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Marília Fontenelle, Daniela Novelli, Melina Ayres, Carol Cherfem, Tatiane Lobo, Marcilio 

Lucas e Renata Bastos! Merci beaucoup Lorenza, Lilia, Natalie, Jong Ho et Juhyun!  Vous 

êtes tous chocolat caramélisé! Merci beaucoup Camille, Mansour, Josep, Elena, Carolina, 

Fadhela, Lucie, Juan, Bernardo, Thomas, Erika, Valérien, Anne Sophie, Marine, Nastya, 

Johanna, Esmée et Lilya. Muito obrigado Cathy, Garibotti, Manu, Vitorio, João, Carolina, 

Raphael, Anelise, Zordan, Felipe. Excusez-moi si j`ai oublié quelqu`un! Je suis vraiment 

hereux de vous avoir rencontré! Vous m`avez aidé à être une meilleure personne! Merci 

beaucoup pour les bars, les fêtes (le Panama!), les conversations, les promenades, les 

voyages, les repas, pour m`aider quand j`étais malade ("j`ai trop bu :P"), pour m`héberger 

chez vous, etc. 

À Lucia Helena Vidal por ser uma super amiga que me ajudou e aconselhou em 

diferentes momentos da vida durante minha Tese. Muito obrigado pelas conversas, 

conselhos e ajudas!! À Celina também por ser uma grande amiga e me ajudar com 

conselhos e terapias durante minha Tese. Muito Obrigado!! 

Aos colegas do GAPH por me aturarem e pela amizade durante todos esses anos. 

Muito obrigado Wachter, Heck, Castilhos, Madalozzo, Matheus, Carlos Henrique, Leonardo, 

Walter, Raupp, Leonel, Edson! 

Por fim, agradeço a Rafaella por me tornar cada dia mais feliz por estar ao seu lado.  

Somente o fato de te ver ou pensar em ti me ajudou a me dar tranquilidade e superar os 

momentos mais difíceis do fim de minha Tese. Te amo pra sempre! 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

 

EXPLORAÇÃO DE TÉCNICAS DE MAPEAMENTO DINÂMICO E 
DISTRIBUÍDO PARA MPSOCS DE GRANDE DIMENSÃO  

 

 

RESUMO 

 

MPSoCs com centenas de processadores já estão disponíveis no mercado. De acordo com o ITRS, tais 

sistemas integrarão milhares de processadores até o final da década. A definição de onde cada tarefa será 

executada no sistema é um desafio importante na concepção de MPSoCs. Na literatura, tal desafio é definido 

como mapeamento de tarefas. O aumento do número de processadores aumenta a complexidade do 

mapeamento de tarefas. As principais preocupações em mapeamento de tarefas em grandes sistemas 

incluem: (i) escalabilidade; (ii) carga dinâmica de trabalho; e (iii) confiabilidade. É necessário distribuir a decisão 

do mapeamento pelo sistema para garantir escalabilidade. A carga de trabalho em MPSoCs pode ser dinâmica, 

ou seja, novas aplicações podem iniciar a execução a qualquer momento, levando a diferentes cenários de 

mapeamento. Portanto, é necessário executar o processo de mapeamento em tempo de execução para 

suportar uma carga de trabalho dinâmica. Confiabilidade é diretamente relacionada à distribuição da carga de 

trabalho no sistema. Desequilíbrio de carga pode gerar zonas de hotspots e implicações termais, que podem 

resultar em uma operação do sistema não confiável. Em MPSoCs de grande dimensão problemas de 

confiabilidade se agravam, uma vez que o crescente número de processadores no mesmo chip aumenta o 

consumo de energia e, consequentemente, a temperatura do sistema. A literatura apresenta diferentes técnicas 

de mapeamento de tarefas para melhorar a confiabilidade do sistema. No entanto, tais técnicas utilizam uma 

abordagem de mapeamento centralizado, a qual não é escalável. Em função destes três desafios, o principal 

objetivo desta Tese é propor e avaliar heurísticas de mapeamento distribuído, executadas em tempo de 

execução, garantindo escalabilidade e uma distribuição de carga de trabalho uniforme. Distribuir a carga de 

trabalho e o tráfego da NoC aumenta a confiabilidade do sistema no longo prazo, devido à minimização das 

regiões de hotspot. Para permitir a exploração do espaço de projeto em MPSoCs, a primeira contribuição desta 

Tese consiste em um ambiente de modelagem multi-nível, que suporta diferentes modelos e capacidades de 

depuração que enriquecem e facilitam o projeto de MPSoCs. A simulação de modelos de mais baixo nível (por 

exemplo, RTL) gera parâmetros de desempenho utilizados para calibrar modelos mais abstratos. Os modelos 

abstratos facilitam a exploração de heurísticas de mapeamento em grandes sistemas. A maioria das técnicas 

de mapeamento se concentram na otimização do volume comunicação na NoC, o que pode comprometer a 

confiabilidade, devido à sobrecarga de processadores. Por outro lado, uma heurística que visa a otimização 

apenas da distribuição de carga de trabalho pode sobrecarregar canais da NoC, comprometendo a sua 

confiabilidade. A segunda contribuição significativa desta Tese é a proposição de heurísticas de mapeamento 

dinâmico e distribuídos, fazendo um compromisso entre o volume de comunicação (canais da NoC) e 

distribuição de carga de trabalho (uso da CPU). Os resultados relacionados a tempo de execução, volume de 

comunicação, consumo de energia, distribuição de potência e temperatura em grandes MPSoCs (256 

processadores) confirmam a hipótese deste compromisso. Fazer um compromisso entre carga de trabalho e 

volume de comunicação melhora a confiabilidade do sistema através da redução de regiões hotspots, sem 

comprometer o desempenho do sistema. 
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EXPLORATION OF RUNTIME DISTRIBUTED MAPPING TECHNIQUES FOR 
EMERGING LARGE SCALE MPSOCS 

 

 

ABSTRACT 

 

MPSoCs with hundreds of cores are already available in the market. According to the ITRS roadmap, such 

systems will integrate thousands of cores by the end of the decade. The definition of where each task will 

execute in the system is a major issue in the MPSoC design. In the literature, this issue is defined as task 

mapping. The growth in the number of cores increases the complexity of the task mapping. The main concerns 

in task mapping in large systems include: (i) scalability; (ii) dynamic workload; and (iii) reliability. It is necessary 

to distribute the mapping decision across the system to ensure scalability. The workload of emerging large 

MPSoCs may be dynamic, i.e., new applications may start at any moment, leading to different mapping 

scenarios. Therefore, it is necessary to execute the mapping process at runtime to support a dynamic workload. 

Reliability is tightly connected to the system workload distribution. Load imbalance may generate hotspots 

zones and consequently thermal implications, which may result in unreliable system operation. In large scale 

MPSoCs, reliability issues get worse since the growing number of cores on the same die increases power 

densities and, consequently, the system temperature. The literature presents different task mapping techniques 

to improve system reliability. However, such approaches use a centralized mapping approach, which are not 

scalable. To address these three challenges, the main goal of this Thesis is to propose and evaluate distributed 

mapping heuristics, executed at runtime, ensuring scalability and a fair workload distribution. Distributing the 

workload and the traffic inside the NoC increases the system reliability in long-term, due to the minimization of 

hotspot regions. To enable the design space exploration of large MPSoCs the first contribution of the Thesis lies 

in a multi-level modeling framework, which supports different models and debugging capabilities that enrich and 

facilitate the design of MPSoCs. The simulation of lower level models (e.g. RTL) generates performance 

parameters used to calibrate abstract models (e.g. untimed models). The abstract models pave the way to 

explore mapping heuristics in large systems. Most mapping techniques focus on optimizing communication 

volume in the NoC, which may compromise reliability due to overload processors. On the other hand, a heuristic 

optimizing only the workload distribution may overload NoC links, compromising its reliability. The second 

significant contribution of the Thesis is the proposition of dynamic and distributed mapping heuristics, making a 

tradeoff between communication volume (NoC links) and workload distribution (CPU usage). Results related to 

execution time, communication volume, energy consumption, power traces and temperature distribution in large 

MPSoCs (144 processors) confirm the tradeoff hypothesis. Trading off workload and communication volume 

improves system reliably through the reduction of hotspots regions, without compromising system performance.  
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EXPLORATION DE TECHNIQUES D’ALLOCATION DE TÂCHES 
DYNAMIQUES ET DISTRIBUÉES POUR MPSOCS DE LARGE ÉCHELLE 

 

RÉSUMÉ 

 

MPSoCs (systèmes multiprocesseurs sur puces) avec des centaines de cœurs sont déjà disponibles sur le 

marché. Selon le ITRS, ces systèmes intégreront des milliers de cœurs à la fin de la décennie. La définition du 

cœur, où chaque tâche sera exécutée dans le système, est une question majeure dans la conception de 

MPSoCs. Dans la littérature, cette question est définie comme allocation de tâches. La croissance du nombre 

de cœurs augmente la complexité de l’allocation de tâches. Les principales préoccupations en matière 

d’allocation de tâches dans des grands MPSoCs incluent: (i) l'évolutivité; (ii) la charge de travail dynamique; et 

(iii) la fiabilité. Il est nécessaire de distribuer la décision d’allocation de tâches à travers le système afin 

d'assurer l'évolutivité. La charge de travail de grands MPSoCs peut être dynamique, à savoir, de nouvelles 

applications peuvent commencer à tout moment, conduisant à différents scénarios d’allocation. Par conséquent, 

il est nécessaire d'exécuter le processus d’allocation à l'exécution pour soutenir une charge de travail 

dynamique. La fiabilité est étroitement liée à la distribution de la charge de travail du système. Un déséquilibre 

de charge peut générer des hotspots et autres implications thermiques, ce qui peut entraîner un fonctionnement 

peu fiable du système. Dans de grands MPSoCs, les problèmes de fiabilité empirent puisque l'augmentation du 

nombre de cœurs sur la même puce augmente la densité de puissance et, par conséquent, la température du 

système. La littérature présente différentes techniques d’allocation de tâches pour améliorer la fiabilité du 

système. Cependant, ces techniques utilisent des approches d’allocation centralisées, qui ne sont pas 

évolutives. Pour répondre à ces trois défis, l'objectif principal de cette Thèse est de proposer et évaluer des 

heuristiques d’allocation de tâches distribuées et dynamiques en assurant l’évolutivité et une distribution 

équitable de la charge de travail. Une distribution équitable de la charge de travail et du trafic du NoC (réseau 

sur puce) augmente la fiabilité du système dans le long terme, en raison de la minimisation des régions de 

hotspot. Pour permettre l'exploration de l'espace de conception de grands MPSoCs, la première contribution de 

cette Thèse se situe dans le cadre d’une modélisation multi-niveaux, qui prend en compte différents modèles et 

de capacités de débogage qui enrichissent et facilitent la conception des MPSoCs. La simulation de modèles de 

niveau inférieur (par exemple RTL) génère des paramètres de performance utilisés pour calibrer des modèles 

abstraits (sans précision d’horloge). Les modèles abstraits permettent d’explorer des heuristiques d’allocation 

de tâches dans de grands systèmes. La plupart des techniques d’allocation de tâches se focalisent sur 

l'optimisation du volume de communication, ce qui peut compromettre la fiabilité du système, en raison d’une 

surcharge des processeurs. D'autre part, une heuristique qui optimise seulement la distribution de la charge de 

travail peut surcharger le NoC et compromettre sa fiabilité. La deuxième contribution importante de cette Thèse 

est la proposition d'heuristiques d’allocation de tâches dynamiques et distribuées, qui réalisent un compromis 

entre le volume de communication (liens du NoC) et la distribution de la charge de travail (de l'utilisation des 

processeurs). Des résultats liés au temps d'exécution, au volume de la communication, à la consommation 

d'énergie, aux traces de puissance et à la distribution de la température dans les grands MPSoCs (144 

processeurs) confirment l'hypothèse de compromis. Faire un compromis entre la réduction du volume de 

communication et une distribution équitable de la charge de travail améliore le système de manière fiable grâce 

à la réduction des régions de hotspots, sans compromettre la performance du système. 

 

Mots clés : Modélisation, Gestion de MPSoCs, Allocation de Tâches, NoC, SoC, MPSoC. 
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1. INTRODUCTION 

MPSoCs (Multiprocessor Systems-on-Chip) have been employed to provide the high 

demands of performance while maintaining energy efficiency during the execution of 

concurrent embedded applications (e.g. video compressing, wireless communication 

standards, gaming). Such systems increase performance by using multiple homogeneous 

or heterogeneous processors. MPSoCs also integrate memories, dedicated hardware 

cores, and a communication infrastructure to interconnect the system components, as 

NoCs (Networks-on-Chip) and buses. Despite the higher design complexity of NoCs, such 

communication infrastructure offers better scalability, performance and power capabilities 

when compared to buses [BEN02].  

Applications designed to execute in MPSoCs may be partitioned into different tasks 

to execute in different cores, enabling their parallel execution [SIN13]. A task is a set of 

instructions and data, containing information and constraints for its correct execution in a 

given core. Additionally, tasks exchange data with other tasks during the execution of the 

application. The definition in which system core each task will execute is a major issue in 

the MPSoC design. In the literature, this issue is referred to task mapping [SIN13].  

Task mapping decision have been executed at runtime in order to deal with time-

varying workloads caused by the most part of embedded system applications [SIN10]. 

Such variations cannot be accurately predicted during design time, such as the scenarios 

when the system interacts with complex deployment environments or user-driven requests 

[CHO10]. Runtime approaches (also referred as online or dynamic mapping approaches) 

require simple and fast mapping solutions, since high time-consuming and high 

computational algorithms may compromise the system performance. Further, runtime 

mapping can better deal with other system changes during runtime, such as cores 

availability and defective cores [SIN13]. 

The increasing number of cores in MPSoCs also requires scalable and distributed 

mapping solutions. Novel large MPSoCs, with dozens of cores, are already present in 

market [INT12][TIL10] and the ITRS roadmap [ITR13] projects systems integrating 

thousands of cores by the end of the decade. In such systems, a centralized mapping 

decision compromises the system performance since a single core is responsible for 

processing and responding all mapping requests [FAR08]. Underlying solution contributes 

to increasing NoC congestion around the mapper leading to hotspot zones, which may 

result in system failures.   

Reliability is an important concern related to task mapping, tightly connected to the 

workload distribution [CHA13][WAN14][HEN13]. Load imbalance decisions can generate 

hotspots zones (i.e. peaks of power dissipation) and thermal variations, which directly 

affects system reliability [CHA13][WAN14][MEY14]. This issue is worse in large MPSoCs, 
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which aggregate a growing number of cores on the same die, increasing power densities 

and, consequently, system temperature. Further, mapping communicating tasks far from 

each other results in more data transfer through the system, increasing communication 

latency and energy consumption. Higher data volume transferred through the system also 

induces link failures, which may produce unreachable zones (e.g. isolated and, 

consequently, unusable cores). Unusable cores induce mapping of applications onto other 

system cores, increasing their workload and, consequently, reducing their lifetime.  

Dealing with dynamic and distributed mapping in large-scale systems requires 

efficient means to evaluate several scenarios considering different performance metrics. 

Simulation enables the evaluation of different task mapping solutions, as well as other 

MPSoCs challenges (e.g. quality of service management). However, the raising complexity 

of large MPSoCs restricts the adoption of RTL simulation due to its high simulation time, 

verification and debugging cost [ROT13]. For this purpose, high-level modeling techniques 

have been employed to boost system design and validation. High abstract models simplify 

system properties and characteristics using some formalism, preserving those 

characteristics and properties that are relevant for a given purpose (e.g. system energy 

consumption prediction) [JAN03]. In this context, a designer can employ different models 

to represent different system aspects, targeting specific goals.   

Designers must use different models to accomplish both software and hardware 

design and validation process. While architectural-oriented design requires quasi-cycle 

accurate models [BIN11], software development demands high simulation speeds (e.g. 

100 MIPS [OVP13]) [LEM12]. With such conflicting requirements, it is difficult to cover all 

modeling and simulation needs inherent to hardware and software design space 

exploration with one single model. Beyond that, to ensure correct functionality of emerging 

MPSoC embedded systems it is necessary to consider lower level design constraints, 

such as area, energy consumption, and temperature. To deal with such design constraints, 

an RTL description of the platform is necessary to acquire information through low-level 

models.  

To overcome the challenges mentioned above, this Thesis proposes a multi-level 

platform framework, which combines different modeling techniques aiming to provide 

efficient means to explore large-scale MPSoCs, considering both hardware and software. 

The proposed framework includes high abstract models, providing great modeling and 

debuggability capabilities allied to high simulation speeds. Such abstract models are 

supported by a clock-cycle accurate implementation, which provides power and area 

figures. The proposed framework is used to develop and validate runtime distributed 

mapping solutions.  
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1.1 Hypothesis to be Demonstrated with this Thesis 

This Thesis relies on two hypotheses: (i) untimed abstract models can be used to 

evaluate task mapping solutions; and (ii) task mapping solutions that focus on 

communication volume reduction can compromise system reliability; and task mapping 

solutions that focus on workload balancing can increase system communication volume.  

 

1.2 Goals 

In order to address the hypotheses mentioned above, the strategic goal of this Thesis 

is first to combine different modeling techniques into a multi-level framework, targeting the 

investigation of task mapping strategies for MPSoCs. Such multi-level framework should 

support the design space exploration of large-scale MPSoCs (thousands of PEs, 

interconnected by a NoC executing dozens of applications), providing accurate 

performance evaluation in an acceptable time. Considering the ITRS perspective [ITR13], 

the demand for new modeling techniques and supporting tools (models definition, 

generation, and simulation) will continue growing, sustaining the importance and the 

relevance of this Thesis. The second strategic goal of this Thesis is to investigate different 

task mapping strategies, in order to define heuristics to reduce communication volume and 

provide a balanced workload distribution for large-scale MPSoCs. Further, in order to 

provide scalable task mapping decision, distributed system management strategies are 

investigated. 

To accomplish these strategic goals, the following specific objectives should be 

fulfilled: 

 adopt a stable MPSoC platform that will serve as reference in terms of clock-

cycle accurate simulation and power and area results; 

 propose higher level implementations of the reference platform, aiming at 

speeding up the design and the investigation of novel management strategies; 

 propose an integrated design flow by providing semi-automated and easy to 

use toolset, considering concomitant hardware and software development; 

 investigate distributed system management strategies in order to achieve 

scalable large-scale MPSoCs; 

 Investigate different task mapping techniques, focusing on communication 

volume reduction and workload distribution balancing for large-scale MPSoCs. 



21 

 

 

1.3 Original Contributions  

This Thesis has two main contributions: (i) proposition of a multi-level modeling 

framework, which supports different modeling and debugging capabilities that enrich and 

facilitate the design of large MPSoCs; (ii) proposal of scalable and distributed lightweight 

runtime mapping techniques for large-scale MPSoCs. As summary, such contributions can 

be detailed as follows: 

 The multi-level platform framework uses the reference NoC-based MPSoC model 

presented in Section 3.1. This model is implemented in synthesizable RTL VHDL, 

which has main advantage at being synthesizable, allowing to captures accurate area, 

frequency and power performance figures. Debug facilities include waveforms and 

assertions, targeting hardware development, not software development. In this context, 

this Thesis contributes with two new models:  

o a SystemC RTL model, presented in Section 3.2, which enables the simulation 

of larger systems in a reasonable simulation time but still providing high 

accurate performance results. Some improvements in terms of debuggability are 

achieved, e.g., by inserting debug coded in the ISS.   

o an OVP [OVP13] (i.e. Open Virtual Platform) model, presented in Section 3.3. 

OVPSim is a virtual platform and modeling framework proposed by Imperas, 

aiming to accelerate the development of embedded software, specifically for 

SoCs and MPSoCs. The proposed model is used to develop and validate task 

mapping heuristics, presented in Chapter 5. 

 Task mapping contributions of this Thesis are described as follows: 

o Proposal of a distributed management architecture that provides the necessary 

features to include scalable mapping solutions, described in Chapter 4; 

o Modification of formerly proposed task mapping heuristics [MAN11b] to support 

decentralized mapping decisions, presented in Chapter 5; 

o Proposal of profiler platform to generate performance information (inter-task 

communication volume, energy consumption of each task) to guide the runtime 

mapping process, presented in Section 4.1; 

o Proposal of a novel scalable runtime distributed energy-aware mapping 

technique, which focuses on workload balancing and communication volume 

reduction (presented in Chapter 5); 

o Validation of the proposed mapping techniques with different and large 

scenarios (Section 5.5), considering the number of executed instructions, power, 

energy, temperature, and execution time.  
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1.4 Originality of this Thesis 

The originality of this Thesis relies on a novel a scalable and lightweight runtime 

distributed energy-aware mapping technique, aiming to reduce communication volume and 

balance workload distribution in large-scale systems. This mapping heuristic is validated in 

a multi-layer model approach, which provides flexibility in the system design by using 

different abstraction levels.  

1.5 Structure of the Document 

The remaining of this document is organized as follows: Chapter 2 presents the 

state-of-art on MPSoC platforms and task mapping solutions. Next, Chapter 3 presents the 

proposed multi-level framework. Chapter 4 describes the proposed distributed system 

management approach, comparing it with a centralized approach. Chapter 5 presents 

different distributed runtime task mapping heuristics, including a heuristic aiming to reduce 

communication volume and a balanced workload distribution. Finally, Chapter 6 provides 

conclusions and directions for future work. 
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2. STATE-OF-ART  

This Chapter discusses the state-of-art related to the main contributions of this 

Thesis. Section 2.1 presents works underlying MPSoC platforms development, including 

different modeling approaches and specific design goals. Section 2.2 first introduces a 

task mapping taxonomy and, then, focuses on the state-of-art of runtime mapping 

approaches. 

2.1 State-of-Art in MPSoC platforms 

The literature contains examples of MPSoC platforms developed in different 

abstraction levels, differing in terms of accuracy, simulation cost and design flexibility.   

Some works [CEN09][VEN10][LEM12][REK13][ZHA13][DUE14] use high abstraction 

models for MPSoC design exploration. Ceng et al. [CEN09] present a framework aiming at 

improving application development at early design stage, in which target platform details 

are not already determined. The proposed framework, called High-level Virtual Platform 

(HVP), includes a simulator that abstracts hardware (i.e. processor elements) and software 

(i.e. OS, communication API) details of the target MPSoC platform. Such simulator is built 

using SystemC, including processing elements, interconnection infrastructure and 

peripherals. Processing elements are modeled as Virtual Processing Elements (VPEs). A 

VPE comprises a high-level processor model and an operating system, which is 

responsible for task execution control, such as scheduling and execution speed. Both 

VPEs and tasks are implemented using SystemC, interacting through TLM channels 

between them. Communication interconnection between VPEs is done through generic 

shared memories, which can be controlled and accessed in applications by the proposed 

programming API. Further, each VPE includes a set of software tools for application 

programming that is completely platform independent, enabling reusable code for different 

platforms. Such tools include the previously mentioned programming APIs, which enable 

inter-task communication/synchronization and VPE interactions. Debugging facilities 

include connection with host debuggers, such as GDB.  

Ventroux et al. [VEN10] present the SESAM, a NoC-based MPSoC framework 

targeting the design and the exploration of asymmetric multiprocessor systems. The 

platform in SESAM is described in SystemC TLM, while the programming model is based 

on the explicit separation of control and computation parts. SESAM has a library of 

components like NoCs (e.g. multibus, torus, ring and mesh) that are modeled in 

approximate-timed TLM, enabling fast and accurate simulation. A Hardware Abstraction 

Level (HAL) is provided to manage all memory accesses and dynamic memory allocation. 

To debug the platform it is possible to use a GNU GDB implementation. The Authors point 

out 90% accuracy compared to a fully cycle-accurate simulator.  
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Lemaire et al. [LEM12] present a flexible simulation environment integrating different 

modeling techniques for design and exploration of SoCs. The proposed environment uses 

the GENEPY MPSoC as base model, which contains high-performance DSP processors, 

general-purpose processors and dedicated hardware interconnected by a GALS NoC. The 

NoC is modeled in SystemC/TLM with 3 different modes: loosely-timed packet-level mode, 

ignoring NoC contention; approximately-timed packet-level mode with a contention model; 

and an accurate flit-level mode, which implementation is very close to the real hardware. 

Such NoC models can integrate different CPU core models, also modeled in three different 

abstraction levels: Host Code Execution (HCE) model, in which application code is 

compiled and directly linked to SystemC/TLM platform; an Instruction Set Simulator (ISS) 

model; and an RTL model. A SystemC power model including DVFS is integrated to the 

proposed environment. Authors claim the proposed environment enables software 

development and hardware implementation, providing from fast simulation to low-level 

hardware models. 

In [REK13] OVP is used to model inter-processor communication in shared memory 

MPSoCs. Authors claim OVP only allows processors communication through shared 

memory. However, this Thesis presents distributed memory MPSoC platform modeled In 

OVP (see Section 3.3). In order to evaluate the benefits of OVP, Authors present different 

homogeneous and heterogeneous platform configurations and demonstrates the 

integration of operating systems (i.e. Linux). In this work, no comparisons with other 

simulation models (e.g. SystemC) were made.  

Zhang et al. [ZHA13] present a modeling tool, MCVP-NoC (Many-Core Virtual 

Platform with Networks-on-Chip), which is designed to explore large-scale MPSoCs. 

MCVP-NoC is developed in TLM-SystemC with an OVP layer to provide fast processor 

models simulation, memory models and bus decoder. Orion2 software was integrated into 

MCVP-NoC to report power and area estimation values. TLM2.0 interface connects all 

component models. Authors report that the simulation using a virtual platform can speed 

up to 40 times the RTL simulation. 

Duenha et al. [DUE14] propose a simulation toolset for development and evaluation 

of MPSoCs. The proposed toolset, called MPSoCBench, supports up to 64 processor 

cores of four different architectures (PowerPC, MIPS, SARC and ARM). ArchC [AZE05] is 

used to generate processors models in SystemC/C++. Further, processors have 

configurable cache models and may be interconnected by different communication 

infrastructure (crossbar, NoC) described in SystemC/TLM. MPSoCBench does not support 

operating system, using a POSIX PThread emulation library to handle thread 

management, barriers, mutual exclusion, semaphores, and conditional variables. 

Performance analysis include:  power estimation based in different FPGAs from Xilinx and 

Altera; number of instructions per core; number of memories reads and writes; number of 

hops in NoC communication; simulation time; application correctness. Authors claim that 
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although the proposed model is not cycle-accurate, users can incorporate timing 

information to provide a degree of accuracy, such as time per instruction in processor 

models.  

Indrusiak [IND14] proposes analytical methods to evaluate whether applications meet 

their timing constraints on homogeneous NoC-based multiprocessor architectures. The 

proposed work uses a system model covering different applications and NoC-based 

platform configurations. Experiments compare the proposed method with simulation 

methods, verifying figures for computation and communication response times. 

Other works propose the use of EDKs (Embedded Development Kit) to automate 

FPGA-based MPSoC design and emulation. Lukovic et al. [LUK08] propose an automatic 

MPSoC generation using the Xilinx EDK, allowing fast hardware redesign. The work of 

Meier et al. [MEI10] presents a platform-based design model that reduces the MPSoC 

design complexity using the LavA framework. Tian et al. [TIA09] uses an FPGA 

implementation to evaluate the efficiency of data synchronization in a NoC. Benini et al. 

[BEN12] present a platform with an SDK (Software Development Kit) able to execute 

different programming models at an abstract level of hardware.  

MPSoCs described in synthesizable RTL are also found in the literature. Paulin et al. 

[PAU06] propose a deadline evaluation in an RTL model MPSoC. Ngouanga et al. 

[NGO06] use a NoC-based platform developed in synthesizable VHDL for task mapping 

heuristic validation. Validations use up to a 6x6 mesh system, taking place by either VHDL 

simulation or by FPGA prototyping. Busseuil et al. [BUS11] present an RTL distributed 

memory platform for design space exploration of NoC-based MPSoCs. The proposed 

platform is totally validated in FGPA, providing a set of functions and services to enable 

different performance analysis. 

Table 1 compares relevant platform characteristics of the reviewed works. As most 

proposals, this work models a NoC-based MPSoC. Our contribution distinguishes itself 

from all previous works mentioned in this section by combining fast and accurate modeling 

and simulation capabilities in one single software development flow, including: cycle-

accurate model (VHDL and RTL-SystemC/ISS) and approximated-time model (OVP, 

which uses C language). The OVP model provides performance estimates, using data 

obtained from the RTL simulation. In this direction, complex software stacks can be 

successively refined in different platform models until an adequate development is 

achieved in terms of functionality and accuracy. 
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Table 1 – MPSoC platforms. 

Proposal Interconnection 
Description 

Language or design 
method 

Debugging 
Accuracy and 

evaluation 

Paulin  et 
al. (2006) 

NoC RTL synthesizable N/A Clock-cycle accurate 

Ngouanga 
et al. 

(2006) 

NoC RTL synthesizable N/A Clock-cycle accurate 

Lukovic et 
al. (2008) 

NoC PBD (Xilinx EDK) Xilinx EDK Tools Untimed 

Tian et al. 
(2009) 

NoC PBD (Xilinx-4 FX140) EDK Tools Untimed 

Ceng et al. 

(2009) 
Bus SystemC/TLM GNU GDB Untimed 

Ventroux et 
al. (2010) 

NoC TLM-SystemC GNU GDB 
Approximate-timed 

TLM 

Meier et al. 
(2010) 

Bus 
PBD (Virtex-V LX 

110T EDK) 
EDK Tools Untimed 

Busseuil  
(2011) 

NoC RTL synthesizable N/A Clock-cycle accurate 

Benini et al. 
(2012) 

NoC (Cluster)/Bus PBD (Xilinx Zynq) EDK Tools Untimed 

Lemaire et 
al. (2012) 

NoC 
RTL-SystemC and 

TLM 
N/A 7% compared to RTL 

Rekik et al. 
(2013) 

Bus OVP N/A Untimed 

Zhang et al. 
(2013) 

NoC 
TLM-SystemC with 

OVP and RTL 
N/A 

40 times faster than 
RTL 

Duenha et 
al. 

(2014) 

NoC SystemC/TLM N/A 
Approximate-timed 

TLM 

Indrusiak  
(2014) 

NoC analytical methods N/A Untimed 

This 
proposal 

NoC 
RTL-VHDL, RTL-

SystemC/ISS, and 
OVP 

OVP tools / 
performance 

reports 

Clock-cycle accurate 
/ approximate-timed 

  

2.2 State-of-Art in Dynamic Task Mapping 

Task mapping literature is wide, requiring a taxonomy classification considering 

different mapping criteria. In this context, this Thesis classifies [MAN11b][OST13] the 

mapping process according to four criteria: (i) the target architecture; (ii) the number of 

tasks per PE; (iii) the moment in which it is executed; (iv) system management approach. 

According to the target architecture, task mapping can be performed in 

homogeneous (identical PEs) or heterogeneous (e.g. DSPs, dedicated IPs, accelerators) 

systems. The complexity of task mapping is higher when heterogeneous MPSoC platforms 
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are employed, since PE type must be considered in mapping process. Regarding the 

number of tasks mapped per PEs, mapping approaches can be classified as single or 

multi-task. Single-task assumes only one task assignment per PE while multi-task allows 

mapping more than one task per PE according to some criteria (e.g. communication, 

execution time, task deadlines). A multi-task approach can better explore system 

resources, enabling the execution of an increasing number of applications in parallel.  

The mapping process can be defined at design-time or runtime. When task mapping 

is defined at design-time (also referred as offline or static mapping approach), all 

applications that will be executed in the system must be known a priori. Such approach 

can explore high time-consuming and computational intensive algorithms to better 

evaluate the mapping solutions. These algorithms use a global view of the system state to 

define the mapping of all its tasks, which improves the mapping quality. However, design 

time approaches are not suitable for dynamic and unpredictable workloads imposed by the 

execution of different applications [CHO08][HÖL08][SCH10][SIN10]. Further, such 

approaches are not able to cope with system changes, such as cores failures incurred in 

the system during runtime [SIN13].  

Runtime task mapping approaches (also referred as online or dynamic mapping 

approaches) have been used to improve system adaptability. Such approach enables 

different applications to be inserted into the system at runtime, enabling dynamic 

workloads. Runtime task mapping is incorporated in the system management scheme, 

which verifies system conditions and takes decisions to improve performance. In this 

context, whenever mapping an application task, the system conditions are verified to 

achieve better mapping decisions. The time to take mapping decisions must be taken into 

account since it can impact on applications execution time [SIN13].  

As mentioned before, runtime task mapping is one of the system management 

functions, which also include monitoring, task migration, DVFS. System management can 

be classified in centralized or distributed. Centralized management uses a single core 

(called central manager) responsible for the overall management, which is suited for small 

MPSoCs due to scalability issues. For example, such single core can be overloaded very 

quickly, due to the computational effort to execute all management functions, such as 

mapping actions and treatment of monitoring events. In addition, the traffic around the 

central manager induces a communication hotspot, compromising system performance. A 

central manager also compromises system reliability, since it creates a single point of 

failure in the system. In a distributed approach, the system management is distributed in 

different cores, increasing system scalability and reliability.  

This Thesis focuses on general-purpose MPSoC platforms, able to execute several 

applications that are unknown in advance. This Thesis also assumes that the underlying 

applications can be inserted in the system in a non-deterministic way, according to user 
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requirements. The resulting scenario points to the exploration of runtime mapping 

approaches. Different research on runtime mapping approaches have been proposed. 

Smit et al. [SMI05] propose an iterative hierarchical dynamic mapping approach, which 

aims to reduce energy consumption while providing the required quality-of-service (QoS). 

In such approach, tasks are firstly grouped by assigning to a system resource type (e.g. 

FPGA, DSP, ARM), according to their performance constraints. Then, each task inside a 

group is mapped, minimizing the distance between them and reducing communication 

cost. Finally, the resulting mapping is checked, and if it does not meet the application 

requirements, a new iteration is required. Ngouanga et al. [NGO06] present a force-

directed mapping heuristic for homogeneous NoC-based MPSoCs. The heuristic selects 

the new position for a task according to a resulting force, which is proportional to the 

communication volume and distance between tasks. 

Chou et al. [CHO07] introduce an incremental dynamic mapping process approach, 

where PEs connected to the NoC have multiple voltage levels while the network has its 

voltage–frequency domain. A global manager (OS-controlled mechanism) is responsible 

for finding a contiguous area to map an application, and for defining the position of the 

tasks within this area, as well. According to the Authors, the strategy avoids the 

fragmentation of the system and aims to minimize communication energy consumption, 

which is calculated according to the approach proposed by Ye et al. [YE02]. The proposed 

approach was extended in [CHO08], incorporating the user behavior information in the 

mapping process. The user behavior corresponds to the application profile data, including 

the application periodicity in the system and data volume transferred among tasks. For real 

applications considering the user behavior information, the approach achieved around 

60% energy savings compared to a random allocation scenario.  

Hölzenspies et al. [HÖL07][HÖL08] investigate a runtime spatial mapping technique 

with real-time requirements, considering streaming applications mapped onto 

heterogeneous MPSoCs. In the proposed work, the application remapping is determined 

according to a set of information (i.e. latency/throughput) collected at design time, aiming 

to satisfy QoS requirements, as well as to optimize the resources usage and to minimize 

the energy consumption. A similar approach is proposed by Schranzhofer et al. [SCH10], 

merging pre-computed template mappings (defined at design time) and online decisions 

that define newly arriving tasks to the PEs at runtime. Compared to static mapping 

approaches, the obtained results reveal that it is possible to achieve an average reduction 

on power dissipation of 40% - 45%, while keeping the introduced overhead to store the 

template mappings as low as 1kB. Wildermann et al. [WIL09] present another power-

aware mapping approach. This approach employs a heuristic that includes a neighborhood 

metric inspired by rules from Cellular Automata, which allows decreasing the 

communication overhead and, consequently, the energy consumption imposed by 

dynamic applications.  
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Coskun et al. [COS07] propose a task mapping technique aiming to eliminate 

hotspots and to reduce spatial and temporal temperature variations. The thermal history of 

the cores obtained from HotSpot [WEI06] is used as basis for the mapping decisions. The 

proposed technique is extended in [COS09] considering 3D multicore architectures, aiming 

to reduce thermal problems with low overhead. The experimental setup uses a 3D 

multicore UltraSPARC TI system, with eight cores. Results show that the proposed 

technique reduces the frequency of hotspots, spatial gradients, and thermal cycles. The 

proposed technique can be also combined with DVFS, improving the reduction of hotspots 

by 20%-40% compared to a DVFS only approach.  

In [HOS09] a stochastic dynamic task mapping and a routing algorithm are used to 

minimize the reconfiguration overhead. Lu et al. [LU10] propose a dynamic mapping 

algorithm, called Rotating Mapping Algorithm (RMA), which aims to reduce the overall 

traffic congestion (taking into account the buffer space) and communication energy 

consumption of applications (reduction of transmission hops between tasks).  

Huang et al. [HUA09] present a lifetime-aware task mapping and scheduling 

strategies based on simulated annealing. The proposed approach uses an analytical 

model to estimate lifetime reliability, considering the processors' temperature variation 

aggregated to its voltage/frequency to obtain the system MTTF. Experiments are 

conducted based on a set of synthetic applications including from 20 to 260 tasks each, 

which are executed in an abstract MPSoC platform. Simulated scenarios use up to 8 

processors. The authors relax deadline constraints by 10%, obtaining lifetime 

improvements ranging from 16.9% to 20.6%.  

Carvalho et al. [CAR10] evaluate pros and cons of using dynamic mapping heuristics 

(path load and best neighbor heuristics), when compared to static ones (e.g. simulated 

annealing and Taboo search). The Authors adopted energy consumption and latency as 

performance metrics, which were evaluated in a heterogeneous NoC-based MPSoC 

model (RTL NoC and abstract PEs implemented in System-C), regarding different 

application scenarios. Singh et al. [SIN09a][SIN09b][SIN10] extended the dynamic 

heuristics proposed by Carvalho et al. [CAR10] to support multi-task mapping. A clustering 

approach is proposed, which tries to maximize the number of communicating tasks in the 

same PE. This technique verifies the previously mapped tasks in a given a PE to map a 

new ones on it: if the required task communicates with some previously mapped task, it is 

mapped; if not, then another PE is verified. The Authors mention that some PEs may 

receive only one task, underusing the system resources. The clustering approach, 

compared to a non-clustering approach, improves in average 15% the channel load and 

energy consumption, with some improvement in packet latency and execution time.  

Khajekarimi et al. [KHA12] present a runtime task mapping approach aiming to 

reduce network communication and congestion in NoC-based heterogeneous MPSoCS. 
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First, the approach maps the initial tasks of an application. The initial task mapping aims to 

group the application tasks in adjacent nodes or as close as possible. This is done by 

choosing a PE that has a number of idle neighbors equal to the number of communicating 

tasks with the required initial task and distance among these neighbors is minimal. Then, 

the other application tasks are mapped using a heuristic based on BN (Best Neighbor 

heuristic) [CAR10]. As BN, this heuristic tries to approximate a pair of communicating 

tasks using the network path with the lowest traffic. It also evaluates if a PE has a number 

of idle neighbors equal to the number of tasks communicating with the required task.  

Experiments are evaluated with the Noxim Simulator [FAZ08] using a 4x4 mesh topology 

and real applications. Results show that the proposed approach achieves an energy 

reduction of 15% compared to BN and 23% compared to CE [HU10].  

Hartman et al. [HAR12] present a runtime task mapping approach aiming to increase 

the system lifetime. The proposed approach assumes that each processor has a wear 

sensor that captures system data (e.g. processor usage). Based on captured information, 

the mapping is defined considering changes in wear patterns in the system. Real and 

synthetic applications are used to validate the proposed task mapping, which improves the 

lifetime of 7.1% on average when compared to temperature-based heuristics. 

Chantem et al. [CHA13] propose both dynamic task mapping and scheduling to 

improve system reliability. This work adopts the LTF-based algorithm [CHE08] for dynamic 

task mapping, which tries to balance processors load assigning the larger tasks to least 

worn cores. Then, a scheduling technique is executed periodically, depending on system 

wear state conditions, trying to compensate uneven core wear states. Authors also 

analytically determine thermal profiles for a given workload, aiming to maximize system 

lifetime. Experimental results use a bus-based system with 4 or 9 homogeneous cores, 

based on the Alpha 21264 processor. Benchmarks varying from 100 to 1000 tasks are 

used for evaluation. The proposed approach improves in 97% the system MTTF when 

compared to a thermal-aware algorithm. 

Das et al. [DAS13] propose a task mapping technique that generates mapping 

solutions at design-time, aiming to satisfy application deadlines and to maximize the 

system lifetime (measured in terms of the MTTF of cores due to internal wear-outs and 

aging of NoC links). These solutions are stored in a database, which is used at runtime by 

a system manager that selects the best mapping solution for a given application. When an 

application is required, the entire set of system cores is dedicated to it, and the optimum 

mapping solution is fetched and applied. If one or more cores fail, the system restarts and 

the best solution for the reduced number of cores is selected. Experiments are evaluated 

using a range from 4 to 32 synthetic and real applications executed on an MPSoC platform 

configured with up to 8 homogeneous cores. The proposed solution is improved in 

[DAS14] by including an offline DVFS technique defining voltage and frequency levels of 

all cores. A model based on HotSpot [WEI06] is proposed to estimate the temperature of a 
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core to determine its aging impact. Experimental results are conducted using synthetic and 

real applications executed on a 3x3 mesh MPSoC platform, which assumes five voltage-

frequency pairs for each core. The proposed technique achieves 40% energy savings and 

6% increases in the lifetime compared to existing approaches.  

Bolchini et al. [BOL13] present a runtime task mapping technique aiming to improve 

system reliability (MTTF) under energy and performance constraints. For this purpose, this 

work combines the technique of Das et al. [DAS13] with a remap strategy. Therefore, 

mapping solutions are also generated at design time, and system conditions at runtime 

determine their selection. Then, a remap strategy periodically verifies the system and re-

assigns a part of the tasks to other cores, in order to improve lifetime. The authors report 

some results based on a NoC-based SystemC TLM many-core model using 3x3 and 3x4 

mesh configurations. Results show the proposed technique improves lifetime by 16% with 

less than 10% communication energy overhead compared to the static approach. 

Differently from other works, [FAR08][ANA12][CUI12][KOB11] and [WEI11] propose 

distributed dynamic mapping approaches. Al Faruque et al. [FAR08], Anagnostopoulos et 

al. [ANA12] and Cui et al. [CUI12] divide the system into regions, named clusters. In Al 

Faruque et al. [FAR08] approach, clusters are controlled by an agent (manager) 

responsible for the task mapping within a cluster. The overall system is controlled by many 

synchronized global agents, responsible for storing information related to all clusters, 

deciding in which cluster a given application will be mapped and re-organizing the clusters 

(re-clustering) at runtime. Cui et al. [CUI12] claim that the work proposed by Al Faruque 

leads to a high communication traffic to collect resource information to make decisions. To 

solve this issue, they propose a cluster-based scheme for task mapping, aiming to reduce 

the communication traffic between a global agent and the cluster agents, removing some 

of local clusters information from the global agent and changing the cluster reorganization 

scheme. 

Anagnostopoulos et al. [ANA12] propose a divide and conquer method to perform 

distributed runtime mapping onto homogeneous and heterogeneous many-core platforms. 

When a new application is required to execute in the system, the proposed scheme 

divides the network in regions, using as criterion the application size. The region that best 

fit the application is chosen. A regional controller is configured to execute the mapping 

algorithm within the chosen region.  

Kobe et al. [KOB11] propose task mapping using agents. However, agents do not 

have a predefined region to control as in the previous works. The agent selects PEs to 

map a given application. An agent is assigned at runtime to a random PE when a new 

application is required. Then, the agent searches for PEs to map the tasks, starting with 

the closest to farthest ones. The disadvantage of the presented method is the possibility of 

a communication bottleneck since the agent may become distant from the application it 
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controls. 

Weichslgartner et al. [WEI11] propose a decentralized mapping approach aiming to 

reduce the NoC congestion. The proposed mapping approach considers only a local view 

of adjacent nodes on the NoC to execute the mapping, where each task contains a list of 

its succeeding tasks to be mapped. The method is limited to applications with a tree 

topology. The root (initial task) is mapped first, and then each task executes the mapping 

heuristic to map its successor tasks. 

Table 2 summarizes the reviewed works according to the proposed taxonomy for 

dynamic mapping. Only a few works related to multi-task mapping were found in the 

literature, all proposed by Singh et al. [SIN09a][SIN09b][SIN10]. Multi-task techniques 

include clustering, which groups tasks to be executed in the same PE. A non-optimized 

clustering approach may lead to hotspots, reducing system lifetime and accelerating 

system wear out. Heterogeneous MPSoCs may have better performance for specific 

applications, and homogeneous MPSoC are general-purpose platforms. As industrial 

examples [INT12][TIL10], the present work focuses the research on homogeneous 

architectures. Another important feature is the distributed system management approach, 

as proposed in [FAR08][ANA12][CUI12][KOB11] and [WEI11]. Such approach is scalable 

and can reduce the mapping algorithm computational effort, increasing system 

performance. 

The literature presents different runtime task mapping approaches to improve system 

reliability. All reviewed works use a centralized system management approach 

[CHA13][COS07][COS09][DAS13][DAS14][BOL13][HUA09][HAR12]. Among them, some 

works [DAS13][DAS14][BOL13] produce mapping decisions at design time, which are 

stored in a database and used at runtime. This approach may reduce system performance 

due its incapability of dealing with unpredictable system variations. Task mapping 

approaches proposed in [CHA13][HAR12], employ physical sensors to capture thermal or 

wear-state condition of cores at runtime. Included sensors provide accurate information to 

the mapping decision at the cost of additional system area and energy consumption. 

Huang et al. [HUA09] use an abstract MPSoC to validate the proposed approach, which 

can produce inaccurate performance results.  

The literature presents distributed approaches to improve system reliability. However, 

such approaches use other techniques rather than task mapping [GE10][WU11][LIU15]. 

Ge et al. [GE10] propose a task migration approach for system thermal balancing. This 

approach uses thermal sensors, which aggregates hardware costs. Liu et al. [LIU15] also 

present a thermal management task migration approach, which does not consider 

performance costs. Wu et al. [WU11] present a dynamic frequency scaling for thermal 

management, which may impose additional hardware costs.  

 



33 

 

 

Table 2 – State-of-the-art in dynamic mapping heuristics. 

Author / 
Year 

Multi/ 
Mono-task 

Architecture 
model 

Control 
management 

Optimization Goal 

Smit et al. 
[SMI05] 

Mono-task Heterogeneous Centralized 
Energy Consumption and 

QoS application 
requirements 

Ngouanga et al. 
[NGO06] 

Mono-task Homogeneous Centralized 
Communication volume, 

computation load 

Coskun et al. 
[COS07][COS09] 

Mono-task Homogeneous Centralized System Reliability 

Chou et al. 
[CHO07][CHO08] 

[CHO10] 
Mono-task Homogeneous Centralized 

Energy Consumption, 
Internal and external 
network contention 

Hölzenspies et al. 
[HÖL07][HÖL08] 

Mono-task Heterogeneous Centralized 
Energy Consumption and 

QoS application 
requirements 

Al Faruque et al. 
[FAR08] 

Mono-task Heterogeneous Distributed 
Execution time, 

napping time and 
nonitoring traffic 

Wildermann et al. 
[WIL09] 

Mono-task Homogeneous Centralized 
Communication latency, 

energy consumption 

Hosseinabady et al. 
[HOS09] 

Mono-task Homogeneous Distributed 
Reconfiguration 

overhead 

Huang et al. 
[HUA09] 

Mono-task 
Homogeneous 

and 
Heterogeneous 

Centralized System Reliability 

Schranzhofer et al. 
[SCH10] 

Mono-task Homogeneous Centralized Energy consumption 

Lu et al. 
[LU10] 

Mono-task Homogeneous Centralized 
Communication latency 

and energy consumption 

Carvalho et al. 
[CAR10] 

Mono-task Heterogeneous Centralized 
Network contention, 

communication volume 

Singh et al. 
[SIN09a][SIN09b] 

[SIN10] 
Multi-task Heterogeneous Centralized 

Network contention, 
communication volume 

and energy consumption 

Weichslgartner et al. 
[WEI11] 

Mono-task Homogeneous Distributed 
Communication latency 
and network contention 

Kobe et al. 
[KOB11] 

Mono-task Homogeneous Distributed 
Execution time, 

 Communication traffic 

Cui et al. 
[CUI12] 

Mono-task Homogeneous Distributed 
Communication traffic 
energy consumption 

Anagnostopoulos  
et al. 

[ANA12] 
Mono-task 

Homogeneous 
and 

Heterogeneous 
Distributed Communication volume 

Khajekarimi et al. 
[KHA12] 

Mono-task Heterogeneous Centralized 
Network communication 

and congestion 

Hartman et al. 
[HAR12] 

Mono-task 
Homogeneous 

and 
Heterogeneous 

Centralized System reliability 

Chantem et al. 
[CHA13] 

Mono-task Homogeneous Centralized System reliability 

Bolchini et al. 
[BOL13] 

Mono-task Homogeneous Centralized 
Energy consumption and 

system reliability 

Das et al. 
[DAS13][DAS14] 

Mono-task Homogeneous Centralized 
Application deadlines 
and system reliability 

Proposed  
work 

Multi-task Homogeneous Distributed 

Communication 
volume reduction and 
workload distribution 

balancing 
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This Thesis proposes a task mapping approach that differs from literature since it 

includes all the following characteristics: 

 Executed at runtime. The proposed approach can better manage time-varying 

workloads and system changes. 

 Distributed mapping approach.  The proposed approach is implemented in an 

MPSoC managed in a distributed way. Such distributed system management 

improves system scalability by dividing the system into regions, each one with 

a manager responsible for actions inside it. Further, it reduces mapping 

decision computational effort, not compromising the system performance. 

 Induces to a better system reliability. The proposed approach aims to improve 

communication volume reduction and workload balancing, which are directly 

related to a better system reliability [CHA13][WAN14]. 

 Does not employ physical sensors in the mapping decision, which increases 

area and energy costs. 

 Validated in large cycle-accurate MPSoCs (10x10 MPSoC size). 
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3. PLATFORM MODELS 

This Chapter details the first contribution of the Thesis: a multi-level modeling 

framework. Such framework aims to explore the vast number of alternatives in the design 

space of MPSoCs by combining high-level and high-accurate models and tools. The 

proposed framework is divided into three layers, as illustrated in Figure 1, in which the 

abstraction of the models is increased from the bottom to the upper layer.  

 

Figure 1 – Multi-Level modeling framework proposed by this Thesis. 

The first layer concerns the reference NoC-based MPSoC VHDL RTL model 

presented in Section 3.1. Section 3.2 presents the second layer of the framework (Thesis 

contribution), where the reference platform is implemented in SystemC RTL. Section 3.3 

presents an Open Virtual Platform (OVP) implementation of the reference platform (Thesis 

contribution). The interoperability between the three platform models is guaranteed 

through a well-defined hardware abstraction layer (HAL) and a unified software description 

(i.e. OSs, applications, communication model), also proposed in this Thesis. In this 

direction, target software stack can be modified and executed onto the OVP-based 

platform model until the point where its functionality is validated. The same code can then 

be executed in a still fast but clock-cycle accurate RTL SystemC-ISS model, which allows 

assessing lower performance figures (e.g. application execution time). Finally, RTL-VHDL 

model can receive the target software as input to profile the power figures, e.g., the 

average switching activity of adopted CPU architecture. Section 3.4 concludes this 

Chapter, summarizing the main results. 
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3.1 Reference Platform 

The reference MPSoC model used in this Thesis is the HeMPS (Hermes 

Multiprocessor System-on-Chip) platform [WOS07][CAR09]. HeMPS is a general purpose 

homogeneous MPSoC in which processing elements (PEs) are interconnected through the 

Hermes NoC [MOR04]. An external memory, named application repository, contains the 

object code of the application tasks to execute in the system. The system uses distributed 

memory architecture, based on scratchpad memories rather than cache memory. HeMPS 

adopts scratchpad as local storage memories due to its power efficiency and management 

facilities when compared to cache memories. Further, scratchpad memory is more 

predictable in terms of access time, and it does not require any coherence protocol, as 

required by cache-based architectures [BAN02][VIL11]. In HeMPS, all communication 

occurs through message passing. Inter-task communication uses send and receive MPI-

like primitives. Figure 2(a) illustrates a general view of a 3x3 instance of the HeMPS 

architecture.  
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(a) block diagram of 3x3 instance of the HeMPS 
platform, with SPs (slave PEs), and one GMP 

(Global Manager PE). 

(b) Processing element of the HeMPS platform. 

Figure 2 –HeMPS MPSoC block diagram. 

The MPSoC architecture can be defined as a directed graph GMPSoC = (PE, L). 

Each vertex pei ∈ PE is a processing element, containing a MIPS-like processor (Plasma), 

a local memory (RAM), a DMA module, a network interface and a router, as shown in 

Figure 2(b). An edge lij ∈ L is a NoC link interconnecting pei to pej. 

Processing elements are divided into two different types: Slave Processing Element 

(SPs) and Manager Processing Elements (MPs). SPs are responsible for executing 

application tasks. Each SP runs a simple operating system, named microkernel, which 

supports communication between PEs, multitask execution and software interrupts (traps). 

The SPs local memory is organized into SP_PAGES pages. One page stores the 

operating system. Other pages, called resources, store the object-code of tasks that will be 

executed on this SP. Each SP can execute MAX_SP_TASKS tasks simultaneously, which 

corresponds to SP_PAGES -1. If a resource does not have a task mapped on it, it is 

considered free or available. The microkernel is a preemptive operating system where 

each task uses the CPU for a pre-defined period, named timeslice.  
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MPs are responsible for system management functions, including task mapping and 

system debug. MPs can be divided in different types, which are defined depending on the 

system management approach: centralized or distributed. Such system management 

approaches are better explained in Chapter 4.  Both management approaches have a 

Global Manager Processing Element (GMP), which is a single PE responsible for receiving 

user requests demanding the execution of new applications on the system. GMP is also 

the only one that accesses the application repository. 

The Hermes NoC employs a 2D mesh topology. The communication mechanism is 

performed by wormhole packet switching, in which a packet is forwarded between routers 

divided by flits. Routers have input buffers, control logic shared by all router ports, an 

internal crossbar, and up to five bi-directional ports. These ports are east, west, north, 

south and local. The local port establishes communication between a router and a PE, and 

the remaining ports are used to connect a router to its neighbors. The arbitration algorithm 

used by the router is the round-robin. Each router has a unique network address. This 

address is expressed in XY coordinates, where X represents the horizontal position and Y 

the vertical position of the router in the network, being 00 the lower left corner. The XY 

routing algorithm is used, sending packets through the NoC first horizontally to reach the X 

destination router position, and then vertically to arrive at the destination router.  

Originally, two HeMPS implementation models were available:  

(i) a VHDL model: all components modeled in RTL VHDL.  

(ii) a mixed model, called VHDL-ISS model: NoC, NI, and DMA are modeled in 

RTL VHDL; processors are modeled with an ISS (Instruction Set Simulator) 

with a SystemC wrapper, and memories are modeled in SystemC RTL. Such 

model has the same accuracy of the VHDL model since ISS processors and 

SystemC memories are clock-cycle accurate. 

The VHDL is synthesizable, enabling to capture precise area, frequency and power 

performance figures. Such model was successfully implemented in a 3x3 instance FPGA 

prototype and a 65nm ASIC. The FPGA prototype contains the MPSoC and three 

additional modules: (i) MAC Ethernet communication interface with the host; (ii) control 

unit; (iii) DDR2 memory controller. The host sends the applications’ codes to a DDR2 

memory, which acts as the application repository. Next, the host may send commands to 

the MPSoC to start the execution of users’ applications or to request debug information. 

The control unit is responsible for controlling the access to the external memory or the 

MPSoC. The 65nm ASIC implementation, using the memory generator of the design kit, 

required roughly one mm2 for each PE, as illustrated in Figure 3. The MPSoC worked 

correctly after the back-end simulation.  
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(a) PE floorplanning, with the processor and the 
router in the center, and the memories in the 

periphery.  

(b) PE layout. The side of the PE is 1 mm, and the side of the 
processor and the router is 0.3 mm. Technology: 65 nm. 

Figure 3 – Processing element layout. 

The main disadvantage of the VHDL model is its very high simulation time, with few 

debug facilities (e.g. waveforms). For this purpose, the VHDL-ISS model was 

implemented; reducing simulation time and obtaining some gains in debuggability (i.e. 

insertion of debug codes in the ISS processor model).  

3.2 SystemC Platform 

This Section presents a SystemC RTL model of the reference platform, which 

enables the exploration and the validation of large MPSoCs composed of dozens of PEs. 

The validation of such MPSoCs is unfeasible using the VHDL description of the reference 

platform due its high simulation cost. Underlying SystemC RTL model was co-developed 

with Eduardo Wachter, Ph.D. supervised by Prof. Fernando Moraes. The availability of 

such model enabled the exploration of distributed system management solutions, as 

presented in Section 4.4.  

The proposed model preserved its reference platform accuracy, while reducing 

significantly the required simulation time. Another improvement of the proposed model is 

the additional validation and debugging capabilities inherited from SystemC facilities. The 

reference platform VHDL-ISS model was used as starting point for developing the 

SystemC RTL model.  While ISS processor and the memory model descriptions are 

reused, the NoC, the NI, and the DMA were modeled as a SystemC RTL description, in 

order to preserve the VHDL accuracy.  The modeled SystemC RTL NoC has been used in 

different research projects related to research on allocation (e.g. FP7 DreamCloud, 

http://www.dreamcloud-project.org), as well as in the exploration of compute accelerator 

architectures [GAR14]. 
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Each VHDL module was rewritten in SystemC RTL without taking advantage of some 

SystemC language structures and primitives, in order to maintain a high accuracy. For 

example, SystemC supports channel primitives, such as sc_fifo that models the behavior 

of a FIFO buffer. Such primitive could be used to reduce the implementation and, possibly, 

the simulation time. However, this primitive is not cycle-accurate, which is the main 

requirement of the proposed model implementation.   

 

 VHDL SystemC 
1 process(reset, clock_rx) void fifo::in_proc() 
2 begin { 
3      if reset='1' then      if(reset.read()==1){ 
4           last <=(others=>'0');           last.write(0); 
5      elsif clock_rx'event and clock_rx='0' then      }else{ 
6           if avail_space='1' and rx='1' then           if((avail_space.read()==1)&&(rx.read()==1)){ 
7                buffer(CONV_INTEGER(last)) <= data_in;                buffer[last.read()] = data_in.read(); 
8                if(last = BUFFER_SIZE - 1) then                if(last.read()==(BUFFER_SIZE - 1)) 
9                     last <= (others=>'0');                     last.write(0); 

10                else                else 
11                     last <= last + 1;                     last.write((last.read() + 1)); 
12                end if;                 } 
13           end if;            } 
14      end if;       } 
15 end process; } 

Figure 4 – Description of the FIFO buffer control module in VHDL and SystemC RTL. 

 

Figure 4 presents the code of a FIFO buffer control module, which verifies the buffer 

capacity to store incoming data. The left side of Figure 4 presents the VHDL code for this 

module, which is used in the reference model. The right side of the figure shows the code 

rewritten in SystemC RTL, preserving the same functionality. The only difference in both 

codes refers to the language syntax. Unlike VHDL, SystemC uses port methods when 

reading from (.read()) and writing to (.write()) a port, as exemplified in lines 3 and 4. In line 

1, the SC_METHOD fifo is executed whenever an event occurs on its sensitivity list as the 

same way in the VHDL statement process. An SC_METHOD sensitivity list is defined in 

the constructor of an SC_MODULE, the equivalent of an ENTITY in VHDL. The “IF” 

conditional statement in SystemC replaces “THEN” and “END IF” by curly braces (“{“ and 

“}”, respectively), as seen in lines 3 and 12. 

3.2.1 Comparison of the SystemC Model against the Reference Model 

This Section compares the proposed SystemC model with the former reference 

platform models: the VHDL and VHDL-ISS models. The three discussed models’ 

characteristics are presented in Table 3, showing the description language for each 

system module. 
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Table 3 – Characteristics of the models. 
Model 

Module 
SystemC VHDL-ISS VHDL 

Router SystemC RTL VHDL VHDL 
NI SystemC RTL VHDL VHDL 

DMA SystemC RTL VHDL VHDL 
RAM SystemC RTL SystemC RTL VHDL 

Processor SystemC+ISS SystemC+ISS VHDL 

 

Table 4 presents a qualitative comparison of the main models features regarding 

synthesizability;  the precision of capturing area, frequency and power data; simulation 

time; throughput and latency values; and accuracy. As mentioned before, the VHDL model 

can be synthesizable, allowing capturing accurate performance figures. However, such 

model demands a very high simulation time, with few debug facilities. The VHDL-ISS 

reduces simulation time and increases debuggability when compared to the VHDL model. 

The proposed SystemC RTL model, avoids the VHDL-SystemC co-simulation of the 

VHDL-ISS model, boosting the simulation time and increasing debuggability.  

 

Table 4 – HeMPS models comparison. 
Model 

Parameter 
SystemC VHDL-ISS VHDL 

Synthesizable No No Yes 

Precise Area, Frequency, Power Evaluation No No Yes 

Simulation Time LOW MEDIUM VERY HIGH 

Accurate throughput and latency values Yes Yes Yes 

Accuracy Clock cycle Clock cycle Clock cycle 

 

The validation process of all models was performed using commercial simulators, 

such as Mentor Modelsim and Cadence Incisive, coupled to adequate verification models 

like the U-model and/or assertion-based verification. The debugging and validation of the 

SystemC model can be done in two ways: (i) generating a pre-compiled executable file of 

the MPSoC; or (ii) using a commercial RTL simulator, such as Modelsim. The use of 

commercial RTL simulators leads to higher simulation time than executable file approach. 

It is important to observe the last two rows of Table 4. The obtained values for throughput 

and latency are the same for the three models since all have clock-cycle accuracy. 

The simulation cost of each HeMPS MPSoC model is evaluated by using different 

scenarios. Such scenarios consider 4x4, 5x5, 7x7 and 10x10 MPSoC configuration; 

different MPSoC occupation, static mapping, and SPs configured to execute up to 2 

simultaneous tasks. Experiments use different instances of a synthetic application with six 

tasks, illustrated in Figure 5. The number of instances of such application varies from one; 

and a given number of instances that corresponds to approximately 25%, 50%, 75%, and 

100% of the MPSoC occupation. Table 5 shows the simulation time for each scenario. 
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Figure 5 – Synthetic application with 6 tasks used in the test scenario. 

The last two columns of Table 5 evaluate the speedup obtained using VHDL-ISS and 

SystemC models, compared to the VHDL model. The intermediate model, VHDL-ISS, 

provides a simulation time speedups of at least one order of magnitude compared with the 

VHDL model. In turn, improvements of two orders of magnitude are achieved with 

SystemC model. The last scenario, a 10x10 MPSoC instance, with all SPs running two 

tasks, took 8.5 minutes to simulate with SystemC. The VHDL model would require at least 

25 hours (assuming a speedup value of 180) for this test case. 

 

Table 5 - Simulation time (in seconds) and speedup. Simulations run on a 6-core, 64 bits 
Xeon architecture with 12 Gbytes of RAM, running Linux OS. [PET12] 

MPSoC size 
MPSoC 

occupation 
VHDL VHDL-ISS SystemC 

Speedup 
VHDL-ISS/ 

VHDL 

Speedup 
SystemC/ 

VHDL 

4x4 

1 instace 3852.34 217.35 34.99 17,7 110,1 

25% 4219.99 220.17 35.26 19,2 119,7 

50% 4701.47 231.67 37.97 20,3 123,8 

75% 5162.13 245.78 40.56 21,0 127,3 

100% 7288.23 291.73 46.86 25,0 155,5 

5x5 

1 instance 7742.04 336.25 53.22 23,0 145,5 

25% 8134.28 359.32 60.83 22,6 133,7 

50% 9087.88 423.85 65.76 21,4 138,2 

75% 12205.26 429.10 82.84 28,4 147,3 

100% 12460.31 466.63 85.45 26,7 145,8 

7x7 

1 instance 19765.50 682.96 114.18 28,9 173,1 

25% 21797.14 724.61 129.06 30,1 168,9 

50% 32153.21 1049.32 179.42 30,6 179,2 

75% 41211.06 1272.44 226.46 32,4 182,0 

100% 50557.62 1538.20 274.07 32,9 184,5 

10x10 

1 instance 50862.91 2344.64 289.52 21,7 175,7 

25% NA 4319.71 508.97 NA NA 

50% NA 5686.91 668.76 NA NA 

75% NA 7435.22 945.25 NA NA 

100% NA 9897.06 1122.85 NA NA 
 

Figure 6 plots the simulation time for the highlighted rows of Table 5 (MPSoC 

instances with 50% load). Note that the VHDL simulation time is presented in the 

secondary Y-axis, due the large amount of time required to simulate the underlying 

scenarios. A significant impact on simulation time is observed when a 10x10 MPSoC 

configuration is used. Resulting cost is mainly due to the co-simulation process. The trend 

of the simulation time growth with regard to the MPSoC size for the SystemC model is 

O(SP2) (time = 0.0632.SP2 + 0.2932.SP + 20.533, R² = 0.99998). For example, for 400 
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SPs it is expected a simulation time of 2.83 hours with the SystemC model. 

 

 

Figure 6 – Simulation time for MPSoC instances with 50% load (VHDL simulation time is 
presented in the secondary Y-axis). 

To demonstrate the accuracy of the proposed SystemC model in terms of executed 

instructions and execution time, the VHDL model is used as reference. Table 6 presents 

the experimental setup. The scenarios use 4x4 platform instance, in which two 

applications are evaluated: a partial MPEG decoder, with 5 tasks; and synthetic VOPD 

(Video Object Plane Decoder) application, with 12 tasks. The first scenario (SC1) executes 

2 MPEG and 1 VOPD instances, totalizing 22 tasks. The second (SC2) and third (SC3) 

scenarios contain 44 and 88 tasks, respectively.  

 

Table 6 - Setup of applications, in a 4x4 MPSoC, with one manager PE. 
Applications SC1 SC2 SC3 

MPEG (5 tasks) 2 4 8 

VOPD (12 tasks) 1 2 4 

Total tasks 22 44 88 

 

Table 7 evaluates the simulation time (8-core Xeon processor, 32 GB RAM) for the 

three scenarios, whereas a speedup of two orders of magnitude is observed using the 

SystemC model.  

 

Table 7 – Simulation time (in seconds) for RTL-VHDL and RTL-SystemC models. 
Scenarios VHDL SystemC VHDL/SystemC 

SC1 2,425 19 127 

SC2 4,407 37 119 

SC3 7,932 51 155 
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Table 8 evaluates the execution time required to execute all applications of each 

scenario, and Table 9 presents the total number of instructions executed by all processors 

in the platform. Such results demonstrate that the SystemC and VHDL models in practice 

have a similar behavior. The differences observed in the Tables are due to simplifications 

made in the ISS, which do not reflect the real behavior of some instructions (e.g. 

multiplication and division instructions). 

 

Table 8 – Execution time (in clock-cycles) for low-level models. 
Scenarios VHDL SystemC VHDL/SystemC 

SC1 265,015 265,228 0.998 

SC2 526,660 528,524 0.996 

SC3 1,050247 1,055,543 0.995 

 

Table 9 – Number of executed instructions for low-level models. 
Scenarios VHDL SystemC VHDL/SystemC 

SC1 422,757 423,120 0.999 

SC2 834,335 836,335 0.997 

SC3 1,662,311 1,664,941 0.998 

3.3 OVP Platform 

Although the proposed SystemC platform provides a considerable simulation 

speedup compared to the VHDL model, the achieved simulation performance may remain 

a bottleneck for the exploration of large systems running several applications 

simultaneously. In attempt to overcome such bottleneck, this Section describes another 

contribution of this Thesis, the development of two new platforms: (i) mixing SystemC OVP 

– section 3.3.1; (ii) OVP only - section 3.3.2. The former keeps the clock-cycle accuracy of 

the NoC (RTL-SystemC), with the OVP flexibility to use different processors and software 

debugging. The OVP-only platform sacrifices accuracy but enables faster software 

development. 

With 100-core chips already available [DE13], software development becomes one of 

the major challenges in MPSoC design. For instance, IBS [IBS13] projects that software 

development consumes at least 50% of the system’s design cost, and that percentage is 

rising, as illustrated in Figure 7. Software development comprises, among others: (i) inter-

processor communication protocol stacks definition; (ii) OS porting and analysis; (iii) 

exploration of better programming model facilities to address parallel programming 

[MAR12]; (iv) drivers development [GRA12]; (v) application software portability for 

heterogeneous multiprocessing hardware.  

Virtual platforms have been employed to achieve concomitant hardware and software 

development, while providing more efficient design exploration support (e.g. debuggability) 

[CEN09]. A virtual platform is a full-system simulator that emulates hardware components 
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(e.g. CPUs, memories), allowing evaluating a given software stack, on the same machine, 

as it is running on a real physical hardware. Examples of such simulators are Simics 

[SIM13], PTLsim [YOU07], SimpleScalar [AUS02], gem5 [BIN11] and OVPSim [OVP13]. 

Except PTLSim that only supports x86, all mentioned simulators offer at least five 

processor architectures. For instance, Simics from WindRiver supports Alpha, ARM, MIPS, 

PowerPC, SPARC and x86 models. While Simics and OVPSim are respectively 

functionally-accurate and instruction-accurate, the remaining simulators can be considered 

as quasi-cycle-accurate.  

 
Figure 7 - Software and architectural design costs for embedded systems at advanced 

process technologies. Figure extracted from IBS 2013 [IBS13]. 

Cycle-accurate simulators target microarchitecture exploration since they provide 

specific modeling details, such as the pipeline implementation and cache coherence 

protocols [BIN11]. However, these simulators are not scalable to a large number of 

processors, specifically when it comes to simulation speed and debugging usability. This 

scenario points to the use of OVPSim since it covers our main requirements: (i) large 

number of processor architectures supported; (ii) scalable and acceptable simulation time 

(hundred of MIPS); (iii) open source license; (iv) component-oriented infrastructure; (v) 

active development support. Nevertheless, OVPSim does not model cycle-accurate 

processors but rather instruction accurate processors, which provides inaccurate 

application execution time. Another limitation inherent to OVPSim is the fact that only bus-

based architectures are available in the original distribution. 

OVPSim [OVP13] is a virtual platform and modeling framework proposed by Imperas, 

aiming to accelerate the development of embedded software, specifically for SoCs and 

MPSoCS. It is composed of three main components:  

(i) APIs that enable to model in C language hardware components;  

(ii) library of free open-source CPUs and peripheral models;  
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(iii) OVPsim simulator. OVPsim is a dynamically linked library, which supports the 

simulation of bus-based multiprocessor platforms. OVPSim relies on dynamic 

binary translation that increases simulation speed [OVP13].  

OVPSim provides pre-defined models including: processor models (ARM, MIPS, 

PowerPC, etc.), system components (RAM, ROM, caches memories, etc.) and peripheral 

models (DMA, UART, FIFO, etc.). These models can be combined in a single platform by 

using the ICM (Innovative CPU Manager) API, which also provides fully control and 

observability of all components. Processor behavior models can be described using the 

VMI (Virtual Machine Interface) API, which decodes the target instruction to be simulated 

translating it to x86 instructions that are then executed on the host machine. Peripheral 

and components behavior models can be described using the PPM (Peripherals Models) 

and BHM (Behavioral Models) APIs. Such APIs use an event-based scheduling 

mechanism to enable modeling of time, events, and concurrency [OVP13]. 

When executing multiprocessor platforms, each processor is executed for a certain 

number of instructions (quantum) in OVPSim. The simulator defines 100,000 instructions 

by processor as the default quantum value. The number of million instructions executed 

per second (MIPS) can be specified in a processor model, defining its execution speed. 

OVP processor models have a default speed of 100 MIPS.  

3.3.1 SystemC/OVP Platform 

As mentioned before, one of the main limitations of OVP is the fact it provides only 

bus-based platforms. To overcome this restriction, this Section presents the integration of 

the SystemC NoC model to the OVP components’ library. One could argue that a simple 

crossbar to interconnect CPUs at higher abstraction levels would be sufficient to develop 

and to validate applications and operating systems since a crossbar supports parallel 

transactions between CPUs. This work advocates that integrating instruction-accurate 

CPU models with a cycle-accurate NoC enables: 

I. capturing the communication volume at each link – allowing to compute the power 

spent in the communication infrastructure as a function of the data volume and 

number of hops [HU10]; 

II. mapping quality evaluation – by using the hop number between tasks and the 

communication volume it is possible to evaluate different mapping heuristics; 

III. drivers development at higher abstraction levels – the NoC model uses wires 

instead of TLM transactors, enabling to develop the required drivers. 

The complex process of integrating distinct CPUs in NoC-based MPSoC platforms 

limits the implementation and the exploration of multiprocessor systems. For instance, the 

implementation of a network interface is a time-consuming task, which requires designer 

knowledge in terms of HW/SW implementation and protocols definition. In this sense, one 
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important feature of the proposed modeling is the easiness of integrating different CPU 

models, allowing the development of heterogeneous MPSoCs (this research topic is out of 

the scope of the present Thesis).  

Figure 8 details the architecture of the SystemC/OVP platform, describing the 

interconnection of the OVP CPUs with the SystemC NoC. The numbers in Figure 8 

correspond to a packet reception and its processing by the OVP CPU model.  
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Figure 8 – Integration of SystemC NoC model with OVP CPU model. 

Initially, the NI receives a packet from the router (step 1). An event is triggered 

notifying the receive module (block inside of the SystemC-OVP interface) related to the 

incoming packet. The receive module then reads the incoming packet, stores it into a 

buffer used to synchronize the communication between the untimed CPU and the clock-

cycle accurate NI (step 2). After storing a complete packet, the module informs the CPU 

that there is data stored in the buffer. 

As shown in step 3, there are two ways to inform a CPU about incoming data: 

 for an SP, an interrupt is raised, and an ISR (Interrupt Service Routine) is called to 

read data.  

 for MPs, a memory mapped register is used to alert the stored data. This CPU polls 

this register periodically. Once the CPU is ready, the data is read. 

In both cases, the packet data is read by the DMA module using memory mapped 

registers (register bank in step 4). The register bank is implemented using an external 

memory mapped in the processor address space, where each register has a pre-defined 

address. The CPU is connected to a bus to which all address-mapped components are 

connected. This bus connects the local memory and the register bank.  
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Figure 9 shows the initialization of the register bank, with an address range from 

0x00000000 to 0x0FFFFFFF (line 1). Once initialized, the extMem is connected to the 

processor bus in an address area (line 2), which is defined according to the adopted CPU 

model (in this case 0xF0000000 to 0xFFFFFFFF). This memory is also “connected” to the 

callback functions regbankR and regbankW (line 2). 

 

1. extMem->init(0x00000000, 0x0fffffff); 

2. proc->extMem(0xf0000000, 0xffffffff, regbankR, regbankW, extMem); 

Figure 9 – Example of register bank external memory initialization, and the connection to 
the processor bus. 

Callback functions are executed on every read (regbankR) or write (regbankW) 

access to the defined address area. In this case, when the processor accesses this area, 

the OVP simulator calls functions responsible to interconnect the SystemC to the OVP. 

Figure 10 shows an example of a callback function related to a read memory access.  The 

callback function name (regbankR) is defined as a parameter of the ICM_MEM_READ_FN 

macro (Figure 10). The function parameter provides the memory address (address) 

accessed by the CPU, as well as the value (value) to be read from this address. Once a 

read memory access is triggered, the provided address is compared with the previously 

defined register address (line 3). The value is read by the processor (line 4) when the 

address is equal to REG_ADDRESS1 (line 3). Note that the read value comes from a 

SystemC signal (system_c_signal1), creating the communication between OVP and 

SystemC. 

 

1. ICM_MEM_READ_FN (regbankR) 

2. { 

3. if(address = REG_ADDRESS1)  

4.        value = system_c_signal1.read(); 

5. }  

Figure 10 – Example of a pseudo-code for a read callback function. 

Figure 11 gives an example of a write callback function.  This function is specified 

using the ICM_MEM_WRITE_FN macro, and the callback function regbankW as a 

parameter. This parameter provides the memory address (address) accessed by a CPU, 

as well as the value (value) to be written in this address. When a write memory access is 

triggered, the provided address is compared to the previously defined register address 

(line 3). If the address matches REG_ADDRESS1 (line 3), the value is written in a 

SystemC signal, sending, for example, a read data request from the processor to the NI. 

 

1.ICM_MEM_WRITE_FN (regbankR) 

2. { 

3. if(address = REG_ADDRESS1)  

4.        system_c_signal1.write(value); 

5. }  

Figure 11 – Example of a pseudo-code for a write callback function. 
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Finally, using the memory-mapped registers as interface, the processor receives and 

processes data (step 5 in Figure 8). When a processor needs to send data through the NI, 

these five steps are repeated but using the send module (Figure 8, inside SystemC-OVP 

Interface). First, the CPU uses the memory-mapped registers as an interface to the 

communication protocol with the NI. For each register access, a memory callback is 

triggered, generating a SystemC event. Then, the send module receives the packet and 

stores it in the buffer. When the packet is completely stored, it is sent through the NI. 

3.3.1.1 SystemC/OVP Platform Evaluation 

This Section evaluates quantitatively the simulation time and the feasibility and the 

advantages of using the SystemC/OVP platform to boost software development when 

comparing to the SystemC model. Task mapping heuristics presented in Chapter 5 are 

taken as software development case study.  

In order to compare the simulation time of both platform models, different scenarios 

are used varying: (i) platform size: 6x6 (36 PEs), 8x8 (64 PEs), 10x10 (100 PEs), 12x12 

(144PEs), 14x14 (196 PEs) and 16x16 (256 PEs); (ii) resource occupation, i.e., number of 

PEs executing tasks: 30% and 50%. All scenarios execute one or more instances of a 

Digital Time Warping (DTW) application, with ten tasks, which recognizes patterns 

measuring similarities between two sequences that may vary in time or speed.  

Figure 12 presents the simulation time for all scenarios. It is possible to observe a 

distinct behavior of the SystemC model compared to the SystemC/OVP model. Using the 

purely SystemC model the simulation time grows linearly with a load equal to 30% 

(R²=0.998) and quadratic (R²=0.999) for a load equal to 50% (confirming the trend 

presented in Figure 6). Besides the reduction of the simulation time achieved with the 

SystemC/OVP model, both SystemC/OVP graphs present a quadratic growth (R²=0.998) 

in both graphs. 

This behavior is due to the synchronization between the instruction-accurate OVP 

model with the clock-cycle accurate SystemC model. As the number of PEs increases, as 

well as the load applied to the system, the number of synchronization events also 

increases. To put in perspective the above results, Table 10 presents the speedup 

obtained using the SystemC/OVP model. Speedup suggests that systems containing up to 

144 PEs (12x12) benefit from a 2x speedup. This is an unforeseen result since larger 

speedups were expected. The quest to reduce the simulation time is presented in Section 

3.3.2, with a simplified NoC model in OVP. 
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Figure 12 – Simulation time, varying the platform modeling, number of PEs, and MPSoC 
load. Simulations setup – processor: Core 2 Duo E4400 2x2GHz; memory: 3GB;  gcc 

version: 4.7.2; gcc flags: -mfpmath=sse -Ofast -flto -march=native -funroll-loops. 

 

Table 10 - Normalized simulation time speedup for the SystemC/OVP model compared to 
the SystemC model. 

Load/PEs 36 64 100 144 196 256 

30% 1.59 2.50 2.66 2.42 1.92 1.52 

50% 1.36 2.25 2.34 2.14 1.67 1.34 

 

Software development is evaluated by exploring dynamic mapping heuristics. The 

mapping heuristics evaluated are PREMAP-DN and LEC-DN, described in Chapter 5; and 

NN [CAR10]. Six applications are used: MWD (12 tasks), AAV (8 tasks), MPEG4 (12 

tasks), Synth (9 tasks), VOPD (12 tasks), SegImg (6 tasks). Applications are modeled 

synthetically, i.e., from the application graph it is obtained the communication volume 

between each communicating pair, and such behavior is modeled in C language, using 

send and receive MPI-like primitives. This evaluation adopts a 6x6 MPSoC instance (1 

manager PE and 35 slave PEs). Each slave PE may execute up to 2 tasks simultaneously. 

Therefore, the MPSoC can execute simultaneously up to 70 tasks. Three different 

scenarios are evaluated: (i) MWD, MPEG4 and AAV - 32 tasks; (ii) MWD, VOPD and 

Synth - 33 tasks; (iii) MPEG4, VOPD, MWD and SegImg - 42 tasks.  

Table 11 presents the communication volume transmitted through the NoC for each 

mapping heuristic, in thousands of flits. The first two mapping heuristics, PREMAP-DN, 

LEC-DN, have in their cost function the communication volume. Comparing both models, 

the difference is smaller than 2%. Even though, NN (nearest neighbor) heuristic reports a 

difference of around 25%, the ranking among the scenarios remains the same. The 
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observed difference is due to a different injection rate in the network since the abstract 

processor models cannot generate data with cycle-accuracy. 

 

Table 11 - Communication volume transmitted through the NoC for each mapping 
heuristic, in Kflits. 

  

  

PREMAP-DN LEC-DN NN 

SC SC/OVP SC SC/OVP SC SC/OVP 

Scenario 1 214,7 203,0 262,4 255,5 236,6 310,9 

Scenario 2 54,2 53,6 72,6 72,1 88,0 97,6 

Scenario 3 140,3 145,5 97,5 105,0 108,7 143,2 

 

Such results demonstrate that SystemC/OVP may be used at higher abstraction 

levels to develop MPSoC applications, but the simulation time is still an issue to be 

minimized. 

3.3.2 OVP Platform 

Experimental results regarding the SystemC/OVP platform showed that the 

simulation time presents a quadratic grow, suggesting values close to the SystemC 

platform for large systems. The main reason to adopt a SystemC NoC model integrated to 

OVP was to keep the accuracy of latency and throughput values. The analysis of the 

mapping results presented in Table 11 showed that, besides the obtained accurate 

communication volume, differences in the position of the mapped tasks in the SystemC 

and SystemC/OVP models were observed. 

The explanation of such behavior comes from how processors are modeled. Instead 

clock-cycle accurate, OVP processors are instruction-accurate, thus packets are injected 

at different moments compared to clock-cycle models. This difference leads to the 

following consequences: (i) as it is not possible to determine exactly when packets are 

injected, it is not possible to evaluate precisely congestion; (ii) packets may arrive at the 

manager PE at different moments, changing the mapping order. Therefore, an OVP model 

is proposed, by replacing the NoC and NIs by OVP peripherals. This model is approximate 

timed since the execution time may be inferred from the number of executed instructions 

and latency/throughput values from the communication volume and the number of hops. 

Routers detailed in Figure 13 compose the NoC OVP model.  A router has five bi-

directional ports (input and output data ports), input buffers, and arbiter modules. The local 

port establishes communication between a router and a PE, and the remaining ports are 

used to connect a router to its neighbors.  All router connections are implemented by using 

OVP Net ports (represented by red arrows in the Figure), which model single or multi-bit 

wires. When data is written to a Net port, a callback function is triggered. 
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Figure 13 – Processor and NoC router connection in the HeMPS OVP platform.  

Packets are sent through the network divided by flits. Since routers are 

interconnected through OVP Nets, when a flit arrives in an input port a callback function 

(illustrated as a blue box in Figure 13) is triggered. This function first stores the flit in a 

buffer. If the incoming flit is the first one of a packet (containing the packet destination), the 

routing algorithm (XY) is executed. The routing algorithm selects an output port to send the 

incoming flit, storing the selected port in the routing FIFO. All flits are sent through the 

selected output port if the arbiter grants access to the packet. 

Note that this model assumes infinite input buffers (dynamically 

allocated/deallocated), but preserving the wormhole packet switching mode. In addition, it 

is important to mention that the routing algorithm is executed in a distributed fashion, at the 

input ports. 

The arbitration is also distributed. An individual arbiter is used at each output port. An 

output port constantly seeks for data to transmit. The arbiter adopts a round-robin 

algorithm to select an input port to be connected to the output port. An output port arbiter 

selects an input port buffer only if the routing FIFO has pending packets to this output port. 

For example, consider that the input port NORTH has a packet to be transmitted to 

the SOUTH output port, i.e., the NORTH routing FIFO has a pending routed packet to the 

SOUTH port. When the SOUTH arbiter schedules the NORTH input port, the NORTH 

buffer content starts to be transmitted through the SOUTH port. Both ports (input and 

output) are aware of the packet size (second packet flit). The output port keeps the 

connection until the transmission of the last packet flit, and the input port releases the 

buffer area when the packet was completed transmitted.  

As in the SystemC/OVP model, PE communicates through the NoC using memory-

mapped registers. A register bank is implemented in a processor memory address space, 
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where each register has a pre-defined address. Callback functions are triggered when a 

processor accesses the register bank area, making an interface between this processor 

and a router local port (as seen in “Register Bank callback functions” in Figure 13). 

When a PE sends a packet through the network, it writes this packet flit by flit in a 

pre-defined register memory address, triggering a callback function as described in Figure 

14. This function is specified using the ICM_MEM_WRITE_FN macro and the callback 

function regbankW as a parameter. This parameter provides the accessed memory 

address, as well as the value to be written to this address. In the function, the provided 

address is compared to a pre-defined register address (line 3). If the address matches 

RegSendFlit (line 3), the value (a packet flit) is sent (line 4).  Data is written to an OVP Net 

port data_out by using the icmWriteNet primitive.  

 

1.ICM_MEM_WRITE_FN (regbankW) 

2. { 

3. if(address = RegSendFlit)  

4.        icmWriteNet(data_out, value); 

5. }  

Figure 14 – Pseudo-code of a memory-mapped register callback function that sends a 
packet flit by flit through the network. 

Then, packet data arrives at a router, being routed until the destination router. When 

data arrives at a destination router, it is sent through a net structure to an intermediary 

module called receive module (as shown in Figure 13), which makes an interface between 

a processor and the NoC. When this happens, a callback function is triggered inside this 

module, which receives the data and stores it in a buffer. The module alerts a processor 

each time an entire packet is stored. The processor receives this alert and uses a set of 

memory-mapped registers to read the packet from the buffer module.   

Figure 15 shows the pseudo-code of memory-mapped register callback function that 

reads a flit of an incoming packet from the receive module buffer. The callback function 

name (regbankR) is defined as a parameter of the ICM_MEM_READ_FN macro. The 

function parameter provides the accessed memory address, as well as the value to be 

read from this address. Once a read memory access is triggered, the provided address is 

compared with a previously defined register address (line 3). If the address matches 

RegReadFlit (line 3), a flit is read from the receive module buffer (line 4).  

 

1. ICM_MEM_READ_FN (regbankR) 

2. { 

3. if(address = RegReadFlit)  

4.        value = BUFFER[index]; 

5. }  

Figure 15 – Pseudo-code of memory-mapped register callback function that reads a flit of 
an incoming packet. 
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The proposed OVP model also provides performance metrics, offering to designers 

some low-level performance results. Such metrics are computed at the end of the 

simulation, and include:  

(i) Communication volume. 

(ii) Energy spent in the NoC: characterized using the method proposed by [HU10], 

calibrated using the ST/IBM CMOS 65 nm technology at 1.0 V, adopting clock-

gating, and a 100 MHz clock frequency.  

(iii) Execution time and consumed energy for each processor: characterized using the 

model proposed by Rosa et al. [ROS13][ROS14]. This model counts and captures 

the executed instructions for a given processor, grouping them according to their 

behavior. Then, for each group of instructions, it is estimated the number of clock 

cycles and the energy consumed to execute them. Energy model is characterized 

by processor logic synthesis performed with Cadence RTL Compiler tool targeting a 

65nm low power library from ST Microelectronics. This Energy Model is better 

explained in Section 4.1. 

3.3.2.1 OVP Platform Evaluation 

This Section evaluates the behavior of the OVP model for large MPSoCs, by using 

the proposed SystemC model as the reference model. This Section will not apply 

comparative evaluations efforts with VHDL model, considering that the SystemC model 

presented accurate results compared to VHDL model.  

Table 12 presents the configuration of five scenarios used to evaluate the SystemC 

and OVP models in terms of simulation time. Scenarios use different MPSoC sizes: 4x4, 

6x6, 8x8, 10x10, and 12x12. As illustrated in the left column of the Table, different real 

applications are used: a partial MPEG decoder (with 5 tasks), a Dijkstra (with 6 tasks), a 

Digital Time Warping (DTW, with 10 tasks), and a Fixed-Based application (with 15 tasks). 

The second to fifth lines of the Table contain the number of executed applications. For 

example, the 10x10 MPSoC scenario executes two instances of the MPEG and DTW 

applications, and 3 instances of the Dijkstra and Fixed-Based applications. The last line of 

the table contains the total number of executed tasks in each scenario. 

The number of instructions executed by the GMP corresponds to the execution time 

in the OVP model. SPs enter in an idle state when they are not executing tasks, i.e., they 

stop executing instructions. On the other side, the GMP does not enter in idle state, 

executing instructions during all the simulation. The GMP starts the applications, mapping 

them into the system. When an application finishes its execution, the GMP is notified about 

its conclusion. At the end of the simulation, the number of instructions executed by the 

GMP is reported. Each instruction has a known CPI (Cycles Per Instruction), which 

enables to determine the number of clock cycles required to execute all applications.  
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Table 12 - Setup of applications distribution. 

MPSoC size 4x4 6x6 8x8 10x10 12x12 

MPEG (5 tasks) 1 1 1 2 4 

Dijkstra (6 tasks) - 1 3 3 5 

DTW (10 tasks) 1 1 2 2 4 

F.Base (5 tasks ) - 1 1 3 3 

Total tasks 15 36 58 93 135 

 

Figure 16(a) presents the execution time, in clock cycles, for all scenarios. For 

MPSoCs up to 64 PEs, the difference between RTL-SystemC and OVP is approximately 

10%. For larger systems (up to 144 PEs), this difference reaches 25%. At the end of 

simulation, both SystemC and OVP models report the number of executed instructions per 

PE. The number of executed instructions enables to estimate the energy consumption, 

once each instruction also has a known energy cost. Figure 16(b) presents the total 

number of simulated instructions for all scenarios, with a difference of 17% for larger 

MPSoC scenarios. Even if the same workload is applied for both models, the number of 

instructions varies due to differences in number of tasks allocated per processor and NoC 

traffic.  

Execution time and total number of simulated instructions are important for software 

designers. Even if the OVP model is not clock-cycle accurate, this model reports execution 

time and number of instructions (that enables to compute the energy consumption) with an 

error inferior to 10% compared to the gate-level implementation [ROS14].  

 Figure 16(c) presents the simulation time for all evaluated scenarios. Simulation time 

is the real time required to finish the simulation. Note that the number of tasks for each 

scenario is approximately equal to the number of PEs, corresponding to a light workload. 

Even with this light workload, the OVP model achieves a speedup of five times compared 

to the SystemC model. 

Beyond boosting the software validation, simulation speed of OVP makes it an 

attractive option for designers capturing initial performance indicators, which may be taken 

into account for further design decisions at early design phases. Achieved simulation 

speedup was expected because OVP executes at the system level. The execution time 

presents an error of 10 to 20% depending on the system size, which is an acceptable error 

for high-level models. 
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Figure 16 – Comparison between the SystemC and OVP models, where (a) presents the 
execution time, in clock cycles, for all scenarios; (b) presents the total number of simulated 

instructions for all scenarios; and (c) presents the simulation time for all scenarios. 
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Other experimental results were conducted comparing the simulation time of the 

SystemC and OVP models. Four scenarios executing 22 partial MPEG decoders with 5 

tasks each onto different platform sizes: 6x6, 12x12, 16x16, and 20x20. Table 13 shows 

the obtained results, including simulation time in seconds and speedup obtained by the 

OVP model. The 12x12 scenario shows a speedup of 58.41. 

 

Table 13 -  Simulation time speedup, comparing SystemC and OVP platforms. Simulations 
setup – processor: Core 2 Duo E4400 2x2GHz; memory: 3GB; gcc version: 4.7.2; gcc 

flags: -mfpmath=sse -Ofast -flto -march=native -funroll-loops. 

 6x6 12x12 16x16 20x20 

SystemC 1080 9521 18289 28207 

OVP 129 163 691 1247 

speedup 8.37 58.41 26.47 22.62 

 

Qualitative measures include flexibility and debuggability. The proposed model 

benefits from the high debuggability features supported in OVP, which provides a general 

view of each CPU model (e.g. registers, addressing, interrupts). Thus, software engineers 

can integrate the proposed OVP with GDB or Eclipse, accessing their debugging 

functionalities. For instance, the engineer can execute an application in single step mode 

(i.e. step-by-step), insert code breakpoints, observe variables values, etc. It is also 

possible, to set watchdogs for accessing defined memory regions, obtaining the fetched 

instruction or the read/write values. Such important features for software development do 

not exist in the SystemC or VHDL platforms. 

3.4 Final Remarks 

This Chapter presented the first contribution of this Thesis: the development of two 

model platforms, which can be used to exploring large MPSoCs. References related to this 

part of the work include [PET12][MAN12][MAN13][CAS13]. 

The quest for fast simulation time, enabling to predict important performance figures 

as execution time and energy consumption, was the driver of this part of the work. In 2011, 

the VHDL model enabled to validate system up to 42 PEs (7x6). In 2012, the SystemC 

model enabled the simulation of 144 PEs (144 PEs). In 2013, the mixed SystemC/OVP 

extended the MPSoC size to 256 PEs (16x16). Finally, in 2014, the OVP model allowed 

the simulation of 400 PEs, with a speedup to the SystemC model equal to 22.62. 

Such result paves the way to the second part of the work, proposal of run-time and 

distributed mapping techniques for large scale MPSoCs, targeting communication volume 

reduction and workload balancing. 
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4. SYSTEM MANAGEMENT 

This Chapter describes the management infrastructure implemented to support 

mapping techniques. The next Chapter details the heuristics, according to the steps 

defined in this Chapter.  

This Chapter introduces in Section 4.1 and 4.2, respectively, the energy and 

application models used in this Thesis. Next, it discusses two approaches for system 

management: centralized, presented in Section 4.3; and distributed, presented in Section 

4.4. The distributed system management approach is implemented to improve scalability 

and performance. Task mapping techniques in both approaches are the focus of this 

Section since they are essential in system management. Section 4.5 compares centralized 

and distributed management approaches. Section 4.6 concludes this Chapter. 

4.1 Energy Model 

The energy consumption in the MPSoC is mainly due to three components: memory, 

processors, and NoC. The number of memory accesses is identical for the same workload. 

Therefore, to fairly compare different mapping solutions using the same workload, it is 

enough to consider the energy consumption of both processor and NoC as main metrics.  

As described in the literature [JEJ04], the energy consumption (EC) of a processor 

pei is defined by static and dynamic consumption. The processor EC related to the 

execution of a given task is a function of the number of executed instructions. In our 

model, the energy cost of each instruction is determined from a gate-level implementation, 

as proposed by Rosa et al. [ROS14]. 

Each processor pei contains an instruction analyzer module, which includes the 

energy cost of each instruction. Such module counts and classifies the executed 

instructions for different classes at runtime. The set of classes is defined as C = {c0, c2,… 

,c8}, with 9 different classes (e.g. arithmetic, logic, branch) [ROS14]. Equation (1) presents 

the energy dissipation for a given task. 

energytask = (energy(ci )´ total _ instructions(ci ))
i=0

8

å  (1) 

where: energy(ci), energy to execute a given instruction belonging to the class ci, value 

obtained from simulating the synthetized processor; total_instructions(ci), number of 

executed instructions belonging to the class ci . 

Results show that the accuracy of adopted instruction analyzer module varies from 

0.06% to 8.05% when compared to a gate-level implementation [ROS14]. One can argue 

that this profile step may be inaccurate since the task workload may vary, according to the 

user data. During the profiling step, each application receives workloads representing real 
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execution scenarios. Therefore, the computed energy values are representative enough to 

guide the proposed mapping heuristic [TIW94][MUR07]. 

It is necessary to compute the power per time slice to evaluate the mapping 

heuristics using the instruction analyzer module employed during the profile step, now at 

runtime. Equation (2) computes the power consumption for each pei. 

slicetime

cnsinstructiototal

powertotal i

i

pe
_

))(_)(c(energy 

_

8

0

i




  
(2) 

where: time_slice is the power sampling period, in seconds. 

The NoC EC is proportional to the number of transmitted flits at each router port 

[MAR14]. A gate level description of the NoC is used to determine the power consumption 

for the main router components: buffers, internal crossbar and control logic. Equation (3) 

presents energy consumption corresponding to one flit being transmitted through 1 buffer 

of the router. 

TPPPPportsnE iccontrolcrossbarbufferbufferrouter 




  )1()1()1()0(*)1_( log_  (3) 

where: n_port is the number of ports of the router, Pcomponent(0) the average power without 

traffic, Pcomponent(1) the average power with an injection rate equal to 100%, T the clock 

period. 

Equation (4) presents the power consumption of a given router for a given number of 

simulated cycles (time_slice), considering the number of flits transmitted by the router in 

the sampling period. 

total _ powerrouter =
Erouter´ flitså
time_ slice

 (4) 

4.2 Application Model 

An application appi is modeled as an acyclic directed graph GApp = (T, E), where 

each vertex ti ∈ T represents an application task and each directed weighted edge eij ∈ E 

represents a communication dependence between tasks ti and tj. The weight of an edge eij 

is denoted by commij, representing the total data communication volume transferred 

between application tasks ti and tj. The mapping of the set of tasks T = {t1, t2, ..., tn} of 

GApp onto the set SP = {sp1, sp2, ..., spk} of GMPSoC is defined by the mapping function: 

T → SP, where ti ∈ T,  spj ∈ SP. 

Figure 17 presents an example of an application modeled as a task graph. An 

application has initial tasks (e.g. t1 and t2) and non-initial tasks. Initial tasks are those that 

initialize the execution of the application when mapped in the system. Such tasks do not 
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have dependences on other tasks to start executing.  

t1

t2

t3

t4

t5

t6

Initial tasks: t1, t2 Non-initial tasks: t3, t4, t5, t6  
Figure 17 - Application modeled as a task graph GApp = (T, E). 

The mapping of non-initial tasks occurs whenever a given task ti needs to 

communicate with a non-mapped task tj. For example, Figure 18(a) shows an application 

with three tasks, being A the initial task. When such application is required to be executed, 

task A is mapped in the system to start the application execution, as illustrated in Figure 

18(b). Task A starts its execution and at a given moment it needs to communicate with 

task B. Task B, a non-initial task, is not already mapped. Then, a task mapping algorithm 

selects an SP to map task B.  
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Figure 18 – Initial task mapping. 

 In this context, the set T is divided in two subsets iT and niT, where (iT U niT) = T. 

The subset iT contains the initial tasks and the subset niT contains non-initial tasks. 

 A task ti ∈ T contains: 

 a set Ci called communication task list. This set is defined as  

Ci = {(tj, commij); (tk, commik); … (tn, commin)}, where each element is a tuple 

containing a task tj that communicates with ti and the value commij, 

corresponding to the total volume transferred between ti and tj in both directions 

(i.e. ti to tj and tj to ti). Elements in a communication task list are sorted from the 

higher (first in the list) to the lower communication volume. 

 an energy value Ei related to the execution of this task on the target SP. This 

value is captured according the energy model described in the previous Sub-

section (Equation (1)). 
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An application appi has an application description file containing information used to 

guide mapping decision. Such file contains:  

(i) the application size defined by app_sizei, which corresponds to the total number 

of tasks of this application; 

(ii) list of application initial tasks; 

(iii) the sets Ci and Ei for each task ti, of the application.  

The application description file, including Ci and Ei for each task, is obtained from a 

profiler platform. The profiler platform is a slightly modified version of the OVP MPSoC 

model presented in Section 3.3, which employs monitors to capture the consumed energy 

for each task and their inter-communication volume.  A network packet monitor is used to 

capture data communication among tasks. For each transmitted packet, the monitors 

capture the source task identifier, the destination task identifier, and the packet size. With 

such information, it is possible to define the set C(ti) of each task. The value Ei is obtained 

as explained in Section 4.1. The executed instructions required by each task are counted 

and classified according to different classes. Then, task energy Ei is computed according 

Equation (1). Each application is executed in the profiler platform, without any disturbing 

traffic. 

Figure 19 presents the profiler platform flow. A single application is executed in the 

profiler platform. At the end of the simulation, the profiler generates the application 

description file. Then, such information is attached to the application, and included in the 

application repository when the application is compiled to be executed in the system. 
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Figure 19 - Profiler platform flow. 
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4.3 Centralized System management  

Figure 20 illustrates the centralized system management architecture. It contains the 

same components of the reference model presented in Section 3.1. Such approach uses 

only one Manager Processing Element: the Global Manager Processing Element (GMP), 

which is responsible for all management functions in the system. Such functions include 

receiving task requests from the NoC and computing mapping algorithms to select an SP 

for the requested task.  Further, GMP maintains updated information about all system, 

including SPs where tasks are mapped, SPs availability, terminated tasks, and terminated 

applications. Such information is updated through information packets received from 

system SPs through the NoC.  
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Figure 20 – Centralized system management architecture.  

4.3.1 Centralized Task mapping protocol 

The task mapping method used by the centralized approach has two steps: initial 

tasks mapping and non-initial tasks mapping. 

4.3.1.1 Initial tasks mapping  

Figure 21 illustrates the centralized mapping protocol for initial tasks. Whenever a 

new application is required to be mapped (“1 – New Application” in Figure 21), the system 

alerts the GMP, which verifies if the system has available resources to map the entire 

application. In not, the application is scheduled to be mapped later. Otherwise, first the 

GMP verifies the application description to obtain the application initial tasks.  

Next, the GMP executes an algorithm to determine the mapping of the initial tasks (“2 

– Initial Tasks Mapping” in Figure 21). When the algorithm selects an SP to map an initial 

task, the GMP obtains the object-code of such task from the application repository. Then, 

the GMP maps this task on the selected SP by using a task allocation packet message (“3 

– Task Allocation” in Figure 21). 
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GMP

3 - Task Allocation

2 - Initial Tasks Mapping

SPs

2 - Initial Tasks Mapping

2 - Initial Tasks Mapping

3 - Task Allocation

3 - Task Allocation

 
Figure 21 – Centralized initial tasks mapping protocol. 

4.3.1.2 Non-initial tasks mapping 

An application starts after the initial task mapping. Then, non-initial tasks are 

mapped, as illustrated in the example of Figure 22. In such example, an initial task t1 

executes the code shown in Figure 23. Task t1 starts executing some functions, and then it 

communicates with task t2 using an MPI-like primitive send (line 5 of Figure 23). The 

operating system of SP1 hosting task t1 verifies if the target task (t2) is present in a task 

table, which contains the SP each task is mapped. If it is present, the message is 

transmitted to the SP assigned to task t2 in the task table. If it is not, a packet with a task 

request service is transmitted to the GMP (‘1 – Task Request’ in Figure 22), asking the 

mapping of task t2. 

Receiving the task request, the GMP executes a task mapping heuristic to select the 

SP to receive t2 (‘2 – Task Mapping Algorithm’,). Suppose the task mapping algorithm 

selected SP2 to map task t2. Thus, the GMP first obtains the object-code of task t2 from the 

application repository. Then, the GMP transmits task t2 object-code to SP2 using a “task 

allocation” packet (‘3 – Task Allocation, in Figure 22).  Finally, the GMP sends to SP1 the 

location of task t2, and to SP2 the location of task t1. (‘4 – Task Location’ in Figure 22). 

These locations are stored in the task tables of each SP.  
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Figure 22 - Centralized non-initial tasks mapping protocol. 

1. Message msg1; 

2. int main(){ 

3. msg1.length = 128; 

4. ...  

5. send(&msg1,t2); //communicate with t2 

6. ... 

7. exit(); 

8. } 

Figure 23 – Example of an initial task description, with a send command. 

4.4 Distributed System management  

As mentioned before, the constant growth in the number of cores implies in an 

important issue: scalability. Despite the scalability offered by NoCs and distributed 

processing, the MPSoC resources must be managed to deliver the expected performance. 

A single PE being responsible for system management may become a bottleneck since 

this PE will serve all other PEs of the system, increasing its computation load and creating 

a communication hot-spot region. An alternative to ensure scalability is to decentralize or 

distribute the management functions of the system. In light of this, this Section presents a 

distributed system management technique, which divides the system into regions (called 

clusters), improving system scalability and performance. This activity was co-developed 

with Guilherme Castilhos, Ph.D. advised by Fernando Moraes. 

Two main approaches for distributed system management are discussed in the 

literature: (i) one manager per application [KOB11][SHA11]; (ii) one manager per MPSoC 

region, which are also called clusters [FAR08][ANA12][CUI12]. The proposed distributed 

management architecture relies on the second approach, dividing the MPSoC in equal-
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sized clusters. Such distributed approach presents the following benefits: 

I. The number of PEs dedicated to management functions is limited to the number 

of clusters. An approach using one manager per application may imply a larger 

overhead since the number of applications that will execute in the system is 

unknown at execution time. 

II. The clustering approach reduces the number of hops among tasks belonging to 

the same application, reducing the overall traffic in the NoC (if the application fits 

in the cluster). 

III. It is not necessary to create/destroy agents (manager PEs) each time a new 

application enters/leaves the system, enhancing in this way the overall system 

performance. 

Figure 24 shows an example of the proposed distributed management architecture, 

using a 6x6 MPSoC instance with four 3x3 clusters. For this purpose, this approach uses 

two types of Manager Processing Elements:   

 Local Manager Processing element (LMP) – responsible for cluster control, 

executing functions such as task mapping algorithm computation, and re-clustering. 

 Global Manager Processing Element (GMP) – a single processing element 

responsible for the overall system management, such as defining application-to-

cluster mapping, controlling external devices accesses (e.g. application repository). 

Further, the GMP manages one of the system clusters (for example, the left bottom 

cluster of Figure 24), executing all functions of an LMP. 
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Figure 24 – Distributed system management architecture. 

Slave processing elements (SPs) remain responsible for executing user’s applications. 

In this context, the proposed distributed system management approach has three different 

PEs: LMPs, SPs and the GMP. 
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The definition of the clusters size occurs at design time. When the system starts, the 

GMP is responsible for cluster initialization, notifying the LMPs which region they will 

manage. Then, when an LMP knows the region it will control, it informs all SPs in this 

region that it will be their manager. This cluster and SPs initialization mechanism provide 

better system adaptability.  For example, runtime re-clustering process, proposed by 

Castilhos [CAS13], enables the modification of the cluster size.  

The re-clustering process occurs when there is no available SPs inside a cluster to 

map an application task. When a task is requested to be mapped to a given cluster, its 

LMP checks the availability of cluster SPs. If there are no SPs available inside the cluster 

to map the requested task, SPs are borrowed from neighbor clusters. When the task 

finishes its execution, the borrowed SP is released to the original cluster. The re-clustering 

process is better explained in Section 4.4.2. 

The GMP is the only PE with access to the external devices (e.g the application 

repository). In Figure 24, four PEs are reserved for management functions, representing 

11.1% of PEs not executing user applications. Using a 4x4 cluster in a 16x16 MPSoC, this 

overhead becomes 6.25%, which is an acceptable cost, considering the obtained benefits, 

as demonstrated next, with the evaluation of the proposal. 

4.4.1 Distributed Task Mapping Protocol 

The distributed task mapping protocol is divided into three main steps. Above the 

initial tasks and non-initial tasks mapping steps present in the centralized protocol, the 

distributed protocol has a cluster selection step. The cluster selection step occurs before 

the other steps, defining a cluster to map a required application.  

4.4.1.1 Cluster Selection 

 As the centralized protocol, whenever a new application is required to be mapped, 

the system alerts the GMP (‘1 – New application’, in Figure 25). The GMP verifies if the 

system has available resources to map the entire application. If there are no available 

resources, the application is scheduled to be mapped later. Otherwise, the GMP selects a 

cluster to map the required application (‘2 – Cluster Selection’, in Figure 25). Then, the 

required application description is sent to the LMP of the selected cluster. Once a given 

cluster is selected, the GMP obtains the application description from the application 

repository, transmitting it to the selected cluster LMP (‘3 – Application Desc.’, in Figure 25). 

4.4.1.2 Initial task mapping:  

The LMP of the selected cluster receives and stores the application description. 

Then, such LMP verifies the application description to determine the application initial 

tasks. Next, the LMP computes a mapping algorithm to select SPs to map the application 

initial tasks inside the cluster (‘4 – Initial Tasks Mapping’, in Figure 25). The mapping of 

initial tasks starts the application execution. 
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After selecting an SP to map an initial task, the LMP sends a packet to the GMP with 

the service task allocation request (‘5 – Task Allocation Request’, in Figure 25). Such 

packet requests the allocation of the initial task object-code in the selected SP. This 

happens since the GMP is the only PE with access to the application repository. Then, the 

GMP obtains the task object-code from the application repository and transmits it to the 

selected SP (‘6 – Task Allocation’, in Figure 25). The SP will schedule the new task at the 

end of the “task allocation” packet reception. In addition, the LMP keeps a data structure, 

named task table, with the address of all mapped tasks.  

Consider in Figure 25 the third application insertion. This situation illustrates a 

scenario where the selected cluster is the one managed by the GMP it-self. In this case, 

the GMP also executes the initial task mapping algorithm. 

 

GMP LMP1

2 – Cluster Selection

LMP2

4 - Initial Tasks Mapping

SPs

2 – Cluster Selection

2 – Cluster Selection

4 - Initial Tasks Mapping

4 - Initial Tasks Mapping

 

Figure 25 - Protocol to insert new applications into the system. 

4.4.1.3 Non-initial tasks mapping:  

As explained before, the mapping of non-initial tasks occurs whenever a given task ti 

needs to communicate with a non-mapped task tj. Suppose the example of Figure 26, 

where task t1, mapped on SP1, needs to communicate with a non-mapped task t2. In this 

case, task t1 requests the mapping of t2 to its cluster LMP (LMP1) by sending a Task 

Request packet message (‘1 – Task Request’, in Figure 26). LMP1 receives the task 

request and executes a mapping algorithm to select an SP to map task t2 (‘2 – Task 

Mapping Algorithm’, in Figure 26). The mapping algorithm selects SP2 to map task t2.  
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Figure 26 – Distributed non-initial mapping protocol. 

Next, LMP1 request the mapping of task t2 on SP2 to the GMP by sending a “Task 

Allocation Request” service packet (‘3 – Task Allocation Request’ in Figure 26). The LMP 

also uses a “Task Location” service packet to inform to SP1 the location of t2, and to SP2 

the location of task t1 (‘4 – Task Allocation’, in Figure 26). These locations are stored in the 

SPs task tables. Finally, the GMP obtains task t2 object code from the application 

repository and transmits it to SP2 (‘5 – Task Allocation’, in Figure 26).  

4.4.2 Re-clustering Process 

Figure 27 presents an example of the re-clustering process, assuming the SP spRM 

(in red in Figure 27) requested the mapping of a given task to LMP2 (the LMP that 

manages spRM cluster). The LMP2 receives the task mapping request and verifies that 

there are no available SPs inside this cluster. In this case, the LMP2 sends a “loan 

request” message, requesting an available SP to all neighbor clusters LMPs (GMP, LMP1, 

and LMP3; as shown in step 1 of Figure 27). 

When receiving the “loan request” message, the neighbor clusters LMPs search for 

available SPs in their clusters. If there is only one available SP, this SP is reserved to be 

borrowed; otherwise, if there is more than one available SP, such LMPs reserve the 

closest one, in number of hops, to spRM (i.e. the SP that requested the mapping). After the 

reservation, such LMPs send a “loan delivery” message to the LMP2 (cluster that 

requested available SPs), notifying the possible borrowed SP position (step 2 of Figure 27, 

blue SPs are reserved), if it exists. 

The LMP chooses the closest SP from spRM (i.e. the SP that requested the mapping), 

sending a “loan release” message to all LMPs, which were not selected (step 3 of Figure 
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27). Next, the LMP send a “task allocation request” message to the GMP requesting the 

task mapping on the borrowed SP (step 4 of Figure 27). Therefore, the cluster size 

increases at runtime, because the borrowed SP is now part of this cluster. This process 

optimizes the system management, since applications can be mapped in clusters, even if 

the cluster has no sufficient SPs. 
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Figure 27 - Task mapping protocol, using PEs in neighbor cluster. White SPs (slave PEs) 
are available PEs [CAS13]. 

4.5 Centralized versus Distributed Task Mapping  

In the centralized mapping, the GMP is responsible for computing the mapping of all 

tasks. In this case, all incoming mapping requests are serialized (Figure 28(a)), reducing 

the system performance, and increasing the NoC traffic in the GMP region. Using the 

distributed task mapping (Figure 28(b)), the mapping computation is distributed in several 

LMPs, reducing the communication load generated by mapping requests. 

It is important to mention a limitation of the distributed approach. Even if the mapping 

is distributed, the access to the external world (application repository) is not. Transmitting 

the task data in burst, using a DMA approach, minimizes the impact of this issue. 

Experiments use the SystemC platform, adopting clusters with 8 SPs (3x3 clusters).  

Each SP can execute up to 2 simultaneous tasks. Therefore, each cluster may execute 16 

tasks. Three benchmarks were used: MPEG, executes a partial MPEG decoder; multispec 
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image analysis [TAN08], which evaluates the similarity between 2 images using different 

frequencies; and, a synthetic application (synthetic). 
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Figure 28 - Centralized (a) versus distributed (b) mapping. 

Table 14 presents the characteristics of the nine evaluated scenarios (A, B, …, I). 

The second column of the Table contains the MPSoCs size, the number of clusters, and 

the number of SPs for the distributed and centralized management approaches. Note that 

the centralized approach has more SPs than the distributed one, since it does not use 

LMPs. The third column presents the number of tasks for each benchmark, while the forth 

column shows the number of application instances (AppCL) that fit in the cluster. The fifth 

column contains the total number of tasks that must be mapped onto the MPSoC platform. 

The last two columns present the system usage (SU) for the distributed and centralized 

approaches, i.e., the percentage of used system resources (nb of tasks / (nb of SPs * 2)). 

 

Table 14 - Characteristics of the evaluated scenarios 

 
MPSoC Size Benchmark -Nb. of Tasks AppCL Total number of tasks SUdist SUcentr 

A 6x6 - 4 clusters 
- 32 SPs (distributed) 
- 35 SPs (centralized) 

Syntetic - 6 2 48 75% 69% 

B MPEG - 5 3 60 94% 86% 

C Multispec -14 1 56 88% 80% 

D 9x9 - 9 clusters 
- 72 SPs (distributed) 
- 80 SPs (centralized) 

Syntetic - 6 2 108 75% 68% 

E MPEG - 5 3 135 94% 84% 

F Multispec -14 1 126 88% 79% 

G 12x12 - 16 clusters 
- 128 SPs (distributed) 
- 143 SPs (centralized) 

Syntetic - 6 2 192 75% 67% 

H MPEG - 5 3 240 94% 84% 

I Multispec -14 1 224 88% 78% 
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All applications instances are inserted in the system at the same time (1 ms) to 

maximize the use of SPs. Table 15 presents the total execution time reduction, adopting 

the centralized mapping as reference. Such results are a clear demonstration of the poor 

scalability related to the centralized management of the MPSoC resources. Scenario A 

does not reduce the total execution time using the distributed mapping due to the smaller 

system utilization. As the centralized approach has more free resources, some SPs may 

receive one task, instead of two, reducing the application execution time, since there is no 

time-sharing between tasks. Note that this behavior also occurs in scenarios D and G, 

where the synthetic benchmark presents smaller gains than scenarios E/F and H/I, 

respectively. The mapping process in the distributed approach has a smaller search 

space. For example, in the 12x12 MPSoC the centralized mapping has to evaluate the 

status of 143 SPs, while in the distributed mapping the search space is always the same, 

proportional to the cluster size. Therefore, the execution of the mapping heuristic is faster 

in the distributed version. 

 

Table 15 – Total execution time reduction, adopting the centralized mapping as reference. 

Scenario MPSoC Size Benchmark 
Execution time reduction  

(w.r.t centralized mapping) 

A 
6x6 

 

Synthetic -15% (increase of time) 

B MPEG  28% 

C Multispect 34% 

D 
9x9  

 

Synthetic 50% 

E MPEG  63% 

F Multispect 54% 

G 
12x12  

 

Synthetic 79% 

H MPEG  86% 

I Multispect 85% 

 

Figure 29 presents the execution time (in clock cycles) for each application instance, 

for scenarios B and E. It is important to observe in Figure 29 that all application instances 

have roughly the same execution time. Note that in the distributed mapping (black bars) a 

set of applications starts simultaneously. This is due to the distributed computation of the 

mapping heuristic, as illustrated in Figure 28(b). On the other hand, the centralized 

mapping (white bars) has to map the application tasks (5 tasks in the MPEG benchmark) 

and treat the request for new applications. This serialization of the mapping process is 

clearly observed in both figures, which also explain the results observed in Table 15. As 

the MPSoC size increases, the execution time for the centralized mapping grows 

dramatically. 

Another benefit of the promoted distributed approach is the reduction of the traffic 

around the GMP. Most control messages are treated inside the clusters, and the only 

control message sent to the GMP is the task request. 
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Figure 29 – Execution time for distributed (black bars) and centralized mapping (white 
bars), for the MPEG benchmark with two NoC sizes, scenarios B and E. 

4.6 Final Remarks 

This Chapter introduced two important features required by the mapping heuristics: 

(i) distributed system management; (ii) mapping protocol. 

The distributed management ensures scalability at the cost of sacrificing some 

processor to management functions.  

The mapping protocol comprises three steps: (i) cluster selection; (ii) initial task 

mapping; (ii) non-initial task mapping. The next Chapter presents a set of mapping 

heuristics, using the distributed management approach with the mapping protocol detailed 

in this Chapter. 
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5. TASK MAPPING HEURISTICS 

This Chapter presents four distributed runtime task mapping heuristics. Sections 5.1 

and 5.2 describes, respectively, the LEC-DN and PREMAP-DN heuristics. Such heuristics, 

previously presented in [MAN11b], were extended in this Thesis to support the distributed 

mapping protocol. The goal of the LEC-DN heuristic is to reduce the communication 

volume in the NoC. This heuristic maps communicating tasks as close as possible. The 

PREMAP-DN heuristic improves the LEC-DN heuristic, reducing even more the 

communication through the NoC. PREMAP-DN uses the PREMAP clustering method, 

which tries to group communicating tasks in the same SP. Sections 5.3 and 5.4 propose 

the new Load (L) and Load-Communication (LC) heuristics. The goal of the Load heuristic 

is to distribute the workload evenly, improving in long-term the system reliability. The Load-

Communication heuristic mixes LEC-DN and L heuristics, making a trade-off between 

communication volume reduction and workload distribution. The heuristics described in 

this Chapter use the three mapping steps of the distributed mapping protocol, presented in 

Section 4.4.1. Section 5.5 evaluates the heuristics.  

The heuristics use the following definitions: 

Definition 1: application size (app.size) corresponds to the number of tasks of the 

application to be mapped. 

Definition 2: MAX_SP_TASKS is the maximal number of tasks a given SP may execute 

simultaneously. The SP local memory is organized into SP_PAGES pages, being one 

reserved for the operating system. Therefore, MAX_SP_TASKS  = SP_PAGES - 1. 

Definition 3: available_resources corresponds to the number of resources (a resource is a 

page in the memory) that do not have a task mapped on it. This information may refer 

to the whole system, available_resources(system), or to a given cluster ck, 

available_resources(ck). 

Definition 4: available(spi) returns true if spi is available to receive a new task, otherwise 

false. An SP is available when the number of tasks mapped on it is smaller than 

MAX_SP_TASKS. 

Definition 5: empty SP is an SP with no tasks mapped on it. Therefore, an empty SP can 

receive MAX_SP_TASKS tasks. 

The Load (L) and Load-Communication (LC) heuristics use specific definitions, TE  

and cl_energy(ck). 

Definition 6: TE is the total consumed energy by a given SP, corresponding to the energy 

(Ei) consumed by all already executed tasks and the tasks that are currently being 

executed on this processor. Whenever a task is mapped onto an SP, TE is updated.  

Definition 7: cl_energy(ck) corresponds to the consumed energy of a cluster ck. This 
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function is computed by summing the TE value of each SP of the cluster.  

5.1 LEC-DN 

The LEC-DN heuristic reduces the communication volume through the NoC by 

nearing communicating tasks that exchange a high communication volume. Next sub-

sections describe this heuristic according to the three distributed mapping protocol steps. 

5.1.1 Cluster selection  

LEC-DN heuristic selects the cluster with the largest number of available resources to 

map an application. Figure 30 presents the pseudo-code of the cluster selection algorithm. 

The heuristic first verifies if the system has available resources to map the application (line 

4). If there are insufficient resources in the system, the application is scheduled to be 

mapped later. Then, the loop between lines 5 and 10 analyzes all clusters, selecting the 

one with the largest number of available resources.  

 

Input:  application size app.size 
Output: selected_cluster 
1.  selected_cluster  -1      
2.  selected_cluster_resources  -∞   
3.  //Verify if the system has available resources to map the application 
4.  IF  available_resources(system) >= app.size THEN   
5.   FOR EACH cluster ck in the system  
6.    IF available_resources(ck) > selected_cluster_resources THEN  
7.    selected_cluster  ck 

8.     selected_cluster_resources  available_resources(ck) 
9.    END IF 
10.  END FOR EACH  
11. END IF  
12. return selected_cluster 

Figure 30 – Cluster Selection algorithm used in LEC-DN and PREMAP-DN heuristics. 

It is important to note that a given application only starts its execution when there are 

enough resources to map the whole application (line 4). The next steps of the mapping 

algorithm try to map the applications’ task in the cluster. The re-clustering is responsible to 

extend the cluster size to enable the mapping of the initial and non-initial tasks when the 

cluster becomes full. 

5.1.2 Initial tasks mapping 

The initial task mapping evaluates all SPs inside the selected_cluster, selecting the 

SP with the largest region_free. The function region_free(spi, n_hops) returns the total 

number of available resources of the set containing spi and all SPs up to n hops far from 
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spi. Consider the example in Figure 31, which uses a 5x5 cluster, spi is the central SP (in 

green), and n_hops is equal to 2. In Figure 31, the colored SPs define an area 2 hops far 

from spi. Suppose, the numbers inside at each SP corresponds to the number of available 

resources. Then, the sum of these numbers corresponds to the region_free(spi, 2), which 

is equal to 25.  

     

  2   

 0 1 1  

1 2 2 (spi) 3 3 

 2 3 2  

  3   

     

Figure 31 - Hypothetical example to compute the function region_free. 

Figure 32 shows the pseudo-code of the initial tasks mapping algorithm used in 

LECD-DN. The loop between lines 3 and 8 evaluates all SPs inside the selected cluster 

and selects the SP with the largest region_free. If the application has more than one initial 

task, this algorithm is re-executed for the other initial tasks. The initial tasks mapping used 

in LEC-DN aims to map initial tasks in regions that have the largest number of available 

resources. This method increases the probability of mapping the application’s tasks closer 

to each other, reducing communication volume.  

 

Input:  n_hops 
Output: selected_sp 
1. selected_sp  -1  
2. selected_region_free  +∞  
3. FOR EACH SP spi in the cluster  
4. IF available(spi) AND region_free(spi, n_hops)>selected_region_free THEN  
5.  selected_sp  spi 

6.  selected_region_free  region_free(spi, n_hops) 
7. END IF 
8.END FOR EACH  
9. return selected_sp 

Figure 32 – Pseudo-code of the initial tasks mapping algorithm used in LEC-DN and 
PREMAP-DN heuristics. 

5.1.3 Non-initial task mapping 

When a non-initial task ti is required to be mapped, the LECD-DN heuristic creates a 

list containing all tasks that communicates with ti that are already mapped within the 

selected cluster. Next, this heuristic defines the search space to map ti. Such search 

space is defined by a bounding box rectangle, containing the mapped tasks that 

communicate with ti. When there is more than one mapped task, the bounding box is 

enlarged by one hop offering a larger search space. Figure 33 illustrates the mapping 

search space when one (Figure 33(a)) or two communicating tasks (Figure 33(b)) are 
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mapped in the cluster. The adoption of a bounding box aims to reduce the distance among 

communicating tasks. The bounding box size is enlarged by one hop, if no available SPs 

are found on it. 

     

 

     

          

      tj    

  tj      tk  

          

          

   (a)             (b) 
Figure 33 - (a) search space when one communicating task is already mapped (tj); (b) 

search space when more than one communicating task is already mapped (tj and tk). Solid 
lines correspond to the original bounding box, dashed lines to the bounding box increased 

by one hop. 

If just one communicating task tj is mapped, the heuristic will map ti on an SP as 

close as possible, in number of hops, to the one where tj is mapped. Otherwise, the 

heuristic map tj onto the SP with the lowest communication cost. The communication cost 

is based on the volume-based energy model proposed by Hu et al [HU10], where the 

energy spent in the communication is proportional to the number of hops and the number 

of transmitted flits. 

Figure 34 illustrates the LEC-DN approach with one task already mapped. Consider 

the application of Figure 34(a), with three tasks. To start the application, task A (the initial 

task) is mapped. At a given moment, the mapping of task B is required. Task B has only 

one communicating task already mapped in the cluster (task A), as illustrated in Figure 

35(b). Therefore, the search space to map task B corresponds to the bounding box with 

the SP of task A. If this SP is available, task B is mapped to it. Otherwise, the bounding 

box is enlarged by one hop, as defined by the red line in Figure 35(b). Inside such 

bounding box, each spi has a cost that represents the distance between task A and spi. 

The LEC-DN heuristic selects the first available SP with the smallest distance cost.   
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Figure 34 - (a) application graph of a given application; (b) search space to map task B. 
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 Figure 35 illustrates the LEC-DN approach with more than one task already 

mapped. The application has 4 tasks, where A and B are initial tasks (Figure 35(a)). At a 

given moment, the mapping of task C is required. Thus, LEC-DN evaluates the list of tasks 

that communicate with task C that are already mapped. Task C has two communicating 

tasks already mapped in the cluster (tasks A and B), as illustrated in Figure 35(b). 

Therefore, the search space to map task C corresponds to the bounding box defined by 

the coordinates of tasks A and B increased by one hop (Figure 35(b)). An SP inside the 

bounding box has a cost that represents the total amount of communication volume that 

will be transferred by mapping the task C on this SP. This cost is computed considering 

the amount of data A and B transfer to C, and the distance in number of hops from a given 

SP to task A and B. For example, the cost of the SP to which A is mapped is 300, since: 

 the SP is 0 hops far from A and A transfers 150 (it can be the number of flits or a 

given rate in Mbps) to C, so the volume on the NoC generated by the 

communication AC is be 0 x 150 = 0; 

 the SP is 3 hops far from B and B transfers 100 to C, so the volume on the NoC 

generated by the communication BC is 3 x 100 = 300; 

 the total communication volume generated by mapping C on this SP is the sum 

of the volume generated by AC and BC, resulting in 300. 

 Task C will be mapped on the processor that has the lowest cost, which is, in this 

case, the processor where A is mapped (assuming each SP may execute simultaneously 

more than one task). Note that task D is not yet mapped, since it depends from task C. 
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Figure 35 - (a) application graph of the application (b) search space to map task C, where 
each SP has a cost, and the final mapping of C. 

Figure 36 presents the pseudo-code for the heuristic used to map non-initial tasks. 

When a non-initial task ti is required to be mapped, LEC-DN starts analyzing the set C(ti), 

containing all tasks that communicates with ti. All mapped tasks within the cluster of C(ti)  

are inserted in the set MC(ti) (line 2). In the sequel, a bounding box rectangle (line 3) is 
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defined, according to the position of all tasks of MC(ti). Next, the size of the set MC(ti) is 

evaluated.  

 

Input: ti , set C(ti)  
Output: selected_sp  
1.  selected_sp  -1 
2.  MC(ti) mapped_tasks(C(ti))           // all tasks communicating with ti already mapped 
3.  bounding_box  area(MC(ti)) 
4. IF |MC(ti)| = 1 THEN  
5.   selected_sp_distance  +∞  
6.   WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO  
7.     sp_list  search_SPs(bounding_box) 
8.     FOR EACH SP spi IN sp_list 
9.   IF available(spi) = true  AND  evaluated_sp_distance < compute_distance(ti, spi)  THEN  
10.         selected_sp  spi 
11.     selected_sp_distance  compute_distance(ti, spi)   
12.   END IF 
13.  END FOR 
14.  IF selected_sp = -1 THEN  
15.   increase(bounding_box, 1) 
16.   END IF 
17.   END WHILE 
18.  ELSE IF |MC(ti)|  > 1 THEN  
19.  selected_sp_cost  +∞  
20.  increase(bounding_box, 1) 
21.   WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO  
22.     sp_list  search_SPs(bounding_box) 
23.     FOR EACH SP spi IN sp_list 
24.    IF available(spi) = true  AND  evaluated_sp_cost < compute_cost(ti, spi)  THEN 
25.     selected_sp  spi 
26.     selected_sp_cost compute_cost(ti, spi)   
27.   END IF 
28.  END FOR 
29.  IF selected_sp = -1 THEN  
30.   increase(bounding_box, 1) 
31.   END IF 
32.   END WHILE 
33.   END IF 
34.  return selected_sp 

Figure 36 - Mapping of non-initial tasks used in LEC-DN and PREMAP-DN heuristics. 

If MC(ti) contains only one task (line 4), the loop between line 6 and 17 is executed. A 

list sp_list with the SPs of the bounding box is created (line 7). Next, the loop between 

lines 8 and 13 evaluates each SP of sp_list, selecting the available one with the lowest 

distance in hops to the only task that communicates with ti inside the cluster. If no 

available SP is found in this list, the bounding box size is enlarged in one hop (lines 14-

16), and another loop iteration is executed. 

If MC(ti) contains more than one task (line 18), the bounding box size is increased in 
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one hop (line 20). Then, the loop between line 21 and 32 is executed. This loop is similar 

to the previous loop (lines 6-17). However, the selected SP is the one inside the bounding 

box with the smallest communication cost. If no available SP is found, the bounding box 

size is enlarged in one hop, and another loop iteration is executed. 

5.2 PREMAP-DN 

The PREMAP-DN heuristic uses the same three mapping steps of LEC-DN 

heuristics. The difference relies on the integration of a PREMAP clustering method 

[MAN11b] to optimize the communication volume reduction. The goal of this method is to 

group a set of communicating tasks onto the same SP. When a given task is pre-mapped, 

its placement is just reserved. The effective mapping of the pre-mapped tasks is executed 

when the task is requested.  

The integration of LEC-DN and the PREMAP method occurs as illustrated in Figure 

37. Suppose a task t is required to be mapped. If task t is a non-initial task, it is verified if it 

is pre-mapped. If true, task t is mapped to the SP it was pre-mapped. If task t is an initial 

task or it is a non-initial that was not pre-mapped, LEC-DN is used to select an SP 

selected_sp to map this task. Then, task t is mapped to the SP selected_sp. If the SP 

selected_sp was empty before the mapping of task t, the PREMAP method is executed. 

The PREMAP method is executed whenever an empty SP spi receives a task ti. The 

method analyzes the communicating task list C(ti) to select the tasks to be pre-mapped 

onto spi. The communicating task list C(ti) contains all tasks that communicates with ti 

sorted from the one that transfers the highest to the lowest communication volume, as 

explained in Section 4.2. PREMAP method follows the order C(ti) is sorted, evaluating task 

by task from such list. Suppose the first task to be evaluated is task tk, the one that 

communicates most with ti. Task tk is pre-mapped in spi iff two conditions are satisfied: 

(i) if tk is a non-mapped task; 

(ii) if task tk communicates only with task ti; or, if task tk communicates with more 

than one task, ti must be the task it transfers the highest communication 

volume, i.e., task ti is first task of C(tk). 

When a task is pre-mapped to an SP, a resource of this SP is reserved to receive 

such task. Thus, the number of available resources of such SP is decreased. Tasks are 

pre-mapped to an SP while it has available resources.  
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Figure 37 – Integration  of the PREMAP method in the LEC-DN heuristic. 

Consider as an example the application of Figure 38(a), with 8 tasks, being task A 

the initial task. A 2x2 MPSoC cluster is used in the example, where each SP is able to 

execute up to 3 tasks. Figure 38(c) presents the communicating task list C(ti) for each task 

ti of the application. When the application execution starts, the initial task A is mapped in 

SP2 (Figure 38(b)). Since SP2 was empty, the PREMAP method is executed.  The method 

evaluates each task in the set C(tA) to be pre-mapped to SP2. The first task to be 

evaluated is the one that exchanges the highest communication volume with tA, which is tB. 

Task B is pre-mapped since it is a non-mapped task that only communicates with tA (see 

C(tB)). For the same reason, tC (the second in C(tA) list) is also pre-mapped. At this 

moment the method stops, since the SP has already 3 tasks assigned to it, being 

unavailable for receiving new tasks. During system execution, tasks B and C are required 

to be mapped. Since such tasks were already pre-mapped, it is not necessary to find an 

SP to map them. It is only necessary to transmit the object codes to SP2. 

In the sequel, task D is required to be mapped, and LEC-DN heuristic chooses SP3. 

As task D was mapped on an empty SP, the PREMAP method is executed. In this case, 

the non-mapped task E is the first to be evaluated. Task E is not pre-mapped in SP3 since 

it communicates with other task (i.e. G) with a higher volume than it communicates with 

task D. An easy way to verify this situation is to verify the first element of task E 
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communicating task list. Next, task A is not pre-mapped since it is already mapped. 

Finally, task F is evaluated. Task F is pre-mapped since: (i) it is a non-mapped task; (ii) 

task D is the first element of C(tF), proving that task F communicates with task D 

transferring a higher volume than with any other task.  
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Figure 38 - PREMAP method example. 

Figure 39 shows the implementation of the PREMAP method. 

 

Input: The SP spi, the task ti mapped onto spi 
Output: A set of tasks pre-mapped onto spi 
1. NC(ti) non-mapped_tasks(C(ti))    // all non-mapped tasks communicating with ti  
2. di first(NC(ti))      //Get the first task in the NC(ti) 
3.  WHILE all tasks in NC(ti) were not evaluated OR tasks(spi)<MAX_SP_TASKS DO 
4.   hi first(C(di))       // Get the first task hi (with highest communication volume) in C(di) 
5.  IF hi=ti THEN 
6.   premap(di,spi)  // premap di onto pi 
7.   tasks(spi)++   // increase the number of mapped/pre-mapped tasks onto pi 
8.  END IF 
9.  di  next(NC(ti))  // Get the next task in the NC(ti) 
10. END WHILE 

Figure 39 – PREMAP method algorithm pseudo-code [MAN11b]. 

The PREMAP method begins by assigning to the set NC(ti) the non-mapped tasks of 

C(ti) (line 2). The next step evaluates each task di from NC(ti), to choose the tasks to be 

pre-mapped onto spi. This evaluation (line 3-10) is executed while spi has less than 

MAX_SP_TASKS mapped/pre-mapped tasks onto it, or if all possible tasks in NC(ti) were 

already evaluated. For each task di, the first task hi with the highest communication volume 
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in its C(di) is obtained (line 4). Then, task hi is compared to the task ti (line 5). This 

comparison verifies if di communicates with a higher volume with ti than it communicates 

with any other tasks. If true, ti is pre-mapped onto spi, also increasing the spi number of 

mapped/pre-mapped tasks (lines 6-7). This process continues if other tasks are available 

in NC(ti).  

5.3 LOAD (L) 

The goal of the Load (L) heuristic is to distribute the workload evenly, improving in 

long-term the system reliability. To achieve this goal, this heuristic assigns tasks to the 

less overloaded processors. The mapping protocol steps are presented in Section 5.3.1, 

which describes the cluster selection; and Section 5.3.2, which discusses the initial and 

non-initial tasks mapping. 

5.3.1 Cluster selection 

This heuristic computes the cl_energy(ck) (see definition 7) energy value for each 

cluster. Then, the cluster with the smallest cl_energy(ck) is selected. This procedure 

avoids mapping an application in a high overloaded cluster, which improves the workload 

distribution. Figure 40 presents the pseudo-code of the cluster selection heuristic.  

 

Input:  application size APP.size 
Output: selected_cluster 
1.    selected_cluster  -1      
2.    selected_cluster_energy  +∞   
3.    //Verify if the system has available resources to map the application 
4.   IF  available_resources(system) >= APP.size THEN   
5.       FOR EACH cluster ck in the system  
6,   IF available_resources(ck) >= APP.size AND cl_energy (ck)< selected_cluster_energy THEN  
7.    selected_cluster  ck 

8.     selected_cluster_energy  cl_energy (ck) 
9.   END IF 
10.       END FOR  
11.   // There is no cluster with enough resources to receive the application  
12.   IF selected_cluster = -1  THEN     
13.      FOR EACH cluster ck in the system   
14.   IF cl_energy (ck)< selected_cluster_energy THEN  
15.    selected_cluster  ck 

16.     selected_cluster_energy  cl_energy (ck) 
17.   END IF 
18.        END FOR  
19.   END IF 
20. END IF  
21. return selected_cluster 

Figure 40 - Cluster selection heuristic used in Load and Load-Communication heuristics. 
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The heuristic in Figure 40 first verifies if the system has available resources to map 

the application (line 4). If there are no sufficient resources in the system, the application is 

scheduled to be mapped later. The first loop (lines 5-10) analyzes all clusters that have 

available resources to map the application, selecting the one with the smallest 

accumulated energy. If there are no clusters with available resources to map the 

application, a cluster with the smallest accumulated energy is selected, regardless the 

number of available resources (lines 12-19). Note that the application is mapped in the 

MPSoC iff the system has available resources for the application. This heuristic aims to 

distribute the energy homogeneously when a new application arrives in the system. In the 

long-term, this procedure avoids hotspots, and processors stressed over the time. 

Consequently, this heuristic contributes to minimizing aging effects, as wearout. 

5.3.2 Initial and non-initial tasks mapping 

The L heuristic uses the same procedure to map both initial and non-initial tasks. All 

SPs inside the cluster are evaluated, and the one with the lowest TE is selected. Figure 41 

shows the pseudo-code of the initial and non-initial tasks mapping heuristic. The loop 

between lines 3 and 8 evaluates all SPs inside the cluster, selecting the one with the 

lowest accumulated energy TE. In this context, this heuristic tries to balance system 

workload, assigning tasks to the less overloaded SPs.  

 

Input: selected_cluster 
Output: selected_sp  
1. selected_sp  -1 
2. selected_sp_energy  +∞  
3. FOR EACH SP spi IN selected_cluster 
4.   IF available(spi) = true AND  TE(spi)< selected_sp_energy THEN 
5.   selected_sp  spi 
6.   selected_sp_energy  TE (spi) 
7.  END IF 
8. END FOR 
9. return selected_sp 

Figure 41 - Initial and non-initial tasks mapping used in Load heuristic. 

5.4 LOAD-COMMUNICATION (LC) 

The Load-Communication heuristic mixes LEC-DN and L heuristics, making a trade-

off between communication volume reduction, and workload distribution. 

5.4.1 Cluster selection 

This heuristic uses the same cluster selection approach of the Load heuristic, 

presented in Section 5.3.1. 
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5.4.2 Initial tasks mapping 

This heuristic divides the initial task mapping process into two phases. The first 

phase selects an SP with the smallest region_energy to receive an initial task. A second 

phase is executed if there is more than one initial task. In such phase, a set with all SPs up 

to n hops far from the selected SP is created, selecting the SP of this set with the smallest 

TE.  

The function region_energy(spi, n_hops) returns the average TE from the set 

containing spi and all SPs up to n_hops hops far from spi. Figure 42 shows a hypothetical 

example using a 7x7 cluster, where spi is the central SP spcentral (in green); and n_hops is 

3 hops. In Figure 42, the numbers inside each rectangle represent the TE of each SP. The 

value of region_energy(spcentral, 3) corresponds to 64, since: (i) inside a region 3 hops far 

from spcentral there is 25 SPs; (ii) the sum of the TEs of the SPS in this area is equal to 

4100; (iii) the average TE in this area is equal to 4100/25=64.   

Suppose a hypothetical example of an application with two initial tasks: ti and tj. The 

first initial task ti is mapped in spcentral of Figure 42.  For the mapping of the tj a region 3 

hops far from spcentral is defined, as delimited by the colored SPs in Figure 42. Then, the 

SP with the smallest TE in this region is selected to map tj. In the example, such SP has 

TE equal to 66.  

   123    

  66 178 280   

 114 200 80 109 77  

120 210 120 200 110 350 327 

 124 156 85 413 95  

  149 123 189   

   102    

Figure 42 - Hypothetical example of region_energy. 

The pseudo-code of the first phase of the initial tasks mapping heuristic is detailed in 

Figure 43. The main loop (lines 3-8) selects an SP (selected_sp) with the lowest 

region_energy. This procedure ensures that application’s tasks that will be mapped later 

will be assigned closer to the selected SP and in SPs with a lower accumulated energy. 

Input:  selected_cluster, n_hops 
Output: selected_sp 
1. selected_sp  -1  
2. selected_region_energy  +∞  
3. FOR EACH SP spi in the selected_cluster  
4. IF available(spi) AND region_energy(spi, n_hops)< selected_region_energy THEN  
5.  selected_sp  spi 

6.  selected_region_energy  region_energy(spi, n_hops) 
7. END IF 
8.END FOR EACH  
9. return selected_sp 

Figure 43 - First phase of the initial tasks mapping used in Load-Communication heuristic. 
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If the application has only one initial task, the SP chosen by the heuristic of Figure 43 

is selected to execute the task. Otherwise, the heuristic presented in Figure 44 is executed 

for each non-mapped initial task. In line 4 it is created a set neighbors_list with all SPs up 

to n_hops from selected_sp computed in the previous phase. The loop between lines 6-11 

selects an available SP from the neighbors_list with the smallest TE. If there is no 

available SP inside the list, the search space increases 1 hop (lines 12-15), until visiting all 

SPs of the cluster (line 5). 

 

Input: SPaddress,  n_hops       // SPaddress  is the selected_sp address obtained in the 1st phase 
Output: selected_sp  
1. selected_sp  -1 
2. selected_sp_energy  +∞  
3. // Get all neighbors of selected_sp within a distance n_hops 
4. neighbors_list  neighbors(SPaddress, n_hops)  
5. WHILE all SPs in the cluster not evaluated AND selected_sp=-1 DO 
6.  FOR EACH SP spi IN neighbors_list 
7.        IF available(spi) = true AND  TE(spi) < selected_sp_energy THEN 
8.    selected_sp  spi 
9.    selected_sp_energy  TE (spi) 
10.      END IF 
11.  END FOR 
12.   IF selected_sp = -1 THEN  
13.    n_hops  n_hops +1 
14.    neighbors_list  neighbors(SPaddress, n_hops)  
15.  END IF 
16. END WHILE 
17. return selected_sp 

Figure 44 – Second phase of the initial tasks mapping used in Load-Communication 
heuristic. 

5.4.3 Non-initial task mapping 

Suppose a non-initial task ti is required to be mapped. The LC heuristic evaluates the 

set C(ti), and creates a bounding box containing all ti communicating tasks mapped within 

the cluster. Then, such bounding box is increased in one hop offering a large search 

space. Figure 45 illustrates the mapping search space in the cluster. This heuristic selects 

the SP inside the bounding box with the lowest TE. This heuristic mixes concepts used in 

LEC-DN and L heuristics, aiming to make a trade-off between workload balancing and 

communication volume reduction. For this purpose, LC uses a similar bounding box 

search method used in the LEC-DN heuristic. The difference is that the bounding box is 

increased by one hop in both cases: when there is one and when there are more than one 

communicating tasks mapped in the cluster. In both cases, the heuristic selects the SP 

inside the bounding box with the lowest TE. Such approach is different from the one used 

in the L heuristic. In L heuristic it is selected the SP with the lowest TE inside the cluster, 



85 

 

 

which can increase the distance between communicating tasks. The approach used in LC 

selects the less overloaded SP in a region close to the communicating tasks of the 

required task, by using a bounding box.  

 

     

 

     

          

      tj    

  tj      tk  

          

          
 (a) search space when one communicating task is already 

mapped (ti) 
(b) search space when more than one communicating task 
is already mapped (ti and tj). Solid lines correspond to the 
original bounding box, dashed lines to the bounding box 

increased by one hop 

Figure 45 - Load-Communication heuristic search space. 

Figure 46 describes the algorithm used to select an SP to receive a non-initial task ti. 

The heuristic creates a list with all tasks communicating with ti already mapped onto the 

SPs of the cluster (line 3). In the sequel, a bounding box rectangle is defined (line 4), with 

all mapped communicating tasks. This bounding box is increased by one hop (line 5), 

offering a larger search space to map ti. A list with candidate SPs is created (line 7). The 

available SP in the list with the smallest TE is selected (lines 8-13). If no SP can be 

selected, the bounding box is increased by one hop (lines 14-16). This process continues 

up to find a SP or visiting all SPs of the cluster. 

 

Input: ti , set C(ti)  
Output: selected_sp  
1.  selected_sp  -1 
2.  selected_sp_energy  +∞  
3.  MC(ti) mapped_tasks(C(ti))   // all tasks communicating with ti already mapped 
4.  bounding_box  area(MC(ti)) 
5.  increase(bounding_box, 1) 
6.  WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO  
7.    neighbors_list  search_SPs(bounding_box) 
8.    FOR EACH SP spi IN neighbors_list 
9.    IF available(spi) = true AND TE(spi)< selected_sp_energy THEN  
10.    selected_sp  spi 
11.    selected_sp_energy  TE(spi) 
12.   END IF 
13.  END FOR 
14.  IF selected_sp = -1 THEN  
15.   increase(bounding_box, 1) 
16.   END IF 
17.  END WHILE 
18.  return selected_sp 

Figure 46 - Mapping of non-initial tasks. 
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5.5 Task Mapping Heuristics Evaluation 

This Section evaluates the four mapping heuristics using the OVP platform model, 

and the SystemC platform model. Section 5.5.1 presents the experiments concerning the 

OVP platform. Section 5.5.2 presents experiments using the SystemC platform. Finally, 

section 5.5.3 discuss the evaluated experiments. 

5.5.1 Task mapping evaluation using the OVP platform model 

This Section first employs the OVP platform model to compare the mapping 

heuristics in terms of workload distribution (Section 5.5.1.1), communication volume, 

(Section 5.5.1.2), and total execution time (Section 5.5.1.3). Section 5.5.1.4 evaluates the 

heuristics in a larger MPSoC (12x12), to demonstrate the scalability of the approach. For 

this purpose, three applications are used as benchmarks (all applications are real 

applications, described in C language): (i) DTW - Digital Time Warping (DTW), with ten 

tasks;  (ii) MPEG decoder, with five tasks;  (iii) DJK - Dijkstra, with six tasks. 

Table 16 presents the six evaluated scenarios. Such scenarios use a 10x10 MPSoC 

instance with a 5x5 cluster size with different applications. All applications start at the 

beginning of the simulation while there are enough resources. When resources become 

available, a new application starts. Such behavior induces a large system usage, 

increasing the effort of the heuristics to obtain the best results.  

 

Table 16 – Evaluated scenarios.  

Scenario Applications 
Number of 

Applications 
Number of 

tasks 

A 120 x MPEG 120 600 

B 100 x DJK 100 600 

C 15 x DTW, 35 x MPEG 50 325 

D 65 x MPEG, 35 x DJK 100 535 

E 10 x DTW, 25 x MPEG, 25 x DJK 60 375 

F 15 x DTW, 5 x MPEG, 40 x DJK 60 415 

 

5.5.1.1 Workload Distribution 

This Section compares the heuristics concerning the workload distribution in all 

scenarios. For this purpose, the experiments evaluate the number of instructions and the 

energy consumed by executing such instructions at the end of the execution. Table 17 

presents the number of executed instructions and the consumed energy values by the SPs 

(total, average and standard deviation). The number of instructions includes the 

instructions required to execute the applications of each scenario and the number of 

instructions required by the microkernel. 
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Table 17 – Instructions (thousands of instructions) and energy (mJ) for the evaluated 
scenarios, using a 10x10 MPSoC size – OVP platform. 

 

PREMAP-DN – Instructions LEC-DN – Instructions L – Instructions LC – Instructions 

Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. 

A 68,413 713 1,022 68,106 709 1,063 72,751 758 236 71,663 746 158 

B 654,483 6,818 4,539 652,489 6,797 4,848 659,583 6,871 1,988 657,915 6,853 2,900 

C 101,229 1,054 930 102,484 1,068 879 100,361 1,045 278 99,558 1,037 376 

D 267,845 2,790 2,609 267,520 2,787 2,616 271,865 2,832 1,096 269,807 2,810 1,569 

E 232,794 2,425 2,076 233,086 2,428 2,098 233,324 2,430 1,219 232,361 2,420 1,375 

F 219,419 2,286 1,182 219,782 2,289 1,189 211,190 2,200 494 207,305 2,159 601 

 
PREMAP-DN – Energy (mJ) LEC-DN – Energy (mJ) L – Energy (mJ) LC – Energy (mJ) 

A 2,056 21 30 2,047 21 32 2,187 23 7 2,155 22 5 

B 21,635 225 154 21,636 225 164 21,800 227 69 21,740 226 100 

C 3,070 32 28 3,110 32 27 3,042 32 9 3,015 31 12 

D 8,735 91 87 8,725 91 87 8,866 92 38 8,798 92 54 

E 7,506 78 69 7,515 78 70 7,523 78 42 7,491 78 47 

F 6,669 69 37 6,681 70 37 6,412 67 17 6,283 65 20 

 

Results show that, for a given scenario, the total number of executed instructions and 

the consumed energy has small variations for the different heuristics (up to 3.6% for 

instructions and energy). This is an expected result since the workload is the same. The 

number of instructions and the consumed energy per scenario are directly related to task 

mapping. Two main factors induce a different number of executed instructions per 

scenario. The first one is related to the CPU sharing. When tasks are mapped to the same 

processor, the number of instructions varies due to task scheduling, which comprise 

context saving and defining the next task to be scheduled. The second one is related to 

the inter-task communication. When communicating tasks are mapped to a same 

processor, the communication between such tasks does not occur through the NoC. A 

communication through the NoC requires creating and treating packets and programming 

the DMA module, which increases the number of executed instructions. 

The most relevant result in Table 17 is the standard deviation value. A small standard 

deviation value represents a better load distribution among the SPs. Table 18 presents the 

energy standard deviation values normalized w.r.t. the L heuristic. The evaluated results 

are normalized to the L heuristic since it presents the small values in most scenarios. This 

result is explained since the L heuristic has a larger mapping search space. The L heuristic 

is exhaustive, evaluating all SPs of the cluster.  

The L and LC heuristics reduces the standard deviation in all scenarios when 

compared to PREMAP-DN and LEC-DN heuristic. The PREMAP-DN and LEC-DN 

heuristics increases up to 4.29 times the energy standard deviation values w.r.t. the L 

heuristic. The reason explaining this result is the fact that LEC-DN and PREMAP-DN 

heuristics do not take into account the tasks’ load (i.e., energy per task) in the mapping 
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decision. In addition, the LEC-DN and PREMAP-DN heuristics tend to group tasks 

together in the same SP, increasing the chance of overloaded SPs. 

The LC, a non-exhaustive heuristic, also increases the energy standard deviation 

values normalized w.r.t. the L heuristic. The LC heuristic has an average increase of 29% 

compared to L heuristic in all scenarios except in scenario A. LC heuristic reduces the 

standard deviation in 44% compared to L in scenario A.  

 

Table 18 – Energy standard deviation values normalized w.r.t. the L heuristic. 

 
L PREMAP-DN LEC-DN LC 

A 1.00 4.14 4.29 0.66 

B 1.00 2.22 2.37 1.45 

C 1.00 3.06 2.89 1.29 

D 1.00 2.27 2.27 1.41 

E 1.00 1.63 1.65 1.12 

F 1.00 2.13 2.14 1.15 

 

Figure 47 details how the standard deviation values of Table 18 reflect the workload 

distribution. Figure 47 presents the energy consumed by each SP in scenario A for the 

four heuristics. Red squares represent an energy value above 50 mJ, and green squares 

represent an energy below 5 mJ. Figure 47(a) and Figure 47 (b) show the energy 

distribution, respectively, for the PREMAP-DN and LEC-DN heuristics. Such heuristics 

produce an unbalanced distribution of the energy among SPs, creating energy hotspots, 

i.e., some SPs consume a high amount of energy while others consume a low amount of 

energy. PREMAP-DN presents 19 SPs consuming more than 50 mJ; and 53 consuming 

less than 5 mJ, where 48 SPs were not used to execute tasks. LEC-DN presents 18 SPs 

consuming more than 50 mJ; and 55 consuming less than 5 mJ, and 43 SPs were not 

used. This behavior shows that a high number of tasks share few SPs.   

Figure 47(c) and Figure 47(d) present a uniform load distribution for the L and LC 

heuristics. Using the L heuristic, only two SPs consume more than 50 mJ, and no one 

consumes less than 5 mJ. Using LC heuristics, there are no SPs consuming more than 50 

mJ, neither SPs consuming less than 5mJ. In both heuristics, all SPs are used to execute 

tasks. Such different behavior highlights the benefits of using heuristics that consider the 

load (i.e. energy) in the mapping process to avoid hotspots, therefore inducing a better 

system reliability. Further, Figure 47 illustrates the results obtained in Table 18 where L 

and LC have a reduced standard deviation value compared to PREMAP-DN and LEC-DN 

heuristics.  

Results showing the energy consumed at each SP for the other scenarios are 

presented in Appendix A.1. 
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0.48 12.79 1.39 0.48 0.48 0.48 0.48 0.48 0.48 0.48 

0.48 72.15 50.25 3.99 6.66 0.48 32.77 41.11 0.93 4.86 

0.48 86.58 51.98 94.02 41.53 0.48 73.00 62.82 75.85 26.22 

0.48 0.48 27.82 31.82 18.21 0.48 0.48 28.41 23.04 0.48 

LMP 0.48 0.48 0.48 0.48 LMP 0.48 0.48 0.48 0.48 

0.48 0.48 0.48 0.48 0.48 0.48 7.36 0.48 0.48 0.48 

0.48 81.38 30.33 32.16 7.69 0.48 66.83 47.79 7.41 3.05 

14.22 114.97 105.01 56.50 16.70 0.48 64.82 72.25 89.78 34.46 

0.48 19.75 81.76 91.74 38.86 0.48 13.98 54.43 11.59 0.48 

GMP 0.48 0.48 0.48 0.48 LMP 0.48 0.48 0.48 0.48 

(a) PREMAP-DN 

0.48 3.62 0.93 0.48 0.93 0.48 0.48 3.63 1.38 1.35 

0.48 54.74 38.81 9.84 11.05 0.48 70.65 26.57 23.26 15.84 

0.48 51.16 104.36 76.42 25.67 0.48 53.00 47.63 118.17 36.40 

0.48 0.48 56.07 23.80 6.81 0.48 0.48 14.75 3.53 0.48 

LMP 0.48 0.48 0.48 0.48 LMP 0.48 0.48 0.48 0.48 

0.48 3.34 0.48 0.48 0.48 0.48 0.48 0.93 0.48 3.04 

0.48 85.11 65.64 27.82 8.47 0.48 73.30 36.83 16.59 24.00 

0.48 119.72 86.28 49.30 29.27 0.48 58.51 44.73 116.83 33.93 

0.48 3.08 82.93 87.56 53.81 0.48 0.48 27.79 6.58 0.48 

GMP 0.48 0.48 0.48 0.94 GMP 0.48 0.48 0.48 0.48 

(b) LEC-DN 

18.38 32.57 15.84 28.57 20.96 21.93 23.23 32.39 41.11 22.51 

20.71 19.31 16.51 21.73 21.63 20.31 16.52 16.54 20.00 31.40 

50.05 20.84 21.74 15.54 19.63 22.69 26.40 28.57 19.23 36.19 

54.13 18.69 22.20 14.84 25.11 24.70 27.93 23.06 23.30 21.58 

LMP 15.72 19.16 15.08 15.30 LMP 18.75 22.62 21.95 16.76 

19.81 19.61 22.81 17.77 15.54 23.80 16.17 23.52 33.09 24.64 

16.75 18.37 28.36 19.47 15.53 25.40 18.86 25.24 15.95 18.68 

18.67 17.37 36.03 15.23 18.78 25.53 23.41 14.93 19.24 23.30 

26.54 23.17 21.81 17.07 42.30 24.71 21.08 17.22 33.04 43.26 

GMP 20.59 22.06 15.91 19.94 LMP 24.50 18.86 18.93 20.40 

(c) L 

26.14 24.84 29.60 23.91 25.75 18.18 32.23 19.71 34.39 30.41 

21.07 18.29 19.92 22.82 18.49 21.93 21.96 17.87 23.14 28.28 

20.66 18.94 19.08 19.58 30.07 15.57 24.93 20.32 21.68 23.02 

25.59 21.99 24.54 23.38 21.78 18.01 24.25 27.99 19.60 19.67 

LMP 23.22 23.74 17.33 22.37 LMP 23.21 16.37 35.22 23.20 

20.38 22.61 16.52 17.50 24.15 23.52 23.25 19.03 18.67 27.99 

17.25 19.61 32.48 29.17 19.80 18.95 20.84 16.47 27.86 27.91 

11.73 30.93 13.98 17.66 22.15 25.89 19.03 36.99 25.47 15.17 

19.05 26.24 17.63 27.53 15.36 17.34 23.84 16.42 24.36 21.38 

GMP 19.99 17.75 16.72 26.52 LMP 23.29 21.31 28.06 24.84 

(d) LC 

Figure 47 – Energy consumed per SP (mJ) for each heuristic in Scenario A with the OVP 
platform. Each rectangle represents a PE. Green rectangles represent SPs consuming 

less than 5 mJ. Red rectangles represent SPs consuming more than 50 mJ. 
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5.5.1.2 Communication Volume 

This Section compares the heuristics considering the total communication volume 

transferred through the NoC. Table 19 shows the total communication volume in 

thousands of flits for each scenario.  

 

Table 19 – Total communication volume (thousands of flits). 

 
PREMAP-DN LEC-DN L LC 

A 159 180 888 390 

B 910 943 2,420 965 

C 410 387 1,141 661 

D 344 340 1,357 507 

E 425 441 1,425 718 

F 1,010 1,008 2,629 1,395 

 

PREMAP-DN and LEC-DN heuristics have the largest reduction in communication 

volume compared to others heuristics. Such result was expected since such heuristics 

consider the communication volume in the mapping decision. Table 20 shows the results 

normalized w.r.t the PREMAP-DN heuristic since it presents the highest reduction in 

communication volume in the most scenarios. 

 

Table 20 - Total communication volume normalized w.r.t. the PREMAP-DN heuristic 

 
PREMAP-DN LEC-DN L LC 

A 1.00 1.14 5.60 2.46 

B 1.00 1.04 2.66 1.06 

C 1.00 0.94 2.78 1.61 

D 1.00 0.99 3.94 1.47 

E 1.00 1.04 3.35 1.69 

F 1.00 1.00 2.60 1.38 

 

L and LC heuristics increase the communication volume in average 3.27 and 1.97 

times, respectively, compared to PREMAP-DN. Such result is explained since the main 

cost function of L and LC heuristics is to distribute the tasks onto the SPs, which induces a 

large use of the NoC. Otherwise, the PREMAP-DN heuristic tends to map tasks together in 

the same SP. In this case, there is an intra-SP communication between tasks and tasks do 

not communicate using the NoC. 

The LC heuristic reduces the total communication volume in average 52.89% 

compared to the L heuristic. Such result is explained since the LC heuristic considers the 

distance of the communicating tasks in the mapping decision. On the other hand, the L 

heuristic spreads tasks all over the cluster. 
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5.5.1.3 Total Execution Time 

In this Section, heuristics are evaluated concerning the total execution time. Three 

main factors influence the total execution time for different mapping solutions: CPU 

sharing; NoC traffic and congestion; and mapping algorithm computation. Table 21 

presents the execution time for each scenario. 

 

Table 21 – Total execution time (thousands of clock cycles). 

 
PREMAP-DN LEC-DN L LC 

A 7,645 7,842 6,886 7,576 

B 28,993 36,190 19,614 25,207 

C 5,538 5,771 4,566 5,246 

D 16,083 14,859 13,117 13,942 

E 11,297 13,044 10,212 10,728 

F 8,276 8,288 7,147 7,848 

 

 The L heuristic presents the lowest execution time among the heuristics. Table 22 

presents the total execution time normalized w.r.t. such heuristic. 

 

Table 22 – Total execution time normalized w.r.t. the L heuristic. 

 
L PREMAP-DN LEC-DN LC 

A 1.00 1.11 1.14 1.10 

B 1.00 1.48 1.85 1.29 

C 1.00 1.21 1.26 1.15 

D 1.00 1.23 1.13 1.06 

E 1.00 1.11 1.28 1.05 

F 1.00 1.16 1.16 1.10 

 

Results show that the PREMAP-DN, LEC-DN and LC heuristics increase the total 

execution time, respectively, by 22%, 30%, and 12% (average values) when compared to 

the L heuristic. This result comes from the better workload distribution obtained in L 

heuristic, which reduces the number of tasks sharing the same CPU. Distributing tasks 

and using as much as possible SPs of the system at the same time may reduce the 

execution time.  

5.5.1.4 Evaluation in a 12x12 MPSoC 

The same scenarios of Table 16 were executed in a 12x12 MPSoC instance, with 

6x6 clusters. The goal of this experiment is to evaluate the scalability of the approach. 

Table 26 presents the number of executed instructions and the consumed energy 

values by the SPs (total, average and standard deviation). Similar results were obtained, 

with a similar number of executed instructions and consumed energy per scenario, and a 

significant reduction in the standard deviation values for L and LC heuristics. 
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Table 23 – Instructions (thousands of instructions) and energy (mJ) for the evaluated 
scenarios, using a 12x12 MPSoC size – OVP platform. 

  
PREMAP-DN – Instructions LEC-DN – Instructions L – Instructions LC – Instructions 

Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. 

A 69,090 494 846 69,512 497 823 74,324 531 182 72,862 520 140 

B 655,452 4,682 3,518 655,615 4,683 3,307 660,185 4,716 1,640 658,970 4,707 1,932 

C 102,543 732 978 103,527 739 910 102,040 729 314 99,049 707 349 

D 267,826 1,913 2,040 268,020 1,914 1,850 272,542 1,947 914 270,583 1,933 1,404 

E 233,907 1,671 1,613 234,202 1,673 1,592 233,672 1,669 961 231,716 1,655 1,132 

F 219,553 1,568 1,468 218,606 1,561 1,385 214,339 1,531 463 208,451 1,489 625 

  PREMAP-DN – Energy (mJ) LEC-DN – Energy (mJ) L – Energy (mJ) LC – Energy (mJ) 

A 2,081 15 25 2,094 15 25 2,239 16 6 2,194 16 4 

B 21,667 155 120 21,671 155 112 21,825 156 57 21,781 156 67 

C 3,115 22 30 3,146 22 28 3,101 22 10 3,005 21 11 

D 8,739 62 68 8,744 62 61 8,891 64 32 8,828 63 48 

E 7,544 54 53 7,553 54 53 7,537 54 33 7,475 53 39 

F 6,677 48 45 6,647 47 43 6,526 47 16 6,332 45 20 

 

Table 24 compares the heuristics considering the total communication volume 

transferred through the NoC. As observed previously, PREMAP-DN and LEC-DN have the 

largest reduction in the communication volume, and L presents the worst results. The LC 

heuristic, which distributes evenly the workload, has an important reduction in the 

communication volume compared to L heuristic. 

 

Table 24 – Total communication volume (thousands of flits),  using a 12x12 MPSoC size. 

 
PREMAP-DN LEC-DN L LC 

A 139 144 1,096 395 

B 916 881 2,640 1,010 

C 345 344 1,385 683 

D 315 315 1,568 542 

E 467 419 1,581 726 

F 882 942 3,088 1,494 

 

Table 25 presents the total execution time. In most scenarios, L and LC heuristics 

reduce the total execution time compared to PREMAP-DN and LEC-DN heuristics. 

 

Table 25 – Total execution time (thousands of clock cycles), using a 12x12 MPSoC size. 

 
PREMAP-DN LEC-DN L LC 

A 9,772 9,829 8,593 9,200 

B 26,317 24,715 17,451 20,768 

C 6,657 6,648 5,580 6,074 

D 13,853 13,064 10,389 13,365 

E 10,460 10,823 8,474 9,617 

F 7,913 8,148 7,222 7,895 
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5.5.2 Task mapping evaluation using the SystemC platform model 

In this Section, the scenarios described in Table 16 (10x10 MPSoC) are evaluated 

using the SystemC cycle-accurate platform. The goal of executing the experiments in the 

SystemC platforms is to obtain accurate results for execution time, and power. The four 

heuristics are compared according to different performance figures: (i) workload 

distribution, in Section 5.5.2.1; (ii) communication volume, in section 5.5.2.2; (iii) total 

execution time, in Section 5.5.2.3; (iv) temperature distribution, in Section 5.5.2.4; (v) and 

power traces, in Section 5.5.2.5. 

5.5.2.1 Workload Distribution  

This Section compares the heuristics in terms of the instructions and energy 

distribution. Results evaluate the number of instructions executed and the energy 

consumed by each SP at the end of execution.  Table 26 presents the number of executed 

instructions and the consumed energy values (total, average and standard deviation), for 

the heuristics.  

 

Table 26 – Instructions (thousands of instructions) and energy (mJ) for the evaluated 
scenarios – SystemC platform. 

 

PREMAP-DN – Instructions LEC-DN – Instructions L – Instructions LC – Instructions 

Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. 

A 43.584 454 842 43.646 455 847 45.534 474 121 45.249 471 98 

B 510.356 5.316 1.620 510.448 5.317 1.619 513.293 5.347 1.826 511.970 5.333 1.364 

C 68.240 711 749 68.481 713 694 69.069 719 154 69.019 719 275 

D 202.672 2.111 1.465 202.222 2.106 1.497 203.450 2.119 889 203.429 2.119 942 

E 173.412 1.806 1.217 173.137 1.804 1.151 174.075 1.813 822 173.574 1.808 894 

F 148.298 1.545 534 147.949 1.541 521 148.796 1.550 152 148.951 1.552 246 

 
PREMAP-DN – Energy (mJ) LEC-DN – Energy (mJ) L – Energy (mJ) LC – Energy (mJ) 

A 1.238 13 24 1.240 13 24 1.299 14 4 1.289 13 3 

B 15.010 156 48 15.013 156 48 15.114 157 54 15.073 157 41 

C 1.987 21 22 1.994 21 20 2.013 21 5 2.010 21 8 

D 5.939 62 43 5.926 62 44 5.968 62 27 5.967 62 28 

E 5.087 53 36 5.080 53 34 5.111 53 24 5.095 53 27 

F 4.340 45 16 4.331 45 15 4.358 45 5 4.361 45 7 

 

The number of executed instructions and energy consumed per scenario is similar, 

with a small variation due to the different mappings (up to 2.57%).  A similar result was 

obtained with the OVP platform (up to 3.6%).  

The gray columns highlight the most relevant results of the Table 26, showing the 

standard deviation of the average number of instructions/energy consumption of each SP. 

As explained before, a smaller standard deviation reflects in a better workload balancing. 

The L heuristic reduces the standard deviation in most scenarios, as pointed out by the 
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results obtained the in OVP platform. Table 27 compares the heuristics’ energy standard 

deviation normalized w.r.t. the L heuristic. 

When compared to the L heuristic, the PREMAP-DN and LEC-DN increase the 

standard deviation, respectively, 3.62 and 3.53 times, except in Scenario B. In Scenario B, 

PREMAP-DN and LEC-DN heuristics reduce the standard deviation by 12% compared to 

the L. This result can be explained since the scenario B executes only the Djikstra 

application, which tasks have similar load values. The LC heuristic has an average 

increase of 38% compared to L, excepting scenario A and B. LC heuristic reduces the 

standard deviation in average 22.5% compared to L in Scenarios A and B. 

Table 27 – Energy standard deviation normalized w.r.t. the L heuristic. 

 
L PREMAP-DN LEC-DN LC 

A 1.00 6.81 6.84 0.80 

B 1.00 0.88 0.88 0.75 

C 1.00 4.75 4.40 1.75 

D 1.00 1.62 1.65 1.05 

E 1.00 1.47 1.39 1.09 

F 1.00 3.44 3.36 1.61 

 

To understand the standard deviation reduction values of Table 26, Figure 48 

presents the energy consumed per SP for scenario A. Note in Figure 48(a) and Figure 

48(b) that the PREMAP-DN and LEC-DN heuristic produce an unbalanced load 

distribution, with several underused processors. PREMAP-DN produces 12 SPs 

consuming more than 50 mJ (red rectangles), and 65 SPs consumes less than 5 mJ 

(green rectangles). LEC-DN produces 12 SPs that consumes more than 50 mJ, and 67 

consuming less than 5 mJ. Further, PREMAP-DN has 51, and LEC-DN 58 SPs that do not 

execute tasks.  

 On the other hand, L and LC heuristic provide a better load distribution, with all SPs 

executing applications’ tasks, and no SPs consumes more than 50 mJ. The highest energy 

values are, respectively, 92.01mJ, 96.62mJ, 31.17mJ, and 22.73, for PREMAP-DN, LEC-

DN, L and LC heuristics. PREMAP-DN and LEC-DN concentrate the load in few SPs, 

increasing the probability to failures due to wear of process. The L and LC heuristic use 

the total energy consumed in an SP (TE) to avoid overused cores and reduce the 

probability of failures due to the wear of process.  

Results presenting the energy consumed at each SP for the other scenarios are 

presented in Appendix A.2. Such results present a similar behavior of Scenario A, where 

PREMAP-DN and LEC-DN heuristics tend to concentrate the load in few SPs. Note that 

the used SPs in PREMAP-DN and LEC-DN with higher consumed energy tend to 

concentrate in the central SPs of a cluster. This result is explained by the initial tasks 

mapping approach used for such heuristics. The central SP of a cluster is the point that 

has a reduced distance to all cluster SPs. Therefore, mapping tasks in such central SPs 
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help in reduce communication distances and the communication volume transferred 

through the NoC. However, as mentioned before, such approach tends to compromise 

reliability, increasing the wear of SPs within such central area.  

 

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

0.02 1.77 41.08 3.56 1.72 0.02 12.49 26.12 3.30 2.63 

0.02 59.26 80.13 47.47 1.22 0.02 50.73 83.11 69.31 11.01 

0.02 8.45 19.43 10.44 1.72 0.02 0.02 8.48 10.22 1.76 

LMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02 

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

0.02 45.15 12.99 8.78 2.10 0.02 25.50 5.15 0.63 1.23 

0.02 50.97 92.01 52.47 4.19 0.02 67.37 81.94 70.57 17.34 

0.02 0.02 78.52 22.44 1.77 0.02 0.02 25.33 13.70 1.76 

GMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02 

(a) PREMAP-DN 
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

0.02 35.98 6.46 0.32 0.02 0.02 26.43 20.86 3.31 2.03 

0.02 67.19 96.62 27.93 0.62 0.02 50.98 69.51 49.88 4.51 

0.02 0.02 42.09 8.61 0.02 0.02 0.02 42.35 8.71 0.02 

LMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02 

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

0.02 37.39 13.07 0.02 1.22 0.02 14.64 1.74 0.02 1.54 

0.02 50.68 95.74 76.62 17.51 0.02 59.01 68.82 74.74 18.60 

0.02 0.02 60.93 10.87 0.02 0.02 0.02 50.55 18.17 2.99 

GMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02 

(c) LEC-DN 
11.50 14.30 10.05 9.66 15.69 14.12 16.82 15.10 9.68 11.19 

11.55 12.63 14.73 10.54 12.67 9.86 23.37 11.61 9.59 13.32 

10.03 9.73 14.52 13.49 9.98 15.00 11.73 10.30 15.97 13.64 

11.08 16.31 17.06 14.08 10.50 11.26 10.87 16.23 17.71 12.03 

LMP 10.68 12.03 20.06 31.17 LMP 10.73 13.26 13.86 17.11 

10.29 15.03 16.48 12.20 12.38 23.35 10.47 10.95 10.67 9.71 

17.13 11.02 13.49 11.30 18.02 10.39 11.81 11.02 13.32 18.55 

15.76 9.80 11.34 16.19 11.22 11.77 15.41 12.62 14.53 13.66 

20.79 10.91 11.73 11.11 15.37 16.14 11.10 14.21 15.76 10.83 

GMP 16.56 11.43 14.70 10.58 LMP 13.34 11.50 17.38 16.82 

(c) L 
17.99 18.70 9.68 10.37 12.40 18.37 17.89 9.69 10.40 12.40 

15.88 16.09 9.68 15.58 17.16 14.67 12.38 11.38 15.64 17.35 

13.76 12.29 12.79 8.78 13.49 11.32 12.00 12.80 10.72 13.46 

15.12 13.55 10.30 10.25 10.77 16.67 12.07 11.26 9.90 9.43 

LMP 11.31 14.37 14.27 16.51 LMP 16.71 14.36 14.25 16.53 

15.29 13.27 12.15 15.56 15.22 12.09 17.13 9.67 10.40 12.44 

11.96 17.31 10.97 11.02 14.92 14.80 16.15 9.69 15.71 17.27 

12.42 18.28 12.40 13.88 9.48 12.90 12.01 12.89 10.56 13.58 

15.23 12.29 22.73 13.81 8.26 15.99 13.79 11.58 10.68 10.85 

GMP 12.52 14.63 11.32 8.18 LMP 17.58 14.43 14.32 16.85 

(d) LC 
Figure 48 – Energy consumed per SPs (mJ) for each heuristic in Scenario A in the 

SystemC platform. Each rectangle represents a PE. Green rectangles represent SPs 
consuming less than 5 mJ. Red rectangles represent SPs consuming more than 50 mJ. 
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5.5.2.2 Communication Volume 

Table 28 presents the total communication volume transferred through the NoC for 

all evaluated scenarios. As obtained in the OVP platform results, the PREMAP-DN and 

LEC-DN heuristics achieve the highest reductions in the communication volume in all 

scenarios.  Table 29 presents results normalized w.r.t. the PREMAP-DN heuristic.  

 

Table 28 - Total communication volume (thousands of flits) 

 
PREMAP-DN LEC-DN L LC 

A 235 237 1,189 706 

B 1,004 1,040 3,467 2,029 

C 717 732 1,708 1,050 

D 625 566 1,887 1,014 

E 793 804 1,921 1,183 

F 1,898 1,884 3,571 2,342 

 

Table 29 - Total communication volume normalized w.r.t. the PREMAP-DN heuristic 

 
PREMAP-DN LEC-DN L LC 

A 1.00 1.01 5.07 3.01 

B 1.00 1.04 3.45 2.02 

C 1.00 1.02 2.38 1.46 

D 1.00 0.90 3.02 1.62 

E 1.00 1.01 2.42 1.49 

F 1.00 0.99 1.88 1.23 

 

L and LC heuristics have an average increase of 3.04 and 1.81 times, respectively, 

when compared to the PREMAP-DN.  Such result is similar to the one obtained in the OVP 

platform, where L and LC heuristics have an average increase of 3.27 and 1.97 times, 

respectively.  

The LC heuristic reduces the total communication volume in average 40% compared 

to the L heuristic. In the OVP platform, the LC heuristic had the same behavior. However, 

in such platform the reduction of LC heuristic was 52%.  

 

5.5.2.3 Total Execution Time 

A consequence of the better workload distribution is the reduction in the total 

execution time of the simulated scenarios. Table 30 presents the execution time for the 

evaluated scenarios. As observed in the OVP platform, the L heuristic has the larger 

reduction in total execution time compared to other heuristics.  
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Table 30 – Total execution time (thousands of clock cycles). 

 
PREMAP-DN LEC-DN L LC 

A 5,950 5,814 5,361 5,667 

B 13,463 13,896 15,500 17,288 

C 4,452 4,449 3,455 4,297 

D 10,623 10,241 8,325 9,113 

E 9,340 8,825 7,011 7,749 

F 4,670 4,545 3,798 4,289 

 

Table 31 presents the total execution time normalized w.r.t. the L heuristic.  LC 

heuristic has an average increase of 12%, when compared to the L heuristic. In OVP 

platform such increase was the same (i.e. 12%). 

 

Table 31 – Total execution time normalized w.r.t. the L heuristic 

 
L PREMAP-DN LEC-DN LC 

A 1.00 1.11 1.08 1.06 

B 1.00 0.87 0.90 1.12 

C 1.00 1.29 1.29 1.24 

D 1.00 1.28 1.23 1.09 

E 1.00 1.33 1.26 1.11 

F 1.00 1.23 1.20 1.13 

5.5.2.4 Temperature distribution 

This Sub-section compares the heuristics regarding the temperature distribution at 

the end of the simulation. For this purpose, a power report is generated using the 

proposed energy model (Section 4.1). The HotSpot simulator [WEI06] computes the 

temperature of the MPSoC at the end of the simulation using the power report (65 nm, 1 

GHz, 1.2V, ambient temperature 318.15 K). Figure 49 presents four heat maps showing 

the temperature distribution of the MPSoC for scenario A. The small temperature gradient 

(4 K) comes from the simple processor architecture (Plasma) used in the adapted 

platform, with a peak consumption of 25 mW.  

The result verified in the heat maps of Figure 49 was expected according to the 

results observed in Table 26. The L and LC heuristic generate a uniform temperature 

distribution because most PEs has a warm temperature (represented as blue rectangles). 

Such better temperature distribution is related to the reduced standard deviation values 

compared to PREMAP-DN and LEC-DN heuristics. Moreover, note in Figure 49 that 

PREMAP-DN and LEC-DN have a high temperature (i.e. green area) in SPs in a central 

area of the cluster, while other SPs are colder (i.e. blue area). This illustrates an 

unbalanced temperature distribution with the presence of hotspots.  

Results illustrating the temperature distribution for the other scenarios are presented 

in Appendix B. In some scenarios, the L and LC heuristics achieve a higher temperature 
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than the LEC-DN and PREMAP-DN heuristics. Such behavior is explained due two 

reasons. First, L and LC heuristic execute the same workload in a reduced execution time, 

which reflects in increased power and a higher temperature. Second, since an SP 

temperature affects the temperatures of neighboring SPs. The L and LC heuristics present 

a higher number of SPs executing tasks at the same time. Such SPs generate heat and 

increase the temperature of their neighbors. However, in the most scenarios L and LC 

evenly distribute the temperature across the system, with a reduced number of hotspots 

areas compared to PREMAP-DN and LEC-DN heuristics.  

   

 

 (a) PREMAP-DN 

 

(b) LEC-DN 

 

(c) L 

 

(d) LC 

Figure 49 – Temperature distribution for Scenario A. 

5.5.2.5 Power Traces  

This Section compares the heuristics regarding the power distribution during the 

execution time. Figure 50 details the power traces along the execution time for the four 

heuristics in scenario A. Note that although different, the power traces of Figure 50 

correspond to the execution of the same workload but varying the task mapping.  
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(a) PREMAP-DN 

 
(b) LEC-DN 

 
(c) L 

 
(d) LC 

Figure 50 – Power traces for scenario A. X-axis: time in milliseconds (only PEs executing 
tasks are considered). Y-axis: average power of active processors (W). Gray bars: 50% of 
the population, first to third quartiles. Black lines: average first and third quartiles. Green 

line: average median. Blue line: instantaneous median. 

 

The graphs of Figure 50 show: 

 Median: the LEC-DN and PREMAP-DN have a higher median (blue lines) than L 

and LC heuristic, corresponding to a higher power dissipation of SPs at most 

sampled periods.  

 Quartiles (black lines): the average first and third quartiles are much higher in the 

PREMAP-DN and LEC-DN heuristic, also corresponding to a higher power 

dissipation of SPs. 

 Instantaneous power dissipation (gray bars): most of the time the gray bars of the 

PREMAP-DN and LEC-DN heuristic are higher than the L and LC heuristic, 

corresponding to a worst power distribution.  
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 L and LC (approximately 54 ms and 57 ms) provides a better execution time 

reduction compared to PREMAP-DN and LEC-DN (approximately 60 ms and 58 

ms) The execution time may be also observed in Table 30. 

Results containing the power traces for the other scenarios are presented in 

Appendix C. When compared to PREMAP-DN and LEC-DN heuristics, the L and LC 

produce lower power dissipation at most sampled periods. This is explained due to the 

higher CPU sharing provided by PREMAP-DN and LEC-DN heuristics. When tasks are 

executing in the same SP, power dissipation increases.   

5.5.3 Discussion 

The heuristics presented in this Chapter were evaluated regarding different 

parameters: workload distribution, execution time, communication volume, temperature 

distribution and power traces. 

Results show that taking into account the tasks’ load in the mapping decision can 

considerably improve the workload balancing. However, achieving a perfect workload 

distribution, where all SPs consume the same energy, may not be achievable because 

tasks may present different loads. Tasks may have a large difference in their loads, which 

may generate unbalanced workloads and, possibly, the presence of hotspots. Take, for 

example, the application illustrated in Figure 51.  Figure 51(a) shows the application graph, 

where the numbers above each vertex represent the task load (energy consumption). 

Such application is mapped as presented in Figure 51(b). Since the application tasks’ 

loads have a large difference between them, an unbalanced workload is produced (the SP 

where task C is mapped consumes ten times as much power as other SPs).  

 

7007050
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Figure 51 – Example of unbalanced workload. 

L and LC heuristics improve workload balancing compared to the LEC-DN and 

PREMAP-DN heuristics. This result shows that heuristics that focus only on 

communication reduction produces unbalanced workloads, with an increased occurrence 

of hotspots, which can compromise system reliability.  

Further, PREMAP-DN and LEC-DN heuristics do not take into account processor 

wear. Even if they can provide a better workload balancing in a specific scenario, such 
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heuristics tend to concentrate tasks in the same area (i.e. central SPs of a cluster). In this 

case, system reliability is compromised since SPs of this area are more susceptible to 

failures due to wear of process.  

On contrary, L and LC heuristics can minimize the accumulation of wear on 

processors by using the TE value. The TE value is the total consumed energy by a given 

SP, corresponding to the energy (Ei) consumed by all already executed tasks and the 

tasks that are currently being executed on this processor. Chantem et al. [CHA13] use a 

similar technique, called LTF (i.e. largest-task first [CHE08]), considering the accumulated 

energy consumed by a processor in order to slow down wear process. The LTF technique 

considers a given task has an energy value to execute on a given processor.  When an 

application is required to be mapped, the LTF technique analyzes all tasks and orders 

them by their energy values. Then, the task with the largest energy value is assigned to 

the processor with the least total energy consumption. When compared to this Thesis, the 

main drawback of that technique is that it cannot handle dynamic workloads.   

Experiments also show that the L heuristic presented a better (in average 23.52%) 

workload balancing compared to LC. However, L heuristic increases an average of 40% 

the communication volume compared to the LC. This result shows that heuristics that 

focus only on workload balancing increase the communication volume. A high 

communication volume transferring through the NoC can compromise QoS and induce to 

links failures. Links failures may produce isolated and, consequently, unusable cores, 

which compromise the workload balancing. 

The L heuristic presented a reduced execution time compared to other heuristics. 

However, L heuristic may compromise the execution time in scenarios with an increased 

data transfer between tasks, according to results presented in [MAN15].  

The LC heuristic provides the best tradeoff between communication volume 

reduction and workload balancing, inducing to better system reliability without 

compromising performance. The LC heuristic reduces the total execution time when 

compared to heuristics that focus on the communication volume reduction. Using 

scenarios with higher communication volume transferred through the NoC, the LC heuristic 

presents a reduced execution time compared to L [MAN15]. Further, as presented next, 

the LC heuristic also has a low effort to compute mapping decisions, which does not 

compromise scalability and performance. 

The LC heuristic has a small computation complexity (worst case O(n2)). In fact, the 

execution time to execute the heuristic is small due to its hierarchical implementation. 

Table 32 presents the scenarios used to evaluate the LC complexity, and Table 33 shows 

the average number of instructions to execute each step of the mapping. 
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Table 32 - Evaluated scenarios configuration for the SystemC platform. 

Scenario 
MPSoC 

size 
Cluster size Applications 

Number of 
tasks 

1 

6x6 3x3 

8 x DTW, 8 x MPEG, 8 x DJK,  
8 x SYN1, 8 x SYN2 

360 

2 8 x DJK, 11 x SYN1, 11 x SYN2 312 

3 16 x MPEG, 8 x DJK, 8 x SYN2 224 

4 
3 x DTW, 6 x MPEG, 9 x DJK,  
5 x SYN1, 8 x SYN2 

270 

5 12x12 4x4 
10 x DTW, 25 x MPEG, 18 x DJK,  
14 x SYN1, 12 x SYN2 

645 

 

Table 33 – Average number of instructions to execute each step of the Load-
Communication heuristic. 

Scenario Cluster selection Initial tasks mapping Non-initial tasks mapping 

Sc1 280 2497 688 

Sc2 288 2337 674 

Sc3 299 3057 645 

Sc4 282 2588 664 

Sc5 562 8584 749 

 

The cluster selection is fast since it only verifies the availability of resources. The 

most complex step is the mapping of non-initial tasks because it is necessary to evaluate 

all possible regions inside a cluster. The mapping of the non-initial task requires few 

instructions because the fixed region restricts the search space. The hierarchical 

implementation of the mapping heuristic ensures scalability because the cluster size 

defines the search space, not the MPSoC size. With larger MPSoCs, the cluster selection 

step increases its execution time (Sc5). With larger clusters, the initial tasks mapping may 

also increase its execution time as shown in Sc5. In both cases, the execution time to map 

each non-initial task is negligible compared to the time to execute them (thousands of 

clock cycles). 

Regarding the platforms used to evaluate the scenarios, both platforms generate 

qualitatively similar results, such as: 

 L and LC heuristics improve the workload balancing compared to PREMAP-

DN and LEC-DN. 

 L heuristic improves the workload balancing compared to LC. 

 LC heuristic reduces the communication volume compared to LC.  

 L heuristic reduces the execution time compared to the other heuristics. LC 

heuristic reduces the execution time compared to PREMAP-DN and LEC-DN. 

Such results demonstrate the relevance of the OVP platform in the design-space 

exploration. Even if the OVP model is not accurate, it enables faster simulations (two 

orders of magnitude) compared to SystemC model, enabling a fast analysis of the 

proposed heuristics.   
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5.6 Final Remarks 

This Chapter presented one of the main contributions of this Thesis: the LC heuristic. 

Such heuristic present the following main features: 

 Dynamic, i.e., tasks are mapped at runtime; 

 Distributed, contributing to increasing performance and reliability for large-scale 

MPSoCs; 

 Scalable, due to its hierarchical implementation; 

 Efficient workload distribution, contributing to increasing the system reliability; 

 Important reduction of hotspots in the system compared to heuristics aiming to improve 

only the NoC usage. 

The LC heuristic showed that the mapping heuristics must evolve in the sense that 

the NoC usage is not the most relevant performance figure to consider. Workload in the 

processing elements, consumed energy, hotspots, reliability, and lifetime are also 

important parameters to take into account in the mapping decision. 
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6. CONCLUSION AND FUTURE WORKS 

The Introduction of the Thesis stated the following hypothesis: “This Thesis relies on 

two hypotheses: (i) untimed abstract models can be used to evaluate task mapping 

solutions; and (ii) task mapping solutions that focus on communication volume reduction 

can compromise system reliability; and task mapping solutions that focus on workload 

balancing, can increase system communication volume”.  

The simulation of the untimed OVP abstract model, calibrated from the low-level 

model (RTL), enabled to capture the execution time, the energy consumption, and the 

communication volume. Such abstract model allowed to evaluate mapping heuristics in 

large MPSoCs, with similar results to the clock-cycle accurate SystemC platform. 

Consequently, the first part of the above hypothesis is proven. 

The extensive evaluation of the heuristics showed that optimizing the NoC 

communication lead to overused processors, and consequently temperature hotspots, and 

optimizing the workload distribution lead to overused NoC links. Otherwise, the L heuristic, 

which focuses only on workload balancing, increased the communication volume 

considerably when compared to the other heuristics. The proposed LC heuristic makes a 

tradeoff between load (energy) and NoC communication, which leads in long-term in 

higher reliability and system lifetime. Thus, the second part of the above hypothesis is also 

proven. 

Appendix D presents the Author’s publications related to the present work. 

6.1 Conclusions Related to the Multi-level Platform Framework 

This Thesis presented a multi-level framework that includes different modeling and 

debugging capabilities that improve the design space exploration of large MPSoCs. The 

proposed framework uses a synthesizable RTL VHDL model as reference, which allows to 

captures accurate area, frequency and power performance figures. Then, two other 

models were implemented.  

The SystemC RTL model  is effectively clock-cycle accurate with a simulation 

speedup of two orders of magnitude compared to the reference model. The simulation of 

this model produces accurate performance results, and higher debuggability compared to 

the reference model.  

An OVP model is proposed to enable software development and validation at early 

design stages, reducing design cost and improving time-to-market. Such model provides 

fast simulation (approximately 20 times faster than the SystemC model in a 20x20 MPSoC 

instance) and higher software debuggability (i.e. integration with GDB and Eclipse, 

watchdogs for capturing fetched instruction, etc). Moreover, such model can provide 
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performance figures (some estimated) including: (i) communication volume; (ii) number of 

executed instructions and energy consumed by processors; (iii) execution time. The 

provided performance figures help designers for decision making, decreasing the risks of 

the development software flow. For instance, the OVP model proved to be able to evaluate 

task mapping heuristics, generating qualitatively results similar to the SystemC model.  

Further, the OVP simulator provides pre-defined models including different 

processors models (ARM, MIPS, PowerPC, etc.). In this context, one important feature of 

the OVP modeling is the easiness of integrating different CPU models, allowing the fast 

development of heterogeneous MPSoCs. 

6.2 Conclusions Related to the Distributed System Management  

This Thesis proposed a distributed system management approach that divided the 

system into clusters controlled by a local manager. Such approach proved to provide 

system scalability and gains in execution time compared to a centralized approach. 

Further, the proposal reduces mapping computational effort and NoC traffic, improving 

system reliability. 

6.3 Conclusions Related to the Task Mapping Heuristics 

This Thesis proposed four runtime distributed heuristics, which were evaluated using 

the OVP and SystemC platform models.  The proposed heuristics are LEC-DN, PREMAP-

DN, L, and LC.  Among these heuristics, the LC is the one that best tackles the following 

challenges: (i) scalability; (ii) dynamic workload; and (iii) reliability. 

Scalability comes from to the hierarchical mapping approach, which divides the 

process into three steps: cluster selection, initial task mapping, and non-initial tasks 

mapping. One processor centralizes the cluster selection, but it corresponds to a fast 

procedure to select a region to receive the application. The initial and non-initial task 

mapping are distributed in manager processors, enabling to execute in parallel several 

mapping decisions.  

Support to dynamic workload also comes from the mapping approach, which does 

not use pre-computed mapping templates. Applications are mapped into the available 

resources, according to some criteria (e.g. accumulated energy). 

The increased reliability is the result of the tradeoff between the use of the NoC and 

processing resources. The proposed LC heuristic distributes the workload evenly, avoiding 

hotspots and power peaks, as demonstrated in the temperature maps and power traces.  

As mentioned before, this Thesis focuses on general-purpose MPSoC platforms, 

able to execute several applications that are unknown in advance. This Thesis also 

assumes that underlying applications can be inserted into the system in a non-
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deterministic way, according to user requirements. As presented in Section 2.2, the 

literature presents different task mapping solutions focusing on improving system reliability 

for general-purpose MPSoC platforms. However, such solutions present results only for 

small systems (up to 10 cores). Those solutions have the following drawbacks for large 

scale MPSoCs:  

 Centralized mapping approach. Centralized mapping approaches can compromise 

performance and reliability for large MPSoCs. This is explained since a single core 

is responsible to execute the mapping functions, creating a communication and 

computation system hotspot. The LC heuristic uses a distributed mapping 

approach that improves performance and reliability compared to a centralized 

approach, as presented in Chapter 4. 

 The mapping algorithm of such techniques may increase in complexity in large 

MPSoCs, imposing high time-consuming and high computational algorithms. High 

time-consuming algorithms may compromise system performance. In turn, high 

computational algorithms can compromise reliability since they require higher power 

consumption to be executed, generating a higher temperature. For instance, 

different mapping algorithms compute the system gradient temperature, which 

grows in complexity for large systems. The LC heuristic has small computation 

complexity for a 12x12 MPSoC, as presented in Section 5.5.3. 

 Some solutions do not consider the system communication volume in the mapping 

decision, which can compromise reliability and performance. In large systems, 

communicating tasks may be mapped too far away from each other, increasing the 

system communication volume. The LC considers the communication volume in 

the mapping decision. 

 Such solutions use wear and temperature sensors, which impose a higher cost for 

large MPSoCs. The LC does not use sensors. 

6.4 Limitations of the Proposal 

The main limitations of this Thesis are: 

 the adopted MPSoC architecture employs a single application repository. Further, 

only the GMP has access to such repository;  

 the task mapping heuristics are limited to homogeneous NoC-based MPSoC; 

 task mapping heuristics experiments considered only 3 real benchmarks; 

 task mapping heuristics evaluation can be improved by using numeric models to 

demonstrate system reliability improvements. 
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6.5 Future Works 

Aforementioned limitations do not invalidate the obtained results, but they point out 

possible future directions that can be investigated.  Future works include:  

 integration of a lifetime model to obtain an MTTF (Mean Time to Failure) metric. 

Different works [CHA13][HUA09][HAR12] in the literature use the MTTF as the 

main metric for evaluating lifetime reliability improvements. Such metric is 

computed by a lifetime model that considers different system aging effects. In 

this context, results of this Thesis can be better evaluated by showing the 

expected system lifetime when executing a given mapping heuristic. 

 use of monitoring to better estimate processors wear-state and workload 

variations at runtime. A monitoring system also can capture system data at 

runtime to help heuristics to provide better mapping decisions.  

 add the power due to the static consumption in the power reports to obtain more 

accurate thermal maps. 

 explore task mapping heuristics for heterogeneous and 3D MPSoCs. 

 explore system architectures using more application repositories instances, or 

architectures where a larger number of processors have access to the 

application repository. 
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APPENDIX A – WORKLOAD DISTRIBUTION 

This appendix first complements the results of Section 5.5.1.1 (OVP platform) and 

5.5.2.1 (SystemC platform), where the heuristics are evaluated concerning the workload 

distribution. Results presented in this appendix show the energy consumption per PE for 

scenarios B to F of Table 16. The L and LC heuristics have a better workload balancing 

compared to PREMAP-DN and LEC-DN heuristics in most scenarios. Such heuristics have 

a smaller number of SPs with a low energy consumption (green rectangles) and high 

energy consumption (red rectangles). 

A.1 Results for OVP Platform 

78.75 236.24 79.32 158.05 0.48 78.64 235.74 217.21 157.34 0.48 
335.64 412.30 236.45 354.91 157.01 336.19 413.36 236.35 356.06 156.59 
158.10 472.08 353.51 412.56 157.28 158.14 472.40 353.82 353.93 156.71 
137.79 235.16 473.20 411.73 156.94 0.48 157.01 474.09 413.48 78.73 
LMP 0.48 236.63 216.64 156.91 LMP 0.48 236.54 78.77 78.95 
0.48 156.87 235.81 0.48 0.48 156.19 78.20 354.73 156.10 0.48 

157.53 587.55 411.69 236.13 79.32 354.70 413.22 157.53 183.69 79.04 
79.41 352.67 587.02 236.81 158.12 0.48 412.74 529.90 411.71 234.88 
0.48 235.77 411.53 235.66 235.93 0.48 131.42 295.20 413.00 156.95 
GMP 236.85 236.21 587.74 156.80 LMP 0.48 235.14 274.93 156.56 

(a) PREMAP-DN 
78.90 334.25 217.80 78.80 79.38 78.38 78.34 216.77 156.78 0.48 
157.59 413.46 157.82 295.78 78.39 216.92 414.33 158.22 235.48 157.15 
78.82 414.57 530.32 235.08 236.40 78.83 533.15 352.38 531.67 236.34 
216.18 413.20 294.61 412.91 78.56 0.48 157.70 295.28 594.28 235.49 
LMP 78.15 158.03 78.98 78.82 LMP 0.48 157.11 157.55 157.60 
26.97 157.82 353.05 78.15 78.79 79.30 235.49 335.43 78.50 79.10 
215.98 411.83 431.00 209.99 78.76 79.15 411.46 235.76 157.56 0.48 

0.48 372.71 899.42 315.48 314.08 131.87 531.77 471.85 234.10 105.55 
105.36 411.79 374.09 235.49 274.15 0.48 157.08 412.78 471.71 234.58 
GMP 235.87 210.53 450.45 235.40 LMP 0.48 157.80 78.65 79.07 

(b) LEC-DN 
158.07 157.90 217.67 365.03 157.53 158.01 217.99 157.80 218.63 157.72 
278.01 157.85 220.97 304.47 278.82 278.26 303.60 303.86 158.61 303.34 
217.89 283.45 157.97 218.19 302.98 304.09 157.95 218.39 157.89 220.46 
217.07 157.90 157.97 157.93 304.78 363.34 278.25 157.61 158.07 279.58 
LMP 158.36 303.20 303.23 218.92 LMP 157.66 218.38 304.51 218.13 

216.54 157.72 157.67 217.75 218.47 158.14 221.20 158.19 304.42 158.00 
420.63 219.53 157.29 302.27 157.68 302.77 276.80 218.35 218.31 158.17 
362.30 306.15 158.51 158.55 158.50 278.32 303.73 157.38 217.83 218.46 
421.84 217.65 158.20 158.08 217.35 278.26 157.62 157.93 157.96 304.83 
GMP 306.38 157.32 217.02 216.09 LMP 157.73 365.39 304.84 217.43 

(c) L 
78.65 305.19 422.47 209.21 449.65 422.93 156.82 27.01 210.16 506.38 
182.52 184.82 158.23 185.68 183.86 157.61 185.42 184.18 271.66 208.95 
421.37 158.83 79.88 156.91 217.75 164.36 183.53 542.17 184.73 53.49 
244.99 302.49 131.57 132.24 362.26 216.99 185.35 183.39 185.20 157.29 
LMP 157.25 282.66 157.35 278.17 LMP 339.58 130.63 157.01 423.10 

333.51 158.72 190.06 269.47 445.66 421.23 297.54 276.56 278.72 217.36 
215.96 158.19 156.42 183.64 210.88 181.89 236.16 218.46 132.61 157.04 
156.48 132.81 333.65 217.60 132.62 219.30 216.28 131.10 129.53 219.17 
250.91 133.99 216.83 243.07 182.93 361.24 218.95 157.67 218.57 277.34 
GMP 254.17 131.43 209.47 504.30 LMP 218.07 216.07 157.36 277.49 

(d) LC 
Red rectangles: SPs consuming more than 400 mJ. Green rectangles: SPs consuming less than 100 mJ. 

Figure 52 – Energy consumed per SP  in Scenario B in the OVP platform.  
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0.48 0.48 44.23 15.62 3.44 0.48 20.17 6.46 45.35 3.53 

0.48 56.12 48.98 41.18 21.36 15.49 13.38 59.66 51.39 5.92 

44.38 48.38 60.16 63.91 33.61 45.11 46.64 56.52 44.55 8.81 

15.39 44.31 62.92 56.15 47.52 55.77 44.65 46.35 56.94 44.06 

LMP 15.52 44.80 0.48 0.48 LMP 0.48 0.48 43.80 0.48 

0.48 17.72 33.34 16.35 11.38 0.48 5.91 0.48 0.48 0.48 

49.70 106.66 95.65 66.35 31.07 0.48 41.00 42.93 34.99 4.89 

0.48 47.32 102.08 60.06 32.37 0.48 52.53 101.64 47.28 8.53 

0.48 45.67 108.20 99.86 64.01 0.48 43.17 58.52 10.53 19.81 

GMP 13.74 49.76 0.48 0.48 LMP 0.48 42.76 8.47 3.08 

 (a) PREMAP-DN 

1.38 6.74 45.18 0.48 0.48 0.48 15.61 6.21 89.84 0.48 

0.48 64.47 58.15 38.04 6.40 43.41 15.20 92.38 103.04 22.32 

44.57 61.40 59.69 34.95 21.01 45.66 51.30 71.39 57.60 13.42 

0.48 44.71 72.83 60.54 6.58 43.23 30.04 46.34 20.43 5.91 

LMP 15.77 45.38 0.48 0.48 LMP 0.48 0.48 0.48 0.48 

46.81 40.28 48.92 49.62 5.76 0.48 0.48 8.36 26.34 13.17 

48.07 64.79 63.77 69.58 32.65 0.48 30.47 45.21 24.81 18.90 

47.85 55.66 69.64 47.61 5.14 45.48 100.46 50.35 52.70 6.15 

21.65 46.27 48.79 72.23 49.90 0.48 45.32 45.35 56.64 31.54 

GMP 10.46 0.48 45.64 0.48 LMP 0.48 0.48 46.24 0.48 

 (b) LEC-DN 

27.37 26.87 33.63 41.81 29.36 29.09 16.74 28.99 16.36 28.98 

32.99 46.31 44.52 33.31 24.35 29.36 17.39 29.26 17.57 29.15 

32.76 20.56 33.09 25.64 24.36 23.74 17.87 23.85 16.92 22.91 

32.86 21.02 28.50 18.39 26.03 44.86 46.75 45.34 23.42 43.70 

LMP 32.15 19.54 26.67 45.98 LMP 23.30 29.22 23.35 28.88 

33.33 23.97 33.05 32.76 30.51 24.02 37.34 33.53 18.48 28.58 

34.24 26.51 32.94 41.87 54.64 36.86 33.84 33.12 33.21 27.83 

41.73 24.83 50.76 52.28 25.47 44.96 30.98 18.10 30.17 29.66 

57.20 32.56 36.99 27.75 33.41 32.77 18.21 45.72 33.66 30.40 

GMP 34.69 40.87 30.56 26.69 LMP 39.21 49.67 46.78 40.52 

 (c) L 

30.96 30.93 34.20 53.38 33.18 24.35 26.52 20.05 43.94 30.27 

18.53 33.87 35.20 53.90 33.48 23.95 24.08 30.06 50.90 15.16 

21.10 32.97 35.74 30.23 29.66 23.07 30.10 22.84 29.58 29.00 

14.16 26.85 19.11 18.75 25.94 43.92 15.47 29.96 15.37 29.88 

LMP 24.24 46.02 9.36 18.82 LMP 30.07 22.91 15.37 45.28 

30.87 38.82 47.00 66.37 27.63 43.65 17.92 49.08 61.16 44.17 

26.25 32.47 39.97 34.98 30.35 15.54 29.77 56.77 33.22 63.50 

26.15 30.44 30.91 31.80 53.51 22.79 17.95 18.49 24.42 23.80 

44.98 18.81 42.58 27.64 31.56 17.38 30.12 41.19 27.19 27.28 

GMP 16.26 33.60 24.43 49.64 LMP 25.02 55.32 29.87 19.81 

 (d) LC 

Red rectangles: SPs consuming more than 50 mJ. Green rectangles: SPs consuming less than 5 mJ. 

 
Figure 53 – Energy consumed per SP  in Scenario C in the OVP platform.  
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0.48 84.79 14.64 13.26 5.91 3.62 3.34 130.71 0.48 5.84 

0.48 253.34 143.17 19.77 15.07 14.64 116.00 278.27 108.76 40.31 

79.27 362.33 300.66 154.67 70.48 26.97 215.97 124.57 120.42 70.21 

0.48 92.11 132.41 111.65 39.07 0.48 139.99 187.23 104.63 67.12 

LMP 26.97 4.77 77.80 0.48 LMP 5.10 98.26 9.67 1.38 

26.97 91.12 7.90 7.24 27.71 2.99 171.58 6.27 78.21 27.43 

137.49 252.18 154.55 82.40 29.15 55.69 253.21 115.59 113.10 39.38 

0.48 230.75 327.40 117.38 78.17 138.44 78.30 218.73 180.00 9.16 

26.97 274.75 241.68 189.22 78.15 55.80 97.71 61.17 218.72 80.68 

GMP 37.99 29.47 164.94 78.84 LMP 77.60 3.53 79.89 0.48 

 (a) PREMAP-DN 

0.48 6.41 156.37 81.80 0.48 0.48 0.48 65.62 3.53 0.48 

14.03 71.96 84.57 157.84 86.63 0.48 156.52 258.46 160.94 6.58 

4.94 86.04 258.74 156.26 9.46 91.58 376.43 168.08 136.26 86.34 

52.88 209.59 98.15 104.18 58.89 0.48 167.73 197.06 111.64 87.76 

LMP 82.11 3.07 77.95 0.48 LMP 5.58 62.13 39.45 13.63 

0.48 133.53 2.98 0.48 0.48 0.48 96.68 7.31 53.83 0.48 

0.48 275.60 120.44 224.60 78.38 0.48 226.15 157.15 147.38 86.73 

91.49 170.31 218.67 275.79 82.64 53.31 338.78 198.80 138.54 86.24 

0.48 13.99 183.19 212.14 83.50 0.48 118.82 214.61 148.17 20.05 

GMP 78.09 152.91 68.86 14.23 LMP 0.48 78.01 0.93 6.81 

 (b) LEC-DN 

45.26 79.24 50.89 79.08 140.09 105.82 64.93 73.24 130.58 46.42 

138.52 140.17 140.93 73.89 44.82 126.49 87.61 70.82 141.26 62.27 

125.03 62.04 57.13 199.13 83.25 64.99 87.75 57.15 134.12 64.61 

65.60 144.45 47.90 85.28 82.54 64.84 62.21 117.64 79.58 45.80 

LMP 70.69 80.08 49.10 148.30 LMP 61.82 63.09 44.01 114.51 

144.21 61.13 141.40 69.57 81.92 151.60 67.22 62.13 148.46 151.75 

141.21 141.20 204.71 141.56 79.35 128.19 67.57 86.23 67.56 110.29 

84.54 82.00 61.63 64.51 62.37 56.40 51.88 148.59 68.20 70.59 

138.57 61.87 139.92 84.47 138.90 57.48 137.92 48.40 71.28 128.43 

GMP 79.62 87.00 65.46 165.52 LMP 51.93 67.14 69.44 69.58 

 (c) L 

165.13 226.19 89.92 41.25 127.99 136.06 68.61 57.43 103.58 193.40 

78.57 83.21 82.82 140.02 79.32 52.92 44.96 43.64 85.79 157.40 

18.79 21.46 59.84 98.94 64.56 99.77 40.09 48.45 63.52 85.46 

75.44 68.42 44.77 83.15 82.62 80.69 109.39 111.58 45.03 21.92 

LMP 114.51 32.97 170.48 168.06 LMP 108.52 290.27 69.71 18.00 

227.57 90.37 14.32 64.33 231.27 145.19 145.29 48.03 78.97 113.91 

87.58 85.21 35.45 87.92 87.81 62.30 65.70 65.00 38.89 140.17 

81.57 35.59 104.89 73.54 99.15 88.25 69.50 122.28 56.77 58.64 

139.99 142.70 38.99 45.02 149.35 210.24 94.38 39.65 64.42 90.10 

GMP 36.11 70.90 64.18 133.02 LMP 74.43 22.72 87.68 234.36 

 (d) LC 

Red rectangles: SPs consuming more than 200 mJ. Green rectangles: SPs consuming less than 20 mJ. 

 
Figure 54 – Energy consumed per SP  in Scenario D in the OVP platform.  
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1.39 139.44 143.04 78.38 0.93 0.48 7.03 138.12 78.38 0.48 

44.06 190.47 133.60 137.87 78.20 47.81 98.11 79.43 62.66 5.91 

0.48 183.14 129.53 93.10 13.43 87.50 186.40 239.00 171.34 104.59 

0.48 14.79 45.21 196.56 78.17 47.99 79.98 78.75 113.27 32.18 

LMP 13.82 5.08 78.90 0.48 LMP 5.61 8.86 77.80 0.48 

0.48 131.89 26.97 53.41 0.48 0.48 44.53 76.27 63.11 36.22 

78.95 307.57 147.31 255.71 155.51 0.48 124.30 160.89 51.03 6.81 

52.63 144.60 104.88 57.35 6.21 46.89 199.29 236.50 130.43 22.67 

77.78 151.51 186.49 112.98 16.70 0.48 46.43 83.06 101.05 59.19 

GMP 33.65 53.56 138.56 78.40 LMP 0.48 0.48 88.28 0.48 

 (a) PREMAP-DN 

0.93 155.44 0.48 0.48 0.48 0.48 88.68 4.37 77.79 32.97 

31.81 212.72 186.81 138.14 78.21 77.81 241.20 120.51 93.29 43.98 

0.48 57.79 282.73 119.70 0.93 0.48 96.56 242.98 122.07 36.62 

53.42 98.19 129.89 198.89 78.16 0.48 30.26 78.63 114.04 47.67 

LMP 77.60 0.93 78.91 0.48 LMP 0.48 0.48 77.80 0.48 

0.48 79.02 26.97 0.48 0.48 46.48 45.93 60.71 46.12 0.48 

78.95 195.93 73.18 216.61 78.38 0.48 61.02 160.61 50.07 47.73 

2.80 87.27 84.36 195.77 83.92 89.80 87.38 249.45 164.58 91.77 

70.93 140.65 91.35 118.25 19.22 0.48 61.06 87.56 258.01 125.80 

GMP 77.61 32.20 145.82 81.55 LMP 0.48 0.48 124.44 58.09 

 (b) LEC-DN 

50.93 40.83 133.51 50.41 41.04 96.89 68.47 57.18 126.65 62.00 

49.62 41.55 135.42 71.71 30.25 66.63 68.53 48.05 28.33 213.77 

100.56 31.01 30.38 80.14 31.38 150.08 57.25 39.88 68.63 39.58 

43.77 41.30 116.26 44.66 31.49 139.28 62.07 68.46 44.00 62.37 

LMP 30.48 30.23 45.15 50.65 LMP 153.39 63.64 61.15 57.98 

53.36 49.61 70.39 139.05 79.60 50.65 41.65 128.03 170.12 42.85 

53.57 50.32 70.15 143.40 44.57 139.20 45.01 41.62 130.65 67.50 

98.01 51.18 81.53 79.20 163.54 134.14 67.60 67.78 88.91 67.98 

113.72 128.25 165.19 150.06 138.75 142.31 44.85 44.91 53.03 50.07 

GMP 49.33 133.20 44.47 149.09 LMP 89.36 131.77 76.08 50.37 

 (c) L 

69.88 41.68 52.95 78.63 198.90 224.62 104.75 36.93 101.84 150.79 

117.37 56.53 41.89 67.85 20.90 66.68 66.62 32.83 93.14 97.31 

96.20 56.46 22.83 23.53 66.68 35.32 43.71 32.93 32.13 29.91 

54.12 45.05 34.08 23.47 30.23 112.30 83.56 93.62 77.49 25.38 

LMP 39.60 40.88 19.53 50.43 LMP 79.62 207.40 52.36 18.50 

114.15 78.58 198.22 123.39 32.22 43.52 48.02 172.68 154.29 41.16 

76.13 95.28 81.92 80.37 88.30 39.20 50.07 98.21 53.86 153.38 

80.22 56.78 37.93 84.77 197.68 49.04 55.50 58.56 58.72 60.36 

130.65 67.74 52.29 131.39 105.59 144.39 55.97 53.30 79.03 61.73 

GMP 51.94 31.14 137.02 153.62 LMP 55.79 113.59 79.27 174.75 

 (d) LC 

Red rectangles: SPs consuming more than 150 mJ. Green rectangles: SPs consuming less than 15 mJ. 

 
Figure 55 – Energy consumed per SP  in Scenario E in the OVP platform.  
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47.65 61.43 15.92 46.87 0.48 0.48 46.27 18.07 46.79 0.48 

102.00 105.01 104.05 121.03 87.81 46.60 107.61 110.19 91.41 44.33 

62.92 89.06 104.40 122.61 82.68 16.90 45.85 106.81 89.54 88.27 

15.60 90.48 104.22 82.80 44.62 16.00 92.85 121.73 90.22 44.39 

LMP 57.37 90.54 0.48 0.48 LMP 92.24 92.38 44.18 44.72 

91.51 71.76 80.91 49.53 0.48 47.40 61.80 15.97 47.25 0.48 

59.10 99.45 93.15 105.15 49.99 100.86 105.12 104.70 121.43 86.97 

94.15 96.23 121.50 115.82 92.34 62.70 89.83 104.45 123.95 83.29 

47.36 95.82 113.42 125.09 51.40 15.99 90.96 106.49 83.15 44.94 

GMP 34.33 95.93 50.02 47.70 LMP 57.25 92.08 0.48 0.48 

 (a) PREMAP-DN 

47.65 61.43 15.92 47.63 0.48 0.48 46.22 18.21 47.25 0.48 

102.00 104.77 104.14 122.65 87.83 46.48 107.03 110.46 90.63 44.68 

62.92 89.52 104.46 122.63 82.83 16.89 45.86 106.70 89.91 88.79 

16.11 91.23 104.47 83.42 44.59 15.99 91.78 122.54 90.10 44.46 

LMP 57.56 90.76 0.48 0.48 LMP 91.92 91.18 44.33 44.73 

91.29 56.21 80.49 49.52 0.48 47.40 61.82 16.13 47.26 0.48 

59.31 98.85 94.17 105.71 50.46 100.98 105.46 104.61 122.14 87.55 

110.98 96.66 120.78 116.63 92.50 62.69 90.50 105.26 122.95 83.84 

48.02 96.52 113.41 125.12 52.25 15.88 90.78 105.58 82.95 44.87 

GMP 36.28 95.31 49.47 48.75 LMP 57.40 91.18 0.48 0.48 

 (b) LEC-DN 

78.28 58.90 116.09 59.19 59.12 76.11 58.32 101.34 58.35 59.23 

58.24 58.75 77.88 52.09 59.59 57.81 59.34 78.16 51.83 59.49 

113.88 45.67 53.75 58.83 44.41 114.13 44.77 53.11 58.99 58.19 

74.77 79.62 74.68 83.51 44.12 74.42 77.54 74.29 84.08 43.71 

LMP 57.37 58.85 52.90 57.38 GMP 57.23 59.11 51.92 57.55 

63.42 64.14 106.13 63.79 60.56 77.24 60.17 115.43 58.62 59.36 

107.00 85.65 64.19 57.27 91.43 58.91 59.58 76.88 51.77 59.00 

56.48 78.85 61.21 65.30 56.41 115.77 45.19 53.81 58.53 44.34 

77.04 62.84 65.86 54.95 79.84 74.59 78.67 74.45 84.02 43.82 

GMP 65.69 77.66 57.67 61.94 LMP 57.89 60.04 53.46 57.98 

 (c) L 

51.99 52.59 74.10 117.29 86.84 52.02 65.72 71.89 87.98 102.43 

74.13 52.71 72.87 108.47 59.38 87.12 52.44 72.89 113.61 72.90 

81.90 45.00 66.57 66.41 57.88 66.85 59.33 78.87 65.83 72.23 

75.58 44.45 44.89 44.33 45.02 44.92 44.64 44.52 43.98 44.67 

LMP 30.03 52.54 52.12 102.46 LMP 44.23 66.44 37.69 59.72 

46.08 60.94 72.85 57.23 109.82 73.90 67.24 59.57 74.71 85.76 

63.92 45.38 59.58 55.52 59.94 51.46 66.89 91.00 109.78 59.51 

71.71 46.97 30.07 62.12 79.01 81.83 59.76 66.54 66.18 58.68 

75.13 62.44 72.03 74.94 90.70 74.44 44.78 44.48 44.83 44.24 

GMP 74.80 55.92 60.97 119.22 LMP 30.16 52.25 51.71 103.45 

 (d) LC 

Red rectangles: SPs consuming more than 100 mJ. Green rectangles: SPs consuming less than 25 mJ. 

 
Figure 56 – Energy consumed per SP  in Scenario F in the OVP platform.  
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A.2 Results for SystemC Platform 

 

186.95 109.55 192.71 109.57 109.54 192.72 109.61 192.98 109.54 109.61 

106.91 108.29 192.70 109.56 192.73 109.60 108.29 192.85 109.58 192.64 

187.05 190.16 288.77 163.43 109.53 192.76 190.02 288.57 163.44 109.55 

186.96 109.55 192.92 109.54 192.71 192.69 109.57 192.88 109.57 192.97 

LMP 192.72 109.58 192.86 109.58 LMP 192.72 109.57 192.81 109.57 

185.84 110.17 192.19 109.74 109.64 192.77 109.59 192.79 109.60 109.56 

106.89 108.94 191.83 109.55 192.43 109.58 108.36 192.80 109.57 192.79 

186.02 189.20 285.02 163.22 109.69 193.00 190.69 288.65 163.52 109.61 

185.87 110.24 189.32 109.06 192.31 192.77 109.58 190.15 108.32 192.93 

GMP 187.60 106.86 188.23 106.94 LMP 187.74 106.87 187.40 106.92 

(a) PREMAP-DN 

186.95 109.55 192.75 109.57 109.54 192.80 109.57 151.30 151.16 109.56 

106.90 108.29 192.70 109.56 192.79 109.56 108.29 192.85 109.58 151.82 

187.00 190.16 288.77 163.43 109.53 192.77 190.02 288.57 163.44 109.85 

187.04 109.54 192.92 109.54 192.59 192.70 109.58 192.88 109.57 235.57 

LMP 192.77 109.59 192.79 109.54 LMP 192.76 109.56 192.73 109.58 

185.97 110.18 192.26 109.72 109.65 192.77 109.59 192.79 109.60 109.58 

106.89 108.94 191.43 110.24 192.45 109.58 108.36 192.80 109.57 192.89 

186.14 189.19 284.61 163.21 110.32 193.46 190.69 288.65 163.52 109.61 

185.97 110.18 189.32 109.06 192.00 192.85 109.57 190.15 108.32 192.79 

GMP 187.36 106.82 187.95 107.60 LMP 187.75 106.89 187.31 106.94 

 (b) LEC-DN 

246.92 127.57 194.12 151.09 279.47 235.59 109.02 236.30 212.13 109.75 

124.85 128.10 255.15 194.74 127.99 194.61 91.44 152.23 152.52 128.09 

107.11 210.35 212.65 146.91 170.14 91.65 277.73 109.53 110.38 127.71 

268.83 145.49 146.21 127.21 110.24 302.48 109.98 90.56 109.98 127.78 

LMP 171.10 211.73 110.14 110.14 LMP 194.22 109.13 109.42 151.65 

124.52 170.06 128.15 235.25 280.64 193.51 109.45 217.35 151.75 261.21 

106.29 170.29 191.74 194.66 151.73 108.97 109.68 131.71 133.54 109.72 

124.30 254.50 127.50 128.02 109.42 109.29 215.87 236.18 109.64 109.95 

184.04 151.42 127.22 193.15 212.36 278.92 109.81 109.81 109.47 109.67 

GMP 149.11 125.38 148.68 125.51 LMP 131.16 107.26 106.60 107.70 

 (c) L 

223.63 128.59 150.14 109.86 236.13 274.03 128.89 150.50 110.09 193.18 

182.98 128.67 150.57 193.31 109.81 188.22 128.96 150.77 193.47 109.93 

188.41 109.94 193.94 110.13 192.91 194.14 109.90 194.05 110.19 192.76 

186.23 108.52 151.92 110.94 150.34 149.58 108.73 151.83 110.69 109.22 

LMP 151.38 152.10 152.04 193.92 LMP 151.55 152.33 194.55 236.76 

187.87 110.47 191.59 109.73 151.89 189.40 128.14 150.61 109.93 236.42 

147.21 235.80 109.40 236.65 110.43 230.52 128.71 150.50 193.17 109.91 

205.33 126.58 151.43 152.07 109.78 237.18 109.61 193.79 110.18 192.97 

218.85 127.98 110.49 151.22 151.14 149.75 108.59 152.11 110.25 150.64 

GMP 125.30 147.29 187.81 186.07 LMP 147.71 147.95 146.48 185.80 

 (d) LC 

Red rectangles: SPs consuming more than 200 mJ. Green rectangles: SPs consuming less than 100 mJ. 

 
Figure 57 – Energy consumed per SP  in Scenario B in the SystemC platform.  



120 

 

 

 

0.02 0.02 23.11 0.02 0.02 0.02 10.77 3.40 33.72 0.32 

0.02 45.62 36.53 1.73 3.46 0.02 20.77 42.87 34.85 2.82 

68.09 56.70 42.13 21.90 18.63 0.02 50.88 39.17 36.89 2.03 

0.02 68.07 33.87 28.18 0.02 0.02 33.81 34.24 19.15 19.30 

LMP 0.02 0.02 33.66 0.02 LMP 0.02 0.02 33.22 0.02 

0.02 9.23 19.17 3.83 3.39 0.02 0.02 0.02 0.02 0.02 

0.02 42.58 42.22 23.48 10.21 0.02 34.54 29.16 16.01 0.63 

34.31 79.50 63.94 34.41 6.03 67.95 50.27 45.43 44.85 40.46 

0.02 34.09 67.75 36.59 13.50 11.62 68.87 37.10 43.05 3.48 

GMP 0.02 0.02 34.74 0.02 LMP 0.02 34.02 0.02 0.02 

 (a) PREMAP-DN 

0.02 1.75 23.12 0.02 0.02 0.02 36.19 0.02 34.03 0.02 

0.02 35.62 36.31 1.73 1.76 34.23 36.71 57.38 21.64 2.83 

34.13 45.00 44.54 21.92 10.18 11.63 67.59 47.36 42.93 0.33 

0.02 43.06 33.24 28.43 0.02 0.02 0.02 68.16 22.11 33.86 

LMP 0.32 0.02 33.54 0.02 LMP 0.02 23.10 33.60 0.02 

1.75 36.54 11.68 3.10 4.31 0.02 12.59 1.78 0.02 0.33 

8.54 52.44 41.44 27.31 24.69 0.02 34.57 13.46 33.87 3.82 

34.36 67.30 70.96 34.40 0.02 33.82 54.69 44.45 46.14 13.06 

0.02 34.36 34.46 45.34 15.36 0.02 34.38 41.65 34.38 6.08 

GMP 0.02 0.02 34.51 0.02 LMP 0.02 33.17 0.02 0.02 

 (b) LEC-DN 

24.87 22.92 28.87 20.24 18.42 22.51 13.12 22.54 11.95 22.60 

20.60 26.14 22.89 29.37 19.66 22.46 12.24 22.46 17.85 22.65 

18.40 22.86 22.85 19.65 20.75 15.67 17.83 15.68 12.40 15.16 

19.20 20.79 22.87 19.22 15.49 25.45 24.63 24.17 15.22 23.78 

LMP 21.41 23.98 22.85 27.15 LMP 12.41 22.46 12.99 22.48 

24.32 18.11 16.14 21.71 25.21 14.22 19.09 24.83 22.63 26.34 

27.79 18.07 26.00 20.85 23.50 28.23 24.22 13.67 14.50 20.60 

23.44 22.93 23.56 30.30 25.60 13.77 14.35 15.88 13.49 23.41 

24.03 24.87 17.33 28.21 20.98 19.25 16.74 24.61 25.08 14.55 

GMP 25.13 25.12 23.84 25.89 LMP 24.72 14.63 25.38 13.31 

 (c) L 

4.19 10.53 21.40 19.46 26.49 12.40 15.39 13.30 23.06 23.19 

21.19 20.13 19.69 20.09 18.34 18.31 12.89 23.22 25.55 11.62 

21.19 8.57 24.03 17.75 14.64 15.14 22.27 16.69 22.67 22.65 

23.98 23.17 23.16 45.58 36.16 23.85 11.99 23.08 12.89 22.48 

LMP 15.07 24.21 45.15 28.48 LMP 23.22 15.87 18.33 23.85 

38.73 29.03 19.69 15.57 16.73 24.02 38.02 23.70 22.95 32.42 

40.81 36.77 20.26 15.31 25.06 28.12 31.28 29.86 23.77 24.76 

29.46 30.39 23.36 17.19 25.20 18.45 13.28 5.56 20.16 16.00 

24.52 19.61 23.78 15.03 23.34 24.19 13.65 8.79 15.56 9.81 

GMP 22.42 19.97 13.71 14.77 LMP 12.92 9.30 10.95 5.20 

 (d) LC 

Red rectangles: SPs consuming more than 50 mJ. Green rectangles: SPs consuming less than 5 mJ. 

 
Figure 58 – Energy consumed per SP  in Scenario C in the SystemC platform.  
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17.69 54.69 96.18 54.38 0.62 96.20 56.73 106.67 64.07 2.06 

93.21 67.34 66.21 12.93 8.09 54.58 80.01 65.89 98.01 54.72 

56.33 201.10 64.77 123.22 75.20 0.33 72.24 148.43 56.22 21.73 

0.02 53.19 165.93 58.00 54.78 20.86 85.11 59.16 51.92 16.23 

LMP 96.65 73.44 37.16 0.02 LMP 54.19 0.02 96.20 54.40 

6.97 0.02 113.24 58.00 4.82 96.01 54.41 4.55 56.46 56.41 

34.03 124.72 76.81 45.11 68.45 54.43 96.27 63.42 156.30 56.27 

53.06 105.53 158.26 106.82 122.19 55.05 73.26 154.41 52.87 0.33 

92.78 55.01 95.32 55.09 0.02 96.11 96.08 54.41 76.42 59.34 

GMP 0.02 0.02 93.37 53.06 LMP 0.02 0.02 45.75 10.86 

 (a) PREMAP-DN 

2.06 9.28 95.68 54.38 0.32 0.02 104.76 56.22 0.02 96.08 

8.45 97.88 54.39 36.20 10.92 0.02 65.38 108.30 56.53 54.39 

56.09 172.48 92.90 105.60 38.89 54.64 156.24 104.90 56.21 0.02 

0.02 54.35 102.38 53.45 0.02 8.45 62.98 11.96 97.83 54.40 

LMP 8.45 1.75 113.63 58.03 LMP 121.93 59.80 54.44 96.07 

53.19 0.02 104.64 56.23 36.59 56.18 1.75 71.70 98.45 57.97 

93.35 116.21 59.65 0.32 55.88 104.54 53.13 173.35 78.75 66.44 

52.85 120.49 90.27 107.44 136.79 0.02 93.34 104.79 56.19 7.05 

0.02 42.88 95.57 54.40 37.69 95.96 63.94 132.90 148.63 82.23 

GMP 1.75 93.17 53.05 1.78 LMP 0.33 54.85 96.65 53.10 

 (b) LEC-DN 

30.05 85.39 44.85 40.12 96.51 103.41 91.96 98.11 45.37 90.20 

43.86 102.57 44.37 34.06 55.66 34.28 94.85 47.71 44.22 47.53 

42.91 74.19 45.06 57.84 54.22 46.79 85.85 42.24 31.18 31.49 

42.43 98.36 57.94 84.17 44.88 44.09 32.96 99.24 60.84 60.97 

LMP 58.32 128.66 99.56 44.80 LMP 79.10 43.82 34.83 46.48 

42.34 47.49 34.82 56.49 56.00 16.54 99.76 44.97 56.35 27.99 

58.45 29.69 58.48 86.74 43.37 45.83 42.33 44.55 85.82 100.75 

28.94 44.07 88.20 91.55 57.01 47.14 54.59 44.46 88.71 44.57 

133.71 98.74 56.73 99.44 88.61 29.09 98.43 43.18 56.73 56.87 

GMP 57.17 84.16 30.91 46.02 LMP 138.74 95.25 83.34 54.95 

 (c) L 

39.48 142.04 62.92 102.78 98.79 134.23 64.08 36.23 95.73 96.29 

90.86 62.14 57.85 62.26 63.09 55.00 63.18 57.54 42.53 43.15 

28.26 30.26 40.91 40.38 41.63 32.65 35.73 94.69 47.91 17.82 

39.36 42.58 86.36 44.91 86.15 12.09 45.03 90.32 59.32 33.28 

LMP 85.50 26.32 55.16 79.74 LMP 43.72 82.81 61.29 89.79 

77.26 56.62 88.03 107.12 50.85 99.85 104.83 28.20 39.53 78.04 

36.68 43.50 44.93 56.74 102.25 56.63 56.74 85.42 54.68 44.89 

24.01 23.63 53.95 97.71 98.43 67.74 37.45 43.66 48.10 78.99 

107.12 53.82 48.53 57.33 63.36 37.07 38.23 39.09 58.27 72.47 

GMP 94.70 87.08 26.70 17.82 LMP 43.18 136.57 45.15 109.85 

 (d) LC 

Red rectangles: SPs consuming more than 100 mJ. Green rectangles: SPs consuming less than 10 mJ. 

 
Figure 59 – Energy consumed per SP  in Scenario D in the SystemC platform.  

 



122 

 

 

 

34.51 45.93 30.71 22.49 3.39 35.30 34.07 0.02 8.55 18.83 

68.28 65.23 33.21 95.89 54.38 34.15 53.15 96.03 54.44 59.79 

47.15 110.98 93.39 53.14 4.31 0.02 93.39 93.26 53.18 104.86 

8.11 97.41 109.10 52.76 13.32 96.03 54.45 63.13 61.77 54.03 

LMP 0.32 88.68 35.32 33.84 LMP 0.02 82.29 54.97 0.02 

0.02 95.74 54.43 0.02 0.02 2.78 36.58 95.91 54.45 0.02 

26.16 106.15 70.10 92.85 53.19 11.52 95.99 43.89 42.71 56.17 

87.51 89.66 38.16 104.64 56.42 33.84 89.47 60.25 69.27 78.93 

33.81 29.41 130.67 63.13 1.82 96.12 54.40 155.99 104.82 56.25 

GMP 34.05 8.42 93.16 53.09 LMP 0.02 53.39 62.47 1.74 

 (a) PREMAP-DN 

0.02 55.40 19.62 10.75 3.45 34.99 34.05 0.02 33.29 35.21 

87.93 92.54 54.01 95.89 54.37 33.55 53.15 96.03 54.44 33.37 

93.06 86.67 93.39 53.14 96.44 0.02 93.39 93.26 53.18 0.32 

53.34 156.20 83.57 11.63 54.38 96.03 54.45 17.91 62.05 54.05 

LMP 45.24 36.71 95.69 54.41 LMP 0.02 9.66 43.89 11.99 

0.02 95.74 54.43 0.02 0.02 33.78 47.87 96.14 54.44 2.80 

53.40 104.44 68.43 92.89 53.19 35.81 96.04 63.88 42.16 45.52 

86.89 90.03 114.60 105.61 56.08 34.27 62.57 55.23 61.64 31.71 

33.91 29.54 46.13 46.91 2.12 96.09 54.45 72.70 104.82 56.25 

GMP 34.18 0.02 93.14 53.07 LMP 1.74 65.94 61.49 1.76 

 (b) LEC-DN 

46.15 78.11 47.86 39.45 49.27 40.71 30.92 103.89 29.63 33.06 

64.98 79.43 47.29 39.98 49.42 47.78 50.95 50.45 42.69 86.13 

49.17 92.65 47.39 83.13 50.67 43.54 94.73 47.94 30.71 30.50 

85.03 30.97 100.14 91.35 49.35 95.06 43.99 47.91 31.36 43.37 

LMP 47.82 52.68 91.92 67.10 LMP 47.91 102.02 29.69 88.00 

80.99 47.69 31.62 96.97 98.82 47.82 22.57 33.74 91.30 36.46 

34.13 35.13 54.80 33.22 43.23 27.98 35.90 22.45 49.91 33.38 

97.60 47.98 54.85 100.35 43.70 78.35 22.46 22.74 36.41 49.68 

51.17 31.91 96.62 86.60 43.80 80.16 51.44 22.46 23.57 31.80 

GMP 34.32 31.13 36.70 93.86 LMP 33.35 29.33 22.98 23.32 

 (c) L 

135.87 54.02 86.76 55.29 139.06 90.74 62.67 76.32 49.47 91.44 

55.04 63.00 43.18 61.75 54.82 31.84 59.76 58.91 54.67 47.51 

20.85 48.14 46.16 36.16 27.72 43.49 47.90 85.18 40.31 24.51 

73.18 30.16 20.06 40.80 42.28 76.11 46.93 23.09 49.50 42.01 

LMP 31.02 22.17 46.98 86.89 LMP 29.27 17.86 37.17 103.37 

23.65 46.07 97.45 85.59 25.57 36.69 23.20 23.20 48.20 83.88 

37.18 90.86 55.77 54.45 37.86 23.30 26.66 26.64 32.27 49.09 

93.15 25.46 59.86 37.42 96.15 26.80 23.26 23.58 54.98 67.38 

44.64 48.23 60.17 54.99 55.34 30.78 29.51 49.31 41.35 96.86 

GMP 24.37 84.64 42.41 134.93 LMP 83.40 48.47 74.22 44.84 

 (d) LC 

Red rectangles: SPs consuming more than 100 mJ. Green rectangles: SPs consuming less than 10 mJ. 

 
Figure 60 – Energy consumed per SP  in Scenario E in the SystemC platform.  
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21.93 34.20 33.64 46.18 28.38 21.60 34.46 34.03 34.57 28.58 

33.95 34.59 62.57 62.44 33.98 34.21 34.56 60.30 28.58 33.53 

45.73 62.29 62.00 67.83 34.27 34.55 62.60 62.08 67.84 34.25 

62.99 62.37 57.35 35.53 34.32 34.01 62.93 70.24 35.06 33.55 

LMP 68.22 34.19 34.01 28.51 LMP 34.11 34.01 33.69 28.62 

21.94 34.36 34.34 46.88 28.03 22.16 34.24 33.80 46.28 29.16 

34.44 35.04 62.78 62.51 34.36 34.29 34.58 62.50 62.44 33.22 

46.45 63.07 62.16 68.97 34.64 45.99 61.92 61.90 67.67 34.08 

62.07 62.34 71.17 70.05 68.07 72.00 63.50 57.20 35.35 33.91 

GMP 68.59 34.73 60.50 28.05 LMP 68.80 33.83 33.79 28.56 

 (a) PREMAP-DN 

21.95 34.20 33.64 46.18 28.34 21.63 34.40 34.01 46.24 28.37 

33.95 34.59 63.23 61.75 33.78 34.21 34.47 62.61 61.76 33.61 

46.01 62.39 62.76 67.86 34.26 34.62 62.64 62.04 67.56 34.42 

62.51 62.76 57.36 35.49 34.34 34.09 28.61 57.39 35.08 33.55 

LMP 68.11 34.19 34.00 28.48 LMP 34.18 34.25 33.69 28.55 

21.98 34.39 34.35 48.61 28.04 22.05 34.20 33.81 46.29 29.39 

34.55 35.16 62.61 62.40 34.35 34.17 34.57 63.04 62.65 33.32 

46.31 62.89 62.15 69.13 34.65 45.69 61.99 62.26 68.17 34.08 

62.07 62.31 70.86 69.68 68.09 61.69 62.57 57.17 35.36 33.88 

GMP 68.56 34.70 60.27 28.23 LMP 67.61 33.90 33.77 28.68 

 (b) LEC-DN 

46.90 45.43 38.29 45.67 45.59 47.51 45.26 38.29 45.91 45.61 

45.55 47.73 45.65 50.92 45.69 45.72 47.86 45.84 39.77 45.56 

41.94 45.39 38.44 38.00 38.15 41.99 45.42 38.59 37.91 38.18 

47.62 48.14 47.31 38.49 50.19 47.09 47.73 47.25 49.56 50.69 

LMP 45.53 58.89 38.44 47.71 LMP 45.58 59.29 38.41 47.41 

49.53 47.72 39.21 46.49 47.45 45.61 45.35 49.60 45.92 45.73 

48.16 38.78 46.00 40.45 46.20 38.27 47.29 45.85 39.40 45.60 

50.91 47.12 35.71 48.20 50.60 34.67 45.38 38.56 38.10 49.80 

48.11 48.35 47.98 48.86 48.09 47.24 48.03 47.50 49.63 47.16 

GMP 46.06 49.10 40.01 50.86 LMP 45.62 47.81 48.07 47.80 

 (c) L 

46.88 38.18 38.19 47.46 36.84 35.48 38.09 37.67 47.08 48.08 

40.36 46.21 45.83 58.92 46.09 38.68 34.46 46.17 60.71 46.17 

38.25 45.59 33.93 45.83 57.00 38.20 45.56 34.09 45.73 45.33 

47.44 46.21 45.77 45.76 45.55 59.17 46.07 45.79 45.71 45.75 

LMP 46.15 44.24 38.16 58.88 LMP 56.99 44.60 38.16 59.06 

35.79 54.47 33.41 47.70 36.57 35.35 38.25 37.66 46.90 48.18 

38.92 46.08 47.94 48.43 34.64 38.11 34.44 46.14 60.94 46.26 

40.90 46.25 51.90 46.07 46.16 38.22 45.60 35.77 45.59 45.49 

47.42 41.14 58.79 37.83 57.03 58.73 46.18 45.77 45.58 45.84 

GMP 46.31 52.81 50.51 62.49 LMP 57.22 44.95 38.13 59.19 

 (d) LC 

Red rectangles: SPs consuming more than 60 mJ. Green rectangles: SPs consuming less than 30 mJ. 

 
Figure 61 – Energy consumed per SP  in Scenario F in the SystemC platform.  
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APPENDIX B –TEMPERATURE DISTRIBUTION 

This appendix complements the results of Section 5.5.2.4, providing the temperature 

distribution at the end of execution time for scenarios B to F of Table 16.  Such thermal 

maps show that L and LC heuristics reduce hotspots in most scenarios.  

 

 

(a) PREMAP-DN 

 

(b) LEC-DN 

 

(c) L 

 

(d) LC 

 

Figure 62 – Temperature distribution for Scenario B. 
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(a) PREMAP-DN 

 

(b) LEC-DN 

 

(c) L 

 

(d) LC 

 

Figure 63 – Temperature distribution for Scenario C. 
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(a) PREMAP-DN 

 

(b) LEC-DN 

 

(c) L 

 

(d) LC 

 

Figure 64 – Temperature distribution for Scenario D. 
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(a) PREMAP-DN 

 

(b) LEC-DN 

 

(c) L 

 

(d) LC 

 

Figure 65 – Temperature distribution for Scenario E. 
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(a) PREMAP-DN 

 

(b) LEC-DN 

 

(c) L 

 

(d) LC 

 

Figure 66 – Temperature distribution for Scenario F. 
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APPENDIX C – POWER TRACES 

This appendix complements the results of Section 5.5.2.5, with the power traces for 

scenarios B to F of Table 16. Each graph presents the instantaneous SPs (slave PEs) 

power dissipation in the blue curves (median value). The X-axis corresponds to the 

execution time in milliseconds (only PEs executing tasks are considered) and the Y-axis 

the average power of active processors (W). Gray bars: 50% of the population, first to third 

quartiles. Black lines: average first and third quartiles. Green line: average median. Blue 

line: instantaneous median.  

Such graphs show the better power distribution of the L and LC heuristics during the 

execution time, compared to PREMAP-DN and LEC-DN heuristics.  

 

 
(a) PREMAP-DN 

 
(b) LEC-DN 

 
(c) L 

 
(d) LC 

 

Figure 67 – Power traces for scenario B.  
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(a) PREMAP-DN 

 
(b) LEC-DN 

 
(c) L 

 
(d) LC 

 

Figure 68 – Power traces for scenario C.  
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(a) PREMAP-DN 

 
(b) LEC-DN 

 
(c) L 

 
(d) LC 

 

Figure 69 – Power traces for scenario D.  
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(a) PREMAP-DN 

 
(b) LEC-DN 

 
(c) L 

 
(d) LC 

 

Figure 70 – Power traces for scenario E.  
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(a) PREMAP-DN 

 
(b) LEC-DN 

 
(c) L 

 
(d) LC 

 

Figure 71 – Power traces for scenario F.  

 

 

 

 

 

 

 

 



134 

 

 

APPENDIX D – PUBLICATIONS OF THE AUTHOR 

Table 34 presents the set of publications of the author. The publications 1, 2, and 3 

were written during the Master’s degree. Other publications were developed during the 

PhD studies period. The description column links the paper to this work, when applicable, 

or to the main theme of the publication. 

 

Table 34 – Publications during the PhD period. 

Publication Description 

1 

Energy-aware dynamic task mapping for NoC-based MPSoCs  

MANDELLI, M. G.; OST, L. C.; CARARA, E. A.; GUINDANI, G. M.; ROSA, T.; MEDEIROS, 
G.; MORAES, F. G. 
In: ISCAS, 2011  [MAN11a] 

Reference mapping 
heuristic used in 
Chapter 5 

2 
Multi-Task Dynamic Mapping onto NoC-based MPSoCs  

MANDELLI, M. G.; OST, L. C.; AMORY, A. M.; MORAES, F. G.  
In: SBCCI, 2011  [MAN11b] 

Reference mapping 
heuristic used in 
Chapter 5 

3 

Exploring dynamic mapping impact on NoC-based MPSoCs performance using a 
model-based framework 

OST, L. C.; MANDELLI, M. G.; ALMEIDA, G. M.; INDRUSIAK, L. S.; MOLLER, L. S.; 
GLESNER, M.; SASSATELLI, G.; ROBERT, M.; MORAES, F. G.  
In: SBCCI, 2011  [OST11a] 

Integration of the 
task mapping 
heuristics proposed 
in publications 1 
and 2 in a high-
level MPSoC model 
[OST13]. 
 
Chapter 3. 

4 
Model-based design flow for NoC-based MPSoCs 

OST, L. C.; INDRUSIAK, L. S.; MAATTA, S.; MANDELLI, M. G.; NURMI, J.; MORAES, F. G. 
In: ICECS, 2010 [OST10] 

5 

Exploring Heterogeneous NoC-based MPSoCs: from FPGA to High-Level Modeling 

OST, L. C.; ALMEIDA, G. M.; MANDELLI, M. G.; WACHTER, E.; VARYANI, S.; 
INDRUSIAK, L. S.; SASSATELLI, G.; ROBERT, M.; MORAES, F. G. 
In: RECOSOC, 2011  [OST11b] 

6 

Exploring Adaptive Techniques in Heterogeneous MPSoCs based on Virtualization 

OST, L. C.; VARYANI, S.; MANDELLI, M. G.; WACHTER, E.; ALMEIDA, G. M.; 
INDRUSIAK, L. S.; SASSATELLI, G.; MORAES, F. G. 
In: ACM Transactions on Reconfigurable Technology and Systems, vol. 5(3), pp. 1 - 11, 
2012. [OST12] 

7 

Power-aware dynamic mapping heuristics for NoC-based MPSoCs using a unified 
model-based approach  

OST, L. C.; MANDELLI, M. G.; ALMEIDA, G. M.; MOLLER, L. S.; INDRUSIAK, L. S.; 
SASSATELLI, G.; BENOIT, P.; GLESNER, M.; ROBERT, M.; MORAES, F. G. 
In: ACM Transactions on Embedded Computing Systems, vol. 12(3), pp. 1 - 22, 2013 
[OST13] 

8 
Enhancing Performance of MPSoCs through Distributed Resource Management  

MANDELLI, M.; CASTILHOS, G. M.; MORAES, F 
In: ICECS, 2012  [MAN12] 

Chapter 4 

9 
Distributed resource management in NoC-based MPSoCs with dynamic cluster sizes 

CASTILHOS, G. M.; MANDELLI, M.; MADALOZZO, G. A.; MORAES, F 
In: ISVLSI 2013 [CAS13] 

Chapter 4 

10 
MPSoC Modeling for Reducing Software Development 

MANDELLI, M.; ROSA, F.; OST, L.; SASSATELLI, G.; MORAES, F. G. 
In: ICECS, 2013  [MAN13] 

Chapter 3 

11 

Trading-off system load and communication in mapping heuristics for improving NoC-
based MPSoCs reliability 

Mandelli, M.; Ost, L.; Sassatelli, G.; Moraes, F.  
In: ISQED, 2015 [MAN15] 

Chapter 5 

 

 

 

 


