
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

EXPLORATION OF RUNTIME
DISTRIBUTED MAPPING TECHNIQUES

FOR EMERGING LARGE SCALE MPSoCs

MARCELO GRANDI MANDELLI

Tese apresentada como requisito parcial à
obtenção do grau de Doutor em Ciência
da Computação na Pontifícia
Universidade Católica do Rio Grande do
Sul.

Advisor: Prof. Dr. Fernando Gehm Moraes
Co-Advisor: Prof. Dr. Luciano Copello Ost

Porto Alegre / Montpellier
2015

Dados Internacionais de Catalogação na Publicação (CIP)

AGRADECIMENTOS

Agradeço primeiramente a meus pais Rômulo e Maria Salete pelos ensinamentos,

amor e apoio recebido durante todas etapas de minha vida. Sem vocês não seria o que sou

e não chegaria onde cheguei. Amo vocês! Também agradeço a Alexandre e Maurício por

serem mais do que meus irmãos amigos que me apoiam e me influenciam por sua forma de

ser.

A meu orientador Fernando Gehm Moraes, professor e pesquisador exemplar, por me

proporcionar a oportunidade de realizar o mestrado e doutorado; pelo conhecimento e lições

recebidas; e por doar seu tempo (muitas vezes fora do horário de trabalho) e me aguentar

durante todos esses anos de estudos. Muito obrigado!

À Luciano Copello Ost por ser mais que meu co-orientador de Tese, mas um grande

amigo. Muito obrigado por além de me ajudar com conhecimentos relativos à Tese, me

ajudar a crescer como pessoa, sendo um verdadeiro irmão durante minha estadia em

Montpellier.

Je remercie tous mes amis de France pour être une deuxième famille pour moi et pour

tous les moments inoubliables qu`on a vécu ensemble. Muito obrigado aos cofecubianos

Marília Fontenelle, Daniela Novelli, Melina Ayres, Carol Cherfem, Tatiane Lobo, Marcilio

Lucas e Renata Bastos! Merci beaucoup Lorenza, Lilia, Natalie, Jong Ho et Juhyun! Vous

êtes tous chocolat caramélisé! Merci beaucoup Camille, Mansour, Josep, Elena, Carolina,

Fadhela, Lucie, Juan, Bernardo, Thomas, Erika, Valérien, Anne Sophie, Marine, Nastya,

Johanna, Esmée et Lilya. Muito obrigado Cathy, Garibotti, Manu, Vitorio, João, Carolina,

Raphael, Anelise, Zordan, Felipe. Excusez-moi si j`ai oublié quelqu`un! Je suis vraiment

hereux de vous avoir rencontré! Vous m`avez aidé à être une meilleure personne! Merci

beaucoup pour les bars, les fêtes (le Panama!), les conversations, les promenades, les

voyages, les repas, pour m`aider quand j`étais malade ("j`ai trop bu :P"), pour m`héberger

chez vous, etc.

À Lucia Helena Vidal por ser uma super amiga que me ajudou e aconselhou em

diferentes momentos da vida durante minha Tese. Muito obrigado pelas conversas,

conselhos e ajudas!! À Celina também por ser uma grande amiga e me ajudar com

conselhos e terapias durante minha Tese. Muito Obrigado!!

Aos colegas do GAPH por me aturarem e pela amizade durante todos esses anos.

Muito obrigado Wachter, Heck, Castilhos, Madalozzo, Matheus, Carlos Henrique, Leonardo,

Walter, Raupp, Leonel, Edson!

Por fim, agradeço a Rafaella por me tornar cada dia mais feliz por estar ao seu lado.

Somente o fato de te ver ou pensar em ti me ajudou a me dar tranquilidade e superar os

momentos mais difíceis do fim de minha Tese. Te amo pra sempre!

EXPLORAÇÃO DE TÉCNICAS DE MAPEAMENTO DINÂMICO E
DISTRIBUÍDO PARA MPSOCS DE GRANDE DIMENSÃO

RESUMO

MPSoCs com centenas de processadores já estão disponíveis no mercado. De acordo com o ITRS, tais

sistemas integrarão milhares de processadores até o final da década. A definição de onde cada tarefa será

executada no sistema é um desafio importante na concepção de MPSoCs. Na literatura, tal desafio é definido

como mapeamento de tarefas. O aumento do número de processadores aumenta a complexidade do

mapeamento de tarefas. As principais preocupações em mapeamento de tarefas em grandes sistemas

incluem: (i) escalabilidade; (ii) carga dinâmica de trabalho; e (iii) confiabilidade. É necessário distribuir a decisão

do mapeamento pelo sistema para garantir escalabilidade. A carga de trabalho em MPSoCs pode ser dinâmica,

ou seja, novas aplicações podem iniciar a execução a qualquer momento, levando a diferentes cenários de

mapeamento. Portanto, é necessário executar o processo de mapeamento em tempo de execução para

suportar uma carga de trabalho dinâmica. Confiabilidade é diretamente relacionada à distribuição da carga de

trabalho no sistema. Desequilíbrio de carga pode gerar zonas de hotspots e implicações termais, que podem

resultar em uma operação do sistema não confiável. Em MPSoCs de grande dimensão problemas de

confiabilidade se agravam, uma vez que o crescente número de processadores no mesmo chip aumenta o

consumo de energia e, consequentemente, a temperatura do sistema. A literatura apresenta diferentes técnicas

de mapeamento de tarefas para melhorar a confiabilidade do sistema. No entanto, tais técnicas utilizam uma

abordagem de mapeamento centralizado, a qual não é escalável. Em função destes três desafios, o principal

objetivo desta Tese é propor e avaliar heurísticas de mapeamento distribuído, executadas em tempo de

execução, garantindo escalabilidade e uma distribuição de carga de trabalho uniforme. Distribuir a carga de

trabalho e o tráfego da NoC aumenta a confiabilidade do sistema no longo prazo, devido à minimização das

regiões de hotspot. Para permitir a exploração do espaço de projeto em MPSoCs, a primeira contribuição desta

Tese consiste em um ambiente de modelagem multi-nível, que suporta diferentes modelos e capacidades de

depuração que enriquecem e facilitam o projeto de MPSoCs. A simulação de modelos de mais baixo nível (por

exemplo, RTL) gera parâmetros de desempenho utilizados para calibrar modelos mais abstratos. Os modelos

abstratos facilitam a exploração de heurísticas de mapeamento em grandes sistemas. A maioria das técnicas

de mapeamento se concentram na otimização do volume comunicação na NoC, o que pode comprometer a

confiabilidade, devido à sobrecarga de processadores. Por outro lado, uma heurística que visa a otimização

apenas da distribuição de carga de trabalho pode sobrecarregar canais da NoC, comprometendo a sua

confiabilidade. A segunda contribuição significativa desta Tese é a proposição de heurísticas de mapeamento

dinâmico e distribuídos, fazendo um compromisso entre o volume de comunicação (canais da NoC) e

distribuição de carga de trabalho (uso da CPU). Os resultados relacionados a tempo de execução, volume de

comunicação, consumo de energia, distribuição de potência e temperatura em grandes MPSoCs (256

processadores) confirmam a hipótese deste compromisso. Fazer um compromisso entre carga de trabalho e

volume de comunicação melhora a confiabilidade do sistema através da redução de regiões hotspots, sem

comprometer o desempenho do sistema.

Palavras Chave : Modelagem, Gerenciamento, Mapeamento de Tarefas, NoC, SoC, MPSoC.

EXPLORATION OF RUNTIME DISTRIBUTED MAPPING TECHNIQUES FOR
EMERGING LARGE SCALE MPSOCS

ABSTRACT

MPSoCs with hundreds of cores are already available in the market. According to the ITRS roadmap, such

systems will integrate thousands of cores by the end of the decade. The definition of where each task will

execute in the system is a major issue in the MPSoC design. In the literature, this issue is defined as task

mapping. The growth in the number of cores increases the complexity of the task mapping. The main concerns

in task mapping in large systems include: (i) scalability; (ii) dynamic workload; and (iii) reliability. It is necessary

to distribute the mapping decision across the system to ensure scalability. The workload of emerging large

MPSoCs may be dynamic, i.e., new applications may start at any moment, leading to different mapping

scenarios. Therefore, it is necessary to execute the mapping process at runtime to support a dynamic workload.

Reliability is tightly connected to the system workload distribution. Load imbalance may generate hotspots

zones and consequently thermal implications, which may result in unreliable system operation. In large scale

MPSoCs, reliability issues get worse since the growing number of cores on the same die increases power

densities and, consequently, the system temperature. The literature presents different task mapping techniques

to improve system reliability. However, such approaches use a centralized mapping approach, which are not

scalable. To address these three challenges, the main goal of this Thesis is to propose and evaluate distributed

mapping heuristics, executed at runtime, ensuring scalability and a fair workload distribution. Distributing the

workload and the traffic inside the NoC increases the system reliability in long-term, due to the minimization of

hotspot regions. To enable the design space exploration of large MPSoCs the first contribution of the Thesis lies

in a multi-level modeling framework, which supports different models and debugging capabilities that enrich and

facilitate the design of MPSoCs. The simulation of lower level models (e.g. RTL) generates performance

parameters used to calibrate abstract models (e.g. untimed models). The abstract models pave the way to

explore mapping heuristics in large systems. Most mapping techniques focus on optimizing communication

volume in the NoC, which may compromise reliability due to overload processors. On the other hand, a heuristic

optimizing only the workload distribution may overload NoC links, compromising its reliability. The second

significant contribution of the Thesis is the proposition of dynamic and distributed mapping heuristics, making a

tradeoff between communication volume (NoC links) and workload distribution (CPU usage). Results related to

execution time, communication volume, energy consumption, power traces and temperature distribution in large

MPSoCs (144 processors) confirm the tradeoff hypothesis. Trading off workload and communication volume

improves system reliably through the reduction of hotspots regions, without compromising system performance.

Keywords: Modeling, System Management, Task Mapping, NoC, SoC, MPSoC.

EXPLORATION DE TECHNIQUES D’ALLOCATION DE TÂCHES
DYNAMIQUES ET DISTRIBUÉES POUR MPSOCS DE LARGE ÉCHELLE

RÉSUMÉ

MPSoCs (systèmes multiprocesseurs sur puces) avec des centaines de cœurs sont déjà disponibles sur le

marché. Selon le ITRS, ces systèmes intégreront des milliers de cœurs à la fin de la décennie. La définition du

cœur, où chaque tâche sera exécutée dans le système, est une question majeure dans la conception de

MPSoCs. Dans la littérature, cette question est définie comme allocation de tâches. La croissance du nombre

de cœurs augmente la complexité de l’allocation de tâches. Les principales préoccupations en matière

d’allocation de tâches dans des grands MPSoCs incluent: (i) l'évolutivité; (ii) la charge de travail dynamique; et

(iii) la fiabilité. Il est nécessaire de distribuer la décision d’allocation de tâches à travers le système afin

d'assurer l'évolutivité. La charge de travail de grands MPSoCs peut être dynamique, à savoir, de nouvelles

applications peuvent commencer à tout moment, conduisant à différents scénarios d’allocation. Par conséquent,

il est nécessaire d'exécuter le processus d’allocation à l'exécution pour soutenir une charge de travail

dynamique. La fiabilité est étroitement liée à la distribution de la charge de travail du système. Un déséquilibre

de charge peut générer des hotspots et autres implications thermiques, ce qui peut entraîner un fonctionnement

peu fiable du système. Dans de grands MPSoCs, les problèmes de fiabilité empirent puisque l'augmentation du

nombre de cœurs sur la même puce augmente la densité de puissance et, par conséquent, la température du

système. La littérature présente différentes techniques d’allocation de tâches pour améliorer la fiabilité du

système. Cependant, ces techniques utilisent des approches d’allocation centralisées, qui ne sont pas

évolutives. Pour répondre à ces trois défis, l'objectif principal de cette Thèse est de proposer et évaluer des

heuristiques d’allocation de tâches distribuées et dynamiques en assurant l’évolutivité et une distribution

équitable de la charge de travail. Une distribution équitable de la charge de travail et du trafic du NoC (réseau

sur puce) augmente la fiabilité du système dans le long terme, en raison de la minimisation des régions de

hotspot. Pour permettre l'exploration de l'espace de conception de grands MPSoCs, la première contribution de

cette Thèse se situe dans le cadre d’une modélisation multi-niveaux, qui prend en compte différents modèles et

de capacités de débogage qui enrichissent et facilitent la conception des MPSoCs. La simulation de modèles de

niveau inférieur (par exemple RTL) génère des paramètres de performance utilisés pour calibrer des modèles

abstraits (sans précision d’horloge). Les modèles abstraits permettent d’explorer des heuristiques d’allocation

de tâches dans de grands systèmes. La plupart des techniques d’allocation de tâches se focalisent sur

l'optimisation du volume de communication, ce qui peut compromettre la fiabilité du système, en raison d’une

surcharge des processeurs. D'autre part, une heuristique qui optimise seulement la distribution de la charge de

travail peut surcharger le NoC et compromettre sa fiabilité. La deuxième contribution importante de cette Thèse

est la proposition d'heuristiques d’allocation de tâches dynamiques et distribuées, qui réalisent un compromis

entre le volume de communication (liens du NoC) et la distribution de la charge de travail (de l'utilisation des

processeurs). Des résultats liés au temps d'exécution, au volume de la communication, à la consommation

d'énergie, aux traces de puissance et à la distribution de la température dans les grands MPSoCs (144

processeurs) confirment l'hypothèse de compromis. Faire un compromis entre la réduction du volume de

communication et une distribution équitable de la charge de travail améliore le système de manière fiable grâce

à la réduction des régions de hotspots, sans compromettre la performance du système.

Mots clés : Modélisation, Gestion de MPSoCs, Allocation de Tâches, NoC, SoC, MPSoC.

LIST OF FIGURES

FIGURE 1 – MULTI-LEVEL MODELING FRAMEWORK PROPOSED BY THIS THESIS.. 35
FIGURE 2 –HEMPS MPSOC BLOCK DIAGRAM. ... 36
FIGURE 3 – PROCESSING ELEMENT LAYOUT. ... 38
FIGURE 4 – DESCRIPTION OF THE FIFO BUFFER CONTROL MODULE IN VHDL AND SYSTEMC RTL. ... 39
FIGURE 5 – SYNTHETIC APPLICATION WITH 6 TASKS USED IN THE TEST SCENARIO. .. 41
FIGURE 6 – SIMULATION TIME FOR MPSOC INSTANCES WITH 50% LOAD (VHDL SIMULATION TIME IS PRESENTED IN THE SECONDARY

Y-AXIS). ... 42
FIGURE 7 - SOFTWARE AND ARCHITECTURAL DESIGN COSTS FOR EMBEDDED SYSTEMS AT ADVANCED PROCESS TECHNOLOGIES. FIGURE

EXTRACTED FROM IBS 2013 [IBS13]. .. 44
FIGURE 8 – INTEGRATION OF SYSTEMC NOC MODEL WITH OVP CPU MODEL. ... 46
FIGURE 9 – EXAMPLE OF REGISTER BANK EXTERNAL MEMORY INITIALIZATION, AND THE CONNECTION TO THE PROCESSOR BUS. 47
FIGURE 10 – EXAMPLE OF A PSEUDO-CODE FOR A READ CALLBACK FUNCTION. ... 47
FIGURE 11 – EXAMPLE OF A PSEUDO-CODE FOR A WRITE CALLBACK FUNCTION. ... 47
FIGURE 12 – SIMULATION TIME, VARYING THE PLATFORM MODELING, NUMBER OF PES, AND MPSOC LOAD. SIMULATIONS SETUP –

PROCESSOR: CORE 2 DUO E4400 2X2GHZ; MEMORY: 3GB; GCC VERSION: 4.7.2; GCC FLAGS: -MFPMATH=SSE -OFAST -FLTO -
MARCH=NATIVE -FUNROLL-LOOPS. .. 49

FIGURE 13 – PROCESSOR AND NOC ROUTER CONNECTION IN THE HEMPS OVP PLATFORM. .. 51
FIGURE 14 – PSEUDO-CODE OF A MEMORY-MAPPED REGISTER CALLBACK FUNCTION THAT SENDS A PACKET FLIT BY FLIT THROUGH THE

NETWORK. ... 52
FIGURE 15 – PSEUDO-CODE OF MEMORY-MAPPED REGISTER CALLBACK FUNCTION THAT READS A FLIT OF AN INCOMING PACKET. 52
FIGURE 16 – COMPARISON BETWEEN THE SYSTEMC AND OVP MODELS, WHERE (A) PRESENTS THE EXECUTION TIME, IN CLOCK CYCLES,

FOR ALL SCENARIOS; (B) PRESENTS THE TOTAL NUMBER OF SIMULATED INSTRUCTIONS FOR ALL SCENARIOS; AND (C) PRESENTS

THE SIMULATION TIME FOR ALL SCENARIOS.. 55
FIGURE 17 - APPLICATION MODELED AS A TASK GRAPH GAPP = (T, E). ... 59
FIGURE 18 – INITIAL TASK MAPPING. ... 59
FIGURE 19 - PROFILER PLATFORM FLOW. ... 60
FIGURE 20 – CENTRALIZED SYSTEM MANAGEMENT ARCHITECTURE. ... 61
FIGURE 21 – CENTRALIZED INITIAL TASKS MAPPING PROTOCOL. ... 62
FIGURE 22 - CENTRALIZED NON-INITIAL TASKS MAPPING PROTOCOL. .. 63
FIGURE 23 – EXAMPLE OF AN INITIAL TASK DESCRIPTION, WITH A SEND COMMAND. ... 63
FIGURE 24 – DISTRIBUTED SYSTEM MANAGEMENT ARCHITECTURE. ... 64
FIGURE 25 - PROTOCOL TO INSERT NEW APPLICATIONS INTO THE SYSTEM. ... 66
FIGURE 26 – DISTRIBUTED NON-INITIAL MAPPING PROTOCOL. .. 67
FIGURE 27 - TASK MAPPING PROTOCOL, USING PES IN NEIGHBOR CLUSTER. WHITE SPS (SLAVE PES) ARE AVAILABLE PES [CAS13]. . 68
FIGURE 28 - CENTRALIZED (A) VERSUS DISTRIBUTED (B) MAPPING. ... 69
FIGURE 29 – EXECUTION TIME FOR DISTRIBUTED (BLACK BARS) AND CENTRALIZED MAPPING (WHITE BARS), FOR THE MPEG

BENCHMARK WITH TWO NOC SIZES, SCENARIOS B AND E. .. 71
FIGURE 30 – CLUSTER SELECTION ALGORITHM USED IN LEC-DN AND PREMAP-DN HEURISTICS. .. 73
FIGURE 31 - HYPOTHETICAL EXAMPLE TO COMPUTE THE FUNCTION REGION_FREE. ... 74
FIGURE 32 – PSEUDO-CODE OF THE INITIAL TASKS MAPPING ALGORITHM USED IN LEC-DN AND PREMAP-DN HEURISTICS. 74
FIGURE 33 - (A) SEARCH SPACE WHEN ONE COMMUNICATING TASK IS ALREADY MAPPED (TJ); (B) SEARCH SPACE WHEN MORE THAN ONE

COMMUNICATING TASK IS ALREADY MAPPED (TJ AND TK). SOLID LINES CORRESPOND TO THE ORIGINAL BOUNDING BOX, DASHED

LINES TO THE BOUNDING BOX INCREASED BY ONE HOP. .. 75
FIGURE 34 - (A) APPLICATION GRAPH OF A GIVEN APPLICATION; (B) SEARCH SPACE TO MAP TASK B. .. 75
FIGURE 35 - (A) APPLICATION GRAPH OF THE APPLICATION (B) SEARCH SPACE TO MAP TASK C, WHERE EACH SP HAS A COST, AND THE

FINAL MAPPING OF C. .. 76
FIGURE 36 - MAPPING OF NON-INITIAL TASKS USED IN LEC-DN AND PREMAP-DN HEURISTICS. .. 77
FIGURE 37 – INTEGRATION OF THE PREMAP METHOD IN THE LEC-DN HEURISTIC. .. 79
FIGURE 38 - PREMAP METHOD EXAMPLE. .. 80
FIGURE 39 – PREMAP METHOD ALGORITHM PSEUDO-CODE [MAN11B]. .. 80
FIGURE 40 - CLUSTER SELECTION HEURISTIC USED IN LOAD AND LOAD-COMMUNICATION HEURISTICS. ... 81
FIGURE 41 - INITIAL AND NON-INITIAL TASKS MAPPING USED IN LOAD HEURISTIC. ... 82
FIGURE 42 - HYPOTHETICAL EXAMPLE OF REGION_ENERGY. .. 83
FIGURE 43 - FIRST PHASE OF THE INITIAL TASKS MAPPING USED IN LOAD-COMMUNICATION HEURISTIC. ... 83
FIGURE 44 – SECOND PHASE OF THE INITIAL TASKS MAPPING USED IN LOAD-COMMUNICATION HEURISTIC. .. 84
FIGURE 45 - LOAD-COMMUNICATION HEURISTIC SEARCH SPACE. .. 85
FIGURE 46 - MAPPING OF NON-INITIAL TASKS. .. 85

FIGURE 47 – ENERGY CONSUMED PER SP (MJ) FOR EACH HEURISTIC IN SCENARIO A WITH THE OVP PLATFORM. EACH RECTANGLE

REPRESENTS A PE. GREEN RECTANGLES REPRESENT SPS CONSUMING LESS THAN 5 MJ. RED RECTANGLES REPRESENT SPS

CONSUMING MORE THAN 50 MJ. ... 89
FIGURE 48 – ENERGY CONSUMED PER SPS (MJ) FOR EACH HEURISTIC IN SCENARIO A IN THE SYSTEMC PLATFORM. EACH RECTANGLE

REPRESENTS A PE. GREEN RECTANGLES REPRESENT SPS CONSUMING LESS THAN 5 MJ. RED RECTANGLES REPRESENT SPS

CONSUMING MORE THAN 50 MJ. ... 95
FIGURE 49 – TEMPERATURE DISTRIBUTION FOR SCENARIO A. ... 98
FIGURE 50 – POWER TRACES FOR SCENARIO A. X-AXIS: TIME IN MILLISECONDS (ONLY PES EXECUTING TASKS ARE CONSIDERED). Y-AXIS:

AVERAGE POWER OF ACTIVE PROCESSORS (W). GRAY BARS: 50% OF THE POPULATION, FIRST TO THIRD QUARTILES. BLACK LINES:
AVERAGE FIRST AND THIRD QUARTILES. GREEN LINE: AVERAGE MEDIAN. BLUE LINE: INSTANTANEOUS MEDIAN. 99

FIGURE 51 – EXAMPLE OF UNBALANCED WORKLOAD. ... 100
FIGURE 52 – ENERGY CONSUMED PER SP IN SCENARIO B IN THE OVP PLATFORM. ... 114
FIGURE 53 – ENERGY CONSUMED PER SP IN SCENARIO C IN THE OVP PLATFORM. ... 115
FIGURE 54 – ENERGY CONSUMED PER SP IN SCENARIO D IN THE OVP PLATFORM. .. 116
FIGURE 55 – ENERGY CONSUMED PER SP IN SCENARIO E IN THE OVP PLATFORM. ... 117
FIGURE 56 – ENERGY CONSUMED PER SP IN SCENARIO F IN THE OVP PLATFORM. ... 118
FIGURE 57 – ENERGY CONSUMED PER SP IN SCENARIO B IN THE SYSTEMC PLATFORM. .. 119
FIGURE 58 – ENERGY CONSUMED PER SP IN SCENARIO C IN THE SYSTEMC PLATFORM. ... 120
FIGURE 59 – ENERGY CONSUMED PER SP IN SCENARIO D IN THE SYSTEMC PLATFORM. .. 121
FIGURE 60 – ENERGY CONSUMED PER SP IN SCENARIO E IN THE SYSTEMC PLATFORM. ... 122
FIGURE 61 – ENERGY CONSUMED PER SP IN SCENARIO F IN THE SYSTEMC PLATFORM. ... 123
FIGURE 62 – TEMPERATURE DISTRIBUTION FOR SCENARIO B. .. 124
FIGURE 63 – TEMPERATURE DISTRIBUTION FOR SCENARIO C. .. 125
FIGURE 64 – TEMPERATURE DISTRIBUTION FOR SCENARIO D. .. 126
FIGURE 65 – TEMPERATURE DISTRIBUTION FOR SCENARIO E. .. 127
FIGURE 66 – TEMPERATURE DISTRIBUTION FOR SCENARIO F. .. 128
FIGURE 67 – POWER TRACES FOR SCENARIO B. .. 129
FIGURE 68 – POWER TRACES FOR SCENARIO C. .. 130
FIGURE 69 – POWER TRACES FOR SCENARIO D. .. 131
FIGURE 70 – POWER TRACES FOR SCENARIO E. .. 132
FIGURE 71 – POWER TRACES FOR SCENARIO F. .. 133

LIST OF TABLES

TABLE 1 – MPSOC PLATFORMS. ... 26
TABLE 2 – STATE-OF-THE-ART IN DYNAMIC MAPPING HEURISTICS. ... 33
TABLE 3 – CHARACTERISTICS OF THE MODELS. .. 40
TABLE 4 – HEMPS MODELS COMPARISON. ... 40
TABLE 5 - SIMULATION TIME (IN SECONDS) AND SPEEDUP. SIMULATIONS RUN ON A 6-CORE, 64 BITS XEON ARCHITECTURE WITH 12

GBYTES OF RAM, RUNNING LINUX OS. [PET12] ... 41
TABLE 6 - SETUP OF APPLICATIONS, IN A 4X4 MPSOC, WITH ONE MANAGER PE.. 42
TABLE 7 – SIMULATION TIME (IN SECONDS) FOR RTL-VHDL AND RTL-SYSTEMC MODELS. .. 42
TABLE 8 – EXECUTION TIME (IN CLOCK-CYCLES) FOR LOW-LEVEL MODELS. .. 43
TABLE 9 – NUMBER OF EXECUTED INSTRUCTIONS FOR LOW-LEVEL MODELS. .. 43
TABLE 10 - NORMALIZED SIMULATION TIME SPEEDUP FOR THE SYSTEMC/OVP MODEL COMPARED TO THE SYSTEMC MODEL. 49
TABLE 11 - COMMUNICATION VOLUME TRANSMITTED THROUGH THE NOC FOR EACH MAPPING HEURISTIC, IN KFLITS.............................. 50
TABLE 12 - SETUP OF APPLICATIONS DISTRIBUTION. .. 54
TABLE 13 - SIMULATION TIME SPEEDUP, COMPARING SYSTEMC AND OVP PLATFORMS. SIMULATIONS SETUP – PROCESSOR: CORE 2 DUO

E4400 2X2GHZ; MEMORY: 3GB; GCC VERSION: 4.7.2; GCC FLAGS: -MFPMATH=SSE -OFAST -FLTO -MARCH=NATIVE -FUNROLL-
LOOPS. .. 56

TABLE 14 - CHARACTERISTICS OF THE EVALUATED SCENARIOS .. 69
TABLE 15 – TOTAL EXECUTION TIME REDUCTION, ADOPTING THE CENTRALIZED MAPPING AS REFERENCE. .. 70
TABLE 16 – EVALUATED SCENARIOS. ... 86
TABLE 17 – INSTRUCTIONS (THOUSANDS OF INSTRUCTIONS) AND ENERGY (MJ) FOR THE EVALUATED SCENARIOS, USING A 10X10

MPSOC SIZE – OVP PLATFORM. ... 87
TABLE 18 – ENERGY STANDARD DEVIATION VALUES NORMALIZED W.R.T. THE L HEURISTIC. ... 88
TABLE 19 – TOTAL COMMUNICATION VOLUME (THOUSANDS OF FLITS).. 90
TABLE 20 - TOTAL COMMUNICATION VOLUME NORMALIZED W.R.T. THE PREMAP-DN HEURISTIC... 90
TABLE 21 – TOTAL EXECUTION TIME (THOUSANDS OF CLOCK CYCLES). .. 91
TABLE 22 – TOTAL EXECUTION TIME NORMALIZED W.R.T. THE L HEURISTIC. .. 91
TABLE 23 – INSTRUCTIONS (THOUSANDS OF INSTRUCTIONS) AND ENERGY (MJ) FOR THE EVALUATED SCENARIOS, USING A 12X12

MPSOC SIZE – OVP PLATFORM. ... 92
TABLE 24 – TOTAL COMMUNICATION VOLUME (THOUSANDS OF FLITS), USING A 12X12 MPSOC SIZE. .. 92
TABLE 25 – TOTAL EXECUTION TIME (THOUSANDS OF CLOCK CYCLES), USING A 12X12 MPSOC SIZE. .. 92
TABLE 26 – INSTRUCTIONS (THOUSANDS OF INSTRUCTIONS) AND ENERGY (MJ) FOR THE EVALUATED SCENARIOS – SYSTEMC PLATFORM.

 .. 93
TABLE 27 – ENERGY STANDARD DEVIATION NORMALIZED W.R.T. THE L HEURISTIC. ... 94
TABLE 28 - TOTAL COMMUNICATION VOLUME (THOUSANDS OF FLITS) .. 96
TABLE 29 - TOTAL COMMUNICATION VOLUME NORMALIZED W.R.T. THE PREMAP-DN HEURISTIC... 96
TABLE 30 – TOTAL EXECUTION TIME (THOUSANDS OF CLOCK CYCLES). .. 97
TABLE 31 – TOTAL EXECUTION TIME NORMALIZED W.R.T. THE L HEURISTIC ... 97
TABLE 32 - EVALUATED SCENARIOS CONFIGURATION FOR THE SYSTEMC PLATFORM. .. 102
TABLE 33 – AVERAGE NUMBER OF INSTRUCTIONS TO EXECUTE EACH STEP OF THE LOAD-COMMUNICATION HEURISTIC. 102
TABLE 34 – PUBLICATIONS DURING THE PHD PERIOD. ... 134

LIST OF ABBREVIATIONS

API Application programming interface
DTW Digital Time Warping
DVFS Dynamic Voltage and Frequency Scaling
EC Energy Consumption
EDK Embedded Development Kit
GALS Globally Asynchronous Locally Synchronous
GMP Global Manager Processing Element
HeMPS Hermes Multiprocessor System
ISS Instruction Set Simulator
L Load task mapping heuristic
LC Load-Communication task mapping heuristic
LEC-DN Low Energy Consumption - Dependences Neighborhood
LMP Local Manager Processing Element
MP Manager Processing Element
MPI Message Passing Interface
MPSoC Multiprocessor System on Chip
MTTF Mean-Time To Failure
MWD Multi-Window Display
NI Network Interface
NN Nearest Neighbor
NoC Network-on-Chip
OS Operating System
OVP Open Virtual Platform
PBD Platform-based Design
PE Processing Element
PPM OVP Peripherals models
PREMAP-DN PREMAP - Dependences Neighborhood
QoS Quality Of Service
SDK Software Development Kit
SoC System-On-Chip
SP Slave Processing Element
TE Total Energy consumed by a processing element
TLM Transaction-Level Modeling
UART Universal Asynchronous Receiver/Transmitter
VOPD Video Object Plane Decoder
XY XY Routing Algorithm

TABLE OF CONTENTS

1. INTRODUCTION ... 18

1.1 Hypothesis to be Demonstrated with this Thesis 20

1.2 Goals .. 20

1.3 Original Contributions .. 21

1.4 Originality of this Thesis .. 22

1.5 Structure of the Document ... 22

2. STATE-OF-ART .. 23

2.1 State-of-Art in MPSoC platforms ... 23

2.2 State-of-Art in Dynamic Task Mapping ... 26

3. PLATFORM MODELS .. 35

3.1 Reference Platform ... 36

3.2 SystemC Platform ... 38

3.2.1 Comparison of the SystemC Model against the Reference Model 39

3.3 OVP Platform ... 43

3.3.1 SystemC/OVP Platform ... 45

3.3.2 OVP Platform .. 50

3.4 Final Remarks ... 56

4. SYSTEM MANAGEMENT ... 57

4.1 Energy Model .. 57

4.2 Application Model ... 58

4.3 Centralized System management .. 61

4.3.1 Centralized Task mapping protocol ... 61

4.4 Distributed System management .. 63

4.4.1 Distributed Task Mapping Protocol .. 65

4.4.2 Re-clustering Process ... 67

4.5 Centralized versus Distributed Task Mapping ... 68

4.6 Final Remarks ... 71

5. TASK MAPPING HEURISTICS ... 72

5.1 LEC-DN .. 73

5.1.1 Cluster selection .. 73

5.1.2 Initial tasks mapping .. 73

5.1.3 Non-initial task mapping .. 74

5.2 PREMAP-DN .. 78

5.3 LOAD (L) .. 81

5.3.1 Cluster selection .. 81

5.3.2 Initial and non-initial tasks mapping ... 82

5.4 LOAD-COMMUNICATION (LC) ... 82

5.4.1 Cluster selection .. 82

5.4.2 Initial tasks mapping .. 83

5.4.3 Non-initial task mapping .. 84

5.5 Task Mapping Heuristics Evaluation... 86

5.5.1 Task mapping evaluation using the OVP platform model 86

5.5.2 Task mapping evaluation using the SystemC platform model 93

5.5.3 Discussion ... 100

5.6 Final Remarks ... 103

6. CONCLUSION AND FUTURE WORKS .. 104

6.1 Conclusions Related to the Multi-level Platform Framework 104

6.2 Conclusions Related to the Distributed System Management 105

6.3 Conclusions Related to the Task Mapping Heuristics............................. 105

6.4 Limitations of the Proposal .. 106

6.5 Future Works ... 107

REFERENCES .. 108

APPENDIX A – WORKLOAD DISTRIBUTION ... 114

APPENDIX B –TEMPERATURE DISTRIBUTION 124

APPENDIX C – POWER TRACES .. 129

APPENDIX D – PUBLICATIONS OF THE AUTHOR 134

18

1. INTRODUCTION

MPSoCs (Multiprocessor Systems-on-Chip) have been employed to provide the high

demands of performance while maintaining energy efficiency during the execution of

concurrent embedded applications (e.g. video compressing, wireless communication

standards, gaming). Such systems increase performance by using multiple homogeneous

or heterogeneous processors. MPSoCs also integrate memories, dedicated hardware

cores, and a communication infrastructure to interconnect the system components, as

NoCs (Networks-on-Chip) and buses. Despite the higher design complexity of NoCs, such

communication infrastructure offers better scalability, performance and power capabilities

when compared to buses [BEN02].

Applications designed to execute in MPSoCs may be partitioned into different tasks

to execute in different cores, enabling their parallel execution [SIN13]. A task is a set of

instructions and data, containing information and constraints for its correct execution in a

given core. Additionally, tasks exchange data with other tasks during the execution of the

application. The definition in which system core each task will execute is a major issue in

the MPSoC design. In the literature, this issue is referred to task mapping [SIN13].

Task mapping decision have been executed at runtime in order to deal with time-

varying workloads caused by the most part of embedded system applications [SIN10].

Such variations cannot be accurately predicted during design time, such as the scenarios

when the system interacts with complex deployment environments or user-driven requests

[CHO10]. Runtime approaches (also referred as online or dynamic mapping approaches)

require simple and fast mapping solutions, since high time-consuming and high

computational algorithms may compromise the system performance. Further, runtime

mapping can better deal with other system changes during runtime, such as cores

availability and defective cores [SIN13].

The increasing number of cores in MPSoCs also requires scalable and distributed

mapping solutions. Novel large MPSoCs, with dozens of cores, are already present in

market [INT12][TIL10] and the ITRS roadmap [ITR13] projects systems integrating

thousands of cores by the end of the decade. In such systems, a centralized mapping

decision compromises the system performance since a single core is responsible for

processing and responding all mapping requests [FAR08]. Underlying solution contributes

to increasing NoC congestion around the mapper leading to hotspot zones, which may

result in system failures.

Reliability is an important concern related to task mapping, tightly connected to the

workload distribution [CHA13][WAN14][HEN13]. Load imbalance decisions can generate

hotspots zones (i.e. peaks of power dissipation) and thermal variations, which directly

affects system reliability [CHA13][WAN14][MEY14]. This issue is worse in large MPSoCs,

19

which aggregate a growing number of cores on the same die, increasing power densities

and, consequently, system temperature. Further, mapping communicating tasks far from

each other results in more data transfer through the system, increasing communication

latency and energy consumption. Higher data volume transferred through the system also

induces link failures, which may produce unreachable zones (e.g. isolated and,

consequently, unusable cores). Unusable cores induce mapping of applications onto other

system cores, increasing their workload and, consequently, reducing their lifetime.

Dealing with dynamic and distributed mapping in large-scale systems requires

efficient means to evaluate several scenarios considering different performance metrics.

Simulation enables the evaluation of different task mapping solutions, as well as other

MPSoCs challenges (e.g. quality of service management). However, the raising complexity

of large MPSoCs restricts the adoption of RTL simulation due to its high simulation time,

verification and debugging cost [ROT13]. For this purpose, high-level modeling techniques

have been employed to boost system design and validation. High abstract models simplify

system properties and characteristics using some formalism, preserving those

characteristics and properties that are relevant for a given purpose (e.g. system energy

consumption prediction) [JAN03]. In this context, a designer can employ different models

to represent different system aspects, targeting specific goals.

Designers must use different models to accomplish both software and hardware

design and validation process. While architectural-oriented design requires quasi-cycle

accurate models [BIN11], software development demands high simulation speeds (e.g.

100 MIPS [OVP13]) [LEM12]. With such conflicting requirements, it is difficult to cover all

modeling and simulation needs inherent to hardware and software design space

exploration with one single model. Beyond that, to ensure correct functionality of emerging

MPSoC embedded systems it is necessary to consider lower level design constraints,

such as area, energy consumption, and temperature. To deal with such design constraints,

an RTL description of the platform is necessary to acquire information through low-level

models.

To overcome the challenges mentioned above, this Thesis proposes a multi-level

platform framework, which combines different modeling techniques aiming to provide

efficient means to explore large-scale MPSoCs, considering both hardware and software.

The proposed framework includes high abstract models, providing great modeling and

debuggability capabilities allied to high simulation speeds. Such abstract models are

supported by a clock-cycle accurate implementation, which provides power and area

figures. The proposed framework is used to develop and validate runtime distributed

mapping solutions.

20

1.1 Hypothesis to be Demonstrated with this Thesis

This Thesis relies on two hypotheses: (i) untimed abstract models can be used to

evaluate task mapping solutions; and (ii) task mapping solutions that focus on

communication volume reduction can compromise system reliability; and task mapping

solutions that focus on workload balancing can increase system communication volume.

1.2 Goals

In order to address the hypotheses mentioned above, the strategic goal of this Thesis

is first to combine different modeling techniques into a multi-level framework, targeting the

investigation of task mapping strategies for MPSoCs. Such multi-level framework should

support the design space exploration of large-scale MPSoCs (thousands of PEs,

interconnected by a NoC executing dozens of applications), providing accurate

performance evaluation in an acceptable time. Considering the ITRS perspective [ITR13],

the demand for new modeling techniques and supporting tools (models definition,

generation, and simulation) will continue growing, sustaining the importance and the

relevance of this Thesis. The second strategic goal of this Thesis is to investigate different

task mapping strategies, in order to define heuristics to reduce communication volume and

provide a balanced workload distribution for large-scale MPSoCs. Further, in order to

provide scalable task mapping decision, distributed system management strategies are

investigated.

To accomplish these strategic goals, the following specific objectives should be

fulfilled:

 adopt a stable MPSoC platform that will serve as reference in terms of clock-

cycle accurate simulation and power and area results;

 propose higher level implementations of the reference platform, aiming at

speeding up the design and the investigation of novel management strategies;

 propose an integrated design flow by providing semi-automated and easy to

use toolset, considering concomitant hardware and software development;

 investigate distributed system management strategies in order to achieve

scalable large-scale MPSoCs;

 Investigate different task mapping techniques, focusing on communication

volume reduction and workload distribution balancing for large-scale MPSoCs.

21

1.3 Original Contributions

This Thesis has two main contributions: (i) proposition of a multi-level modeling

framework, which supports different modeling and debugging capabilities that enrich and

facilitate the design of large MPSoCs; (ii) proposal of scalable and distributed lightweight

runtime mapping techniques for large-scale MPSoCs. As summary, such contributions can

be detailed as follows:

 The multi-level platform framework uses the reference NoC-based MPSoC model

presented in Section 3.1. This model is implemented in synthesizable RTL VHDL,

which has main advantage at being synthesizable, allowing to captures accurate area,

frequency and power performance figures. Debug facilities include waveforms and

assertions, targeting hardware development, not software development. In this context,

this Thesis contributes with two new models:

o a SystemC RTL model, presented in Section 3.2, which enables the simulation

of larger systems in a reasonable simulation time but still providing high

accurate performance results. Some improvements in terms of debuggability are

achieved, e.g., by inserting debug coded in the ISS.

o an OVP [OVP13] (i.e. Open Virtual Platform) model, presented in Section 3.3.

OVPSim is a virtual platform and modeling framework proposed by Imperas,

aiming to accelerate the development of embedded software, specifically for

SoCs and MPSoCs. The proposed model is used to develop and validate task

mapping heuristics, presented in Chapter 5.

 Task mapping contributions of this Thesis are described as follows:

o Proposal of a distributed management architecture that provides the necessary

features to include scalable mapping solutions, described in Chapter 4;

o Modification of formerly proposed task mapping heuristics [MAN11b] to support

decentralized mapping decisions, presented in Chapter 5;

o Proposal of profiler platform to generate performance information (inter-task

communication volume, energy consumption of each task) to guide the runtime

mapping process, presented in Section 4.1;

o Proposal of a novel scalable runtime distributed energy-aware mapping

technique, which focuses on workload balancing and communication volume

reduction (presented in Chapter 5);

o Validation of the proposed mapping techniques with different and large

scenarios (Section 5.5), considering the number of executed instructions, power,

energy, temperature, and execution time.

22

1.4 Originality of this Thesis

The originality of this Thesis relies on a novel a scalable and lightweight runtime

distributed energy-aware mapping technique, aiming to reduce communication volume and

balance workload distribution in large-scale systems. This mapping heuristic is validated in

a multi-layer model approach, which provides flexibility in the system design by using

different abstraction levels.

1.5 Structure of the Document

The remaining of this document is organized as follows: Chapter 2 presents the

state-of-art on MPSoC platforms and task mapping solutions. Next, Chapter 3 presents the

proposed multi-level framework. Chapter 4 describes the proposed distributed system

management approach, comparing it with a centralized approach. Chapter 5 presents

different distributed runtime task mapping heuristics, including a heuristic aiming to reduce

communication volume and a balanced workload distribution. Finally, Chapter 6 provides

conclusions and directions for future work.

23

2. STATE-OF-ART

This Chapter discusses the state-of-art related to the main contributions of this

Thesis. Section 2.1 presents works underlying MPSoC platforms development, including

different modeling approaches and specific design goals. Section 2.2 first introduces a

task mapping taxonomy and, then, focuses on the state-of-art of runtime mapping

approaches.

2.1 State-of-Art in MPSoC platforms

The literature contains examples of MPSoC platforms developed in different

abstraction levels, differing in terms of accuracy, simulation cost and design flexibility.

Some works [CEN09][VEN10][LEM12][REK13][ZHA13][DUE14] use high abstraction

models for MPSoC design exploration. Ceng et al. [CEN09] present a framework aiming at

improving application development at early design stage, in which target platform details

are not already determined. The proposed framework, called High-level Virtual Platform

(HVP), includes a simulator that abstracts hardware (i.e. processor elements) and software

(i.e. OS, communication API) details of the target MPSoC platform. Such simulator is built

using SystemC, including processing elements, interconnection infrastructure and

peripherals. Processing elements are modeled as Virtual Processing Elements (VPEs). A

VPE comprises a high-level processor model and an operating system, which is

responsible for task execution control, such as scheduling and execution speed. Both

VPEs and tasks are implemented using SystemC, interacting through TLM channels

between them. Communication interconnection between VPEs is done through generic

shared memories, which can be controlled and accessed in applications by the proposed

programming API. Further, each VPE includes a set of software tools for application

programming that is completely platform independent, enabling reusable code for different

platforms. Such tools include the previously mentioned programming APIs, which enable

inter-task communication/synchronization and VPE interactions. Debugging facilities

include connection with host debuggers, such as GDB.

Ventroux et al. [VEN10] present the SESAM, a NoC-based MPSoC framework

targeting the design and the exploration of asymmetric multiprocessor systems. The

platform in SESAM is described in SystemC TLM, while the programming model is based

on the explicit separation of control and computation parts. SESAM has a library of

components like NoCs (e.g. multibus, torus, ring and mesh) that are modeled in

approximate-timed TLM, enabling fast and accurate simulation. A Hardware Abstraction

Level (HAL) is provided to manage all memory accesses and dynamic memory allocation.

To debug the platform it is possible to use a GNU GDB implementation. The Authors point

out 90% accuracy compared to a fully cycle-accurate simulator.

24

Lemaire et al. [LEM12] present a flexible simulation environment integrating different

modeling techniques for design and exploration of SoCs. The proposed environment uses

the GENEPY MPSoC as base model, which contains high-performance DSP processors,

general-purpose processors and dedicated hardware interconnected by a GALS NoC. The

NoC is modeled in SystemC/TLM with 3 different modes: loosely-timed packet-level mode,

ignoring NoC contention; approximately-timed packet-level mode with a contention model;

and an accurate flit-level mode, which implementation is very close to the real hardware.

Such NoC models can integrate different CPU core models, also modeled in three different

abstraction levels: Host Code Execution (HCE) model, in which application code is

compiled and directly linked to SystemC/TLM platform; an Instruction Set Simulator (ISS)

model; and an RTL model. A SystemC power model including DVFS is integrated to the

proposed environment. Authors claim the proposed environment enables software

development and hardware implementation, providing from fast simulation to low-level

hardware models.

In [REK13] OVP is used to model inter-processor communication in shared memory

MPSoCs. Authors claim OVP only allows processors communication through shared

memory. However, this Thesis presents distributed memory MPSoC platform modeled In

OVP (see Section 3.3). In order to evaluate the benefits of OVP, Authors present different

homogeneous and heterogeneous platform configurations and demonstrates the

integration of operating systems (i.e. Linux). In this work, no comparisons with other

simulation models (e.g. SystemC) were made.

Zhang et al. [ZHA13] present a modeling tool, MCVP-NoC (Many-Core Virtual

Platform with Networks-on-Chip), which is designed to explore large-scale MPSoCs.

MCVP-NoC is developed in TLM-SystemC with an OVP layer to provide fast processor

models simulation, memory models and bus decoder. Orion2 software was integrated into

MCVP-NoC to report power and area estimation values. TLM2.0 interface connects all

component models. Authors report that the simulation using a virtual platform can speed

up to 40 times the RTL simulation.

Duenha et al. [DUE14] propose a simulation toolset for development and evaluation

of MPSoCs. The proposed toolset, called MPSoCBench, supports up to 64 processor

cores of four different architectures (PowerPC, MIPS, SARC and ARM). ArchC [AZE05] is

used to generate processors models in SystemC/C++. Further, processors have

configurable cache models and may be interconnected by different communication

infrastructure (crossbar, NoC) described in SystemC/TLM. MPSoCBench does not support

operating system, using a POSIX PThread emulation library to handle thread

management, barriers, mutual exclusion, semaphores, and conditional variables.

Performance analysis include: power estimation based in different FPGAs from Xilinx and

Altera; number of instructions per core; number of memories reads and writes; number of

hops in NoC communication; simulation time; application correctness. Authors claim that

25

although the proposed model is not cycle-accurate, users can incorporate timing

information to provide a degree of accuracy, such as time per instruction in processor

models.

Indrusiak [IND14] proposes analytical methods to evaluate whether applications meet

their timing constraints on homogeneous NoC-based multiprocessor architectures. The

proposed work uses a system model covering different applications and NoC-based

platform configurations. Experiments compare the proposed method with simulation

methods, verifying figures for computation and communication response times.

Other works propose the use of EDKs (Embedded Development Kit) to automate

FPGA-based MPSoC design and emulation. Lukovic et al. [LUK08] propose an automatic

MPSoC generation using the Xilinx EDK, allowing fast hardware redesign. The work of

Meier et al. [MEI10] presents a platform-based design model that reduces the MPSoC

design complexity using the LavA framework. Tian et al. [TIA09] uses an FPGA

implementation to evaluate the efficiency of data synchronization in a NoC. Benini et al.

[BEN12] present a platform with an SDK (Software Development Kit) able to execute

different programming models at an abstract level of hardware.

MPSoCs described in synthesizable RTL are also found in the literature. Paulin et al.

[PAU06] propose a deadline evaluation in an RTL model MPSoC. Ngouanga et al.

[NGO06] use a NoC-based platform developed in synthesizable VHDL for task mapping

heuristic validation. Validations use up to a 6x6 mesh system, taking place by either VHDL

simulation or by FPGA prototyping. Busseuil et al. [BUS11] present an RTL distributed

memory platform for design space exploration of NoC-based MPSoCs. The proposed

platform is totally validated in FGPA, providing a set of functions and services to enable

different performance analysis.

Table 1 compares relevant platform characteristics of the reviewed works. As most

proposals, this work models a NoC-based MPSoC. Our contribution distinguishes itself

from all previous works mentioned in this section by combining fast and accurate modeling

and simulation capabilities in one single software development flow, including: cycle-

accurate model (VHDL and RTL-SystemC/ISS) and approximated-time model (OVP,

which uses C language). The OVP model provides performance estimates, using data

obtained from the RTL simulation. In this direction, complex software stacks can be

successively refined in different platform models until an adequate development is

achieved in terms of functionality and accuracy.

26

Table 1 – MPSoC platforms.

Proposal Interconnection
Description

Language or design
method

Debugging
Accuracy and

evaluation

Paulin et
al. (2006)

NoC RTL synthesizable N/A Clock-cycle accurate

Ngouanga
et al.

(2006)

NoC RTL synthesizable N/A Clock-cycle accurate

Lukovic et
al. (2008)

NoC PBD (Xilinx EDK) Xilinx EDK Tools Untimed

Tian et al.
(2009)

NoC PBD (Xilinx-4 FX140) EDK Tools Untimed

Ceng et al.

(2009)
Bus SystemC/TLM GNU GDB Untimed

Ventroux et
al. (2010)

NoC TLM-SystemC GNU GDB
Approximate-timed

TLM

Meier et al.
(2010)

Bus
PBD (Virtex-V LX

110T EDK)
EDK Tools Untimed

Busseuil
(2011)

NoC RTL synthesizable N/A Clock-cycle accurate

Benini et al.
(2012)

NoC (Cluster)/Bus PBD (Xilinx Zynq) EDK Tools Untimed

Lemaire et
al. (2012)

NoC
RTL-SystemC and

TLM
N/A 7% compared to RTL

Rekik et al.
(2013)

Bus OVP N/A Untimed

Zhang et al.
(2013)

NoC
TLM-SystemC with

OVP and RTL
N/A

40 times faster than
RTL

Duenha et
al.

(2014)

NoC SystemC/TLM N/A
Approximate-timed

TLM

Indrusiak
(2014)

NoC analytical methods N/A Untimed

This
proposal

NoC
RTL-VHDL, RTL-

SystemC/ISS, and
OVP

OVP tools /
performance

reports

Clock-cycle accurate
/ approximate-timed

2.2 State-of-Art in Dynamic Task Mapping

Task mapping literature is wide, requiring a taxonomy classification considering

different mapping criteria. In this context, this Thesis classifies [MAN11b][OST13] the

mapping process according to four criteria: (i) the target architecture; (ii) the number of

tasks per PE; (iii) the moment in which it is executed; (iv) system management approach.

According to the target architecture, task mapping can be performed in

homogeneous (identical PEs) or heterogeneous (e.g. DSPs, dedicated IPs, accelerators)

systems. The complexity of task mapping is higher when heterogeneous MPSoC platforms

27

are employed, since PE type must be considered in mapping process. Regarding the

number of tasks mapped per PEs, mapping approaches can be classified as single or

multi-task. Single-task assumes only one task assignment per PE while multi-task allows

mapping more than one task per PE according to some criteria (e.g. communication,

execution time, task deadlines). A multi-task approach can better explore system

resources, enabling the execution of an increasing number of applications in parallel.

The mapping process can be defined at design-time or runtime. When task mapping

is defined at design-time (also referred as offline or static mapping approach), all

applications that will be executed in the system must be known a priori. Such approach

can explore high time-consuming and computational intensive algorithms to better

evaluate the mapping solutions. These algorithms use a global view of the system state to

define the mapping of all its tasks, which improves the mapping quality. However, design

time approaches are not suitable for dynamic and unpredictable workloads imposed by the

execution of different applications [CHO08][HÖL08][SCH10][SIN10]. Further, such

approaches are not able to cope with system changes, such as cores failures incurred in

the system during runtime [SIN13].

Runtime task mapping approaches (also referred as online or dynamic mapping

approaches) have been used to improve system adaptability. Such approach enables

different applications to be inserted into the system at runtime, enabling dynamic

workloads. Runtime task mapping is incorporated in the system management scheme,

which verifies system conditions and takes decisions to improve performance. In this

context, whenever mapping an application task, the system conditions are verified to

achieve better mapping decisions. The time to take mapping decisions must be taken into

account since it can impact on applications execution time [SIN13].

As mentioned before, runtime task mapping is one of the system management

functions, which also include monitoring, task migration, DVFS. System management can

be classified in centralized or distributed. Centralized management uses a single core

(called central manager) responsible for the overall management, which is suited for small

MPSoCs due to scalability issues. For example, such single core can be overloaded very

quickly, due to the computational effort to execute all management functions, such as

mapping actions and treatment of monitoring events. In addition, the traffic around the

central manager induces a communication hotspot, compromising system performance. A

central manager also compromises system reliability, since it creates a single point of

failure in the system. In a distributed approach, the system management is distributed in

different cores, increasing system scalability and reliability.

This Thesis focuses on general-purpose MPSoC platforms, able to execute several

applications that are unknown in advance. This Thesis also assumes that the underlying

applications can be inserted in the system in a non-deterministic way, according to user

28

requirements. The resulting scenario points to the exploration of runtime mapping

approaches. Different research on runtime mapping approaches have been proposed.

Smit et al. [SMI05] propose an iterative hierarchical dynamic mapping approach, which

aims to reduce energy consumption while providing the required quality-of-service (QoS).

In such approach, tasks are firstly grouped by assigning to a system resource type (e.g.

FPGA, DSP, ARM), according to their performance constraints. Then, each task inside a

group is mapped, minimizing the distance between them and reducing communication

cost. Finally, the resulting mapping is checked, and if it does not meet the application

requirements, a new iteration is required. Ngouanga et al. [NGO06] present a force-

directed mapping heuristic for homogeneous NoC-based MPSoCs. The heuristic selects

the new position for a task according to a resulting force, which is proportional to the

communication volume and distance between tasks.

Chou et al. [CHO07] introduce an incremental dynamic mapping process approach,

where PEs connected to the NoC have multiple voltage levels while the network has its

voltage–frequency domain. A global manager (OS-controlled mechanism) is responsible

for finding a contiguous area to map an application, and for defining the position of the

tasks within this area, as well. According to the Authors, the strategy avoids the

fragmentation of the system and aims to minimize communication energy consumption,

which is calculated according to the approach proposed by Ye et al. [YE02]. The proposed

approach was extended in [CHO08], incorporating the user behavior information in the

mapping process. The user behavior corresponds to the application profile data, including

the application periodicity in the system and data volume transferred among tasks. For real

applications considering the user behavior information, the approach achieved around

60% energy savings compared to a random allocation scenario.

Hölzenspies et al. [HÖL07][HÖL08] investigate a runtime spatial mapping technique

with real-time requirements, considering streaming applications mapped onto

heterogeneous MPSoCs. In the proposed work, the application remapping is determined

according to a set of information (i.e. latency/throughput) collected at design time, aiming

to satisfy QoS requirements, as well as to optimize the resources usage and to minimize

the energy consumption. A similar approach is proposed by Schranzhofer et al. [SCH10],

merging pre-computed template mappings (defined at design time) and online decisions

that define newly arriving tasks to the PEs at runtime. Compared to static mapping

approaches, the obtained results reveal that it is possible to achieve an average reduction

on power dissipation of 40% - 45%, while keeping the introduced overhead to store the

template mappings as low as 1kB. Wildermann et al. [WIL09] present another power-

aware mapping approach. This approach employs a heuristic that includes a neighborhood

metric inspired by rules from Cellular Automata, which allows decreasing the

communication overhead and, consequently, the energy consumption imposed by

dynamic applications.

29

Coskun et al. [COS07] propose a task mapping technique aiming to eliminate

hotspots and to reduce spatial and temporal temperature variations. The thermal history of

the cores obtained from HotSpot [WEI06] is used as basis for the mapping decisions. The

proposed technique is extended in [COS09] considering 3D multicore architectures, aiming

to reduce thermal problems with low overhead. The experimental setup uses a 3D

multicore UltraSPARC TI system, with eight cores. Results show that the proposed

technique reduces the frequency of hotspots, spatial gradients, and thermal cycles. The

proposed technique can be also combined with DVFS, improving the reduction of hotspots

by 20%-40% compared to a DVFS only approach.

In [HOS09] a stochastic dynamic task mapping and a routing algorithm are used to

minimize the reconfiguration overhead. Lu et al. [LU10] propose a dynamic mapping

algorithm, called Rotating Mapping Algorithm (RMA), which aims to reduce the overall

traffic congestion (taking into account the buffer space) and communication energy

consumption of applications (reduction of transmission hops between tasks).

Huang et al. [HUA09] present a lifetime-aware task mapping and scheduling

strategies based on simulated annealing. The proposed approach uses an analytical

model to estimate lifetime reliability, considering the processors' temperature variation

aggregated to its voltage/frequency to obtain the system MTTF. Experiments are

conducted based on a set of synthetic applications including from 20 to 260 tasks each,

which are executed in an abstract MPSoC platform. Simulated scenarios use up to 8

processors. The authors relax deadline constraints by 10%, obtaining lifetime

improvements ranging from 16.9% to 20.6%.

Carvalho et al. [CAR10] evaluate pros and cons of using dynamic mapping heuristics

(path load and best neighbor heuristics), when compared to static ones (e.g. simulated

annealing and Taboo search). The Authors adopted energy consumption and latency as

performance metrics, which were evaluated in a heterogeneous NoC-based MPSoC

model (RTL NoC and abstract PEs implemented in System-C), regarding different

application scenarios. Singh et al. [SIN09a][SIN09b][SIN10] extended the dynamic

heuristics proposed by Carvalho et al. [CAR10] to support multi-task mapping. A clustering

approach is proposed, which tries to maximize the number of communicating tasks in the

same PE. This technique verifies the previously mapped tasks in a given a PE to map a

new ones on it: if the required task communicates with some previously mapped task, it is

mapped; if not, then another PE is verified. The Authors mention that some PEs may

receive only one task, underusing the system resources. The clustering approach,

compared to a non-clustering approach, improves in average 15% the channel load and

energy consumption, with some improvement in packet latency and execution time.

Khajekarimi et al. [KHA12] present a runtime task mapping approach aiming to

reduce network communication and congestion in NoC-based heterogeneous MPSoCS.

30

First, the approach maps the initial tasks of an application. The initial task mapping aims to

group the application tasks in adjacent nodes or as close as possible. This is done by

choosing a PE that has a number of idle neighbors equal to the number of communicating

tasks with the required initial task and distance among these neighbors is minimal. Then,

the other application tasks are mapped using a heuristic based on BN (Best Neighbor

heuristic) [CAR10]. As BN, this heuristic tries to approximate a pair of communicating

tasks using the network path with the lowest traffic. It also evaluates if a PE has a number

of idle neighbors equal to the number of tasks communicating with the required task.

Experiments are evaluated with the Noxim Simulator [FAZ08] using a 4x4 mesh topology

and real applications. Results show that the proposed approach achieves an energy

reduction of 15% compared to BN and 23% compared to CE [HU10].

Hartman et al. [HAR12] present a runtime task mapping approach aiming to increase

the system lifetime. The proposed approach assumes that each processor has a wear

sensor that captures system data (e.g. processor usage). Based on captured information,

the mapping is defined considering changes in wear patterns in the system. Real and

synthetic applications are used to validate the proposed task mapping, which improves the

lifetime of 7.1% on average when compared to temperature-based heuristics.

Chantem et al. [CHA13] propose both dynamic task mapping and scheduling to

improve system reliability. This work adopts the LTF-based algorithm [CHE08] for dynamic

task mapping, which tries to balance processors load assigning the larger tasks to least

worn cores. Then, a scheduling technique is executed periodically, depending on system

wear state conditions, trying to compensate uneven core wear states. Authors also

analytically determine thermal profiles for a given workload, aiming to maximize system

lifetime. Experimental results use a bus-based system with 4 or 9 homogeneous cores,

based on the Alpha 21264 processor. Benchmarks varying from 100 to 1000 tasks are

used for evaluation. The proposed approach improves in 97% the system MTTF when

compared to a thermal-aware algorithm.

Das et al. [DAS13] propose a task mapping technique that generates mapping

solutions at design-time, aiming to satisfy application deadlines and to maximize the

system lifetime (measured in terms of the MTTF of cores due to internal wear-outs and

aging of NoC links). These solutions are stored in a database, which is used at runtime by

a system manager that selects the best mapping solution for a given application. When an

application is required, the entire set of system cores is dedicated to it, and the optimum

mapping solution is fetched and applied. If one or more cores fail, the system restarts and

the best solution for the reduced number of cores is selected. Experiments are evaluated

using a range from 4 to 32 synthetic and real applications executed on an MPSoC platform

configured with up to 8 homogeneous cores. The proposed solution is improved in

[DAS14] by including an offline DVFS technique defining voltage and frequency levels of

all cores. A model based on HotSpot [WEI06] is proposed to estimate the temperature of a

31

core to determine its aging impact. Experimental results are conducted using synthetic and

real applications executed on a 3x3 mesh MPSoC platform, which assumes five voltage-

frequency pairs for each core. The proposed technique achieves 40% energy savings and

6% increases in the lifetime compared to existing approaches.

Bolchini et al. [BOL13] present a runtime task mapping technique aiming to improve

system reliability (MTTF) under energy and performance constraints. For this purpose, this

work combines the technique of Das et al. [DAS13] with a remap strategy. Therefore,

mapping solutions are also generated at design time, and system conditions at runtime

determine their selection. Then, a remap strategy periodically verifies the system and re-

assigns a part of the tasks to other cores, in order to improve lifetime. The authors report

some results based on a NoC-based SystemC TLM many-core model using 3x3 and 3x4

mesh configurations. Results show the proposed technique improves lifetime by 16% with

less than 10% communication energy overhead compared to the static approach.

Differently from other works, [FAR08][ANA12][CUI12][KOB11] and [WEI11] propose

distributed dynamic mapping approaches. Al Faruque et al. [FAR08], Anagnostopoulos et

al. [ANA12] and Cui et al. [CUI12] divide the system into regions, named clusters. In Al

Faruque et al. [FAR08] approach, clusters are controlled by an agent (manager)

responsible for the task mapping within a cluster. The overall system is controlled by many

synchronized global agents, responsible for storing information related to all clusters,

deciding in which cluster a given application will be mapped and re-organizing the clusters

(re-clustering) at runtime. Cui et al. [CUI12] claim that the work proposed by Al Faruque

leads to a high communication traffic to collect resource information to make decisions. To

solve this issue, they propose a cluster-based scheme for task mapping, aiming to reduce

the communication traffic between a global agent and the cluster agents, removing some

of local clusters information from the global agent and changing the cluster reorganization

scheme.

Anagnostopoulos et al. [ANA12] propose a divide and conquer method to perform

distributed runtime mapping onto homogeneous and heterogeneous many-core platforms.

When a new application is required to execute in the system, the proposed scheme

divides the network in regions, using as criterion the application size. The region that best

fit the application is chosen. A regional controller is configured to execute the mapping

algorithm within the chosen region.

Kobe et al. [KOB11] propose task mapping using agents. However, agents do not

have a predefined region to control as in the previous works. The agent selects PEs to

map a given application. An agent is assigned at runtime to a random PE when a new

application is required. Then, the agent searches for PEs to map the tasks, starting with

the closest to farthest ones. The disadvantage of the presented method is the possibility of

a communication bottleneck since the agent may become distant from the application it

32

controls.

Weichslgartner et al. [WEI11] propose a decentralized mapping approach aiming to

reduce the NoC congestion. The proposed mapping approach considers only a local view

of adjacent nodes on the NoC to execute the mapping, where each task contains a list of

its succeeding tasks to be mapped. The method is limited to applications with a tree

topology. The root (initial task) is mapped first, and then each task executes the mapping

heuristic to map its successor tasks.

Table 2 summarizes the reviewed works according to the proposed taxonomy for

dynamic mapping. Only a few works related to multi-task mapping were found in the

literature, all proposed by Singh et al. [SIN09a][SIN09b][SIN10]. Multi-task techniques

include clustering, which groups tasks to be executed in the same PE. A non-optimized

clustering approach may lead to hotspots, reducing system lifetime and accelerating

system wear out. Heterogeneous MPSoCs may have better performance for specific

applications, and homogeneous MPSoC are general-purpose platforms. As industrial

examples [INT12][TIL10], the present work focuses the research on homogeneous

architectures. Another important feature is the distributed system management approach,

as proposed in [FAR08][ANA12][CUI12][KOB11] and [WEI11]. Such approach is scalable

and can reduce the mapping algorithm computational effort, increasing system

performance.

The literature presents different runtime task mapping approaches to improve system

reliability. All reviewed works use a centralized system management approach

[CHA13][COS07][COS09][DAS13][DAS14][BOL13][HUA09][HAR12]. Among them, some

works [DAS13][DAS14][BOL13] produce mapping decisions at design time, which are

stored in a database and used at runtime. This approach may reduce system performance

due its incapability of dealing with unpredictable system variations. Task mapping

approaches proposed in [CHA13][HAR12], employ physical sensors to capture thermal or

wear-state condition of cores at runtime. Included sensors provide accurate information to

the mapping decision at the cost of additional system area and energy consumption.

Huang et al. [HUA09] use an abstract MPSoC to validate the proposed approach, which

can produce inaccurate performance results.

The literature presents distributed approaches to improve system reliability. However,

such approaches use other techniques rather than task mapping [GE10][WU11][LIU15].

Ge et al. [GE10] propose a task migration approach for system thermal balancing. This

approach uses thermal sensors, which aggregates hardware costs. Liu et al. [LIU15] also

present a thermal management task migration approach, which does not consider

performance costs. Wu et al. [WU11] present a dynamic frequency scaling for thermal

management, which may impose additional hardware costs.

33

Table 2 – State-of-the-art in dynamic mapping heuristics.

Author /
Year

Multi/
Mono-task

Architecture
model

Control
management

Optimization Goal

Smit et al.
[SMI05]

Mono-task Heterogeneous Centralized
Energy Consumption and

QoS application
requirements

Ngouanga et al.
[NGO06]

Mono-task Homogeneous Centralized
Communication volume,

computation load

Coskun et al.
[COS07][COS09]

Mono-task Homogeneous Centralized System Reliability

Chou et al.
[CHO07][CHO08]

[CHO10]
Mono-task Homogeneous Centralized

Energy Consumption,
Internal and external
network contention

Hölzenspies et al.
[HÖL07][HÖL08]

Mono-task Heterogeneous Centralized
Energy Consumption and

QoS application
requirements

Al Faruque et al.
[FAR08]

Mono-task Heterogeneous Distributed
Execution time,

napping time and
nonitoring traffic

Wildermann et al.
[WIL09]

Mono-task Homogeneous Centralized
Communication latency,

energy consumption

Hosseinabady et al.
[HOS09]

Mono-task Homogeneous Distributed
Reconfiguration

overhead

Huang et al.
[HUA09]

Mono-task
Homogeneous

and
Heterogeneous

Centralized System Reliability

Schranzhofer et al.
[SCH10]

Mono-task Homogeneous Centralized Energy consumption

Lu et al.
[LU10]

Mono-task Homogeneous Centralized
Communication latency

and energy consumption

Carvalho et al.
[CAR10]

Mono-task Heterogeneous Centralized
Network contention,

communication volume

Singh et al.
[SIN09a][SIN09b]

[SIN10]
Multi-task Heterogeneous Centralized

Network contention,
communication volume

and energy consumption

Weichslgartner et al.
[WEI11]

Mono-task Homogeneous Distributed
Communication latency
and network contention

Kobe et al.
[KOB11]

Mono-task Homogeneous Distributed
Execution time,

 Communication traffic

Cui et al.
[CUI12]

Mono-task Homogeneous Distributed
Communication traffic
energy consumption

Anagnostopoulos
et al.

[ANA12]
Mono-task

Homogeneous
and

Heterogeneous
Distributed Communication volume

Khajekarimi et al.
[KHA12]

Mono-task Heterogeneous Centralized
Network communication

and congestion

Hartman et al.
[HAR12]

Mono-task
Homogeneous

and
Heterogeneous

Centralized System reliability

Chantem et al.
[CHA13]

Mono-task Homogeneous Centralized System reliability

Bolchini et al.
[BOL13]

Mono-task Homogeneous Centralized
Energy consumption and

system reliability

Das et al.
[DAS13][DAS14]

Mono-task Homogeneous Centralized
Application deadlines
and system reliability

Proposed
work

Multi-task Homogeneous Distributed

Communication
volume reduction and
workload distribution

balancing

34

This Thesis proposes a task mapping approach that differs from literature since it

includes all the following characteristics:

 Executed at runtime. The proposed approach can better manage time-varying

workloads and system changes.

 Distributed mapping approach. The proposed approach is implemented in an

MPSoC managed in a distributed way. Such distributed system management

improves system scalability by dividing the system into regions, each one with

a manager responsible for actions inside it. Further, it reduces mapping

decision computational effort, not compromising the system performance.

 Induces to a better system reliability. The proposed approach aims to improve

communication volume reduction and workload balancing, which are directly

related to a better system reliability [CHA13][WAN14].

 Does not employ physical sensors in the mapping decision, which increases

area and energy costs.

 Validated in large cycle-accurate MPSoCs (10x10 MPSoC size).

35

3. PLATFORM MODELS

This Chapter details the first contribution of the Thesis: a multi-level modeling

framework. Such framework aims to explore the vast number of alternatives in the design

space of MPSoCs by combining high-level and high-accurate models and tools. The

proposed framework is divided into three layers, as illustrated in Figure 1, in which the

abstraction of the models is increased from the bottom to the upper layer.

Figure 1 – Multi-Level modeling framework proposed by this Thesis.

The first layer concerns the reference NoC-based MPSoC VHDL RTL model

presented in Section 3.1. Section 3.2 presents the second layer of the framework (Thesis

contribution), where the reference platform is implemented in SystemC RTL. Section 3.3

presents an Open Virtual Platform (OVP) implementation of the reference platform (Thesis

contribution). The interoperability between the three platform models is guaranteed

through a well-defined hardware abstraction layer (HAL) and a unified software description

(i.e. OSs, applications, communication model), also proposed in this Thesis. In this

direction, target software stack can be modified and executed onto the OVP-based

platform model until the point where its functionality is validated. The same code can then

be executed in a still fast but clock-cycle accurate RTL SystemC-ISS model, which allows

assessing lower performance figures (e.g. application execution time). Finally, RTL-VHDL

model can receive the target software as input to profile the power figures, e.g., the

average switching activity of adopted CPU architecture. Section 3.4 concludes this

Chapter, summarizing the main results.

36

3.1 Reference Platform

The reference MPSoC model used in this Thesis is the HeMPS (Hermes

Multiprocessor System-on-Chip) platform [WOS07][CAR09]. HeMPS is a general purpose

homogeneous MPSoC in which processing elements (PEs) are interconnected through the

Hermes NoC [MOR04]. An external memory, named application repository, contains the

object code of the application tasks to execute in the system. The system uses distributed

memory architecture, based on scratchpad memories rather than cache memory. HeMPS

adopts scratchpad as local storage memories due to its power efficiency and management

facilities when compared to cache memories. Further, scratchpad memory is more

predictable in terms of access time, and it does not require any coherence protocol, as

required by cache-based architectures [BAN02][VIL11]. In HeMPS, all communication

occurs through message passing. Inter-task communication uses send and receive MPI-

like primitives. Figure 2(a) illustrates a general view of a 3x3 instance of the HeMPS

architecture.

SP

SP

SP

SP

SP

SP

SP

GMP

SP

A
p

p
lic

a
ti

o
n

R

e
po

si
to

ry

N
et

w
o

rk

In
te

rf
a

ce PLASMA

DMA

R
A

MRouter

(a) (b)

(a) block diagram of 3x3 instance of the HeMPS
platform, with SPs (slave PEs), and one GMP

(Global Manager PE).

(b) Processing element of the HeMPS platform.

Figure 2 –HeMPS MPSoC block diagram.

The MPSoC architecture can be defined as a directed graph GMPSoC = (PE, L).

Each vertex pei ∈ PE is a processing element, containing a MIPS-like processor (Plasma),

a local memory (RAM), a DMA module, a network interface and a router, as shown in

Figure 2(b). An edge lij ∈ L is a NoC link interconnecting pei to pej.

Processing elements are divided into two different types: Slave Processing Element

(SPs) and Manager Processing Elements (MPs). SPs are responsible for executing

application tasks. Each SP runs a simple operating system, named microkernel, which

supports communication between PEs, multitask execution and software interrupts (traps).

The SPs local memory is organized into SP_PAGES pages. One page stores the

operating system. Other pages, called resources, store the object-code of tasks that will be

executed on this SP. Each SP can execute MAX_SP_TASKS tasks simultaneously, which

corresponds to SP_PAGES -1. If a resource does not have a task mapped on it, it is

considered free or available. The microkernel is a preemptive operating system where

each task uses the CPU for a pre-defined period, named timeslice.

37

MPs are responsible for system management functions, including task mapping and

system debug. MPs can be divided in different types, which are defined depending on the

system management approach: centralized or distributed. Such system management

approaches are better explained in Chapter 4. Both management approaches have a

Global Manager Processing Element (GMP), which is a single PE responsible for receiving

user requests demanding the execution of new applications on the system. GMP is also

the only one that accesses the application repository.

The Hermes NoC employs a 2D mesh topology. The communication mechanism is

performed by wormhole packet switching, in which a packet is forwarded between routers

divided by flits. Routers have input buffers, control logic shared by all router ports, an

internal crossbar, and up to five bi-directional ports. These ports are east, west, north,

south and local. The local port establishes communication between a router and a PE, and

the remaining ports are used to connect a router to its neighbors. The arbitration algorithm

used by the router is the round-robin. Each router has a unique network address. This

address is expressed in XY coordinates, where X represents the horizontal position and Y

the vertical position of the router in the network, being 00 the lower left corner. The XY

routing algorithm is used, sending packets through the NoC first horizontally to reach the X

destination router position, and then vertically to arrive at the destination router.

Originally, two HeMPS implementation models were available:

(i) a VHDL model: all components modeled in RTL VHDL.

(ii) a mixed model, called VHDL-ISS model: NoC, NI, and DMA are modeled in

RTL VHDL; processors are modeled with an ISS (Instruction Set Simulator)

with a SystemC wrapper, and memories are modeled in SystemC RTL. Such

model has the same accuracy of the VHDL model since ISS processors and

SystemC memories are clock-cycle accurate.

The VHDL is synthesizable, enabling to capture precise area, frequency and power

performance figures. Such model was successfully implemented in a 3x3 instance FPGA

prototype and a 65nm ASIC. The FPGA prototype contains the MPSoC and three

additional modules: (i) MAC Ethernet communication interface with the host; (ii) control

unit; (iii) DDR2 memory controller. The host sends the applications’ codes to a DDR2

memory, which acts as the application repository. Next, the host may send commands to

the MPSoC to start the execution of users’ applications or to request debug information.

The control unit is responsible for controlling the access to the external memory or the

MPSoC. The 65nm ASIC implementation, using the memory generator of the design kit,

required roughly one mm2 for each PE, as illustrated in Figure 3. The MPSoC worked

correctly after the back-end simulation.

38

(a) PE floorplanning, with the processor and the
router in the center, and the memories in the

periphery.

(b) PE layout. The side of the PE is 1 mm, and the side of the
processor and the router is 0.3 mm. Technology: 65 nm.

Figure 3 – Processing element layout.

The main disadvantage of the VHDL model is its very high simulation time, with few

debug facilities (e.g. waveforms). For this purpose, the VHDL-ISS model was

implemented; reducing simulation time and obtaining some gains in debuggability (i.e.

insertion of debug codes in the ISS processor model).

3.2 SystemC Platform

This Section presents a SystemC RTL model of the reference platform, which

enables the exploration and the validation of large MPSoCs composed of dozens of PEs.

The validation of such MPSoCs is unfeasible using the VHDL description of the reference

platform due its high simulation cost. Underlying SystemC RTL model was co-developed

with Eduardo Wachter, Ph.D. supervised by Prof. Fernando Moraes. The availability of

such model enabled the exploration of distributed system management solutions, as

presented in Section 4.4.

The proposed model preserved its reference platform accuracy, while reducing

significantly the required simulation time. Another improvement of the proposed model is

the additional validation and debugging capabilities inherited from SystemC facilities. The

reference platform VHDL-ISS model was used as starting point for developing the

SystemC RTL model. While ISS processor and the memory model descriptions are

reused, the NoC, the NI, and the DMA were modeled as a SystemC RTL description, in

order to preserve the VHDL accuracy. The modeled SystemC RTL NoC has been used in

different research projects related to research on allocation (e.g. FP7 DreamCloud,

http://www.dreamcloud-project.org), as well as in the exploration of compute accelerator

architectures [GAR14].

39

Each VHDL module was rewritten in SystemC RTL without taking advantage of some

SystemC language structures and primitives, in order to maintain a high accuracy. For

example, SystemC supports channel primitives, such as sc_fifo that models the behavior

of a FIFO buffer. Such primitive could be used to reduce the implementation and, possibly,

the simulation time. However, this primitive is not cycle-accurate, which is the main

requirement of the proposed model implementation.

 VHDL SystemC
1 process(reset, clock_rx) void fifo::in_proc()
2 begin {
3 if reset='1' then if(reset.read()==1){
4 last <=(others=>'0'); last.write(0);
5 elsif clock_rx'event and clock_rx='0' then }else{
6 if avail_space='1' and rx='1' then if((avail_space.read()==1)&&(rx.read()==1)){
7 buffer(CONV_INTEGER(last)) <= data_in; buffer[last.read()] = data_in.read();
8 if(last = BUFFER_SIZE - 1) then if(last.read()==(BUFFER_SIZE - 1))
9 last <= (others=>'0'); last.write(0);

10 else else
11 last <= last + 1; last.write((last.read() + 1));
12 end if; }
13 end if; }
14 end if; }
15 end process; }

Figure 4 – Description of the FIFO buffer control module in VHDL and SystemC RTL.

Figure 4 presents the code of a FIFO buffer control module, which verifies the buffer

capacity to store incoming data. The left side of Figure 4 presents the VHDL code for this

module, which is used in the reference model. The right side of the figure shows the code

rewritten in SystemC RTL, preserving the same functionality. The only difference in both

codes refers to the language syntax. Unlike VHDL, SystemC uses port methods when

reading from (.read()) and writing to (.write()) a port, as exemplified in lines 3 and 4. In line

1, the SC_METHOD fifo is executed whenever an event occurs on its sensitivity list as the

same way in the VHDL statement process. An SC_METHOD sensitivity list is defined in

the constructor of an SC_MODULE, the equivalent of an ENTITY in VHDL. The “IF”

conditional statement in SystemC replaces “THEN” and “END IF” by curly braces (“{“ and

“}”, respectively), as seen in lines 3 and 12.

3.2.1 Comparison of the SystemC Model against the Reference Model

This Section compares the proposed SystemC model with the former reference

platform models: the VHDL and VHDL-ISS models. The three discussed models’

characteristics are presented in Table 3, showing the description language for each

system module.

40

Table 3 – Characteristics of the models.
Model

Module
SystemC VHDL-ISS VHDL

Router SystemC RTL VHDL VHDL
NI SystemC RTL VHDL VHDL

DMA SystemC RTL VHDL VHDL
RAM SystemC RTL SystemC RTL VHDL

Processor SystemC+ISS SystemC+ISS VHDL

Table 4 presents a qualitative comparison of the main models features regarding

synthesizability; the precision of capturing area, frequency and power data; simulation

time; throughput and latency values; and accuracy. As mentioned before, the VHDL model

can be synthesizable, allowing capturing accurate performance figures. However, such

model demands a very high simulation time, with few debug facilities. The VHDL-ISS

reduces simulation time and increases debuggability when compared to the VHDL model.

The proposed SystemC RTL model, avoids the VHDL-SystemC co-simulation of the

VHDL-ISS model, boosting the simulation time and increasing debuggability.

Table 4 – HeMPS models comparison.
Model

Parameter
SystemC VHDL-ISS VHDL

Synthesizable No No Yes

Precise Area, Frequency, Power Evaluation No No Yes

Simulation Time LOW MEDIUM VERY HIGH

Accurate throughput and latency values Yes Yes Yes

Accuracy Clock cycle Clock cycle Clock cycle

The validation process of all models was performed using commercial simulators,

such as Mentor Modelsim and Cadence Incisive, coupled to adequate verification models

like the U-model and/or assertion-based verification. The debugging and validation of the

SystemC model can be done in two ways: (i) generating a pre-compiled executable file of

the MPSoC; or (ii) using a commercial RTL simulator, such as Modelsim. The use of

commercial RTL simulators leads to higher simulation time than executable file approach.

It is important to observe the last two rows of Table 4. The obtained values for throughput

and latency are the same for the three models since all have clock-cycle accuracy.

The simulation cost of each HeMPS MPSoC model is evaluated by using different

scenarios. Such scenarios consider 4x4, 5x5, 7x7 and 10x10 MPSoC configuration;

different MPSoC occupation, static mapping, and SPs configured to execute up to 2

simultaneous tasks. Experiments use different instances of a synthetic application with six

tasks, illustrated in Figure 5. The number of instances of such application varies from one;

and a given number of instances that corresponds to approximately 25%, 50%, 75%, and

100% of the MPSoC occupation. Table 5 shows the simulation time for each scenario.

41

A

D

C

B

E

F

Figure 5 – Synthetic application with 6 tasks used in the test scenario.

The last two columns of Table 5 evaluate the speedup obtained using VHDL-ISS and

SystemC models, compared to the VHDL model. The intermediate model, VHDL-ISS,

provides a simulation time speedups of at least one order of magnitude compared with the

VHDL model. In turn, improvements of two orders of magnitude are achieved with

SystemC model. The last scenario, a 10x10 MPSoC instance, with all SPs running two

tasks, took 8.5 minutes to simulate with SystemC. The VHDL model would require at least

25 hours (assuming a speedup value of 180) for this test case.

Table 5 - Simulation time (in seconds) and speedup. Simulations run on a 6-core, 64 bits
Xeon architecture with 12 Gbytes of RAM, running Linux OS. [PET12]

MPSoC size
MPSoC

occupation
VHDL VHDL-ISS SystemC

Speedup
VHDL-ISS/

VHDL

Speedup
SystemC/

VHDL

4x4

1 instace 3852.34 217.35 34.99 17,7 110,1

25% 4219.99 220.17 35.26 19,2 119,7

50% 4701.47 231.67 37.97 20,3 123,8

75% 5162.13 245.78 40.56 21,0 127,3

100% 7288.23 291.73 46.86 25,0 155,5

5x5

1 instance 7742.04 336.25 53.22 23,0 145,5

25% 8134.28 359.32 60.83 22,6 133,7

50% 9087.88 423.85 65.76 21,4 138,2

75% 12205.26 429.10 82.84 28,4 147,3

100% 12460.31 466.63 85.45 26,7 145,8

7x7

1 instance 19765.50 682.96 114.18 28,9 173,1

25% 21797.14 724.61 129.06 30,1 168,9

50% 32153.21 1049.32 179.42 30,6 179,2

75% 41211.06 1272.44 226.46 32,4 182,0

100% 50557.62 1538.20 274.07 32,9 184,5

10x10

1 instance 50862.91 2344.64 289.52 21,7 175,7

25% NA 4319.71 508.97 NA NA

50% NA 5686.91 668.76 NA NA

75% NA 7435.22 945.25 NA NA

100% NA 9897.06 1122.85 NA NA

Figure 6 plots the simulation time for the highlighted rows of Table 5 (MPSoC

instances with 50% load). Note that the VHDL simulation time is presented in the

secondary Y-axis, due the large amount of time required to simulate the underlying

scenarios. A significant impact on simulation time is observed when a 10x10 MPSoC

configuration is used. Resulting cost is mainly due to the co-simulation process. The trend

of the simulation time growth with regard to the MPSoC size for the SystemC model is

O(SP2) (time = 0.0632.SP2 + 0.2932.SP + 20.533, R² = 0.99998). For example, for 400

42

SPs it is expected a simulation time of 2.83 hours with the SystemC model.

Figure 6 – Simulation time for MPSoC instances with 50% load (VHDL simulation time is
presented in the secondary Y-axis).

To demonstrate the accuracy of the proposed SystemC model in terms of executed

instructions and execution time, the VHDL model is used as reference. Table 6 presents

the experimental setup. The scenarios use 4x4 platform instance, in which two

applications are evaluated: a partial MPEG decoder, with 5 tasks; and synthetic VOPD

(Video Object Plane Decoder) application, with 12 tasks. The first scenario (SC1) executes

2 MPEG and 1 VOPD instances, totalizing 22 tasks. The second (SC2) and third (SC3)

scenarios contain 44 and 88 tasks, respectively.

Table 6 - Setup of applications, in a 4x4 MPSoC, with one manager PE.
Applications SC1 SC2 SC3

MPEG (5 tasks) 2 4 8

VOPD (12 tasks) 1 2 4

Total tasks 22 44 88

Table 7 evaluates the simulation time (8-core Xeon processor, 32 GB RAM) for the

three scenarios, whereas a speedup of two orders of magnitude is observed using the

SystemC model.

Table 7 – Simulation time (in seconds) for RTL-VHDL and RTL-SystemC models.
Scenarios VHDL SystemC VHDL/SystemC

SC1 2,425 19 127

SC2 4,407 37 119

SC3 7,932 51 155

43

Table 8 evaluates the execution time required to execute all applications of each

scenario, and Table 9 presents the total number of instructions executed by all processors

in the platform. Such results demonstrate that the SystemC and VHDL models in practice

have a similar behavior. The differences observed in the Tables are due to simplifications

made in the ISS, which do not reflect the real behavior of some instructions (e.g.

multiplication and division instructions).

Table 8 – Execution time (in clock-cycles) for low-level models.
Scenarios VHDL SystemC VHDL/SystemC

SC1 265,015 265,228 0.998

SC2 526,660 528,524 0.996

SC3 1,050247 1,055,543 0.995

Table 9 – Number of executed instructions for low-level models.
Scenarios VHDL SystemC VHDL/SystemC

SC1 422,757 423,120 0.999

SC2 834,335 836,335 0.997

SC3 1,662,311 1,664,941 0.998

3.3 OVP Platform

Although the proposed SystemC platform provides a considerable simulation

speedup compared to the VHDL model, the achieved simulation performance may remain

a bottleneck for the exploration of large systems running several applications

simultaneously. In attempt to overcome such bottleneck, this Section describes another

contribution of this Thesis, the development of two new platforms: (i) mixing SystemC OVP

– section 3.3.1; (ii) OVP only - section 3.3.2. The former keeps the clock-cycle accuracy of

the NoC (RTL-SystemC), with the OVP flexibility to use different processors and software

debugging. The OVP-only platform sacrifices accuracy but enables faster software

development.

With 100-core chips already available [DE13], software development becomes one of

the major challenges in MPSoC design. For instance, IBS [IBS13] projects that software

development consumes at least 50% of the system’s design cost, and that percentage is

rising, as illustrated in Figure 7. Software development comprises, among others: (i) inter-

processor communication protocol stacks definition; (ii) OS porting and analysis; (iii)

exploration of better programming model facilities to address parallel programming

[MAR12]; (iv) drivers development [GRA12]; (v) application software portability for

heterogeneous multiprocessing hardware.

Virtual platforms have been employed to achieve concomitant hardware and software

development, while providing more efficient design exploration support (e.g. debuggability)

[CEN09]. A virtual platform is a full-system simulator that emulates hardware components

44

(e.g. CPUs, memories), allowing evaluating a given software stack, on the same machine,

as it is running on a real physical hardware. Examples of such simulators are Simics

[SIM13], PTLsim [YOU07], SimpleScalar [AUS02], gem5 [BIN11] and OVPSim [OVP13].

Except PTLSim that only supports x86, all mentioned simulators offer at least five

processor architectures. For instance, Simics from WindRiver supports Alpha, ARM, MIPS,

PowerPC, SPARC and x86 models. While Simics and OVPSim are respectively

functionally-accurate and instruction-accurate, the remaining simulators can be considered

as quasi-cycle-accurate.

Figure 7 - Software and architectural design costs for embedded systems at advanced

process technologies. Figure extracted from IBS 2013 [IBS13].

Cycle-accurate simulators target microarchitecture exploration since they provide

specific modeling details, such as the pipeline implementation and cache coherence

protocols [BIN11]. However, these simulators are not scalable to a large number of

processors, specifically when it comes to simulation speed and debugging usability. This

scenario points to the use of OVPSim since it covers our main requirements: (i) large

number of processor architectures supported; (ii) scalable and acceptable simulation time

(hundred of MIPS); (iii) open source license; (iv) component-oriented infrastructure; (v)

active development support. Nevertheless, OVPSim does not model cycle-accurate

processors but rather instruction accurate processors, which provides inaccurate

application execution time. Another limitation inherent to OVPSim is the fact that only bus-

based architectures are available in the original distribution.

OVPSim [OVP13] is a virtual platform and modeling framework proposed by Imperas,

aiming to accelerate the development of embedded software, specifically for SoCs and

MPSoCS. It is composed of three main components:

(i) APIs that enable to model in C language hardware components;

(ii) library of free open-source CPUs and peripheral models;

45

(iii) OVPsim simulator. OVPsim is a dynamically linked library, which supports the

simulation of bus-based multiprocessor platforms. OVPSim relies on dynamic

binary translation that increases simulation speed [OVP13].

OVPSim provides pre-defined models including: processor models (ARM, MIPS,

PowerPC, etc.), system components (RAM, ROM, caches memories, etc.) and peripheral

models (DMA, UART, FIFO, etc.). These models can be combined in a single platform by

using the ICM (Innovative CPU Manager) API, which also provides fully control and

observability of all components. Processor behavior models can be described using the

VMI (Virtual Machine Interface) API, which decodes the target instruction to be simulated

translating it to x86 instructions that are then executed on the host machine. Peripheral

and components behavior models can be described using the PPM (Peripherals Models)

and BHM (Behavioral Models) APIs. Such APIs use an event-based scheduling

mechanism to enable modeling of time, events, and concurrency [OVP13].

When executing multiprocessor platforms, each processor is executed for a certain

number of instructions (quantum) in OVPSim. The simulator defines 100,000 instructions

by processor as the default quantum value. The number of million instructions executed

per second (MIPS) can be specified in a processor model, defining its execution speed.

OVP processor models have a default speed of 100 MIPS.

3.3.1 SystemC/OVP Platform

As mentioned before, one of the main limitations of OVP is the fact it provides only

bus-based platforms. To overcome this restriction, this Section presents the integration of

the SystemC NoC model to the OVP components’ library. One could argue that a simple

crossbar to interconnect CPUs at higher abstraction levels would be sufficient to develop

and to validate applications and operating systems since a crossbar supports parallel

transactions between CPUs. This work advocates that integrating instruction-accurate

CPU models with a cycle-accurate NoC enables:

I. capturing the communication volume at each link – allowing to compute the power

spent in the communication infrastructure as a function of the data volume and

number of hops [HU10];

II. mapping quality evaluation – by using the hop number between tasks and the

communication volume it is possible to evaluate different mapping heuristics;

III. drivers development at higher abstraction levels – the NoC model uses wires

instead of TLM transactors, enabling to develop the required drivers.

The complex process of integrating distinct CPUs in NoC-based MPSoC platforms

limits the implementation and the exploration of multiprocessor systems. For instance, the

implementation of a network interface is a time-consuming task, which requires designer

knowledge in terms of HW/SW implementation and protocols definition. In this sense, one

46

important feature of the proposed modeling is the easiness of integrating different CPU

models, allowing the development of heterogeneous MPSoCs (this research topic is out of

the scope of the present Thesis).

Figure 8 details the architecture of the SystemC/OVP platform, describing the

interconnection of the OVP CPUs with the SystemC NoC. The numbers in Figure 8

correspond to a packet reception and its processing by the OVP CPU model.

MEM

OS

NI
OVP
CPU

modelROUTER

ORIGINAL
SYSTEMC (RTL)

PE

interrupt

DMA

receive module

buffer

control

register bank

send module

buffer

control

1

SystemC
OVP

interface

2

3

4

5

1 Packet received from the router

2 Packet data stored in the buffer

3 Alert CPU about incoming data

3

4 Register bank interfaces the communication

5 CPU receives and treats the data

Figure 8 – Integration of SystemC NoC model with OVP CPU model.

Initially, the NI receives a packet from the router (step 1). An event is triggered

notifying the receive module (block inside of the SystemC-OVP interface) related to the

incoming packet. The receive module then reads the incoming packet, stores it into a

buffer used to synchronize the communication between the untimed CPU and the clock-

cycle accurate NI (step 2). After storing a complete packet, the module informs the CPU

that there is data stored in the buffer.

As shown in step 3, there are two ways to inform a CPU about incoming data:

 for an SP, an interrupt is raised, and an ISR (Interrupt Service Routine) is called to

read data.

 for MPs, a memory mapped register is used to alert the stored data. This CPU polls

this register periodically. Once the CPU is ready, the data is read.

In both cases, the packet data is read by the DMA module using memory mapped

registers (register bank in step 4). The register bank is implemented using an external

memory mapped in the processor address space, where each register has a pre-defined

address. The CPU is connected to a bus to which all address-mapped components are

connected. This bus connects the local memory and the register bank.

47

Figure 9 shows the initialization of the register bank, with an address range from

0x00000000 to 0x0FFFFFFF (line 1). Once initialized, the extMem is connected to the

processor bus in an address area (line 2), which is defined according to the adopted CPU

model (in this case 0xF0000000 to 0xFFFFFFFF). This memory is also “connected” to the

callback functions regbankR and regbankW (line 2).

1. extMem->init(0x00000000, 0x0fffffff);

2. proc->extMem(0xf0000000, 0xffffffff, regbankR, regbankW, extMem);

Figure 9 – Example of register bank external memory initialization, and the connection to
the processor bus.

Callback functions are executed on every read (regbankR) or write (regbankW)

access to the defined address area. In this case, when the processor accesses this area,

the OVP simulator calls functions responsible to interconnect the SystemC to the OVP.

Figure 10 shows an example of a callback function related to a read memory access. The

callback function name (regbankR) is defined as a parameter of the ICM_MEM_READ_FN

macro (Figure 10). The function parameter provides the memory address (address)

accessed by the CPU, as well as the value (value) to be read from this address. Once a

read memory access is triggered, the provided address is compared with the previously

defined register address (line 3). The value is read by the processor (line 4) when the

address is equal to REG_ADDRESS1 (line 3). Note that the read value comes from a

SystemC signal (system_c_signal1), creating the communication between OVP and

SystemC.

1. ICM_MEM_READ_FN (regbankR)

2. {

3. if(address = REG_ADDRESS1)

4. value = system_c_signal1.read();

5. }

Figure 10 – Example of a pseudo-code for a read callback function.

Figure 11 gives an example of a write callback function. This function is specified

using the ICM_MEM_WRITE_FN macro, and the callback function regbankW as a

parameter. This parameter provides the memory address (address) accessed by a CPU,

as well as the value (value) to be written in this address. When a write memory access is

triggered, the provided address is compared to the previously defined register address

(line 3). If the address matches REG_ADDRESS1 (line 3), the value is written in a

SystemC signal, sending, for example, a read data request from the processor to the NI.

1.ICM_MEM_WRITE_FN (regbankR)

2. {

3. if(address = REG_ADDRESS1)

4. system_c_signal1.write(value);

5. }

Figure 11 – Example of a pseudo-code for a write callback function.

48

Finally, using the memory-mapped registers as interface, the processor receives and

processes data (step 5 in Figure 8). When a processor needs to send data through the NI,

these five steps are repeated but using the send module (Figure 8, inside SystemC-OVP

Interface). First, the CPU uses the memory-mapped registers as an interface to the

communication protocol with the NI. For each register access, a memory callback is

triggered, generating a SystemC event. Then, the send module receives the packet and

stores it in the buffer. When the packet is completely stored, it is sent through the NI.

3.3.1.1 SystemC/OVP Platform Evaluation

This Section evaluates quantitatively the simulation time and the feasibility and the

advantages of using the SystemC/OVP platform to boost software development when

comparing to the SystemC model. Task mapping heuristics presented in Chapter 5 are

taken as software development case study.

In order to compare the simulation time of both platform models, different scenarios

are used varying: (i) platform size: 6x6 (36 PEs), 8x8 (64 PEs), 10x10 (100 PEs), 12x12

(144PEs), 14x14 (196 PEs) and 16x16 (256 PEs); (ii) resource occupation, i.e., number of

PEs executing tasks: 30% and 50%. All scenarios execute one or more instances of a

Digital Time Warping (DTW) application, with ten tasks, which recognizes patterns

measuring similarities between two sequences that may vary in time or speed.

Figure 12 presents the simulation time for all scenarios. It is possible to observe a

distinct behavior of the SystemC model compared to the SystemC/OVP model. Using the

purely SystemC model the simulation time grows linearly with a load equal to 30%

(R²=0.998) and quadratic (R²=0.999) for a load equal to 50% (confirming the trend

presented in Figure 6). Besides the reduction of the simulation time achieved with the

SystemC/OVP model, both SystemC/OVP graphs present a quadratic growth (R²=0.998)

in both graphs.

This behavior is due to the synchronization between the instruction-accurate OVP

model with the clock-cycle accurate SystemC model. As the number of PEs increases, as

well as the load applied to the system, the number of synchronization events also

increases. To put in perspective the above results, Table 10 presents the speedup

obtained using the SystemC/OVP model. Speedup suggests that systems containing up to

144 PEs (12x12) benefit from a 2x speedup. This is an unforeseen result since larger

speedups were expected. The quest to reduce the simulation time is presented in Section

3.3.2, with a simplified NoC model in OVP.

49

0

20000

40000

60000

80000

100000

120000

140000

30 80 130 180 230 280

SI
M

U
LA

TI
O

N
 T

IM
E

(s
ec

o
n

d
s)

NUMBER OF SPS

SystemC (load=30%)
SystemC/OVP (load=30%)
SystemC (load=50%)
SystemC/OVP (load=50%)

Figure 12 – Simulation time, varying the platform modeling, number of PEs, and MPSoC
load. Simulations setup – processor: Core 2 Duo E4400 2x2GHz; memory: 3GB; gcc

version: 4.7.2; gcc flags: -mfpmath=sse -Ofast -flto -march=native -funroll-loops.

Table 10 - Normalized simulation time speedup for the SystemC/OVP model compared to
the SystemC model.

Load/PEs 36 64 100 144 196 256

30% 1.59 2.50 2.66 2.42 1.92 1.52

50% 1.36 2.25 2.34 2.14 1.67 1.34

Software development is evaluated by exploring dynamic mapping heuristics. The

mapping heuristics evaluated are PREMAP-DN and LEC-DN, described in Chapter 5; and

NN [CAR10]. Six applications are used: MWD (12 tasks), AAV (8 tasks), MPEG4 (12

tasks), Synth (9 tasks), VOPD (12 tasks), SegImg (6 tasks). Applications are modeled

synthetically, i.e., from the application graph it is obtained the communication volume

between each communicating pair, and such behavior is modeled in C language, using

send and receive MPI-like primitives. This evaluation adopts a 6x6 MPSoC instance (1

manager PE and 35 slave PEs). Each slave PE may execute up to 2 tasks simultaneously.

Therefore, the MPSoC can execute simultaneously up to 70 tasks. Three different

scenarios are evaluated: (i) MWD, MPEG4 and AAV - 32 tasks; (ii) MWD, VOPD and

Synth - 33 tasks; (iii) MPEG4, VOPD, MWD and SegImg - 42 tasks.

Table 11 presents the communication volume transmitted through the NoC for each

mapping heuristic, in thousands of flits. The first two mapping heuristics, PREMAP-DN,

LEC-DN, have in their cost function the communication volume. Comparing both models,

the difference is smaller than 2%. Even though, NN (nearest neighbor) heuristic reports a

difference of around 25%, the ranking among the scenarios remains the same. The

50

observed difference is due to a different injection rate in the network since the abstract

processor models cannot generate data with cycle-accuracy.

Table 11 - Communication volume transmitted through the NoC for each mapping
heuristic, in Kflits.

PREMAP-DN LEC-DN NN

SC SC/OVP SC SC/OVP SC SC/OVP

Scenario 1 214,7 203,0 262,4 255,5 236,6 310,9

Scenario 2 54,2 53,6 72,6 72,1 88,0 97,6

Scenario 3 140,3 145,5 97,5 105,0 108,7 143,2

Such results demonstrate that SystemC/OVP may be used at higher abstraction

levels to develop MPSoC applications, but the simulation time is still an issue to be

minimized.

3.3.2 OVP Platform

Experimental results regarding the SystemC/OVP platform showed that the

simulation time presents a quadratic grow, suggesting values close to the SystemC

platform for large systems. The main reason to adopt a SystemC NoC model integrated to

OVP was to keep the accuracy of latency and throughput values. The analysis of the

mapping results presented in Table 11 showed that, besides the obtained accurate

communication volume, differences in the position of the mapped tasks in the SystemC

and SystemC/OVP models were observed.

The explanation of such behavior comes from how processors are modeled. Instead

clock-cycle accurate, OVP processors are instruction-accurate, thus packets are injected

at different moments compared to clock-cycle models. This difference leads to the

following consequences: (i) as it is not possible to determine exactly when packets are

injected, it is not possible to evaluate precisely congestion; (ii) packets may arrive at the

manager PE at different moments, changing the mapping order. Therefore, an OVP model

is proposed, by replacing the NoC and NIs by OVP peripherals. This model is approximate

timed since the execution time may be inferred from the number of executed instructions

and latency/throughput values from the communication volume and the number of hops.

Routers detailed in Figure 13 compose the NoC OVP model. A router has five bi-

directional ports (input and output data ports), input buffers, and arbiter modules. The local

port establishes communication between a router and a PE, and the remaining ports are

used to connect a router to its neighbors. All router connections are implemented by using

OVP Net ports (represented by red arrows in the Figure), which model single or multi-bit

wires. When data is written to a Net port, a callback function is triggered.

51

receive module

buffer

control

Register Bank callback
functions

ARBITER
MODULES

SOUTH PORTS

EAST PORTS

NORTH PORTS

WEST PORTS

LOCAL PORTS
routing FIFO

buffer

routing FIFO

buffer

routing FIFO

buffer

routing FIFO

buffer

routing FIFO

buffer

Callback
function

Callback

function

Callback
function

Callback
function

Callback
function

Figure 13 – Processor and NoC router connection in the HeMPS OVP platform.

Packets are sent through the network divided by flits. Since routers are

interconnected through OVP Nets, when a flit arrives in an input port a callback function

(illustrated as a blue box in Figure 13) is triggered. This function first stores the flit in a

buffer. If the incoming flit is the first one of a packet (containing the packet destination), the

routing algorithm (XY) is executed. The routing algorithm selects an output port to send the

incoming flit, storing the selected port in the routing FIFO. All flits are sent through the

selected output port if the arbiter grants access to the packet.

Note that this model assumes infinite input buffers (dynamically

allocated/deallocated), but preserving the wormhole packet switching mode. In addition, it

is important to mention that the routing algorithm is executed in a distributed fashion, at the

input ports.

The arbitration is also distributed. An individual arbiter is used at each output port. An

output port constantly seeks for data to transmit. The arbiter adopts a round-robin

algorithm to select an input port to be connected to the output port. An output port arbiter

selects an input port buffer only if the routing FIFO has pending packets to this output port.

For example, consider that the input port NORTH has a packet to be transmitted to

the SOUTH output port, i.e., the NORTH routing FIFO has a pending routed packet to the

SOUTH port. When the SOUTH arbiter schedules the NORTH input port, the NORTH

buffer content starts to be transmitted through the SOUTH port. Both ports (input and

output) are aware of the packet size (second packet flit). The output port keeps the

connection until the transmission of the last packet flit, and the input port releases the

buffer area when the packet was completed transmitted.

As in the SystemC/OVP model, PE communicates through the NoC using memory-

mapped registers. A register bank is implemented in a processor memory address space,

52

where each register has a pre-defined address. Callback functions are triggered when a

processor accesses the register bank area, making an interface between this processor

and a router local port (as seen in “Register Bank callback functions” in Figure 13).

When a PE sends a packet through the network, it writes this packet flit by flit in a

pre-defined register memory address, triggering a callback function as described in Figure

14. This function is specified using the ICM_MEM_WRITE_FN macro and the callback

function regbankW as a parameter. This parameter provides the accessed memory

address, as well as the value to be written to this address. In the function, the provided

address is compared to a pre-defined register address (line 3). If the address matches

RegSendFlit (line 3), the value (a packet flit) is sent (line 4). Data is written to an OVP Net

port data_out by using the icmWriteNet primitive.

1.ICM_MEM_WRITE_FN (regbankW)

2. {

3. if(address = RegSendFlit)

4. icmWriteNet(data_out, value);

5. }

Figure 14 – Pseudo-code of a memory-mapped register callback function that sends a
packet flit by flit through the network.

Then, packet data arrives at a router, being routed until the destination router. When

data arrives at a destination router, it is sent through a net structure to an intermediary

module called receive module (as shown in Figure 13), which makes an interface between

a processor and the NoC. When this happens, a callback function is triggered inside this

module, which receives the data and stores it in a buffer. The module alerts a processor

each time an entire packet is stored. The processor receives this alert and uses a set of

memory-mapped registers to read the packet from the buffer module.

Figure 15 shows the pseudo-code of memory-mapped register callback function that

reads a flit of an incoming packet from the receive module buffer. The callback function

name (regbankR) is defined as a parameter of the ICM_MEM_READ_FN macro. The

function parameter provides the accessed memory address, as well as the value to be

read from this address. Once a read memory access is triggered, the provided address is

compared with a previously defined register address (line 3). If the address matches

RegReadFlit (line 3), a flit is read from the receive module buffer (line 4).

1. ICM_MEM_READ_FN (regbankR)

2. {

3. if(address = RegReadFlit)

4. value = BUFFER[index];

5. }

Figure 15 – Pseudo-code of memory-mapped register callback function that reads a flit of
an incoming packet.

53

The proposed OVP model also provides performance metrics, offering to designers

some low-level performance results. Such metrics are computed at the end of the

simulation, and include:

(i) Communication volume.

(ii) Energy spent in the NoC: characterized using the method proposed by [HU10],

calibrated using the ST/IBM CMOS 65 nm technology at 1.0 V, adopting clock-

gating, and a 100 MHz clock frequency.

(iii) Execution time and consumed energy for each processor: characterized using the

model proposed by Rosa et al. [ROS13][ROS14]. This model counts and captures

the executed instructions for a given processor, grouping them according to their

behavior. Then, for each group of instructions, it is estimated the number of clock

cycles and the energy consumed to execute them. Energy model is characterized

by processor logic synthesis performed with Cadence RTL Compiler tool targeting a

65nm low power library from ST Microelectronics. This Energy Model is better

explained in Section 4.1.

3.3.2.1 OVP Platform Evaluation

This Section evaluates the behavior of the OVP model for large MPSoCs, by using

the proposed SystemC model as the reference model. This Section will not apply

comparative evaluations efforts with VHDL model, considering that the SystemC model

presented accurate results compared to VHDL model.

Table 12 presents the configuration of five scenarios used to evaluate the SystemC

and OVP models in terms of simulation time. Scenarios use different MPSoC sizes: 4x4,

6x6, 8x8, 10x10, and 12x12. As illustrated in the left column of the Table, different real

applications are used: a partial MPEG decoder (with 5 tasks), a Dijkstra (with 6 tasks), a

Digital Time Warping (DTW, with 10 tasks), and a Fixed-Based application (with 15 tasks).

The second to fifth lines of the Table contain the number of executed applications. For

example, the 10x10 MPSoC scenario executes two instances of the MPEG and DTW

applications, and 3 instances of the Dijkstra and Fixed-Based applications. The last line of

the table contains the total number of executed tasks in each scenario.

The number of instructions executed by the GMP corresponds to the execution time

in the OVP model. SPs enter in an idle state when they are not executing tasks, i.e., they

stop executing instructions. On the other side, the GMP does not enter in idle state,

executing instructions during all the simulation. The GMP starts the applications, mapping

them into the system. When an application finishes its execution, the GMP is notified about

its conclusion. At the end of the simulation, the number of instructions executed by the

GMP is reported. Each instruction has a known CPI (Cycles Per Instruction), which

enables to determine the number of clock cycles required to execute all applications.

54

Table 12 - Setup of applications distribution.

MPSoC size 4x4 6x6 8x8 10x10 12x12

MPEG (5 tasks) 1 1 1 2 4

Dijkstra (6 tasks) - 1 3 3 5

DTW (10 tasks) 1 1 2 2 4

F.Base (5 tasks) - 1 1 3 3

Total tasks 15 36 58 93 135

Figure 16(a) presents the execution time, in clock cycles, for all scenarios. For

MPSoCs up to 64 PEs, the difference between RTL-SystemC and OVP is approximately

10%. For larger systems (up to 144 PEs), this difference reaches 25%. At the end of

simulation, both SystemC and OVP models report the number of executed instructions per

PE. The number of executed instructions enables to estimate the energy consumption,

once each instruction also has a known energy cost. Figure 16(b) presents the total

number of simulated instructions for all scenarios, with a difference of 17% for larger

MPSoC scenarios. Even if the same workload is applied for both models, the number of

instructions varies due to differences in number of tasks allocated per processor and NoC

traffic.

Execution time and total number of simulated instructions are important for software

designers. Even if the OVP model is not clock-cycle accurate, this model reports execution

time and number of instructions (that enables to compute the energy consumption) with an

error inferior to 10% compared to the gate-level implementation [ROS14].

 Figure 16(c) presents the simulation time for all evaluated scenarios. Simulation time

is the real time required to finish the simulation. Note that the number of tasks for each

scenario is approximately equal to the number of PEs, corresponding to a light workload.

Even with this light workload, the OVP model achieves a speedup of five times compared

to the SystemC model.

Beyond boosting the software validation, simulation speed of OVP makes it an

attractive option for designers capturing initial performance indicators, which may be taken

into account for further design decisions at early design phases. Achieved simulation

speedup was expected because OVP executes at the system level. The execution time

presents an error of 10 to 20% depending on the system size, which is an acceptable error

for high-level models.

55

Figure 16 – Comparison between the SystemC and OVP models, where (a) presents the
execution time, in clock cycles, for all scenarios; (b) presents the total number of simulated

instructions for all scenarios; and (c) presents the simulation time for all scenarios.

(a)

(b)

(c)

56

Other experimental results were conducted comparing the simulation time of the

SystemC and OVP models. Four scenarios executing 22 partial MPEG decoders with 5

tasks each onto different platform sizes: 6x6, 12x12, 16x16, and 20x20. Table 13 shows

the obtained results, including simulation time in seconds and speedup obtained by the

OVP model. The 12x12 scenario shows a speedup of 58.41.

Table 13 - Simulation time speedup, comparing SystemC and OVP platforms. Simulations
setup – processor: Core 2 Duo E4400 2x2GHz; memory: 3GB; gcc version: 4.7.2; gcc

flags: -mfpmath=sse -Ofast -flto -march=native -funroll-loops.

 6x6 12x12 16x16 20x20

SystemC 1080 9521 18289 28207

OVP 129 163 691 1247

speedup 8.37 58.41 26.47 22.62

Qualitative measures include flexibility and debuggability. The proposed model

benefits from the high debuggability features supported in OVP, which provides a general

view of each CPU model (e.g. registers, addressing, interrupts). Thus, software engineers

can integrate the proposed OVP with GDB or Eclipse, accessing their debugging

functionalities. For instance, the engineer can execute an application in single step mode

(i.e. step-by-step), insert code breakpoints, observe variables values, etc. It is also

possible, to set watchdogs for accessing defined memory regions, obtaining the fetched

instruction or the read/write values. Such important features for software development do

not exist in the SystemC or VHDL platforms.

3.4 Final Remarks

This Chapter presented the first contribution of this Thesis: the development of two

model platforms, which can be used to exploring large MPSoCs. References related to this

part of the work include [PET12][MAN12][MAN13][CAS13].

The quest for fast simulation time, enabling to predict important performance figures

as execution time and energy consumption, was the driver of this part of the work. In 2011,

the VHDL model enabled to validate system up to 42 PEs (7x6). In 2012, the SystemC

model enabled the simulation of 144 PEs (144 PEs). In 2013, the mixed SystemC/OVP

extended the MPSoC size to 256 PEs (16x16). Finally, in 2014, the OVP model allowed

the simulation of 400 PEs, with a speedup to the SystemC model equal to 22.62.

Such result paves the way to the second part of the work, proposal of run-time and

distributed mapping techniques for large scale MPSoCs, targeting communication volume

reduction and workload balancing.

57

4. SYSTEM MANAGEMENT

This Chapter describes the management infrastructure implemented to support

mapping techniques. The next Chapter details the heuristics, according to the steps

defined in this Chapter.

This Chapter introduces in Section 4.1 and 4.2, respectively, the energy and

application models used in this Thesis. Next, it discusses two approaches for system

management: centralized, presented in Section 4.3; and distributed, presented in Section

4.4. The distributed system management approach is implemented to improve scalability

and performance. Task mapping techniques in both approaches are the focus of this

Section since they are essential in system management. Section 4.5 compares centralized

and distributed management approaches. Section 4.6 concludes this Chapter.

4.1 Energy Model

The energy consumption in the MPSoC is mainly due to three components: memory,

processors, and NoC. The number of memory accesses is identical for the same workload.

Therefore, to fairly compare different mapping solutions using the same workload, it is

enough to consider the energy consumption of both processor and NoC as main metrics.

As described in the literature [JEJ04], the energy consumption (EC) of a processor

pei is defined by static and dynamic consumption. The processor EC related to the

execution of a given task is a function of the number of executed instructions. In our

model, the energy cost of each instruction is determined from a gate-level implementation,

as proposed by Rosa et al. [ROS14].

Each processor pei contains an instruction analyzer module, which includes the

energy cost of each instruction. Such module counts and classifies the executed

instructions for different classes at runtime. The set of classes is defined as C = {c0, c2,…

,c8}, with 9 different classes (e.g. arithmetic, logic, branch) [ROS14]. Equation (1) presents

the energy dissipation for a given task.

energytask = (energy(ci)´ total _ instructions(ci))
i=0

8

å (1)

where: energy(ci), energy to execute a given instruction belonging to the class ci, value

obtained from simulating the synthetized processor; total_instructions(ci), number of

executed instructions belonging to the class ci .

Results show that the accuracy of adopted instruction analyzer module varies from

0.06% to 8.05% when compared to a gate-level implementation [ROS14]. One can argue

that this profile step may be inaccurate since the task workload may vary, according to the

user data. During the profiling step, each application receives workloads representing real

58

execution scenarios. Therefore, the computed energy values are representative enough to

guide the proposed mapping heuristic [TIW94][MUR07].

It is necessary to compute the power per time slice to evaluate the mapping

heuristics using the instruction analyzer module employed during the profile step, now at

runtime. Equation (2) computes the power consumption for each pei.

slicetime

cnsinstructiototal

powertotal i

i

pe
_

))(_)(c(energy

_

8

0

i





(2)

where: time_slice is the power sampling period, in seconds.

The NoC EC is proportional to the number of transmitted flits at each router port

[MAR14]. A gate level description of the NoC is used to determine the power consumption

for the main router components: buffers, internal crossbar and control logic. Equation (3)

presents energy consumption corresponding to one flit being transmitted through 1 buffer

of the router.

TPPPPportsnE iccontrolcrossbarbufferbufferrouter 




 )1()1()1()0(*)1_(log_ (3)

where: n_port is the number of ports of the router, Pcomponent(0) the average power without

traffic, Pcomponent(1) the average power with an injection rate equal to 100%, T the clock

period.

Equation (4) presents the power consumption of a given router for a given number of

simulated cycles (time_slice), considering the number of flits transmitted by the router in

the sampling period.

total _ powerrouter =
Erouter´ flitså
time_ slice

 (4)

4.2 Application Model

An application appi is modeled as an acyclic directed graph GApp = (T, E), where

each vertex ti ∈ T represents an application task and each directed weighted edge eij ∈ E

represents a communication dependence between tasks ti and tj. The weight of an edge eij

is denoted by commij, representing the total data communication volume transferred

between application tasks ti and tj. The mapping of the set of tasks T = {t1, t2, ..., tn} of

GApp onto the set SP = {sp1, sp2, ..., spk} of GMPSoC is defined by the mapping function:

T → SP, where ti ∈ T,  spj ∈ SP.

Figure 17 presents an example of an application modeled as a task graph. An

application has initial tasks (e.g. t1 and t2) and non-initial tasks. Initial tasks are those that

initialize the execution of the application when mapped in the system. Such tasks do not

59

have dependences on other tasks to start executing.

t1

t2

t3

t4

t5

t6

Initial tasks: t1, t2 Non-initial tasks: t3, t4, t5, t6
Figure 17 - Application modeled as a task graph GApp = (T, E).

The mapping of non-initial tasks occurs whenever a given task ti needs to

communicate with a non-mapped task tj. For example, Figure 18(a) shows an application

with three tasks, being A the initial task. When such application is required to be executed,

task A is mapped in the system to start the application execution, as illustrated in Figure

18(b). Task A starts its execution and at a given moment it needs to communicate with

task B. Task B, a non-initial task, is not already mapped. Then, a task mapping algorithm

selects an SP to map task B.

SP

SP

SP

SP

SP

SP

A

GMP

SP

A
p

pl
ic

at
io

n
R

ep
os

it
or

y

A B C

(a) (b)

Figure 18 – Initial task mapping.

 In this context, the set T is divided in two subsets iT and niT, where (iT U niT) = T.

The subset iT contains the initial tasks and the subset niT contains non-initial tasks.

 A task ti ∈ T contains:

 a set Ci called communication task list. This set is defined as

Ci = {(tj, commij); (tk, commik); … (tn, commin)}, where each element is a tuple

containing a task tj that communicates with ti and the value commij,

corresponding to the total volume transferred between ti and tj in both directions

(i.e. ti to tj and tj to ti). Elements in a communication task list are sorted from the

higher (first in the list) to the lower communication volume.

 an energy value Ei related to the execution of this task on the target SP. This

value is captured according the energy model described in the previous Sub-

section (Equation (1)).

60

An application appi has an application description file containing information used to

guide mapping decision. Such file contains:

(i) the application size defined by app_sizei, which corresponds to the total number

of tasks of this application;

(ii) list of application initial tasks;

(iii) the sets Ci and Ei for each task ti, of the application.

The application description file, including Ci and Ei for each task, is obtained from a

profiler platform. The profiler platform is a slightly modified version of the OVP MPSoC

model presented in Section 3.3, which employs monitors to capture the consumed energy

for each task and their inter-communication volume. A network packet monitor is used to

capture data communication among tasks. For each transmitted packet, the monitors

capture the source task identifier, the destination task identifier, and the packet size. With

such information, it is possible to define the set C(ti) of each task. The value Ei is obtained

as explained in Section 4.1. The executed instructions required by each task are counted

and classified according to different classes. Then, task energy Ei is computed according

Equation (1). Each application is executed in the profiler platform, without any disturbing

traffic.

Figure 19 presents the profiler platform flow. A single application is executed in the

profiler platform. At the end of the simulation, the profiler generates the application

description file. Then, such information is attached to the application, and included in the

application repository when the application is compiled to be executed in the system.

PROFILER

A C

GMP B D

A

B C D

120

90 210

98

42 176 35

APPLICATION
DESCRIPTION FILE

HeMPS PLATFORM

GMP
APPLICATION
REPOSITORY

67

A

B C D

Figure 19 - Profiler platform flow.

61

4.3 Centralized System management

Figure 20 illustrates the centralized system management architecture. It contains the

same components of the reference model presented in Section 3.1. Such approach uses

only one Manager Processing Element: the Global Manager Processing Element (GMP),

which is responsible for all management functions in the system. Such functions include

receiving task requests from the NoC and computing mapping algorithms to select an SP

for the requested task. Further, GMP maintains updated information about all system,

including SPs where tasks are mapped, SPs availability, terminated tasks, and terminated

applications. Such information is updated through information packets received from

system SPs through the NoC.

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP

SP

SP SP SP

SP SP SP

SP SP SP

SP

A
p

p
lic

a
ti

o
n

R
e

p
o

si
to

ry

SP SP

SP SP

Figure 20 – Centralized system management architecture.

4.3.1 Centralized Task mapping protocol

The task mapping method used by the centralized approach has two steps: initial

tasks mapping and non-initial tasks mapping.

4.3.1.1 Initial tasks mapping

Figure 21 illustrates the centralized mapping protocol for initial tasks. Whenever a

new application is required to be mapped (“1 – New Application” in Figure 21), the system

alerts the GMP, which verifies if the system has available resources to map the entire

application. In not, the application is scheduled to be mapped later. Otherwise, first the

GMP verifies the application description to obtain the application initial tasks.

Next, the GMP executes an algorithm to determine the mapping of the initial tasks (“2

– Initial Tasks Mapping” in Figure 21). When the algorithm selects an SP to map an initial

task, the GMP obtains the object-code of such task from the application repository. Then,

the GMP maps this task on the selected SP by using a task allocation packet message (“3

– Task Allocation” in Figure 21).

62

GMP

3 - Task Allocation

2 - Initial Tasks Mapping

SPs

2 - Initial Tasks Mapping

2 - Initial Tasks Mapping

3 - Task Allocation

3 - Task Allocation

Figure 21 – Centralized initial tasks mapping protocol.

4.3.1.2 Non-initial tasks mapping

An application starts after the initial task mapping. Then, non-initial tasks are

mapped, as illustrated in the example of Figure 22. In such example, an initial task t1

executes the code shown in Figure 23. Task t1 starts executing some functions, and then it

communicates with task t2 using an MPI-like primitive send (line 5 of Figure 23). The

operating system of SP1 hosting task t1 verifies if the target task (t2) is present in a task

table, which contains the SP each task is mapped. If it is present, the message is

transmitted to the SP assigned to task t2 in the task table. If it is not, a packet with a task

request service is transmitted to the GMP (‘1 – Task Request’ in Figure 22), asking the

mapping of task t2.

Receiving the task request, the GMP executes a task mapping heuristic to select the

SP to receive t2 (‘2 – Task Mapping Algorithm’,). Suppose the task mapping algorithm

selected SP2 to map task t2. Thus, the GMP first obtains the object-code of task t2 from the

application repository. Then, the GMP transmits task t2 object-code to SP2 using a “task

allocation” packet (‘3 – Task Allocation, in Figure 22). Finally, the GMP sends to SP1 the

location of task t2, and to SP2 the location of task t1. (‘4 – Task Location’ in Figure 22).

These locations are stored in the task tables of each SP.

63

GMP SP2 SP1

2 - Task Mapping
Algorithm

T
A
S
K

t1

T
A
S
K

t2

Figure 22 - Centralized non-initial tasks mapping protocol.

1. Message msg1;

2. int main(){

3. msg1.length = 128;

4. ...

5. send(&msg1,t2); //communicate with t2

6. ...

7. exit();

8. }

Figure 23 – Example of an initial task description, with a send command.

4.4 Distributed System management

As mentioned before, the constant growth in the number of cores implies in an

important issue: scalability. Despite the scalability offered by NoCs and distributed

processing, the MPSoC resources must be managed to deliver the expected performance.

A single PE being responsible for system management may become a bottleneck since

this PE will serve all other PEs of the system, increasing its computation load and creating

a communication hot-spot region. An alternative to ensure scalability is to decentralize or

distribute the management functions of the system. In light of this, this Section presents a

distributed system management technique, which divides the system into regions (called

clusters), improving system scalability and performance. This activity was co-developed

with Guilherme Castilhos, Ph.D. advised by Fernando Moraes.

Two main approaches for distributed system management are discussed in the

literature: (i) one manager per application [KOB11][SHA11]; (ii) one manager per MPSoC

region, which are also called clusters [FAR08][ANA12][CUI12]. The proposed distributed

management architecture relies on the second approach, dividing the MPSoC in equal-

64

sized clusters. Such distributed approach presents the following benefits:

I. The number of PEs dedicated to management functions is limited to the number

of clusters. An approach using one manager per application may imply a larger

overhead since the number of applications that will execute in the system is

unknown at execution time.

II. The clustering approach reduces the number of hops among tasks belonging to

the same application, reducing the overall traffic in the NoC (if the application fits

in the cluster).

III. It is not necessary to create/destroy agents (manager PEs) each time a new

application enters/leaves the system, enhancing in this way the overall system

performance.

Figure 24 shows an example of the proposed distributed management architecture,

using a 6x6 MPSoC instance with four 3x3 clusters. For this purpose, this approach uses

two types of Manager Processing Elements:

 Local Manager Processing element (LMP) – responsible for cluster control,

executing functions such as task mapping algorithm computation, and re-clustering.

 Global Manager Processing Element (GMP) – a single processing element

responsible for the overall system management, such as defining application-to-

cluster mapping, controlling external devices accesses (e.g. application repository).

Further, the GMP manages one of the system clusters (for example, the left bottom

cluster of Figure 24), executing all functions of an LMP.

SP

SP

SP

SP

SP

SP

SP

SP

LMP

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP

LMP

SP SP SP

SP SP SP

LMP SP SP

SP

A
p

p
lic

a
ti

o
n

R
e

p
o

si
to

ry

Router

N
et

w
o

rk

In
te

rf
a

ce

DMA

R
A

M

Plasma
SP SP

SP SP

Figure 24 – Distributed system management architecture.

Slave processing elements (SPs) remain responsible for executing user’s applications.

In this context, the proposed distributed system management approach has three different

PEs: LMPs, SPs and the GMP.

65

The definition of the clusters size occurs at design time. When the system starts, the

GMP is responsible for cluster initialization, notifying the LMPs which region they will

manage. Then, when an LMP knows the region it will control, it informs all SPs in this

region that it will be their manager. This cluster and SPs initialization mechanism provide

better system adaptability. For example, runtime re-clustering process, proposed by

Castilhos [CAS13], enables the modification of the cluster size.

The re-clustering process occurs when there is no available SPs inside a cluster to

map an application task. When a task is requested to be mapped to a given cluster, its

LMP checks the availability of cluster SPs. If there are no SPs available inside the cluster

to map the requested task, SPs are borrowed from neighbor clusters. When the task

finishes its execution, the borrowed SP is released to the original cluster. The re-clustering

process is better explained in Section 4.4.2.

The GMP is the only PE with access to the external devices (e.g the application

repository). In Figure 24, four PEs are reserved for management functions, representing

11.1% of PEs not executing user applications. Using a 4x4 cluster in a 16x16 MPSoC, this

overhead becomes 6.25%, which is an acceptable cost, considering the obtained benefits,

as demonstrated next, with the evaluation of the proposal.

4.4.1 Distributed Task Mapping Protocol

The distributed task mapping protocol is divided into three main steps. Above the

initial tasks and non-initial tasks mapping steps present in the centralized protocol, the

distributed protocol has a cluster selection step. The cluster selection step occurs before

the other steps, defining a cluster to map a required application.

4.4.1.1 Cluster Selection

 As the centralized protocol, whenever a new application is required to be mapped,

the system alerts the GMP (‘1 – New application’, in Figure 25). The GMP verifies if the

system has available resources to map the entire application. If there are no available

resources, the application is scheduled to be mapped later. Otherwise, the GMP selects a

cluster to map the required application (‘2 – Cluster Selection’, in Figure 25). Then, the

required application description is sent to the LMP of the selected cluster. Once a given

cluster is selected, the GMP obtains the application description from the application

repository, transmitting it to the selected cluster LMP (‘3 – Application Desc.’, in Figure 25).

4.4.1.2 Initial task mapping:

The LMP of the selected cluster receives and stores the application description.

Then, such LMP verifies the application description to determine the application initial

tasks. Next, the LMP computes a mapping algorithm to select SPs to map the application

initial tasks inside the cluster (‘4 – Initial Tasks Mapping’, in Figure 25). The mapping of

initial tasks starts the application execution.

66

After selecting an SP to map an initial task, the LMP sends a packet to the GMP with

the service task allocation request (‘5 – Task Allocation Request’, in Figure 25). Such

packet requests the allocation of the initial task object-code in the selected SP. This

happens since the GMP is the only PE with access to the application repository. Then, the

GMP obtains the task object-code from the application repository and transmits it to the

selected SP (‘6 – Task Allocation’, in Figure 25). The SP will schedule the new task at the

end of the “task allocation” packet reception. In addition, the LMP keeps a data structure,

named task table, with the address of all mapped tasks.

Consider in Figure 25 the third application insertion. This situation illustrates a

scenario where the selected cluster is the one managed by the GMP it-self. In this case,

the GMP also executes the initial task mapping algorithm.

GMP LMP1

2 – Cluster Selection

LMP2

4 - Initial Tasks Mapping

SPs

2 – Cluster Selection

2 – Cluster Selection

4 - Initial Tasks Mapping

4 - Initial Tasks Mapping

Figure 25 - Protocol to insert new applications into the system.

4.4.1.3 Non-initial tasks mapping:

As explained before, the mapping of non-initial tasks occurs whenever a given task ti

needs to communicate with a non-mapped task tj. Suppose the example of Figure 26,

where task t1, mapped on SP1, needs to communicate with a non-mapped task t2. In this

case, task t1 requests the mapping of t2 to its cluster LMP (LMP1) by sending a Task

Request packet message (‘1 – Task Request’, in Figure 26). LMP1 receives the task

request and executes a mapping algorithm to select an SP to map task t2 (‘2 – Task

Mapping Algorithm’, in Figure 26). The mapping algorithm selects SP2 to map task t2.

67

LMP1 SP2

5 - Task Allocation

SP1

2 - Task Mapping
Algorithm

T
A
S
K

t1

 3 - Task Allocation Request

T
A
S
K

t2

GMP

Figure 26 – Distributed non-initial mapping protocol.

Next, LMP1 request the mapping of task t2 on SP2 to the GMP by sending a “Task

Allocation Request” service packet (‘3 – Task Allocation Request’ in Figure 26). The LMP

also uses a “Task Location” service packet to inform to SP1 the location of t2, and to SP2

the location of task t1 (‘4 – Task Allocation’, in Figure 26). These locations are stored in the

SPs task tables. Finally, the GMP obtains task t2 object code from the application

repository and transmits it to SP2 (‘5 – Task Allocation’, in Figure 26).

4.4.2 Re-clustering Process

Figure 27 presents an example of the re-clustering process, assuming the SP spRM

(in red in Figure 27) requested the mapping of a given task to LMP2 (the LMP that

manages spRM cluster). The LMP2 receives the task mapping request and verifies that

there are no available SPs inside this cluster. In this case, the LMP2 sends a “loan

request” message, requesting an available SP to all neighbor clusters LMPs (GMP, LMP1,

and LMP3; as shown in step 1 of Figure 27).

When receiving the “loan request” message, the neighbor clusters LMPs search for

available SPs in their clusters. If there is only one available SP, this SP is reserved to be

borrowed; otherwise, if there is more than one available SP, such LMPs reserve the

closest one, in number of hops, to spRM (i.e. the SP that requested the mapping). After the

reservation, such LMPs send a “loan delivery” message to the LMP2 (cluster that

requested available SPs), notifying the possible borrowed SP position (step 2 of Figure 27,

blue SPs are reserved), if it exists.

The LMP chooses the closest SP from spRM (i.e. the SP that requested the mapping),

sending a “loan release” message to all LMPs, which were not selected (step 3 of Figure

68

27). Next, the LMP send a “task allocation request” message to the GMP requesting the

task mapping on the borrowed SP (step 4 of Figure 27). Therefore, the cluster size

increases at runtime, because the borrowed SP is now part of this cluster. This process

optimizes the system management, since applications can be mapped in clusters, even if

the cluster has no sufficient SPs.

SP

SP

SP

SP

spRM

SP

SP

SP

LMP2

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP SP

LMP3 SP SP

SP SP SP

SP SP SP

LMP1 SP SP

SP

SP

SP

SP

SP

SP

spRM

SP

SP

SP

LMP2

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP SP

LMP3 SP SP

SP SP SP

SP SP SP

LMP1 SP SP

SP

SP

SP

SP

SP

SP

spRM

SP

SP

SP

LMP2

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP SP

LMP3 SP SP

SP SP SP

SP SP SP

LMP1 SP SP

SP

SP

SP

SP

SP

SP

spRM

SP

SP

SP

LMP2

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP SP

LMP3 SP SP

SP SP SP

SP SP SP

LMP1 SP SP

SP

SP

Step 1: Loan Request Step 2: Loan Delivery

Step 3: Loan Release Step 4: Task Mapping

Figure 27 - Task mapping protocol, using PEs in neighbor cluster. White SPs (slave PEs)
are available PEs [CAS13].

4.5 Centralized versus Distributed Task Mapping

In the centralized mapping, the GMP is responsible for computing the mapping of all

tasks. In this case, all incoming mapping requests are serialized (Figure 28(a)), reducing

the system performance, and increasing the NoC traffic in the GMP region. Using the

distributed task mapping (Figure 28(b)), the mapping computation is distributed in several

LMPs, reducing the communication load generated by mapping requests.

It is important to mention a limitation of the distributed approach. Even if the mapping

is distributed, the access to the external world (application repository) is not. Transmitting

the task data in burst, using a DMA approach, minimizes the impact of this issue.

Experiments use the SystemC platform, adopting clusters with 8 SPs (3x3 clusters).

Each SP can execute up to 2 simultaneous tasks. Therefore, each cluster may execute 16

tasks. Three benchmarks were used: MPEG, executes a partial MPEG decoder; multispec

69

image analysis [TAN08], which evaluates the similarity between 2 images using different

frequencies; and, a synthetic application (synthetic).

Task allocation

request

GMP SP 1 SP 2 SP 3

Task allocation

request

Task

request
Task

request

Task

request

m
a

p
p

in
g

m
a

p
p

in
g

m
a

p
p

in
g

Wait for GMP

availability

Wait for GMP

availability

GMP LMP1 LMP2 LMP3

Task

request

m
a

p
p

in
g

m
a

p
p

in
g

Task

request

Task

request

m
a

p
p

in
g

Task allocation

request

(B)(A)

Figure 28 - Centralized (a) versus distributed (b) mapping.

Table 14 presents the characteristics of the nine evaluated scenarios (A, B, …, I).

The second column of the Table contains the MPSoCs size, the number of clusters, and

the number of SPs for the distributed and centralized management approaches. Note that

the centralized approach has more SPs than the distributed one, since it does not use

LMPs. The third column presents the number of tasks for each benchmark, while the forth

column shows the number of application instances (AppCL) that fit in the cluster. The fifth

column contains the total number of tasks that must be mapped onto the MPSoC platform.

The last two columns present the system usage (SU) for the distributed and centralized

approaches, i.e., the percentage of used system resources (nb of tasks / (nb of SPs * 2)).

Table 14 - Characteristics of the evaluated scenarios

MPSoC Size Benchmark -Nb. of Tasks AppCL Total number of tasks SUdist SUcentr

A 6x6 - 4 clusters
- 32 SPs (distributed)
- 35 SPs (centralized)

Syntetic - 6 2 48 75% 69%

B MPEG - 5 3 60 94% 86%

C Multispec -14 1 56 88% 80%

D 9x9 - 9 clusters
- 72 SPs (distributed)
- 80 SPs (centralized)

Syntetic - 6 2 108 75% 68%

E MPEG - 5 3 135 94% 84%

F Multispec -14 1 126 88% 79%

G 12x12 - 16 clusters
- 128 SPs (distributed)
- 143 SPs (centralized)

Syntetic - 6 2 192 75% 67%

H MPEG - 5 3 240 94% 84%

I Multispec -14 1 224 88% 78%

70

All applications instances are inserted in the system at the same time (1 ms) to

maximize the use of SPs. Table 15 presents the total execution time reduction, adopting

the centralized mapping as reference. Such results are a clear demonstration of the poor

scalability related to the centralized management of the MPSoC resources. Scenario A

does not reduce the total execution time using the distributed mapping due to the smaller

system utilization. As the centralized approach has more free resources, some SPs may

receive one task, instead of two, reducing the application execution time, since there is no

time-sharing between tasks. Note that this behavior also occurs in scenarios D and G,

where the synthetic benchmark presents smaller gains than scenarios E/F and H/I,

respectively. The mapping process in the distributed approach has a smaller search

space. For example, in the 12x12 MPSoC the centralized mapping has to evaluate the

status of 143 SPs, while in the distributed mapping the search space is always the same,

proportional to the cluster size. Therefore, the execution of the mapping heuristic is faster

in the distributed version.

Table 15 – Total execution time reduction, adopting the centralized mapping as reference.

Scenario MPSoC Size Benchmark
Execution time reduction

(w.r.t centralized mapping)

A
6x6

Synthetic -15% (increase of time)

B MPEG 28%

C Multispect 34%

D
9x9

Synthetic 50%

E MPEG 63%

F Multispect 54%

G
12x12

Synthetic 79%

H MPEG 86%

I Multispect 85%

Figure 29 presents the execution time (in clock cycles) for each application instance,

for scenarios B and E. It is important to observe in Figure 29 that all application instances

have roughly the same execution time. Note that in the distributed mapping (black bars) a

set of applications starts simultaneously. This is due to the distributed computation of the

mapping heuristic, as illustrated in Figure 28(b). On the other hand, the centralized

mapping (white bars) has to map the application tasks (5 tasks in the MPEG benchmark)

and treat the request for new applications. This serialization of the mapping process is

clearly observed in both figures, which also explain the results observed in Table 15. As

the MPSoC size increases, the execution time for the centralized mapping grows

dramatically.

Another benefit of the promoted distributed approach is the reduction of the traffic

around the GMP. Most control messages are treated inside the clusters, and the only

control message sent to the GMP is the task request.

71

Figure 29 – Execution time for distributed (black bars) and centralized mapping (white
bars), for the MPEG benchmark with two NoC sizes, scenarios B and E.

4.6 Final Remarks

This Chapter introduced two important features required by the mapping heuristics:

(i) distributed system management; (ii) mapping protocol.

The distributed management ensures scalability at the cost of sacrificing some

processor to management functions.

The mapping protocol comprises three steps: (i) cluster selection; (ii) initial task

mapping; (ii) non-initial task mapping. The next Chapter presents a set of mapping

heuristics, using the distributed management approach with the mapping protocol detailed

in this Chapter.

72

5. TASK MAPPING HEURISTICS

This Chapter presents four distributed runtime task mapping heuristics. Sections 5.1

and 5.2 describes, respectively, the LEC-DN and PREMAP-DN heuristics. Such heuristics,

previously presented in [MAN11b], were extended in this Thesis to support the distributed

mapping protocol. The goal of the LEC-DN heuristic is to reduce the communication

volume in the NoC. This heuristic maps communicating tasks as close as possible. The

PREMAP-DN heuristic improves the LEC-DN heuristic, reducing even more the

communication through the NoC. PREMAP-DN uses the PREMAP clustering method,

which tries to group communicating tasks in the same SP. Sections 5.3 and 5.4 propose

the new Load (L) and Load-Communication (LC) heuristics. The goal of the Load heuristic

is to distribute the workload evenly, improving in long-term the system reliability. The Load-

Communication heuristic mixes LEC-DN and L heuristics, making a trade-off between

communication volume reduction and workload distribution. The heuristics described in

this Chapter use the three mapping steps of the distributed mapping protocol, presented in

Section 4.4.1. Section 5.5 evaluates the heuristics.

The heuristics use the following definitions:

Definition 1: application size (app.size) corresponds to the number of tasks of the

application to be mapped.

Definition 2: MAX_SP_TASKS is the maximal number of tasks a given SP may execute

simultaneously. The SP local memory is organized into SP_PAGES pages, being one

reserved for the operating system. Therefore, MAX_SP_TASKS = SP_PAGES - 1.

Definition 3: available_resources corresponds to the number of resources (a resource is a

page in the memory) that do not have a task mapped on it. This information may refer

to the whole system, available_resources(system), or to a given cluster ck,

available_resources(ck).

Definition 4: available(spi) returns true if spi is available to receive a new task, otherwise

false. An SP is available when the number of tasks mapped on it is smaller than

MAX_SP_TASKS.

Definition 5: empty SP is an SP with no tasks mapped on it. Therefore, an empty SP can

receive MAX_SP_TASKS tasks.

The Load (L) and Load-Communication (LC) heuristics use specific definitions, TE

and cl_energy(ck).

Definition 6: TE is the total consumed energy by a given SP, corresponding to the energy

(Ei) consumed by all already executed tasks and the tasks that are currently being

executed on this processor. Whenever a task is mapped onto an SP, TE is updated.

Definition 7: cl_energy(ck) corresponds to the consumed energy of a cluster ck. This

73

function is computed by summing the TE value of each SP of the cluster.

5.1 LEC-DN

The LEC-DN heuristic reduces the communication volume through the NoC by

nearing communicating tasks that exchange a high communication volume. Next sub-

sections describe this heuristic according to the three distributed mapping protocol steps.

5.1.1 Cluster selection

LEC-DN heuristic selects the cluster with the largest number of available resources to

map an application. Figure 30 presents the pseudo-code of the cluster selection algorithm.

The heuristic first verifies if the system has available resources to map the application (line

4). If there are insufficient resources in the system, the application is scheduled to be

mapped later. Then, the loop between lines 5 and 10 analyzes all clusters, selecting the

one with the largest number of available resources.

Input: application size app.size
Output: selected_cluster
1. selected_cluster  -1
2. selected_cluster_resources  -∞
3. //Verify if the system has available resources to map the application
4. IF available_resources(system) >= app.size THEN
5. FOR EACH cluster ck in the system
6. IF available_resources(ck) > selected_cluster_resources THEN
7. selected_cluster  ck

8. selected_cluster_resources  available_resources(ck)
9. END IF
10. END FOR EACH
11. END IF
12. return selected_cluster

Figure 30 – Cluster Selection algorithm used in LEC-DN and PREMAP-DN heuristics.

It is important to note that a given application only starts its execution when there are

enough resources to map the whole application (line 4). The next steps of the mapping

algorithm try to map the applications’ task in the cluster. The re-clustering is responsible to

extend the cluster size to enable the mapping of the initial and non-initial tasks when the

cluster becomes full.

5.1.2 Initial tasks mapping

The initial task mapping evaluates all SPs inside the selected_cluster, selecting the

SP with the largest region_free. The function region_free(spi, n_hops) returns the total

number of available resources of the set containing spi and all SPs up to n hops far from

74

spi. Consider the example in Figure 31, which uses a 5x5 cluster, spi is the central SP (in

green), and n_hops is equal to 2. In Figure 31, the colored SPs define an area 2 hops far

from spi. Suppose, the numbers inside at each SP corresponds to the number of available

resources. Then, the sum of these numbers corresponds to the region_free(spi, 2), which

is equal to 25.

 2

 0 1 1

1 2 2 (spi) 3 3

 2 3 2

 3

Figure 31 - Hypothetical example to compute the function region_free.

Figure 32 shows the pseudo-code of the initial tasks mapping algorithm used in

LECD-DN. The loop between lines 3 and 8 evaluates all SPs inside the selected cluster

and selects the SP with the largest region_free. If the application has more than one initial

task, this algorithm is re-executed for the other initial tasks. The initial tasks mapping used

in LEC-DN aims to map initial tasks in regions that have the largest number of available

resources. This method increases the probability of mapping the application’s tasks closer

to each other, reducing communication volume.

Input: n_hops
Output: selected_sp
1. selected_sp  -1
2. selected_region_free  +∞
3. FOR EACH SP spi in the cluster
4. IF available(spi) AND region_free(spi, n_hops)>selected_region_free THEN
5. selected_sp  spi

6. selected_region_free  region_free(spi, n_hops)
7. END IF
8.END FOR EACH
9. return selected_sp

Figure 32 – Pseudo-code of the initial tasks mapping algorithm used in LEC-DN and
PREMAP-DN heuristics.

5.1.3 Non-initial task mapping

When a non-initial task ti is required to be mapped, the LECD-DN heuristic creates a

list containing all tasks that communicates with ti that are already mapped within the

selected cluster. Next, this heuristic defines the search space to map ti. Such search

space is defined by a bounding box rectangle, containing the mapped tasks that

communicate with ti. When there is more than one mapped task, the bounding box is

enlarged by one hop offering a larger search space. Figure 33 illustrates the mapping

search space when one (Figure 33(a)) or two communicating tasks (Figure 33(b)) are

75

mapped in the cluster. The adoption of a bounding box aims to reduce the distance among

communicating tasks. The bounding box size is enlarged by one hop, if no available SPs

are found on it.

 tj

 tj tk

 (a) (b)
Figure 33 - (a) search space when one communicating task is already mapped (tj); (b)

search space when more than one communicating task is already mapped (tj and tk). Solid
lines correspond to the original bounding box, dashed lines to the bounding box increased

by one hop.

If just one communicating task tj is mapped, the heuristic will map ti on an SP as

close as possible, in number of hops, to the one where tj is mapped. Otherwise, the

heuristic map tj onto the SP with the lowest communication cost. The communication cost

is based on the volume-based energy model proposed by Hu et al [HU10], where the

energy spent in the communication is proportional to the number of hops and the number

of transmitted flits.

Figure 34 illustrates the LEC-DN approach with one task already mapped. Consider

the application of Figure 34(a), with three tasks. To start the application, task A (the initial

task) is mapped. At a given moment, the mapping of task B is required. Task B has only

one communicating task already mapped in the cluster (task A), as illustrated in Figure

35(b). Therefore, the search space to map task B corresponds to the bounding box with

the SP of task A. If this SP is available, task B is mapped to it. Otherwise, the bounding

box is enlarged by one hop, as defined by the red line in Figure 35(b). Inside such

bounding box, each spi has a cost that represents the distance between task A and spi.

The LEC-DN heuristic selects the first available SP with the smallest distance cost.

150

120

(a) (b)

A

B

C

3

2

2

1

4

3

1

3

A

1

2

2

3

LMP

3

2

1

2

3

2

4

3

2

3

4

Figure 34 - (a) application graph of a given application; (b) search space to map task B.

76

 Figure 35 illustrates the LEC-DN approach with more than one task already

mapped. The application has 4 tasks, where A and B are initial tasks (Figure 35(a)). At a

given moment, the mapping of task C is required. Thus, LEC-DN evaluates the list of tasks

that communicate with task C that are already mapped. Task C has two communicating

tasks already mapped in the cluster (tasks A and B), as illustrated in Figure 35(b).

Therefore, the search space to map task C corresponds to the bounding box defined by

the coordinates of tasks A and B increased by one hop (Figure 35(b)). An SP inside the

bounding box has a cost that represents the total amount of communication volume that

will be transferred by mapping the task C on this SP. This cost is computed considering

the amount of data A and B transfer to C, and the distance in number of hops from a given

SP to task A and B. For example, the cost of the SP to which A is mapped is 300, since:

 the SP is 0 hops far from A and A transfers 150 (it can be the number of flits or a

given rate in Mbps) to C, so the volume on the NoC generated by the

communication AC is be 0 x 150 = 0;

 the SP is 3 hops far from B and B transfers 100 to C, so the volume on the NoC

generated by the communication BC is 3 x 100 = 300;

 the total communication volume generated by mapping C on this SP is the sum

of the volume generated by AC and BC, resulting in 300.

 Task C will be mapped on the processor that has the lowest cost, which is, in this

case, the processor where A is mapped (assuming each SP may execute simultaneously

more than one task). Note that task D is not yet mapped, since it depends from task C.

100150

120

(a) (b)

A B

C

D

850

600

650

600

350

400

700 B
450

700

LMP

550 800

A
300

350

400 650

650 900950

550

600

C

Figure 35 - (a) application graph of the application (b) search space to map task C, where
each SP has a cost, and the final mapping of C.

Figure 36 presents the pseudo-code for the heuristic used to map non-initial tasks.

When a non-initial task ti is required to be mapped, LEC-DN starts analyzing the set C(ti),

containing all tasks that communicates with ti. All mapped tasks within the cluster of C(ti)

are inserted in the set MC(ti) (line 2). In the sequel, a bounding box rectangle (line 3) is

77

defined, according to the position of all tasks of MC(ti). Next, the size of the set MC(ti) is

evaluated.

Input: ti , set C(ti)
Output: selected_sp
1. selected_sp  -1
2. MC(ti) mapped_tasks(C(ti)) // all tasks communicating with ti already mapped
3. bounding_box  area(MC(ti))
4. IF |MC(ti)| = 1 THEN
5. selected_sp_distance  +∞
6. WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO
7. sp_list  search_SPs(bounding_box)
8. FOR EACH SP spi IN sp_list
9. IF available(spi) = true AND evaluated_sp_distance < compute_distance(ti, spi) THEN
10. selected_sp  spi
11. selected_sp_distance  compute_distance(ti, spi)
12. END IF
13. END FOR
14. IF selected_sp = -1 THEN
15. increase(bounding_box, 1)
16. END IF
17. END WHILE
18. ELSE IF |MC(ti)| > 1 THEN
19. selected_sp_cost  +∞
20. increase(bounding_box, 1)
21. WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO
22. sp_list  search_SPs(bounding_box)
23. FOR EACH SP spi IN sp_list
24. IF available(spi) = true AND evaluated_sp_cost < compute_cost(ti, spi) THEN
25. selected_sp  spi
26. selected_sp_cost compute_cost(ti, spi)
27. END IF
28. END FOR
29. IF selected_sp = -1 THEN
30. increase(bounding_box, 1)
31. END IF
32. END WHILE
33. END IF
34. return selected_sp

Figure 36 - Mapping of non-initial tasks used in LEC-DN and PREMAP-DN heuristics.

If MC(ti) contains only one task (line 4), the loop between line 6 and 17 is executed. A

list sp_list with the SPs of the bounding box is created (line 7). Next, the loop between

lines 8 and 13 evaluates each SP of sp_list, selecting the available one with the lowest

distance in hops to the only task that communicates with ti inside the cluster. If no

available SP is found in this list, the bounding box size is enlarged in one hop (lines 14-

16), and another loop iteration is executed.

If MC(ti) contains more than one task (line 18), the bounding box size is increased in

78

one hop (line 20). Then, the loop between line 21 and 32 is executed. This loop is similar

to the previous loop (lines 6-17). However, the selected SP is the one inside the bounding

box with the smallest communication cost. If no available SP is found, the bounding box

size is enlarged in one hop, and another loop iteration is executed.

5.2 PREMAP-DN

The PREMAP-DN heuristic uses the same three mapping steps of LEC-DN

heuristics. The difference relies on the integration of a PREMAP clustering method

[MAN11b] to optimize the communication volume reduction. The goal of this method is to

group a set of communicating tasks onto the same SP. When a given task is pre-mapped,

its placement is just reserved. The effective mapping of the pre-mapped tasks is executed

when the task is requested.

The integration of LEC-DN and the PREMAP method occurs as illustrated in Figure

37. Suppose a task t is required to be mapped. If task t is a non-initial task, it is verified if it

is pre-mapped. If true, task t is mapped to the SP it was pre-mapped. If task t is an initial

task or it is a non-initial that was not pre-mapped, LEC-DN is used to select an SP

selected_sp to map this task. Then, task t is mapped to the SP selected_sp. If the SP

selected_sp was empty before the mapping of task t, the PREMAP method is executed.

The PREMAP method is executed whenever an empty SP spi receives a task ti. The

method analyzes the communicating task list C(ti) to select the tasks to be pre-mapped

onto spi. The communicating task list C(ti) contains all tasks that communicates with ti

sorted from the one that transfers the highest to the lowest communication volume, as

explained in Section 4.2. PREMAP method follows the order C(ti) is sorted, evaluating task

by task from such list. Suppose the first task to be evaluated is task tk, the one that

communicates most with ti. Task tk is pre-mapped in spi iff two conditions are satisfied:

(i) if tk is a non-mapped task;

(ii) if task tk communicates only with task ti; or, if task tk communicates with more

than one task, ti must be the task it transfers the highest communication

volume, i.e., task ti is first task of C(tk).

When a task is pre-mapped to an SP, a resource of this SP is reserved to receive

such task. Thus, the number of available resources of such SP is decreased. Tasks are

pre-mapped to an SP while it has available resources.

79

LEC-DN selects
 a SP selected_sp

to map task t

Is task t
premmaped?

Task t is required to be
mapped

NO

Task t is mapped in the
SP it was premapped

YES

Task t is mapped in the
SP selected_sp

Was the SP
selected_sp empty?

YES
Execute the PREMAP

method

Is task t an initial
task?

NO

YES

Figure 37 – Integration of the PREMAP method in the LEC-DN heuristic.

Consider as an example the application of Figure 38(a), with 8 tasks, being task A

the initial task. A 2x2 MPSoC cluster is used in the example, where each SP is able to

execute up to 3 tasks. Figure 38(c) presents the communicating task list C(ti) for each task

ti of the application. When the application execution starts, the initial task A is mapped in

SP2 (Figure 38(b)). Since SP2 was empty, the PREMAP method is executed. The method

evaluates each task in the set C(tA) to be pre-mapped to SP2. The first task to be

evaluated is the one that exchanges the highest communication volume with tA, which is tB.

Task B is pre-mapped since it is a non-mapped task that only communicates with tA (see

C(tB)). For the same reason, tC (the second in C(tA) list) is also pre-mapped. At this

moment the method stops, since the SP has already 3 tasks assigned to it, being

unavailable for receiving new tasks. During system execution, tasks B and C are required

to be mapped. Since such tasks were already pre-mapped, it is not necessary to find an

SP to map them. It is only necessary to transmit the object codes to SP2.

In the sequel, task D is required to be mapped, and LEC-DN heuristic chooses SP3.

As task D was mapped on an empty SP, the PREMAP method is executed. In this case,

the non-mapped task E is the first to be evaluated. Task E is not pre-mapped in SP3 since

it communicates with other task (i.e. G) with a higher volume than it communicates with

task D. An easy way to verify this situation is to verify the first element of task E

80

communicating task list. Next, task A is not pre-mapped since it is already mapped.

Finally, task F is evaluated. Task F is pre-mapped since: (i) it is a non-mapped task; (ii)

task D is the first element of C(tF), proving that task F communicates with task D

transferring a higher volume than with any other task.

500450

100

(a)

(b)

A

BC

D

A
B
C

LMP

D
F

E F

G H

50200

25300

(c)

SP1

SP2 SP3

Figure 38 - PREMAP method example.

Figure 39 shows the implementation of the PREMAP method.

Input: The SP spi, the task ti mapped onto spi
Output: A set of tasks pre-mapped onto spi
1. NC(ti) non-mapped_tasks(C(ti)) // all non-mapped tasks communicating with ti
2. di first(NC(ti)) //Get the first task in the NC(ti)
3. WHILE all tasks in NC(ti) were not evaluated OR tasks(spi)<MAX_SP_TASKS DO
4. hi first(C(di)) // Get the first task hi (with highest communication volume) in C(di)
5. IF hi=ti THEN
6. premap(di,spi) // premap di onto pi
7. tasks(spi)++ // increase the number of mapped/pre-mapped tasks onto pi
8. END IF
9. di  next(NC(ti)) // Get the next task in the NC(ti)
10. END WHILE

Figure 39 – PREMAP method algorithm pseudo-code [MAN11b].

The PREMAP method begins by assigning to the set NC(ti) the non-mapped tasks of

C(ti) (line 2). The next step evaluates each task di from NC(ti), to choose the tasks to be

pre-mapped onto spi. This evaluation (line 3-10) is executed while spi has less than

MAX_SP_TASKS mapped/pre-mapped tasks onto it, or if all possible tasks in NC(ti) were

already evaluated. For each task di, the first task hi with the highest communication volume

81

in its C(di) is obtained (line 4). Then, task hi is compared to the task ti (line 5). This

comparison verifies if di communicates with a higher volume with ti than it communicates

with any other tasks. If true, ti is pre-mapped onto spi, also increasing the spi number of

mapped/pre-mapped tasks (lines 6-7). This process continues if other tasks are available

in NC(ti).

5.3 LOAD (L)

The goal of the Load (L) heuristic is to distribute the workload evenly, improving in

long-term the system reliability. To achieve this goal, this heuristic assigns tasks to the

less overloaded processors. The mapping protocol steps are presented in Section 5.3.1,

which describes the cluster selection; and Section 5.3.2, which discusses the initial and

non-initial tasks mapping.

5.3.1 Cluster selection

This heuristic computes the cl_energy(ck) (see definition 7) energy value for each

cluster. Then, the cluster with the smallest cl_energy(ck) is selected. This procedure

avoids mapping an application in a high overloaded cluster, which improves the workload

distribution. Figure 40 presents the pseudo-code of the cluster selection heuristic.

Input: application size APP.size
Output: selected_cluster
1. selected_cluster  -1
2. selected_cluster_energy  +∞
3. //Verify if the system has available resources to map the application
4. IF available_resources(system) >= APP.size THEN
5. FOR EACH cluster ck in the system
6, IF available_resources(ck) >= APP.size AND cl_energy (ck)< selected_cluster_energy THEN
7. selected_cluster  ck

8. selected_cluster_energy  cl_energy (ck)
9. END IF
10. END FOR
11. // There is no cluster with enough resources to receive the application
12. IF selected_cluster = -1 THEN
13. FOR EACH cluster ck in the system
14. IF cl_energy (ck)< selected_cluster_energy THEN
15. selected_cluster  ck

16. selected_cluster_energy  cl_energy (ck)
17. END IF
18. END FOR
19. END IF
20. END IF
21. return selected_cluster

Figure 40 - Cluster selection heuristic used in Load and Load-Communication heuristics.

82

The heuristic in Figure 40 first verifies if the system has available resources to map

the application (line 4). If there are no sufficient resources in the system, the application is

scheduled to be mapped later. The first loop (lines 5-10) analyzes all clusters that have

available resources to map the application, selecting the one with the smallest

accumulated energy. If there are no clusters with available resources to map the

application, a cluster with the smallest accumulated energy is selected, regardless the

number of available resources (lines 12-19). Note that the application is mapped in the

MPSoC iff the system has available resources for the application. This heuristic aims to

distribute the energy homogeneously when a new application arrives in the system. In the

long-term, this procedure avoids hotspots, and processors stressed over the time.

Consequently, this heuristic contributes to minimizing aging effects, as wearout.

5.3.2 Initial and non-initial tasks mapping

The L heuristic uses the same procedure to map both initial and non-initial tasks. All

SPs inside the cluster are evaluated, and the one with the lowest TE is selected. Figure 41

shows the pseudo-code of the initial and non-initial tasks mapping heuristic. The loop

between lines 3 and 8 evaluates all SPs inside the cluster, selecting the one with the

lowest accumulated energy TE. In this context, this heuristic tries to balance system

workload, assigning tasks to the less overloaded SPs.

Input: selected_cluster
Output: selected_sp
1. selected_sp  -1
2. selected_sp_energy  +∞
3. FOR EACH SP spi IN selected_cluster
4. IF available(spi) = true AND TE(spi)< selected_sp_energy THEN
5. selected_sp  spi
6. selected_sp_energy  TE (spi)
7. END IF
8. END FOR
9. return selected_sp

Figure 41 - Initial and non-initial tasks mapping used in Load heuristic.

5.4 LOAD-COMMUNICATION (LC)

The Load-Communication heuristic mixes LEC-DN and L heuristics, making a trade-

off between communication volume reduction, and workload distribution.

5.4.1 Cluster selection

This heuristic uses the same cluster selection approach of the Load heuristic,

presented in Section 5.3.1.

83

5.4.2 Initial tasks mapping

This heuristic divides the initial task mapping process into two phases. The first

phase selects an SP with the smallest region_energy to receive an initial task. A second

phase is executed if there is more than one initial task. In such phase, a set with all SPs up

to n hops far from the selected SP is created, selecting the SP of this set with the smallest

TE.

The function region_energy(spi, n_hops) returns the average TE from the set

containing spi and all SPs up to n_hops hops far from spi. Figure 42 shows a hypothetical

example using a 7x7 cluster, where spi is the central SP spcentral (in green); and n_hops is

3 hops. In Figure 42, the numbers inside each rectangle represent the TE of each SP. The

value of region_energy(spcentral, 3) corresponds to 64, since: (i) inside a region 3 hops far

from spcentral there is 25 SPs; (ii) the sum of the TEs of the SPS in this area is equal to

4100; (iii) the average TE in this area is equal to 4100/25=64.

Suppose a hypothetical example of an application with two initial tasks: ti and tj. The

first initial task ti is mapped in spcentral of Figure 42. For the mapping of the tj a region 3

hops far from spcentral is defined, as delimited by the colored SPs in Figure 42. Then, the

SP with the smallest TE in this region is selected to map tj. In the example, such SP has

TE equal to 66.

 123

 66 178 280

 114 200 80 109 77

120 210 120 200 110 350 327

 124 156 85 413 95

 149 123 189

 102

Figure 42 - Hypothetical example of region_energy.

The pseudo-code of the first phase of the initial tasks mapping heuristic is detailed in

Figure 43. The main loop (lines 3-8) selects an SP (selected_sp) with the lowest

region_energy. This procedure ensures that application’s tasks that will be mapped later

will be assigned closer to the selected SP and in SPs with a lower accumulated energy.

Input: selected_cluster, n_hops
Output: selected_sp
1. selected_sp  -1
2. selected_region_energy  +∞
3. FOR EACH SP spi in the selected_cluster
4. IF available(spi) AND region_energy(spi, n_hops)< selected_region_energy THEN
5. selected_sp  spi

6. selected_region_energy  region_energy(spi, n_hops)
7. END IF
8.END FOR EACH
9. return selected_sp

Figure 43 - First phase of the initial tasks mapping used in Load-Communication heuristic.

84

If the application has only one initial task, the SP chosen by the heuristic of Figure 43

is selected to execute the task. Otherwise, the heuristic presented in Figure 44 is executed

for each non-mapped initial task. In line 4 it is created a set neighbors_list with all SPs up

to n_hops from selected_sp computed in the previous phase. The loop between lines 6-11

selects an available SP from the neighbors_list with the smallest TE. If there is no

available SP inside the list, the search space increases 1 hop (lines 12-15), until visiting all

SPs of the cluster (line 5).

Input: SPaddress, n_hops // SPaddress is the selected_sp address obtained in the 1st phase
Output: selected_sp
1. selected_sp  -1
2. selected_sp_energy  +∞
3. // Get all neighbors of selected_sp within a distance n_hops
4. neighbors_list  neighbors(SPaddress, n_hops)
5. WHILE all SPs in the cluster not evaluated AND selected_sp=-1 DO
6. FOR EACH SP spi IN neighbors_list
7. IF available(spi) = true AND TE(spi) < selected_sp_energy THEN
8. selected_sp  spi
9. selected_sp_energy  TE (spi)
10. END IF
11. END FOR
12. IF selected_sp = -1 THEN
13. n_hops  n_hops +1
14. neighbors_list  neighbors(SPaddress, n_hops)
15. END IF
16. END WHILE
17. return selected_sp

Figure 44 – Second phase of the initial tasks mapping used in Load-Communication
heuristic.

5.4.3 Non-initial task mapping

Suppose a non-initial task ti is required to be mapped. The LC heuristic evaluates the

set C(ti), and creates a bounding box containing all ti communicating tasks mapped within

the cluster. Then, such bounding box is increased in one hop offering a large search

space. Figure 45 illustrates the mapping search space in the cluster. This heuristic selects

the SP inside the bounding box with the lowest TE. This heuristic mixes concepts used in

LEC-DN and L heuristics, aiming to make a trade-off between workload balancing and

communication volume reduction. For this purpose, LC uses a similar bounding box

search method used in the LEC-DN heuristic. The difference is that the bounding box is

increased by one hop in both cases: when there is one and when there are more than one

communicating tasks mapped in the cluster. In both cases, the heuristic selects the SP

inside the bounding box with the lowest TE. Such approach is different from the one used

in the L heuristic. In L heuristic it is selected the SP with the lowest TE inside the cluster,

85

which can increase the distance between communicating tasks. The approach used in LC

selects the less overloaded SP in a region close to the communicating tasks of the

required task, by using a bounding box.

 tj

 tj tk

 (a) search space when one communicating task is already

mapped (ti)
(b) search space when more than one communicating task
is already mapped (ti and tj). Solid lines correspond to the
original bounding box, dashed lines to the bounding box

increased by one hop

Figure 45 - Load-Communication heuristic search space.

Figure 46 describes the algorithm used to select an SP to receive a non-initial task ti.

The heuristic creates a list with all tasks communicating with ti already mapped onto the

SPs of the cluster (line 3). In the sequel, a bounding box rectangle is defined (line 4), with

all mapped communicating tasks. This bounding box is increased by one hop (line 5),

offering a larger search space to map ti. A list with candidate SPs is created (line 7). The

available SP in the list with the smallest TE is selected (lines 8-13). If no SP can be

selected, the bounding box is increased by one hop (lines 14-16). This process continues

up to find a SP or visiting all SPs of the cluster.

Input: ti , set C(ti)
Output: selected_sp
1. selected_sp  -1
2. selected_sp_energy  +∞
3. MC(ti) mapped_tasks(C(ti)) // all tasks communicating with ti already mapped
4. bounding_box  area(MC(ti))
5. increase(bounding_box, 1)
6. WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO
7. neighbors_list  search_SPs(bounding_box)
8. FOR EACH SP spi IN neighbors_list
9. IF available(spi) = true AND TE(spi)< selected_sp_energy THEN
10. selected_sp  spi
11. selected_sp_energy  TE(spi)
12. END IF
13. END FOR
14. IF selected_sp = -1 THEN
15. increase(bounding_box, 1)
16. END IF
17. END WHILE
18. return selected_sp

Figure 46 - Mapping of non-initial tasks.

86

5.5 Task Mapping Heuristics Evaluation

This Section evaluates the four mapping heuristics using the OVP platform model,

and the SystemC platform model. Section 5.5.1 presents the experiments concerning the

OVP platform. Section 5.5.2 presents experiments using the SystemC platform. Finally,

section 5.5.3 discuss the evaluated experiments.

5.5.1 Task mapping evaluation using the OVP platform model

This Section first employs the OVP platform model to compare the mapping

heuristics in terms of workload distribution (Section 5.5.1.1), communication volume,

(Section 5.5.1.2), and total execution time (Section 5.5.1.3). Section 5.5.1.4 evaluates the

heuristics in a larger MPSoC (12x12), to demonstrate the scalability of the approach. For

this purpose, three applications are used as benchmarks (all applications are real

applications, described in C language): (i) DTW - Digital Time Warping (DTW), with ten

tasks; (ii) MPEG decoder, with five tasks; (iii) DJK - Dijkstra, with six tasks.

Table 16 presents the six evaluated scenarios. Such scenarios use a 10x10 MPSoC

instance with a 5x5 cluster size with different applications. All applications start at the

beginning of the simulation while there are enough resources. When resources become

available, a new application starts. Such behavior induces a large system usage,

increasing the effort of the heuristics to obtain the best results.

Table 16 – Evaluated scenarios.

Scenario Applications
Number of

Applications
Number of

tasks

A 120 x MPEG 120 600

B 100 x DJK 100 600

C 15 x DTW, 35 x MPEG 50 325

D 65 x MPEG, 35 x DJK 100 535

E 10 x DTW, 25 x MPEG, 25 x DJK 60 375

F 15 x DTW, 5 x MPEG, 40 x DJK 60 415

5.5.1.1 Workload Distribution

This Section compares the heuristics concerning the workload distribution in all

scenarios. For this purpose, the experiments evaluate the number of instructions and the

energy consumed by executing such instructions at the end of the execution. Table 17

presents the number of executed instructions and the consumed energy values by the SPs

(total, average and standard deviation). The number of instructions includes the

instructions required to execute the applications of each scenario and the number of

instructions required by the microkernel.

87

Table 17 – Instructions (thousands of instructions) and energy (mJ) for the evaluated
scenarios, using a 10x10 MPSoC size – OVP platform.

PREMAP-DN – Instructions LEC-DN – Instructions L – Instructions LC – Instructions

Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev.

A 68,413 713 1,022 68,106 709 1,063 72,751 758 236 71,663 746 158

B 654,483 6,818 4,539 652,489 6,797 4,848 659,583 6,871 1,988 657,915 6,853 2,900

C 101,229 1,054 930 102,484 1,068 879 100,361 1,045 278 99,558 1,037 376

D 267,845 2,790 2,609 267,520 2,787 2,616 271,865 2,832 1,096 269,807 2,810 1,569

E 232,794 2,425 2,076 233,086 2,428 2,098 233,324 2,430 1,219 232,361 2,420 1,375

F 219,419 2,286 1,182 219,782 2,289 1,189 211,190 2,200 494 207,305 2,159 601

PREMAP-DN – Energy (mJ) LEC-DN – Energy (mJ) L – Energy (mJ) LC – Energy (mJ)

A 2,056 21 30 2,047 21 32 2,187 23 7 2,155 22 5

B 21,635 225 154 21,636 225 164 21,800 227 69 21,740 226 100

C 3,070 32 28 3,110 32 27 3,042 32 9 3,015 31 12

D 8,735 91 87 8,725 91 87 8,866 92 38 8,798 92 54

E 7,506 78 69 7,515 78 70 7,523 78 42 7,491 78 47

F 6,669 69 37 6,681 70 37 6,412 67 17 6,283 65 20

Results show that, for a given scenario, the total number of executed instructions and

the consumed energy has small variations for the different heuristics (up to 3.6% for

instructions and energy). This is an expected result since the workload is the same. The

number of instructions and the consumed energy per scenario are directly related to task

mapping. Two main factors induce a different number of executed instructions per

scenario. The first one is related to the CPU sharing. When tasks are mapped to the same

processor, the number of instructions varies due to task scheduling, which comprise

context saving and defining the next task to be scheduled. The second one is related to

the inter-task communication. When communicating tasks are mapped to a same

processor, the communication between such tasks does not occur through the NoC. A

communication through the NoC requires creating and treating packets and programming

the DMA module, which increases the number of executed instructions.

The most relevant result in Table 17 is the standard deviation value. A small standard

deviation value represents a better load distribution among the SPs. Table 18 presents the

energy standard deviation values normalized w.r.t. the L heuristic. The evaluated results

are normalized to the L heuristic since it presents the small values in most scenarios. This

result is explained since the L heuristic has a larger mapping search space. The L heuristic

is exhaustive, evaluating all SPs of the cluster.

The L and LC heuristics reduces the standard deviation in all scenarios when

compared to PREMAP-DN and LEC-DN heuristic. The PREMAP-DN and LEC-DN

heuristics increases up to 4.29 times the energy standard deviation values w.r.t. the L

heuristic. The reason explaining this result is the fact that LEC-DN and PREMAP-DN

heuristics do not take into account the tasks’ load (i.e., energy per task) in the mapping

88

decision. In addition, the LEC-DN and PREMAP-DN heuristics tend to group tasks

together in the same SP, increasing the chance of overloaded SPs.

The LC, a non-exhaustive heuristic, also increases the energy standard deviation

values normalized w.r.t. the L heuristic. The LC heuristic has an average increase of 29%

compared to L heuristic in all scenarios except in scenario A. LC heuristic reduces the

standard deviation in 44% compared to L in scenario A.

Table 18 – Energy standard deviation values normalized w.r.t. the L heuristic.

L PREMAP-DN LEC-DN LC

A 1.00 4.14 4.29 0.66

B 1.00 2.22 2.37 1.45

C 1.00 3.06 2.89 1.29

D 1.00 2.27 2.27 1.41

E 1.00 1.63 1.65 1.12

F 1.00 2.13 2.14 1.15

Figure 47 details how the standard deviation values of Table 18 reflect the workload

distribution. Figure 47 presents the energy consumed by each SP in scenario A for the

four heuristics. Red squares represent an energy value above 50 mJ, and green squares

represent an energy below 5 mJ. Figure 47(a) and Figure 47 (b) show the energy

distribution, respectively, for the PREMAP-DN and LEC-DN heuristics. Such heuristics

produce an unbalanced distribution of the energy among SPs, creating energy hotspots,

i.e., some SPs consume a high amount of energy while others consume a low amount of

energy. PREMAP-DN presents 19 SPs consuming more than 50 mJ; and 53 consuming

less than 5 mJ, where 48 SPs were not used to execute tasks. LEC-DN presents 18 SPs

consuming more than 50 mJ; and 55 consuming less than 5 mJ, and 43 SPs were not

used. This behavior shows that a high number of tasks share few SPs.

Figure 47(c) and Figure 47(d) present a uniform load distribution for the L and LC

heuristics. Using the L heuristic, only two SPs consume more than 50 mJ, and no one

consumes less than 5 mJ. Using LC heuristics, there are no SPs consuming more than 50

mJ, neither SPs consuming less than 5mJ. In both heuristics, all SPs are used to execute

tasks. Such different behavior highlights the benefits of using heuristics that consider the

load (i.e. energy) in the mapping process to avoid hotspots, therefore inducing a better

system reliability. Further, Figure 47 illustrates the results obtained in Table 18 where L

and LC have a reduced standard deviation value compared to PREMAP-DN and LEC-DN

heuristics.

Results showing the energy consumed at each SP for the other scenarios are

presented in Appendix A.1.

89

0.48 12.79 1.39 0.48 0.48 0.48 0.48 0.48 0.48 0.48

0.48 72.15 50.25 3.99 6.66 0.48 32.77 41.11 0.93 4.86

0.48 86.58 51.98 94.02 41.53 0.48 73.00 62.82 75.85 26.22

0.48 0.48 27.82 31.82 18.21 0.48 0.48 28.41 23.04 0.48

LMP 0.48 0.48 0.48 0.48 LMP 0.48 0.48 0.48 0.48

0.48 0.48 0.48 0.48 0.48 0.48 7.36 0.48 0.48 0.48

0.48 81.38 30.33 32.16 7.69 0.48 66.83 47.79 7.41 3.05

14.22 114.97 105.01 56.50 16.70 0.48 64.82 72.25 89.78 34.46

0.48 19.75 81.76 91.74 38.86 0.48 13.98 54.43 11.59 0.48

GMP 0.48 0.48 0.48 0.48 LMP 0.48 0.48 0.48 0.48

(a) PREMAP-DN

0.48 3.62 0.93 0.48 0.93 0.48 0.48 3.63 1.38 1.35

0.48 54.74 38.81 9.84 11.05 0.48 70.65 26.57 23.26 15.84

0.48 51.16 104.36 76.42 25.67 0.48 53.00 47.63 118.17 36.40

0.48 0.48 56.07 23.80 6.81 0.48 0.48 14.75 3.53 0.48

LMP 0.48 0.48 0.48 0.48 LMP 0.48 0.48 0.48 0.48

0.48 3.34 0.48 0.48 0.48 0.48 0.48 0.93 0.48 3.04

0.48 85.11 65.64 27.82 8.47 0.48 73.30 36.83 16.59 24.00

0.48 119.72 86.28 49.30 29.27 0.48 58.51 44.73 116.83 33.93

0.48 3.08 82.93 87.56 53.81 0.48 0.48 27.79 6.58 0.48

GMP 0.48 0.48 0.48 0.94 GMP 0.48 0.48 0.48 0.48

(b) LEC-DN

18.38 32.57 15.84 28.57 20.96 21.93 23.23 32.39 41.11 22.51

20.71 19.31 16.51 21.73 21.63 20.31 16.52 16.54 20.00 31.40

50.05 20.84 21.74 15.54 19.63 22.69 26.40 28.57 19.23 36.19

54.13 18.69 22.20 14.84 25.11 24.70 27.93 23.06 23.30 21.58

LMP 15.72 19.16 15.08 15.30 LMP 18.75 22.62 21.95 16.76

19.81 19.61 22.81 17.77 15.54 23.80 16.17 23.52 33.09 24.64

16.75 18.37 28.36 19.47 15.53 25.40 18.86 25.24 15.95 18.68

18.67 17.37 36.03 15.23 18.78 25.53 23.41 14.93 19.24 23.30

26.54 23.17 21.81 17.07 42.30 24.71 21.08 17.22 33.04 43.26

GMP 20.59 22.06 15.91 19.94 LMP 24.50 18.86 18.93 20.40

(c) L

26.14 24.84 29.60 23.91 25.75 18.18 32.23 19.71 34.39 30.41

21.07 18.29 19.92 22.82 18.49 21.93 21.96 17.87 23.14 28.28

20.66 18.94 19.08 19.58 30.07 15.57 24.93 20.32 21.68 23.02

25.59 21.99 24.54 23.38 21.78 18.01 24.25 27.99 19.60 19.67

LMP 23.22 23.74 17.33 22.37 LMP 23.21 16.37 35.22 23.20

20.38 22.61 16.52 17.50 24.15 23.52 23.25 19.03 18.67 27.99

17.25 19.61 32.48 29.17 19.80 18.95 20.84 16.47 27.86 27.91

11.73 30.93 13.98 17.66 22.15 25.89 19.03 36.99 25.47 15.17

19.05 26.24 17.63 27.53 15.36 17.34 23.84 16.42 24.36 21.38

GMP 19.99 17.75 16.72 26.52 LMP 23.29 21.31 28.06 24.84

(d) LC

Figure 47 – Energy consumed per SP (mJ) for each heuristic in Scenario A with the OVP
platform. Each rectangle represents a PE. Green rectangles represent SPs consuming

less than 5 mJ. Red rectangles represent SPs consuming more than 50 mJ.

90

5.5.1.2 Communication Volume

This Section compares the heuristics considering the total communication volume

transferred through the NoC. Table 19 shows the total communication volume in

thousands of flits for each scenario.

Table 19 – Total communication volume (thousands of flits).

PREMAP-DN LEC-DN L LC

A 159 180 888 390

B 910 943 2,420 965

C 410 387 1,141 661

D 344 340 1,357 507

E 425 441 1,425 718

F 1,010 1,008 2,629 1,395

PREMAP-DN and LEC-DN heuristics have the largest reduction in communication

volume compared to others heuristics. Such result was expected since such heuristics

consider the communication volume in the mapping decision. Table 20 shows the results

normalized w.r.t the PREMAP-DN heuristic since it presents the highest reduction in

communication volume in the most scenarios.

Table 20 - Total communication volume normalized w.r.t. the PREMAP-DN heuristic

PREMAP-DN LEC-DN L LC

A 1.00 1.14 5.60 2.46

B 1.00 1.04 2.66 1.06

C 1.00 0.94 2.78 1.61

D 1.00 0.99 3.94 1.47

E 1.00 1.04 3.35 1.69

F 1.00 1.00 2.60 1.38

L and LC heuristics increase the communication volume in average 3.27 and 1.97

times, respectively, compared to PREMAP-DN. Such result is explained since the main

cost function of L and LC heuristics is to distribute the tasks onto the SPs, which induces a

large use of the NoC. Otherwise, the PREMAP-DN heuristic tends to map tasks together in

the same SP. In this case, there is an intra-SP communication between tasks and tasks do

not communicate using the NoC.

The LC heuristic reduces the total communication volume in average 52.89%

compared to the L heuristic. Such result is explained since the LC heuristic considers the

distance of the communicating tasks in the mapping decision. On the other hand, the L

heuristic spreads tasks all over the cluster.

91

5.5.1.3 Total Execution Time

In this Section, heuristics are evaluated concerning the total execution time. Three

main factors influence the total execution time for different mapping solutions: CPU

sharing; NoC traffic and congestion; and mapping algorithm computation. Table 21

presents the execution time for each scenario.

Table 21 – Total execution time (thousands of clock cycles).

PREMAP-DN LEC-DN L LC

A 7,645 7,842 6,886 7,576

B 28,993 36,190 19,614 25,207

C 5,538 5,771 4,566 5,246

D 16,083 14,859 13,117 13,942

E 11,297 13,044 10,212 10,728

F 8,276 8,288 7,147 7,848

 The L heuristic presents the lowest execution time among the heuristics. Table 22

presents the total execution time normalized w.r.t. such heuristic.

Table 22 – Total execution time normalized w.r.t. the L heuristic.

L PREMAP-DN LEC-DN LC

A 1.00 1.11 1.14 1.10

B 1.00 1.48 1.85 1.29

C 1.00 1.21 1.26 1.15

D 1.00 1.23 1.13 1.06

E 1.00 1.11 1.28 1.05

F 1.00 1.16 1.16 1.10

Results show that the PREMAP-DN, LEC-DN and LC heuristics increase the total

execution time, respectively, by 22%, 30%, and 12% (average values) when compared to

the L heuristic. This result comes from the better workload distribution obtained in L

heuristic, which reduces the number of tasks sharing the same CPU. Distributing tasks

and using as much as possible SPs of the system at the same time may reduce the

execution time.

5.5.1.4 Evaluation in a 12x12 MPSoC

The same scenarios of Table 16 were executed in a 12x12 MPSoC instance, with

6x6 clusters. The goal of this experiment is to evaluate the scalability of the approach.

Table 26 presents the number of executed instructions and the consumed energy

values by the SPs (total, average and standard deviation). Similar results were obtained,

with a similar number of executed instructions and consumed energy per scenario, and a

significant reduction in the standard deviation values for L and LC heuristics.

92

Table 23 – Instructions (thousands of instructions) and energy (mJ) for the evaluated
scenarios, using a 12x12 MPSoC size – OVP platform.

PREMAP-DN – Instructions LEC-DN – Instructions L – Instructions LC – Instructions

Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev.

A 69,090 494 846 69,512 497 823 74,324 531 182 72,862 520 140

B 655,452 4,682 3,518 655,615 4,683 3,307 660,185 4,716 1,640 658,970 4,707 1,932

C 102,543 732 978 103,527 739 910 102,040 729 314 99,049 707 349

D 267,826 1,913 2,040 268,020 1,914 1,850 272,542 1,947 914 270,583 1,933 1,404

E 233,907 1,671 1,613 234,202 1,673 1,592 233,672 1,669 961 231,716 1,655 1,132

F 219,553 1,568 1,468 218,606 1,561 1,385 214,339 1,531 463 208,451 1,489 625

 PREMAP-DN – Energy (mJ) LEC-DN – Energy (mJ) L – Energy (mJ) LC – Energy (mJ)

A 2,081 15 25 2,094 15 25 2,239 16 6 2,194 16 4

B 21,667 155 120 21,671 155 112 21,825 156 57 21,781 156 67

C 3,115 22 30 3,146 22 28 3,101 22 10 3,005 21 11

D 8,739 62 68 8,744 62 61 8,891 64 32 8,828 63 48

E 7,544 54 53 7,553 54 53 7,537 54 33 7,475 53 39

F 6,677 48 45 6,647 47 43 6,526 47 16 6,332 45 20

Table 24 compares the heuristics considering the total communication volume

transferred through the NoC. As observed previously, PREMAP-DN and LEC-DN have the

largest reduction in the communication volume, and L presents the worst results. The LC

heuristic, which distributes evenly the workload, has an important reduction in the

communication volume compared to L heuristic.

Table 24 – Total communication volume (thousands of flits), using a 12x12 MPSoC size.

PREMAP-DN LEC-DN L LC

A 139 144 1,096 395

B 916 881 2,640 1,010

C 345 344 1,385 683

D 315 315 1,568 542

E 467 419 1,581 726

F 882 942 3,088 1,494

Table 25 presents the total execution time. In most scenarios, L and LC heuristics

reduce the total execution time compared to PREMAP-DN and LEC-DN heuristics.

Table 25 – Total execution time (thousands of clock cycles), using a 12x12 MPSoC size.

PREMAP-DN LEC-DN L LC

A 9,772 9,829 8,593 9,200

B 26,317 24,715 17,451 20,768

C 6,657 6,648 5,580 6,074

D 13,853 13,064 10,389 13,365

E 10,460 10,823 8,474 9,617

F 7,913 8,148 7,222 7,895

93

5.5.2 Task mapping evaluation using the SystemC platform model

In this Section, the scenarios described in Table 16 (10x10 MPSoC) are evaluated

using the SystemC cycle-accurate platform. The goal of executing the experiments in the

SystemC platforms is to obtain accurate results for execution time, and power. The four

heuristics are compared according to different performance figures: (i) workload

distribution, in Section 5.5.2.1; (ii) communication volume, in section 5.5.2.2; (iii) total

execution time, in Section 5.5.2.3; (iv) temperature distribution, in Section 5.5.2.4; (v) and

power traces, in Section 5.5.2.5.

5.5.2.1 Workload Distribution

This Section compares the heuristics in terms of the instructions and energy

distribution. Results evaluate the number of instructions executed and the energy

consumed by each SP at the end of execution. Table 26 presents the number of executed

instructions and the consumed energy values (total, average and standard deviation), for

the heuristics.

Table 26 – Instructions (thousands of instructions) and energy (mJ) for the evaluated
scenarios – SystemC platform.

PREMAP-DN – Instructions LEC-DN – Instructions L – Instructions LC – Instructions

Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev. Total Average Std. Dev.

A 43.584 454 842 43.646 455 847 45.534 474 121 45.249 471 98

B 510.356 5.316 1.620 510.448 5.317 1.619 513.293 5.347 1.826 511.970 5.333 1.364

C 68.240 711 749 68.481 713 694 69.069 719 154 69.019 719 275

D 202.672 2.111 1.465 202.222 2.106 1.497 203.450 2.119 889 203.429 2.119 942

E 173.412 1.806 1.217 173.137 1.804 1.151 174.075 1.813 822 173.574 1.808 894

F 148.298 1.545 534 147.949 1.541 521 148.796 1.550 152 148.951 1.552 246

PREMAP-DN – Energy (mJ) LEC-DN – Energy (mJ) L – Energy (mJ) LC – Energy (mJ)

A 1.238 13 24 1.240 13 24 1.299 14 4 1.289 13 3

B 15.010 156 48 15.013 156 48 15.114 157 54 15.073 157 41

C 1.987 21 22 1.994 21 20 2.013 21 5 2.010 21 8

D 5.939 62 43 5.926 62 44 5.968 62 27 5.967 62 28

E 5.087 53 36 5.080 53 34 5.111 53 24 5.095 53 27

F 4.340 45 16 4.331 45 15 4.358 45 5 4.361 45 7

The number of executed instructions and energy consumed per scenario is similar,

with a small variation due to the different mappings (up to 2.57%). A similar result was

obtained with the OVP platform (up to 3.6%).

The gray columns highlight the most relevant results of the Table 26, showing the

standard deviation of the average number of instructions/energy consumption of each SP.

As explained before, a smaller standard deviation reflects in a better workload balancing.

The L heuristic reduces the standard deviation in most scenarios, as pointed out by the

94

results obtained the in OVP platform. Table 27 compares the heuristics’ energy standard

deviation normalized w.r.t. the L heuristic.

When compared to the L heuristic, the PREMAP-DN and LEC-DN increase the

standard deviation, respectively, 3.62 and 3.53 times, except in Scenario B. In Scenario B,

PREMAP-DN and LEC-DN heuristics reduce the standard deviation by 12% compared to

the L. This result can be explained since the scenario B executes only the Djikstra

application, which tasks have similar load values. The LC heuristic has an average

increase of 38% compared to L, excepting scenario A and B. LC heuristic reduces the

standard deviation in average 22.5% compared to L in Scenarios A and B.

Table 27 – Energy standard deviation normalized w.r.t. the L heuristic.

L PREMAP-DN LEC-DN LC

A 1.00 6.81 6.84 0.80

B 1.00 0.88 0.88 0.75

C 1.00 4.75 4.40 1.75

D 1.00 1.62 1.65 1.05

E 1.00 1.47 1.39 1.09

F 1.00 3.44 3.36 1.61

To understand the standard deviation reduction values of Table 26, Figure 48

presents the energy consumed per SP for scenario A. Note in Figure 48(a) and Figure

48(b) that the PREMAP-DN and LEC-DN heuristic produce an unbalanced load

distribution, with several underused processors. PREMAP-DN produces 12 SPs

consuming more than 50 mJ (red rectangles), and 65 SPs consumes less than 5 mJ

(green rectangles). LEC-DN produces 12 SPs that consumes more than 50 mJ, and 67

consuming less than 5 mJ. Further, PREMAP-DN has 51, and LEC-DN 58 SPs that do not

execute tasks.

 On the other hand, L and LC heuristic provide a better load distribution, with all SPs

executing applications’ tasks, and no SPs consumes more than 50 mJ. The highest energy

values are, respectively, 92.01mJ, 96.62mJ, 31.17mJ, and 22.73, for PREMAP-DN, LEC-

DN, L and LC heuristics. PREMAP-DN and LEC-DN concentrate the load in few SPs,

increasing the probability to failures due to wear of process. The L and LC heuristic use

the total energy consumed in an SP (TE) to avoid overused cores and reduce the

probability of failures due to the wear of process.

Results presenting the energy consumed at each SP for the other scenarios are

presented in Appendix A.2. Such results present a similar behavior of Scenario A, where

PREMAP-DN and LEC-DN heuristics tend to concentrate the load in few SPs. Note that

the used SPs in PREMAP-DN and LEC-DN with higher consumed energy tend to

concentrate in the central SPs of a cluster. This result is explained by the initial tasks

mapping approach used for such heuristics. The central SP of a cluster is the point that

has a reduced distance to all cluster SPs. Therefore, mapping tasks in such central SPs

95

help in reduce communication distances and the communication volume transferred

through the NoC. However, as mentioned before, such approach tends to compromise

reliability, increasing the wear of SPs within such central area.

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.02 1.77 41.08 3.56 1.72 0.02 12.49 26.12 3.30 2.63

0.02 59.26 80.13 47.47 1.22 0.02 50.73 83.11 69.31 11.01

0.02 8.45 19.43 10.44 1.72 0.02 0.02 8.48 10.22 1.76

LMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.02 45.15 12.99 8.78 2.10 0.02 25.50 5.15 0.63 1.23

0.02 50.97 92.01 52.47 4.19 0.02 67.37 81.94 70.57 17.34

0.02 0.02 78.52 22.44 1.77 0.02 0.02 25.33 13.70 1.76

GMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02

(a) PREMAP-DN
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.02 35.98 6.46 0.32 0.02 0.02 26.43 20.86 3.31 2.03

0.02 67.19 96.62 27.93 0.62 0.02 50.98 69.51 49.88 4.51

0.02 0.02 42.09 8.61 0.02 0.02 0.02 42.35 8.71 0.02

LMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.02 37.39 13.07 0.02 1.22 0.02 14.64 1.74 0.02 1.54

0.02 50.68 95.74 76.62 17.51 0.02 59.01 68.82 74.74 18.60

0.02 0.02 60.93 10.87 0.02 0.02 0.02 50.55 18.17 2.99

GMP 0.02 0.02 0.02 0.02 LMP 0.02 0.02 0.02 0.02

(c) LEC-DN
11.50 14.30 10.05 9.66 15.69 14.12 16.82 15.10 9.68 11.19

11.55 12.63 14.73 10.54 12.67 9.86 23.37 11.61 9.59 13.32

10.03 9.73 14.52 13.49 9.98 15.00 11.73 10.30 15.97 13.64

11.08 16.31 17.06 14.08 10.50 11.26 10.87 16.23 17.71 12.03

LMP 10.68 12.03 20.06 31.17 LMP 10.73 13.26 13.86 17.11

10.29 15.03 16.48 12.20 12.38 23.35 10.47 10.95 10.67 9.71

17.13 11.02 13.49 11.30 18.02 10.39 11.81 11.02 13.32 18.55

15.76 9.80 11.34 16.19 11.22 11.77 15.41 12.62 14.53 13.66

20.79 10.91 11.73 11.11 15.37 16.14 11.10 14.21 15.76 10.83

GMP 16.56 11.43 14.70 10.58 LMP 13.34 11.50 17.38 16.82

(c) L
17.99 18.70 9.68 10.37 12.40 18.37 17.89 9.69 10.40 12.40

15.88 16.09 9.68 15.58 17.16 14.67 12.38 11.38 15.64 17.35

13.76 12.29 12.79 8.78 13.49 11.32 12.00 12.80 10.72 13.46

15.12 13.55 10.30 10.25 10.77 16.67 12.07 11.26 9.90 9.43

LMP 11.31 14.37 14.27 16.51 LMP 16.71 14.36 14.25 16.53

15.29 13.27 12.15 15.56 15.22 12.09 17.13 9.67 10.40 12.44

11.96 17.31 10.97 11.02 14.92 14.80 16.15 9.69 15.71 17.27

12.42 18.28 12.40 13.88 9.48 12.90 12.01 12.89 10.56 13.58

15.23 12.29 22.73 13.81 8.26 15.99 13.79 11.58 10.68 10.85

GMP 12.52 14.63 11.32 8.18 LMP 17.58 14.43 14.32 16.85

(d) LC
Figure 48 – Energy consumed per SPs (mJ) for each heuristic in Scenario A in the

SystemC platform. Each rectangle represents a PE. Green rectangles represent SPs
consuming less than 5 mJ. Red rectangles represent SPs consuming more than 50 mJ.

96

5.5.2.2 Communication Volume

Table 28 presents the total communication volume transferred through the NoC for

all evaluated scenarios. As obtained in the OVP platform results, the PREMAP-DN and

LEC-DN heuristics achieve the highest reductions in the communication volume in all

scenarios. Table 29 presents results normalized w.r.t. the PREMAP-DN heuristic.

Table 28 - Total communication volume (thousands of flits)

PREMAP-DN LEC-DN L LC

A 235 237 1,189 706

B 1,004 1,040 3,467 2,029

C 717 732 1,708 1,050

D 625 566 1,887 1,014

E 793 804 1,921 1,183

F 1,898 1,884 3,571 2,342

Table 29 - Total communication volume normalized w.r.t. the PREMAP-DN heuristic

PREMAP-DN LEC-DN L LC

A 1.00 1.01 5.07 3.01

B 1.00 1.04 3.45 2.02

C 1.00 1.02 2.38 1.46

D 1.00 0.90 3.02 1.62

E 1.00 1.01 2.42 1.49

F 1.00 0.99 1.88 1.23

L and LC heuristics have an average increase of 3.04 and 1.81 times, respectively,

when compared to the PREMAP-DN. Such result is similar to the one obtained in the OVP

platform, where L and LC heuristics have an average increase of 3.27 and 1.97 times,

respectively.

The LC heuristic reduces the total communication volume in average 40% compared

to the L heuristic. In the OVP platform, the LC heuristic had the same behavior. However,

in such platform the reduction of LC heuristic was 52%.

5.5.2.3 Total Execution Time

A consequence of the better workload distribution is the reduction in the total

execution time of the simulated scenarios. Table 30 presents the execution time for the

evaluated scenarios. As observed in the OVP platform, the L heuristic has the larger

reduction in total execution time compared to other heuristics.

97

Table 30 – Total execution time (thousands of clock cycles).

PREMAP-DN LEC-DN L LC

A 5,950 5,814 5,361 5,667

B 13,463 13,896 15,500 17,288

C 4,452 4,449 3,455 4,297

D 10,623 10,241 8,325 9,113

E 9,340 8,825 7,011 7,749

F 4,670 4,545 3,798 4,289

Table 31 presents the total execution time normalized w.r.t. the L heuristic. LC

heuristic has an average increase of 12%, when compared to the L heuristic. In OVP

platform such increase was the same (i.e. 12%).

Table 31 – Total execution time normalized w.r.t. the L heuristic

L PREMAP-DN LEC-DN LC

A 1.00 1.11 1.08 1.06

B 1.00 0.87 0.90 1.12

C 1.00 1.29 1.29 1.24

D 1.00 1.28 1.23 1.09

E 1.00 1.33 1.26 1.11

F 1.00 1.23 1.20 1.13

5.5.2.4 Temperature distribution

This Sub-section compares the heuristics regarding the temperature distribution at

the end of the simulation. For this purpose, a power report is generated using the

proposed energy model (Section 4.1). The HotSpot simulator [WEI06] computes the

temperature of the MPSoC at the end of the simulation using the power report (65 nm, 1

GHz, 1.2V, ambient temperature 318.15 K). Figure 49 presents four heat maps showing

the temperature distribution of the MPSoC for scenario A. The small temperature gradient

(4 K) comes from the simple processor architecture (Plasma) used in the adapted

platform, with a peak consumption of 25 mW.

The result verified in the heat maps of Figure 49 was expected according to the

results observed in Table 26. The L and LC heuristic generate a uniform temperature

distribution because most PEs has a warm temperature (represented as blue rectangles).

Such better temperature distribution is related to the reduced standard deviation values

compared to PREMAP-DN and LEC-DN heuristics. Moreover, note in Figure 49 that

PREMAP-DN and LEC-DN have a high temperature (i.e. green area) in SPs in a central

area of the cluster, while other SPs are colder (i.e. blue area). This illustrates an

unbalanced temperature distribution with the presence of hotspots.

Results illustrating the temperature distribution for the other scenarios are presented

in Appendix B. In some scenarios, the L and LC heuristics achieve a higher temperature

98

than the LEC-DN and PREMAP-DN heuristics. Such behavior is explained due two

reasons. First, L and LC heuristic execute the same workload in a reduced execution time,

which reflects in increased power and a higher temperature. Second, since an SP

temperature affects the temperatures of neighboring SPs. The L and LC heuristics present

a higher number of SPs executing tasks at the same time. Such SPs generate heat and

increase the temperature of their neighbors. However, in the most scenarios L and LC

evenly distribute the temperature across the system, with a reduced number of hotspots

areas compared to PREMAP-DN and LEC-DN heuristics.

 (a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 49 – Temperature distribution for Scenario A.

5.5.2.5 Power Traces

This Section compares the heuristics regarding the power distribution during the

execution time. Figure 50 details the power traces along the execution time for the four

heuristics in scenario A. Note that although different, the power traces of Figure 50

correspond to the execution of the same workload but varying the task mapping.

99

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 50 – Power traces for scenario A. X-axis: time in milliseconds (only PEs executing
tasks are considered). Y-axis: average power of active processors (W). Gray bars: 50% of
the population, first to third quartiles. Black lines: average first and third quartiles. Green

line: average median. Blue line: instantaneous median.

The graphs of Figure 50 show:

 Median: the LEC-DN and PREMAP-DN have a higher median (blue lines) than L

and LC heuristic, corresponding to a higher power dissipation of SPs at most

sampled periods.

 Quartiles (black lines): the average first and third quartiles are much higher in the

PREMAP-DN and LEC-DN heuristic, also corresponding to a higher power

dissipation of SPs.

 Instantaneous power dissipation (gray bars): most of the time the gray bars of the

PREMAP-DN and LEC-DN heuristic are higher than the L and LC heuristic,

corresponding to a worst power distribution.

100

 L and LC (approximately 54 ms and 57 ms) provides a better execution time

reduction compared to PREMAP-DN and LEC-DN (approximately 60 ms and 58

ms) The execution time may be also observed in Table 30.

Results containing the power traces for the other scenarios are presented in

Appendix C. When compared to PREMAP-DN and LEC-DN heuristics, the L and LC

produce lower power dissipation at most sampled periods. This is explained due to the

higher CPU sharing provided by PREMAP-DN and LEC-DN heuristics. When tasks are

executing in the same SP, power dissipation increases.

5.5.3 Discussion

The heuristics presented in this Chapter were evaluated regarding different

parameters: workload distribution, execution time, communication volume, temperature

distribution and power traces.

Results show that taking into account the tasks’ load in the mapping decision can

considerably improve the workload balancing. However, achieving a perfect workload

distribution, where all SPs consume the same energy, may not be achievable because

tasks may present different loads. Tasks may have a large difference in their loads, which

may generate unbalanced workloads and, possibly, the presence of hotspots. Take, for

example, the application illustrated in Figure 51. Figure 51(a) shows the application graph,

where the numbers above each vertex represent the task load (energy consumption).

Such application is mapped as presented in Figure 51(b). Since the application tasks’

loads have a large difference between them, an unbalanced workload is produced (the SP

where task C is mapped consumes ten times as much power as other SPs).

7007050

(a) (b)

A B C B

A
D

GMP

C

D

20

sp1

sp0

sp2

Figure 51 – Example of unbalanced workload.

L and LC heuristics improve workload balancing compared to the LEC-DN and

PREMAP-DN heuristics. This result shows that heuristics that focus only on

communication reduction produces unbalanced workloads, with an increased occurrence

of hotspots, which can compromise system reliability.

Further, PREMAP-DN and LEC-DN heuristics do not take into account processor

wear. Even if they can provide a better workload balancing in a specific scenario, such

101

heuristics tend to concentrate tasks in the same area (i.e. central SPs of a cluster). In this

case, system reliability is compromised since SPs of this area are more susceptible to

failures due to wear of process.

On contrary, L and LC heuristics can minimize the accumulation of wear on

processors by using the TE value. The TE value is the total consumed energy by a given

SP, corresponding to the energy (Ei) consumed by all already executed tasks and the

tasks that are currently being executed on this processor. Chantem et al. [CHA13] use a

similar technique, called LTF (i.e. largest-task first [CHE08]), considering the accumulated

energy consumed by a processor in order to slow down wear process. The LTF technique

considers a given task has an energy value to execute on a given processor. When an

application is required to be mapped, the LTF technique analyzes all tasks and orders

them by their energy values. Then, the task with the largest energy value is assigned to

the processor with the least total energy consumption. When compared to this Thesis, the

main drawback of that technique is that it cannot handle dynamic workloads.

Experiments also show that the L heuristic presented a better (in average 23.52%)

workload balancing compared to LC. However, L heuristic increases an average of 40%

the communication volume compared to the LC. This result shows that heuristics that

focus only on workload balancing increase the communication volume. A high

communication volume transferring through the NoC can compromise QoS and induce to

links failures. Links failures may produce isolated and, consequently, unusable cores,

which compromise the workload balancing.

The L heuristic presented a reduced execution time compared to other heuristics.

However, L heuristic may compromise the execution time in scenarios with an increased

data transfer between tasks, according to results presented in [MAN15].

The LC heuristic provides the best tradeoff between communication volume

reduction and workload balancing, inducing to better system reliability without

compromising performance. The LC heuristic reduces the total execution time when

compared to heuristics that focus on the communication volume reduction. Using

scenarios with higher communication volume transferred through the NoC, the LC heuristic

presents a reduced execution time compared to L [MAN15]. Further, as presented next,

the LC heuristic also has a low effort to compute mapping decisions, which does not

compromise scalability and performance.

The LC heuristic has a small computation complexity (worst case O(n2)). In fact, the

execution time to execute the heuristic is small due to its hierarchical implementation.

Table 32 presents the scenarios used to evaluate the LC complexity, and Table 33 shows

the average number of instructions to execute each step of the mapping.

102

Table 32 - Evaluated scenarios configuration for the SystemC platform.

Scenario
MPSoC

size
Cluster size Applications

Number of
tasks

1

6x6 3x3

8 x DTW, 8 x MPEG, 8 x DJK,
8 x SYN1, 8 x SYN2

360

2 8 x DJK, 11 x SYN1, 11 x SYN2 312

3 16 x MPEG, 8 x DJK, 8 x SYN2 224

4
3 x DTW, 6 x MPEG, 9 x DJK,
5 x SYN1, 8 x SYN2

270

5 12x12 4x4
10 x DTW, 25 x MPEG, 18 x DJK,
14 x SYN1, 12 x SYN2

645

Table 33 – Average number of instructions to execute each step of the Load-
Communication heuristic.

Scenario Cluster selection Initial tasks mapping Non-initial tasks mapping

Sc1 280 2497 688

Sc2 288 2337 674

Sc3 299 3057 645

Sc4 282 2588 664

Sc5 562 8584 749

The cluster selection is fast since it only verifies the availability of resources. The

most complex step is the mapping of non-initial tasks because it is necessary to evaluate

all possible regions inside a cluster. The mapping of the non-initial task requires few

instructions because the fixed region restricts the search space. The hierarchical

implementation of the mapping heuristic ensures scalability because the cluster size

defines the search space, not the MPSoC size. With larger MPSoCs, the cluster selection

step increases its execution time (Sc5). With larger clusters, the initial tasks mapping may

also increase its execution time as shown in Sc5. In both cases, the execution time to map

each non-initial task is negligible compared to the time to execute them (thousands of

clock cycles).

Regarding the platforms used to evaluate the scenarios, both platforms generate

qualitatively similar results, such as:

 L and LC heuristics improve the workload balancing compared to PREMAP-

DN and LEC-DN.

 L heuristic improves the workload balancing compared to LC.

 LC heuristic reduces the communication volume compared to LC.

 L heuristic reduces the execution time compared to the other heuristics. LC

heuristic reduces the execution time compared to PREMAP-DN and LEC-DN.

Such results demonstrate the relevance of the OVP platform in the design-space

exploration. Even if the OVP model is not accurate, it enables faster simulations (two

orders of magnitude) compared to SystemC model, enabling a fast analysis of the

proposed heuristics.

103

5.6 Final Remarks

This Chapter presented one of the main contributions of this Thesis: the LC heuristic.

Such heuristic present the following main features:

 Dynamic, i.e., tasks are mapped at runtime;

 Distributed, contributing to increasing performance and reliability for large-scale

MPSoCs;

 Scalable, due to its hierarchical implementation;

 Efficient workload distribution, contributing to increasing the system reliability;

 Important reduction of hotspots in the system compared to heuristics aiming to improve

only the NoC usage.

The LC heuristic showed that the mapping heuristics must evolve in the sense that

the NoC usage is not the most relevant performance figure to consider. Workload in the

processing elements, consumed energy, hotspots, reliability, and lifetime are also

important parameters to take into account in the mapping decision.

104

6. CONCLUSION AND FUTURE WORKS

The Introduction of the Thesis stated the following hypothesis: “This Thesis relies on

two hypotheses: (i) untimed abstract models can be used to evaluate task mapping

solutions; and (ii) task mapping solutions that focus on communication volume reduction

can compromise system reliability; and task mapping solutions that focus on workload

balancing, can increase system communication volume”.

The simulation of the untimed OVP abstract model, calibrated from the low-level

model (RTL), enabled to capture the execution time, the energy consumption, and the

communication volume. Such abstract model allowed to evaluate mapping heuristics in

large MPSoCs, with similar results to the clock-cycle accurate SystemC platform.

Consequently, the first part of the above hypothesis is proven.

The extensive evaluation of the heuristics showed that optimizing the NoC

communication lead to overused processors, and consequently temperature hotspots, and

optimizing the workload distribution lead to overused NoC links. Otherwise, the L heuristic,

which focuses only on workload balancing, increased the communication volume

considerably when compared to the other heuristics. The proposed LC heuristic makes a

tradeoff between load (energy) and NoC communication, which leads in long-term in

higher reliability and system lifetime. Thus, the second part of the above hypothesis is also

proven.

Appendix D presents the Author’s publications related to the present work.

6.1 Conclusions Related to the Multi-level Platform Framework

This Thesis presented a multi-level framework that includes different modeling and

debugging capabilities that improve the design space exploration of large MPSoCs. The

proposed framework uses a synthesizable RTL VHDL model as reference, which allows to

captures accurate area, frequency and power performance figures. Then, two other

models were implemented.

The SystemC RTL model is effectively clock-cycle accurate with a simulation

speedup of two orders of magnitude compared to the reference model. The simulation of

this model produces accurate performance results, and higher debuggability compared to

the reference model.

An OVP model is proposed to enable software development and validation at early

design stages, reducing design cost and improving time-to-market. Such model provides

fast simulation (approximately 20 times faster than the SystemC model in a 20x20 MPSoC

instance) and higher software debuggability (i.e. integration with GDB and Eclipse,

watchdogs for capturing fetched instruction, etc). Moreover, such model can provide

105

performance figures (some estimated) including: (i) communication volume; (ii) number of

executed instructions and energy consumed by processors; (iii) execution time. The

provided performance figures help designers for decision making, decreasing the risks of

the development software flow. For instance, the OVP model proved to be able to evaluate

task mapping heuristics, generating qualitatively results similar to the SystemC model.

Further, the OVP simulator provides pre-defined models including different

processors models (ARM, MIPS, PowerPC, etc.). In this context, one important feature of

the OVP modeling is the easiness of integrating different CPU models, allowing the fast

development of heterogeneous MPSoCs.

6.2 Conclusions Related to the Distributed System Management

This Thesis proposed a distributed system management approach that divided the

system into clusters controlled by a local manager. Such approach proved to provide

system scalability and gains in execution time compared to a centralized approach.

Further, the proposal reduces mapping computational effort and NoC traffic, improving

system reliability.

6.3 Conclusions Related to the Task Mapping Heuristics

This Thesis proposed four runtime distributed heuristics, which were evaluated using

the OVP and SystemC platform models. The proposed heuristics are LEC-DN, PREMAP-

DN, L, and LC. Among these heuristics, the LC is the one that best tackles the following

challenges: (i) scalability; (ii) dynamic workload; and (iii) reliability.

Scalability comes from to the hierarchical mapping approach, which divides the

process into three steps: cluster selection, initial task mapping, and non-initial tasks

mapping. One processor centralizes the cluster selection, but it corresponds to a fast

procedure to select a region to receive the application. The initial and non-initial task

mapping are distributed in manager processors, enabling to execute in parallel several

mapping decisions.

Support to dynamic workload also comes from the mapping approach, which does

not use pre-computed mapping templates. Applications are mapped into the available

resources, according to some criteria (e.g. accumulated energy).

The increased reliability is the result of the tradeoff between the use of the NoC and

processing resources. The proposed LC heuristic distributes the workload evenly, avoiding

hotspots and power peaks, as demonstrated in the temperature maps and power traces.

As mentioned before, this Thesis focuses on general-purpose MPSoC platforms,

able to execute several applications that are unknown in advance. This Thesis also

assumes that underlying applications can be inserted into the system in a non-

106

deterministic way, according to user requirements. As presented in Section 2.2, the

literature presents different task mapping solutions focusing on improving system reliability

for general-purpose MPSoC platforms. However, such solutions present results only for

small systems (up to 10 cores). Those solutions have the following drawbacks for large

scale MPSoCs:

 Centralized mapping approach. Centralized mapping approaches can compromise

performance and reliability for large MPSoCs. This is explained since a single core

is responsible to execute the mapping functions, creating a communication and

computation system hotspot. The LC heuristic uses a distributed mapping

approach that improves performance and reliability compared to a centralized

approach, as presented in Chapter 4.

 The mapping algorithm of such techniques may increase in complexity in large

MPSoCs, imposing high time-consuming and high computational algorithms. High

time-consuming algorithms may compromise system performance. In turn, high

computational algorithms can compromise reliability since they require higher power

consumption to be executed, generating a higher temperature. For instance,

different mapping algorithms compute the system gradient temperature, which

grows in complexity for large systems. The LC heuristic has small computation

complexity for a 12x12 MPSoC, as presented in Section 5.5.3.

 Some solutions do not consider the system communication volume in the mapping

decision, which can compromise reliability and performance. In large systems,

communicating tasks may be mapped too far away from each other, increasing the

system communication volume. The LC considers the communication volume in

the mapping decision.

 Such solutions use wear and temperature sensors, which impose a higher cost for

large MPSoCs. The LC does not use sensors.

6.4 Limitations of the Proposal

The main limitations of this Thesis are:

 the adopted MPSoC architecture employs a single application repository. Further,

only the GMP has access to such repository;

 the task mapping heuristics are limited to homogeneous NoC-based MPSoC;

 task mapping heuristics experiments considered only 3 real benchmarks;

 task mapping heuristics evaluation can be improved by using numeric models to

demonstrate system reliability improvements.

107

6.5 Future Works

Aforementioned limitations do not invalidate the obtained results, but they point out

possible future directions that can be investigated. Future works include:

 integration of a lifetime model to obtain an MTTF (Mean Time to Failure) metric.

Different works [CHA13][HUA09][HAR12] in the literature use the MTTF as the

main metric for evaluating lifetime reliability improvements. Such metric is

computed by a lifetime model that considers different system aging effects. In

this context, results of this Thesis can be better evaluated by showing the

expected system lifetime when executing a given mapping heuristic.

 use of monitoring to better estimate processors wear-state and workload

variations at runtime. A monitoring system also can capture system data at

runtime to help heuristics to provide better mapping decisions.

 add the power due to the static consumption in the power reports to obtain more

accurate thermal maps.

 explore task mapping heuristics for heterogeneous and 3D MPSoCs.

 explore system architectures using more application repositories instances, or

architectures where a larger number of processors have access to the

application repository.

108

REFERENCES

[ANA12] Anagnostopoulos, I.; Bartzas, A.; Kathareios, G.; Soudris, D. “A divide and
conquer based distributed runtime mapping methodology for many-core
platforms”. In: DATE, 2012, pp. 111-116.

[AUS02] Austin T.; Larson E.; Ernst D. “SimpleScalar: An Infrastructure for Computer
System Modeling”. Computer, vol. 35(2), 2002, pp. 59–67.

[AZE05] Azevedo, R.; Rigo, S.; Bartholomeu, M.; Araujo, G.; Araujo, C.; Barros, E. The
ArchC Architecture Description Language and Tools. International Journal of
Parallel Programming, Vol. 33(5), October 2005, pp. 453–484.

[BAN02] Banakar, R.; Steinke, S.; Bo-Sik Lee; Balakrishnan, M.; Marwedel, P.
"Scratchpad memory: a design alternative for cache on-chip memory in
embedded systems". In: CODES, 2002, pp. 73-78.

[BEN02] Benini, L.; De Micheli, G. “Networks on chips: a new SoC paradigm”. IEEE
Computer, vol. 35(1), January, 2002, pp. 70-78.

[BEN12] Benini, L.; Flamand, E.; Fuin, D.; Melpignano, D. "P2012: Building an
Ecosystem for a Scalable, Modular and High-Efficiency Embedded Computing
Accelerator". In: DATE, 2012, pp.983-987.

[BIN11] Binkert N.; et al. “The gem5 simulator”. ACM SIGARCH Computer Architecture
News, v.39 (2), 2011, 7p.

[BOL13] Bolchini, C.; Carminati, M.; Miele, A.; Das, A.; Kumar, A.; Veeravalli, B.
“Runtime mapping for reliable many-cores based on energy/performance trade-
offs”. In: DFT, 2013, pp. 58–64.

[BUS11] Busseuil, R.; Barthe, L.; Almeida, G.; Ost, L.; Bruguier, F.; Sassatelli, G.; Benoit,
P.; Robert, M.; Torres, L. “Open-Scale: A Scalable, Open-Source NoC-based
MPSoC for Design Space Exploration”. In: ReConFig, 2011, pp.357-362.

[CAR09] Carara, E.; Oliveira,R.; Calazans,N.; Moraes,F."HeMPS - a Framework for NoC-
based MPSoC Generation". In: ISCAS, 2009, pp. 1345-1348.

[CAR10] Carvalho, E.; Calazans, N.; Moraes, F. “Dynamic Task Mapping for MPSoCs”.
IEEE Design and Test of Computers, vol. 27-5, Set-Oct 2010, pp. 26-35.

[CAS13] Castilhos, G. M.; Mandelli, M.; Madalozzo, G. A.; Moraes, F. “Distributed
resource management in NoC-based MPSoCs with dynamic cluster sizes”. In:
ISVLSI, 2013, pp.153-158.

[CEN09] Ceng, J.; et al. “A High-Level Virtual Platform for Early MPSoC Software
Development”. In: CODES+ISSS, 2009, pp. 11-20.

[CHA13] Chantem, T.; et al. "Enhancing multicore reliability through wear compensation
in online assignment and scheduling". In: DATE, 2013, pp. 1373 -1378

[CHE08] Chen, J-J. et al. “Approximation Algorithms for Multiprocessor Energy-Efficient
Scheduling of Periodic Real-Time Tasks with Uncertain Task Execution Time”.
In: RTAS, 2008, pp. 13-23.

[CHO07] Chou, C-L.; Marculescu, R. “Incremental Runtime Application Mapping for
Homogeneous NoCs with Multiple Voltage Levels”. In: CODES+ISSS, 2007,
pp.161-166.

109

[CHO08] Chou, C-L.; Marculescu, R. “User-Aware Dynamic Task Allocation in Networks-
on-Chip”. In: DATE, 2008, pp. 1232-1237.

[CHO10] Chou, C-L.; Marculescu, R. “Runtime task allocation considering user behavior

in embedded multiprocessor  networks-on-chip". IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 29(1), 2010,
pp. 78–91.

[COS07] Coskun, A.K.; et al. "Temperature Aware Task Scheduling in MPSoCs", In:
DATE, 2007, pp. 1-6.

[COS09] Coskun, A.K.; et al. “Dynamic thermal management in 3D multicore
architectures”. In: DATE, 2009, pp.1410-1415.

[CUI12] Cui, Y; Zhang, W; Yu, H. “Decentralized Agent Based Re-Clustering for Task
Mapping of Tera-Scale Network-on-Chip System”. In: ISCAS, 2012, pp. 2437-
2440.

[DAS13] Das, A.; Kumar, A.; Veeravalli, B. “Reliability-driven task mapping for lifetime
extension of networks-on-chip based multiprocessor systems”. In: DATE, 2013,
pp. 689–694.

[DAS14] Das, A; et al. “Temperature aware energy-reliability trade-offs for mapping of
throughput-constrained applications on multimedia MPSoCs”. In: DATE, 2014,
pp. 1-6

[DE13] de Dinechin, B.D.; Ayrignac, R.; Beaucamps, P.-E.; Couvert, P.; Ganne, B.; de
Massas, P.G.; Jacquet, F.; Jones, S.; Chaisemartin, N.M.; Riss, F.; Strudel, T.,
“A clustered manycore processor architecture for embedded and accelerated
applications”. In: HPEC, 2013, pp.1-6

[DUE14] Duenha, L.; Guedes, M.; Almeida, H.; Boy, M.; Azevedo, R. "MPSoCBench: A
toolset for MPSoC system level evaluation". In: SAMOS, 2014, pp.164-171.

[FAR08] Faruque, M. A.; et al. “ADAM: Runtime Agent-based Distributed Application
Mapping for on-chip Communication”. In: DAC, 2008, pp. 760-765.

[FAZ08] Fazzino, F., M. Palesi, and D. Patti. “Noxim: Network-on-chip simulator”.
Obtained in: http://sourceforge. net/projects/noxim, 2008.

[GAR14] Garibotti, R. F. “Exploration of Compute Accelerators for High Performance
Computing”. PhD's thesis, Université Montpellier 2, 2014, 108 pages.

[GE10] Ge, Y.; et al. "Distributed task migration for thermal management in many-core
systems" In: DAC, 2010, pp.579-584.

[GRA12] Gray, I.; Audsley, N.C., "Challenges in software development for multicore
System-on-Chip development". In: RSP, 2012, pp.115-121.

[HAR12] Hartman, A., et al. “Lifetime improvement through runtime wear-based task
mapping”. In: CODES+ISSS, 2012, pp. 13-22.

[HEN13] Henkel, J.; et al. “Reliable on-chip systems in the nano-era: Lessons learnt and
future trends”. In: DAC, 2013, pp. 1-10.

[HÖL07] Hölzenspies, P. K. F.; Smit, G. J. M.; Kuper, J. “Mapping streaming applications
on a reconfigurable MPSoC platform at runtime”. In: SoC, 2007, pp.1-4.

[HÖL08] Hölzenspies, P. K. F.; Hurink, J. L.; Kuper, J.; Smit, G. J. M. “Runtime Spatial
Mapping of Streaming Applications to a Heterogeneous Multi-Processor
System-on-Chip (MPSOC)”. In: DATE, 2008, pp. 212-217.

110

[HOS09] Hosseinabady, M.; Nunez-Yanes, J. "Runtime resource management in fault-
tolerant network on reconfigurable chips". In: FPL, 2009, pp. 574–577.

[HU10] Hu, W.; Tang, X.; Bin Xie; Chen, T.; Wang, D. “An Efficient Power-Aware
Optimization for Task Scheduling on NoC-based Many-core System”. In:CIT,
2010, pp. 171–178.

[HUA09] Huang, L.; et al. “Lifetime reliability-aware task allocation and scheduling for
MPSoC platforms”. In: DATE, 2009, pp. 51-56

[IBS13] International Business Strategies, Inc. (IBS), 2013.

[IND14] Indrusiak,L. “End-to-end Schedulability Tests for Multiprocessor Embedded
Systems based on Networks-on-Chip with Priority-Preemptive Arbitration”.
Journal of Systems Architecture, v.60(7), 2014, pp.553-561.

[INT12] Intel. “The Intel® Xeon Phi™ Coprocessor”, 2012.

[ITR13] International Tecnology Roadmap for Semiconductors. Accessed in:
http://www.itrs.net/reports.html. February 2013.

[JAN03] Jantsch, A. “Modeling Embedded Systems and SoC's: Concurrency and Time in
Models of Computation”. San Francisco: Morgan Kaufmann Publishers Inc.,
2003, 375p.

[JEJ04] Jejurikar, R., Pereira, C. and Gupta, R. “Leakage aware dynamic voltage
scaling for real-time embedded systems”. In: DAC, 2004, pp. 275-280.

[KHA12] Khajekarimi, E.; Hashemi, M. R. “Communication and congestion aware runtime
task mapping on heterogeneous MPSoCs”. In: CADS, 2012, pp. 127–132.

[KOB11] Kobbe, S.; Bauer, L.; Lohmann, D.; Schroder-Preikschat, W.; Henkel, J.
“DistRM: Distributed Resource Management for On-Chip Many-Core Systems”.
In: CODES+ISSS, 2011, pp. 119-128.

[LEM12] Lemaire, R.; Thuries, S.; Heiztmann, F. “A flexible modeling environment for a
NoC-based multicore architecture”. In: High Level Design Validation and Test
Workshop, 2012, pp. 140-147.

[LIU15] Liu, Z.; et al. "Task Migrations for Distributed Thermal Management Considering
Transient Effects" IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, v.23(2), 2015, pp.397-401

[LU10] Lu, S.; Lu, C.; Hsiung , P. “Congestion- and energy-aware runtime mapping for
tile-based network-on-chip architecture”. In: Frontier Computing. Theory,
Technologies and Applications, 2010, pp. 300 – 305.

[LUK08] Lukovic, A.; Fiorin, L. “An Automated Design Flor for NoC-based MPSoCs on
FPGAs”. In: RSP, 2008, pp.58-64.

[MAN11a] Mandelli, M. G.; Ost, L. C.; Carara, E. A.; Guindani, G. M.; Rosa, T.; Medeiros,
G.; Moraes, F. G. “Energy-aware dynamic task mapping for NoC-based
MPSoCs”. In: ISCAS, 2011, pp. 1676-1679.

[MAN11b] Mandelli, M. G.; Ost, L. C.; Amory, A. M.; Moraes, F. G. “Multi-Task Dynamic
Mapping onto NoC-based MPSoCs”. In: SBCCI, 2011, pp. 191-196

[MAN12] Mandelli, M; Castilhos, G. M.; Moraes, F.G. “Enhancing Performance of
MPSoCs through Distributed Resource Management”. In: ICECS, 2012, p. 544-
547.

111

[MAN13] Mandelli, M.; Rosa, F.; Ost, L.; Sassatelli, G.; Moraes, F. G. “MPSoC Modeling
for Reducing Software Development”. In: ICECS, 2013, pp. 489-492.

[MAN15] Mandelli, M.; Ost, L.; Sassatelli, G.; Moraes, F. "Trading-off system load and
communication in mapping heuristics for improving NoC-based MPSoCs
reliability". In: ISQED, 2015, pp.392-396

[MAR12] Marongiu, A.; Benini, L. “An OpenMP Compiler for Efficient Use of Distributed
Scratchpad Memory in MPSoCs”. IEEE Transactions on Computers, vol. 62(1),
2012, pp. 222-236.

[MAR14] Martins, A.; Silva, D.; Castilhos, G.; Monteiro, T.; Moraes, F. "A method for
NoC-based MPSoC energy consumption estimation". In: ICECS, 2014, pp. 427-
430

[MEI10] Meier, M.; Engel, M.; Steinkamp, M.; Spinczyk, O. “LavA: An Open Platform for
Rapid Prototyping of MPSoC”. In: FPL, 2010, pp.452-457.

[MEY14] Meyer, B; et al. “Cost-effective lifetime and yield optimization for NoC-based
MPSoCs”. In: ACM Transactions on Design Automation Electronic Systems,
vol. 19(2), 2014

[MOR04] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. “HERMES: an
Infrastructure for Low Area Overhead Packet-switching Networks on Chip”.
Integration, the VLSI Journal, vol. 38-1, Oct. 2004, pp. 69-93.

[MUR07] Murali, S.; et al. “Temperature-aware processor frequency assignment for
MPSoCs using convex optimization”. In: CODES+ISSS, 2007, pp. 111-116.

[NGO06] Ngouanga, A.; Sassatelli, G.; Torres, L.; Gil, T.; Soares, A.; Susin, A. “A
contextual re-sources use: a proof of concept through the APACHES platform”.
In: DDECS, 2006, pp.42-47.

[OST10] Ost, L. C.; Indrusiak, L. S.; Maatta, S.; Mandelli, M. G.; Nurmi, J.; Moraes, F. G.
“Model-based design flow for NoC-based MPSoCs”. In: ICECS, 2010, pp. 750-
753.

[OST11a] Ost, L. C.; Mandelli, M. G.; Almeida, G. M.; Indrusiak, L. S.; Moller, L. S.;
Glesner, M.; Sassatelli, G.; Robert, M.; Moraes, F. G.. “Exploring dynamic
mapping impact on NoC-based MPSoCs performance using a model-based
framework”. In: SBCCI, 2011, pp. 185-190.

[OST11b] Ost, L. C.; Almeida, G. M.; Mandelli, M. G.; Wachter, E.; Varyani, S.; Indrusiak,
L. S.; Sassatelli, G.; Robert, M.; Moraes, F. G. “Exploring Heterogeneous NoC-
based MPSoCs: from FPGA to High-Level Modeling”. In: RECOSOC, 2011, pp
1-8.

[OST12] Ost, L. C.; Varyani, S.; Mandelli, M. G.; Wachter, E.; Almeida, G. M.; Indrusiak,
L. S.; Sassatelli, G.; Moraes, F. G. “Exploring Adaptive Techniques in
Heterogeneous MPSoCs based on Virtualization”. ACM Transactions on
Reconfigurable Technology and Systems, vol. 5(3), 2012, pp. 1-11.

[OST13] Ost, L. C.; Mandelli, M. G.; Almeida, G. M.; Moller, L. S.; Indrusiak, L. S.;
Sassatelli, G.; Benoit, P.; Glesner, M.; Robert, M.; Moraes, F. G. “Power-aware
dynamic mapping heuristics for NoC-based MPSoCs using a unified model-
based approach”. ACM Transactions on Embedded Computing Systems, vol.
12(3), 2013, pp. 1 - 22.

[OVP13] OVP 2013, Available at: www.ovpworld.org/technology_ovpsim.php

http://www.ovpworld.org/technology_ovpsim.php

112

[PAU06] Paulin, P.; Pilkington, C.; Langevin, M.; Bensoudane, E.; Lyonnard, D.; Benny,
O.; Lavigueur, B.; Lo, D.; Beltrame, G.; Gagné, V.; Nicolescu, G. “Parallel
Pragramming Models for a Multiprocessor SoC Platform Applied to Networking
and Multimedia”. In: VLSI, 2006, pp.667-680.

[PET12] Petry, C.A.; Wachter, E.W.; de Castilhos, G.M.; Moraes, F.G.; Calazans, N. L V,
"A spectrum of MPSoC models for design space exploration and its use," RSP,
2012, pp. 30-35.

[REK13] Rekik, W; Ben Said, M; Ben Amor, N. “Virtual Prototyping of Multiprocessor
Architectures Using the Open Virtual Platform”. In: ICCAT, 2013, pp. 1-6.

[ROS13] Rosa, F.; Ost L.; Reis, R.; Sassatelli G. “Instruction-driven Timing CPU Model
for Efficient Embedded Software Development using OVP”. In: ICECS, 2013,
pp. 855-858.

[ROS14] Rosa, F., Ost, L., Raupp, T., Moraes, F. and Reis, R. “Fast energy evaluation of
embedded applications for many-core systems”. In: PATMOS, 2014, pp. 1-6.

[ROT13] Roth, C.; Bucher, H.; Reder, S.; Buciuman, F.; Sander, O.; Becker, J., "A
SystemC modeling and simulation methodology for fast and accurate parallel
MPSoC simulation". In: SBCCI, 2013, pp.1-6

[SCH10] Schranzhofer, A.; Chen, J.-J.; Thiele, L. "Dynamic Power-Aware Mapping of
Applications onto Heterogeneous MPSoC Platforms". IEEE Transactions on
Industrial Informatics, vol. 6(4), 2010, pp. 692-707.

[SHA11] Shabbir, A.; Kumar, A.; Mesman, B.; Corporaal, H. “Distributed Resource
Management for Concurrent Execution of Multimedia Applications on MPSoC
Platforms”. In:SAMOS, 2011, pp. 132-139.

[SIM13] Simics, Available at : www.windriver.com/products/simics

[SIN09a] Singh, A.K.; Wu Jigang; Prakash, A.; Srikanthan, T. “Mapping Algorithms for
NoC-based Heterogeneous MPSoC Platforms”. In: Euromicro, 2009, pp. 133-
140.

[SIN09b] Singh, A.K. et al. “Eficient heuristics for minimizing communication overhead in
NoC-based heterogeneous MPSoC platforms”. In: RSP, 2009, pp. 55-60.

[SIN10] Singh, A. K.; et al. "Communication-aware heuristics for runtime task mapping
on NoC-based MPSoC platforms". Journal of Systems Architecture: the
EUROMICRO Journal, vol. 56-7, Jul 2010, pp. 242-255.

[SIN13] Singh, A.; et al. “Mapping on multi/many-core systems: survey of current and
emerging trends”. In: DAC, 2013, pp. 1-10.

[SMI05] Smit, L.T.; Hurink, J.L.; Smit, G.J.M. “Runtime mapping of applications to a
heterogeneous SoC”. In: SoC, 2005, pp.78-81.

[TAN08] Tan, J.; Zhang, L.; Fresse, V.; Legrand, A.; Houzet, D. “A predictive and
parametrized architecture for image analysis algorithm implementations on
FPGA adapted to multispectral imaging”. In: IPTA, 2008, pp 1-8.

[TIA09] Tian, G.; Hammami, O. “Performance Measurements of Synchronization
Mechanisms on 16PE NoC-based Multi-Core with Dedicated Synchronization
and Data NoC”. In: ICECS, 2009, pp.988-991.

[TIL10] Tilera Corporation. “Tile-GX Processor Family”, 2010.

http://www.windriver.com/products/simics

113

[TIW94] Tiwari. V.; et al. “Power analysis of embedded software: a first step towards
software power minimization”. IEEE Transactions Very Large Scale Integration
Systems, v.2(4), 1994, pp. 437–445.

[VEN10] Ventroux, N.; Guerre, A; Sassolas, T.; Moutaoukil, L.; Blanc, G.; Bechara, C.;
David, R. "SESAM: An MPSoC Simulation Environment for Dynamic Application
Processing". In: CIT, 2010, pp.1880-1886.

[VIL11] Villavieja, C; Etsion, Y.; Ramirez, A.; Navarro, N. “FELI: HW/SW Support for
On-Chip Distributed Shared Memory in Multicores”. In: Euro-Par, 2011, pp.
282–294.

[WAN14] Wang, Z; et al. “System-level reliability exploration framework for
heterogeneous MPSoC”. In: GLSVLSI, 2014, pp 9-14.

[WEI06] Wei Huang; et al. “HotSpot: a compact thermal modeling methodology for early-
stage VLSI design”. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, v.14(5), 2006, pp. 501-513.

[WEI11] Weichslgartner, A.; Wildermann, S.; Teich, J. "Dynamic Decentralized Mapping
of Tree-Structured Applications on NoC Architectures". In: NoCs, 2011, pp. 201-
209.

[WIL09] Wildermann, S.; Ziermann, T.; Teich, J. "Run time Mapping of Adaptive
Applications onto Homogeneous NoC-based Reconfigurable Architectures". In:
FPT, 2009, pp. 514 - 517.

[WOS07] Woszezenki, C. “Alocação de Tarefas e Comunicação entre Tarefas em
MPSoCs”. Dissertação de Mestrado, Programa de Pós-Graduação em Ciência
da Computação, PUCRS, 2007, 121p.

[WU11] Wu, Y-K; et al. "Distributed thermal management for embedded heterogeneous
MPSoCs with dedicated hardware accelerators" In: ICCD, 2011, pp.183-189.

[YE02] Ye, T.; Benini, L.; De Micheli, G. "Analysis of Power Consumption on Switch
Fabrics in Network Routers". In: DAC, 2002, pp. 524-529.

[YOU07] Yourst M.T. “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator”. In: ISPASS, 2007, pp. 23–34.

[ZHA13] Zhang, D.; Zeng, X.; Wang, Z.; Wang, W.; Chen, X. "MCVP-NoC: Many-Core
Virtual Platform with Networks-on-Chip support". In: ASICON, 2013, pp. 28-31.

114

APPENDIX A – WORKLOAD DISTRIBUTION

This appendix first complements the results of Section 5.5.1.1 (OVP platform) and

5.5.2.1 (SystemC platform), where the heuristics are evaluated concerning the workload

distribution. Results presented in this appendix show the energy consumption per PE for

scenarios B to F of Table 16. The L and LC heuristics have a better workload balancing

compared to PREMAP-DN and LEC-DN heuristics in most scenarios. Such heuristics have

a smaller number of SPs with a low energy consumption (green rectangles) and high

energy consumption (red rectangles).

A.1 Results for OVP Platform

78.75 236.24 79.32 158.05 0.48 78.64 235.74 217.21 157.34 0.48
335.64 412.30 236.45 354.91 157.01 336.19 413.36 236.35 356.06 156.59
158.10 472.08 353.51 412.56 157.28 158.14 472.40 353.82 353.93 156.71
137.79 235.16 473.20 411.73 156.94 0.48 157.01 474.09 413.48 78.73
LMP 0.48 236.63 216.64 156.91 LMP 0.48 236.54 78.77 78.95
0.48 156.87 235.81 0.48 0.48 156.19 78.20 354.73 156.10 0.48

157.53 587.55 411.69 236.13 79.32 354.70 413.22 157.53 183.69 79.04
79.41 352.67 587.02 236.81 158.12 0.48 412.74 529.90 411.71 234.88
0.48 235.77 411.53 235.66 235.93 0.48 131.42 295.20 413.00 156.95
GMP 236.85 236.21 587.74 156.80 LMP 0.48 235.14 274.93 156.56

(a) PREMAP-DN
78.90 334.25 217.80 78.80 79.38 78.38 78.34 216.77 156.78 0.48
157.59 413.46 157.82 295.78 78.39 216.92 414.33 158.22 235.48 157.15
78.82 414.57 530.32 235.08 236.40 78.83 533.15 352.38 531.67 236.34
216.18 413.20 294.61 412.91 78.56 0.48 157.70 295.28 594.28 235.49
LMP 78.15 158.03 78.98 78.82 LMP 0.48 157.11 157.55 157.60
26.97 157.82 353.05 78.15 78.79 79.30 235.49 335.43 78.50 79.10
215.98 411.83 431.00 209.99 78.76 79.15 411.46 235.76 157.56 0.48

0.48 372.71 899.42 315.48 314.08 131.87 531.77 471.85 234.10 105.55
105.36 411.79 374.09 235.49 274.15 0.48 157.08 412.78 471.71 234.58
GMP 235.87 210.53 450.45 235.40 LMP 0.48 157.80 78.65 79.07

(b) LEC-DN
158.07 157.90 217.67 365.03 157.53 158.01 217.99 157.80 218.63 157.72
278.01 157.85 220.97 304.47 278.82 278.26 303.60 303.86 158.61 303.34
217.89 283.45 157.97 218.19 302.98 304.09 157.95 218.39 157.89 220.46
217.07 157.90 157.97 157.93 304.78 363.34 278.25 157.61 158.07 279.58
LMP 158.36 303.20 303.23 218.92 LMP 157.66 218.38 304.51 218.13

216.54 157.72 157.67 217.75 218.47 158.14 221.20 158.19 304.42 158.00
420.63 219.53 157.29 302.27 157.68 302.77 276.80 218.35 218.31 158.17
362.30 306.15 158.51 158.55 158.50 278.32 303.73 157.38 217.83 218.46
421.84 217.65 158.20 158.08 217.35 278.26 157.62 157.93 157.96 304.83
GMP 306.38 157.32 217.02 216.09 LMP 157.73 365.39 304.84 217.43

(c) L
78.65 305.19 422.47 209.21 449.65 422.93 156.82 27.01 210.16 506.38
182.52 184.82 158.23 185.68 183.86 157.61 185.42 184.18 271.66 208.95
421.37 158.83 79.88 156.91 217.75 164.36 183.53 542.17 184.73 53.49
244.99 302.49 131.57 132.24 362.26 216.99 185.35 183.39 185.20 157.29
LMP 157.25 282.66 157.35 278.17 LMP 339.58 130.63 157.01 423.10

333.51 158.72 190.06 269.47 445.66 421.23 297.54 276.56 278.72 217.36
215.96 158.19 156.42 183.64 210.88 181.89 236.16 218.46 132.61 157.04
156.48 132.81 333.65 217.60 132.62 219.30 216.28 131.10 129.53 219.17
250.91 133.99 216.83 243.07 182.93 361.24 218.95 157.67 218.57 277.34
GMP 254.17 131.43 209.47 504.30 LMP 218.07 216.07 157.36 277.49

(d) LC
Red rectangles: SPs consuming more than 400 mJ. Green rectangles: SPs consuming less than 100 mJ.

Figure 52 – Energy consumed per SP in Scenario B in the OVP platform.

115

0.48 0.48 44.23 15.62 3.44 0.48 20.17 6.46 45.35 3.53

0.48 56.12 48.98 41.18 21.36 15.49 13.38 59.66 51.39 5.92

44.38 48.38 60.16 63.91 33.61 45.11 46.64 56.52 44.55 8.81

15.39 44.31 62.92 56.15 47.52 55.77 44.65 46.35 56.94 44.06

LMP 15.52 44.80 0.48 0.48 LMP 0.48 0.48 43.80 0.48

0.48 17.72 33.34 16.35 11.38 0.48 5.91 0.48 0.48 0.48

49.70 106.66 95.65 66.35 31.07 0.48 41.00 42.93 34.99 4.89

0.48 47.32 102.08 60.06 32.37 0.48 52.53 101.64 47.28 8.53

0.48 45.67 108.20 99.86 64.01 0.48 43.17 58.52 10.53 19.81

GMP 13.74 49.76 0.48 0.48 LMP 0.48 42.76 8.47 3.08

 (a) PREMAP-DN

1.38 6.74 45.18 0.48 0.48 0.48 15.61 6.21 89.84 0.48

0.48 64.47 58.15 38.04 6.40 43.41 15.20 92.38 103.04 22.32

44.57 61.40 59.69 34.95 21.01 45.66 51.30 71.39 57.60 13.42

0.48 44.71 72.83 60.54 6.58 43.23 30.04 46.34 20.43 5.91

LMP 15.77 45.38 0.48 0.48 LMP 0.48 0.48 0.48 0.48

46.81 40.28 48.92 49.62 5.76 0.48 0.48 8.36 26.34 13.17

48.07 64.79 63.77 69.58 32.65 0.48 30.47 45.21 24.81 18.90

47.85 55.66 69.64 47.61 5.14 45.48 100.46 50.35 52.70 6.15

21.65 46.27 48.79 72.23 49.90 0.48 45.32 45.35 56.64 31.54

GMP 10.46 0.48 45.64 0.48 LMP 0.48 0.48 46.24 0.48

 (b) LEC-DN

27.37 26.87 33.63 41.81 29.36 29.09 16.74 28.99 16.36 28.98

32.99 46.31 44.52 33.31 24.35 29.36 17.39 29.26 17.57 29.15

32.76 20.56 33.09 25.64 24.36 23.74 17.87 23.85 16.92 22.91

32.86 21.02 28.50 18.39 26.03 44.86 46.75 45.34 23.42 43.70

LMP 32.15 19.54 26.67 45.98 LMP 23.30 29.22 23.35 28.88

33.33 23.97 33.05 32.76 30.51 24.02 37.34 33.53 18.48 28.58

34.24 26.51 32.94 41.87 54.64 36.86 33.84 33.12 33.21 27.83

41.73 24.83 50.76 52.28 25.47 44.96 30.98 18.10 30.17 29.66

57.20 32.56 36.99 27.75 33.41 32.77 18.21 45.72 33.66 30.40

GMP 34.69 40.87 30.56 26.69 LMP 39.21 49.67 46.78 40.52

 (c) L

30.96 30.93 34.20 53.38 33.18 24.35 26.52 20.05 43.94 30.27

18.53 33.87 35.20 53.90 33.48 23.95 24.08 30.06 50.90 15.16

21.10 32.97 35.74 30.23 29.66 23.07 30.10 22.84 29.58 29.00

14.16 26.85 19.11 18.75 25.94 43.92 15.47 29.96 15.37 29.88

LMP 24.24 46.02 9.36 18.82 LMP 30.07 22.91 15.37 45.28

30.87 38.82 47.00 66.37 27.63 43.65 17.92 49.08 61.16 44.17

26.25 32.47 39.97 34.98 30.35 15.54 29.77 56.77 33.22 63.50

26.15 30.44 30.91 31.80 53.51 22.79 17.95 18.49 24.42 23.80

44.98 18.81 42.58 27.64 31.56 17.38 30.12 41.19 27.19 27.28

GMP 16.26 33.60 24.43 49.64 LMP 25.02 55.32 29.87 19.81

 (d) LC

Red rectangles: SPs consuming more than 50 mJ. Green rectangles: SPs consuming less than 5 mJ.

Figure 53 – Energy consumed per SP in Scenario C in the OVP platform.

116

0.48 84.79 14.64 13.26 5.91 3.62 3.34 130.71 0.48 5.84

0.48 253.34 143.17 19.77 15.07 14.64 116.00 278.27 108.76 40.31

79.27 362.33 300.66 154.67 70.48 26.97 215.97 124.57 120.42 70.21

0.48 92.11 132.41 111.65 39.07 0.48 139.99 187.23 104.63 67.12

LMP 26.97 4.77 77.80 0.48 LMP 5.10 98.26 9.67 1.38

26.97 91.12 7.90 7.24 27.71 2.99 171.58 6.27 78.21 27.43

137.49 252.18 154.55 82.40 29.15 55.69 253.21 115.59 113.10 39.38

0.48 230.75 327.40 117.38 78.17 138.44 78.30 218.73 180.00 9.16

26.97 274.75 241.68 189.22 78.15 55.80 97.71 61.17 218.72 80.68

GMP 37.99 29.47 164.94 78.84 LMP 77.60 3.53 79.89 0.48

 (a) PREMAP-DN

0.48 6.41 156.37 81.80 0.48 0.48 0.48 65.62 3.53 0.48

14.03 71.96 84.57 157.84 86.63 0.48 156.52 258.46 160.94 6.58

4.94 86.04 258.74 156.26 9.46 91.58 376.43 168.08 136.26 86.34

52.88 209.59 98.15 104.18 58.89 0.48 167.73 197.06 111.64 87.76

LMP 82.11 3.07 77.95 0.48 LMP 5.58 62.13 39.45 13.63

0.48 133.53 2.98 0.48 0.48 0.48 96.68 7.31 53.83 0.48

0.48 275.60 120.44 224.60 78.38 0.48 226.15 157.15 147.38 86.73

91.49 170.31 218.67 275.79 82.64 53.31 338.78 198.80 138.54 86.24

0.48 13.99 183.19 212.14 83.50 0.48 118.82 214.61 148.17 20.05

GMP 78.09 152.91 68.86 14.23 LMP 0.48 78.01 0.93 6.81

 (b) LEC-DN

45.26 79.24 50.89 79.08 140.09 105.82 64.93 73.24 130.58 46.42

138.52 140.17 140.93 73.89 44.82 126.49 87.61 70.82 141.26 62.27

125.03 62.04 57.13 199.13 83.25 64.99 87.75 57.15 134.12 64.61

65.60 144.45 47.90 85.28 82.54 64.84 62.21 117.64 79.58 45.80

LMP 70.69 80.08 49.10 148.30 LMP 61.82 63.09 44.01 114.51

144.21 61.13 141.40 69.57 81.92 151.60 67.22 62.13 148.46 151.75

141.21 141.20 204.71 141.56 79.35 128.19 67.57 86.23 67.56 110.29

84.54 82.00 61.63 64.51 62.37 56.40 51.88 148.59 68.20 70.59

138.57 61.87 139.92 84.47 138.90 57.48 137.92 48.40 71.28 128.43

GMP 79.62 87.00 65.46 165.52 LMP 51.93 67.14 69.44 69.58

 (c) L

165.13 226.19 89.92 41.25 127.99 136.06 68.61 57.43 103.58 193.40

78.57 83.21 82.82 140.02 79.32 52.92 44.96 43.64 85.79 157.40

18.79 21.46 59.84 98.94 64.56 99.77 40.09 48.45 63.52 85.46

75.44 68.42 44.77 83.15 82.62 80.69 109.39 111.58 45.03 21.92

LMP 114.51 32.97 170.48 168.06 LMP 108.52 290.27 69.71 18.00

227.57 90.37 14.32 64.33 231.27 145.19 145.29 48.03 78.97 113.91

87.58 85.21 35.45 87.92 87.81 62.30 65.70 65.00 38.89 140.17

81.57 35.59 104.89 73.54 99.15 88.25 69.50 122.28 56.77 58.64

139.99 142.70 38.99 45.02 149.35 210.24 94.38 39.65 64.42 90.10

GMP 36.11 70.90 64.18 133.02 LMP 74.43 22.72 87.68 234.36

 (d) LC

Red rectangles: SPs consuming more than 200 mJ. Green rectangles: SPs consuming less than 20 mJ.

Figure 54 – Energy consumed per SP in Scenario D in the OVP platform.

117

1.39 139.44 143.04 78.38 0.93 0.48 7.03 138.12 78.38 0.48

44.06 190.47 133.60 137.87 78.20 47.81 98.11 79.43 62.66 5.91

0.48 183.14 129.53 93.10 13.43 87.50 186.40 239.00 171.34 104.59

0.48 14.79 45.21 196.56 78.17 47.99 79.98 78.75 113.27 32.18

LMP 13.82 5.08 78.90 0.48 LMP 5.61 8.86 77.80 0.48

0.48 131.89 26.97 53.41 0.48 0.48 44.53 76.27 63.11 36.22

78.95 307.57 147.31 255.71 155.51 0.48 124.30 160.89 51.03 6.81

52.63 144.60 104.88 57.35 6.21 46.89 199.29 236.50 130.43 22.67

77.78 151.51 186.49 112.98 16.70 0.48 46.43 83.06 101.05 59.19

GMP 33.65 53.56 138.56 78.40 LMP 0.48 0.48 88.28 0.48

 (a) PREMAP-DN

0.93 155.44 0.48 0.48 0.48 0.48 88.68 4.37 77.79 32.97

31.81 212.72 186.81 138.14 78.21 77.81 241.20 120.51 93.29 43.98

0.48 57.79 282.73 119.70 0.93 0.48 96.56 242.98 122.07 36.62

53.42 98.19 129.89 198.89 78.16 0.48 30.26 78.63 114.04 47.67

LMP 77.60 0.93 78.91 0.48 LMP 0.48 0.48 77.80 0.48

0.48 79.02 26.97 0.48 0.48 46.48 45.93 60.71 46.12 0.48

78.95 195.93 73.18 216.61 78.38 0.48 61.02 160.61 50.07 47.73

2.80 87.27 84.36 195.77 83.92 89.80 87.38 249.45 164.58 91.77

70.93 140.65 91.35 118.25 19.22 0.48 61.06 87.56 258.01 125.80

GMP 77.61 32.20 145.82 81.55 LMP 0.48 0.48 124.44 58.09

 (b) LEC-DN

50.93 40.83 133.51 50.41 41.04 96.89 68.47 57.18 126.65 62.00

49.62 41.55 135.42 71.71 30.25 66.63 68.53 48.05 28.33 213.77

100.56 31.01 30.38 80.14 31.38 150.08 57.25 39.88 68.63 39.58

43.77 41.30 116.26 44.66 31.49 139.28 62.07 68.46 44.00 62.37

LMP 30.48 30.23 45.15 50.65 LMP 153.39 63.64 61.15 57.98

53.36 49.61 70.39 139.05 79.60 50.65 41.65 128.03 170.12 42.85

53.57 50.32 70.15 143.40 44.57 139.20 45.01 41.62 130.65 67.50

98.01 51.18 81.53 79.20 163.54 134.14 67.60 67.78 88.91 67.98

113.72 128.25 165.19 150.06 138.75 142.31 44.85 44.91 53.03 50.07

GMP 49.33 133.20 44.47 149.09 LMP 89.36 131.77 76.08 50.37

 (c) L

69.88 41.68 52.95 78.63 198.90 224.62 104.75 36.93 101.84 150.79

117.37 56.53 41.89 67.85 20.90 66.68 66.62 32.83 93.14 97.31

96.20 56.46 22.83 23.53 66.68 35.32 43.71 32.93 32.13 29.91

54.12 45.05 34.08 23.47 30.23 112.30 83.56 93.62 77.49 25.38

LMP 39.60 40.88 19.53 50.43 LMP 79.62 207.40 52.36 18.50

114.15 78.58 198.22 123.39 32.22 43.52 48.02 172.68 154.29 41.16

76.13 95.28 81.92 80.37 88.30 39.20 50.07 98.21 53.86 153.38

80.22 56.78 37.93 84.77 197.68 49.04 55.50 58.56 58.72 60.36

130.65 67.74 52.29 131.39 105.59 144.39 55.97 53.30 79.03 61.73

GMP 51.94 31.14 137.02 153.62 LMP 55.79 113.59 79.27 174.75

 (d) LC

Red rectangles: SPs consuming more than 150 mJ. Green rectangles: SPs consuming less than 15 mJ.

Figure 55 – Energy consumed per SP in Scenario E in the OVP platform.

118

47.65 61.43 15.92 46.87 0.48 0.48 46.27 18.07 46.79 0.48

102.00 105.01 104.05 121.03 87.81 46.60 107.61 110.19 91.41 44.33

62.92 89.06 104.40 122.61 82.68 16.90 45.85 106.81 89.54 88.27

15.60 90.48 104.22 82.80 44.62 16.00 92.85 121.73 90.22 44.39

LMP 57.37 90.54 0.48 0.48 LMP 92.24 92.38 44.18 44.72

91.51 71.76 80.91 49.53 0.48 47.40 61.80 15.97 47.25 0.48

59.10 99.45 93.15 105.15 49.99 100.86 105.12 104.70 121.43 86.97

94.15 96.23 121.50 115.82 92.34 62.70 89.83 104.45 123.95 83.29

47.36 95.82 113.42 125.09 51.40 15.99 90.96 106.49 83.15 44.94

GMP 34.33 95.93 50.02 47.70 LMP 57.25 92.08 0.48 0.48

 (a) PREMAP-DN

47.65 61.43 15.92 47.63 0.48 0.48 46.22 18.21 47.25 0.48

102.00 104.77 104.14 122.65 87.83 46.48 107.03 110.46 90.63 44.68

62.92 89.52 104.46 122.63 82.83 16.89 45.86 106.70 89.91 88.79

16.11 91.23 104.47 83.42 44.59 15.99 91.78 122.54 90.10 44.46

LMP 57.56 90.76 0.48 0.48 LMP 91.92 91.18 44.33 44.73

91.29 56.21 80.49 49.52 0.48 47.40 61.82 16.13 47.26 0.48

59.31 98.85 94.17 105.71 50.46 100.98 105.46 104.61 122.14 87.55

110.98 96.66 120.78 116.63 92.50 62.69 90.50 105.26 122.95 83.84

48.02 96.52 113.41 125.12 52.25 15.88 90.78 105.58 82.95 44.87

GMP 36.28 95.31 49.47 48.75 LMP 57.40 91.18 0.48 0.48

 (b) LEC-DN

78.28 58.90 116.09 59.19 59.12 76.11 58.32 101.34 58.35 59.23

58.24 58.75 77.88 52.09 59.59 57.81 59.34 78.16 51.83 59.49

113.88 45.67 53.75 58.83 44.41 114.13 44.77 53.11 58.99 58.19

74.77 79.62 74.68 83.51 44.12 74.42 77.54 74.29 84.08 43.71

LMP 57.37 58.85 52.90 57.38 GMP 57.23 59.11 51.92 57.55

63.42 64.14 106.13 63.79 60.56 77.24 60.17 115.43 58.62 59.36

107.00 85.65 64.19 57.27 91.43 58.91 59.58 76.88 51.77 59.00

56.48 78.85 61.21 65.30 56.41 115.77 45.19 53.81 58.53 44.34

77.04 62.84 65.86 54.95 79.84 74.59 78.67 74.45 84.02 43.82

GMP 65.69 77.66 57.67 61.94 LMP 57.89 60.04 53.46 57.98

 (c) L

51.99 52.59 74.10 117.29 86.84 52.02 65.72 71.89 87.98 102.43

74.13 52.71 72.87 108.47 59.38 87.12 52.44 72.89 113.61 72.90

81.90 45.00 66.57 66.41 57.88 66.85 59.33 78.87 65.83 72.23

75.58 44.45 44.89 44.33 45.02 44.92 44.64 44.52 43.98 44.67

LMP 30.03 52.54 52.12 102.46 LMP 44.23 66.44 37.69 59.72

46.08 60.94 72.85 57.23 109.82 73.90 67.24 59.57 74.71 85.76

63.92 45.38 59.58 55.52 59.94 51.46 66.89 91.00 109.78 59.51

71.71 46.97 30.07 62.12 79.01 81.83 59.76 66.54 66.18 58.68

75.13 62.44 72.03 74.94 90.70 74.44 44.78 44.48 44.83 44.24

GMP 74.80 55.92 60.97 119.22 LMP 30.16 52.25 51.71 103.45

 (d) LC

Red rectangles: SPs consuming more than 100 mJ. Green rectangles: SPs consuming less than 25 mJ.

Figure 56 – Energy consumed per SP in Scenario F in the OVP platform.

119

A.2 Results for SystemC Platform

186.95 109.55 192.71 109.57 109.54 192.72 109.61 192.98 109.54 109.61

106.91 108.29 192.70 109.56 192.73 109.60 108.29 192.85 109.58 192.64

187.05 190.16 288.77 163.43 109.53 192.76 190.02 288.57 163.44 109.55

186.96 109.55 192.92 109.54 192.71 192.69 109.57 192.88 109.57 192.97

LMP 192.72 109.58 192.86 109.58 LMP 192.72 109.57 192.81 109.57

185.84 110.17 192.19 109.74 109.64 192.77 109.59 192.79 109.60 109.56

106.89 108.94 191.83 109.55 192.43 109.58 108.36 192.80 109.57 192.79

186.02 189.20 285.02 163.22 109.69 193.00 190.69 288.65 163.52 109.61

185.87 110.24 189.32 109.06 192.31 192.77 109.58 190.15 108.32 192.93

GMP 187.60 106.86 188.23 106.94 LMP 187.74 106.87 187.40 106.92

(a) PREMAP-DN

186.95 109.55 192.75 109.57 109.54 192.80 109.57 151.30 151.16 109.56

106.90 108.29 192.70 109.56 192.79 109.56 108.29 192.85 109.58 151.82

187.00 190.16 288.77 163.43 109.53 192.77 190.02 288.57 163.44 109.85

187.04 109.54 192.92 109.54 192.59 192.70 109.58 192.88 109.57 235.57

LMP 192.77 109.59 192.79 109.54 LMP 192.76 109.56 192.73 109.58

185.97 110.18 192.26 109.72 109.65 192.77 109.59 192.79 109.60 109.58

106.89 108.94 191.43 110.24 192.45 109.58 108.36 192.80 109.57 192.89

186.14 189.19 284.61 163.21 110.32 193.46 190.69 288.65 163.52 109.61

185.97 110.18 189.32 109.06 192.00 192.85 109.57 190.15 108.32 192.79

GMP 187.36 106.82 187.95 107.60 LMP 187.75 106.89 187.31 106.94

 (b) LEC-DN

246.92 127.57 194.12 151.09 279.47 235.59 109.02 236.30 212.13 109.75

124.85 128.10 255.15 194.74 127.99 194.61 91.44 152.23 152.52 128.09

107.11 210.35 212.65 146.91 170.14 91.65 277.73 109.53 110.38 127.71

268.83 145.49 146.21 127.21 110.24 302.48 109.98 90.56 109.98 127.78

LMP 171.10 211.73 110.14 110.14 LMP 194.22 109.13 109.42 151.65

124.52 170.06 128.15 235.25 280.64 193.51 109.45 217.35 151.75 261.21

106.29 170.29 191.74 194.66 151.73 108.97 109.68 131.71 133.54 109.72

124.30 254.50 127.50 128.02 109.42 109.29 215.87 236.18 109.64 109.95

184.04 151.42 127.22 193.15 212.36 278.92 109.81 109.81 109.47 109.67

GMP 149.11 125.38 148.68 125.51 LMP 131.16 107.26 106.60 107.70

 (c) L

223.63 128.59 150.14 109.86 236.13 274.03 128.89 150.50 110.09 193.18

182.98 128.67 150.57 193.31 109.81 188.22 128.96 150.77 193.47 109.93

188.41 109.94 193.94 110.13 192.91 194.14 109.90 194.05 110.19 192.76

186.23 108.52 151.92 110.94 150.34 149.58 108.73 151.83 110.69 109.22

LMP 151.38 152.10 152.04 193.92 LMP 151.55 152.33 194.55 236.76

187.87 110.47 191.59 109.73 151.89 189.40 128.14 150.61 109.93 236.42

147.21 235.80 109.40 236.65 110.43 230.52 128.71 150.50 193.17 109.91

205.33 126.58 151.43 152.07 109.78 237.18 109.61 193.79 110.18 192.97

218.85 127.98 110.49 151.22 151.14 149.75 108.59 152.11 110.25 150.64

GMP 125.30 147.29 187.81 186.07 LMP 147.71 147.95 146.48 185.80

 (d) LC

Red rectangles: SPs consuming more than 200 mJ. Green rectangles: SPs consuming less than 100 mJ.

Figure 57 – Energy consumed per SP in Scenario B in the SystemC platform.

120

0.02 0.02 23.11 0.02 0.02 0.02 10.77 3.40 33.72 0.32

0.02 45.62 36.53 1.73 3.46 0.02 20.77 42.87 34.85 2.82

68.09 56.70 42.13 21.90 18.63 0.02 50.88 39.17 36.89 2.03

0.02 68.07 33.87 28.18 0.02 0.02 33.81 34.24 19.15 19.30

LMP 0.02 0.02 33.66 0.02 LMP 0.02 0.02 33.22 0.02

0.02 9.23 19.17 3.83 3.39 0.02 0.02 0.02 0.02 0.02

0.02 42.58 42.22 23.48 10.21 0.02 34.54 29.16 16.01 0.63

34.31 79.50 63.94 34.41 6.03 67.95 50.27 45.43 44.85 40.46

0.02 34.09 67.75 36.59 13.50 11.62 68.87 37.10 43.05 3.48

GMP 0.02 0.02 34.74 0.02 LMP 0.02 34.02 0.02 0.02

 (a) PREMAP-DN

0.02 1.75 23.12 0.02 0.02 0.02 36.19 0.02 34.03 0.02

0.02 35.62 36.31 1.73 1.76 34.23 36.71 57.38 21.64 2.83

34.13 45.00 44.54 21.92 10.18 11.63 67.59 47.36 42.93 0.33

0.02 43.06 33.24 28.43 0.02 0.02 0.02 68.16 22.11 33.86

LMP 0.32 0.02 33.54 0.02 LMP 0.02 23.10 33.60 0.02

1.75 36.54 11.68 3.10 4.31 0.02 12.59 1.78 0.02 0.33

8.54 52.44 41.44 27.31 24.69 0.02 34.57 13.46 33.87 3.82

34.36 67.30 70.96 34.40 0.02 33.82 54.69 44.45 46.14 13.06

0.02 34.36 34.46 45.34 15.36 0.02 34.38 41.65 34.38 6.08

GMP 0.02 0.02 34.51 0.02 LMP 0.02 33.17 0.02 0.02

 (b) LEC-DN

24.87 22.92 28.87 20.24 18.42 22.51 13.12 22.54 11.95 22.60

20.60 26.14 22.89 29.37 19.66 22.46 12.24 22.46 17.85 22.65

18.40 22.86 22.85 19.65 20.75 15.67 17.83 15.68 12.40 15.16

19.20 20.79 22.87 19.22 15.49 25.45 24.63 24.17 15.22 23.78

LMP 21.41 23.98 22.85 27.15 LMP 12.41 22.46 12.99 22.48

24.32 18.11 16.14 21.71 25.21 14.22 19.09 24.83 22.63 26.34

27.79 18.07 26.00 20.85 23.50 28.23 24.22 13.67 14.50 20.60

23.44 22.93 23.56 30.30 25.60 13.77 14.35 15.88 13.49 23.41

24.03 24.87 17.33 28.21 20.98 19.25 16.74 24.61 25.08 14.55

GMP 25.13 25.12 23.84 25.89 LMP 24.72 14.63 25.38 13.31

 (c) L

4.19 10.53 21.40 19.46 26.49 12.40 15.39 13.30 23.06 23.19

21.19 20.13 19.69 20.09 18.34 18.31 12.89 23.22 25.55 11.62

21.19 8.57 24.03 17.75 14.64 15.14 22.27 16.69 22.67 22.65

23.98 23.17 23.16 45.58 36.16 23.85 11.99 23.08 12.89 22.48

LMP 15.07 24.21 45.15 28.48 LMP 23.22 15.87 18.33 23.85

38.73 29.03 19.69 15.57 16.73 24.02 38.02 23.70 22.95 32.42

40.81 36.77 20.26 15.31 25.06 28.12 31.28 29.86 23.77 24.76

29.46 30.39 23.36 17.19 25.20 18.45 13.28 5.56 20.16 16.00

24.52 19.61 23.78 15.03 23.34 24.19 13.65 8.79 15.56 9.81

GMP 22.42 19.97 13.71 14.77 LMP 12.92 9.30 10.95 5.20

 (d) LC

Red rectangles: SPs consuming more than 50 mJ. Green rectangles: SPs consuming less than 5 mJ.

Figure 58 – Energy consumed per SP in Scenario C in the SystemC platform.

121

17.69 54.69 96.18 54.38 0.62 96.20 56.73 106.67 64.07 2.06

93.21 67.34 66.21 12.93 8.09 54.58 80.01 65.89 98.01 54.72

56.33 201.10 64.77 123.22 75.20 0.33 72.24 148.43 56.22 21.73

0.02 53.19 165.93 58.00 54.78 20.86 85.11 59.16 51.92 16.23

LMP 96.65 73.44 37.16 0.02 LMP 54.19 0.02 96.20 54.40

6.97 0.02 113.24 58.00 4.82 96.01 54.41 4.55 56.46 56.41

34.03 124.72 76.81 45.11 68.45 54.43 96.27 63.42 156.30 56.27

53.06 105.53 158.26 106.82 122.19 55.05 73.26 154.41 52.87 0.33

92.78 55.01 95.32 55.09 0.02 96.11 96.08 54.41 76.42 59.34

GMP 0.02 0.02 93.37 53.06 LMP 0.02 0.02 45.75 10.86

 (a) PREMAP-DN

2.06 9.28 95.68 54.38 0.32 0.02 104.76 56.22 0.02 96.08

8.45 97.88 54.39 36.20 10.92 0.02 65.38 108.30 56.53 54.39

56.09 172.48 92.90 105.60 38.89 54.64 156.24 104.90 56.21 0.02

0.02 54.35 102.38 53.45 0.02 8.45 62.98 11.96 97.83 54.40

LMP 8.45 1.75 113.63 58.03 LMP 121.93 59.80 54.44 96.07

53.19 0.02 104.64 56.23 36.59 56.18 1.75 71.70 98.45 57.97

93.35 116.21 59.65 0.32 55.88 104.54 53.13 173.35 78.75 66.44

52.85 120.49 90.27 107.44 136.79 0.02 93.34 104.79 56.19 7.05

0.02 42.88 95.57 54.40 37.69 95.96 63.94 132.90 148.63 82.23

GMP 1.75 93.17 53.05 1.78 LMP 0.33 54.85 96.65 53.10

 (b) LEC-DN

30.05 85.39 44.85 40.12 96.51 103.41 91.96 98.11 45.37 90.20

43.86 102.57 44.37 34.06 55.66 34.28 94.85 47.71 44.22 47.53

42.91 74.19 45.06 57.84 54.22 46.79 85.85 42.24 31.18 31.49

42.43 98.36 57.94 84.17 44.88 44.09 32.96 99.24 60.84 60.97

LMP 58.32 128.66 99.56 44.80 LMP 79.10 43.82 34.83 46.48

42.34 47.49 34.82 56.49 56.00 16.54 99.76 44.97 56.35 27.99

58.45 29.69 58.48 86.74 43.37 45.83 42.33 44.55 85.82 100.75

28.94 44.07 88.20 91.55 57.01 47.14 54.59 44.46 88.71 44.57

133.71 98.74 56.73 99.44 88.61 29.09 98.43 43.18 56.73 56.87

GMP 57.17 84.16 30.91 46.02 LMP 138.74 95.25 83.34 54.95

 (c) L

39.48 142.04 62.92 102.78 98.79 134.23 64.08 36.23 95.73 96.29

90.86 62.14 57.85 62.26 63.09 55.00 63.18 57.54 42.53 43.15

28.26 30.26 40.91 40.38 41.63 32.65 35.73 94.69 47.91 17.82

39.36 42.58 86.36 44.91 86.15 12.09 45.03 90.32 59.32 33.28

LMP 85.50 26.32 55.16 79.74 LMP 43.72 82.81 61.29 89.79

77.26 56.62 88.03 107.12 50.85 99.85 104.83 28.20 39.53 78.04

36.68 43.50 44.93 56.74 102.25 56.63 56.74 85.42 54.68 44.89

24.01 23.63 53.95 97.71 98.43 67.74 37.45 43.66 48.10 78.99

107.12 53.82 48.53 57.33 63.36 37.07 38.23 39.09 58.27 72.47

GMP 94.70 87.08 26.70 17.82 LMP 43.18 136.57 45.15 109.85

 (d) LC

Red rectangles: SPs consuming more than 100 mJ. Green rectangles: SPs consuming less than 10 mJ.

Figure 59 – Energy consumed per SP in Scenario D in the SystemC platform.

122

34.51 45.93 30.71 22.49 3.39 35.30 34.07 0.02 8.55 18.83

68.28 65.23 33.21 95.89 54.38 34.15 53.15 96.03 54.44 59.79

47.15 110.98 93.39 53.14 4.31 0.02 93.39 93.26 53.18 104.86

8.11 97.41 109.10 52.76 13.32 96.03 54.45 63.13 61.77 54.03

LMP 0.32 88.68 35.32 33.84 LMP 0.02 82.29 54.97 0.02

0.02 95.74 54.43 0.02 0.02 2.78 36.58 95.91 54.45 0.02

26.16 106.15 70.10 92.85 53.19 11.52 95.99 43.89 42.71 56.17

87.51 89.66 38.16 104.64 56.42 33.84 89.47 60.25 69.27 78.93

33.81 29.41 130.67 63.13 1.82 96.12 54.40 155.99 104.82 56.25

GMP 34.05 8.42 93.16 53.09 LMP 0.02 53.39 62.47 1.74

 (a) PREMAP-DN

0.02 55.40 19.62 10.75 3.45 34.99 34.05 0.02 33.29 35.21

87.93 92.54 54.01 95.89 54.37 33.55 53.15 96.03 54.44 33.37

93.06 86.67 93.39 53.14 96.44 0.02 93.39 93.26 53.18 0.32

53.34 156.20 83.57 11.63 54.38 96.03 54.45 17.91 62.05 54.05

LMP 45.24 36.71 95.69 54.41 LMP 0.02 9.66 43.89 11.99

0.02 95.74 54.43 0.02 0.02 33.78 47.87 96.14 54.44 2.80

53.40 104.44 68.43 92.89 53.19 35.81 96.04 63.88 42.16 45.52

86.89 90.03 114.60 105.61 56.08 34.27 62.57 55.23 61.64 31.71

33.91 29.54 46.13 46.91 2.12 96.09 54.45 72.70 104.82 56.25

GMP 34.18 0.02 93.14 53.07 LMP 1.74 65.94 61.49 1.76

 (b) LEC-DN

46.15 78.11 47.86 39.45 49.27 40.71 30.92 103.89 29.63 33.06

64.98 79.43 47.29 39.98 49.42 47.78 50.95 50.45 42.69 86.13

49.17 92.65 47.39 83.13 50.67 43.54 94.73 47.94 30.71 30.50

85.03 30.97 100.14 91.35 49.35 95.06 43.99 47.91 31.36 43.37

LMP 47.82 52.68 91.92 67.10 LMP 47.91 102.02 29.69 88.00

80.99 47.69 31.62 96.97 98.82 47.82 22.57 33.74 91.30 36.46

34.13 35.13 54.80 33.22 43.23 27.98 35.90 22.45 49.91 33.38

97.60 47.98 54.85 100.35 43.70 78.35 22.46 22.74 36.41 49.68

51.17 31.91 96.62 86.60 43.80 80.16 51.44 22.46 23.57 31.80

GMP 34.32 31.13 36.70 93.86 LMP 33.35 29.33 22.98 23.32

 (c) L

135.87 54.02 86.76 55.29 139.06 90.74 62.67 76.32 49.47 91.44

55.04 63.00 43.18 61.75 54.82 31.84 59.76 58.91 54.67 47.51

20.85 48.14 46.16 36.16 27.72 43.49 47.90 85.18 40.31 24.51

73.18 30.16 20.06 40.80 42.28 76.11 46.93 23.09 49.50 42.01

LMP 31.02 22.17 46.98 86.89 LMP 29.27 17.86 37.17 103.37

23.65 46.07 97.45 85.59 25.57 36.69 23.20 23.20 48.20 83.88

37.18 90.86 55.77 54.45 37.86 23.30 26.66 26.64 32.27 49.09

93.15 25.46 59.86 37.42 96.15 26.80 23.26 23.58 54.98 67.38

44.64 48.23 60.17 54.99 55.34 30.78 29.51 49.31 41.35 96.86

GMP 24.37 84.64 42.41 134.93 LMP 83.40 48.47 74.22 44.84

 (d) LC

Red rectangles: SPs consuming more than 100 mJ. Green rectangles: SPs consuming less than 10 mJ.

Figure 60 – Energy consumed per SP in Scenario E in the SystemC platform.

123

21.93 34.20 33.64 46.18 28.38 21.60 34.46 34.03 34.57 28.58

33.95 34.59 62.57 62.44 33.98 34.21 34.56 60.30 28.58 33.53

45.73 62.29 62.00 67.83 34.27 34.55 62.60 62.08 67.84 34.25

62.99 62.37 57.35 35.53 34.32 34.01 62.93 70.24 35.06 33.55

LMP 68.22 34.19 34.01 28.51 LMP 34.11 34.01 33.69 28.62

21.94 34.36 34.34 46.88 28.03 22.16 34.24 33.80 46.28 29.16

34.44 35.04 62.78 62.51 34.36 34.29 34.58 62.50 62.44 33.22

46.45 63.07 62.16 68.97 34.64 45.99 61.92 61.90 67.67 34.08

62.07 62.34 71.17 70.05 68.07 72.00 63.50 57.20 35.35 33.91

GMP 68.59 34.73 60.50 28.05 LMP 68.80 33.83 33.79 28.56

 (a) PREMAP-DN

21.95 34.20 33.64 46.18 28.34 21.63 34.40 34.01 46.24 28.37

33.95 34.59 63.23 61.75 33.78 34.21 34.47 62.61 61.76 33.61

46.01 62.39 62.76 67.86 34.26 34.62 62.64 62.04 67.56 34.42

62.51 62.76 57.36 35.49 34.34 34.09 28.61 57.39 35.08 33.55

LMP 68.11 34.19 34.00 28.48 LMP 34.18 34.25 33.69 28.55

21.98 34.39 34.35 48.61 28.04 22.05 34.20 33.81 46.29 29.39

34.55 35.16 62.61 62.40 34.35 34.17 34.57 63.04 62.65 33.32

46.31 62.89 62.15 69.13 34.65 45.69 61.99 62.26 68.17 34.08

62.07 62.31 70.86 69.68 68.09 61.69 62.57 57.17 35.36 33.88

GMP 68.56 34.70 60.27 28.23 LMP 67.61 33.90 33.77 28.68

 (b) LEC-DN

46.90 45.43 38.29 45.67 45.59 47.51 45.26 38.29 45.91 45.61

45.55 47.73 45.65 50.92 45.69 45.72 47.86 45.84 39.77 45.56

41.94 45.39 38.44 38.00 38.15 41.99 45.42 38.59 37.91 38.18

47.62 48.14 47.31 38.49 50.19 47.09 47.73 47.25 49.56 50.69

LMP 45.53 58.89 38.44 47.71 LMP 45.58 59.29 38.41 47.41

49.53 47.72 39.21 46.49 47.45 45.61 45.35 49.60 45.92 45.73

48.16 38.78 46.00 40.45 46.20 38.27 47.29 45.85 39.40 45.60

50.91 47.12 35.71 48.20 50.60 34.67 45.38 38.56 38.10 49.80

48.11 48.35 47.98 48.86 48.09 47.24 48.03 47.50 49.63 47.16

GMP 46.06 49.10 40.01 50.86 LMP 45.62 47.81 48.07 47.80

 (c) L

46.88 38.18 38.19 47.46 36.84 35.48 38.09 37.67 47.08 48.08

40.36 46.21 45.83 58.92 46.09 38.68 34.46 46.17 60.71 46.17

38.25 45.59 33.93 45.83 57.00 38.20 45.56 34.09 45.73 45.33

47.44 46.21 45.77 45.76 45.55 59.17 46.07 45.79 45.71 45.75

LMP 46.15 44.24 38.16 58.88 LMP 56.99 44.60 38.16 59.06

35.79 54.47 33.41 47.70 36.57 35.35 38.25 37.66 46.90 48.18

38.92 46.08 47.94 48.43 34.64 38.11 34.44 46.14 60.94 46.26

40.90 46.25 51.90 46.07 46.16 38.22 45.60 35.77 45.59 45.49

47.42 41.14 58.79 37.83 57.03 58.73 46.18 45.77 45.58 45.84

GMP 46.31 52.81 50.51 62.49 LMP 57.22 44.95 38.13 59.19

 (d) LC

Red rectangles: SPs consuming more than 60 mJ. Green rectangles: SPs consuming less than 30 mJ.

Figure 61 – Energy consumed per SP in Scenario F in the SystemC platform.

124

APPENDIX B –TEMPERATURE DISTRIBUTION

This appendix complements the results of Section 5.5.2.4, providing the temperature

distribution at the end of execution time for scenarios B to F of Table 16. Such thermal

maps show that L and LC heuristics reduce hotspots in most scenarios.

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 62 – Temperature distribution for Scenario B.

125

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 63 – Temperature distribution for Scenario C.

126

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 64 – Temperature distribution for Scenario D.

127

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 65 – Temperature distribution for Scenario E.

128

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 66 – Temperature distribution for Scenario F.

129

APPENDIX C – POWER TRACES

This appendix complements the results of Section 5.5.2.5, with the power traces for

scenarios B to F of Table 16. Each graph presents the instantaneous SPs (slave PEs)

power dissipation in the blue curves (median value). The X-axis corresponds to the

execution time in milliseconds (only PEs executing tasks are considered) and the Y-axis

the average power of active processors (W). Gray bars: 50% of the population, first to third

quartiles. Black lines: average first and third quartiles. Green line: average median. Blue

line: instantaneous median.

Such graphs show the better power distribution of the L and LC heuristics during the

execution time, compared to PREMAP-DN and LEC-DN heuristics.

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 67 – Power traces for scenario B.

130

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 68 – Power traces for scenario C.

131

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 69 – Power traces for scenario D.

132

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 70 – Power traces for scenario E.

133

(a) PREMAP-DN

(b) LEC-DN

(c) L

(d) LC

Figure 71 – Power traces for scenario F.

134

APPENDIX D – PUBLICATIONS OF THE AUTHOR

Table 34 presents the set of publications of the author. The publications 1, 2, and 3

were written during the Master’s degree. Other publications were developed during the

PhD studies period. The description column links the paper to this work, when applicable,

or to the main theme of the publication.

Table 34 – Publications during the PhD period.

Publication Description

1

Energy-aware dynamic task mapping for NoC-based MPSoCs

MANDELLI, M. G.; OST, L. C.; CARARA, E. A.; GUINDANI, G. M.; ROSA, T.; MEDEIROS,
G.; MORAES, F. G.
In: ISCAS, 2011 [MAN11a]

Reference mapping
heuristic used in
Chapter 5

2
Multi-Task Dynamic Mapping onto NoC-based MPSoCs

MANDELLI, M. G.; OST, L. C.; AMORY, A. M.; MORAES, F. G.
In: SBCCI, 2011 [MAN11b]

Reference mapping
heuristic used in
Chapter 5

3

Exploring dynamic mapping impact on NoC-based MPSoCs performance using a
model-based framework

OST, L. C.; MANDELLI, M. G.; ALMEIDA, G. M.; INDRUSIAK, L. S.; MOLLER, L. S.;
GLESNER, M.; SASSATELLI, G.; ROBERT, M.; MORAES, F. G.
In: SBCCI, 2011 [OST11a]

Integration of the
task mapping
heuristics proposed
in publications 1
and 2 in a high-
level MPSoC model
[OST13].

Chapter 3.

4
Model-based design flow for NoC-based MPSoCs

OST, L. C.; INDRUSIAK, L. S.; MAATTA, S.; MANDELLI, M. G.; NURMI, J.; MORAES, F. G.
In: ICECS, 2010 [OST10]

5

Exploring Heterogeneous NoC-based MPSoCs: from FPGA to High-Level Modeling

OST, L. C.; ALMEIDA, G. M.; MANDELLI, M. G.; WACHTER, E.; VARYANI, S.;
INDRUSIAK, L. S.; SASSATELLI, G.; ROBERT, M.; MORAES, F. G.
In: RECOSOC, 2011 [OST11b]

6

Exploring Adaptive Techniques in Heterogeneous MPSoCs based on Virtualization

OST, L. C.; VARYANI, S.; MANDELLI, M. G.; WACHTER, E.; ALMEIDA, G. M.;
INDRUSIAK, L. S.; SASSATELLI, G.; MORAES, F. G.
In: ACM Transactions on Reconfigurable Technology and Systems, vol. 5(3), pp. 1 - 11,
2012. [OST12]

7

Power-aware dynamic mapping heuristics for NoC-based MPSoCs using a unified
model-based approach

OST, L. C.; MANDELLI, M. G.; ALMEIDA, G. M.; MOLLER, L. S.; INDRUSIAK, L. S.;
SASSATELLI, G.; BENOIT, P.; GLESNER, M.; ROBERT, M.; MORAES, F. G.
In: ACM Transactions on Embedded Computing Systems, vol. 12(3), pp. 1 - 22, 2013
[OST13]

8
Enhancing Performance of MPSoCs through Distributed Resource Management

MANDELLI, M.; CASTILHOS, G. M.; MORAES, F
In: ICECS, 2012 [MAN12]

Chapter 4

9
Distributed resource management in NoC-based MPSoCs with dynamic cluster sizes

CASTILHOS, G. M.; MANDELLI, M.; MADALOZZO, G. A.; MORAES, F
In: ISVLSI 2013 [CAS13]

Chapter 4

10
MPSoC Modeling for Reducing Software Development

MANDELLI, M.; ROSA, F.; OST, L.; SASSATELLI, G.; MORAES, F. G.
In: ICECS, 2013 [MAN13]

Chapter 3

11

Trading-off system load and communication in mapping heuristics for improving NoC-
based MPSoCs reliability

Mandelli, M.; Ost, L.; Sassatelli, G.; Moraes, F.
In: ISQED, 2015 [MAN15]

Chapter 5

