagem, ou seja, na mobilidade, é provável que ocorra aumento no tempo ao nível individual, mas, dependendo de como os valores são atribuídos pela sociedade, o menor tempo em trânsito não se caracteriza como um benefício global;
- Conseguir apoio e aceitação da comunidade é fundamental para a redução do limite de velocidade e mudança no comportamento dos condutores;

- Usuários vulneráveis como pedestres e ciclistas serão muito beneficiados com a redução média de velocidade;
- Limites de velocidade menores incentivam melhores e mais seguras formas de interação entre os diferentes tipos de usuários das ruas;
- A redução dos limites de velocidade, se as circunstâncias permitirem, pode vir a ser uma forma altamente eficaz de alcançar e manter as metas de longo prazo das estratégias de segurança de tráfego e planos de ação;

Archer et al., (2008) também estimaram que cerca de 2.900 acidentes com vítimas (feridos ou mortos) foram evitados por ano na região de Estocolmo. A economia em custos médicos foi entre 12 milhões e 26 milhões de dólares, e a economia em danos materiais foi de 22 milhões de dólares resultando num benefício total entre 34 milhões e 48 milhões de dólares.

Além da segurança com a redução das mortes e lesões, há outros benefícios potenciais a serem obtidos pela redução do limite de velocidade em áreas urbanas. Os benefícios sugeridos por Elvik et al., (2004) alegam que ocorre um aumento no fluxo de tráfego e consequentemente, redução dos congestionamentos, principalmente onde as estradas estão funcionando perto do limite de sua capacidade máxima. Além disso, a redução na velocidade deve conseguir uma diminuição nos custos operacionais dos veículos com menos desgaste de energia (combustível), menos poluição e ruído.

Em contrapartida, os críticos aos atuais limites de velocidade alegam que a velocidade poderia ser aumentada, uma vez que, nos últimos anos foram introduzidas mudanças tecnológicas nos veículos, que estão cada vez mais seguros e, assim, as velocidades máximas permitidas poderiam ser elevadas sem aumento de riscos para o condutor. Porém, estas afirmações deixam de levar em conta as limitações impostas por fatores como o grau de destreza do motorista e as condições meteorológicas, visibilidade, chuva, neblina e faixa horária que prejudicam a atenção e a capacidade dos condutores, bem como o risco maior para pedestres, motociclistas e ciclistas.

Os defensores do aumento de velocidade argumentam que isto melhoraria a fluidez de tráfego. Uma oportunidade para estudar este fato ocorreu em 1997,

quando governo da Austrália optou por manter limite de velocidade urbana de 60 km/h em todos os estados. Entretanto, o estado de New South Wales (NSW), decidiu implantar um limite de velocidade menor, de 50 km/h. Cairney e Donald (1996) estudaram o fato e afirmaram que foi insignificante o aumento do tempo das viagens devido aos limites reduzidos. E defendem que a principal fonte de congestionamentos nas estradas deve-se aos cruzamentos, semáforos e ruas inapropriadas, com problemas de planejamento urbano.

Na cidade de Porto Alegre tramitaram pelo poder legislativo, duas propostas distintas e opostas acerca da velocidade adequada ao tráfego de veículos nas principais avenidas da cidade, que atualmente é de 60 km/h. Uma das propostas defende que o novo limite seja elevado para 70 km/h e a outra defende que seja reduzido para 50 km/h.

Ambas as propostas citadas não apresentaram consenso no legislativo de Porto Alegre, mas com o debate sobre mobilidade urbana e meio de transporte público, uma alteração do limite de velocidade nas avenidas pode voltar à pauta.

1.2 - LEGISLAÇÃO DE TRÂNSITO E VELOCIDADE NO BRASIL.

O novo Código de Trânsito Brasileiro (CTB) foi promulgado em 1997 e entrou em vigor em 1998. Na época, profundas modificações foram introduzidas visando à melhoria da segurança viária como o uso obrigatório de cintos de segurança, de capacete para motociclistas e o sistema de pontuação dos condutores por infrações.

Especificamente, com relação aos limites de velocidade, o Código de Trânsito Brasileiro nos Art. 61, estabelece:

- **Art. 61 -** A velocidade máxima permitida para a via será indicada por meio de sinalização, obedecidas a suas características técnicas e as condições de trânsito.
- § 1º- Onde não existir sinalização regulamentadora, a velocidade máxima será de:
 - I- Nas vias urbanas:
 - a) Oitenta quilômetros por hora, nas vias de trânsito rápido;

- b) Sessenta quilômetros por hora, nas vias arteriais;
- c) Quarenta quilômetros por hora, nas vias coletoras;
- d) Trinta quilômetros por hora, nas vias locais.

§ 2º- O órgão ou entidade de trânsito ou rodoviário com circunscrição sobre a via poderá regulamentar, por meio de sinalização, velocidades superiores ou inferiores àquelas estabelecidas no parágrafo anterior.

As penalidades previstas para excesso de velocidade são regidas pela Lei nº 11.334 de 26 de julho de 2006, que alterou a natureza das infrações e a penalidade para quem ultrapassa a velocidade permitida. Quando a velocidade supera em até vinte por cento o limite permitido, a infração passou a ser média e não mais grave como era previsto anteriormente.

A redação atual da lei prevê as seguintes penalidades no Art. 218:

"Art. 218." Transitar em velocidade superior à máxima permitida para o local, medida por instrumento ou equipamento hábil, em rodovias, vias de trânsito rápido, vias arteriais e demais vias:

I - quando a velocidade for superior à máxima em até 20% (vinte por cento):

Infração - média;

Penalidade – multa (R\$ 85,13);

II - quando a velocidade for superior à máxima em mais de 20% (vinte por cento) até 50% (cinquenta por cento):

Infração - grave;

Penalidade – multa (R\$ 191,54);

III - quando a velocidade for superior à máxima em mais de 50% (cinquenta por cento):

Infração - gravíssima;

Penalidade - multa (R\$ 574,62), suspensão imediata do direito de dirigir e apreensão do documento de habilitação.

Na cidade de Porto alegre, em 2011, foram aplicadas 45 mil multas por mês e a infração decorrente do excesso de velocidade é o principal fato gerador de multas. Em alguns meses de 2011, foram aplicadas mais de 30 mil multas por excesso de velocidade, conforme observado na tabela 7:

Tabela 7 – Multas aplicadas no Ano de 2011 em Porto Alegre.⁷

Porto Alegre	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Total
Agentes	17.624	19.437	20.950	21.695	18.078	16.316	16.069	19.864	21.231	19.932	19.190	17.725	228.111
Lombadas	1.768	1.815	1.865	1.653	1.935	1.533	1.522	1.150	-	-	-	1.765	15.006
Radares Fixos	20.446	17.878	16.681	15.202	15.425	12.972	11.052	10.835	13.895	14.177	13.639	13.829	176.031
Radares Móveis	10.491	10.308	8.965	8.190	11.198	12.959	8.546	11.585	14.248	10.940	15.538	17.137	140.105
Total	50.329	49.438	48.461	46.740	46.636	43.780	37.189	43.434	49.374	45.049	48.367	50.456	559.253
Fonte: DF	TRAN/F	28											

A tabela acima sugere um efeito aprendizado dos condutores em relação aos radares fixos, visto que, a instalação de novos radares foi efetuada em dezembro de 2010 e o número de multas foi decrescente. Já o radar móvel varia com outros fatores como dias úteis, vias monitoradas, horários, aviso entre condutores e assertividade dos fiscais.

1.3 - COMPORTAMENTO DOS CONDUTORES E A VELOCIDADE.

O senso comum dos motoristas é que ao aumentar sua velocidade, eles estarão obtendo uma redução proporcional no tempo de suas viagens, e assim, obtendo vantagem na utilização do tempo, logo, aumentando a disponibilidade para outras atividades. Porém, como citado anteriormente, no ambiente urbano esta correlação nem sempre é verdadeira, pois, os veículos devem frequentemente parar em semáforos ou outros tipos de obstáculos como faixas de conversão, travessia de pedestres, zonas escolares, etc. Fatores como estes causam grandes variâncias na velocidade média e no tempo de deslocamento.

É claro que ainda persiste a relação entre velocidade e tempo de viagem em ambiente urbano, principalmente, fora do chamado horário de pico, que varia de

⁷ Setembro a Novembro de 2011 não foram coletados dados de multas por lombadas eletrônicas.

acordo com a região e suas características comercias. Nestas situações, a possibilidade de perda econômica por meio de multas e radares seria um incentivo para redução da velocidade.

1.3.1- A Microeconomia e os Incentivos ao Excesso de Velocidade.

Becker (1968) deu início a uma nova possibilidade de abordar problemas sociais através da teoria microeconômica, observando os custos e benefícios que os criminosos adotam racionalmente em seus atos. O motorista que excede o limite de velocidade regulamentado por lei está cometendo um tipo de crime de trânsito e sua racionalidade é semelhante avaliando os riscos e benefícios de suas atitudes, ficando os mesmos, sujeitos às penalidades previstas na legislação de trânsito de cada país. Para compreender a análise das multas em ambiente urbano pela lógica dos condutores, considera-se o pressuposto de que os motoristas são racionais e conhecem as leis. Desta forma, a relação entre velocidade e o número de multas arrecadadas é estabelecido em um modelo microeconômico com foco no *trade-off* entre a velocidade e o risco de receber uma multa por exceder o limite. Um motorista racional escolherá a relação mais vantajosa em relação ao risco de ser multado.

Os motoristas, geralmente, querem realizar seu trajeto o mais rápido possível. Eles são, no entanto, limitados pelo risco de acidente, os custos do combustível e o risco de receber uma multa. Conforme a renda pessoal cresce, os custos de combustível e multas são menos restritivos. Além disso, pode-se destacar que as multas foram definidas na promulgação do código de trânsito brasileiro em 1997, e seus valores foram baseados na Unidade Fiscal de Referência (UFIR) que foi extinta em 2000. Com a extinção da UFIR, o Conselho Nacional de Trânsito transformou o valor das multas em valores fixos que foram amenizados pela inflação. A multa para quem ultrapassa em 50% o limite de velocidade permanece em R\$ 574,62 desde 2000. Se fosse corrigida pelo Índice de Preços ao Consumidor Amplo (IPCA), o valor em dezembro de 2012⁸ seria de R\$1.243,33 e pelo Índice de Preços Médios(IGP-M) seria de R\$ 1.517,33.⁹ e a infração mais branda passaria de R\$ 85,13 para R\$ 184,39 pelo IPCA e R\$ 224,98 pelo IGP-M.

-

⁸ Período final estudado neste trabalho.

⁹ Calculadora do Cidadão, Banco Central do Brasil, correção monetária, outubro de 2000 a dezembro de 2012.

De acordo com Polinsky e Shavell (2000) o valor ótimo econômico da multa deveria ser tal que satisfaça a seguinte equação:

$$Multa = \frac{Danos\ esperados\ pelo\ excesso\ de\ velocidade}{Probabilidade\ de\ ser\ detectado}$$

Neste modelo o valor da multa seria uma função do risco monetário dos danos físicos e materiais do excesso de velocidade dividido pelo risco do um condutor ser detectado em alta velocidade, mas este é um modelo estritamente teórico que na prática seria muito dificil de calcular para cada condutor e tipo de veículo.

Já para Rubinstein (1979), o governo deveria fixar um valor de multa crescente, reduzindo a penalização de motoristas em sua primeira transgressão e aumentando a cada vez que o condutor exceda o limite. Delhaye (2007) se dedicou à análise econômica da segurança no trânsito da Bélgica, questionando se as multas deveriam ser crescentes para cada motorista ou um valor fixo por tipo da infração, e observou que as multas crescentes são adequadas para punir corretamente os maus motoristas, e um sistema de multas fixas pune inadequadamente motoristas bons que ocasionalmente excedem os limites.

O Brasil não tem multas crescentes nem por quantidade de infrações e nem pela renda dos infratores, além disto, dentro de uma perspectiva de custo x benefício, do ponto de vista dos condutores, nos últimos anos ficou relativamente mais barato desrespeitar os limites de velocidade no Brasil. Somado a isto, o sistema de perda de pontuação na carteira que foi criado para contornar estes problemas não está funcionando de forma adequada, sendo que, cada multa soma pontos ao motorista e estes pontos podem ser transferidos para outros condutores não frequentes como familiares. Mesmo quando um motorista perde vinte pontos em um ano, diversos tipos de recursos jurídicos são aplicáveis, o que na prática, torna muito difícil a cassação do direito de dirigir destes condutores.

O excesso de velocidade de condutores gera externalidades negativas sobre os demais usuários das vias. A figura 3 abaixo apresenta uma adaptação do modelo de externalidades ao trânsito no caso dos acidentes.

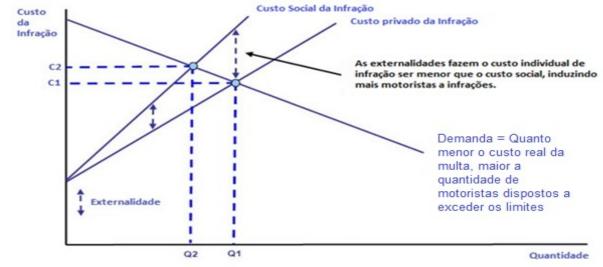


Figura 3 – Modelo de Externalidades Adaptado às multas de trânsito.

Fonte: Adaptado do modelo de externalidades.

De acordo com a figura 3, pode-se observar que os condutores seriam os ofertantes de infrações de trânsito, e a demanda seria função do valor relativo das multas ponderado pelo risco de ser multado. O custo das multas é menor aos condutores do que à sociedade em geral, onde pedestres e ciclistas correm riscos maiores de acidentes por conta do comportamento de alguns motoristas. O maior benefício individual, de acordo com o modelo é o fato de que o condutor que exceder os limites terá vantagem sobre os demais, caso o mesmo não seja multado. Caso ocorra a multa, o valor provavelmente não será tão alto quanto o risco que provocou aos demais. O ótimo social seria uma situação com menor quantidade de infrações e com um valor maior por multa para devolver a sociedade a totalidade dos custos econômicos causados.

Visando compreender melhor o que pensam os condutores, O Núcleo de Psicologia do Trânsito da Universidade Federal do Paraná (UFPR) realizou uma análise da percepção de risco e o comportamento no trânsito de motoristas curitibanos. Selecionados a partir de uma listagem do DETRAN-PR, a pesquisa de THIELEN (2002), entrevistou 36 pessoas, entre as quais, 20 já haviam recebido pelo menos nove multas por excesso de velocidade.

Segundo a referida pesquisa, os motoristas infratores ignoram as placas de sinalização de velocidade por diversas razões, entre as quais, a falta de credibilidade nas autoridades responsáveis por estabelecer limites máximos permitidos. De acordo com THIELEN (2002), muitos motoristas aceitam certo grau de risco, que é estimado a partir de fatores como experiências passadas, potencial

de acidente da situação e confiança na habilidade de tomar decisões e controlar o veículo. Eles argumentam que exceder moderadamente o limite de velocidade não representa perigo. Quando os mesmos são questionados sobre a responsabilidade pelas suas infrações, os motoristas tenderam a buscar motivos externos, como a inadequação da sincronização dos semáforos assim como da velocidade fixada à via. Embora associem excesso de velocidade a riscos, a maioria indicou como excessivas velocidades superiores às que eles costumam dirigir. Desta forma, os motoristas tendem a majorar sua percepção acerca de sua própria perícia, acreditando que a sua velocidade elevada não oferece riscos aos outros.

A pesquisa não apontou diferenças na percepção de riscos para motoristas infratores e motoristas que não haviam recebido multas. Além do mais, representantes dos dois grupos identificaram como seguras velocidades superiores àquelas definidas pela sinalização. A tomada de decisão que resulta em correr risco de ser ou não multado é definida pela existência da fiscalização eletrônica, ou seja, não é a placa com o limite de velocidade que orienta o comportamento do motorista, mas a existência ou não dos mecanismos de fiscalização eletrônica, pelo menos em situações climáticas favoráveis.

É provável que o comportamento dos condutores e a velocidade que transitam também sejam alterados pelas condições climáticas. Neste sentido podese citar Khattak et al. (1998), que afirmam que o nível geral de risco de colisão com superfícies molhadas é maior que em superfícies secas, e que em caso de neblina ou neve o risco em geral aument., Porém, após aplicação de modelo Probit em quatro distritos da Carolina do Norte, EUA, observaram que houve redução significativa na severidade dos acidentes com clima adverso entre 1990 e 1995, o que segundo os autores indica que os motoristas, nestas condições aumentam sua cautela e tendem a reduzir sua velocidade, levando a acidentes com menos probabilidade de feridos e mortes.

Este comportamento também foi observado por Bilionis (2013), que efetuou uma análise com modelos Probit e Logit para o estado de Iowa nos EUA entre 2009 e 2011, e afirma que as condições adversas de tempo influenciam na severidade dos acidentes, e a maioria dos acidentes em condições adversas têm baixa severidade:

Adverse weather conditions influence crash severity, especially due to their interaction with other crash variables. In most of the cases though, the outcome of a crash under inclement weather is more likely to be of low severity (Bilionis 2013, pág 97).

Dirigir cautelosamente e mais devagar é custoso porque consome tempo e exige maior atenção do motorista. Ao decidirem o nível de cuidado e atenção ao dirigir, as pessoas racionais comparam o benefício marginal de dirigir cuidadosamente com o seu custo marginal. Elas dirigem mais devagar e mais cuidadosamente quando o benefício do aumento da segurança é maior. Ou seja, as pessoas dirigem mais devagar e cuidadosamente quando as estradas estão molhadas ou com neblina do que quando elas estão secas.

Estes resultados estão de acordo com o chamado "efeito Peltzman", descrito por Peltzman (1975), ao estudar a lei que tornou obrigatório uso de cintos de segurança nos automóveis nos Estados Unidos. A introdução da lei sobre cintos de segurança afetou o cálculo de custo-benefício dos motoristas. Os cintos de segurança reduzem o custo marginal dos acidentes porque diminuem a probabilidade de ferimento ou morte. Com isso, reduzem os benefícios de se dirigir lenta e cuidadosamente. As pessoas reagem aos cintos de segurança da mesma maneira que reagiriam a uma melhora das condições das estradas dirigindo com velocidade mais alta e com menos cuidado. Assim, o resultado da lei que tornou o uso do cinto de segurança obrigatório foi um maior número de acidentes. A diminuição da condução cuidadosa tem um efeito claro e adverso sobre os pedestres, que passam a ter maiores chances de serem envolvidos em um acidente, e estes não gozam do benefício da maior segurança decorrente da utilização do cinto de segurança. De acordo com as evidências apresentadas por Peltzman (1975), essas leis produzem tanto menos mortes por acidente quanto um maior número de acidentes. O resultado líquido foi uma pequena variação do número de mortes de motoristas e um aumento do número de mortes de pedestres.

Os resultados observados por Peltzman (1975), Bilionis (2013) e Elvik et al. (1997) demonstram que a mudança do comportamento dos condutores em relação à velocidade deve ser a prioridade das políticas públicas que visam aumentar a segurança dos usuários das vias na cidade.

1.4-OS RADARES FIXOS DE CONTROLE DE VELOCIDADE.

Para tentar conscientizar os condutores a seguirem os limites de velocidade, muitos países optaram pelo uso de controladores eletrônicos de velocidade. O tipo mais comum deste aparelho consiste no sistema fixo que possui instalação de câmeras em postes com operação automática, dispensando a presença dos agentes de trânsito. A fiscalização é feita em todas as faixas de tráfego durante 24 horas por dia. Utilizando sensores embutidos no pavimento, que permitem a detecção dos veículos e a medição de velocidade com o registro fotográfico da parte traseira ou dianteira do veículo através de um flash infravermelho. Também é registrada a data e hora da infração. Todos os dados registrados dos veículos infratores são armazenados em uma central eletrônica.

De acordo com Gold (2003), estes equipamentos são mais apropriados para rodovias ou vias urbanas com média e grande extensão, onde o objetivo é fiscalizar todas as faixas de tráfego e limitar a velocidade média do fluxo, embora ocorra a passagem de uma percentagem de veículos acima da máxima permitida.

Em relação ao aspecto físico da via, Gold (2003), recomenda que ao posicionar um radar fixo, devem ser levadas em conta as curvas e as declividades que favorecem o desenvolvimento de altas velocidades. O equipamento fixo deve, sempre que possível, ser colocado no meio de uma descida, e antes de trechos em curva precedido de adequada sinalização vertical da velocidade máxima, evitandose freadas bruscas.

Para trechos sinuosos, principalmente em aclives, é recomendado, por Gold, um estudo cuidadoso a fim de evitar o efeito surpresa aos condutores, podendo gerar um aumento nos acidentes e, consequentemente, de vítimas.

As principais vantagens dos radares fixos para o controle e fiscalização da velocidade nas rodovias, extraídas de Moukarzel (1999), são:

- Precisão na medição da velocidade;
- Produzem prova flagrante do ato infracional, eliminando o risco moral entre agente/infrator;
 - Não há seletividade na autuação;
- Funcionam independentemente dos agentes de fiscalização, liberandoos para atuarem em outras atividades, também necessárias a segurança do trânsito,

e não impedem que os mesmos fiscalizem paralelamente a velocidade, caracterizando-se como apoio à fiscalização tradicional;

- Eliminam os erros de medição de campo e as influências atmosféricas;
- Funcionam com eficiência em condições adversas tais como, à noite, com chuva ou neblina;
- Podem ser programadas para funcionarem de acordo com peculiaridades locais ou do órgão fiscalizador;
- Caso sejam desativadas ou removidas, podem manter por longo período um efeito residual;
- Produzem receita, cobrindo os custos do sistema e excedente para investimento outras atividades de trânsito.

No entanto, as principais desvantagens dos radares eletrônicos para o controle e fiscalização da velocidade nas rodovias são:

- Facilidade da identificação do local onde está instalado o equipamento;
- Veículos sem placas de identificação ou adulteradas, ficam isentos de responsabilidade; embora o sistema registre a imagem e uma posterior autuação ou investigação possa ocorrer.

1.4.1 – Principais Estudos Sobre Radares Fixos.

Como mencionado anteriormente, a avaliação de eficácia dos radares no Brasil é um tema pouco usual, desta forma a maior parte das bibliografias consultadas para o estudo é originária da Europa, Oceania e América do Norte. Estes aparelhos começaram a serem utilizados na década de 1990 na Holanda e Inglaterra sendo que, os primeiros estudos de avaliação em cada país, foram feitos respectivamente por Oei et al. (1992), e por Corbett (1994).

O trabalho inicial no sentido de avaliação de radares fixos foi publicado por Oei et al. (1992), com dados entre 1990 e 1991 em estradas de quatro províncias holandesas (Gelderland, Utrecht, Noord-Brabant e Overijssel). O estudo teve como foco os radares fixos e a sua sinalização aos motoristas com a colocação de placas de aviso. Este estudo examinou duas rodovias em cada área, uma com câmeras fixas como tratamento e uma rodovia semelhante sem câmeras como controle. A

velocidade permitida em ambas às rodovias era de 80 km/h, com a introdução dos radares fixos, a porcentagem de motoristas que infringiram o limite de velocidade foi de 38% na rodovia sem radar e de 11% na rodovia com radares e sinalização do mesmo. O mais importante é que o número de acidentes caiu 35% na rodovia com controladores eletrônicos, em conjunto a uma redução de 6 km/h na velocidade média dos veículos. Porém, os autores citam como limitação que as vias que receberam os radares já tinham alta acidentalidade, e a redução provavelmente foi superestimada.

Corbett (1994) apresentou os resultados da primeira avaliação de infrações de trânsito após introdução de radares na Inglaterra. Através da aplicação de questionários de avaliação a 483 motoristas que utilizavam as rodovias do país, e afirmou que 29% dos entrevistados mudaram suas práticas ao volante e reduziram a velocidade nas rodovias após a aplicação dos instrumentos de controle de velocidade.

Elvik et al. (1997), realizaram a primeira avaliação na Noruega, numa metodologia denominada *Empirical Bayes Approach to the Estimation of Unsafety*, ou abordagem bayesiana empírica para estimação da insegurança, baseada em Hauer (1992), que propôs uma metodologia com uso da distribuição binomial negativa, com variáveis discretas, para calcular o nível de risco (*level of hazard*) e o potencial de melhoria de segurança (*potential for safety improvment*) para ruas e localidades. Elvik et al. (1997), adaptaram o modelo assumindo que o nível de risco de um local segue a distribuição de probabilidades de Poisson e que o nível de risco em toda região segue uma distribuição Gama¹⁰. Eles encontraram redução de 12% nos acidentes com danos materiais, e de 26% no número de feridos através da análise de 64 radares fixos instalados em rodovias da Noruega.

No ano 2000, a autoridade de trânsito, *Road and Traffic Authority* (RTA) de *New South Wales*, na Austrália, criou um grupo de trabalho para avaliação de impacto das câmeras de velocidade fixas. Esta avaliação compreendia questionários aplicados com a população, e avaliação dos acidentes e da velocidade, medida nos trechos onde 20 radares fixos foram implantados, e onde, posteriormente, em 2002, mais oito câmeras foram acrescentadas. O grupo usou dados de 1996 a 2003

_

 $^{^{10}\,}$ Distribuição de probabilidade continua com um parâmetro de forma e um de escala.

consistindo de identificação dos acidentes, coordenadas geográficas, números de mortos, feridos e acidentados e uma ficha contendo detalhes completos de cada acidente. Os dados foram colocados sobre um *shapefile*¹¹ das ruas e cidades com suas coordenadas, possibilitando identificar os tipos de acidentes mais relevantes em cada localidade.

O grupo publicou seus resultados em 2005 por temas, sendo o primeiro a análise da velocidade dos veículos, o segundo a análise dos acidentes e o terceiro a avaliação econômica do programa australiano de radares.

O primeiro tema do relatório RTA (2005), foi referente ao excesso de velocidade. Foram efetuadas regressões de Poisson para cada nível de desvio de velocidade, correspondendo a 10, 20 ou 30 km/h acima da velocidade limite. Os resultados indicaram que nos doze meses após a instalação das câmeras, a velocidade média nas regiões próximas as mesmas, haviam reduzido 6,3km/h, mas não foram detectadas mudanças significativas na velocidade média no restante das ruas. Após vinte quatro meses, os efeitos do programa se mantiveram muito semelhantes com redução de 5,8 km/h na velocidade em trechos próximos aos radares fixos e a velocidade em trechos distantes, no entanto, mostrou um aumento significativo de 1,5 km/h.

O segundo tema do relatório do RTA (2005) foi a análise dos acidentes ocorridos nos trechos. O resultado mostrou uma redução significativa de 19,7% no número de acidentes próximo do local de introdução das câmeras. E, novamente, no restante dos trechos não houve redução significativa. Entre todos os 28 locais do estudo houve uma redução de 22,8% no número de acidentes com mortos ou feridos com significância inferior a 1%. Já ao longo de todo o comprimento das vias houve uma redução de 7,8%, porém, não se mostrou estatisticamente significante. De acordo com o relatório, não foi possível analisar neste estudo o resultado individual em cada rodovia, pois o número de mortes era relativamente pequeno e sujeito a flutuações, o que tornava os resultados estatisticamente insignificantes, o que levou análise conjunta de todas as vias.

acidentes determinando os tipos e locais mais frequentes e os mais perigosos na cidade.

¹¹Shapefile se refere a um arquivo base de softwares de mapeamento cartográfico e georreferenciamento de áreas, os shapefiles de avenidas de Porto Alegre podem ser combinados por software com os dados de

O estudo do RTA (2005) ainda apresentou um terceiro tema que foi a análise econômica do programa por meio do uso de dados desagregados, segundo a gravidade dos acidentes nas 28 localidades. O objetivo era estimar a redução do custo social com a diminuição no número de vítimas. A redução foi obtida pelo resultado da análise estatística inferencial, ou seja, que faz uma estimação dos parâmetros e infere que os custos e benefícios observados serão constantes ao longo de toda vida útil dos aparelhos, ou seja, de 18 anos. Na análise foram incluídos os custos de instalação, de manutenção e de operação do radar fixo, incluindo ainda, os custos administrativos e de processamento das infrações. As multas aplicadas pelos aparelhos foram tratadas como transferência e não como um benefício, portanto, não entraram no cálculo. Os benefícios em segurança superaram os custos em 113,4 milhões de dólares no período.

Roux et al. (2010) realizou analise para a eficácia dos radares nas estradas vicinais da França, utilizando o modelo de regressão de Poisson com dados em painel, comparando cidades cujas rodovias receberam radares, e com cidades semelhantes que não receberam radares fixos, e concluíram que o impacto dos radares fixos era elevado nos primeiros meses após sua instalação, sendo decrescente ao longo do tempo. Esta pesquisa também analisou o raio de ação dos radares fixos, e encontrou melhoria na segurança viária até 3km de distância do ponto de instalação dos radares em rodovias da França, porém, as maiores reduções observadas num raio de até 1 km do radar, que foi de 24% nos acidentes nos primeiros seis meses uso dos equipamentos.

Newstead et al. (2011), também na Austrália, avaliaram o impacto de 76 radares fixos instalados em postes de semáforos em todo estado de Victoria. Sendo que estes aparelhos foram instalados em datas distintas entre 2004 e 2008. Foi feita estimação dos efeitos da instalação dos aparelhos, através da técnica de regressão de Poisson observando 10.245 acidentes nestes locais entre 2000 e 2009. Utilizaram um método antes e depois quase experimental baseado em aplicações do modelo Poisson às ciências médicas, com tabelas de contingência para as datas distintas de instalação dos radares. O estudo afirma que os locais escolhidos para

-

¹² Data were analysed using a before after quasi – experimental design Incorporating controls and Poisson regression to calculate the adjusted percentage reduction in the number of casualty crashes at treated sites in the post-treatment period when compared with the pre-treatment period. Newstead et al. 2011.

instalação dos radares não possuíam uma distribuição diferente no número de acidentes em comparação as demais locais, a maioria deles teve menos de 40 acidentes no período anterior à implantação, e também ressaltam que o período analisado antes ao tratamento é longo, entre quatro e oito anos, o que dá maior confiança aos resultados.

Os resultados encontrados por Newstead et al. (2011), foram muito significativos com redução de 26% nos acidentes com feridos. O intervalo de confiança definido pelos pesquisadores foi entre 14% a 35% de redução nos feridos. No cálculo da severidade dos acidentes que ocorreram antes e depois da instalação, os coeficientes não foram significativos devido ao grande intervalo de variação.

O resumo das principais bibliografias consultadas é apresentado na tabela 8 abaixo:

Tabela 8 – Principais estudos consultados sobre Radares Fixos:

Autores	Dados	Método	Resultados
Oei et al. (1992)	Quatro províncias	Comparação entre duas	-35% de acidentes e
	holandesas. De 1990	estradas semelhantes em	-6km/h de
	a 1991.	cada província.	velocidade média
Elvik et al.	64 Radares fixos na	Regressões Poisson e	-12% acidentes com
(1997)	Noruega. De 1992 a	Gama.	danos materiais e
(1557)	1996.	Gama.	-26% feridos.
			-6,3 km/h próximo
	Programa de	Regressões de Poisson.	as câmeras, -19%
Road and Traffic	Radares fixos de	Temas: Velocidade,	acidentes, -22,8%
Authority (RTA)	New South Wales,	Acidentalidade e Custo-	feridos e mortes
(2005)	Austrália, 1996 a	Benefício.	+113,4 milhões de
	2003.	Beneficio.	dólares net value do
			programa.
Sousa, (2008)	Seis radares em		-7% de UPS +50%
	Uberlândia, 2004 a	Avaliação Antes e Depois.	acidentes num raio
	2006		de 300 metros.
Roux et al. (2010)	Estradas vicinais da	Modelo Poisson Aditivo e	-24% acidentes nos
	França, 2003 a 2007	Multiplicativo.	primeiros 6 meses,
			eficácia decrescente
			com o tempo.
Newstead et al.	76 radares fixos em	Poisson com tabelas de	-26% acidentes com
(2011)	Victoria, Austrália, de 2000 a 2009.	contingência.	feridos.

Fonte: elaboração própria.

1.5- OS RADARES MÓVEIS DE CONTROLE DE VELOCIDADE.

Os radares móveis têm como finalidade, produzir uma mudança sustentada no comportamento do condutor, criando a percepção, segundo Cameron e Delaney (2006), de que o excesso de velocidade pode ser punido a qualquer momento e em qualquer lugar. Desta forma, estimularia reduzir o excesso de velocidade, não só nos locais de aplicação identificados, mas também, em toda cidade criando assim, um efeito geral de maior respeito às leis. Isto porque os motoristas são menos capazes de prever onde a instalação do radar ocorrerá. Quanto menos previsível o local de instalação, mais o cumprimento da velocidade tende a ser realizado.

As principais vantagens do uso de radares portáteis para o controle e fiscalização da velocidade nas rodovias, descritas por Moukarzel (1999) são:

- Portabilidade: o reduzido volume e peso desses equipamentos permitem flexibilidade e rapidez no manuseio e transporte;
- Permitem a fiscalização em diversos pontos da rodovia e em rodovias distintas, dependendo da dinâmica e prioridades da fiscalização num determinado período de trabalho;
- Precisão: os modelos mais modernos possuem excelente precisão na medição da velocidade

As principais desvantagens do uso de radares portáteis para o controle e fiscalização da velocidade nas rodovias, são:

- Perda de eficácia; existe uma "solidariedade" entre motoristas que informam aos demais via sinais luminosos à presença do radar;
- Eficiência pontual, ou seja, limitada ao local da operação permanecendo o restante do trecho rodoviário sem controle (esta desvantagem pode ser reduzida pela mobilidade dinâmica da equipe de fiscalização e uso de vários equipamentos);
- Vinculam mais de um agente na medição, impossibilitando que esses agentes executem outras atividades também importantes para a segurança;

- Aparelhos mais antigos estão sujeitos a erros de medição (erros de leitura e operação) e devido às condições adversas, tais como, influência de campos magnéticos, pressão, temperatura e umidade, entre outros;
- Sua operação é muito menos viável à noite, com chuva ou neblina,
 quando o controle da velocidade também se faz necessário;
- Por ser operado pelo agente, a fiscalização através de radares móveis, possui as desvantagens inerentes ao homem, podendo ocorrer falhas e seletividade na fiscalização.

1.5.1 – Principais Estudos sobre Radares Móveis:

A literatura internacional a respeito da eficácia dos radares móveis é extensa, e seus resultados apresentam maior variabilidade que os estudos sobre radares fixos. Provavelmente os resultados do uso dos radares móveis dependem das estratégias específicas adotadas pelas autoridades de trânsito de cada localidade.

O primeiro trabalho neste sentido foi publicado por Mara et al. (1996), para a Nova Zelândia, onde o uso de radares móveis se iniciou em 1993. Nos primeiros anos de utilização de radares móveis, os resultados se mostraram bastante promissores, o que contribuiu para a popularização destes aparelhos em outros países. Seu estudo demonstrou que houve uma queda de 23,3% de acidentes em áreas urbanas, uma redução de 10,9% acidentes em áreas rurais e, ainda, um decréscimo de 20% de acidentes com vitimas fatais após o inicio do programa.

Em British Columbia no Canadá, Chen et al. (2000), avaliaram o efeito dos radares móveis de velocidade após um ano de seu funcionamento na região. Esta análise revelou uma significativa redução da velocidade, acompanhada por uma diminuição em colisões, acidentes e mortes. Os dados de velocidade foram coletados a partir dos registros das unidades de radares móveis. As colisões e dados sobre as lesões foram obtidos a partir de relatórios de investigações da polícia e dos registros de serviços de ambulância da própria cidade. O estudo empregou uma série de quadros analíticos, incluindo antes e depois da comparação

para estimar o efeito segurança da instalação dos radares, através de um modelo binomial negativo. A redução observada foi de 2,4 km/h na velocidade média, tanto nos locais com monitoramento constante, como nos locais onde não havia radares. Esta análise constatou reduções de 50% no excesso de velocidade nos locais de instalação contumaz do radar, de 25 % nas colisões, de 11% de vítimas com lesões e 17% nas mortes no trânsito.

Gunarta et al. (2005), observaram três locais na cidade de Christchurch, na Nova Zelândia, buscando identificar os impactos que as câmeras de velocidade móveis têm na velocidade. O método utilizado foi a combinação entre trechos por meio de *Matching* (pareamento), o que reduz o viés da análise. Nos trechos com radares, as velocidades médias caíram 1,7 km/h em condições normais, e 3,2 km/h quando a pista estava molhada. Quando a visibilidade era baixa e a pista estava molhada, a velocidade média reduziu 3,8 km/h e os condutores também reduziram a variância da velocidade ao longo destes locais. Estes resultados estão de acordo com os esperados com base na teoria de comportamento dos condutores apresentada anteriormente. Em relação à acidentalidade, a pesquisa observou uma redução de 6% nas colisões com feridos e 12% nos acidentes fatais.

No ano de 2006, o governo da Austrália incumbiu o Centro de Investigação de Acidentes da Universidade Monash de desenvolver recomendações para melhoria do programa de controle de velocidade na Austrália Ocidental. Após uma revisão das estratégias e melhores práticas, foi recomendado instalar um misto de radares móveis escondidos e visíveis, incluindo 9.000 horas por mês de radares móveis escondidos em vias urbanas de Perth e 3000 horas por mês de radares móveis aparentes programados aleatoriamente nas estradas rurais. Quando a nova estratégia foi totalmente implementada, Cameron et al. (2006), avaliaram seus efeitos, e estimaram uma redução de 26% em acidentes com vítimas fatais. Os autores também verificaram uma redução de 12% em acidentes que resultariam em internação hospitalar assim como, uma redução de 9% em acidentes com lesão leve.

Uma revisão abrangente de diversos trabalhos sobre a eficácia dos radares móveis foi organizada pelo instituto Cochrane, especializada em revisões sistemáticas na área de saúde. Os estudos selecionados deveriam utilizar critérios

explícitos e reprodutíveis e ser potencialmente relevantes para a segurança viária para serem qualificados. O grupo publicou sua revisão em 2010, em Wilson et al. (2010), avaliaram se o uso de radares fixos e móveis reduz a incidência de excesso de velocidade, acidentes de trânsito, feridos e mortes. Um total de 35 estudos preencheu os critérios pré-estabelecidos pelo instituto. Todos eles concluíram que, há uma redução da velocidade média, variando de 1% a 15%. Também foi observada uma redução nos veículos excedendo o limite de velocidade, variando de 8% a 70%.

Vinte e oito dos 35 estudos selecionados avaliaram o efeito de radares móveis na acidentalidade. Todos encontraram número menor de acidentes nas áreas que os radares móveis foram utilizados. Nas imediações dos locais, as reduções verificadas depois da instalação dos radares foram de 8% a 49% para todo tipo de acidentes e de 11% a 44% para acidentes com mortes e lesões graves. Os estudos com longa duração demonstraram que as reduções foram mantidas ou melhoradas ao longo do tempo, Wilson et al. (2010). Os resultados desta revisão fornecem fortes evidências para a eficácia da aplicação dos radares móveis de velocidade. Como citado anteriormente, todos os estudos apontam a diminuição da velocidade média, da porcentagem de motoristas em excesso de velocidade e também dos acidentes, principalmente com mortes e feridos.

O resumo das principais bibliografias citadas é apresentado na tabela 9:

Tabela 9 – Principais estudos consultados sobre Radares Móveis:

Autores	Dados	Método	Resultados
Mara et al. (1996)	Nova Zelândia 1993 a 1996.	Avaliação Antes e Depois.	-23,3% acidentes em áreas urbanas, -10,9% acidentes em áreas rurais, -20% vítimas fatais.
Chen et al. (2000)	British Columbia, Canadá, 1998 a 1999.	Avaliação Antes e Depois, Séries de Tempo: contínua e interrompida.	-25% acidentes diurnos, -11% feridos, -17% mortes, -2,4km/h de velocidade.
Gunarta et al. (2005)	Três locais na Nova Zelandia,	Pareamento, Propensity Score Matching	-1,7km/h dias bons, -3,2km/h com chuva, -3,8Km/h com neblina e chuva, -12% mortes e -6% feridos.

Cameron et al. (2006)	Austrália, 1998 a 2003.	Avaliação antes e depois do programa de radares.	-26% acidentes fatais, -12% internações hospitalares, -9% lesões leves.
Wilson et al. (2010)	Dados de 35 estudos, em diversas localidades.	Revisão bibliográfica de 35 estudos.	(-8% a -49%) acidentes, (-11% a -44%) mortes ou lesões graves.

Fonte: elaboração própria.

A revisão da bibliografia internacional demonstra que os radares fixos e móveis em diversos países foram capazes de modificar o comportamento dos condutores, reduzindo a velocidade média e os excessos de velocidade. Assim, este trabalho aplica uma metodologia baseada nestas análises e nos conceitos observados, para verificar se no trânsito de Porto Alegre os radares foram eficazes na melhoria da segurança viária.

2 - METODOLOGIA E BASE DE DADOS.

O presente capítulo se dedica a apresentar os aspectos metodológicos e a fonte de dados utilizadas neste estudo. A metodologia empregada será a de regressão de Poisson com dados em painel, uma vez que as variáveis dependentes correspondentes ao número de feridos, mortos e a severidade dos acidentes de trânsito, são dados contáveis, além de serem considerados eventos raros. Diversas características observáveis foram empregadas como variáveis exógenas, tais como: os tipos dos veículos envolvidos, tipos dos acidentes, faixa horária, condições climáticas, turno do dia, mês, ano e a presença de radares eletrônicos (móvel e fixo).

2.1- FONTE DOS DADOS.

A base de dados para este trabalho compreende os acidentes de trânsito registrados em Porto Alegre do mês de Janeiro de 2008 a dezembro de 2012. Os dados existem a partir de 2000, e foram disponibilizados através do portal #DATAPOA. Possuindo as coordenadas geográficas de todos os acidentes ocorridos e informações padronizadas das ocorrências, estes acidentes foram modelados em *shapefile* da cidade para compor o mapa de feridos de Porto Alegre.

Austilladora

Moishaka e verrib.

Independencis

In

Figura 4 – Mapeamento parcial dos Feridos no trânsito em Porto Alegre.

Fonte: Extraído de #Datapoa, feridos de 2000 a 2012.

É perceptível no mapeamento, através da figura 4, a grande quantidade de feridos na cidade, nos mais diversos pontos. Porém, há locais com grande concentração como no centro e ao longo das principais avenidas da cidade, o que é esperado devido ao grande fluxo diário de pessoas na região central e de veículos nestas avenidas. Como exemplo, as avenidas Borges de Medeiros, Mauá, Ipiranga, Protásio Alves, Loureiro da Silva e Av. João Pessoa, que compõe a base de dados deste estudo. Coincidentemente, as grandes avenidas também são as com maior limite de velocidade e por este motivo estão sujeitas ao controle com radares fixos e móveis de velocidade.

As variáveis dependentes neste estudo são: número de feridos por acidente, o número de mortes e Unidade Padrão de Severidade (UPS¹³). Esta última aplica uma metodologia que divide os acidentes ocorridos em grupos de severidade, sendo eles: acidentes sem vítimas; acidentes com feridos e acidentes com mortos. Cada acidente recebe um peso, de acordo com a escala abaixo:

- Acidente somente com danos materiais Peso: 01;
- Acidente com feridos Peso: 05;
- Acidente com mortos Peso: 13;

Desta forma, o grau de severidade de um acidente e de um local, pode ser expresso pela seguinte fórmula:

UPS = Acidentes com danos materiais x 01 + Acidentes com Feridos x 05 + Acidentes com Mortos x 13

Esta equação permite a engenharia de trânsito avaliar as ruas e os trechos mais críticos do trânsito da cidade, e propor soluções. A tabela 10 abaixo apresenta descrição da variável UPS para os acidentes.

Tabela 10 – UPS dos acidentes na cidade de porto alegre de 2008 a 2012.

UPS	Frequência	Percentual	Acumulado
Danos Materiais (1)	85.136	71,9%	71,9%
Com Feridos (5)	32.544	27,5%	99,4%
Com Mortos (13)	677	0,57%	100%
Total de acidentes	118.357	100.00	_

Fonte: elaboração própria.

_

¹³ Metodologia de calculo criada pelo DENATRAN em 1987 e adotado em todo Brasil.

De acordo com a tabela 10, a maioria dos acidentes em Porto Alegre envolve apenas danos materiais com aproximadamente 71,9% das ocorrências. Ademais, os acidentes com feridos são 27,5% dos registros e apenas 0,57% são acidentes com mortos. É provável que, o baixo percentual de acidentes com mortos seja decorrente da baixa velocidade média das vias urbanas em comparação às rodovias.

Além da UPS, as demais variáveis endógenas de estudo serão Mortos e Feridos. Como exemplo, ao analisarmos o histograma na figura 5, referente à variável Feridos em toda cidade, nos deparamos com uma peculiaridade: a variável só assume valores inteiros e não negativos sendo estes eventos raros. Estas características estão de acordo com um tipo de distribuição de probabilidades muito utilizado em outras áreas como, nas ciências médicas para observar a taxa de pacientes curados com uma doença específica, ou em dados policiais para verificar o número de denúncias que levam a prisão de criminosos.

Feridos por acidentes na cidade de Porto Alegre. 30000 Numero de Feridos 25000 20000 15000 10000 5000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 Feridos num acidente

Figura 5 – Histograma da variável Feridos em Porto Alegre, de 2008 a 2012.

Fonte: Elaboração própria.

A distribuição de probabilidade mais adequada a estes casos é a distribuição de Poisson, formulada pelo matemático e físico francês, Siméon Denis Poisson em 1838, como um caso especial da distribuição binomial, para grandes amostras.

2.2 – DISTRIBUIÇÃO DE POISSON.

A distribuição de Poisson é adequada para modelar dados seccionais, taxas e contagem da ocorrência de eventos não comuns, tais como: o número de veículos que excederam o limite de velocidade, ou o número de feridos em acidentes de

trânsito. Ela é baseada na distribuição Binomial, onde o objetivo é calcular a probabilidade Q de um ferido ocorrer X vezes em N eventos aleatórios. Analogamente, a probabilidade de não ocorrência de feridos será (1 - Q).

(1)
$$F(x) = p(X) = {n \choose X} q^{X} (1-q)^{n-X} \text{ para } x = 0, 1, 2, 3,...$$

Onde: f(x) é a função de probabilidades de X; X é a 52 freqüência de ocorrência do evento sendo um número inteiro não negativo; q é a probabilidade de um evento ocorrer, (1 - q) é a probabilidade do evento não ocorrer, e n é a quantidade de repetições.

O modelo Binomial é adequado em diversos casos, porém, em muitos tipos de estudos, acontece o fato de que n é muito grande $(n \to \infty)$ e q é muito pequeno $(q \to 0)$, logo, podendo ser considerado um evento raro. Nestes casos, é apropriado utilizar a distribuição de Poisson, uma vez que as variáveis deste estudo apresentam apenas valores discretos e que ocorrem de forma aleatória no tempo e espaço e podem ser considerados eventos raros. Os modelos foram estimados e testados com esta distribuição.

O cálculo das probabilidades pela distribuição de Poisson segue a formulação abaixo:

(2)
$$f(x) = P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 Para $x = 0, 1, 2, 3, ...$

Onde: f(x) é a função de probabilidades de x, sendo x um número inteiro não negativo referente à quantidade de ocorrência de feridos ou mortes; x! é o fatorial de x; "e" é o número de Euller^{14;} e λ é um número real, igual ao número esperado de ocorrências num dado intervalo de tempo.

A Esperança (média) e Variância no modelo de Poisson, são respectivamente iguais a:

(3)
$$E(X) = \lambda e Var(X) = \lambda$$

_

 $^{^{\}rm 14}$ Aproximadamente 2,71828, que também é a base dos logaritmos naturais.

Portanto, a forma da distribuição de Poisson dependerá principalmente do parâmetro lambda (λ), que é a taxa média calculada para ocorrência do evento num dado período de tempo.

O parâmetro lambda da função distribuição no caso de eventos como feridos no trânsito será pequeno, e a distribuição de probabilidades será intrinsecamente heterocedástica¹⁵ e acumulada à esquerda. As observações se aproximam de uma distribuição normal à medida que λ aumenta¹⁶, porém, as variáveis de estudo têm taxa média de ocorrência pequena e grande parte dos dados se concentra na cauda à esquerda da distribuição.

O uso das distribuições Binomial e de Poisson para estudar acidentes de trânsito ocorreu a partir dos estudos de Hauer (1992) e (1996), podendo citar a Elvik et al. (1997), Transportation Research Board (1998), Roux et al. (2010) e Newstead et al (2011), descritos no capítulo um, como diferentes aplicações destas distribuições às bases de dados existentes. Para testar à hipótese de adequação dos modelos a distribuição de Poisson, se fez necessária a aplicação de um teste estatístico da dispersão.

2.2.1 – Teste Chi-Quadrado da Adequação dos Dados.

Para verificar se a dispersão das variáveis é adequada para análise por Poisson efetuou-se o teste chi-quadrado de adequação do modelo. Este teste pode ser aplicado em distribuições discretas como Binomial e a Poisson. E é um teste do modelo como um todo e não dos coeficientes das variáveis, que responde a questão se o modelo de Poisson é adequado aos dados do modelo.

O coeficiente do teste chi-quadrado ou χ^2 mede a dispersão entre os valores esperados e observados com a seguinte forma:

$$\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

Onde: χ^2 é a estatística acumulada Chi quadrada, O_i é a frequência observada para a variável testada, E_i é a frequência esperada para a variável testada e N é o número de células na tabela de dados (número de acidentes).

-

¹⁵Distribuição de frequência de padrão irregular

¹⁶ À medida que λ aumenta, a curva aproxima-se de uma distribuição normal (TADANO, 2007).

Com base nesta estatística são elaboradas as hipóteses acerca da distribuição, sendo que, quando a estatística de chi-quadrado calculada for menor em relação ao valor crítico tabelado pode-se aceitar com maior segurança a hipótese nula H₀, que diz que o modelo segue a distribuição Poisson testada. Já a hipótese alternativa Ha diz que o modelo não segue a distribuição de proposta, pois a soma dos desvios nas variáveis será maior que o valor da tabela chi-quadrado.

O teste (ANEXO I) foi efetuado com termo de erros robustos, como recomendado por Cameron et al. (2009), com as três variáveis endógenas. O modelo indica que os dados são adequados a Poisson, pois o valor calculado está dentro da região de não rejeição de H₀. Caso contrário, deveríamos verificar se existem variáveis explicativas relevantes omitidas ou se existe o problema da sobre dispersão (Over-dispersion) que exigiria um modelo distribuição binomial ou binomial negativa.

2.2.2 – A regressão de Poisson.

Desta forma, o emprego da regressão de Poisson se mostrou adequado aos dados disponíveis, este tipo de modelo pertence a uma classe especial de modelos lineares generalizados com a seguinte forma geral:

(4)
$$\log_{e}(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots \beta_n X_n$$

E na forma exponencial com base e¹⁷:

(5)
$$Y = (e^{\beta 0}) (e^{\beta 1 \times 1}) (e^{\beta 2 \times 2})...(e^{\beta n \times n})$$

Neste modelo, o parâmetro lambda (λ) é de grande relevância, pois, representa a taxa média de ocorrência de cada uma das variáveis. Ele depende da função entre o vetor de variáveis X_i e o vetor de coeficientes β_i , na forma exponencial. Este parâmetro é calculado para obter o coeficiente de cada uma das variáveis no modelo. Esta técnica permite verificar a eficácia dos radares fixos e móveis de controle de velocidade nas avenidas de Porto Alegre e obter os coeficientes de cada variável exógena. Conforme descrito em Ramalho (1996):

O modelo de regressão resulta da colocação do parâmetro λ_i em função de um conjunto de variáveis explicativas: λ_i = f(x_i * β), sendo x_i um vetor 1×n (contendo observações das n

¹⁷ Número de Euller (e).

variáveis exógenas para o indivíduo i) e β um vetor n×1, composto por coeficientes desconhecidos. Como λ_i representa o valor esperado condicional de Y_i , só pode tomar valores não negativos, pelo que a função "f" deve ter como contradomínio apenas os números reais não negativos. Por este motivo, ela é geralmente expressa na forma exponencial, como segue: λi = Exp(x_i * β). (Ramalho, 1996, pág. 10).

Por este motivo, nos modelos de Poisson linearizado utilizados, a interpretação dos coeficientes é feita diretamente, e seus efeitos marginais (dy/dx) são calculados em função de $\text{Exp}(x_i^*\beta_i)$.

2.3 – DADOS EM PAINEL.

A partir da identificação da melhor opção de distribuição probabilística, os dados existentes foram organizados na forma de um painel. Os dados em painel ou dados longitudinais são observações em duas dimensões de variáveis, o tempo e o espaço. Este tipo de dados contém informações que possibilitam uma melhor investigação da dinâmica das variáveis, pois atribuem um identificador para cada variável, que acompanha sua evolução. O painel do estudo foi declarado com a variável Avenida como identificador e a combinação das variáveis Dia e Hora do acidente como dimensão temporal das ocorrências.

Hsiao (1986) realizou a análise de diversas aplicações dos dados em painel. Uma das vantagens citadas para estimação com dados em painel é a consideração da heterogeneidadade ¹⁸ individual, aceitando a existência de características diferenciadoras entre as avenidas estudadas. Essas características podem ou não ser constantes ao longo do tempo, de tal forma que estudos em *cross section* que não considerem tal heterogeneidade produzem, quase sempre, resultados viesados.

Outra vantagem dos dados em painel é permitir maior quantidade de informação e variabilidade dos dados, aumentando o número de graus de liberdade. Esse aumento contribui para a redução de uma eventual colinearidade ¹⁹ entre variáveis. A maior quantidade de informação disponível também aumentará a eficiência da estimação. Ou seja, identificar e medir efeitos que não seriam

¹⁹ Problema em que as variáveis independentes possuem relações lineares entre si. É fonte de um problema denominado multicolinearidade, quando o R² de uma regressão é elevado, mas nenhum dos coeficientes da regressão é estatisticamente significativo.

¹⁸ Variabilidade, ou diferenças entre as características intrínsecas de uma unidade ou indivíduo que alteram os resultados da aplicação de um tratamento.

detectáveis em estudos exclusivamente seccionais ou temporais. Os modelos estimados neste trabalho foram de Efeitos Fixos e de Efeitos Aleatórios, e seus resultados foram testados através de um teste padrão, conhecido com teste de hausman.

2.3.1 O Modelo de Efeitos Fixos.

Os Modelos de efeitos fixos (EF) permitem a estimação de coeficientes que refletem relações dentro das variáveis explicativas como efeitos fixos sobre a variável dependente. Ou seja, os efeitos fixos aceitam correlação entre o efeito específico individual e as variáveis independentes. Nos modelos de dados contáveis (count data), esse efeito é geralmente modelado na forma multiplicativa como segue:

(6)
$$Y_{it} = X_{it} * \beta * \alpha_i + \mu_{it}$$

Onde: Y_{it} é a variável dependente observada para a avenida i no tempo t; X_{it} é o vetor de variáveis explicativas para a avenida i variando no tempo t, β é o coeficiente de efeito fixo, α_i é o efeito constante não observável e u_{it} é o termo de erro padrão.

O modelo de efeitos fixos permite que o efeito individual α_i esteja correlacionado à matriz de variáveis incluídas no modelo X_{it} . Este modelo com efeitos fixos é adequado quando fatores não observados estão correlacionados às variáveis explicativas. O resultado será um estimador consistente, mas ainda assim, poderá ser ineficiente, pois nem sempre será o estimador de máxima verossimilhança, a eficiência é uma propriedade geralmente associada aos estimadores de efeitos aleatórios.

2.3.2 - O Modelo de Efeitos Aleatórios.

O modelo de efeitos aleatórios (EA) é estimado da mesma forma que o de efeitos fixos, porém, neste modelo, não é admitida correlação entre o efeito individual de cada unidade do painel e as variáveis independentes, a chamada exogeneidade estrita. Embora a forma funcional, no geral, seja a mesma, os erros aleatórios dos componentes relativos ao tempo são independentes e, desta forma, o parâmetro alfa (α_i) pode variar para cada componente:

$$(7) Y_{it} = X_{it} * \alpha_i + \mu_{it}$$

Onde: Y_{it} é a variável dependente para a avenida i no momento t; X_{it} é o vetor de variáveis explicativas para a avenida i variando no tempo t; β é o coeficiente de efeito fixo; α_i é o efeito individual constante de cada avenida e; u_{it} é o termo de erro padrão.

É importante ressaltar que ao contrário do modelo de efeitos fixos, o modelo aleatório não permite a existência de correlação entre os efeitos individuais não-observados e as variáveis exógenas. Se esses efeitos forem estritamente não correlacionados com as variáveis explicativas será mais apropriado modelar esses efeitos como aleatórios, pois os estimadores serão consistentes e eficientes, caso contrário o ideal é utilizar o estimador de efeitos fixos.

2.3.3 O Teste de Especificação de Hausman.

Para decidir qual modelo deve ser utilizado, deve-se avaliar se as variáveis exógenas são correlacionadas ou não com os parâmetros não observados das avenidas. O teste formal a ser realizado é o Teste de Hausman, que compara as diferenças das estimativas de efeitos fixos e aleatórios. A hipótese nula do teste é que os efeitos sejam aleatórios (EA), e, portanto, a exogeneidade estrita seria válida, a estatística de Hausman é calculada por:

(8)
$$\beta_{\text{Hausman}} = (\beta_{\text{EA}} - \beta_{\text{EF}})' \left[\text{Var}(\beta_{\text{EF}}) - \text{Var}(\beta_{\text{EA}}) \right]^{-1} (\beta_{\text{EF}} - \beta_{\text{EA}})$$

Onde: β_{EA} é o coeficiente estimado com efeito aleatório, β_{EF} é o coeficiente estimado com efeito fixo, Var (β) denota a variância dos coeficientes.

Neste trabalho as regressões foram estimadas com efeitos fixos e aleatórios, os coeficientes obtidos foram semelhantes nos dois casos, através da aplicação do teste de Hausman foi possível determinar qual o modelo mais apropriado. Conforme os resultados apresentados no anexo I, no caso das variáveis registradas em acidentes de trânsito, a hipótese de exogeneidade estrita não perdura. O teste de Hausman aplicado indicou que, as variações nos coeficientes das variáveis explicativas não são sistemáticas, por isso, existe correlação. Neste caso, a melhor opção será pelo estimador de efeitos fixos. Assim, os estimadores serão consistentes, mas em sempre eficientes, pois podem não minimizar os erros padrão do modelo.

2.3.4 - Grupos de Tratamento e Controle.

Esta análise dos acidentes de trânsito tem um grande número de variáveis explicativas, como tipo dos veículos envolvidos, data da ocorrência, turno do dia, faixa horária, condições climáticas e o tipo do acidente. Mesmo assim, existem diversas características que não são observáveis, mas que afetam as frequências e a severidades dos acidentes, tal como habilidade do condutor, idade, sexo, condições físicas como sonolência, estresse e diversos fatores humanos, a inexistência de informações sobre estas características pode ser vista com uma limitação do estudo.

O uso de dados em painel minimiza esta limitação, pois compara as avenidas ao longo do tempo e leva em conta suas características não observáveis. Uma vez que não são todas as avenidas que receberam os instrumentos de controle de velocidade, isso nos permitirá comparar os acidentes ocorridos nas avenidas com e sem monitoramento, classificando-as em grupos de tratamento e controle no caso dos radares fixos.

Já no caso dos radares móveis, é possível comparar os acidentes ocorridos em uma mesma avenida nos dias em que houve monitoramento com radar móvel e nos dias em que não houve.

É importante destacar que, os grupos de tratamento e controle para radares fixos devem ser semelhantes na sua densidade de distribuição e em sua evolução ao longo do tempo, para que a avaliação dos efeitos após aplicação do tratamento seja relevante. No estudo de radares móveis é importante verificar se os períodos em que houve a fiscalização apresentam comportamento estatisticamente diferente em relação aos períodos sem fiscalização.

2.4 – APLICAÇÃO DA METODOLOGIA À BASE DE DADOS DE RADARES FIXOS.

Espera-se que a colocação dos radares fixos reduza os acidentes, assim, a sua eficácia será avaliada tanto na avenida de colocação do radar quanto dentro de um raio de aproximadamente 300 metros antes e depois do local de instalação através da variável Radar Fixo 300m. Esta métrica foi escolhida, pois, era à distância

regulamentar no código de trânsito brasileiro, através da resolução 214/06²⁰, para aviso aos motoristas da existência de controlador eletrônico de velocidade. Esta distância também foi objeto de estudo de Sousa (2008) que analisou os efeitos no trânsito de Uberlândia de seis lombadas eletrônicas e seis radares fixos entre 2004 e 2006 e observou redução de 7% na UPS nestes locais. Mesmo com o total de acidentes aumentando 50%, o autor ressalta que houve grande aumento no fluxo de transito nestas avenidas com muitos condutores freando bruscamente ao visualizar os equipamentos, o que aumentou acidentes com danos materiais. Além do efeito no raio de 300 metros, será avaliado o impacto dos novos radares fixos no total de ocorrências das avenidas através da variável Radar Fixo Rua.

É importante ressaltar que, a numeração das avenidas nem sempre tem a métrica exata e isto pode causar pequenas variações nos registros. Podem ocorrer problemas relativos a erros de medida e registros que podem comprometer a acuracidade das estimações. Todavia, existe um grande detalhamento das informações, bem como, o longo período analisado possibilita uma análise fundamentada dos dados em relação aos feridos, mortos e a unidade padrão de severidade.

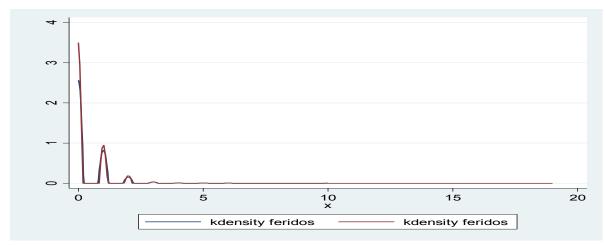
Os dados foram coletados ao longo de cinco anos (2008, 2009, 2010, 2011 e 2012) e a intenção inicial era utilizar o maior número de avenidas possível, porém, grande parte das ruas com alta acidentalidade em Porto Alegre tem velocidade máxima de 40 km/h, o que as torna diferentes das avenidas objeto deste estudo. Por exemplo, a inclusão das próximas cinco²¹ ruas com mais acidentes no estudo, resultaria na inclusão de quatro ruas com limite de 40 km/h e apenas uma com limite de 60 km/h. Desta forma, empregamos as trinta avenidas com maior quantidade de acidentes no período para a avaliação do uso de radares fixos. Dentre estas, treze avenidas receberam novos controladores em dezembro de 2010, e estas são consideradas como o grupo tratamento (T), já as dezessete restantes compõem o grupo de controle (C), conforme tabela 11.

-

²⁰ Revogada em 22/12/2011.

²¹ Rua Vicente da Fontoura, Rua Voluntários da Pátria, Rua José de Alencar, Estrada Jõao de Oliveira Remião e Rua Ramiro Barcelos.

Tabela 11 – Avenidas que compõe os grupos tratamento (T) e controle (C).

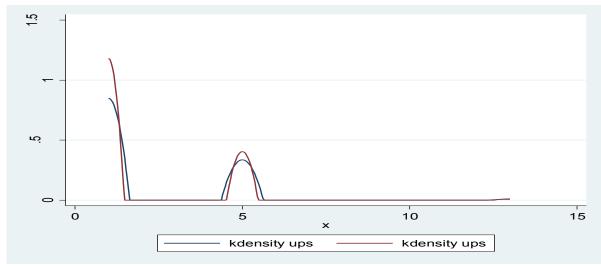

Av. Assis Brasil (T)	Av. Bento	Av. Carlos Gomes	Av. Doutor Nilo	Av. Edgar Pires De
	Gonçalves (T)	(T)	Peçanha (T)	Castro (T)
Av. Eduardo Prado	Av. Ipiranga(T)	Av. Juca Batista	Av. Manoel Elias	Av. Padre Cacique
(T)		(T)	(T)	(T)
Av. Presidente	Av. Protásio	Av. Senador Tarso	Av. Baltazar De	Av. Borges De
Castelo Branco (T)	Alves (T)	Dutra (T)	Oliveira Garcia (C)	Medeiros (C)
Av. Coronel	Av. Cristóvão	Av. Da Cavalhada	Av. Farrapos (C)	Av. Independência
Aparício Borges (C)	Colombo (C)	(C)		(C)
Av. Joao Pessoa (C)	Av. Júlio De Castilhos (C)	Av. Loureiro Da Silva (C)	Av. Mauá (C)	Av. Osvaldo Aranha (C)
Av. Otto Niemeyer (C)	Av. Plinio Brasil Milano (C)	Av. Professor Oscar Pereira (C)	Av. Sertório (C)	Av. Wenceslau Escobar (C).

Fonte: Elaboração própria.

Estas avenidas foram, neste período, o local de ocorrência de 49.780 acidentes em Porto alegre, de um total de 121.085 registrados em toda a cidade, ou seja, mais de 40% do total, o que torna esta amostra bastante representativa para inferências a respeito de toda a cidade.

A seleção destas 30 avenidas teve como critério sua similaridade em relação a algumas características. No sentido de ser vias arteriais, com grande fluxo diário de veículos, maior quantidade de acidentes e, consequentemente, de vítimas destes. A velocidade limite também é semelhante, de 60 km/h sendo passíveis de controle com radares fixos. A única com uma característica diferente a destacar é a Avenida Castelo Branco onde a velocidade limite é de 80 km/h na maior parte de sua extensão. Visto que, esta avenida recebeu controladores fixos em 2010 e é uma via arterial no trânsito da cidade, decidiu-se incluí-la na análise. Por meio da densidade das distribuições, verificou-se se o grupo tratamento e controle possuem uma distribuição com os mesmos padrões. A densidade das distribuições do grupo tratamento e controle para a variável feridos podem ser observadas no gráfico 6.

Figura 6 – Densidades das distribuições para feridos em relação ao radar fixo na avenida, pra tratamento (azul) e controle (vermelho).

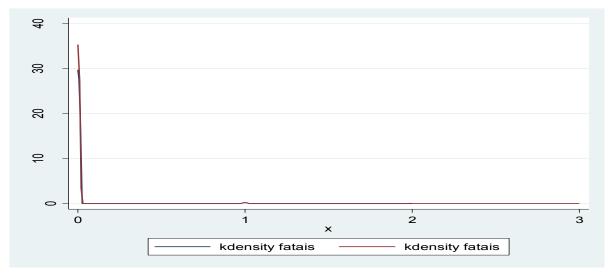


Fonte: Elaboração própria.

Fica evidenciado que a distribuição de feridos em acidentes nas avenidas do grupo controle e tratamento têm distribuição muito semelhante, o que indica que os grupos são passiveis de comparação. Observamos que a moda da distribuição das observações do grupo controle é maior que no grupo de tratamento.

Já para a variável severidade medida pela UPS, o padrão de distribuição permanece semelhante, sendo em azul o grupo tratamento e em vermelho o grupo controle. Pode-se observar na ilustração 7 abaixo, que a moda da distribuição para o grupo de controle é maior que o grupo de tratamento.

Figura 7 – Densidade de distribuição para a UPS nos grupos Tratamento (Azul) e Controle (Vermelho).



Fonte: elaboração própria, severidade mensurada pela UPS.

Este comportamento entre os grupos tratamento e controle dá indícios dos resultados do modelo, visto que as avenidas do tratamento receberam radares fixos e apresentam distribuição com menor densidade de feridos e UPS.

Para acidentes fatais que é um tipo de ocorrência remota no trânsito urbano, fica dificultada a observação do gráfico de densidades de distribuição pela grande quantidade de zeros, contudo, observa-se através da ilustração 8 a coincidência entre o comportamento dos grupos tratamento e controle.

Figura 8 – Densidade de distribuição para acidentes Fatais nos grupos Tratamento (Azul) e Controle (Vermelho).

Fonte: elaboração própria

Após a verificação dos grupos de avenidas para o estudo dos radares fixos, é necessário detalhar as variáveis explicativas do estudo. Além da variável que indica a existência de radares fixos na avenida, a lista de variáveis explicativas utilizada nos modelos inclui uma extensa lista de variáveis, que são baseadas nas informações estatísticas coletadas para o preenchimento dos Sistemas de Acidentes de Trânsito, uma exigência do art. 24 do Código de Trânsito Brasileiro de 1998, tais como: o tipo dos veículos envolvidos, as condições climáticas, a faixa horária, o mês, o ano, o turno do dia e tipo do acidente, que segue as tipologias padrão do DENATRAN em todo território nacional, que são:

 Abalroamento: Acidente em que um veículo em movimento sofre o impacto de outro veículo, também em movimento lateral ou traseiro;

- Atropelamento: Acidente em que o(s) pedestre(s) sofre(m) o impacto de um veículo;
- Capotagem: Acidente em que o veículo gira 180 graus sobre si mesmo. Em qualquer sentido;
- Colisão: Acidente em que um veículo em movimento sofre o impacto de outro veículo, também em movimento.
- Choque: Acidente em que há impacto de um veículo contra qualquer objeto sem movimento.
- Incêndio: Acidente em que o veículo entra em combustão por razões mecânicas;
- Queda: Acidente em que há impacto em razão de queda do veículo ou queda de pessoas do veículo;
- Tombamento: Acidente em que o veículo sai de sua posição normal, imobilizando-se sobre uma de suas laterais, sua frente ou sua traseira;
- Eventual: Qualquer acidente que n\u00e3o se enquadre nas defini\u00f3\u00f3es acima;
- Não Cadastrado: Ocorrência atribuída por problemas na coleta dos dados.

Assim, efetuaram-se três diferentes estimações, onde, a variável dependente Y será o número de feridos, a severidade mensurada em UPS ou o número de mortos.

O modelo geral utilizado neste trabalho tem a seguinte forma geral:

(9)
$$(\gamma_{ij}) = \text{Exp}(\alpha_{ij} + \beta_{1j} * X_{1j} + \beta_{2j} * X_{2j} + \dots + \beta_{nj} * X_{nj} + \mu_{ij})$$

Onde: Y é a variável dependente; Exp representa o exponencial de e; α_{ij} é a constante do modelo; β_{ij} é o coeficiente da variável exógena X_i ; X_i é a quantidade de uma variável X e μ_i representa o termo de erro.

Que resulta nos seguintes modelos de análise com n = 37 variáveis que pode ser reescrito aplicando o logaritmo natural:

- $(10) \qquad \qquad \ln(\text{Feridos}) = \alpha_i + \sum_i^j \beta_i * (\text{tipos de veículos}) + \beta_5 * (\text{Fxhorária}) + \sum_i^j \beta_r * (\text{radar}) + \sum_i^j \beta_k * (\text{mês}) + \sum_i^j \beta_t * (\text{climáticas}) + \sum_i^j \beta_z * (\text{região}) + \sum_i^j \beta_a * \\ (\text{ano}) + \sum_i^j \beta_x * (\text{tipos de acidente}) + \mu_i$
- $(11) \qquad \ln(\text{UPS}) = \alpha_i \ + \sum_i^j \beta_i * (\text{tipos de veículos}) + \ \beta_5 * (\text{Fxhorária}) + \sum_i^j \beta_r * (\text{radar}) + \sum_i^j \beta_k * (\text{mês}) \ + \ \sum_i^j \beta_t * (\text{climáticas}) \ + \ \sum_i^j \beta_z * (\text{região}) \ + \ \sum_i^j \beta_a * (\text{ano}) \ + \ \sum_i^j \beta_x * (\text{tipos de acidente}) + \mu_i$
- $(12) \quad \ln(\text{Fatais}) = \alpha_i + \sum_i^j \beta_i * (\text{tipos de veículos}) + \beta_5 * (\text{Fxhorária}) + \sum_i^j \beta_r * (\text{radar}) + \sum_i^j \beta_k * (\text{mês}) + \sum_i^j \beta t * (\text{climáticas}) + \sum_i^j \beta z * (\text{região}) + \sum_i^j \beta_a * (\text{ano}) + \sum_i^j \beta_x * (\text{tipos de acidente}) + \mu_i$

Onde:

(i = 1, ..., 4) Tipo de veículos = Automóvel, Ônibus Urbano, Motocicleta e bicicleta;

(r = 6, 7) Radar = Radar Fixo Rua e Sinalização Radar Fixo 300m²²;

(k = 8,...,18); Mês = Janeiro, Fevereiro, Março, Abril, Maio, Junho, Agosto, Setembro, Outubro, Novembro e Dezembro;

(t = 19, ..., 21); Climáticas = Noturno, Nublado, Chuvoso

(z = 22, ... 24); Região = Centro, Leste, Norte

(a = 25, ..., 28); Ano = 2009, 2010, 2011, 2012;

(x = 29, ..., 37). Tipo do Acidente = Abalroamento, Atropelamento, Capotagem, Choque, Incêndio, Queda, Tombamento Eventual e Não cadastrados.

Conforme já demonstrado, neste modelo, a interpretação dos coeficientes é direta, pois seus efeitos marginais são calculados como dy/dx= Exp(X_i*B_i).

2.4.1 – Aspectos Estatísticos Da Base De Dados De Radares Fixos.

Esta seção descreve as principais características dos acidentes que compõem os dados analisados no modelo de radares fixos. Conforme descrito, ocorreram 49.780 acidentes nas trinta vias arteriais deste estudo, as quais apresentam alta frequência de acidentes. Somente nestas avenidas ocorre mais de

-

²² Obrigatoriedade da resolução 214/06, revogação em 22/12/2011.

40% do total dos acidentes registrados na cidade nos cinco anos deste estudo. O número de mortos nestas vias foi de 326 de um total de 712 vítimas fatais em toda cidade, representando 45% do total. O número de feridos foi de 16.499, ou seja, 40% do total de 41.800 feridos na cidade. A média das variáveis dependentes e o desvio padrão seguem na tabela 12 abaixo:

Tabela 12 – Média e Desvio padrão dos grupos tratamento e controle das variáveis dependentes.

Variável	Quantidade	Média	Desvio Padrão
Acidentes	49.780	-	-
Feridos Tratamento	3.626	0,3555	0,6594
Feridos Controle	12.873	0,3252	0,6588
Mortos Tratamento	62	0,0061	0,0789
Mortos Controle	264	0,0066	0,0870
UPS Tratamento	22.407	2,1969	1,9823
UPS Controle	82.689	2,0891	1,9415

Fonte: elaboração própria.

Quanto ao tipo dos veículos envolvidos, os automóveis são a maioria com 70.045 veículos acidentados, os ônibus urbanos somaram 3.182 veículos acidentados, as motocicletas foram 10.343 acidentados e as bicicletas somaram 371 acidentados, com registro nos órgãos oficiais de trânsito, conforme tabela 13.

Tabela 13 – Tipos de veículos envolvidos nos acidentes.

Veículo	Automóvel	Motocicleta	Ônibus Urbano	Bicicleta	TOTAL
Acidentes	70.045	10.343	3.182	371	83.941
Percentual	83,4%	12,3%	3,8%	0,5%	100%

Fonte: elaboração própria.

Os meses que apresentaram maior quantidade de acidentes e sua relação com as variáveis de estudo seguem na tabela 14 abaixo: Esta tabela também já fornece alguns indícios dos resultados do modelo para a sazonalidade mensal ao comparar a quantidade de acidentes com a quantidade de feridos e mortos por mês.

Tabela 14 – Evolução mensal em relação às variáveis: número de Acidentes, número de feridos, número de mortos e severidade (UPS).

TIPO/MÊS	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
ACID.	2543	2288	3289	3198	3174	3153	3222	3249	3261	3408	3201	2797
FERIDOS	1308	1122	1510	1408	1473	1317	1362	1418	1408	1523	1357	1293
MORTOS	14	28	23	27	23	31	24	37	31	34	31	23
UPS	7705	6859	9516	9074	9206	8664	8786	9299	9130	9801	8878	8178

Fonte: elaboração própria.

Os meses de março a novembro apresentam maiores números de com feridos e UPS. A cidade de Porto Alegre tem uma característica peculiar por ser muito quente nos meses de verão e ser próxima ao litoral (pouco mais de 100 km), faz com que no período de dezembro até fevereiro ocorra um grande fluxo de veículos para o litoral, reduzindo o trânsito na cidade. As vítimas fatais apresentam grandes variações entre os meses, pois são poucos casos fatais entre o total de acidentes.

Em relação à sazonalidade anual, a mesma avaliação pode ser efetuada, observando o comportamento das variáveis de estudo em seus níveis absolutos ao longo dos anos do estudo.

Tabela 15 – Acidentes, feridos, mortos e severidade anual.

TIPO/ANO	2008	2009	2010	2011	2012
ACIDENTES	9926	9778	11048	10239	8789
FERIDOS	2963	3149	3715	3426	3246
MORTOS	60	89	58	70	49
UPS	19662	20318	23420	22115	19581

Fonte: elaboração própria.

Conforme estatísticas da tabela 15, nas avenidas estudadas, o pico de acidentes ocorreu em 2010, e após este período a quantidade foi decrescente, o mesmo padrão é referente ao número de feridos, já o número de mortos não segue um padrão claro, mas, aparenta ser decrescente após o pico em 2009.

Quanto às condições naturais ou climáticas dos acidentes, observa-se que a grande maioria, 76%, ocorre com tempo bom, 12% com chuva e 12% com neblina. E também que 70% ocorrem durante o dia e 30% à noite, porém, a grande quantidade de acidentes não significa que o número de feridos e a severidade serão maiores. A variável explicativa faixa horária dá um refinamento maior das características diurnas ou noturnas associadas às variáveis dependentes, classificando as ocorrências conforme as 23 faixas horárias do dia na tabela 16.

Tabela 16 – Acidentes por faixa horária de 2008 a 2012.

Faixa Horária AM	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	10h	11h
Acidentes	662	567	417	417	456	618	961	2649	3602	2900	2800	2910
Faixa Horária PM	12h	13h	14h	15h	16h	17h	18h	19h	20h	21h	22h	23h
Acidentes	2860	2650	3375	3538	3484	3348	3832	2702	1691	1247	1203	891

Fonte: elaboração própria.

A acidentalidade é maior a partir da faixa horária 7h da manhã até a faixa horária 19h que engloba até às 19 horas e 59 minutos. Nos horários noturnos e na madrugada o número absoluto de acidentes é menor, mas isso não significa menor risco de ferimentos ou mortes.

Comparando as regiões da cidade, observa-se que as maiorias das vias expressas da cidade são mais afastadas da área central, e por isto, a que concentra maior quantidade de acidentes é a Leste com 31,8% seguida pela região Norte com 29,6%. Centro e Sul apresentam 19,3% do total das ocorrências.

Em relação ao tipo dos acidentes, observa-se conforme a tabela 17 abaixo que os mais comuns nas avenidas arteriais de Porto Alegre são o abalroamento e a colisão, e alguns tipos são raros como incêndios, tombamentos e capotagens. É evidente que o tipo do acidente terá grande correlação com o número de feridos, mortos e na severidade dos acidentes, e padrões nestas variáveis são observáveis, os resultados apresentados por este estudo reforçam esta correlação e permitem classificar os tipos de acidentes mais perigosos, e estão de acordo com o relatório DETRAN-RS de 2012.

Tabela 17 – Tipologia dos acidentes ocorridos.

Tipo	Abalr.	Atrop.	Capot.	Choque	Colisão	Eventual	Incêndio	Queda	Tomb.	
Total	21.382	2.683	164	3.596	19.921	660	15	1.286	59	
F4	_ ~ ~ .									

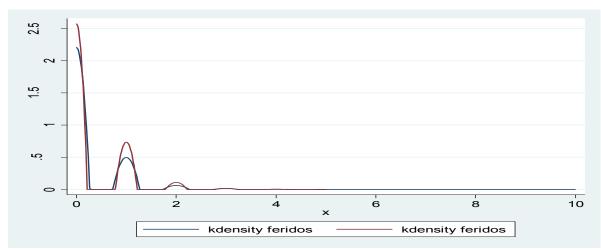
Fonte: elaboração própria.

De acordo com a tabela 17, as tipologias mais comuns são abalroamentos e colisões, seguidos por choques, atropelamentos, quedas, eventuais, capotagens, tombamentos e incêndios. Nos modelos deste estudo foram atribuídas *dummies* de tipologia para cada acidente analisado.

2.5 – APLICAÇÃO DA METODOLOGIA AOS DADOS DE RADARES MÓVEIS.

Para aplicação da metodologia proposta para testar a eficácia dos radares móveis, foi realizado um extenso pareamento entre todas as avenidas que foram monitoradas com radares móveis ao longo do período de 1° de janeiro de 2011 a 31 de julho de 2012, e os acidentes ocorridos nestas vias. Neste período, 20 avenidas apresentaram uma frequência acima de 20 dias com presença de controladores móveis para realizarmos a avaliação com quantidade suficiente de informações. Desta forma, as avenidas avaliadas neste estudo foram conforme tabela 18.

Tabela 18 – Avenidas que compõe o estudo de radares móveis.


Av. Ipiranga	Av. Padre Cacique	Av. Manoel Elias	Av. Senador Tarso Dutra
Av. Plínio Kroeff	Av. Diário De Noticias	Rua Souza Reis	Av. Borges De Medeiros
Av. Dante Ângelo Pilla	Rua Dr. Salvador França	Av. Assis Brasil	Av. Baltazar De Oliveira Garcia
Av. Pinheiro Borda	Av. Cel. Aparício Borges	Rua Dom Pedro II	Av. Sertório
Av. Bento Gonçalves	Av. Juca Batista	Av. Saturnino De Brito	Estrada João de Oliveira Remião.

Fonte: elaboração própria.

A metodologia para a definição do grupo de tratamento e de controle no que tange aos radares móveis será a comparação da mesma avenida com e sem o monitoramento. Para aqueles dias que houve o monitoramento na avenida, ela será considerada um grupo de tratamento e a variável dummy receberá o valor igual a um e nos demais dias úteis, isto é, sem a ocorrência de monitoramento, a variável recebeu valor igual à zero. É importante destacar que, para o estudo com o radar móvel, apenas consideraremos os dias úteis e o horário comercial (das 7h às 20h), pois estes são os horários da fiscalização padrão com radares móveis. Em finais de semana e à noite e madrugada são efetuadas apenas operações especiais pelas autoridades de trânsito, e estas operações não serão objeto desta análise.

Pode-se fazer uma análise gráfica semelhante a do estudo de radares fixos, observando o comportamento das variáveis com e sem a presença de radares móveis. Conforme ilustração 9 abaixo, onde o grupo radar móvel = 1 (tratado) é expresso pela cor azul e o grupo radar móvel = 0 (controle) é expresso pela cor vermelha.

Figura 9 – Distribuição dos feridos dos grupos tratamento (azul) e controle (verm.).

Fonte: elaboração própria.

Observamos que a distribuição mostra certa semelhança, principalmente pelo fato de comparar cada avenida com ela mesma. A quantidade de dias com monitoramento é em geral menor que a quantidade sem monitoramento, visto que o número de equipes de fiscalização à época do estudo estava limitado a seis equipes por dia.

Para a variável UPS a distribuição de frequências também é muito semelhante, ver ilustração 10. Dando indícios que os acidentes apenas com danos materiais são quase coincidentes entre os grupos, já nos acidentes com feridos a diferença entre os grupos parece ser crescente:

Figura 10 – Densidade de distribuição Variável UPS por grupos de controle e tratamento com radar móvel de janeiro 2011 a julho de 2012:

Fonte: elaboração própria.

O modelo geral será semelhante ao aplicado aos radares fixos, porém, a análise da variável endógena Fatais não pôde ser executada, visto que, a frequência deste tipo de ocorrência é muito pequena (16 vítimas) e isto inviabiliza uma análise confiável. A estrutura geral será semelhante a dos radares fixos, pequena alteração de variáveis explicativas:

$$(13) \quad \ln(\text{Feridos}) = \alpha_i + \sum_i^j \beta_i * (\text{tipos de veículos}) + \beta_5 * (\text{Fxhorária}) + \beta_6 * \\ (\text{radar}) + \sum_i^j \beta_k * (\text{mês}) + \sum_i^j \beta t * (\text{climáticas}) + \sum_i^j \beta z * (\text{região}) + \sum_i^j \beta_a * (\text{ano}) + \\ \sum_i^j \beta_x * (\text{tipos de acidente}) + \mu_i$$

$$\begin{array}{ll} (14) & \ln(\text{UPS}) = \ \alpha_i + \sum_i^j \beta_i * (\text{tipos de veículos}) + \ \beta_5 * (\text{Fxhorária}) + \beta_6 * (\text{radar}) + \\ \sum_i^j \beta_k * (\text{mês}) \ + \ \sum_i^j \beta_t * (\text{climáticas}) \ + \ \sum_i^j \beta_z * (\text{região}) \ + \ \sum_i^j \beta_a * (\text{ano}) + \ \sum_i^j \beta_x * \\ (\text{tipos de acidente}) + \ \mu_i \end{array}$$

Onde:

(i = 1, ..., 4) Tipos de veículos = Automóvel, Ônibus Urbano, Motocicleta e Bicicleta; (r = 6,) Radar = Operação do Radar Móvel na Avenida;

(k = 7,...,17); Mês = Janeiro, Fevereiro, Março, Abril, Maio, Junho, Agosto, Setembro, Outubro, Novembro e Dezembro;

(t = 18, ..., 20); Climáticas = Noturno, Nublado, Chuvoso

(z = 21, ... 23); Região = Centro, Leste, Norte

(a = 24, 25); Ano = 2011 e 2012;

(x = 26, ..., 33). Tipos de Acidente = Abalroamento, Atropelamento, Capotagem, Choque, Incêndio, Queda, Tombamento e Eventual.

2.5.1 – Aspectos estatísticos da base de dados de Radares Móveis.

Esta seção descreve as principais características dos acidentes que compõe os dados analisados no modelo de radares móveis que é composta de 6.230 acidentes nas vinte vias arteriais descritas, as quais receberam controladores móveis em quantidade suficiente de dias úteis para viabilizar a comparação entre grupos de tratamento e de controle, ou seja, mais de 40 dias que representam 10% do total da série. O número de feridos totalizou 1.869 pessoas, e a UPS somou 12.746 unidades, conforme tabela 19.

Tabela 19 – Média e Desvio padrão dos grupos tratamento e controle das variáveis dependentes.

Variável	Quantidade	Média	Desvio Padrão
Acidentes	6.230	-	-
Feridos Tratamento	439	0,2633	0,5866
Feridos Controle	1.430	0,3133	0,5809
UPS Tratamento	3.179	1,907	1,7428
UPS Controle	9.567	2,0966	1,8821

Fonte: elaboração própria.

Em relação ao tipo de veículos envolvidos nos acidentes, os automóveis e caminhonetes são maioria com 8642 veículos acidentados, as motocicletas e motonetas somaram 1.376 acidentados, os ônibus urbanos foram 353 acidentados no período e por fim, 59 bicicletas foram contabilizadas em ocorrências de acidentes entre janeiro de 2011 e julho de 2012, conforme tabela 20.

Tabela 20 – Tipos de veículos envolvidos nos acidentes.

Veículo	Automóvel	Motocicleta	Ônibus Urbano	Bicicleta	TOTAL	
Acidentes	8642	1.376	353	59	10.430	
Percentual	82,8%	13,2%	3,4%	0,6%	100%	

Fonte: elaboração própria.

Em relação ao mês e ano dos acidentes nas vias de estudo, pode-se observar padrão semelhante ao radar fixo, em que janeiro e fevereiro apresentam índices menores, pois, são os períodos de verão e férias, em que muitas pessoas saem da cidade, conforme tabela 21.

Tabela 21 – Evolução mensal no número de acidentes entre janeiro de 2011 e julho de 2012.

	Meses											
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
2011	282	269	345	367	356	333	341	361	333	340	371	359
2012	271	244	361	345	324	308	320	-	-	-	-	-

Fonte: elaboração própria.

Quanto às condições naturais ou climáticas dos acidentes nestas avenidas, observa-se que a predominância de ocorrências foi com o clima considerado bom com 5009 acidentes, seguido por clima considerado nublado com 714 acidentes e o clima considerado chuvoso com 507 acidentes. Isto provavelmente pela menor velocidade média, maior cuidado e menor número de pessoas nas ruas em situações de clima adverso. Pela especificidade do funcionamento dos radares móveis, 86% dos acidentes ocorreram à luz do dia e apenas 14% à noite. Sendo que neste modelo, a faixa horária dos acidentes é muito relevante, pois, pode-se perceber na tabela 22, a existência de picos de acidentes causados pelo grande fluxo de veículos.

Tabela 22 – Evolução no número de acidentes por horário nas avenidas.

Faixa	7h	8h	9h	10h	11h	12h	13h	14h	15h	16h	17h	18h	19h
Acidentes	493	523	480	446	430	452	411	525	537	462	553	605	313

Fonte: elaboração própria.

Comparando as regiões da cidade que compõe o estudo, a maior quantidade de acidentes avaliados, novamente, está nas regiões Norte com 40% e a Leste com 37%, seguida pela região Sul com 13% e Centro com 10% do total das ocorrências. Este fato se justifica, pois, a maioria das vias expressas analisadas está fora da área central.

O último grupo de variáveis do estudo são as *dummies* referentes ao tipo dos acidentes. Conforme a tabela 23, os mais comuns nestas avenidas são a colisão e o abalroamento, e alguns tipos são raros como incêndios, tombamentos e capotagens, novamente os padrões são semelhantes aos do relatório de acidentalidade do DETRAN-RS, que adota estas tipologias.

Tabela 23 – Tipologia dos acidentes.

Tipo	Abalr.	Atrop.	Capot.	Choque	Colisão	Eventual	Incêndio	Queda	Tomb.
Total	2.652	337	6	313	2656	83	5	169	9

Fonte: elaboração própria.

Com estas bases de dados e modelos elaborados para radares fixos e móveis, realizamos a estimação dos cinco modelos propostos e seus resultados são analisados em detalhes no capítulo 3.

3 - RESULTADOS DOS MODELOS.

Neste capítulo serão apresentados os resultados dos modelos de análise sobre a eficácia dos instrumentos de controle de velocidade na redução de feridos, mortos e na severidade dos acidentes. Para tal análise, empregou-se a metodologia de regressão em painel considerando como Poisson, a distribuição da variável dependente. Além disso, foram observadas as diversas características citadas anteriormente no modelo de regressão proposto, como: o tipo de acidente, a região, o turno do dia, o horário de ocorrência desses acidentes, a condição climática e o tipo de veículo envolvido.

Ressaltando que todos os modelos foram estimados com efeitos fixos e efeitos aleatórios, porém, o resultado do teste de Hausman reportado no Anexo I, indicou a utilização o modelo de Efeitos Fixos.

3.1– RESULTADOS PARA RADARES FIXOS.

Os resultados para o modelo de radares fixos são subdivididos em seções específicas, para cada uma das três variáveis dependentes distintas: feridos, severidade e fatais. Onde os resultados para as três variáveis são detalhados, optou-se por avaliar coeficientes com um nível de significância de 10%, mesmo diversos coeficientes sendo significativos abaixo de 1% e 5%.

3.1.1 - Resultados para feridos no modelo de radares fixos.

A obrigatoriedade de coleta de dados, estabelecida no art. 24 do Código de Trânsito Brasileiro de 1998, viabilizou a formação de bases de dados estatísticos no Brasil. Dentre as informações disponíveis, o primeiro grupo de variáveis explicativas que será analisado é o das quantitativas que classificam o tipo dos veículos envolvidos nos acidentes. A regressão de Poisson calcula o coeficiente de variação estimado no número de feridos em acidentes, de acordo com os tipos de veículos envolvidos. A tabela 20 abaixo apresenta os resultados da regressão de Poisson, onde é possível observar grandes diferenças na probabilidade do número de feridos de acordo com os veículos envolvidos:

Tabela 24 – Resultados para Feridos com uso de Radares Fixos.

Efeitos Mar	ginais após	xtpoisson:					
Feridos	dy/dx	Erro	Z	P> z	[95%	C.I.]	X
Auto	0536452	.01544	-3.47	0.001	083914	023377	1.40709
OnibusUrb	.6406777	.02883	22.22	0.000	.584172	.697183	.063921
Moto	1.115867	.0175	63.78	0.000	1.08158	1.15016	.207774
Bicicleta	1.19443	.04937	24.19	0.000	1.09766	1.2912	.009502
FX_hora	0243042	.0014	-17.41	0.000	027041	021568	13.1746
R.FixoRua	0190867	.03134	-0.61	0.543	080517	.042344	.204881
R.Fixo300	1799069	.08974	-2.00	0.045	355797	004017	.010446
Janeiro	.0761778	.03883	1.96	0.050	.000063	.152293	.071374
Fevereiro	.0007401	.0405	0.02	0.985	078635	.080115	.063138
Março	0385422	.03752	-1.03	0.304	112078	.034994	.090157
Abril	0354136	.03813	-0.93	0.353	110147	.03932	.086661
Maio	.0217735	.03766	0.58	0.563	052046	.095593	.087063
Junho	0194762	.0387	-0.50	0.615	095328	.056376	.084291
Agosto	0127544	.03799	-0.34	0.737	087215	.061706	.087967
Setembro	.0327603	.03808	0.86	0.390	041875	.107395	.087786
Outubro	026614	.03745	-0.71	0.477	100009	.046781	.092668
Novembro	0287364	.03847	-0.75	0.455	104141	.046669	.085858
Dezembro	.0138632	.03924	0.35	0.724	06304	.090766	.076858
Noturno	.368779	.01681	21.94	0.000	.335836	.401722	.296685
Chuvoso	3629346	.0325	-11.17	0.000	426641	299228	.111792
Nublado	7137471	.0371	-19.24	0.000	786469	641025	.12509
Centro	.0333349	.05868	0.57	0.570	08168	.148349	.192166
Leste	.0124863	.05568	0.22	0.823	096639	.121611	.318542
Norte	.0254062	.0667	0.38	0.703	105329	.156141	.296866
2009	.0726285	.02566	2.83	0.005	.022342	.122915	.196424
2010	.1273068	.02475	5.14	0.000	.078805	.175808	.221937
2011	.0892452	.02999	2.98	0.003	.03047	.14802	.205685
2012	.1327281	.03047	4.36	0.000	.073016	.192441	.176557
Abalroam.	.337595	.0214	15.77	0.000	.295649	.379541	.42953
Atropel.	1.488261	.02966	50.18	0.000	1.43013	1.5464	.053897
Capotagem	1.708157	.08073	21.16	0.000	1.54992	1.86639	.003294
Choque	.5863442	.03526	16.63	0.000	.517239	.655449	.072238
Eventual	.2474977	.08105	3.05	0.002	.088646	.406349	.013258
Incêndio	-13.40049	649.53	-0.02	0.984	-1286.46	1259.66	.000301
Não cad	.3335764	.40929	0.82	0.415	468611	1.13576	.000281
Queda	1.013013	.03673	27.58	0.000	.941027	1.085	.025834
Tombamen.	.9756896	.18381	5.31	0.000	.615427	1.33595	.001185

Fonte: elaboração própria.

De acordo com a tabela 24, a presença de automóveis envolvidos nos acidentes de trânsito apresenta coeficiente negativo (-5%) e se mostra significante a 1%, sobre a probabilidade do número de feridos. Embora os acidentes com

automóveis sejam os mais comuns na cidade respondendo por aproximadamente 70% do total, os condutores e passageiros de veículos, geralmente, utilizam cintos de segurança e possuem uma gama de equipamentos de segurança maior²³. Os resultados para os outros tipos de veículos analisados, como ônibus, motocicleta e bicicletas, apresentam resultados positivos, isto é, que indicam uma maior probabilidade de feridos.

O resultado positivo observado na variável ônibus urbano (+64%) pode ser um indicativo da falta de segurança e precarização que este tipo de transporte apresenta, principalmente, no que diz respeito à falta de cintos de segurança e da constante superlotação, o que contribui para o aumento da probabilidade de feridos em um acidente. Importante ressaltar que, foi testada a variável lotação²⁴, que seria uma alternativa ao ônibus urbano e seus coeficientes foi próximo a zero, mas, não significantes, o que indica coeficiente zero estatístico²⁵.

As variáveis moto e bicicleta apresentaram resultados já esperados com base nos relatórios de autoridades de trânsito de diversas localidades. A ocorrência de um acidente envolvendo motocicleta ou bicicleta nas grandes avenidas de Porto Alegre mais que dobram a probabilidade de feridos (111% e 119%, respectivamente). Um fato a ressaltar é que, somente ocorrências mais graves com motocicletas, e principalmente, com bicicletas, são registradas nas estatísticas, visto que uma simples queda, sem gravidade, não costuma envolver autoridades de trânsito e ter registro oficial o que pode superestimar os riscos.

O próximo grupo de variáveis exógenas utilizadas na análise é referente às condições climáticas, turno do dia e à faixa horária dos acidentes e sua relação com a variável dependente feridos, com base na tabela 24.

Quanto ao turno do dia, a variável noturno se mostrou positiva e estatisticamente significante, ou seja, no período noturno em Porto Alegre, mesmo com menor quantidade de acidentes, a probabilidade do número de feridos em acidentes aumenta em 36%, segundo Souza et al. (2013) o horário noturno e a madrugada é o com maior ocorrência de acidentes associados ao consumo de

²⁴ Lotações são um tipo de transporte alternativo ao sistema de ônibus em Porto Alegre, com capacidade máxima de passageiros limitada pelo *número* de assentos disponível.

_

²³ Nos automóveis: Air Bag, barras de proteção lateral, freios ABS, etc.

²⁵ Provavelmente, a não significância é causada pelo pequeno *número* de acidentes com lotações no município.

álcool, também é neste horário que ocorrem os rachas ou corridas de rua. Em relação ao número de feridos, a variável faixa horária mostrou sinal negativo e é estatisticamente significante, ou seja, quanto menor a faixa horária (períodos da madrugada) maior a probabilidade de feridos. O sinal da variável está em consonância com a variável Noturno.

Já as variáveis de clima Chuvoso e Nublado são negativas e significantes, o que inicialmente, é contrário ao senso comum. Mas ao analisar que, em dias chuvosos a tendência é de haver menos motociclistas, ciclistas e pedestres no trânsito e também, um maior cuidado por parte dos motoristas ²⁶, muitos deles, reduzindo a sua velocidade, será razoável aceitar que nestas condições, predominam as colisões e choques leves, que causam apenas danos materiais. Fica evidenciado que, quanto ao risco, este é maior em condições climáticas boas, e principalmente, à noite e durante madrugada. Os resultados mostram que o condutor, diante de condições climáticas mais adversas, guia o veículo com maior cautela e perícia. Esse resultado corrobora com Khattak et al. (1998), que indicam que os motoristas, nestas condições aumentam sua cautela e tendem a reduzir sua velocidade, levando a acidentes com menor probabilidade de feridos e mortes.

O grupo seguinte de análise é em relação às dummies de sazonalidade mensal dos acidentes com feridos. O estudo mostra que o mês de janeiro tem um aumento de 7% na probabilidade de acidentes envolverem feridos com significância estatística de 5%. Este é um período de férias de verão, no qual o fluxo de veículos diminui consideravelmente em Porto Alegre e, por conseguinte, permite desenvolver maiores velocidades nas avenidas. Ainda que o número absoluto de acidentes e de feridos seja menor neste mês, janeiro é o mês mais violento no que tange aos acidentes envolvendo feridos no período analisado. Nos demais meses do ano, os coeficientes variam em sinal, mas nenhum deles apresenta significância estatística.

Já a análise da sazonalidade anual mostra-se preocupante, pois, as dummies criadas para os anos de 2008, 2009, 2010, 2011 e 2012 mostram que o trânsito ficou mais violento em relação aos feridos nos últimos anos, com aumento na probabilidade de feridos em relação ao início da série em 2008.

_

²⁶ Peltzman (1975), Bilionis (2013).

Todos os anos apresentaram coeficientes positivos e foram estatisticamente significantes, com variações entre 7% e 13%. Isto reforça uma tendência já citada pela OMS no seu relatório de 2013, de que o Brasil, ao contrário da maioria dos países, vinha sofrendo um aumento nas vítimas de trânsito. Este fator, provavelmente, está relacionado ao grande aumento na frota de veículos na cidade, que demonstra um aumento de 59% em dez anos na frota total e de 180% na quantidade de motocicletas²⁷.

A localização dos acidentes segundo a região de Porto Alegre não se mostrou estatisticamente significante. As *dummies*: central, norte e leste apresentam coeficientes de probabilidade de feridos maiores que o Sul, porém, são insignificantes (p-valor > 0,10) e não se pode afirmar que existe uma diferença real entre elas.

O último ponto de análise antes do impacto específico dos radares fixos é o grupo de variáveis referente à tipologia dos acidentes e sua influência no número de feridos. Neste caso, foram utilizadas variáveis *dummies* para cada tipo de registro e comparadas ao tipo mais comum na cidade que é a colisão ²⁸. As *dummies* expressam quais tipos de acidentes mais influenciam no número de feridos, e foram atribuídas de acordo com a tipologia do DENATRAN apresentada no capítulo 2.

Nesta parte da análise as únicas variáveis insignificantes foram as tipologias: incêndio, com nenhum registro de ferido, como demonstra o altíssimo coeficiente negativo e não significante, e também, a tipologia denominada ocorrências não cadastradas, referente a eventos que, por algum problema de coleta das estatísticas, não tiveram sua tipologia atribuída.

As variáveis com maior risco de feridos em ordem decrescente foram: capotagem, atropelamento, queda, tombamento, choque, abalroamento e eventual. É importante destacar que, os sinais das variáveis se mostraram positivos e com um nível de significância inferior a 10%.

Primeiramente, em relação à capotagem o coeficiente marginal de 1,7 indica que a probabilidade de contagem de feridos aumenta em 170% em caso de capotagem quando comparado com uma colisão. Os atropelamentos têm a segunda

.

²⁷ Ver Tabela 3, página 17.

²⁸ Acidente em que um veículo em movimento colide com outro veículo também em movimento, é a situação mais comum.

maior probabilidade de feridos com coeficiente marginal de 1,48 ou 148% mais risco de haver feridos também em relação à colisão. O resultado expõe a fragilidade dos pedestres e a falta de travessias adequadas nas principais avenidas da cidade. Este tipo de ocorrência certamente teria redução, caso o limite de velocidade urbano fosse reduzido.

As quedas são uma tipologia de acidente relacionada às motocicletas e bicicletas e seus resultados eram esperados em termos de risco semelhantes aquelas variáveis, as quedas aumentam 101% a probabilidade de feridos em relação à colisão. É preciso ressaltar que, as quedas simples e sem gravidade não costumam envolver autoridades de trânsito e ter registro oficial. Ou seja, esse resultado pode estar superestimado.

O tombamento tem coeficiente de risco de feridos 97% maior que a colisão representando um resultado plausível, visto que é um tipo de capotagem menos drástico, cujo veículo não chega a girar 180 graus sob seu eixo, apenas 90 graus.

A dummy choque apresenta probabilidade 58% maior de haver feridos do que a colisão. Como se trata de um choque entre um veículo em movimento contra um obstáculo parado, a velocidade do veículo tem grande influência na gravidade do acidente.

Já o abalroamento é um tipo de acidente tão comum quanto às colisões, porém, apresenta 33% a mais de probabilidade de envolvendo feridos. Uma explicação para isto pode ser o grande número de abalroamentos laterais em cruzamentos, visto que os automóveis são, em geral, menos resistentes a impactos laterais que frontais.

O principal objeto do estudo, resultado para a eficácia dos radares fixos é feito através das variáveis, Radar Fixo 300 e Radar Fixo Rua. A variável Radar Fixo 300m, mostra que houve melhoria na segurança com a colocação dos radares nos segmentos localizados no seu entorno, ou seja, 300m antes e depois dos mesmos. O resultado apresentou uma redução significativa de 17,99% na probabilidade do número de feridos. Estes resultados estão de acordo com os diversos estudos consultados, por exemplo, em Elvik et al. (1997) e Newstead et al. (2011) que observaram uma redução de 26% no número de feridos.

Visto que o radar é eficaz num curto espaço, partimos para a análise do impacto em toda a extensão das avenidas com a colocação dos novos radares que é captada pela variável radar fixo rua. Mesmo que esta variável tenha apresentado coeficiente negativo, mostrou-se insignificante. Isto demonstra claramente que, a abrangência espacial dos radares fixos está limitada a um pequeno segmento localizado, imediatamente, antes e depois, dos mesmos. No caso deste estudo, os resultados são semelhantes aos descritos por Yamada, (2005):

A porcentagem de veículos com velocidade alta é maior depois dos radares. Esse fato pode ser explicado pela busca de compensação após a redução de velocidade após passar pelo radar, associada à certeza de que não haverá outro radar logo à frente. Claramente, a abrangência espacial dos radares fixos no sentido de reduzir as velocidades é limitada a um pequeno segmento localizado, na sua maior parte, imediatamente antes dos mesmos e em menor grau logo após estes. (YAMADA, 2005, p. 83)

Além disto, Mountain et al. (2004) em seu trabalho com dados de acidentes e de fluxos de veículos na Inglaterra, mostraram que, uma parte da redução nos acidentes se deve a redução de fluxo de trânsito na área com controladores, pois, parte dos motoristas evita utilizar estes trechos. Seu estudo constatou uma redução de 24% nos acidentes com feridos em áreas limitadas a 30 milhas por hora ²⁹. Apesar disso, apenas 19% poderiam ser atribuídos aos radares, visto que, foi observada uma redução de fluxo de 5% nestas áreas.

Em Porto Alegre, o grande crescimento da frota e as dificuldades de mobilidade urbana observadas nos últimos anos não levam a crer que houve redução no tráfego de veículos em quaisquer destas avenidas, mas, como não existem dados disponíveis de contagem de fluxo de veículos, é razoável aceitar que alguns trechos podem ser evitados por condutores que estejam interessados em exceder os limites de velocidade.

3.1.2 - Resultados para UPS no modelo de radares fixos.

Após a estimação da regressão de Poisson com a variável dependente sendo o número de feridos, aplicou-se exercício semelhante para a variável UPS, que corresponde ao grau de severidade do acidente, com amplitude entre 1 e 13. É importante destacar que, acidentes sem vítimas recebem valor igual a um, acidentes

_

²⁹Equivalente a 48 Km/h, velocidade limite em vias urbanas da Inglaterra.

com feridos recebem valor cinco e acidentes com mortes valor igual a treze, e esta metodologia permite que, as autoridades de trânsito de todo Brasil identifiquem os locais com maior risco de acidentes observando apenas o índice UPS.

A Tabela 25 apresenta os resultados dos coeficientes de variação marginal (dy/dx) estimados para a UPS, no que tange a utilização dos radares fixos em cada uma das avenidas.

Tabela 25 – Regressão de Poisson para Unidade Padrão de Severidade.

Efeitos Ma	rginais após	xtpoisson:					
UPS	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
Auto	0439048	.00565	-7.77	0.000	054979	032831	1.40709
OnibusUrb	.2644675	.01227	21.56	0.000	.240428	.288507	.063921
Moto	.6661723	.00736	90.50	0.000	.651745	.6806	.207774
Bicicleta	.8633847	.02201	39.23	0.000	.820252	.906517	.009502
FX_hora	0116256	.0006	-19.39	0.000	012801	010451	13.1746
Rfixo_Rua	0071795	.01242	-0.58	0.563	031528	.017169	.204881
Rfixo300m	0841778	.0372	-2.26	0.024	157097	011258	.010446
Janeiro	.0219476	.01565	1.40	0.161	008717	.052612	.071374
Fevereiro	.0110683	.01616	0.68	0.493	020602	.042739	.063138
Março	0143282	.01485	-0.96	0.335	043435	.014779	.090157
Abril	0031919	.01502	-0.21	0.832	032623	.026239	.086661
Maio	.0081378	.01494	0.54	0.586	021138	.037413	.087063
Junho	.0010401	.01516	0.07	0.945	028669	.030749	.084291
Agosto	.0163925	.01489	1.10	0.271	012791	.045576	.087967
Setembro	.0254224	.01496	1.70	0.089	003906	.054751	.087786
Outubro	.0113889	.01472	0.77	0.439	017467	.040245	.092668
Novembro	0003713	.01509	-0.02	0.980	029943	.029201	.085858
Dezembro	.0206648	.01551	1.33	0.183	009741	.05107	.076858
Noturno	.1655984	.00696	23.79	0.000	.151957	.179239	.296685
Chuvoso	1677024	.01142	-14.68	0.000	190094	145311	.111792
Nublado	2654245	.0114	-23.28	0.000	287768	243081	.12509
Centro	.0019877	.02267	0.09	0.930	042437	.046413	.192166
Leste	.0296049	.02205	1.34	0.179	013611	.072821	.318542
Norte	.0208389	.02629	0.79	0.428	030679	.072357	.296866
2009	.0385934	.01002	3.85	0.000	.018958	.058228	.196424
2010	.0603952	.00971	6.22	0.000	.041365	.079425	.221937
2011	.0628674	.01172	5.36	0.000	.039893	.085842	.205685
2012	.0666001	.01205	5.53	0.000	.042976	.090224	.176557
Abalr.	.1345218	.00776	17.33	0.000	.11931	.149734	.42953
Atropel.	1.048268	.01183	88.64	0.000	1.02509	1.07145	.053897
Capotam.	.8477675	.0412	20.58	0.000	.767026	.928509	.003294
Choque	.2909515	.01331	21.86	0.000	.264861	.317042	.072238
Eventual	.2047188	.02856	7.17	0.000	.148736	.260702	.013258

Incêndio		2113539	.25838	-0.82	0.413	717772	.295064	.000301
Não CAD.	1	.2372629	.16258	1.46	0.144	081383	.555909	.000281
Queda	1	.6933554	.01569	44.19	0.000	.662604	.724107	.025834
		.5263824 ação própria.	.07867	6.69	0.000	.372184	.68058	.001185

Uma análise geral dos resultados mostra que, os resultados são muito parecidos com o que foi apresentado para o número de feridos. A probabilidade para acidentes envolvendo automóveis mostra-se inferior em severidade, sendo menor em acidentes com Automóveis (-43%) e maior em acidentes envolvendo ônibus urbanos (+26%), motocicletas (+66%) e bicicletas (+86%).

Quanto à sazonalidade mensal, embora os meses, em sua maioria, terem apresentado sinais positivos, apenas uma das estimativas se mostrou estatisticamente significante. Cabe destacar que, o mês de setembro apresentou 2% de aumento na severidade nos acidentes com nível de significância inferior a 10%, porem é difícil afirmar quais seriam as causas para este mês ter acidentes mais severos que os demais, em geral, a severidade não apresentou variação significativa entre os meses.

Ao investigar a sazonalidade anual para a UPS, esta permanece semelhante ao modelo estimado para a variável dependente feridos. No ano de 2009, houve um aumento de 3,8% na severidade dos acidentes em relação ao ano de 2008. Em 2010, 2011 e 2012 a estimativa foi de 6% quando comparado com o ano de 2008. A princípio, parece que após o crescimento nos anos de 2009 e 2010 tenha ocorrido estabilização na severidade dos acidentes.

Quanto às características climáticas e sua relação com a severidade, as condições climáticas adversas são acompanhadas de redução na severidade geral dos acidentes. A variável nublado reduz em 26% a UPS, e a variável chuvoso reduz em 16%, ambas em relação ao tempo bom. Ao mesmo tempo, o fator noturno aumenta em 16% o risco em relação ao período diurno onde ocorrem mais acidentes, porém menos severos. Os resultados mostram que o condutor diante condições climáticas ruins, guia o veículo com mais cautela e atenção. Esse resultado também está de acordo com Khattak et, al, (1998) e Bilionis (2013).

A variável faixa horária reduz a severidade, isto é, tem influência negativa em relação à severidade dos acidentes e, novamente, fica evidente que os acidentes mais severos ocorrem na madrugada. É provável que este resultado seja devido ao

menor fluxo de veículos na via que permite o desenvolvimento de maiores velocidades por parte dos motoristas, conforme citado por Kloeden et al. (1997). Outras possibilidades, sonolência e características não observáveis como insegurança, onde o medo de roubo de veículos e assaltos leva os condutores a não pararem em cruzamentos, mesmo correndo risco de ocasionar acidentes.

Quanto à tipologia dos acidentes, a *dummy* atropelamento mostrou ter a maior probabilidade de severidade, com efeito marginal de 134% maior que uma colisão. Uma explicação é que, segundo a EPTC quase 40% dos acidentes fatais na cidade são atropelamentos e são raros os casos sem feridos, o índice UPS leva em conta estes casos.

Em segundo lugar estão às capotagens com 84% de aumento na probabilidade de UPS, seguidos por quedas, com efeito marginal de 69%, tombamentos com 52% e abalroamentos com 13% de aumento, todas em relação à dummy colisão.

Na análise principal da Severidade, a implantação do radar fixo foi capaz de reduzir em 8,4% a severidade das ocorrências num raio de 300m antes e depois (variável radar fixo 300m), com significância estatística inferior a 5%. Contudo, ao longo de toda a extensão das avenidas, não se pode observar redução da severidade entre as vias que receberam novos aparelhos de radar fixo e as que não receberam. Apesar do coeficiente negativo, que era um resultado esperado, ele se mostrou insignificante. Novamente os radares fixos apresentam uma eficácia nos locais em que foram instalados, porém, se mostram incapazes de fazer com que os motoristas modifiquem seu comportamento, e permaneçam dentro dos limites de velocidade ao longo de toda a avenida. Por se tratar de metodologia do DENATRAN é mais difícil a comparação destes resultados com os trabalhos internacionais, no Brasil, Sousa (2008), utilizou a UPS para verificar impactos da instalação de radares fixos e lombadas eletrônicas em Uberlândia, e encontrou redução de 7% na UPS, mesmo com aumento de 50% no total de acidentes nestes locais.

3.1.3 - Resultados para Mortes no modelo de radares fixos.

É importante destacar que, o número de acidentes fatais é reduzido devido à menor velocidade média praticada em vias urbanas, visto a grande quantidade de

semáforos, faixas de conversão e engarrafamentos. A quantidade de vítimas ao longo dos cinco anos foi pequena, (326 vítimas), o que pode tornar a análise menos confiável e sujeita a superestimação ou subestimação dos coeficientes, restringindo a assertividade do modelo proposto. Na tabela 26 são apresentados os coeficientes marginais (dy/dx) das variáveis explicativas para vítimas fatais:

Tabela 26 – Regressão de Poisson para vítimas fatais em Acidentes.

Auto 7285768	Efeito Mar	ginal após x	tpoisson:					
Notional Company Notional Co	Fatais	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
Moto .2300791 .14112 1.63 0.103 046514 .506672 .207774 Bicicleta 1.023503 .37558 2.73 0.006 .287377 1.75963 .009502 Fx_hora 0513214 .00885 -5.80 0.000 068662 03398 13.1746 RfixoRua 1678723 .23021 -0.73 0.466 -619075 .28333 .204881 Rfixo300ml 1435132 .60489 -0.24 0.812 -1.32907 1.04204 .010446 Jan 3682751 .33805 -1.09 0.276 -1.03084 .294291 .071374 Fev .4442081 .27989 1.59 0.112 -1.0437 .992786 .063138 Mar .0670345 .28218 0.24 0.812 486019 .62098 .08661 Mai .0739924 .29276 -0.25 0.800 -647795 .49981 .08706 <td>Auto </td> <td>7285768</td> <td>.12369</td> <td>-5.89</td> <td>0.000</td> <td>970995</td> <td>486159</td> <td>1.40709</td>	Auto	7285768	.12369	-5.89	0.000	970995	486159	1.40709
Bicicleta 1.023503	ÔnibusUrb	.3254382	.19914	1.63	0.102	06487	.715746	.063921
Fx hora 0513214	Moto	.2300791	.14112	1.63	0.103	046514	.506672	.207774
Rfixoroual 1678723 .23021 -0.73 0.466 619075 .28333 .204881 Rfixo300ml 1435132 .60489 -0.24 0.812 -1.32907 1.04204 .010446 Jan 3682751 .33805 -1.09 0.276 -1.03084 .294291 .071374 Fev .4442081 .27989 1.59 0.112 10437 .992786 .063138 Mar 0416574 .29347 -0.48 0.629 716838 .433524 .090157 Abr 0.670345 .28218 0.24 0.812 486019 .620088 .086661 Mai 0739924 .29276 -0.25 0.800 647795 .49981 .087063 Jun .3054942 .27274 1.12 0.263 229071 .840059 .084291 Ago 4008185 .26297 1.52 0.127 114601 .916238 .0877967 Set .263284 .27319 0.96 0	Bicicleta	1.023503	.37558	2.73	0.006	.287377	1.75963	.009502
Rfixo300m 1435132	Fx_hora	0513214	.00885	-5.80	0.000	068662	03398	13.1746
Jan 3682751 .33805 -1.09 0.276 -1.03084 .294291 .071374 Fev .4442081 .27989 1.59 0.112 10437 .992786 .063138 Mar 1416574 .29347 -0.48 0.629 716838 .433524 .090157 Abr .0670345 .28218 0.24 0.812 486019 .620088 .086661 Mai -0739924 .29276 -0.25 0.800 647795 .49981 .087063 Jun .3054942 .27274 1.12 0.263 229071 .840059 .084291 Ago .4008185 .26297 1.52 0.127 114601 .916238 .087965 Set .263284 .27319 0.96 0.335 272157 .798725 .087786 Out .1915462 .26831 0.71 0.475 334332 .717424 .092668 Nov .2964367 .27355 1.08 0.279	RfixoRua	1678723	.23021	-0.73	0.466	619075	.28333	.204881
Fev .4442081 .27989 1.59 0.112 10437 .992786 .06318 Mar 1416574 .29347 -0.48 0.629 716838 .433524 .090157 Abr .0670345 .28218 0.24 0.812 486019 .620088 .086661 Mai 0739924 .29276 -0.25 0.800 647795 .49981 .087063 Jun .3054942 .27274 1.12 0.263 229071 .840059 .084291 Ago .4008185 .26297 1.52 0.127 114601 .916238 .087967 Set .263284 .27319 0.96 0.335 272157 .798725 .087786 Out .1915462 .26831 0.71 0.475 334332 .717424 .092668 Nov .2964367 .27355 1.08 0.279 239715 .832588 .085856 Dez .0451189 .2951 0.15 0.878	Rfixo300m	1435132	. 60489	-0.24	0.812	-1.32907	1.04204	.010446
Mar 1416574 .29347 -0.48 0.629 716838 .433524 .090157 Abr .0670345 .28218 0.24 0.812 486019 .620088 .086661 Mai 0739924 .29276 -0.25 0.800 647795 .49981 .087065 Jun .3054942 .27274 1.12 0.263 229071 .840059 .084291 Ago .4008185 .26297 1.52 0.127 114601 .916238 .087967 Set .263284 .27319 0.96 0.335 272157 .798725 .087786 Out .1915462 .26831 0.71 0.475 334332 .717424 .092666 Nov .2964367 .27355 1.08 0.279 239715 .832588 .085856 Dez .0451189 .2951 0.15 0.878 533266 .623504 .076856 Noturno .8206658 .11543 7.11 0.000<	Jan	3682751	.33805	-1.09	0.276	-1.03084	.294291	.071374
Abr .0670345	Fev	.4442081	.27989	1.59	0.112	10437	.992786	.063138
Mai 0739924 .29276 -0.25 0.800 647795 .49981 .087063 Jun .3054942 .27274 1.12 0.263 229071 .840059 .084291 Ago .4008185 .26297 1.52 0.127 114601 .916238 .087967 Set .263284 .27319 0.96 0.335 272157 .798725 .087786 Out .1915462 .26831 0.71 0.475 334332 .717424 .092668 Nov .2964367 .27355 1.08 0.279 239715 .832588 .085858 Dez .0451189 .2951 0.15 0.878 533266 .623504 .076858 Chuvoso 9981078 .28692 -3.48 0.001 -1.56047 43575 .111792 Nublado -1.278135 .36156 -3.54 0.000 -1.98679 569481 .12503 Centro .4218686 .46325 0.91 <	Mar	1416574	.29347	-0.48	0.629	716838	.433524	.090157
Jun .3054942 .27274 1.12 0.263 229071 .840059 .084291 Ago .4008185 .26297 1.52 0.127 114601 .916238 .087967 Set .263284 .27319 0.96 0.335 272157 .798725 .087786 Out .1915462 .26831 0.71 0.475 334332 .717424 .092668 Nov .2964367 .27355 1.08 0.279 239715 .832588 .085858 Dez .0451189 .2951 0.15 0.878 533266 .623504 .076858 Noturno .8206658 .11543 7.11 0.000 .594425 1.04691 .296685 Chuvoso 9981078 .28692 -3.48 0.001 -1.56047 43575 .111792 Nublado -1.278135 .36156 -3.54 0.000 -1.98679 569481<	Abr	.0670345	.28218	0.24	0.812	486019	.620088	.086661
Ago .4008185	Mai	0739924	.29276	-0.25	0.800	647795	.49981	.087063
Set .263284 .27319 0.96 0.335 272157 .798725 .087786 Out .1915462 .26831 0.71 0.475 334332 .717424 .092668 Nov .2964367 .27355 1.08 0.279 239715 .832588 .085858 Dez .0451189 .2951 0.15 0.878 533266 .623504 .076858 Noturno .8206658 .11543 7.11 0.000 .594425 1.04691 .296688 Chuvoso 9981078 .28692 -3.48 0.001 -1.56047 43575 .111792 Nublado -1.278135 .36156 -3.54 0.000 -1.98679 569481 .12503 Centro .4218686 .46325 0.91 0.362 486086 1.32982 .19216 Leste .530228 .47618 1.11 0.265 403059 1.4635	Jun	.3054942	.27274	1.12	0.263	229071	.840059	.084291
Out .1915462 .26831 0.71 0.475 334332 .717424 .092668 Nov .2964367 .27355 1.08 0.279 239715 .832588 .085858 Dez .0451189 .2951 0.15 0.878 533266 .623504 .076858 Noturno .8206658 .11543 7.11 0.000 .594425 1.04691 .296688 Chuvoso 9981078 .28692 -3.48 0.001 -1.56047 43575 .111792 Nublado -1.278135 .36156 -3.54 0.000 -1.98679 569481 .12503 Centro .4218686 .46325 0.91 0.362 486086 1.32982 .192166 Leste .5533228 .47618 1.11 0.265 403059 1.46352 .296866 2009 .3880488 .1684 2.30 0.021 .057996 .718	Ago	.4008185	.26297	1.52	0.127	114601	.916238	.087967
Nov .2964367 .27355 1.08 0.279 239715 .832588 .085858 Dez .0451189 .2951 0.15 0.878 533266 .623504 .076858 Noturno .8206658 .11543 7.11 0.000 .594425 1.04691 .296688 Chuvoso 9981078 .28692 -3.48 0.001 -1.56047 43575 .111792 Nublado -1.278135 .36156 -3.54 0.000 -1.98679 569481 .12509 Centro .4218686 .46325 0.91 0.362 486086 1.32982 .192166 Leste .5583325 .38562 1.45 0.148 197468 1.31413 .318542 Norte .530228 .47618 1.11 0.265 403059 1.46352 .296866 2009 .3880488 .1684 2.30 0.021 .057996 .71	Set	.263284	.27319	0.96	0.335	272157	.798725	.087786
Dez .0451189 .2951 0.15 0.878 533266 .623504 .076858 Noturno .8206658 .11543 7.11 0.000 .594425 1.04691 .296685 Chuvoso 9981078 .28692 -3.48 0.001 -1.56047 43575 .111792 Nublado -1.278135 .36156 -3.54 0.000 -1.98679 569481 .12509 Centro .4218686 .46325 0.91 0.362 486086 1.32982 .192166 Leste .5583325 .38562 1.45 0.148 197468 1.31413 .318542 Norte .530228 .47618 1.11 0.265 403059 1.46352 .296866 2009 .3880488 .1684 2.30 0.021 .057996 .718102 .196424 2010 1023213 .18552 -0.55 0.581 465927 .261284 .221937 2011 .1479445 .21342 0.69 0.48	Out	.1915462	.26831	0.71	0.475	334332	.717424	.092668
Noturno .8206658	Nov	.2964367	.27355	1.08	0.279	239715	.832588	.085858
Chuvoso 9981078	Dez	.0451189	.2951	0.15	0.878	533266	.623504	.076858
Nublado -1.278135 .36156 -3.54 0.000 -1.98679 569481 .12509 Centro .4218686 .46325 0.91 0.362 486086 1.32982 .192166 Leste .5583325 .38562 1.45 0.148 197468 1.31413 .318542 Norte .530228 .47618 1.11 0.265 403059 1.46352 .296866 2009 .3880488 .1684 2.30 0.021 .057996 .718102 .196424 2010 1023213 .18552 -0.55 0.581 465927 .261284 .221937 2011 .1479445 .21342 0.69 0.488 270357 .566246 .205685 2012 0756195 .2266 -0.33 0.739 519746 .368507 .176557 Abalr .5765567 .25484 2.26 0.024 .077077 1.07604 .42953 Atrop 3.002443 .25724 11.67	Noturno	.8206658	.11543	7.11	0.000	.594425	1.04691	.296685
Centro .4218686 .46325 0.91 0.362 486086 1.32982 .192166 Leste .5583325 .38562 1.45 0.148 197468 1.31413 .318542 Norte .530228 .47618 1.11 0.265 403059 1.46352 .296866 2009 .3880488 .1684 2.30 0.021 .057996 .718102 .196424 2010 1023213 .18552 -0.55 0.581 465927 .261284 .221937 2011 .1479445 .21342 0.69 0.488 270357 .566246 .205685 2012 0756195 .2266 -0.33 0.739 519746 .368507 .176557 Abalr .5765567 .25484 2.26 0.024 .077077 1.07604 .42953 Acropt .3002443 .25724 11.67 0.000 2.49825 3.50663 .053897 Capot .2181052 .55722 3.91 0.000	Chuvoso	9981078	.28692	-3.48	0.001	-1.56047	43575	.111792
Leste .5583325 .38562 1.45 0.148 197468 1.31413 .318542 Norte .530228 .47618 1.11 0.265 403059 1.46352 .296866 2009 .3880488 .1684 2.30 0.021 .057996 .718102 .196424 2010 1023213 .18552 -0.55 0.581 465927 .261284 .221937 2011 .1479445 .21342 0.69 0.488 270357 .566246 .205685 2012 0756195 .2266 -0.33 0.739 519746 .368507 .176557 Abalr. .5765567 .25484 2.26 0.024 .077077 1.07604 .42953 Atrop. 3.002443 .25724 11.67 0.000 2.49825 3.50663 .053897 Capot. 2.181052 .55722 3.91 0.000 1.08892 3.27318<	Nublado	-1.278135	.36156	-3.54	0.000	-1.98679	569481	.12509
Norte .530228	Centro	.4218686	.46325	0.91	0.362	486086	1.32982	.192166
1880488 1684 2.30 0.021 0.057996 0.718102 1.196424 2.100 1023213 1.18552 -0.55 0.581 465927 0.261284 0.221937 2.011 0.1479445 0.21342 0.69 0.488 270357 0.566246 0.205685 2.012 0756195 0.2266 -0.33 0.739 519746 0.368507 0.176557 0.176557 0.25484 0.266 0.024 0.077077 0.07604 0.42953 0.4870 0.000 0.48825 0.53897 0.000 0.48825 0.053897 0.000 0.08892 0.053897 0.000 0.08892 0.03294 0.000 0.08892 0.003294 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Leste	.5583325	.38562	1.45	0.148	197468	1.31413	.318542
2010 1023213 .18552 -0.55 0.581 465927 .261284 .221937 2011 .1479445 .21342 0.69 0.488 270357 .566246 .205685 2012 0756195 .2266 -0.33 0.739 519746 .368507 .176557 Abalr. .5765567 .25484 2.26 0.024 .077077 1.07604 .42953 Atrop. 3.002443 .25724 11.67 0.000 2.49825 3.50663 .053897 Capot. 2.181052 .55722 3.91 0.000 1.08892 3.27318 .003294 Choque 2.340479 .26129 8.96 0.000 1.82836 2.85259 .072238 Eventual .2577049 .74724 0.34 0.730 -1.20686 1.72227 .013258 Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	Norte	.530228	.47618	1.11	0.265	403059	1.46352	.296866
2011 .1479445	2009	.3880488	.1684	2.30	0.021	.057996	.718102	.196424
2012 0756195 .2266 -0.33 0.739 519746 .368507 .176557 Abalr. .5765567 .25484 2.26 0.024 .077077 1.07604 .42953 Atrop. 3.002443 .25724 11.67 0.000 2.49825 3.50663 .053897 Capot. 2.181052 .55722 3.91 0.000 1.08892 3.27318 .003294 Choque 2.340479 .26129 8.96 0.000 1.82836 2.85259 .072238 Eventual .2577049 .74724 0.34 0.730 -1.20686 1.72227 .013258 Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	2010	1023213	.18552	-0.55	0.581	465927	.261284	.221937
Abalr. .5765567 .25484 2.26 0.024 .077077 1.07604 .42953 Atrop. 3.002443 .25724 11.67 0.000 2.49825 3.50663 .053897 Capot. 2.181052 .55722 3.91 0.000 1.08892 3.27318 .003294 Choque 2.340479 .26129 8.96 0.000 1.82836 2.85259 .072238 Eventual .2577049 .74724 0.34 0.730 -1.20686 1.72227 .013258 Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	2011	.1479445	.21342	0.69	0.488	270357	.566246	.205685
Atrop. 3.002443 .25724 11.67 0.000 2.49825 3.50663 .053897 Capot. 2.181052 .55722 3.91 0.000 1.08892 3.27318 .003294 Choque 2.340479 .26129 8.96 0.000 1.82836 2.85259 .072238 Eventual .2577049 .74724 0.34 0.730 -1.20686 1.72227 .013258 Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	2012	0756195	.2266	-0.33	0.739	519746	.368507	.176557
Capot. 2.181052 .55722 3.91 0.000 1.08892 3.27318 .003294 Choque 2.340479 .26129 8.96 0.000 1.82836 2.85259 .072238 Eventual .2577049 .74724 0.34 0.730 -1.20686 1.72227 .013258 Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	Abalr.	.5765567	.25484	2.26	0.024	.077077	1.07604	.42953
Choque 2.340479 .26129 8.96 0.000 1.82836 2.85259 .072238 Eventual .2577049 .74724 0.34 0.730 -1.20686 1.72227 .013258 Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	Atrop.	3.002443	.25724	11.67	0.000	2.49825	3.50663	.053897
Eventual .2577049 .74724 0.34 0.730 -1.20686 1.72227 .013258 Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	Capot.	2.181052	.55722	3.91	0.000	1.08892	3.27318	.003294
Incêndio -9.127938 844.67 -0.01 0.991 -1664.64 1646.39 .000301	Choque	2.340479	.26129	8.96	0.000	1.82836	2.85259	.072238
	Eventual	.2577049	.74724	0.34	0.730	-1.20686	1.72227	.013258
Não Cad -9.779122 790.42 -0.01 0.990 -1558.98 1539.42 .000281	Incêndio	-9.127938	844.67	-0.01	0.991	-1664.64	1646.39	.000301
	Não Cad	-9.779122	790.42	-0.01	0.990	-1558.98	1539.42	.000281

Queda	.520194	.40549	1.28	0.200	274558	1.31495	.025834
Tombam.	3.218969	.62936	5.11	0.000	1.98545	4.45249	.001185

Fonte: elaboração própria

Observa-se que os resultados são semelhantes aos observados nos dois modelos anteriores, e a probabilidade de vítimas fatais nos acidentes está em consonância com os tipos de veículos envolvidos, resultado semelhante ao verificado no exercício para feridos e UPS. O padrão para os tipos de veículos é semelhante aos descritos nos exercícios anteriores, sendo assim, quando envolvem automóveis reduz a probabilidade de vítimas fatais em 72%. Quando envolvem os demais veículos como motos, ônibus urbanos verifica-se que aumenta a probabilidade de acidentes com vítimas fatais, sendo a variável moto 23% e o ônibus urbano em 32% ³⁰, ambos com significância estatística de 10%. Para a variável bicicleta, o risco de acidentes fatais é muito elevado nas principais avenidas da cidade, pois, o coeficiente marginal indica que o risco do número de mortes dobra (102%) para um acidente envolvendo ciclista nestas vias.

A fatalidade nos acidentes não foi crescente ao longo do período de análise, apenas em 2009, a probabilidade de vítimas fatais nos acidentes se mostrou positiva e estatisticamente significante. Nos demais anos, não foram estatisticamente significante. Em relação aos meses, não foi possível detectar um comportamento diferenciado, ou seja, não apresenta efeito sazonal. Ao considerar as regiões, apesar de todas apresentarem sinal positivo, nenhuma se mostrou estatisticamente significante em relação ao Sul.

Analisando as condições climáticas, novamente, o período noturno tem efeito marginal positivo na probabilidade de acidentes fatais de 82%, e as faixas horárias menores (durante a madrugada) aumentam significativamente o risco de acidentes fatais. Dias chuvosos (-99%) e nublados (-127%) têm efeitos drasticamente negativos, provavelmente por haver menos pedestres e menos ciclistas e motociclistas nas ruas, o número de mortes tende a diminuir, e também pelo maior cuidado e redução da velocidade dos condutores, conforme descrito em Khattak et al. (1998) e Bilionis (2013).

Analisando a tipologia dos acidentes é possível afirmar que, de 2008 a 2012, é estatisticamente maior o risco de morte associado à ocorrência de tombamentos

30 Grande parte das vítimas fatais envolvendo ônibus são decorrentes de atropelamentos.

com 321%, atropelamentos com efeito marginal de 300%, os choques com 234% e as capotagens com 218%, todos estes resultados em relação ao risco de morte em colisões, que são um tipo muito comum de acidente e geralmente sem vítimas fatais, as demais tipologias foram insignificantes.

Em relação à eficácia dos radares fixos, a variável radar fixo 300m e radar fixo rua têm coeficientes negativos, porém, o resultado não se mostra estatisticamente significativo, logo seu efeito é igual a zero. Em parte, pode ser consequência do baixo número de ocorrências fatais que pode viesar a análise. Seria necessário um período de avaliação maior para testar os efeitos com maior confiança. Este problema já ocorreu em outros estudos, que não conseguiram examinar a variável dependente morte com intervalo de confiança adequado, tal qual o relatório RTA (2005) que encontrou 7,8% de redução nas mortes na Austrália, porém, também não foi possível comprovar este efeito estatisticamente.

Postos estes resultados, é inegável que os radares fixos melhoraram a segurança viária nas proximidades de sua instalação, demonstrando a mudança no comportamento dos condutores tal qual observada na cidade de Curitiba por Thielen (2004). É a existência ou não de radares que faz os motoristas alterarem seu comportamento e reduzirem a velocidade, porém, a previsibilidade dos radares fixos torna fácil para os motoristas que tem bom conhecimento da cidade, ou um aparelho com *Global Positioning System* (GPS) burlar este tipo de controle. Desta forma, o comportamento dos condutores ao longo da via não se alterou significativamente após a instalação dos aparelhos. Tem-se que ressaltar também que a velocidade regulamentar de 60 km/h já é suficiente para ocorrência de acidentes com feridos e até mortes, como comparação, nas vias urbanas da Inglaterra a velocidade limite urbana é de 48 km/h o que reduz a probabilidade de vítimas em acidentes.

A próxima seção analisa os resultados do modelo para os radares móveis, que tem como seu principal objetivo contornar o fator previsibilidade dos radares fixos, induzindo os motoristas a manter-se na velocidade regulamentar ao longo de todo seu percurso. Dessa forma, espera-se que a ameaça da presença de radar móvel induza o motorista a ser mais cuidadoso, mesmo em vias que não tem radar. Dessa forma, haveria um espalhamento (*spill-over*) do efeito do radar móvel tornando as vias com e sem radar mais seguras.

3.2 RADARES MÓVEIS.

O cálculo de eficácia dos radares móveis segue a metodologia proposta especificamente para esta análise no capitulo dois, e seus resultados são descritos nesta seção.

3.2.1 - Resultados para feridos no modelo de radares móveis.

A tabela 27 abaixo apresenta os efeitos marginais calculados para o modelo sobre o número de feridos envolvidos nos acidentes considerando somente o horário comercial. Conforme descrito na metodologia adotada, esta seção apresenta os resultados para as vinte avenidas mais monitoradas durante o horário comercial (07h à 20h) entre janeiro de 2011 e julho de 2012, que representam mais de 90% das ações de fiscalização com radares móveis no período, sendo que todas as vias foram monitoradas no mínimo 20 dias neste período, dando maior confiança a análise efetuada.

Tabela 27 – Feridos de janeiro 2011 a julho 2012 em das 07:00h às 20:00h.

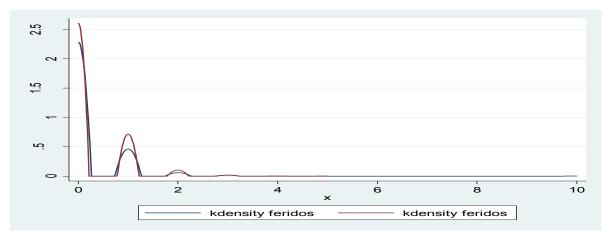
Efeito Marc	ginal após xt	poisson					
Feridos	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
Auto	0334169	.04652	-0.72	0.473	12459	.057757	1.38716
ÔnibusUrb	.5726021	.09335	6.13	0.000	.389636	.755568	.056661
Moto	1.283144	.05171	24.81	0.000	1.18179	1.3845	.220546
Biciceta	1.404085	.14647	9.59	0.000	1.11701	1.69116	.00947
Fx_hora	.0060473	.00774	0.78	0.435	009132	.021227	12.8469
R. Móvel	0519756	.05829	-0.89	0.373	166224	.062273	.267576
Janeiro	.2123767	.10713	1.98	0.047	.002406	.422348	.088764
Fevereiro	.0023497	.11434	0.02	0.984	22175	.22645	.082343
Março	0077835	.10482	-0.07	0.941	213234	.197667	.113323
Abril	.1161795	.10384	1.12	0.263	087345	.319704	.114286
Maio	.1452088	.10056	1.44	0.149	051882	.3423	.109149
Junho	.0768647	.10667	0.72	0.471	132209	.285938	.102889
Agosto	07502	.14328	-0.52	0.601	355841	.205801	.057945
Setembro	.0024768	.13914	0.02	0.986	270242	.275196	.053451
Outubro	.1118959	.13087	0.86	0.393	144606	.368397	.054575
Novembro	.122554	.12338	0.99	0.321	119273	.364381	.059551
Dezembro	.1478689	.1236	1.20	0.232	094379	.390117	.057624
Noturno	.1524964	.07709	1.98	0.048	.001397	.303596	.13435
Chuvoso	359015	.12818	-2.80	0.005	610243	107787	.08138
Nublado	-1.009388	.14711	-6.86	0.000	-1.29772	721058	.114607
Centro	.1767761	.20716	0.85	0.393	229259	.582811	.094864
Leste	.4997655	.2028	2.46	0.014	.102289	.897242	.370626

Norte		.8362528	.30934	2.70	0.007	.229961	1.44254	.404815
Ano2012	-	.0426363	.05508	0.77	0.439	065324	.150596	.348796
Abalr.		.3097715	.06136	5.05	0.000	.189509	.430034	.425682
Atrop.		1.529335	.08454	18.09	0.000	1.36364	1.69503	.054093
Capotam.		2.66963	.32947	8.10	0.000	2.02389	3.31537	.000963
Choque		.3416643	.13256	2.58	0.010	.081845	.601484	.050241
Eventual	-	0745737	.28491	-0.26	0.794	632982	.483835	.013323
Incêndio	-	-12.36805	811.62	-0.02	0.988	-1603.11	1578.38	.000803
Queda		1.001449	.10411	9.62	0.000	.797394	1.2055	.027127
Tombam.		3706611	1.00323	-0.37	0.712	-2.33696	1.59564	.001445

Fonte: elaboração própria.

Os resultados se mostraram semelhantes aos observados para o exercício com radares fixos no que tange à variável dependente número de feridos. Verifica-se que, acidentes envolvendo automóveis não se mostrou estatisticamente significante. Todavia, quando há motos (+128%), bicicletas (+140%) e ônibus (+57%) envolvidos, a probabilidade de feridos nos acidentes aumenta. Cabe destacar que, todas as estimativas são estatisticamente significantes a 1%.

Quando comparados a *dummy* colisão, houve aumento significativo nas variáveis *dummy* atropelamento (+152%), abalroamento (+30%), quedas (+100%), choques (+34%) e capotagens (+266%) sobre o número de feridos, todas se mostraram estatisticamente significantes a 1%, ao contrário do tombamento, que neste modelo não se mostrou significante.


Em relação às condições climáticas, o mesmo padrão já observado anteriormente por Peltzman (1975), Khattak et al. (1998) e Bilionis (2013) se apresenta, com clima chuvoso e principalmente nublado, reduzindo o número de feridos, e o período noturno ampliando a probabilidade de feridos em acidentes.

A variável do estudo radar móvel se mostrou insignificante, o que não parece estar de acordo com a bibliografia existente. Na literatura internacional, o monitoramento com radar móvel, em geral, é eficaz. Todavia, nesse exercício verificou-se que, a variável Radar Móvel apresentou coeficiente negativo como esperado, o que pode indicar que o problema está na forma de utilização do radar. Existem riscos associados ao delegar a atividade de fiscalização, não há certeza que as equipes estejam atuando em sua plena capacidade e fiscalizando em tempo integral as vias, seu horário de funcionamento esta restrito ao horário comercial e

em dias úteis, raramente estes aparelhos são utilizados durante a noite e madrugada e a tecnologia existente impede a calibragem dos aparelhos para utilização em todas as vias da cidade, o que restringe sua atuação. Estes motivos podem explicar por que o radar móvel não teve um coeficiente significativo nesta primeira análise.

Dessa forma, conforme descrito no capítulo 2, observando que a variável noturno aumentava o número de feridos, decidiu-se fazer uma análise sem considerar o horário de pico diário durante o final da tarde e início da noite. E para definição do horário de pico, o instrumento utilizado foi a comparação com a TRENSURB³¹ que reduz o intervalo de partida dos trens urbanos de 15 para 5 minutos, entre 17:30h ás 20:00h, dando indícios da maior movimentação de pessoas neste horário. A acidentalidade neste período pode ser mais influenciada pelo grande fluxo de veículos e pedestres e outras características não observáveis como cansaço e estresse que pelo excesso de velocidade, uma vez que as principais ruas da cidade têm quantidade fluxo muito acentuado neste horário, o que geralmente impede que os condutores excedam a velocidade na via, conforme relatório TRB (1998) ³². Desta forma, foram excluídas 1062 ocorrências, e a densidade de distribuição da variável não apresentou maiores alterações, agora com um total de 5168 acidentes:

Figura 11 – Densidade de distribuição Variável Feridos dos grupos controle (azul) e tratamento (vermelho) de janeiro de 2011 a julho de 2012:

Fonte: elaboração própria.

³¹ Empresa de Trens metropolitanos, que ligam Porto Alegre a Região metropolitana.

Em situação de congestionamento, o limite de velocidade estabelecido tem pouco efeito na velocidade que o condutor dirige. Deste modo, quando o nível de congestionamento é alto, será pouco provável obter benefício de segurança significativo.

Os modelos foram recalculados desconsiderando o horário de pico, e os resultados reportados na tabela 28.

Tabela 28 – Feridos em horário de operação móvel sem horário de pico.

Efeito Ma	rginal após >	ktpoisson					
Feridos	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
Auto	0553497	.05286	-1.05	0.295	158956	.048256	1.39687
ÔnibusUrb	.5615829	.10639	5.28	0.000	.353062	.770104	.055921
Moto	1.307706	.05877	22.25	0.000	1.19252	1.42289	.201432
Bicicleta	1.596954	.17095	9.34	0.000	1.26191	1.932	.007933
Fx_hora	.0060053	.00842	0.71	0.476	010491	.022502	11.7711
R.móvel	1347527	.06932	-1.94	0.052	27061	.001104	.263738
Janeiro	.1954344	.1287	1.52	0.129	056819	.447687	.087074
Fevereiro	.1116866	.13654	0.82	0.413	155921	.379295	.079721
Março	0057245	.1255	-0.05	0.964	251703	.240254	.113777
Abril	.174465	.12232	1.43	0.154	065276	.414206	.11339
Maio	.253236	.11979	2.11	0.035	.018454	.488018	.108553
Junho	.1570939	.12726	1.23	0.217	092325	.406513	.103135
Agosto	0431275	.16136	-0.27	0.789	359385	.27313	.060565
Setembro	.0148461	.16405	0.09	0.928	306683	.336375	.054567
Outubro	.2274397	.15404	1.48	0.140	07448	.52936	.054567
Novembro	.2152661	.14324	1.50	0.133	06548	.496012	.060952
Dezembro	.2765519	.14515	1.91	0.057	007943	.561047	.056115
Noturno	-13.49393	2368.1	-0.01	0.995	-4654.88	4627.89	.000193
Chuvoso	3375233	.1515	-2.23	0.026	63446	040586	.084365
Nublado	-1.220652	.18155	-6.72	0.000	-1.57649	864817	.125
Centro	.3014803	.25855	1.17	0.244	205266	.808227	.09404
Leste	.5988747	.25556	2.34	0.019	.097994	1.09976	.364358
Norte	.958196	.37025	2.59	0.010	.23252	1.68387	.413893
Ano2012	.067473	.06472	1.04	0.297	059373	.194319	.352361
Abalr.	.3357954	.07159	4.69	0.000	.19548	.476111	.427245
Atrop.	1.613131	.09819	16.43	0.000	1.42068	1.80558	.048762
Capot.	2.484391	.46236	5.37	0.000	1.57818	3.39061	.000774
Choque	.4526976	.1444	3.13	0.002	.169676	.735719	.052051
Eventual	0507941	.31072	-0.16	0.870	659794	.558206	.014512
Incêndio	-13.38472	1586.7	-0.01	0.993	-3123.26	3096.49	.000774
Queda	1.034868	.12149	8.52	0.000	.796746	1.27299	.024381
Tombam.	2735296	1.00424	-0.27	0.785	-2.24181	1.69475	.001741

Fonte: elaboração própria.

Na tabela 28, com a redução de escopo da análise, a variável radar móvel permaneceu negativa em relação ao número de feridos (-13,47%), todavia, se tornou estatisticamente significante ao nível de 10%. É provável que, o benefício para a

segurança dos radares durante horários de grande fluxo³³ seja ínfimo, visto que o congestionamento das vias nestes horários impossibilita manter altas velocidades.

É importante ressaltar a similaridade dos resultados entre os modelos de radares fixo e móveis, o sinal das variáveis climáticas, Nublado e Chuvoso permanece negativo em relação ao tempo bom, demonstrando que nestas situações existe uma maior cautela e os acidentes são menos severos conforme já citados em Khattak et al., (1998) e Bilionis (2013).

Em relação às regiões da cidade, observamos neste modelo que as regiões Norte e Leste apresentaram maior probabilidade de feridos em relação a Sul e Centro, mas seus coeficientes podem estar superestimados, visto que a maioria das avenidas monitoradas pelo radar móvel está nestas regiões da cidade.

O ano de 2012 não apresenta diferença significativa para 2011, ressaltando a tendência de estabilização após um pico em 2010, já observada no estudo de radares fixos, em relação aos meses de Dezembro (+27%) e Maio (+25%) apresentaram maior probabilidade de feridos. O mês de Janeiro que havia se mostrado significante no estudo de radar fixo agora foi considerado insignificante.

Como resultado do modelo de Radares móveis, fica claro que o potencial do uso dos radares móveis na redução dos feridos é promissor, porém, a formatação do programa, a exigência de equipes treinadas e disponíveis, os horários de fiscalização e as condições climáticas influenciam muito nos resultados da fiscalização. Ao longo de janeiro de 2011 até julho de 2012 a estratégia adotada pelas autoridades de trânsito não se apresenta como a mais eficaz para fiscalização, visto os impactos verificados para a variável feridos foram baixos ou insignificantes.

3.2.2 - Resultados para UPS no modelo de radares móveis.

O modelo de avaliação foi repetido para a variável dependente UPS, nas vias que receberam os radares móveis entre janeiro de 2011 e julho de 2012. Quanto aos coeficientes das variáveis observa-se uma grande semelhança nos

sinais das variáveis explicativas com os modelos anteriores. A tabela 29 apresenta o resultado para UPS em horário comercial:

Tabela 29 - Modelo de UPS em horário comercial 07:00h às 20:00h.

Efeito Març	jinal após xt	poisson					
UPS	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
Auto	03021	.01593	-1.90	0.058	061431	.001011	1.38716
ÔnibusUrb	.2610768	.03692	7.07	0.000	.188717	.333437	.056661
Moto	.7044385	.02045	34.45	0.000	.66436	.744517	.220546
Bicicleta	.9484972	.06313	15.02	0.000	.824766	1.07223	.00947
Fx_hora	.0020375	.00296	0.69	0.492	003769	.007844	12.8469
R Móvel	0171888	.02186	-0.79	0.432	060026	.025649	.267576
Janeiro	.0542934	.04115	1.32	0.187	026355	.134942	.088764
Fevereiro	.0106197	.0424	0.25	0.802	07249	.09373	.082343
Março	.0191581	.03879	0.49	0.621	056864	.09518	.113323
Abril	.0444716	.03884	1.14	0.252	031653	.120596	.114286
Maio	.049116	.03844	1.28	0.201	02622	.124452	.109149
Junho	.0510006	.03955	1.29	0.197	026519	.12852	.102889
Agosto	0333959	.05021	-0.67	0.506	1318	.065008	.057945
Setembro	0287757	.05073	-0.57	0.571	128205	.070654	.053451
Outubro	.0706342	.04866	1.45	0.147	024729	.165997	.054575
Novembro	.0159608	.04754	0.34	0.737	077208	.10913	.059551
Dezembro	.0088541	.04799	0.18	0.854	085201	.102909	.057624
Noturno	.0941942	.03052	3.09	0.002	.034368	.154021	.13435
Chuvoso	136355	.03987	-3.42	0.001	214491	058219	.08138
Nublado	2988765	.03608	-8.28	0.000	369592	228161	.114607
Centro	.084742	.06576	1.29	0.197	04414	.213624	.094864
Leste	.2136487	.06473	3.30	0.001	.086785	.340513	.370626
Norte	.3718719	.10625	3.50	0.000	.163632	.580112	.404815
Ano2012	0068852	.02119	-0.32	0.745	048413	.034642	.348796
Abalroam.	.1271634	.02163	5.88	0.000	.084777	.16955	.425682
Atropel.	.9792648	.03355	29.19	0.000	.913501	1.04503	.054093
Capotagem	1.150152	.19892	5.78	0.000	.760282	1.54002	.000963
Choque	.1623027	.04584	3.54	0.000	.072466	.25214	.050241
Eventual	.1080911	.08538	1.27	0.205	059244	.275427	.013323
Incêndio	141233	.44824	-0.32	0.753	-1.01977	.737302	.000803
Queda	.6810352	.04334	15.71	0.000	.596083	.765988	.027127
Tombam.	.6030992	.2019	2.99	0.003	.20739	.998808	.001445

Fonte: elaboração própria.

O padrão de resultados observados anteriormente se repete para a UPS, pois, a variável radar móvel não foi estatisticamente significante ao considerar o horário total diário de funcionamento dos radares móveis. Os acidentes envolvendo

ônibus, motocicletas e bicicletas aumentam a severidade dos acidentes. O período noturno é mais severo, bem como o clima chuvoso e nublado apresentam ocorrências com menor severidade. Novamente, pode-se dizer que Porto Alegre segue o mesmo padrão da Carolina do Norte e Iowa, observados por Khattak et al. (1998) e Bilionis (2013), onde os condutores modificam seu comportamento em situações adversas.

Neste modelo, nenhum mês apresentou significância estatística em relação a julho, bem como o ano de 2012, apesar de mostrar sinal negativo, não apresenta diferença para 2011. A severidade é estatisticamente maior em acidentes nas regiões Norte e Leste da cidade em relação ao Sul e ao Centro, padrão não observado no modelo de radares fixos para UPS, que abrange um período maior.

Quanto às tipologias dos acidentes, as mais severas neste modelo são em ordem decrescente: Capotagem (+115%), Atropelamento (+97%), Queda (+68%), Tombamento (+60%), Choque (+16%), Abalroamento (12%), todas em relação à Colisão. Resultados muito semelhantes aos observados na severidade no modelo de radares fixos que compreende um período de cinco anos, sendo que nestas vias a capotagem foi o tipo mais severo de acidente, ante ao atropelamento no modelo de radares fixos.

Já a tabela 30 abaixo, apresenta os resultados observados repetindo o modelo com retirada do horário de pico. Interessante destacar que, no caso da UPS, a variável radar móvel permaneceu não significante.

Tabela 30 – UPS em horário de operação móvel sem horário de pico.

Efeito Marc	ginal após x	tpoisson					
UPS	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
Auto	0273358	.01766	-1.55	0.122	061949	.007277	1.39687
ÔnibusURB	.2365724	.04175	5.67	0.000	.154742	.318403	.055921
Moto	.7096594	.02306	30.78	0.000	.664466	.754853	.201432
Bicicleta	1.013795	.07527	13.47	0.000	.866274	1.16132	.007933
Fx_hora	.0024027	.00318	0.76	0.450	003829	.008634	11.7711
R Móvel	0386933	.0249	-1.55	0.120	087502	.010116	.263738
Janeiro	.0424012	.04698	0.90	0.367	049684	.134486	.087074
Fevereiro	.0338736	.04865	0.70	0.486	061484	.129232	.079721
Março	.0043016	.04419	0.10	0.922	082307	.09091	.113777
Abril	.0720865	.04377	1.65	0.100	013702	.157875	.11339
Maio	.0910848	.04347	2.10	0.036	.005885	.176285	.108553

Junho	.0592143	.04506	1.31	0.189	029096	.147524	.103135
Agosto	0288103	.05514	-0.52	0.601	136875	.079254	.060565
Setembro	0368485	.05728	-0.64	0.520	149119	.075422	.054567
Outubro	.0910944	.05523	1.65	0.099	017156	.199345	.054567
Novembro	.0469727	.05301	0.89	0.376	056926	.150871	.060952
Dezembro	.0398286	.05444	0.73	0.464	066876	.146534	.056115
Noturno	354752	1.0012	-0.35	0.723	-2.31707	1.60756	.000193
Chuvoso	117283	.04434	-2.65	0.008	204189	030377	.084365
Nublado	2959368	.03904	-7.58	0.000	37245	219424	.125
Centro	.0954667	.07585	1.26	0.208	053201	.244134	.09404
Leste	.2073463	.07538	2.75	0.006	.059605	.355088	.364358
Norte	.3518067	.1195	2.94	0.003	.117584	.586029	.413893
Ano2012	0013025	.02406	-0.05	0.957	048457	.045852	.352361
Abalroam.	.1281609	.02427	5.28	0.000	.08059	.175731	.427245
Atropel.	1.04804	.03813	27.48	0.000	.973297	1.12278	.048762
Capotagem	1.118066	.25342	4.41	0.000	.621369	1.61476	.000774
Choque	.1534004	.05047	3.04	0.002	.054489	.252312	.052051
Eventual	.042049	.09491	0.44	0.658	143963	.228061	.014512
Incêndio	0971347	.50129	-0.19	0.846	-1.07964	.885375	.000774
Queda	.7193685	.04987	14.43	0.000	.62163	.817107	.024381
Tombam.	.6215573	.2023	3.07	0.002	.225062	1.01805	.001741

Fonte: elaboração própria.

Neste modelo, a variável automóvel é insignificante, porém, ônibus (+23,6%), motocicleta (70,9%) e bicicleta (+101%) são positivas e significantes, quanto às tipologias dos acidentes, as mais severas em ordem decrescente são: Capotagem (+111%), Atropelamento (+104%), Queda (+71%), Tombamento (+62%), Choque (+15%), Abalroamento (13%), todas em relação à Colisão. Resultados muito semelhantes aos observados no modelo anterior.

Novamente as regiões Leste e Norte apresentam acidentes com severidade maior que o Sul e o Centro. A diferença de severidade entre 2011 e 2012 é insignificante e alguns meses do ano tornaram-se significativos com a exclusão do horário de pico, Abril, Maio e Outubro, coincidentemente são todos meses de alto fluxo de veículo em Porto Alegre e meses que não são período de férias e com clima mais ameno, nem muito frio nem muito quente, porém, não foi possível obter uma explicação contundente para este resultado.

É importante ressaltar que esta análise da severidade sugere que a UPS é menos dependente da presença de fiscalização, pois na sua forma de cálculo estão incluídos todos os acidentes, inclusive os com danos materiais. Aparentemente o limite de velocidade atual nas avenidas analisada, que é de 60 km/h já é suficiente

para ocorrência de acidentes com diversos graus de severidade conforme demonstrado por Kloeden et al. (1997), o que limita a eficácia dos radares na cidade.

Após execução destes cinco modelos, sendo três para radares fixos com as trinta avenidas com maior número de acidentes e limite de velocidade (60 km/h e 80 km/h) de Porto Alegre e dois³⁴ modelos para radares móveis com as vinte avenidas mais fiscalizadas e com limite de velocidade de 60 km/h, foram verificadas diversas características semelhantes nas variáveis explicativas utilizadas. Isto dá maior robustez aos resultados aferidos e nos permite fazer algumas conclusões sobre as características dos acidentes de o trânsito nas principais avenidas da cidade de Porto Alegre, bem como, sobre o papel da fiscalização eletrônica de velocidade nestas vias. A conclusão deste trabalho apresenta o resumo das principais observações e algumas recomendações para melhoria na segurança viária.

-

³⁴ O estudo de acidentes fatais com radares móveis não foi possível, pois, ocorreram apenas 21 mortes durante o período, o que inviabiliza a análise.

4 - CONCLUSÕES E RECOMENDAÇÕES.

A motivação deste trabalho vai além do interesse humanitário de reduzir o número de vítimas no trânsito, outro fator de interesse são as razões econômicas associadas. Acidentes consomem recursos financeiros maciços em bens e serviços médicos que as cidades não podem se dar ao luxo de perder. Também resultam em problemas para além do valor de mercado do acidente. Com a perda do capital humano, com aspectos que não refletirão nas estatísticas oficiais do PIB, os acidentes podem causar problemas psicológicos nas vítimas e em seus familiares, podendo limitar suas capacidades e habilidades.

Neste trabalho, o foco principal foi analisar a eficácia dos radares fixos e móveis de controle de velocidade na redução do número de feridos, mortes e na severidade dos acidentes.

As variáveis dependentes utilizadas têm distribuição discreta e são considerados eventos raros, o que as aproxima de uma distribuição de Poisson. Uma vez que a base de dados tem observações no tempo e no espaço dos acidentes de trânsito, a análise dos dados foi organizada em painel. É importante destacar que, existe uma possibilidade de subestimação dos resultados, devido a problemas de endogeneidade na escolha do local de implantação do radar, uma vez que não se sabe o que ocasionou a escolha desses locais. Além disto, não se tem informações a respeito dos condutores envolvidos no acidente, tampouco do seu comportamento na via. Não se tem informação a respeito do fluxo de tráfego nas vias ao longo dos anos, mas acredita-se que tenha aumentado, devido aos incentivos oferecidos pelo governo a compra de veículos, com reflexo na frota circulante da cidade. No que tange o radar móvel, existem problemas associados à operação humana destes aparelhos que podem causar seletividade na fiscalização.

Os coeficientes mostraram que a presença de radar fixo na avenida embora tenha sinal negativo não se mostrou estatisticamente significante, contudo a presença da sinalização com radar em um raio de 300 metros deste se mostrou eficaz na redução da probabilidade de ocorrência de feridos e UPS. Cabe destacar que, para os acidentes com vítimas fatais, não se mostrou significante. É provável que a presença do radar tenha modificado o comportamento dos condutores, porém,

esta atitude cautelosa parece não se espraiar para demais trechos e avenidas. Após se habituarem aos equipamentos, os condutores passam a reduzir a velocidade no ponto específico em que o radar foi instalado e compensam a redução depois dele. Já o radar móvel mostrou-se eficaz apenas em horários de menor movimento. No horário de pico a causa de ferimentos parece estar mais associada a outros fatores e não ao excesso de velocidade em si. Ao considerar o uso do radar móvel também dentro do horário de pico ele se mostra não estatisticamente significante.

Os resultados obtidos neste trabalho são bastante semelhantes aos observados em outros trabalhos internacionais tanto para radares fixos quanto para móveis, porém, o efeito marginal na redução de feridos, severidade e mortes foi menor. Isto pode ser um indicativo da popularização de novas tecnologias, tais como aparelhos de GPS que informam a posição dos radares fixos e também aplicativos de *smartphones* que permitem compartilhar informações em tempo real através de redes sociais. Estas novas tecnologias podem estar atuando de forma a reduzir a eficácia dos radares por meio da mudança de comportamento dos condutores. Citando como exemplo, o GPS, irá afetar principalmente a eficácia dos radares fixos, visto que na maioria dos estudos internacionais no início dos anos 2000, os radares foram mais eficazes e num raio de ação maior. Já as redes sociais e aplicativos como *Waze* e *Twitter podem* afetar a eficácia dos radares móveis, permitindo que os usuários criem uma espécie de rede solidária que compartilha informações sobre a fiscalização ostensiva.

Os controladores de velocidade se mostram eficazes em algumas circunstâncias, mas, seria necessário o Brasil regulamentar e adotar novas tecnologias existentes na área de controle viário, como, por exemplo, o sistema inglês de monitoramento chamado de SPECS (*Speed Check Services*), que consiste em radares fixos que calculam a velocidade média de cada veículo por trecho. Consiste em câmeras posicionadas de 200 metros até 10 km de distância entre si que realizam a leitura e reconhecimento da placa dos veículos, calculando sua velocidade média no trecho e aplicando multas aos infratores. Sistemas semelhantes são utilizados em diversos outros países como Itália, Austrália, Bélgica, Holanda e Áustria.

Observou-se neste trabalho que o valor das multas está congelado há mais de dez anos, sendo necessária a correção destes valores. O valor real atualizado da

infração gravíssima pelo IPCA representaria uma correção de R\$ 574,62 para R\$1.243,33 se corrigido pelo IGP-M passaria para R\$ 1.517,33. Esta aumento de valor da multa representaria um incentivo econômico maior para os motoristas respeitarem o limite de velocidade. Além disto, em diversos países o valor das multas varia para motoristas com renda maior e para os reincidentes em infrações de trânsito. O sistema de perda de pontuação dos condutores atual, também deve ser revisto, no Brasil, muitos motoristas transferem suas multas a outros condutores, quando não conseguem transferir os pontos, se utilizam de recursos judiciais para atrasar o processo de perda do direito de dirigir por diversos meses.

Os resultados do estudo mostram que existem grupos de alta vulnerabilidade no trânsito metropolitano, como os pedestres e ciclistas. As travessias de pedestres nas principais avenidas de Porto Alegre devem ser revistas, bem como viabilidade da construção de passagens aéreas (passarelas) ou subterrâneas. Já as ciclovias são um investimento recente da cidade, porém, ainda são poucas as avenidas que possuem espaço adequado aos ciclistas e isto se traduz no altíssimo risco de feridos e mortes, observados nas vias expressas desta análise.

Em relação ao tipo de veículos, verificou-se que os acidentes com automóveis são, em geral, menos severos e com menor probabilidade de ocorrência de feridos e mortes, provavelmente em virtude da maior quantidade de equipamentos de segurança nestes veículos. Em contrapartida, acidentes com motocicletas e bicicletas são, em geral, mais severos e com grande probabilidade de feridos e mortos, o que já é esperado diante dos poucos equipamentos de segurança exigidos para condução destes veículos. É importante ressaltar que a variável ônibus foi positiva e significante em todos os modelos estudados, o que expressa um aumento no risco de lesões e na severidade em acidentes envolvendo ônibus, o que pode ser indício da precarização e de superlotação do sistema de transporte público. A alternativa mais comum ao ônibus, a variável lotação, foi testada nos modelos, e como não foi significante fornece indícios de que as lotações que oferecem assentos individuais e proíbe passageiros em pé, são mais seguras que os ônibus.

E relação às regiões da Cidade, nos modelos que analisaram as vias monitoradas com radares móveis, as regiões Leste e Norte foram significativamente

mais perigosas que o Sul. Já no estudo das vias com radares fixos, não foi possível observar diferença significativa entre as regiões, mesmo que os coeficientes destas regiões tenham sido sempre positivos, os resultados sugerem que as regiões Norte e Leste têm risco mais elevado que a Sul, quanto ao Centro é difícil fazer a análise, pois esta variável se apresenta insignificante em todos os modelos, o que sugere risco semelhante a Sul que foi a base da comparação e é a região com menor severidade.

As condições climáticas em todos os modelos testados alteraram as características dos acidentes, tornando-os menos severos e com menor probabilidade de feridos e mortes. É um indício que em clima adverso os motoristas reduzem a velocidade e são mais cuidadosos. A primeira vista isto é paradoxal, pois pelo senso comum, esperam-se coeficientes positivos nestas variáveis. Porém, a literatura confirma esta mudança de comportamento, assim como, haverá menos pedestres nas ruas. Os resultados indicam que a probabilidade de acidentes com mortes e feridos aumenta durante a noite e madrugada e com tempo bom.

Em relação à sazonalidade anual, é possível observar um padrão crescente a partir de 2008 até 2010, sendo que em 2011 e 2012 parece ocorrer uma estabilidade. Em relação à sazonalidade mensal parece que não existe um padrão observável. Apesar de ter ocorrido acidentes mais severos em alguns meses, como janeiro, este tipo de tendência não se mostrou permanente nos demais modelos.

Desta forma, os modelos demonstram que existe um grau de eficácia dos radares, como elementos que levam à redução da velocidade e mudança do comportamento dos condutores nos locais onde foram instalados. Porém, esta redução da velocidade fica limitada a um pequeno trecho da via, localizado na sua maior parte, imediatamente no entorno dos radares fixos. Em pontos distantes, os radares fixos são menos eficazes, pois, parece não modificar o comportamento do motorista. Para os radares móveis mostrarem-se eficazes, necessita de adaptações nas estratégias de utilização deste equipamento. Como a mudança nos horários de fiscalização, aumentando o controle à noite, colocando mais de uma equipe na mesma via, de forma a reduzir a previsibilidade e a impunidade dos condutores. Visto que, a estratégia de uso destes equipamentos parece ser o grande determinante da sua eficácia em modificar o comportamento dos condutores nas avenidas da cidade.

BIBLIOGRAFIA

Archer, J. (2008) Conflict Observation Study at Melbourne Metropolitan Intersection: Fitzroy Street and Lakeside Drive. Clayton, Monash University Accident Research Centre. Austrália.

Becker, G. (1968). *Crime and Punishment An economic Aproach*. Columbia University, Nova Iorque, EUA.

Bilionis, D. V. (2013) Interaction effects of prevailing weather conditions and crash characteristics on crash severity: A case study on two corridors in Iowa. Iowa State University, EUA.

Cameron, A. C. and Trivedi, P. K. (1998). *Regression Analysis of Count Data*. Nova lorque: Cambridge Press.

Cameron, A. C. and Trivedi, P. K. (2005). *Microeconometrics, Methods and Applications*, Nova Yorque: Cambridge Press.

Cameron, A. C. and Trivedi, P. K. (2009). *Microeconometrics Using Stata. College Station*, Texas: Stata Press.

Cameron, M., Newstead, S., Diamantopolou, K. & Oxley, P. (2003b). The interaction between speed camera enforcement and speed-related mass media publicity in Victoria. Monash University Accident Research Centre (MUARC), Victoria, Austrália 2003, Ed. 201.

Cameron, M. & Delaney, A. (2006). Development of strategies for best practice in speed enforcement in Western Australia. Final Report No: 270. Monash University Accident Research Centre. Victoria, Austrália.

Carmo, J. C., Almeida, I. M., Binder, M. C. P. & Settimi, M. M. (1996) Acidentes do trabalho. *In*: Mendes, R. *Patologia do trabalho*. São Paulo, SP: Ateneu, p. 431-609.

Cairney, P. Donald, D. (1996). *Urban Speed Menagement in Australia. Report* 118/96. Sydney, Austrália.

Chen, G., Wilson, J., Meckle, W., & Cooper, P. (2000). *Evaluation of photo radar program in British Columbia*. Accident Analysis and Prevention. Ed 115.

Código de Trânsito Brasileiro (CTB) (1998) – Ministério da Justiça – Brasil - Brasília, disponível em: http://www.planalto.gov.br/ccivil_03/leis/19503.htm, acessado em: 14/12/2013.

Corbett, C. (1995) Road traffic offending and the introduction of speed cameras in England: The first self report survey. Accident Analysis and Prevention, Ed 27 pág 345 - 354.

CNM (2009) Confederação Nacional dos Municípios: Mapeamento das mortes por acidentes de trânsito no Brasil, Estudos técnicos CNM volume 2. Brasil.

#DATAPOA, Portal de dados abertos de Porto Alegre, disponível em: http://datapoa.com.br/dataset, acessado em 08/01/14.

Dela Coleta, J. A. (1991) Acidentes de trabalho: fator humano, contribuições da psicologia do trabalho, atividades de prevenção. São Paulo: Atlas.

Delhaye, E. (2007) Economic Analysis of traffic safety, Katolic University Leuven, Leuven, Bélgica.

DETRAN-RS (2012). Relatório n° 42, Acidentalidade em Rodovias Estaduais do Rio Grande do Sul. Disponível em versão pdf. em:

http://www.detran.rs.gov.br/uploads/1371669734Acidentes Fatais no RS 2012

versao pdf, PDF acessado em 17/11/2013.

DTERS, Departamento dos Transportes do Estado, disponível em: http://www.sarh.rs.gov.br/conteudo/375/?Departamento dos Transportes do Estado - DTERS

Dyson, C.B., Woolley, J.E., Roach, G.D., Taylor, M.A.P. and Eddy, C. (2001) *An evaluation of the Unley city wide 40 km/h limit. Transport Systems Centre, University of South Australia. Report to Unley City Council.*

Economist, T. Reinventing the Wheel: Roads bring growth to poor countries—and death. Making them safer need not cost much. Edição 25/01/2014. Inglaterra. disponivel em: http://www.economist.com/news/leaders/21595003-roads-bring-growth-poor-countriesand-death-making-them-safer-need-not-cost-much-reinventing

Elvik, R Vaa, T. (1997), Effects on accidents of automated speed enforcement in Norway. Transportation Research Record, ed.95, pág:14-19.

Elvik, R., Vaa, T. edição (2004) *Handbook of road safety measures*, Noruega Elsevier ed. 1.

EPTC, Estatísticas. Prefeitura de Porto Alegre, disponível em: http://www2.portoalegre.rs.gov.br/eptc/default.php?p-secao=203, acessado em: 10/11/2013

Gains, A., Nordstrom M., Heydecker B., Shrewsbury J., Mountain L.J. e Maher M.J. *The national safety camera programme: four-year evaluation report. Department for Transport,* Dezembro de 2005, Austrália.

Gold, Philip Anthony (jan/2003) – Documento Técnico - Fiscalização eletrônica de velocidade. São Paulo, SP.

Gunarta, S. & Kerr, G. (2005). Speed impacts of mobile speed cameras in Christchurch, Road and Transport Research, Nova Zelândia.

Hauer, E. (1992) Empirical Bayes Approach to the Estimation of "Unsafety": The Multivariate Regression Method. Accident Analysis and Prevention, Vol. 24, 1992, pág 457–477

Hauer, E. (1996). *Identification of sites with promise. Transportation Research Record: Journal of the Transportation Research Board, No. 1542, TRB. National Research Council,* Washington, EUA, pág. 54–60.

Hale, A. R. e Hale, M. (1972) A review of the industrial accident research literature. London. Her Majesty's Stationery Office (Commitee on Safety and Health at Work Research Paper). Inglaterra.

Hsiao, C. (1986) *Analysis of Panel Data*. Cambridge: *Cambridge University Press*. Inglaterra.

IPEA, (2006). Impactos sociais e econômicos dos acidentes de trânsito nas rodovias brasileiras, disponível em: http://www.denatran.gov.br/publicacoes/download/custos acidentes transito.pdf, acessado em: 11/12/2013.

IBGE (2012) Instituto Brasileiro Geografia e Estatística, CENSO 2010 – Rio de Janeiro: IBGE. Disponível em www.ibge.gov.br, Acessado em 11/11/2013.

Khattak, A. J., Kantor, P. & Council, F. M., 1998. Role of Adverse Weather in Key Crash Types on Limited-Access Roadways. Implications for Advanced Weather Systems. Em Transportation Research Record: Journal of Transportation Research Board, No 1621. Transportation Research Board, National Research Council, Washington D.C., pág. 10-19.

Kloeden, C. N., McLean, A. J., Moore, V. M. & Ponte, G. (1997). Travelling speed and the risk of crash involvement. Report CR172, Federal Office of Road Safety, Canberra

Mara, M. K., Davies, R. B. e Frith, W. J. (1996). *Evaluation of the effect of compulsory breath testing and speed cameras in New* Zealand. Proceedings from the Combined. Nova Zelandia

Moukarzel, P. (1999) A Utilização De Radares Eletrônicos Nas Rodovias Estaduais De Santa Catarina, Dissertação de Mestrado, UNISUL, Florianópolis, SC.

Mountain, L.J., Hirst, W.M. & Maher, M.J. (2005). Are speed enforcement cameras more effective than other speed management measures? The impact of speed management schemes on 30 mph roads. In: Accident Analysis & Prevention, vol. 37, nr. 4, p. 742-754.

Newstead, S., Scully, J. Budd, L. 2011, *Evaluation of the crash effects of victoria's fixed digital speed and red-light cameras* ISBN 0-7326-2377-4.

OECD, (2006). Speed Management. Paris, France: European Conference of Ministers of Transport Publications CEMT, Paris, França.

Oei, H.L. & Polak, P.H. (1992). Efeitos da Fiscalização Automática na Holanda. Resultados da avaliação nas províncias. R-92-23. SWOV, Leidschendam, Holanda.

Peltzman, S. (1975). The effects of automobile safety regulations. Journal of political economy, Chicago university press 1975, vol. 83 nº 4.

Polinsky, A.M.; Shavell, S. (2000) The Economic Theory of Public Enforcement of Law. Journal of Economic Literature ed.38, pág 45-76.

Ramalho, J. J. S. Modelos De Regressão Para Dados De Contagem Lisboa 1996, Universidade Técnica De Lisboa.

Roux, S.; Zamora, P. (2010). The Effect Of Fixed Speed Enforcement Cameras On Accidents In France: Two Complementary Approaches. 2010. Paris, França.

RTA - Road and Traffic Authority, (2005) Annual Report 2005, complete. Disponível em:

http://www.rms.nsw.gov.au/publicationsstatisticsforms/downloads/2005 annual report dl1.html

Rubinstein, A. (1979), An optimal conviction policy for offenses that may have been committed by accident. Applied game theory (pág. 406–413). Würzburg.

Rubistein, D. Mitchell, P. (1991) *A Model for Optimal fines for repeated Offenders.* Elsevier, Journal *of Public Economics*, edição 46, pág 291-306 North Holland, EUA.

Schmidt, C. M. C. Modelo de regressão de Poisson aplicado à área da saúde. Ijúi, 2003. 98 f. Dissertação (Mestrado em Modelagem Matemática) - Universidade Regional do Noroeste do Estado do Rio Grande do Sul.

Secretaria de Estado dos Transportes (2002) – Os Transportes no Estado de São Paulo – Cap. 3 – Segurança Rodoviária.

SIM - Sistema de Informações da Mortalidade, (2013) Minstério da Saude, disponível em www.saude.gov.br. acesso em 21/11/2013.

Sousa, M. C. Fiscalização Eletrônica: análise da eficácia na redução dos acidentes de trânsito – Uberlândia 2004 A 2006. 2008. 216 p. Dissertação (Mestrado em Geografia) – Universidade Federal de Uberlândia, Uberlândia, 2008

Sousa, T. Lunnen, C. Gonçalves, V. Scmitz, A. Challenges associated with drink driving measurement: combining police and self-reported data to estimate an accurate prevalence in Brazil. Injury Journal, artigo S0020-1383(13)70207-9, Elsevier, 2013

Tadano, Y. S. Análise do impacto de MP10 na saúde populacional: estudo de caso em Araucária, PR. Curitiba, 2007. 99 f. Dissertação (Mestrado em Engenharia Mecânica e de Materiais) - Universidade Tecnológica Federal do Paraná.

Taylor, M. Lyman, D. Baruya, A. (2000) The effects of drivers speed on the frequency of road accidents. Transport Research Laboratory Ed421, Crowthorne, UK.

Thielen, I. P. (2002) – Percepções de motoristas sobre o excesso de velocidade no trânsito de Curitiba – Paraná – Brasil – Tese de Doutorado apresentado a Universidade Federal de Santa Catarina.

Thomas, L.J. (2008). Safety effects of automated speed enforcement programs. Critical review of international literature. Em: Transportation Research Record 2078, Transportation Research Board, National Academy of Sciences, Washington, D.C. p. 118-126.

TRB, Transportation Research Board 1998 The Costs of Sprawling – Revisited, National Academy Press, Washington D.C. ISBN 0-309-06306-X.

Trensurb (2013) Tabelas horárias, acesso 18/12/2013, disponível em: http://www.trensurb.gov.br/paginas/paginas detalhe.php?codigo sitemap=18

Yamada, M. G. (2005). Impacto dos radares fixos na velocidade e na acidentalidade em trecho da rodovia Washington Luís. Universidade de São Paulo USP, São Carlos, SP.

Wilson, C., Willis, C., Hendrikz, J. K., Le Brocque, R. & Bellamy, N. (2010). *Speed cameras for the prevention of road traffic injuries and deaths (Review). The Cochrane Library*, Edição 10. The Cochrane Collaboration, John Wiley & Sons Ltd.

World Health Organization, OMS (2013); *Global Status Report On Road Safety 2013*, Disponível em: Www.Hwo.Int/Violende Injury Prevention/Road Safety Status/2013

ANEXO I - REGRESSÕES E TESTES

1–Teste Chi-quadrado de Adequação dos Modelos à Poisson:

1.1 – Teste de Adequação Para Variável Feridos.

Poisson regression	Number of obs	=	49780
	Wald chi2(37)	=	14982.17
	Prob > chi2	=	0.0000
Log pseudolikelihood = -29996.321	Pseudo R2	=	0.2043

		Robust				
Feridos	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Auto	0566201	.0248268	-2.28	0.023	1052797	0079605
Ônibus_urb	.6438447	.0472254	13.63	0.000	.5512846	.7364048
Moto	1.142154	.0335637	34.03	0.000	1.07637	1.207937
Bicicleta	1.240381	.0414992	29.89	0.000	1.159044	1.321718
Fx_hora	0244165	.0018269	-13.37	0.000	0279971	0208359
Rfixo_Rua	.0207247	.0264811	0.78	0.434	0311773	.0726267
Rfixo_300m	.1159914	.0621553	1.87	0.062	0058308	.2378135
Jan	.0772857	.0414943	1.86	0.063	0040417	.1586131
Fev	0085304	.0480823	-0.18	0.859	10277	.0857093
Mar	0447557	.0374459	-1.20	0.232	1181482	.0286369
Abr	0400636	.0378393	-1.06	0.290	1142273	.0341001
Mai	.0107735	.0390468	0.28	0.783	0657568	.0873038
Jun	0277582	.038654	-0.72	0.473	1035188	.0480023
Ago	0136383	.0377013	-0.36	0.718	0875316	.0602549
Set	.0230302	.037919	0.61	0.544	0512896	.09735
Out	0247165	.0407345	-0.61	0.544	1045546	.0551216
Nov	0363019	.0383315	-0.95	0.344	1114303	.0388265
Dez	.0077963	.0387943	0.20	0.841	0682391	.0838317
Noturno	.3787327	.0192218	19.70	0.000	.3410587	.4164068
Chuvoso	3640982	.0369469	-9.85	0.000	4365128	2916836
Nublado	7240953	.0456358	-15.87	0.000	8135397	6346509
Centro	3009983	.0254909	-11.81	0.000	3509596	251037
Leste	1968945	.023239	-8.47	0.000	2424421	1513468
Norte	2032402	.0232309	-8.75	0.000	2487718	1577085
2009	.0769606	.0288063	2.67	0.008	.0205014	.1334199
2010	.1325706	.0271464	4.88	0.000	.0793646	.1857766
2011	.0688619	.0297408	2.32	0.021	.0105709	.1271529
2012	.1143756	.0297791	3.84	0.000	.0560096	.1727415
Abalroamento	.3291253	.0256658	12.82	0.000	.2788214	.3794293
Atropelamento	1.495731	.037526	39.86	0.000	1.422181	1.569281
Capotagem	1.741024	.0897919	19.39	0.000	1.565035	1.917013

Choque		.5845418	.0440118	13.28	0.000	.4982801	.6708034
Eventual		.2640895	.067931	3.89	0.000	.1309472	.3972319
Incendio		-13.13786	.2765738	-47.50	0.000	-13.67994	-12.59579
Ncad		.2762561	.2151884	1.28	0.199	1455055	.6980176
Queda		1.018522	.0386958	26.32	0.000	.9426801	1.094365
Tombamento	-	1.032008	.2448093	4.22	0.000	.5521903	1.511825
_cons	1	-1.577857	.0604263	-26.11	0.000	-1.69629	-1.459423

. estat gof

Pearson goodness-of-fit = 63224.17

Prob > chi2(49742)

0.0000

1.2 – Teste de adequação para a Váriavel Fatais.

Poisson regression	Number of obs	=	49780
	Wald chi2(37)	=	4324.89
	Prob > chi2	=	0.0000
Log pseudolikelihood = -1525.3227	Pseudo R2	=	0.2291

		Robust				
Fatais	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval
Auto	7288046	.1262042	-5.77	0.000	9761603	48144
Ônibus_urb	.3261192	.2036411	1.60	0.109	0730101	.725248
Moto	.2648689	.1223957	2.16	0.030	.0249777	.504760
Bicicleta	1.071081	.3705235	2.89	0.004	.3448679	1.79729
fx_hora	0503064	.0094898	-5.30	0.000	0689062	031706
_rfixo_rua	0807297	.1996035	-0.40	0.686	4719454	.31048
rfixo_300m	.5056843	.5138985	0.98	0.325	5015382	1.51290
Jan	3944253	.4101163	-0.96	0.336	-1.198238	.409387
Fev	.4447436	.3033238	1.47	0.143	1497602	1.03924
Mar	1586419	.3168135	-0.50	0.617	779585	.462301
Abr	.0622998	.3005283	0.21	0.836	5267248	.651324
Mai	104985	.3157494	-0.33	0.740	7238424	.513872
Jun	.2511955	.3013029	0.83	0.404	3393473	.841738
Ago	.3884202	.2877495	1.35	0.177	1755584	.952398
Set	.2716783	.2954501	0.92	0.358	3073932	.850749
Out	.2301623	.2883818	0.80	0.425	3350556	.795380
Nov	.2509701	.3027278	0.83	0.407	3423656	.844305
Dez	.0222996	.3164082	0.07	0.944	597849	.642448
Noturno	.8229703	.1205797	6.83	0.000	.5866384	1.05930
Chuvoso	-1.003597	.2844878	-3.53	0.000	-1.561183	446011
Nublado	-1.323532	.3996165	-3.31	0.001	-2.106766	540297
2009	.3928004	.1740981	2.26	0.024	.0515745	.734023
2010	0748652	.1892392	-0.40	0.692	4457672	.296036

2011	.1124504	.2002153	0.56	0.574	2799644	.504865
2012	107002	.2338753	-0.46	0.647	5653891	.351385
Centro	6651242	.1946381	-3.42	0.001	-1.046608	283640
Leste	3326398	.1592228	-2.09	0.037	6447109	020568
Norte	3371625	.1570313	-2.15	0.032	6449381	029386
Abalroamento	.577903	.2707405	2.13	0.033	.0472613	1.10854
Atropelamento	2.968721	.2718453	10.92	0.000	2.435914	3.50152
Capotagem	2.242316	.6659334	3.37	0.001	.9371107	3.54752
Choque	2.379306	.2567778	9.27	0.000	1.876031	2.88258
Eventual	.2599893	.748516	0.35	0.728	-1.207075	1.72705
Incendio	-10.90083	.4297555	-25.37	0.000	-11.74313	-10.0585
Não CAD.	-11.65391	.4110974	-28.35	0.000	-12.45964	-10.8481
Queda	.5227959	.4489692	1.16	0.244	3571676	1.40275
Tombamento	3.32955	.6016477	5.53	0.000	2.150342	4.50875
_cons	-5.162753	.4148084	-12.45	0.000	-5.975762	-4.34974
. estat gof						
Coodna	occ-of-fit ol	ni2 - 24:	24 07			

Goodness-of-fit chi2 = 2424.07

Prob > chi2(49742) = 1.0000

1.3 – Teste de adequação para a Variável UPS.

Poisson regression						of obs =	49780
					Wald o	chi2(37) =	34345.72
					Prob >	> chi2 =	0.0000
Log pseudol:	ikel	ihood = -783	377.468		Pseudo	R2 =	0.1775
			Robust				
ups	1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Auto		043147	.0063825	-6.76	0.000	0556565	0306376
Moto		.6814571	.0101233	67.32	0.000	.6550863	.7443318
Ônibus_urb		.2668621	.0127588	20.92	0.000	.2418552	.291869
Bicicleta		.8863227	.0236848	37.42	0.000	.8399012	.9327441
fx_hora		0116685	.0007447	-15.67	0.000	013128	010209
rfixo_rua		.0046645	.0108808	0.43	0.668	0166615	.0259906
rfixo_300m		.0731239	.0302726	2.42	0.016	.0137907	.132457
Jan		.0219125	.0158176	1.39	0.166	0090894	.0529144
Fev		.0096635	.0175125	0.55	0.581	0246603	.0439873
Mar		0165266	.0151649	-1.09	0.276	0462492	.013196
Abr		0048418	.0157604	-0.31	0.759	0357317	.0260481
Mai		.004383	.0152595	0.29	0.774	0255249	.03429
Jun		001229	.0157147	-0.08	0.938	0320293	.0295713
Ago		.0162576	.0156663	1.04	0.299	0144477	.0469629
Set		.0217911	.0156738	1.39	0.164	008929	.0525111
Out		.0119218	.0157752	0.76	0.450	0189969	.0428406
Nov		0026665	.0158004	-0.17	0.866	0336347	.0283017

Dez	.0175036	.0158904	1.10	0.271	013641	.048648
Noturno	.1705178	.0080833	21.10	0.000	.1546749	.186360
Chuvoso	1702929	.0111472	-15.28	0.000	1921409	1484448
Nublado	2692444	.0099476	-27.07	0.000	2887413	2497476
2009	.0410831	.0107306	3.83	0.000	.0200515	.0621147
2010	.0640761	.0102086	6.28	0.000	.0440676	.0840846
2011	.0567722	.0117022	4.85	0.000	.0338362	.0797082
2012	.0607349	.0121755	4.99	0.000	.0368714	.084598
Centro	1435099	.0104484	-13.74	0.000	1639883	1230314
Leste	088798	.0097079	-9.15	0.000	1078251	0697709
Norte	0968315	.0095574	-10.13	0.000	1155637	0780993
Abalroamento	.1311102	.007821	16.76	0.000	.1157812	.1464392
Atropelame~o	1.052423	.0135095	77.90	0.000	1.025945	1.078901
capotagem	.8684921	.0497985	17.44	0.000	.7708889	.966095
Choque	.2934271	.0168605	17.40	0.000	.2603811	.3264731
Eventual	.212743	.0314791	6.76	0.000	.151045	.274441
Incendio	2241935	.0376928	-5.95	0.000	29807	15031
Ncad	.2113642	.1366817	1.55	0.122	0565271	.4792554
Queda	.696709	.0140935	49.43	0.000	.6690863	.7243318
Tombamento	.5510178	.1354696	4.07	0.000	.2855023	.8165334
_cons	.5325404	.0213315	24.96	0.000	.4907313	.5743494
. estat gof						

Goodness-of-fit chi2 = 37343.71

Prob > chi2(49742) = 1.0000

1.4 – Teste de adequação para Feridos no modelo de Radares Móveis.

Poisson regr	ess	ion			Numbe	er of obs	=	6230
					Wald	chi2(32)	=	3473.50
					Prob	> chi2	=	0.0000
Log pseudoli	kel	ihood = -32	64.8132		Pseud	do R2	=	0.2515
	-		Robust					
Feridos	1	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
Auto		0397901	.0586946	-0.68	0.498	154829	4	.0752492
Ônibus_urb	-	.6142157	.0914468	6.72	0.000	.434983	2	.7934481
Moto		1.327759	.0546943	24.28	0.000	1.2205	6	1.434958
Bicicleta		1.478762	.1020574	14.49	0.000	1.27873	3	1.678791
fx_hora		.0028508	.0069861	0.41	0.683	010841	7	.0165434
Radar móvel	-	102949	.0519687	-1.98	0.048	204805	7	0010923
Jan		.2201822	.0949381	2.32	0.020	.034106	9	.4062575
Fev		.015042	.099224	0.15	0.880	179433	4	.2095174
Março	1	0012251	.0844065	-0.01	0.988	166658	8	.1642086
Abril		.1223749	.0865468	1.41	0.157	047253	8	.2920035

Maio	.1420635	.0891116	1.59	0.111	032592	.316719		
Junho	.0775407	.0928562	0.84	0.404	104454	.2595355		
Agosto	0491257	.1336891	-0.37	0.713	3111516	.2129001		
Set	0132839	.1144832	-0.12	0.908	2376668	.2110989		
Out	.1187885	.1042448	1.14	0.254	0855275	.3231045		
Nov	.1165781	.1080633	1.08	0.281	0952221	.3283783		
Dez	.1796485	.1280924	1.40	0.161	071408	.4307051		
Noturno	.1686291	.0691964	2.44	0.015	.0330065	.3042516		
Chuvoso	3455835	.1186462	-2.91	0.004	5781258	1130412		
Nublado	-1.032354	.1541452	-6.70	0.000	-1.334473	7302349		
Centro	3027789	.1045511	-2.90	0.004	5076954	0978625		
Leste	.0488106	.0735338	0.66	0.507	095313	.1929341		
Norte	0783671	.0720613	-1.09	0.277	2196047	.0628705		
Ano2012	.0426086	.047962	0.89	0.374	0513952	.1366123		
Abalroamento	.30517	.0633209	4.82	0.000	.1810632	.4292767		
Atropelamento	1.559235	.0920655	16.94	0.000	1.37879	1.73968		
capotagem	2.666159	.3267827	8.16	0.000	2.025676	3.306641		
Choque	.3613554	.1641484	2.20	0.028	.0396305	.6830804		
Eventual	0353689	.2415914	-0.15	0.884	5088793	.4381414		
Incêndio	-11.29795	.4963233	-22.76	0.000	-12.27072	-10.32517		
Queda	1.039379	.103169	10.07	0.000	.8371715	1.241587		
Tombamento	3448481	1.022151	-0.34	0.736	-2.348227	1.658531		
cons -2.209819 .1583523 -13.96 0.000 -2.520184 -1.899454								
. poisgof								
Goodr	ness-of-fit ch	ni2 = 3225	.102					

1.5 – Teste de adequação para UPS no modelo de Radares Móveis.

= 1.0000

Prob > chi2(6197)

Poisson regression	Number of obs	=	6230
	Wald chi2(32)	=	6242.19
	Prob > chi2	=	0.0000
Log pseudolikelihood = -9391.5264	Pseudo R2	=	0.1899

			Robust				
UPS	1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Auto		0334169	.0166352	-2.01	0.045	0660212	0008126
Ônibus_urb		.2776406	.0367819	7.55	0.000	.2055494	.3497318
Moto		.7252755	.0217533	33.34	0.000	.6826399	.7679111
Bicicleta		.9787434	.0598333	16.36	0.000	.8614724	1.096015
fx_hora		.0009482	.0028185	0.34	0.737	0045758	.0064723
Radar Móvel		0479706	.0195822	-2.45	0.014	0863509	0095902
Jan		.0570925	.0383523	1.49	0.137	0180766	.1322616

Fev	1	.0195688	.0412216	0.47	0.635	0612241	.1003617
Mar		.0212064	.0370807	0.57	0.567	0514704	.0938832
Abr		.0489435	.0362431	1.35	0.177	0220916	.1199786
Mai		.0498546	.038651	1.29	0.197	0259	.1256093
Jun		.051301	.0388575	1.32	0.187	0248583	.1274603
Ago		0187437	.0497797	-0.38	0.707	1163102	.0788227
Set		0284169	.0449411	-0.63	0.527	1164999	.0596661
Out		.0744384	.0467561	1.59	0.111	0172018	.1660786
Nov		.0184034	.0447716	0.41	0.681	0693473	.1061541
Dez		.0220184	.0456387	0.48	0.629	067432	.1114687
Noturno		.101408	.0311091	3.26	0.001	.0404353	.1623806
Chuvoso	1	133283	.032434	-4.11	0.000	1968523	0697136
Nublado	1	3066471	.0266171	-11.52	0.000	3588157	2544786
Centro	1	1249596	.0388133	-3.22	0.001	2010322	048887
Leste	1	.0429243	.0281899	1.52	0.128	0123269	.0981756
Norte		0106089	.0276796	-0.38	0.702	0648599	.0436421
Ano2012		0042711	.0208849	-0.20	0.838	0452046	.0366625
Abalroamento		.1234939	.0201638	6.12	0.000	.0839736	.1630141
Atropelame~o		.9973834	.0358363	27.83	0.000	.9271455	1.067621
Capotagem		1.152358	.1356574	8.49	0.000	.8864739	1.418241
Choque		.1699356	.0581882	2.92	0.003	.0558887	.2839824
Eventual		.1188789	.1149217	1.03	0.301	1063635	.3441214
Incendio		1354986	.0731686	-1.85	0.064	2789064	.0079092
Queda	1	.7002748	.0360338	19.43	0.000	.6296498	.7708998
Tombamento	1	.6068408	.3692424	1.64	0.100	116861	1.330543
_cons		.2979837	.0603071	4.94	0.000	.1797839	.4161835

. poisgoi

Goodness-of-fit chi2 = 3953.697

Prob > chi2(6197) = 1.0000

2– Testes de Hausman.

2.1 – Teste de Hausman Para Feridos na avaliação de Radares Fixos.

		Coeffi	cients		
		(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	1	re	fe	Difference	S.E.
Auto		0531635	0536452	.0004817	•
Ônibus urb		.6402401	.6406777	0004376	•
Moto	1	1.119006	1.115867	.0031391	•
Bicicleta	1	1.200359	1.19443	.0059293	•
Fx_hora		0243119	0243042	-7.64e-06	
Rfixo_rua		0092406	0190867	.0098461	•
Rfixo 300	ī	1495004	1799069	.0304065	

Jan		.0757318	.0761778	000446	
Fev	1	.000176	.0007401	0005641	
Mar	1	0390225	0385422	0004803	
Abr	1	0362478	0354136	0008342	
Mai	1	.0206286	.0217735	0011448	
Jun	1	0202361	0194762	0007599	
Ago	1	0125189	0127544	.0002355	
Set	1	.0314493	.0327603	001311	
Out	1	0265104	026614	.0001036	
Nov	- 1	0295219	0287364	0007855	
Dez	1	.0124893	.0138632	0013739	•
Noturno	1	.3702715	.368779	.0014924	•
Chuvoso	1	3640777	3629346	0011431	•
Nublado	1	7151429	7137471	0013959	
Centro	1	0652741	.0333349	0986089	•
Leste	- 1	0627622	.0124863	0752485	
Norte	1	0581045	.0254062	0835107	•
2009	- 1	.0726466	.0726285	.0000181	
2010	1	.1274111	.1273068	.0001043	•
2011	1	.0835466	.0892452	0056986	•
2012	- 1	.1270463	.1327281	0056819	
Abalroament	:o	.3369663	.337595	0006287	
Atropelamer	ntol	1.488835	1.488261	.0005732	
Capotagem	1	1.711903	1.708157	.0037464	•
Choque	1	.586586	.5863442	.0002418	
Eventual	-	.2494695	.2474977	.0019718	
Incêndio	- 1	-16.78556	-13.40049	-3.385068	3473.705
Não CAD.	1	.3270435	.3335764	0065329	
Queda	1	1.013306	1.013013	.0002933	
Tombamento	1	.9831768	.9756896	.0074872	
		b = c	onsistent unde	r Ho and Ha; obtai	ined from xtpoisson
B =	= inc	onsistent und	er Ha, efficie	nt under Ho; obta	ined from xtpoisson
Test:	Но:	difference i	n coefficients	not systematic	
		chi2(1) =	(b-B) '[(V_b-V_	B)^(-1)](b-B)	

Prob>chi2 = 0.9992

0.00

2.2 - Teste de Hausman para Fatais no modelo de Radares Fixos:

1	(b)	cients (B)	(b-B)	sgrt(diag(V b-V B))
I	re	fe	Difference	S.E.
Auto I	7241574	7285768	.0044194	0.5.
Onibus urb	.3136527	.3254382	0117856	•
_	.2564023	.2300791		•
Moto Bicicleta	1.064321	1.023503	.0263232	•
Fx hora	0504676	0513214	.0008538	•
Rfixo rua			.0694866	•
Rfixo 300	0983857	1678723		•
-	.265299	1435132	.4088122	•
Jan	3931913	3682751	0249162	•
Fev	.4405431	.4442081	0036649	· · · · · · · · · · · · · · · · · · ·
Mar	1623173	1416574	0206599	•
Abr	.0546303	.0670345	0124041	•
Mai 	1046101	0739924	0306177	•
Jun	.2647405	.3054942	0407537	•
Ago	.3873519	.4008185	0134666	•
Set	.26374	.263284	.000456	•
Out	.2158702	.1915462	.024324	•
lov	.2627547	.2964367	033682	•
Dez	.0240911	.0451189	0210277	•
Noturno	.8264522	.8206658	.0057864	•
Chuvoso	-1.002149	9981078	0040409	•
Nublado	-1.307619	-1.278135	029484	
Centro	508214	.4218686	9300826	
Leste	1735755	.5583325	731908	•
Norte	2475924	.530228	7778204	•
2009	.3931508	.3880488	.005102	•
2010	0908082	1023213	.0115131	•
2011	.1056172	.1479445	0423273	•
2012	1127549	0756195	0371354	•
Abalroamento	.5756779	.5765567	0008788	•
Atropelamento	2.980512	3.002443	0219308	
Capotagem	2.229384	2.181052	.0483318	•
Choque	2.365844	2.340479	.0253644	
Eventual	.2601017	.2577049	.0023968	
Incendio	-14.99688	-9.127938	-5.868946	15359.61
Não cad	-15.64085	-9.779122	-5.861728	13692.73
Queda	.5306913	.520194	.0104973	
rombamento	3.309661	3.218969	.0906922	

B = inconsistent under Ha, efficient under Ho; obtained from xtpoisson

Test: Ho:	difference in coefficients not systematic	
	$chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)$	
	= 0.00	
	Prob>chi2 = 1.0000	

(V_b-V_B is not positive definite)

2.3 – Teste de Hausman para UPS no modelo de Radares Fixos.

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	re	fe	Difference	S.E.
Auto	043671	0439048	.0002337	•
Onibus_urb	.264354	.2644675	0001136	
Moto	.6673342	.6661723	.001162	.0000849
Bicicleta	.8654567	.8633847	.002072	
Fx_hora	0116243	0116256	1.36e-06	
Rfixo_rua	004089	0071795	.0030905	
Rfixo_300m	074405	0841778	.0097728	•
Jan	.0217764	.0219476	0001713	
Fev	.0109717	.0110683	0000966	•
Mar	014483	0143282	0001549	•
Abr	0034014	0031919	0002094	
Mai	.0077894	.0081378	0003484	•
Jun	.000851	.0010401	0001891	•
Ago	.0164378	.0163925	.0000453	
Set	.025047	.0254224	0003754	•
Out	.0113382	.0113889	0000508	
Nov	0005653	0003713	0001941	
Dez	.0201753	.0206648	0004895	
Noturno	.1660821	.1655984	.0004837	
Chuvoso	1682586	1677024	0005563	•
Nublado	2657547	2654245	0003302	•
Centro	0302464	.0019877	0322342	•
Leste	.0019151	.0296049	0276898	•
Norte	0103528	.0208389	0311917	•
2009	.0386547	.0385934	.0000614	•
2010	.0605091	.0603952	.0001139	
2011	.0610757	.0628674	0017916	
2012	.0648664	.0666001	0017337	
Abalroamento	.1344341	.1345218	0000876	•
Atropelamento	1.048495	1.048268	.0002268	
Capotagem	.8494353	.8477675	.0016678	
Choque	.2912312	.2909515	.0002797	•
Eventual	.2054014	.2047188	.0006825	

Incêndio		2105845	2113539	.0007694	•
Não cad		.2346915	.2372629	0025714	•
Queda		.6934865	.6933554	.0001312	
Tombamento		.5290654	.5263824	.0026831	
		b = c	onsistent under	r Ho and Ha; obt	ained from xtpoisson
В	= inc	onsistent und	er Ha, efficie	nt under Ho; obt	ained from xtpoisson
Test:	Ho:	difference i	n coefficients	not systematic	
		chi2(37) =	(b-B) '[(V_b-V_I	B)^(-1)](b-B)	
		=	34.32		
		Prob>chi2 =	0.5953		
		(V_b-V_B is	not positive de	efinite)	

2.4 – Teste de Hausman para Feridos no modelo de Radares Móveis.

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
1	re	fe	Difference	S.E.
Auto	0375385	0334169	0041216	•
Ônibus_urb	.6224907	.5976475	.0248432	
Moto	1.329554	1.305683	.0238707	.0044905
Bicicleta	1.478788	1.430622	.0481657	•
Fx_hora	.0045689	.0060166	0014477	•
Radar móvel	0674555	052002	0154535	•
Jan	.209857	.2125224	0026654	•
Fev	.0003949	.003346	0029511	•
Mar	0107835	0078484	0029351	•
Abr	.1108577	.1164794	0056217	•
Mai	.1350941	.1448426	0097485	•
Jun	.0712225	.0784683	0072458	
Ago	07188	0778281	.0059481	
Set	0166438	.0036184	0202622	
Out	.1126641	.1127001	0000359	
Nov	.1122454	.1227987	0105533	
Dez	.1565934	.1465943	.0099991	•
Noturno	.1594889	.1525255	.0069634	•
Chuvoso	3557449	3616408	.0058959	•
Nublado	-1.02513	-1.008516	0166133	
Centro	1788609	.1779726	3568335	•
Leste	.1102983	.5039865	3936882	
Norte	.0049237	.8409221	8359984	
Ano2012	.0417567	.0417091	.0000476	
Abalroamento	.3176082	.3165506	.0010576	
Atropelamento	1.579793	1.561743	.0180501	

Capotagem		2.681542	2.702862	0213202	•
Choque		.3671623	.3554637	.0116986	
Eventual		0169433	0504441	.0335008	
Incêndio		-16.70209	-12.34046	-4.361627	7187.282
Queda		1.061371	1.036656	.0247154	
Tombamento		3226671	3518851	.029218	•
		b = c	onsistent unde	r Ho and Ha; obta	ined from xtpoisson
В =	inc	onsistent und	ler Ha, efficie	nt under Ho; obta	ined from xtpoisson
Test:	Ho:	difference i	n coefficients	not systematic	
		chi2(1) =	(b-B) ' [(V_b-V_	B)^(-1)](b-B)	
		=	0.00		
		Prob>chi2 =	0.9995		
		(V_b-V_B is	not positive d	efinite)	

2.5 – Teste de Hausman para UPS no modelo de Radares Móveis.

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	l re	fe	Difference	S.E.
Auto	0313018	03021	0010917	
Ônibus Urb.	.2680332	.2610768	.0069564	•
Moto	.7105202	.7044385	.0060817	.0009672
Bicicleta	.9594389	.9484972	.0109417	
Fx_hora	.0017298	.0020375	0003077	
Radar móvel	022238	0171888	0050492	
Jan	.0513283	.0542934	0029651	
Fev	.0084638	.0106197	0021559	
Mar	.0165545	.0191581	0026036	
Abr	.0414918	.0444716	0029797	
Mai	.0454722	.049116	0036437	
Jun	.0480781	.0510006	0029225	
Ago	0308105	0333959	.0025854	
Set	0316817	0287757	002906	
Out	.0706317	.0706342	-2.50e-06	
Nov	.0136676	.0159608	0022932	
Dez	.0106537	.0088541	.0017996	
Noturno	.0973522	.0941942	.003158	
Chuvoso	1368762	136355	0005213	
Nublado	303283	2988765	0044065	
Centro	0276726	.084742	1124146	·
Leste	.0980631	.2136487	1155856	
Norte	.0416832	.3718719	3301887	
Ano 2012	0054049	0068852	.0014803	

Abalroamento	.1267562	.1271634	0004072	•
Atropelamento	.9845699	.9792648	.0053051	
Capotagem	1.141934	1.150152	0082175	
Choque	.1647374	.1623027	.0024346	
Eventual	.1159824	.1080911	.0078913	
Incêndio	1358264	141233	.0054066	
Queda	.6879016	.6810352	.0068663	
Tombamento	.607539	.6030992	.0044398	
	b = cc	nsistent unde	r Ho and Ha; obtaine	d from xtpoisson
B = inc	consistent unde	er Ha, efficie	nt under Ho; obtaine	d from xtpoisson
Test: Ho:	difference in	coefficients	not systematic	
	chi2(32) =	[b-B)	B)^(-1)](b-B)	
	=	7.28		
	Prob>chi2 =	1.0000		

3 - Regressão de Poison

3.1 – Radares Fixos Resultados do modelo para feridos.

Conditional fixed-effects Poisson regression					Number	of obs	=	49780
Group variab	IDruas	Number	of grou	os =	30			
					Obs per	group:	min =	346
							avg =	1659.3
							max =	5922
					Wald ch	i2(37)	=	15240.96
Log likeliho	od	= -29706.14	17		Prob >	chi2	=	0.0000
Feridos	ı	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
Auto		0536452	.0154435	-3.47	0.001	083	9138	0233765
Ônibus urb		.6406777	.0288299	22.22	0.000	.584	1722	.6971832
Moto		1.115867	.0174953	63.78	0.000	1.08	1576	1.150157
Bicicleta		1.19443	.0493721	24.19	0.000	1.09	7662	1.291197
fx_hora		0243042	.0013961	-17.41	0.000	027	0406	0215679
Rfixo_rua		0190867	.0313428	-0.61	0.543	080	5174	.042344
Rfixo 300m		1799069	.0897414	-2.00	0.045	355	7968	0040171
Jan		.0761778	.0388349	1.96	0.050	.000	0627	.1522928
Fev		.0007401	.0404983	0.02	0.985	078	6351	.0801152
Mar		0385422	.0375191	-1.03	0.304	112	0782	.0349938
Abr		0354136	.03813	-0.93	0.353	11	0147	.0393198
Mai		.0217735	.0376637	0.58	0.563	052	2046	.0955929
Jun		0194762	.0387007	-0.50	0.615	095	3281	.0563757
Ago		0127544	.0379908	-0.34	0.737	0872	2149	.0617062
Set		.0327603	.0380797	0.86	0.390	0418	3746	.1073952
Out		026614	.037447	-0.71	0.477	100	8800	.0467808
Nov		0287364	.0384726	-0.75	0.455	104	1413	.0466686

Dez	.0138632	.0392368	0.35	0.724	0630395	.0907659
Noturno	.368779	.0168081	21.94	0.000	.3358357	.4017224
Chuvoso	3629346	.0325041	-11.17	0.000	4266415	2992277
Nublado	7137471	.0371036	-19.24	0.000	7864688	6410254
Centro	.0333349	.0586819	0.57	0.570	0816796	.1483493
Leste	.0124863	.0556771	0.22	0.823	0966387	.1216113
Norte	.0254062	.0667027	0.38	0.703	1053286	.1561411
2009	.0726285	.0256569	2.83	0.005	.0223419	.1229152
2010	.1273068	.0247461	5.14	0.000	.0788054	.1758082
2011	.0892452	.0299879	2.98	0.003	.0304701	.1480204
2012	.1327281	.0304661	4.36	0.000	.0730157	.1924405
Abalroamento	.337595	.0214013	15.77	0.000	.2956493	.3795408
Atropelamento	1.488261	.0296611	50.18	0.000	1.430127	1.546396
Capotagem	1.708157	.0807342	21.16	0.000	1.549921	1.866393
Choque	.5863442	.0352582	16.63	0.000	.5172395	.6554489
Eventual	.2474977	.081048	3.05	0.002	.0886465	.4063489
Incêndio	-13.40049	649.5339	-0.02	0.984	-1286.464	1259.663
N.cad	.3335764	.4092867	0.82	0.415	4686107	1.135764
Queda	1.013013	.0367283	27.58	0.000	.9410266	1.084999
Tombamento	.9756896	.183811	5.31	0.000	.6154267	1.335952

3.2 – Radares Fixos Resultados do modelo para UPS.

Conditional fixed-effects Poisson regression	Number of obs =	49780
Group variable: IDruas	Number of groups =	30
	Obs per group: min =	346
	avg =	1659.3
	max =	5922
	Wald chi2(37) =	35921.96
Log likelihood = -78008.428	Prob > chi2 =	0.0000

ups	1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Automóvel		0439048	.00565	-7.77	0.000	0549786	0328309
Ônibus_urb		.2644675	.0122651	21.56	0.000	.2404283	.2885068
Moto		.6661723	.0073612	90.50	0.000	.6517447	.6805999
Bicicleta		.8633847	.0220069	39.23	0.000	.8202519	.9065175
Fx_hora		0116256	.0005994	-19.39	0.000	0128005	0104508
Rfixo_rua		0071795	.012423	-0.58	0.563	0315282	.0171692
Rfixo_300m		0841778	.0372044	-2.26	0.024	1570971	0112585
Jan		.0219476	.0156454	1.40	0.161	0087168	.052612
Fev		.0110683	.0161587	0.68	0.493	0206022	.0427388
Mar		0143282	.0148509	-0.96	0.335	0434355	.0147791
Abr		0031919	.0150162	-0.21	0.832	0326231	.0262393
Mai	1	.0081378	.0149369	0.54	0.586	0211379	.0374135

Jun	.0010401	.015158	0.07	0.945	0286691	.0307493
Ago	.0163925	.01489	1.10	0.271	0127914	.0455765
Set	.0254224	.0149637	1.70	0.089	003906	.0547508
Out	.0113889	.0147226	0.77	0.439	0174669	.0402448
Nov	0003713	.015088	-0.02	0.980	0299433	.0292007
Dez	.0206648	.0155132	1.33	0.183	0097406	.0510702
Noturno	.1655984	.0069598	23.79	0.000	.1519575	.1792393
Chuvoso	1677024	.0114245	-14.68	0.000	190094	1453108
Nublado	2654245	.0114	-23.28	0.000	287768	2430809
Centro	.0019877	.0226662	0.09	0.930	0424373	.0464127
Leste	.0296049	.0220493	1.34	0.179	013611	.0728208
Norte	.0208389	.0262851	0.79	0.428	0306789	.0723567
2009	.0385934	.0100181	3.85	0.000	.0189583	.0582285
2010	.0603952	.0097095	6.22	0.000	.041365	.0794254
2011	.0628674	.0117219	5.36	0.000	.0398929	.0858418
2012	.0666001	.0120533	5.53	0.000	.042976	.0902241
Abalroamento	.1345218	.0077614	17.33	0.000	.1193097	.1497338
Atropelamento	1.048268	.0118266	88.64	0.000	1.025089	1.071448
Capotagem	.8477675	.0411955	20.58	0.000	.7670259	.9285092
Choque	.2909515	.0133118	21.86	0.000	.2648609	.3170421
Eventual	.2047188	.0285634	7.17	0.000	.1487356	.2607021
Incêndio	2113539	.2583812	-0.82	0.413	7177718	.295064
Não Cad	.2372629	.1625775	1.46	0.144	0813832	.5559091
Queda	.6933554	.0156899	44.19	0.000	.6626038	.7241069
Tombamento	.5263824	.0786739	6.69	0.000	.3721843	.6805804

3.3 - Radares Fixos Resultados do modelo para fatais.

Conditional	Conditional fixed-effects Poisson regression					of obs	=	49780
Group varial	ble:	IDruas			Number	of groups	=	30
					Obs per	group: mir	n =	346
						avo	g =	1659.3
						max	ζ =	5922
					Wald ch	i2(37)	=	735.23
Log likelihood = -1435.9932			Prob >	chi2	=	0.0000		
Fatais	1	Coef.	Std. Err.	z	P> z	[95% Cor	nf.	Interval]
Auto		7285768	.123685	-5.89	0.000	970995	5	4861586
Ônibus_urb		.3254382	.1991405	1.63	0.102	0648699	9	.7157463
Moto		.2300791	.1411215	1.63	0.103	0465139	9	.5066721
Bicicleta		1.023503	.3755814	2.73	0.006	.2873765	5	1.759629
Fx_horária		0513214	.0088476	-5.80	0.000	0686624	1	0339804
Rfixo_rua		1678723	.2302096	-0.73	0.466	6190748	3	.2833301
Rfixo_300m		1435132	.6048852	-0.24	0.812	-1.329066	5	1.04204
Jan		3682751	.33805	-1.09	0.276	-1.030841	L	.2942907

Fev	.4442081	.2798918	1.59	0.112	1043699	.992786
Mar	1416574	.293465	-0.48	0.629	7168383	.4335235
Abr	.0670345	.2821753	0.24	0.812	4860189	.6200878
Mai	0739924	.2927619	-0.25	0.800	647795	.4998103
Jun	.3054942	.2727421	1.12	0.263	2290705	.840059
Ago	.4008185	.2629739	1.52	0.127	1146008	.9162379
Set	.263284	.2731891	0.96	0.335	2721569	.7987249
Out	.1915462	.2683099	0.71	0.475	3343316	.717424
Nov	.2964367	.2735516	1.08	0.279	2397145	.832588
Dez	.0451189	.2950999	0.15	0.878	5332664	.6235041
Noturno	.8206658	.115431	7.11	0.000	.5944252	1.046906
Chuvoso	9981078	.2869227	-3.48	0.001	-1.560466	4357497
Nublado	-1.278135	.3615646	-3.54	0.000	-1.986789	5694815
Centro	.4218686	.4632508	0.91	0.362	4860863	1.329824
Leste	.5583325	.3856195	1.45	0.148	1974677	1.314133
Norte	.530228	.4761758	1.11	0.265	4030594	1.463515
2009	.3880488	.1683975	2.30	0.021	.0579958	.7181019
2010	1023213	.1855164	-0.55	0.581	4659268	.2612842
2011	.1479445	.2134233	0.69	0.488	2703574	.5662465
2012	0756195	.2265992	-0.33	0.739	5197457	.3685067
Abalroamento	.5765567	.2548413	2.26	0.024	.0770768	1.076037
Atropelamento	3.002443	.2572442	11.67	0.000	2.498254	3.506632
Capotagem	2.181052	.5572183	3.91	0.000	1.088925	3.27318
Choque	2.340479	.2612877	8.96	0.000	1.828365	2.852594
Eventual	.2577049	.7472414	0.34	0.730	-1.206861	1.722271
Incêndio	-9.127938	844.6657	-0.01	0.991	-1664.642	1646.386
Não cad	-9.779122	790.4241	-0.01	0.990	-1558.982	1539.424
Queda	.520194	.405493	1.28	0.200	2745578	1.314946
Tombamento	3.218969	.629357	5.11	0.000	1.985452	4.452486

3.4 - Radares Móveis Resultados do modelo para feridos.

Conditional	Conditional fixed-effects Poisson regression					of obs =	6230
Group varia	ble:	idrua			Number	of groups =	20
					Obs per	group: min =	29
						avg =	311.5
						max =	1328
					Wald ch	i2(32) =	1988.85
Log likelih	ood	= -3185.483	36		Prob >	chi2 =	0.0000
Feridos		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Auto		0334169	.046518	-0.72	0.473	1245905	.0577567
Ônibus Urb		.5726021	.0933517	6.13	0.000	.3896361	.755568
Moto		1.283144	.0517112	24.81	0.000	1.181792	1.384496
Bicicleta		1.404085	.1464706	9.59	0.000	1.117008	1.691162

Fx_hora		.0060473	.0077448	0.78	0.435	0091322	.0212269
Radar móvel		0519756	.0582913	-0.89	0.373	1662245	.0622732
Jan		.2123767	.10713	1.98	0.047	.0024058	.4223475
Fev		.0023497	.1143387	0.02	0.984	2217501	.2264495
Mar		0077835	.1048236	-0.07	0.941	2132339	.1976668
Abr		.1161795	.1038409	1.12	0.263	0873449	.319704
Mai		.1452088	.1005584	1.44	0.149	0518821	.3422996
Jun		.0768647	.1066721	0.72	0.471	1322088	.2859381
Ago		07502	.1432786	-0.52	0.601	3558408	.2058009
Set		.0024768	.1391449	0.02	0.986	2702423	.2751959
Out		.1118959	.1308705	0.86	0.393	1446055	.3683973
Nov		.122554	.1233832	0.99	0.321	1192727	.3643807
Dez		.1478689	.123598	1.20	0.232	0943788	.3901165
Noturno		.1524964	.0770929	1.98	0.048	.0013971	.3035957
Chuvoso		359015	.1281797	-2.80	0.005	6102426	1077875
Nublado		-1.009388	.1471098	-6.86	0.000	-1.297718	7210581
Centro		.1767761	.2071647	0.85	0.393	2292592	.5828113
Leste		.4997655	.2027979	2.46	0.014	.102289	.897242
Norte		.8362528	.3093382	2.70	0.007	.229961	1.442545
Ano2012		.0426363	.0550826	0.77	0.439	0653236	.1505962
Abalroamento		.3097715	.0613596	5.05	0.000	.1895089	.430034
Atropelamento		1.529335	.0845414	18.09	0.000	1.363637	1.695033
Capotagem		2.66963	.3294666	8.10	0.000	2.023887	3.315372
Choque		.3416643	.1325634	2.58	0.010	.0818449	.6014838
Eventual		0745737	.2849076	-0.26	0.794	6329823	.4838349
Incêndio		-12.36805	811.6195	-0.02	0.988	-1603.113	1578.377
Queda		1.001449	.1041117	9.62	0.000	.7973939	1.205504
Tombamento		3706611	1.003233	-0.37	0.712	-2.336961	1.595639

3.5 - Radares Móveis Resultados do modelo para feridos sem horário de pico.

Conditional	fix	ed-effects 1	Number	of obs =	5168		
Group varial	ole:	idrua			Number	of groups =	20
					Obs per	group: min =	24
						avg =	258.4
						max =	1078
					Wald ch	i2(32) =	1580.34
Log likelihood = -2443.169			Prob >	chi2 =	0.0000		
Feridos	1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Auto	1	0553497	.0528612	-1.05	0.295	1589558	.0482564
Ônibus_urb	-	.5615829	.10639	5.28	0.000	.3530623	.7701036
Moto	1	1.307706	.0587696	22.25	0.000	1.19252	1.422892
Bicicleta	I	1.596954	.1709458	9.34	0.000	1.261906	1.932002
fx hora	1	.0060053	.0084168	0.71	0.476	0104913	.0225019

Radar móvel	1347527	.069316	-1.94	0.052	2706095	.0011041
Jan	.1954344	.1287029	1.52	0.129	0568188	.4476875
Fev	.1116866	.1365372	0.82	0.413	1559214	.3792946
Mar	0057245	.1255018	-0.05	0.964	2517034	.2402545
Abr	.174465	.122319	1.43	0.154	0652758	.4142058
Mai	.253236	.1197889	2.11	0.035	.0184542	.4880179
Jun	.1570939	.1272569	1.23	0.217	0923251	.4065128
Ago	0431275	.1613588	-0.27	0.789	359385	.2731299
Set	.0148461	.1640483	0.09	0.928	3066827	.3363749
Out	.2274397	.1540437	1.48	0.140	0744803	.5293597
Nov	.2152661	.1432404	1.50	0.133	0654798	.4960121
Dez	.2765519	.145153	1.91	0.057	0079428	.5610466
Noturno	-13.49393	2368.095	-0.01	0.995	-4654.875	4627.887
Chuvoso	3375233	.1515012	-2.23	0.026	6344602	0405863
Nublado	-1.220652	.1815519	-6.72	0.000	-1.576487	8648171
Centro	.3014803	.2585489	1.17	0.244	2052663	.808227
Leste	.5988747	.2555563	2.34	0.019	.0979937	1.099756
Norte	.958196	.3702497	2.59	0.010	.23252	1.683872
Ano2012	.067473	.0647184	1.04	0.297	0593726	.1943187
Abalroamento	.3357954	.071591	4.69	0.000	.1954795	.4761112
Atropelamento	1.613131	.0981919	16.43	0.000	1.420678	1.805584
Capotagem	2.484391	.4623626	5.37	0.000	1.578177	3.390606
Choque	.4526976	.1444012	3.13	0.002	.1696764	.7357187
Eventual	0507941	.3107198	-0.16	0.870	6597938	.5582056
Incêndio	-13.38472	1586.701	-0.01	0.993	-3123.261	3096.492
Queda	1.034868	.1214932	8.52	0.000	.7967459	1.27299
Tombamento	2735296	1.004241	-0.27	0.785	-2.241805	1.694746

3.6 - Radares Móveis Resultados do modelo para UPS.

Conditional fixed-effects Poisson regression	Number of obs	=	6230
Group variable: idrua	Number of groups	=	20
	Obs per group: min	=	29
	avg	=	311.5
	max	=	1328
	Wald chi2(32)	=	4434.53
Log likelihood = -9278.8321	Prob > chi2	=	0.0000

UPS	1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Auto		03021	.0159294	-1.90	0.058	0614311	.0010111
Ônibus urb		.2610768	.0369192	7.07	0.000	.1887166	.3334371
Moto		.7044385	.0204485	34.45	0.000	.6643602	.7445169
Bicicleta		.9484972	.0631294	15.02	0.000	.8247658	1.072229
fx_hora		.0020375	.0029626	0.69	0.492	0037691	.0078442

Radar móvel		0171888	.021	8563	- (0.79	0.	432	-	060026	54	.02	256488
Jan	١.	0542934	.041	1479	-	1.32	0.	187		02635	55	.13	349417
Fev	١.	0106197	.042	4039	(0.25	0.	802	-	072490) 4	.09	937299
Mar	١.	0191581	.038	7873	(.49	0.	621	-	056863	36	.09	951798
Abr	١.	0444716	.038	8399	-	1.14	0.	252		031653	32	.12	205963
Mai		.049116	.038	4376	-	1.28	0.	201		026220)3	.12	244523
Jun	١.	0510006	.039	5517	-	1.29	0.	197		026519	92	.12	285204
Ago		0333959	.050	2071	- (0.67	0.	506	-	131800)1	.06	650083
Set		0287757	.050	7302	- (0.57	0.	571		128205	51	.0	706537
Out	١.	0706342	.048	6556	-	1.45	0.	147		024729	91	.16	659975
Nov	١.	0159608	.047	5362	(0.34	0.	737	-	077208	33		.10913
Dez	١.	0088541	.047	9882	(0.18	0.	854		085200	9	.10	029092
Noturno	١.	0941942	.030	5243	3	3.09	0.	002		.034367	76	.15	540208
Chuvoso	-	.136355	.039	8662	-3	3.42	0.	001		214491	L2	05	582187
Nublado		2988765	.036	0801	- 8	3.28	0.	000		369592	21	22	281609
Centro		.084742	.065	7572	-	1.29	0.	197	-	044139	96	.22	136237
Leste	١.	2136487	.064	7277	3	3.30	0.	001		.086784	18	.34	405126
Norte	١.	3718719	.106	2467	3	3.50	0.	000		.163632	22	.58	301117
Ano2012		0068852	.02	1188	- (0.32	0.	745	-	048412	29	.03	346425
Abalroamento	١.	1271634	.021	6261		5.88	0.	000		.08477	77	.16	695497
Atropelamento	١.	9792648	.033	5536	29	9.19	0.	000		.913500	9	1.0	045029
Capotagem	1	.150152	.198	9168	į	5.78	0.	000		.760282	22	1.5	540022
Choque	١.	1623027	.045	8359	(3.54	0.	000		.072465	59	.25	521395
Eventual	١.	1080911	.085	3769	-	1.27	0.	205	-	059244	15	.2	754267
Incêndio	-	.141233	.448	2403	- (0.32	0.	753	-	-1.01976	58	.73	373018
Queda	١.	6810352	.043	3439	15	5.71	0.	000		.596082	27	.76	659878
Tombamento	١.	6030992	.201	8962	2	2.99	0.	003		.2073	39	. 99	988084

3.7 - Radares Móveis Resultados do modelo para UPS sem horário de pico.

Conditional fixed-effects Poisson regression	Number of obs	=	5168
Group variable: idrua	Number of groups	3 =	20
	Obs per group: n	nin =	24
	ć	avg =	258.4
	n	nax =	1078
	Wald chi2(32)	=	3544.21
Log likelihood = -7485.2868	Prob > chi2	=	0.0000

ups	1	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Auto	-	0273358	.0176602	-1.55	0.122	0619491	.0072775
Ônibus urb	-	.2365724	.041751	5.67	0.000	.1547419	.3184029
Moto	-	.7096594	.0230585	30.78	0.000	.6644655	.7548533
Bicicleta	-	1.013795	.0752672	13.47	0.000	.8662742	1.161316
Fx_hora	- 1	.0024027	.0031793	0.76	0.450	0038286	.008634

Radar móvel	1	0386933	.0249031	-1.55	0.120	0875025	.0101159
-	1	.0424012	.0469829	0.90	0.367	0496837	.134486
Jan	1						
Fev		.0338736	.0486529	0.70	0.486	0614843	.1292316
Mar		.0043016	.044189	0.10	0.922	0823071	.0909104
Abr		.0720865	.0437704	1.65	0.100	0137018	.1578749
Mai		.0910848	.0434702	2.10	0.036	.0058848	.1762848
Jun		.0592143	.0450569	1.31	0.189	0290957	.1475242
Ago		0288103	.0551361	-0.52	0.601	1368751	.0792544
Set		0368485	.057282	-0.64	0.520	1491192	.0754222
Out	1	.0910944	.0552307	1.65	0.099	0171557	.1993446
Nov		.0469727	.0530104	0.89	0.376	0569257	.1508711
Dez		.0398286	.0544423	0.73	0.464	0668764	.1465335
Noturno		354752	1.0012	-0.35	0.723	-2.317067	1.607563
Chuvoso		117283	.0443407	-2.65	0.008	2041892	0303768
Nublado		2959368	.039038	-7.58	0.000	3724499	2194237
Centro		.0954667	.0758523	1.26	0.208	0532011	.2441344
Leste		.2073463	.0753797	2.75	0.006	.0596048	.3550878
Norte		.3518067	.1195035	2.94	0.003	.1175841	.5860292
Ano2012		0013025	.024059	-0.05	0.957	0484574	.0458523
Abalroamento		.1281609	.0242711	5.28	0.000	.0805904	.1757315
Atropelamento		1.04804	.0381345	27.48	0.000	.9732974	1.122782
capotagem		1.118066	.2534215	4.41	0.000	.6213691	1.614763
Choque		.1534004	.0504658	3.04	0.002	.0544892	.2523116
Eventual		.042049	.0949059	0.44	0.658	1439632	.2280613
Incendio		0971347	.5012899	-0.19	0.846	-1.079645	.8853755
Queda		.7193685	.0498673	14.43	0.000	.6216303	.8171067
Tombamento		.6215573	.2022972	3.07	0.002	.225062	1.018053