

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

IMPROVING QOS BY EMPLOYING MULTIPLE
PHYSICAL NOCS ON MPSOCS

DOUGLAS ROBERTO GUARANI DA SILVA

 Submitted in partial fulfillment of the
requirements for the degree of Master
of Computer Science at Pontifical
Catholic University of Rio Grande do
Sul.

ADVISOR: PROFESSOR FERNANDO GEHM MORAES, PH.D.

PORTO ALEGRE
2016

Dados Internacionais de Catalogação na Publicação (CIP)

S586i Silva, Douglas Roberto Guarani da

Improving QoS by employing multiple physical NoCs on

MPSoCs / Douglas Roberto Guarani da Silva. – 2016.

87 p.

Diss. (Mestrado) – Faculdade de Informática, PUCRS.

Orientador: Prof. Dr. Fernando Gehm Moraes.

1. Multiprocessadores. 2. Arquitetura de Computador.

3. Informática. I. Moraes, Fernando Gehm. II. Título.

CDD 23 ed. 004.35

Ramon Ely CRB 10/2165
Setor de Tratamento da Informação da BC-PUCRS

ACKNOWLEDGEMENTS

I would like to express my appreciation to those who have made this dissertation possible.

To my advisor Professor Fernando Gehm Moraes for accepting me as his student and for

all his guidance, advice, support, suggestions, comments and revisions of this work. I thank him

for his trust in me and in my work.

To Professor César Marcon for all his suggestions and revisions since the research proposal

until this final volume. To Professor Cesar Zeferino and Professor Everton Carara for the comments

and evaluation of this dissertation.

To Marcelo Ruaro for the technical discussions and for his help in debugging the HeMPS

platform.

To my colleagues and friends at GAPH and PUCRS for the friendship throughout all these

years.

To my family, especially to my parents Claudio and Magali, for always encouraging and

supporting me.

To the Professors at PPGCC for all transmitted knowledge and teachings.

To CNPq and Dell for financing this work.

APRIMORANDO QOS UTILIZANDO MÚLTIPLAS NOCS FÍSICAS EM MPSOCS

RESUMO

Sistemas embarcados adotam MPSoCs baseados em NoCs visto que um número grande de
elementos de processamento (PEs) permitem a execução simultânea de várias aplicações, onde
algumas dessas aplicações necessitam de restrições de tempo real (RT). PEs comunicam-se
utilizando troca de mensagens em MPSoCs com memória distribuída. Essas mensagens podem
ser classificadas como mensagens de aplicação, sendo os dados gerados pelas aplicações, e
mensagens de gerência, utilizadas para garantir a operação correta da plataforma. Visto que a
comunicação possui um forte impacto no desempenho da aplicação, uma preocupação
importante no projeto de MPSoCs é de melhorar o desempenho da comunicação das aplicações,
especialmente para aplicações RT. Dois métodos possíveis para otimizar o desempenho de
comunicação incluem: (i) priorizar as mensagens das aplicações de RT sobre as mensagens
geradas por aplicações de melhor esforço (do inglês, best effort, BE); (ii) isolar as mensagens de
aplicações das mensagens de gerência, considerando que MPSoCs complexos necessitam de um
grande número de serviços de gerência para satisfazer os requisitos de desempenho. Na literatura
sobre NoCs há vários trabalhos que diferenciam classes de tráfego, propondo o isolamento dessas
classes de tráfego pela utilização de múltiplas NoCs físicas (do inglês, multiple physical NoCs, MP
NoCs), reduzindo interferências entre fluxos pertencentes a classes diferentes. O principal objetivo
deste trabalho é propor e avaliar MP NoCs, onde uma rede é dedicada para mensagens de
aplicação e uma segunda rede é utilizada para mensagens de gerência (M-NoC). Baseado na
avaliação do impacto do tráfego de gerência na comunicação da NoC, duas versões da M-NoC são
implementadas e avaliadas. Outra consideração importante para aplicações RT é garantir que os
deadlines dessas aplicações sejam satisfeitos. A execução dessas aplicações deve ser priorizada
sobre as aplicações BE através do fornecimento de mais recursos de processamento utilizando um
escalonador RT especializado. Esse trabalho apresenta e avalia uma plataforma MPSoC capaz de
suportar QoS de comunicação e de computação, sendo extensível para um número grande de
serviços de gerência pelo uso de MP NoCs. Resultados mostram que as M-NoCs podem ser
personalizadas para terem um pequeno impacto de área. A utilização de M-NoCs melhora o
desempenho de comunicação, latência e jitter, mesmo considerando que a plataforma já possui
mecanismos de QoS (como fluxos prioritários e chaveamento de circuitos), pelo isolamento do
tráfego de gerência do tráfego de aplicação.

Palavras-chaves: MPSoC, Múltiplas NoCs Físicas, Qualidade de Serviço, Tempo Real.

IMPROVING QOS BY EMPLOYING MULTIPLE PHYSICAL NOCS ON MPSOCS

 ABSTRACT

Embedded systems adopt NoC-based MPSoCs since a large number of processing elements (PEs)
enables the simultaneous execution of several applications, where some of these applications
require real-time (RT) constraints. PEs communicate using messages in distributed memory
MPSoCs. These messages can be classified as application messages, being the data generated by
the applications, and management messages, used to ensure the correct operation of the
platform. As the communication has a large impact on the application performance, an important
concern in the design of MPSoCs is to improve the performance of the applications’
communication, particularly for RT applications. Two possible methods to optimize the
communication performance includes: (i) prioritize the RT application messages over the
messages generated by best-effort (BE) applications; (ii) isolate the application messages from the
management messages, considering that complex MPSoCs require a large number of
management services to meet the performance constraints. The NoC literature contains several
works that differentiate traffic classes, proposing the isolation of these traffic classes by the use of
multiple physical (MP) NoCs, reducing interferences among the flows belonging to different
classes. The main goal of this work is to propose and to evaluate MP NoCs, with one network
dedicated to the application messages and a second network for the management messages (M-
NoC). Based on the evaluation of the impact of the management traffic in the overall NoC
communication, two different versions of M-NoCs are implemented and evaluated. Another
important consideration for RT applications is to ensure that these applications meet their
deadlines. The execution of these applications must have higher priority over the BE applications
by dedicating more processing resources using a specialized RT scheduler. This work presents and
evaluates an MPSoC platform capable of supporting both communication and computation QoS,
being extensible for a large number of management services by to the use of MP NoCs. Results
show that M-NoCs may be customized to have a small area overhead. The adoption of M-NoCs
improves the communication performance, latency and jitter, even when the network used in the
platform has QoS mechanisms (e.g. priority flows and circuit switching), by isolating the
management traffic from the application traffic.

Keywords: MPSoC, Multiple Physical NoCs, QoS, RT.

LIST OF FIGURES

Figure 2.1 – Network topologies. Source [BAL08]. ... 20
Figure 2.2 – Efficiency of the evaluated topologies. Source [BAL08]. .. 21
Figure 2.3 – Efficiency of the CMesh topology. Source [BAL08]. ... 21
Figure 2.4 – MECS topology. Source [GRO09].. 22
Figure 2.5 – Block diagram of the TRIPS chip, showing networks interconnections. Source [GRA07].

 ... 28
Figure 3.1 - HeMPS-QoS MPSoC organization [CAS13]. ... 32
Figure 3.2 – PE Internal Architecture. Adapted from [CAR09a]. .. 33
Figure 3.3 – Example of an application task graph. Task A is an initial task. ... 36
Figure 3.4 – Real-time constraint model. Source [RUA15]. .. 39
Figure 3.5 – MPEG real-time constraints configuration. Source [RUA15]. .. 40
Figure 3.6 – Computation latency (a) MPEG (b) DTW during profiling. .. 42
Figure 4.1 – Task dependency graph for the MPEG application. .. 46
Figure 4.2 – Scheduling graph of the MPEG application. .. 46
Figure 4.3 – Task dependency graph for the DTW application. .. 47
Figure 4.4 – Scheduling graph of the DTW application. .. 47
Figure 4.5 - Task dependency graph for the synthetic application. ... 48
Figure 4.6 – Task dependency graph for the Producer/Consumer application. 48
Figure 5.1 – Full mesh management NoC topology.. 53
Figure 5.2 – NI receive control logic FSM. ... 54
Figure 5.3 – NI send control logic FSM. .. 55
Figure 5.4 – Source code responsible for selecting the network and adapting the packet header.

 ... 56
Figure 5.5 – Mesh between the masters management topology. .. 56
Figure 5.6 – NI receive control logic FSM supporting network change. ... 58
Figure 5.7 – NI send control logic FSM supporting network change. ... 58
Figure 5.8 – Algorithm used to calculate management packet routes. .. 59
Figure 5.9 – Serializer interface. .. 60
Figure 5.10 – Serializer FSM. .. 60
Figure 5.11 – Deserializer Interface. .. 61
Figure 5.12 – Deserializer FSM. ... 61

Figure 5.13 – Mesh topology network interconnecting the cluster PEs and another mesh topology

interconnecting the clusters. .. 67
Figure 5.14 – Ring topology network interconnecting the cluster PEs, and a mesh topology

interconnecting the clusters. .. 67
Figure 5.15 – Clos topology network, where a single router interconnects multiple PEs in the

cluster, and the higher levels interconnect the clusters. ... 68
Figure 6.1 – Scenario 1 task mapping. Arrows represent the flows according to the Hamiltonean

routing. ... 71
Figure 6.2 – MPEG computation latency for Scenario 1 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC.

 ... 72
Figure 6.3 – Scenario 2 task mapping. ... 74
Figure 6.4 – MPEG iteration latency for Scenario 2 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC. .. 74
Figure 6.5 – Scenario 3 task mapping. ... 76
Figure 6.6 – DTW computation latency for Scenario 3 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC.

 ... 77
Figure 6.7 – Scenario 4 task mapping. ... 78
Figure 6.8 – MPEG iteration latency for Scenario 4 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC. .. 79
Figure 6.9 – DTW iteration latency for Scenario 4 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC.. ... 79

LIST OF TABLES

Table 2.1 – NoC monitoring strategies comparison. Source [CIO06]. .. 26
Table 2.2 – Works exploring the use of multiple parallel physical NoCs. ... 29
Table 3.1 – Services supported by the reference platform. .. 43
Table 4.1 – Number of flits transmitted by service. ... 49
Table 4.2 – Percentage of flits transmitted by specific management services. 50
Table 4.3 – Spatial distribution of the management traffic. ... 50
Table 5.1 – Router area comparison for different network types (Lib. CORE65GPSVT, 1.0V, 25º C)

 ... 52
Table 5.2 – Router area comparison for different flit widths (Library CORE65GPSVT, 1.0V, 25º C). 60
Table 5.3 – Average Application Network Latency and Jitter (Clock Cycles) for different M-NoC

configurations .. 63
Table 5.4 – Average Management Network Latency and Jitter (Clock Cycles) for different M-NoC

configurations .. 64
Table 5.5 – Execution Time (milliseconds) with different M-NoC configurations 66
Table 6.1 – Standard deviation of the MPEG computation latency for Scenario 1. 72
Table 6.2 – Average network latency and jitter (in clock cycles) for the Scenario 1. 73
Table 6.3 – Management communication statistics for the Scenario 1. ... 73
Table 6.4 - Standard deviation of the MPEG computation latency for Scenario 2. 75
Table 6.5 – Average network latency and jitter for Scenario 2. ... 75
Table 6.6 – Management communication statistics for Scenario 2 .. 75
Table 6.7 – Standard deviation of the DTW computation latency for Scenario 3. 77
Table 6.8 – Average network latency and jitter for Scenario 3. ... 77
Table 6.9 – Management communication statistics for the Scenario 3 .. 78
Table 6.10 – Standard deviation of the computation latency for Scenario 4. 80
Table 6.11 – Average network latency and jitter for the Scenario 4. ... 80
Table 6.12 - Management communication statistics for the Scenario 4. ... 81

LIST OF ACRONYMS

API Application Programming Interface

BE Best-Effort

CS Circuit Switching

DMA Direct Memory Address

DVFS Dynamic Voltage and Frequency Scaling

DTW Dynamic Time Warping

FPGA Field Programmable Gate Array

HeMPS Hermes Multiprocessor System

FSM Finite State Machine

IO Input/Output

M-NoC Management Network-on-Chip

MIPS Microprocessor without interlocked pipeline stages

MP Multiple Physical

MPI Message Passing Interface

MPSoC Multiprocessor System on Chip

NI Network Interface

NoC Network on Chip

PE Processing Element

QoS Quality of Service

RT Real-Time

RTL Register-transfer level

SM Shared Memory

TCB Task Control Block

VC Virtual Channel

CONTENTS

1. Introduction ... 16
1.1. Goals .. 18
1.2. Contributions .. 18
1.3. Document Organization ... 18
2. State of the Art on Multiple Physical NoCs .. 19
2.1. Proposal and evaluation of network characteristics and topologies 19
2.2. Energy Efficiency ... 23
2.3. Specific Applications .. 26
2.4. Platforms employing multiple physical networks ... 27
2.5. Final Remarks .. 29
3. Reference Platform .. 32
3.1. Hardware .. 33
3.2. Management .. 34
3.3. Communication QoS .. 37
3.4. Computation QoS ... 39
3.5. Supported Service Summary ... 43
3.6. Final Remarks .. 44
4. Evaluation of The Traffic Behavior ... 46
4.1. Evaluated Applications .. 46
4.2. Traffic Evaluation ... 48
5. Management Network Design .. 51
5.1. Full Mesh M-NoC ... 52
5.2. Mesh between the managers ... 56
5.3. Serialization/Deserialization .. 59
5.4. Management Network Evaluation... 61
5.5. Qualitative Evaluation of Other M-NoC Topologies .. 66
5.6. Final Remarks .. 69
6. Platform Evaluation... 70
6.1. Scenario 1 ... 71
6.2. Scenario 2 ... 73

6.3. Scenario 3 ... 76
6.4. Scenario 4 ... 78
6.5. Final Remarks .. 81
7. Conclusions and Future Works ... 83
7.1. Future Works ... 83
7.2. Publications ... 84
References.. 85

16

1. INTRODUCTION

Multi-Processor System-on-Chip (MPSoCs) supporting a large number of application

classes are becoming prevalent in embedded systems [WOL08]. An important design

consideration in MPSoCs is its capacity of delivering high-performance computation under tight

area and energy budgets. Numerous processors working in parallel can be used to attain this

objective, relying on distributing the computation between the available processing elements

(PE). MPSoCs with a large number of elements require a communication infrastructure capable of

supporting the communication load, being a Network-on-Chip (NoC) an interesting option due to

its inherent scalability [KUM02][BJE06].

The communication between the resources in an MPSoC is related to the memory

architecture, mainly classified as [ALM09]:

(i) shared memory [BEN12]: PEs share the same memory resources, requiring a cache

coherence mechanism to ensure that modifications done by a processor to a memory

location become visible to the remaining PEs in the system. The communication is defined

in software through the use of shared memory locations and a locking mechanism;

(ii) distributed memory [JOV08][ALM09][CAR09a][FUW14]: requires a private memory, and the

PEs in the platform communicate through the exchange of messages. The communication

exists only between the PEs exchanging data. The communication is defined in software

through the use of send()/receive() primitives.

Shared memory has a higher communication overhead due to its cache coherence

mechanism and does not scale well in large systems [AGA07]. Distributed memory reduces the

communication overhead and allows a more efficient use of the communication infrastructure, in

respect of area and energy consumption. It is possible to employ both architectures

simultaneously, partially reducing the shared memory communication load and increasing the

versatility of the platform [KRA93].

Each application executed in an MPSoC has different performance requirements. Real-

Time (RT) applications have specific time requirements for its computation results while Best-

Effort (BE) does not have time requirements [PAS08]. To ensure that RT applications meet its

requirements, the system must be capable of providing Quality-of-Service (QoS) – the capability

17

to provide sufficient resources for the application – for both the communication and the

computation aspects of the application.

Despite the memory architecture and the type of the application, BE or RT, the traffic flows

can be categorized into:

(i) data traffic: data generated by the applications;

(ii) management traffic: not directly related to the applications, however with an

important role in the control of the platform.

The data traffic is subject to several interferences present in the platform, such as traffic

generated by other applications and the platform management traffic. The communication of RT

applications can be prioritized applying a different treatment for this type of traffic, such as the

use of a differentiated routing algorithm, exclusive physical path, prioritized arbitration, among

others. Communication prioritization allows reducing the traffic interference, improving the

performance of the application.

The management traffic comprises all the traffic related to several services available on the

platform, such as performance monitoring, actuation messages for QoS, control of the MPSoC

resources, debugging, task mapping, fault tolerance, power management, temperature

monitoring, security. As the complexity of the MPSoC platform increases and more elements are

included in the platform, the requirements of the management traffic also increase [KOR13]. At

the same time, the management traffic competes with the application traffic for the

communication resources, negatively impacting the application performance. Therefore, it is vital

to provide the isolation of the traffic according to its function in the platform, separating the

application traffic from the management traffic. This isolation can be achieved by providing a

communication infrastructure dedicated for the management traffic.

RT applications are subject to deadlines – a bounded time for the application to deliver its

computation results [LIU00]. The platform must guarantee that the application has executed

enough time to generate its result before reaching a deadline, ensuring that sufficient

computation resources are granted to the application. This action presents a challenge since in

parallel to the application subject to RT constraints, several other applications are sharing the

same computation resources. The platform must be capable of prioritizing the application

processing using a specialized scheduler, aware of the platform resources and application

requirements.

18

1.1. Goals

The strategic goal of this work is to explore a scalable MPSoC architecture supporting a

vast number of management services and capable of delivering both computation and

communication QoS by using multiple physical NoCs. This strategic goal requires the following

specific objectives:

 Integration of the features available in two distinct MPSoC platforms into a single

platform. The platforms are HeMPS-QoS, supporting communication QoS, and HeMPS-

RT, supporting computation QoS;

 Evaluate the traffic characteristics in the platform, concerning the temporal and the

spatial distribution of the packets;

 Isolation of the management traffic from the application traffic, through the use of

multiple physical (MP) NoCs;

 Exploration of the aspects of the network used for the management traffic.

1.2. Contributions

The main contributions of this work include:

 An MPSoC platform supporting both communication and computation QoS;

 Evaluation of the traffic behavior in an MPSoC platform;

 Development of a communication infrastructure based on multiple physical NoCs,

targeting the different traffic categories in MPSoCs.

1.3. Document Organization

This document is organized as follows. Chapter 2 presents the state of the art in the area

of multiple physical NoCs. Chapter 3 presents the reference platform implemented in this work.

Chapter 4 presents the available applications and conducts an evaluation of the traffic in the

platform. Chapter 5 describes the design of the network used for the management traffic and

presents an evaluation of different topologies for this network. Chapter 6 presents an evaluation

of the platform considering all implemented resources for QoS. Chapter 7 presents conclusions

and directions for future works.

19

2. STATE OF THE ART ON MULTIPLE PHYSICAL NOCS

Several proposals explore the use of multiple physical (MP) NoCs [AGA07][BAL08][ABO12],

where each subnetwork is specialized for different traffic classes. This Chapter presents a summary

of these works, highlighting some of their characteristics that are also explored in this work. At the

end of this Chapter, a comparative table between the described works is presented, situating this

work with the state of the art.

These works can be classified according to their respective goals, such as: (i) proposal and

evaluation of different network characteristics and topologies; (ii) energy efficiency; (iii) specific

NoC applications; (iv) platforms employing multiple physical networks.

2.1. Proposal and evaluation of network characteristics and topologies

These works focus on the performance, area and energy efficiency of different network

characteristics and topologies, including in their evaluation the use of MP networks. A common

characteristic of these works is the adoption of the same traffic model, cache-coherence

communication protocol, which can be divided into multiple subclasses, such as Read

Requests/Replies, Write Requests/Replies, among others.

2.1.1. Design Tradeoffs for Tiled CMP On-Chip Networks [BAL08]

This work proposes an area and energy model and investigates how different network

aspects such as topology, channel width, routing strategy and buffer size affect performance, area

and energy efficiency, evaluating the tradeoffs between these characteristics.

Several network topologies are evaluated in this work, including a mesh topology with two

parallel subnetworks (MeshX2) and a concentrated mesh with two subnetworks, where each

router services four processors (CMeshX2). Both are shown in Figure 2.1(a) and Figure 2.1(b).

Two strategies are proposed to distribute the traffic over the subnetworks: (i) one

subnetwork is used to transport short packets, such as read requests and write replies, and the

other is used to transport long packets, such as read replies and write requests. This allows a

heterogeneous architecture, optimizing each subnetwork for each packet type; (ii) one

subnetwork transport packets associated with read transactions while the other one transport

packets associated with write transactions. This architecture is homogeneous in respect to its

subnetworks.

20

(a) Mesh (b) CMesh

Figure 2.1 – Network topologies. Source [BAL08].

The networks are evaluated using a cycle-accurate interconnection network simulator

using various synthetic traffic patterns. Two aspects are analyzed: (i) Area-delay: measured as the

product of the workload completion time and the chip area; (ii) Energy-delay: measured as the

product of the completion time and energy expended in the network.

The CMeshX2 is the preferred topology by the Authors since it presents better results when

compared to the other evaluated topologies, as shown in Figure 2.2. This topology is further

analyzed, as shown in Figure 2.3, evaluating different topologies (single and duplicated network),

different flit widths and different traffic distribution strategies (homogeneous and

heterogeneous). The work assumes a constant channel width, e.g., the flit width of the duplicated

network is the half of the single network. The duplicated networks present better efficiency when

compared to a single network since narrower flit widths requires fewer repeaters to drive the wires

interconnecting the routers. Also, the homogeneous strategy to distribute the traffic also

achieved better efficiency results, since it promotes a better balancing of loads between the

subnetworks.

The Authors conclude that the addition of a second network significantly improves both

performance and energy efficiency while having a negligible impact on the chip area because the

additional routers are positioned in areas initially allocated for channels in the first network. In

overall, the CMeshX2 presents a 24% improvement in area efficiency and a 48% improvement in

energy efficiency over other networks evaluated in the study.

21

Figure 2.2 – Efficiency of the evaluated topologies. Source [BAL08].

Figure 2.3 – Efficiency of the CMesh topology. Source [BAL08].

2.1.2. Express Cube Topologies for On-Chip Interconnects [GRO09]

This work proposes the Multidrop Express Channels (MECS) topology for NoCs, where

multiple cores are connected to a single router and the connections between the routers follow a

one-to-many configuration. Figure 2.4 presents this topology. Every router output port injects

packets into a bus that is connected to all routers input ports in its direction (repeaters are inserted

to improve the channel energy and delay). The input ports are connected to a single bus.

Therefore, each router has multiple input ports in each direction, equal to the number of routers

remaining in that direction. This topology allows to reduce the number of hops required for a

packet to reach its destination.

The Authors also propose replicating the network, comparing this implementation to a

single network implementation, where the sum of all multi-network channels bandwidth is equal

to the single network channel bandwidth. The remaining network parameters, such as buffer

depth is equal for both cases.

The networks are evaluated using synthetic workloads (such as bit complement, uniform

random and transpose traffic) and application traces generated using the PARSEC benchmark. In

22

average, the single network implementation has a latency 10% smaller when compared to a two

networks implementation. However, the energy-delay product (product of the completion time

and energy expended in the network) of the two networks implementation is around 10% smaller,

showing that replicating networks are effective at minimizing the network energy.

Figure 2.4 – MECS topology. Source [GRO09].

2.1.3. Virtual Channel and Multiple Physical Networks: Two Alternatives to Improve NoC

Performance [YOO13]

This work presents a comparison between NoCs with VCs and MP NoCs, considering that

their channel bandwidth is equal (the VC router has a flit width equal to the sum of all MP flit

widths), and the total input port buffer storage is also equal (the total buffer capacity in bits for

each input port is equal for both cases). The networks are evaluated considering multiple

parameters, such as channel width, buffer storage, the number of physical channels, the number

of virtual channels and frequency. Several aspects of both networks are analyzed, such as:

 Maximum operating frequency: MP has a simpler logic and can operate faster in the

architecture evaluated by the Authors;

 Area consumption: MP routers are smaller than VC routers when using shallow queues,

and MP router area increases more linearly when varying the frequency;

 Power dissipation: The difference is negligible when using 65 nm and 90 nm

technologies. However, this difference becomes more relevant with smaller

technology nodes due to leakage power. With buffers depth equal or smaller than 8

flits and channel width of 128 bits, MP routers dissipate equal or less than the

equivalent VC routers in more recent technologies;

23
  Minimum size: The routers are synthesized targeting minimum area instead of

operating frequency and uses the shallowest possible buffers. MP routers can operate

faster (clock period of 1 ns) than VC routers (clock period of 1.6 ns), and MP routers have

an area overhead of 38% when compared to a single network with a single channel

implementation. VC routers have an area overhead of 56% to 121% when compared to

this same single network. These values consider two physical channels or two VCs;

 Synthesis for FPGAs: MP router with four networks occupy less area and is around 18%

to 35% faster than a VC router (using 4 networks/VCs);

 Performance: Under the same loads, with the traffic well-distributed, VC gives better

maximum throughput and average latency. However, with traffic patterns that

generate hotspots in the NoC channels, MP provides better maximum sustained

throughput.

In summary, MP routers tend to be more power and area efficient when compared to VC

routers when using shallow buffers, and can have additional benefits when considering

technology scaling. The performance depends on the traffic patterns.

The Authors also observe that MP may provide a robust network infrastructure when

controlled by a fault-tolerance policy, and allows a heterogeneous partitioning, where one

subnetwork is dedicated to efficient data transfers while others are used to control several aspects

of the platform.

2.2. Energy Efficiency

These works take advantage of MP networks to optimize energy efficiency without

degrading the performance, distributing the traffic subclasses into the available networks. Each

network is specialized for the characteristics or performance requirements of each traffic subclass.

2.2.1. Déjà Vu Switching for Multiplane NoCs [ABO12]

This work suggests that cache coherence messages can be classified in critical and non-

critical messages. All data messages (e.g. cache lines) are considered non-critical messages while

control messages (e.g. data requests, invalidations, acknowledgments) are considered critical.

A dedicated subnetwork is used for each message class (both networks adopt the mesh

topology), and the networks differ with respect to the flit width, being used a 10-byte width for

the data network and a 6-byte width for the control network. The control subnetwork uses a

24

regular packet switching based on the XY routing algorithm while the data subnetwork uses the

Déjà Vu switching, which pre-establishes a circuit to the target router using a special reservation

packet transmitted on the control network. After the path establishment, the data packet can

traverse its subnetwork without additional delays due to the routing process.

The use of dedicated networks for the control messages and data messages allows a more

efficient use of buffers and bandwidth resources, saving power. The data plane voltage and

frequency can also be reduced to avoid that the data packet must wait in the network for its path

to be established, which allows the data network to operate slower without negatively impacting

the performance.

The network is evaluated using synthetic traces and benchmarks executed on a full system

simulator. The network is compared to a baseline implementation without MP networks. The data

network has its operating frequency set to 2.66 GHz while the control network and the baseline

implementation operates at 4 GHz. The switching method proposed by the Authors allows to

reduce the average energy consumption by 50%, without negatively impacting the performance.

2.2.2. CCNoC: Specializing On-Chip Interconnects for Energy Efficiency in Cache-Coherent

Servers [VOL12]

The CCNoC is a dual-network architecture specialized for directory-based cache-coherence

traffic. The request network is mainly used for request messages, primarily consisting of block fetch

request and clean replacement notifications. This network is optimized for short messages, having

a smaller flit width (64-bits), and uses two VCs to avoid deadlocks related to the cache coherence

protocol. The response network primarily transmits messages carrying a cache block and supports

wider flits (112-bits) than the request network, and does not require VCs. Both networks use the

wormhole switching and adopt the mesh topology.

This network is evaluated in a full system simulator using the TPC-C benchmark suite and

has its results compared to two single-network implementation, one with a flit width of 176 bits,

and the other with a flit width of 128 bits. The CCNoC has a power consumption 28% smaller in

average compared to the 176-bits flit-size implementation without performance loss and reduces

the network area by 55%, since it requires fewer VCs. Compared to the 128-bits flit width network,

it presents a reduction in power consumption of 18%, while being around 5% faster and has an

area 10% smaller.

25

2.2.3. Catnap: Energy Proportional Multiple Network-on-Chip [DAS13]

This work proposes the use of MP NoCs, where initially, a single subnetwork is active and

used to transmit packets while the remaining subnetworks are power gated. As the subnetwork

starts to congest, an additional subnetwork is enabled. Compared to a bandwidth equivalent

single-network implementation, this increases the time and the number of components power

gated at runtime, reducing the overall power consumption.

Every subnetwork has a specific priority. Packets are initially injected in the highest priority

subnetwork, and, as this subnetwork starts getting close to congestion, a lower priority

subnetwork is activated, and the load is distributed between the active networks. The congestions

are detected according to the buffer occupancy. When a subnetwork detects that its immediate

higher priority subnetwork is not congested, it starts its process to deactivate the subnetwork.

This network is evaluated under several synthetic traffic patterns and application traces. In

overall, this strategy allows to reduce the network power to 44% of an equivalent single-network

implementation, with a performance overhead of 5%.

2.2.4. Data Criticality in Network-On-Chip Design [MIG15]

This work aims to improve the NoC energy efficiency by delaying fetching of cache data

blocks until they are really required. Some of these fetches are considered critical, meaning that

they needed right away, while other fetches considered non-critical, which can have its

transmission delayed through the use of low-power techniques applied to the NoC. When an

instruction is currently waiting in the pipeline for a data word, this fetch is considered critical, while

memory blocks fetched as a consequence of bulk-fetching are considered non-critical.

To support this message differentiation, this work proposes the NoCNoC, where the NoC

is divided into multiple subnetworks, each one operating at different frequencies and voltages.

The non-critical network employs dynamic voltage-frequency scaling (DFVS) to slow down its

operation. The frequency is dynamically controlled according to the proportion of traffic injected

into the non-critical subnetwork compared to the critical subnetwork, aiming to balance the

utilization preventing high congestion on either network. Therefore, the network can adapt to

different application requirements.

The NoCNoC is compared to a baseline implementation with a single network. The

baseline implementation uses a 128-bit channel while NoCNoC uses an 88-bit channel for the

26

critical subnetwork and a 40-bit channel for the non-critical subnetwork. The non-critical

subnetwork operates from 500 MHz to 2 GHz, in steps of 250 MHz. The critical subnetwork and the

baseline implementation operates at 2 GHz. On average, the NoCNoC achieves in average 27.3%

energy consumption reduction (up to 60.5%) compared to the baseline implementation, while

increasing the runtime by 3.6%.

2.3. Specific Applications

An additional network can be used to transfer communication not directly related to the

application data. These works propose a parallel network for specific purposes in the platform.

2.3.1. NoC Monitoring: Impact on the Design Flow [CIO06]

This work explores different NoCs monitoring strategies to increase its observability. This

work observes the challenge in interconnecting the monitoring probes, evaluating scalability,

non-intrusiveness, run-time usage, reconfigurability and area cost. As NoCs are a scalable

interconnect, the Authors suggest to include in the NoC design flow additional communication

infrastructures for the monitoring infrastructure.

Three strategies are explored in this work for the monitoring infrastructure: (i) MP NoCs,

one used for the original NoC application and a simpler one used for monitoring; (ii) router reuse,

adding additional physical channels and ports; (iii) sharing of the existing network infrastructure,

monitoring packets use the same networks as the application packets.

The strategies are evaluated with respect to its impact on the design flow, non-

intrusiveness (the impact that the monitoring has on the user traffic), area cost and reuse

capability after debugging. The results are summarized in Table 2.1, with respect to its positive

and negative aspects.

Table 2.1 – NoC monitoring strategies comparison. Source [CIO06].

 i ii Iii

Design Flow ++ + -

Non-intrusiviness + + +/-

Area Cost - - +

Reconfigurability - + +

27

2.3.2. Reconfigurable Security Architecture for Disrupted Protection Zones in NoC-Based

MPSoCs [SEP15]

This work proposes the creation of secure zones in MPSoCs, to protect sensitive

information exchanged through the NoC. The platform suggested in this work adopts two NoCs,

a data NoC, used for the application data, and a service NoC used to exchange the security control

packets of the MPSoC.

 To achieve security, the information exchanged among IPs in a security zone is encrypted.

The cryptograph keys are exchanged using the Diffie-Hellman algorithm, using control packet

transmitted by the service NoC. The data packets are encrypted by a Secure Interface, which

communicates with both networks and controls the establishment of the security zones.

2.4. Platforms employing multiple physical networks

Some platforms that employ several traffic classes count on the use of MP networks,

specializing each network for a specific traffic class, providing isolation and prioritization of the

traffic.

2.4.1. The Raw Microprocessor: A Computational Fabric for Software Circuits and General-

Purpose Programs [AGA02]

The Raw microprocessor has 16 computing units interconnect by four networks, where

each network adopts the mesh topology and have a flit width of 32 bits. Two networks are

considered static, and the remaining ones are considered dynamic. Both networks are accessible

by the software through mapped registers.

The static networks are configured before a packet is sent, and allows to establish a circuit

between two computing tiles. Thus, flits sent to these networks have a low latency, since it enables

a single cycle per-hop latency, and are not susceptible to interferences.

The dynamic networks use the wormhole routing and the XY routing algorithm. These

networks are subdivided into the memory network and the general network. The memory

network is restricted to trusted clients (OS, data cache, interrupts, hardware devices, DMA and I/O)

while the general network is available to the user applications.

28

2.4.2. On-chip Interconnection Networks of the TRIPS Chip [GRA07]

The TRIPS chip has two networks, the OCN network, which replaces a traditional memory

bus, and the OPN network, which replaces a traditional operand bypass (transfer of a single word

between the execution units) and L1 cache buses. Figure 2.5 presents the block diagram of this

processors, showing the network interconnections.

Figure 2.5 – Block diagram of the TRIPS chip, showing networks interconnections. Source
[GRA07].

In Figure 2.5, the OCN network connects the two processor cores to the L2 cache and I/O

units. Within the processor cores, the OPN connects the tiles implementing the register files, data

caches and execution units. The networks also differ with respect to its characteristics, such as flit

width (OCN uses 138-bits while OPN uses 142 bits), number of VCs (OCN uses 4, OPN does not

support VC) and flow control (OCN uses wormhole, OPN uses single-flit packets).

2.4.3. On-Chip Interconnection Architecture of the Tile Processor [AGA07]

The Tile processor is a commercial product where its first implementation, the Tile64,

contains 64 cores and several I/O devices, all interconnected by five 2D mesh NoCs. Each

subnetwork is used for different traffic classes, and are described as follows: (i) UDN, used to

communicate user threads or processes executing in different cores by the means of operands

29

(transfer of a single word between the processors), socket-like channels or message passing, ; (ii)

IDN, used for I/O and system level traffic, isolating it from the user applications; (iii) MDN, used to

communicate with the off-chip DRAM; (iv) TDN, which works together with the MDN as a portion

of the memory system, used to send cache request to other cores; (v) STN, also used by user

threads or process, which can be used to establish a circuit between two cores, ensuring low-

latency and high-bandwidth. Networks (i) to (iv) uses the XY routing algorithm and wormhole

switching, while the STN network uses circuit switching and its path is pre-established before

sending the packet.

This platform has a simultaneous support for both shared memory and distributed

memory architectures, leaving the decision of which architecture to be used for communication

to the application programmer. The shared memory approach in this platform has a higher

communication overhead and is less scalable when compared to the distributed memory

approach, however, according to the Authors, it is simpler to program. The use of MP networks

allows to support both architectures without interferences between them and also provides a

clear separation of the system traffic from the application traffic. The STN network also provides a

way to ensure low latency communication between two cores.

The Authors comment on the choice of using multiple physical networks, instead of using

multiple virtual channels, justifying that there is a large availability of wires in modern fabrication

processes, and most of the area cost is spent on buffers, which is also required when using virtual

channels.

2.5. Final Remarks

Table 2.2 compares the characteristics of the previously reviewed works, and the last table

line presents the characteristics of the proposed work.

A common characteristic of most analyzed works is the differentiation of traffic classes in

the platform, and the proposal of isolating these traffic classes by the use of MP NoCs, reducing

interferences among the flows belonging to different classes. Each subnetwork has its parameters

(flit width, buffer width, and others) adjusted according to the traffic characteristics, improving

the network efficiency.

Table 2.2 – Works exploring the use of multiple parallel physical NoCs.

30

Year Title #NoC Asymmetrical Evaluated Workload Traffic Classes Network Selection Policy

2002 The RAW Microprocessor
[AGA02] 4

Yes (2 types)
Different flit width

and router
architecture

Real applications
(available as an IC)

Messages/IO/
Interruptions/

Memory/
Operands

Two networks (static) are used for
operands, other two networks

(dynamic) are used for remaining
traffic.

2006
NoC Monitoring: Impact

on the Design Flow
[CIO06]

2 Not specified N/A Monitoring/
Data

Monitoring data uses a dedicated
network, while the remaining
traffic uses the other network.

2007

On-Chip Interconnection
Networks of the TRIPS

Chip
[GRA07]

2

Yes
Different flit widths

and router
architecture

Real applications
(available as an IC)

Operands/
Memory

One network is dedicated for
operands and the other is
dedicated for the memory.

2007

On-Chip Interconnection
Architecture of the Tile

Processor
[AGA07]

5

Yes (2 types)
One NoC (STN)

supports CS, other
NoCs doesn’t

Real applications
(available as an IC)

Messages/IO/
Memory/
Operands

UDN and STN networks are used for
operands and messages, IDN

network is used for IO and system
traffic, MDN and TDN networks are

used for the memory and cache
coherence.

2008
Design Tradeoffs for Tiled

CMP OnChip
[BAL08]

2 Yes
Different flit widths

Synthetic Traffic
Patterns Cache Coherence

Two suggested strategies:
(i) Read requests and write replies
in one network, read replies and

write requests in the other;
(ii) One network transmit read

transactions, while other transmits
write transaction.

2009

Express Cube Topologies
for On-Chip

Interconnects
[GRO09]

2 No
Synthetic Traffic

Patterns/
Application Traces

Cache Coherence N/A

2012
Déjà Vu Switching for

Multiplane NoCs
[ABO12]

2
Yes

Different voltage
and frequency

Synthetic traces/
Benchmarks executed

on a full system
simulator

Cache Coherence Critical and non-critical messages.

2012

CCNoC: Specializing On-
Chip Interconnects for

Energy Efficiency in
Cache-Coherent Servers

[VOL12]

2

Yes
Different flit widths

and router
architecture

Benchmarks executed
on a full system

simulator
Cache Coherence Requests messages in one network,

response messages in the other.

2013

Catnap: Energy
Proportional Multiple

Network-on-Chip
[DAS13]

1-8 No Synthetic traces/
Application traces Cache Coherence

Initially uses a single network, other
networks are powered off. As the

network becomes congested,
enables a new network and starts
balancing the traffic between the

active networks.

2013

Virtual Channels and
Multiple Physical

Networks: Two
Alternatives to Improve

NoC Performance
[YOO13]

4 Yes
Different flit widths

Benchmarks executed
on a full system

simulator
Cache Coherence Each network is used for a specific

class of cache coherence messages

2015
Data Criticality in

Network-On-Chip Design
[MIG15]

2
Yes

Different flit widths
and frequency

Benchmarks executed
on a full system

simulator
Cache Coherence Critical and non-critical messages.

2015

Reconfigurable Security
Architecture for

Disrupted Protection
Zone in NoC-Based

MPSoCs
[SEP15]

2
Yes

Different flit widths
and buffer depth

Benchmarks executed
on a cycle accurate

simulator

Security Ctrl/
Data

One network (Data) is used to
transmit the data among the IPs of

the MPSoC, the other (Service) is
used for security services

- This Work 2
Yes

Different router
architecture

Applications
executed on a RTL
MPSoC description

Application Msg/
Management Msg

Application data uses one network,
management traffic uses the other

network.

Most works on Table 2.2 focus on modeling the traffic as a cache coherence protocol

because most contemporary systems adopt shared memory architecture. This work target

distributed memory architectures since it is scalability compared to shared memory (SM)

architectures because traffic hotspots near to the SM are avoided and cache coherence

mechanism has a higher communication overhead than message exchange [AGA07].

31

Some systems may require the use of messages not related to the application to manage

several platform aspects, such as performance monitoring, power management, mapping

requests, actuation messages for QoS, security, among others.

The use of MP networks allows improvements in area and energy efficiency when

compared to an equivalent performance single network implementation. It also presents an

opportunity to employ several low power techniques, such as DVFS.

Most works explore the NoC architectural parameters, using platform simulators for

evaluation. This work implements the MP architecture on a complete MPSoC platform, analyzing

the impact of this strategy on a real system, with a clock-cycle validation.

32

3. REFERENCE PLATFORM

The reference platform adopted in this work is based on the HeMPS-QoS [CAR11] platform,

an MPSoC architecture composed of several Processing Elements (PEs) interconnected by a

Network on Chip (NoC), represented in Figure 3.1. All packets in the NoC encapsulate messages

that are exchanged among the PEs for communication, accessible at the software level by an MPI-

like API. Each message in this platform has a specific service identification according to its function

in the platform. The applications executed in the MPSoC are divided into tasks, which run in

parallel in several PEs. Multiple tasks can execute in the same PE, and each task has a dedicated

memory page. This MPSoC adopts a distributed memory architecture. Each task executes in its

private memory, and no memory is shared between the PEs.

The platform is distributed with a platform generator, which generates the platform,

configuring the hardware and the software according to parameters specified in a configuration

file.

Next sections detail the platform. Section 3.1 presents the main hardware features. Section

3.2 details how the platform is managed. Section 3.3 explain the communication QoS capabilities

of the platform. Section 3.4 details the computation QoS system employed in the platform.

Cluster
ApplicationRepository PEGM PESL

PESLPESL

Cluster

PELM PESL

PESLPESL

Cluster
PELM PESL

PESLPESL

 Cluster
PELM PESL

PESLPESL

LabelPESL – PE Slave PELM – PE Local ManagerPEGM – PE Global Manager

Figure 3.1 - HeMPS-QoS MPSoC organization [CAS13].

33

3.1. Hardware

The platform is available both in RTL-VHDL and in a cycle-accurate SystemC

representation, where the latter simulates faster [PET12]. Many hardware aspects of the platform

are parameterizable, such as the MPSoC size, cluster size and the number of pages at each PE (the

platform adopts a paged memory organization using the scratchpad memory).

This platform is homogeneous in respect to the PE architecture, represented in Figure 3.2.

Each PE contains the following hardware components:

(i) a Plasma processor [RHO10] implementing a subset of the MIPS architecture;

(ii) a private scratchpad memory;

(iii) a Direct Memory Access (DMA) module, allowing to transmit data from/to the memory

directly to the NoC without the processor interference;

(iv) a Network Interface (NI) module, responsible for handling the communication between

the NoC and the DMA.

Figure 3.2 – PE Internal Architecture. Adapted from [CAR09a].

The NoC used to interconnect the PEs is the Hermes-QoS [CAR09b], which has some of its

characteristics detailed below:

(i) mesh topology, where each central router has two input ports and two output ports in

each direction (North, South, East, West, Local). Border routers have unused ports

removed;

(ii) packets have multiple flits, consisting of header and payload. The header contains both

the target address and configurations specific for each packet. An additional bit

transmitted together with the flits indicates the end of packet;

(iii) support for two flows priorities through the usage of two physical channels (high

priority channel and low priority channel). High priority flows use both channels to

34

avoid congestions while low priority flows are constrained to the low priority channel.

Packets are configured individually by setting special flags in the header;

(iv) simultaneous support for wormhole switching, used for Best Effort traffic, and circuit

switching (CS), used for Guaranteed Throughput traffic. When a CS is established, the

high-priority channels in the path are reserved;

(v) simultaneous support for deterministic and partially adaptive Hamiltonian routing

algorithm. Also configured individually for each packet by special flags in the header;

(vi) no virtual channels;

(vii) each input port has a credit based input buffer;

(viii) centralized round-robin arbitration for the output ports.

Both the input buffer depth and flit width are configurable at design time. The HeMPS-QoS

platform adopts a fixed buffer depth of 8 flits, and each flit has 16 bits.

This platform has an external memory to the MPSoC, where the object code of the

applications is stored.

3.2. Management

This MPSoC uses a hierarchical management architecture [CAS13]. PEs adopt one of the

following three roles in the platform: (i) the slaves (PESL) are dedicated to the task execution; (ii)

the local manager (PELM) controls the cluster resources; (iii) the global manager (PEGM) provides a

high-level management of the MPSoC resources and communicates with the application

repository. All PEs run a microkernel, dedicated to its attributed role.

In summary, the management in this MPSoC consists in task mapping, resource sharing

between clusters, control of communication QoS between the application tasks, control of the

computation resources and task migration between the PESL.

The MPSoC is divided into clusters, defined at design time. Each cluster has multiple PESL

and a single manager. One of these managers is selected to manage all MPSoC resources (PEGM),

besides managing its cluster resources.

All management messages use only the low priority channel and use the deterministic

version of the Hamiltonian routing algorithm.

35

When the MPSoC starts, the PEGM sends a message with the service INITIALIZE CLUSTER to

all PELM, indicating the cluster position, size, and the PEGM address. Then, all managers send an

INITIALIZE SLAVE message to the PESL under their control, indicating their manager address.

3.2.1. Task Communication

The application developer can specify the communication between tasks through system

calls (syscalls). Producer tasks can send data messages using a non-blocking Send() syscall [BAG08],

which accepts as parameters the target task identification and a pointer to a structure containing

both the message size and its contents. Consumer tasks can receive data messages using a

blocking Receive() syscall that accepts as parameters the producer task identification and a pointer

to where the data is going to be stored after its reception.

Data messages are only injected into the network when they are requested. When the

consumer task calls the Receive() syscall, a control message with the service MESSAGE REQUEST is

sent to the producer PE. This request is stored in a memory table in the producer until the message

is ready to be delivered. Then, the producer PE sends a MESSAGE DELIVERY to the consumer PE. If

the data message is generated before the producer PE receives a MESSAGE REQUEST, the data is

stored in a software pipe present in the producer PE microkernel, allowing the task to continue its

execution. After the reception of the MESSAGE REQUEST, the message is removed from the pipe

and sent to the consumer PE.

Each PESL has a task location table in its microkernel that stores the physical location of

each task that it has previously communicated with. If the PE does not know where a given task is

located, i.e. the first message that a producer sends to the consumer, the PESL generates a TASK

REQUEST message to its manager requesting the location of the other task. If the task is still not

allocated, the manager first maps the task to an available processor and then informs the producer

PE the location of the consumer PE using a TASK ALLOCATED message (and also informs the

consumer PE the location of the producer PE). Later, the consumer generates a MESSAGE REQUEST

to the producer, and the message can be delivered.

3.2.2. Mapping

Applications are modeled as a task graph, as shown in Figure 3.3. In this graph, each vertex

represents a task, and the edges represent the tasks’ dependencies. Tasks are allocated at runtime,

having its object code loaded from the application repository. Tasks that do not have any

36

reception dependence are allocated first. The remaining tasks are dynamically allocated when the

already allocated task tries to communicate with a non-mapped task.

Applications have a configurable start time. The application repository notifies the PEGM

when a new application must start, and then, the PEGM selects a cluster where the application will

execute according to the available cluster resources. If the selected cluster does not correspond

to the PEGM cluster, the PEGM sends a NEW APP message to the cluster PELM, containing the task

graph information. The manager of the selected cluster executes a mapping heuristic [MAN15]

that takes into account the CPU utilization of each PESL in the cluster, and selects a PESL to execute

the task. The task can now be loaded from the application repository. If an application mapped to

a cluster that does not belong to the PEGM, the PELM sends a NEW TASK message to the PEGM,

indicating the PESL address where the task must be allocated. Then, the PEGM sends a TASK

ALLOCATION message to the PESL, containing the task object code.

Task A

Task B Task C

Task D Task E

Figure 3.3 – Example of an application task graph. Task A is an initial task.

When the task finishes its execution, the PESL sends a TASK TERMINATED message to its

manager, signalizing that a cluster resource is now available. After all tasks of an application have

finished its execution, the PELM sends an APP TERMINATED message to the PEGM, releasing the

cluster resources.

3.2.3. Reclustering

Resources can be shared between clusters at runtime. A resource consists of a memory

page in a PESL used to execute a task. When there is no available resource in a cluster, and the

manager must allocate a new task, the original manager sends a LOAN PROCESSOR REQUEST to the

other managers in the MPSoC, asking for a resource [CAS13]. The other managers reply to this

request using a LOAN PROCESSOR DELIVERY message, indicating if there is a resource available in

its cluster, and the address of the PESL if a resource can be lent. The original master receives the

37

LOAN PROCESSOR DELIVERY message and selects the PESL that would require the minimum amount

of hops to communicate to the other tasks in the application. The managers that are not selected

receive a LOAN PROCESSOR RELEASE message, canceling this request and releasing the shared

resource. If during this process, the original manager receives a TASK TERMINATED message, the

reclustering process is canceled and the original cluster uses the resource that was just released.

Otherwise, the original manager can now allocate a new task to the shared resource. During the

task execution, all management traffic related to the application is sent to the original manager.

After the task has finished its execution, a TASK TERMINATED OTHER CLUSTER message is sent to

the other manager, returning this resource to the other manager.

3.2.4. Scheduling

Considering a PESL executing only BE applications, tasks are scheduled using a round-robin

scheduler, which is called by a processor interrupt at the end of a time slice counter. Each task has

its private memory page and a data structure in the microkernel named Task Control Block (TCB),

which contain the schedule status for this task [SIL08]. The possible status for a BE task are: (i)

READY, if this task is available for execution; (ii) RUNNING, if this task is currently executing; (iii)

WAITING, if this task cannot be scheduled because it is currently waiting for a message. At each

scheduler run, a task that has the READY or RUNNING state is selected to execute. If there is no task

to be executed, the PESL is put in a hold state, disabling its execution until a new external

interruption is received (e.g., from the NoC).

3.3. Communication QoS

The communication performance between application’ tasks is critical for applications

subject to RT constraints. High packet latency delays the application processing, affecting its

requirements. The HeMPS-QoS platform supports the simultaneous execution of RT and BE

applications through the use of a QoS policy that prioritizes the RT applications traffic over the BE

applications traffic.

Consumer tasks can specify the communication QoS requirements using the

SetQoSProducer() syscall. This syscall accepts three parameters: the producer task identification,

the maximum acceptable message latency (in clock cycles) and the minimum acceptable

throughput (received bytes in a specified time window). The time window defaults to 1 ms and

can be changed using the SetQoSMonitoringWindow() syscall, which accepts as parameter the new

time window value. The producer task must respectively specify their consumer tasks which have

38

QoS requirements using the SetQoSConsumer() syscall, which accepts as parameter the consumer

task identification. The SetQosProducer() syscall generates a QOS REQUEST SERVICE to its manager,

which now can automatically take actions to meet the application communication requirements.

[RUA13]

3.3.1. Monitoring

When a task requires QoS constraints, all MESSAGE DELIVERY packets have in its header a

flag indicating that the consumer PE must generate a MONITORING PACKET message when the

MESSAGE DELIVERY is received. This packet is generated in hardware by the NI and is sent to the

manager. The monitoring packet contains the task identification, message latency, and message

size. The manager processor analyzes all monitoring packets, verifying if the communication

constraints are met, and, after a certain number of violations, it may act to restore the application

QoS constraints.

3.3.2. Communication Priority

To improve the application latency parameters, the communication flow can change to

three possible states: Low Priority, High Priority, and Guaranteed Throughput. All data messages are

initially sent as Low Priority, using just a single NoC channel and uses the deterministic version of

the Hamiltonian routing algorithm. If the manager detects that the latency constraints are

violated, a CHANGE FLOW QOS message is sent from the manager to the producer PE changing

the flow priority to High, allowing the data message to use both NoC channels and use the

adaptive version of the routing algorithm. If the latency constraints are still violated, the manager

changes the flow priority to Guaranteed Throughput also using a CHANGE FLOW QOS message,

establishing a CS channel between the two communicating PEs.

In the case of throughput violations, the priority is raised to Guaranteed Throughput, even

if the previous priority was Low, using the CHANGE FLOW QOS message.

The message priorities are automatically downgraded after some time, according to the

current priority (5 ms if the priority is set to HIGH, 10 ms if the priority is set to Guaranteed

Throughput).

39

3.3.3. Circuit Switching

The CS guarantees the maximum throughput and minimum latency between two PESL. The

CS exclusively uses the NoC high priority channel, and blocks this flow to any other message that

does not belong to these two PEs [DUA03]. The CS is established using a specialized network

packet with the service OPEN CONNECTION SERVICE, sent from the producer PE to the consumer

PE. When the CS is established, the producer PE signalizes its manager using the UPDATE CS

CONTROL message. Later, the producer PE can close the connection using a CLOSE CONNECTION

SERVICE message, and also signalizes to its manager that the CS was closed using the UPDATE CS

CONTROL message. The manager computes all CS paths to ensure that they only exist inside a

cluster and to avoid that two CS tries to use the same path.

3.4. Computation QoS

Besides guaranteeing the communication parameters, another important requirement for

RT applications is that its tasks must execute for enough time to complete its processing. The

reference platform guarantees this characteristic through the use of a scheduler that ensures this

requirement, called HQoS [RUA15], allowing the execution of soft real-time applications. This

scheduler follows a hierarchical organization, meaning that it is executed both in the cluster

manager (global scheduler) and in the PESL (local scheduler).

3.4.1. Local Scheduler

The local scheduler uses four constraints (shown in Figure 3.4) to determine which RT task

must be executed: (i) period, since the scheduler follows a periodic behavior; (ii) deadline,

indicating the maximum acceptable time in a period that the task must finish its execution; (iii)

execution time, indicating the time that a task must execute at each period; (iv) utilization, which is

the percentage that a task uses the processor, and is calculated using the following equation:

݊݋݅ݐܽݖ݈݅݅ݐݑ = ݁݉݅ݐ ݊݋݅ݐݑܿ݁ݔ݁) ∗ .[LIU00] ݀݋݅ݎ݁݌/(100

time

Period: p

Ready time: r

Deadline: d

Slack time: s
Exec. time: e

Figure 3.4 – Real-time constraint model. Source [RUA15].

40

The local scheduler selects the RT task according to the one that currently has the least

slack time. This task can also be preempted to execute another, if this new task has entered a new

period and has a slack time lower than the current one. After scheduling all RT tasks, the scheduler

uses the Round-Robing algorithm to select a BE task, as described in Section 3.2.4. To support the

RT scheduling, the scheduler supports the additional SLEEPING status, when the task has executed

the required time in its period. When the task has this status, it is not scheduled until its next

period.

The application developer can use the RealTime() syscall to specify the tasks RT constraints.

This syscall can be called multiple times during the execution to update the tasks requirements

according to the workload characteristics. A REAL TIME CHANGE message is also sent to the

manager when this syscall is called to inform the manager these new requirements.

When considering the application, this scheduler assumes that the application iteration

fits in a hyper period (i.e., all tasks of the application have the same period), meaning that the

configured period must cover all tasks constraints as shown in Figure 3.5. Assuming that there are

enough communication and computation resources available on the platform, there is a

minimum time variation between each application iteration, since no time is spent waiting for

messages and availability of the CPU.

Figure 3.5 – MPEG real-time constraints configuration. Source [RUA15].

3.4.2. Global Scheduler

The global scheduler has two main function: (i) selects the PESL to execute the task

according to its utilization (in fact, it is responsible for the mapping); (ii) handle monitoring

messages containing the PESL utilization and deadlines misses from the PESL. The global scheduler

41

can migrate tasks from one PESL to another to ensure that the tasks can execute for the required

time.

The manager uses a heuristic to select which PESL a task must be allocated, which aims to

find the PESL that has the most computation resources available. The heuristic is described below,

in sequence:

 The manager generates a set containing all the PESL in the cluster;

 The set is filtered to contain only the slave PEs with the highest average slack time,

other PESL are removed from the set;

 The set is filtered to contain the slave PEs with the smallest number of allocated RT

tasks;

 The set is filtered to contain only the slave PEs with the highest absolute slack time

(total idle time of the PESL);

 The set is filtered to contain only the slave PEs with the smallest number of BE tasks;

 At the end, the first slave PE in the set is selected to receive the task.

3.4.3. Monitoring

The global scheduler is dependent on two types of monitoring messages, both generated

by the PESL: (i) DEADLINE MISS REPORT, sent every time a task misses its deadline; (ii) SLACK TIME

REPORT, sent every 10 ms, and reports the PESL absolute slack time, meaning the total time that

the PESL was idle in the last 10 ms.

3.4.4. Task Migration

Deadline misses can initiate a task migration if the manager determines that the PESL has

insufficient resources to execute a task. A heuristic similar to the one used to allocate a task is used

to migrate tasks. The difference is that an additional criterion (executed first after the set is

generated) is used to select the PESL: utilization. Only the slave PEs that have a remaining utilization

higher or equal than the task utilization are selected. This heuristic, however, is not ideal, and can

be improved in future works. For example, consider a cluster with two PESL available to execute an

RT task. Each one of these PESL is executing an RT task with a utilization of 40%. Then, a new RT

task, with a utilization of 80% must be allocated to one of these PESL. Using the current heuristic,

this task would not be able to fulfill the requirements. The heuristic to fulfill the requirements can

42

be improved by grouping RT tasks by task migration, and mapping the new task to the PESL that

became available.

The manager PE is responsible for starting the migration. The manager sends a TASK

MIGRATION message to the PESL, containing the new location where the task must be migrated.

After receiving this message, the PESL can start its migration process. First, the object code is

migrated to the new address. During this process, the task can keep executing. Then, the task is

interrupted, and the remaining data is migrated in the following order: TCB, task location table;

message requests table; stack memory; BSS memory. After the task is migrated, the original slave

sends a TASK MIGRATED message to its manager. The original PE may still receive a MESSAGE

REQUEST after the task was migrated. In this case, this message is redirected to the new PE and a

UPDATE TASK LOCATION is sent to the consumer PE, indicating the new location of the task

[MOR12].

3.4.5. Application profile

To define the QoS constraints, applications must execute alone on the platform in such a

way to verify if it is possible to meet the applications requirements. This initial execution

corresponds to the application profiling. Figure 3.6 presents the application profile for two

applications (MPEG and DTW), i.e., the application is executed without any other application in

the MPSoC, and only one task is executed at each PE. There is a warm-up period of 10 ms, not

shown in the Figures.

Ite
ra

tio
n

la
te

nc
y

(m
s)

 (a) (b)

Figure 3.6 – Computation latency (a) MPEG (b) DTW during profiling.

0,84

0,86

0,88

0,9

0,92

0,94

0,96

10 20 30 40 50 60
Time (ms)

0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94

10 20 30 40 50 60
Time (ms)

43

It is possible to observe that each iteration processing time is kept constant, except the

variation observed at every 10 ms for both the MPEG and DTW applications. This variation

happens because every PESL reports its computation stats to its manager every 10 ms using the

SLACK TIME REPORT message, affecting the application processing.

The iteration latency may present temporary variations if there are other applications in the

MPSoC, presenting an interference to the communication and computation resources available

to this application. Some other services may also have a temporary impact in the iteration

processing time, such as the CS establishment, which stops the application communication until

the CS is established. These variations in the iteration time are compensated in the next iterations,

meaning that the time required to complete its next iteration is lower than the average, and the

following iterations are computed in the average time.

3.5. Supported Service Summary

Table 3.1 lists all services supported by the reference platform. Besides the application data

type, all remaining services are considered management services. This table highlights the

important number of management services in this platform.

Table 3.1 – Services supported by the reference platform.

Type Service Description Direction

Application Data

MESSAGE REQUEST Request for a MESSAGE DELIVERY. Consumer PESL  Producer PESL

MESSAGE DELIVERY Message containing data exchanged
between the tasks.

Producer PESL  Consumer PESL

OR

Original PESL  New PESL

PE Initialization
INITIALIZE CLUSTER Initializes the cluster. PEGM  PELM

INITIALIZE SLAVE Initializes the slave PEs in a cluster. PEGM  PELM

Mapping

TASK ALLOCATION Task object code. PEGM  PESL

TASK ALLOCATED The physical location of the task. Manager  PESL

TASK REQUEST
Requests the task location. If the task

is not mapped, also requests its
allocation.

PESL  Manager PE

TASK TERMINATED
Indicates that a task has finished its

execution. PESL  Manager PE

NEW APP Signalize the start of a new
application in a cluster. PEGM  PELM

APP TERMINATED All application tasks have finished its
execution. PELM  PEGM

NEW TASK Requests the allocation of a task to a
PESL

PELM  PEGM

44

Table 3.1 – cont.

Type Service Description Direction

Reclustering

LOAN PROCESSOR
REQUEST

Requests a resource from another
cluster. Requesting Mng  Other Mng

LOAN PROCESSOR
DELIVERY

Confirm the resource loaning, and
informs the address of the PESL

containing the resource
Other Mng  Requesting Mng

LOAN PROCESSOR
RELEASE Returns the loaned resource. Requesting Mng  Other Mng

TASK TERMINATED
OTHER CLUSTER

Task executing in the loaned resource
has finished its execution. PESL  Lender Mng

Communication
QoS

CHANGE FLOW QOS Communication flow must change its
priority. Manager  Producer PESL

QOS REQUEST SERVICE Task requires QoS management. Consumer PESL  Manager

MONITORING PACKET MESSAGE DELIVERY statistics. Consumer PESL  Manager

UPDATE CS CONTROL CS successfully established. Producer PESL  Manager

OPEN CONNECTION
SERVICE Open a CS connection. Producer PESL  Consumer PESL

CLOSE CONNECTION
SERVICE Closes a CS connection. Producer PESL  Consumer PESL

Computation

QoS

REAL TIME CHANGE Task RT constraints PESL  Manager

SLACK TIME REPORT Reports the PESL absolute slack time PESL  Manager

DEADLINE MISS
REPORT Task has missed its deadline PESL  Manager

Migration

TASK MIGRATION Indicates that a task must migrate to
another PE. Manager  PESL

MIGRATION CODE Task object code. Original PESL  New PESL

MIGRATION TCB Task TCB. Original PESL  New PESL

MIGRATION TASK
LOCATION Task location table. Original PESL  New PESL

MIGRATION MSG
REQUEST Pending message requests. Original PESL  New PESL

MIGRATION STACK Task stack. Original PESL  New PESL

MIGRATION DATA BSS Task BSS memory. Original PESL  New PESL

UPDATE TASK
LOCATION

Indicates that future MESSAGE
REQUEST for the task must be sent to

another processor.
Original PESL  Consumer PESL

TASK MIGRATED Migration procedure complete. Original PESL  Manager PE

3.6. Final Remarks

This chapter presented the first contribution of this work: the integration of features

present in two existing platforms, HeMPS-QoS [CAR11] and HeMPS-RT [RUA15]. This integration

required an effort to stabilize both the hardware and the software of the new platform, given the

large number of protocols involved (as presented in Table 3.1).

45

This new HeMPS-QoS platform is the most comprehensive version of the HeMPS platform,

providing support for both communication and computation QoS simultaneously.

46

4. EVALUATION OF THE TRAFFIC BEHAVIOR

This chapter presents the applications used to evaluate the platform and presents the

behavior of the platform traffic. Such evaluation is used to guide the design of the MP NoCs.

4.1. Evaluated Applications

4.1.1. MPEG

The MPEG application contains 5 tasks and has its task dependency graph shown in Figure

4.1, characterizing a pipeline communication flow. This application can be configured to support

both computation and communication QoS.

START IVLC IQUANT IDCT PRINT

Figure 4.1 – Task dependency graph for the MPEG application.

Figure 4.2 presents the scheduling graph for the MPEG application when using the HQoS

scheduler. At each scheduling period, a single MPEG frame is processed. The time required to

process a single MPEG frame is around 0.75 ms when there is no other application interfering with

the MPEG processing. This application usually only has one task active at a time, because the

processing is not balanced between all the available tasks.

Figure 4.2 – Scheduling graph of the MPEG application.

The MPEG application is evaluated using a scheduling period of 0.9 ms, leaving around

0.15 ms of slack time. The communication performance between all the tasks is also monitored to

detect latency and throughput violations.

47

4.1.2. DTW

The DTW application contains 6 tasks and has its task dependency graph shown in Figure

4.3. This application can be configured to support both computation and communication QoS.

BANK

P1

P2

P3

P4

RECOGNIZER

Figure 4.3 – Task dependency graph for the DTW application.

Figure 4.4 presents the scheduling graph for the DTW application when using the HQoS

scheduler. This application differs from the MPEG application because multiple tasks are usually

executed in parallel. This application can process N patterns in parallel, where N is equal to the

number of worker tasks (four worker tasks are used in the evaluation, P1 to P4). A worker task

requires around 0.65 ms to process a pattern.

Figure 4.4 – Scheduling graph of the DTW application.

The DTW application is evaluated using a scheduling period of 0.45 ms, and every worker

task requires two scheduling periods process a pattern, leaving around 0.125 ms of slack time for

each scheduling period. The communication performance between the worker tasks and the bank

is also monitored to detect latency and throughput violations.

48

4.1.3. Synthetic

The Synthetic application contains 6 tasks and has its task dependency graph shown in Fig.

7. Packets are injected at a similar rate to the MPEG application. This application does not have

QoS constraints.

TASK A

TASK B
TASK C

TASK D

TASK E
TASK F

Figure 4.5 - Task dependency graph for the synthetic application.

4.1.4. Producer/Consumer

This application has two tasks and has its task dependency graph shown in Figure 4.6. This

application is used in the evaluation mainly to disturb the communication of the other

applications. The producer tasks generate messages at the maximum rate supported the PE, and

each message has a payload size of 2048 bytes. The average utilization of a communication

channel between the producer and consumer tasks reaches an average of 20% of the channel

bandwidth when using this application. This rate is far from the maximum bandwidth supported

by the channel because the operating frequency of the NoC is equal to the PE, and there is

additional delays due to the task and kernel processing. This application does not have

communication and computation QoS constraints.

PROD CONS

Figure 4.6 – Task dependency graph for the Producer/Consumer application.

4.2. Traffic Evaluation

This section presents the second contribution of this work: evaluation of the volume and

spatiality of the management traffic, comparing it to the application traffic. The results listed in

this section were extracted from selected test cases that illustrate some common workload in the

reference platform. The test cases evaluated here uses three different applications: (i) MPEG; (ii)

49

DTW; (iii) Synthetic. Both the MPEG and DTW applications have their communication and

computation QoS requirements enabled.

All test cases are simulated for 100 ms (107 clock cycles), each PESL can execute

simultaneously 2 tasks, and all applications are mapped at the beginning of the simulation. The

test cases are configured as follows:

 Test case 1: 8 applications (4 MPEGs and 4 DTWs) executed in a 6x6 MPSoC with four

3x3 clusters;

 Test case 2: 9 applications (3 MPEGs, 3 DTWs and 3 synthetics) executed in a 6x6 MPSoC

with four 3x3 clusters;

 Test case 3: 16 applications (8 MPEGs and 8 DTWs) executed in an 8x8 MPSoC with four

4x4 clusters;

 Test case 4: 15 applications (5 MPEGs, 5 DTWs and 5 Synthetics) executed in an 8x8

MPSoC with four 4x4 clusters;

Test case 5: 16 applications (4 MPEGs, 4 DTWs and 8 Synthetics) executed in an 8x8 MPSoC

with four 4x4 clusters.

Table 4.1 presents a summary of the number of transmitted flits for each TC, divided by

traffic categories. The last row indicates the proportion of the management traffic compared to

the total traffic. In average, this proportion is between 10% to 15% of the total traffic in the

reference platform.

Table 4.1 – Number of flits transmitted by service.

Category TC 1 TC 2 TC 3 TC 4 TC 5

Application 792,700 752,088 1,453,534 1,270,876 1,336,360

Management 150,158 134,884 293,672 220,410 200,362

% Mng 15.93 15.21 16.81 14.77 13.04

Table 4.2 indicates the services with the most significant participation in the management

traffic, presenting the percentage of the flits contributed by this service compared to the total

management traffic. Most of the traffic is composed of monitoring messages, which are small, but

very frequent in the platform, and task allocation and migration messages, which are less

frequent, however have a large packet size.

50

Table 4.2 – Percentage of flits transmitted by specific management services.

Service TC 1 TC 2 TC 3 TC 4 TC 5

Communication
Monitoring 43.06 35.44 39.89 34.53 25.42

RT Monitoring 6.41 6.14 6.85 8.20 6.55

Task Allocation 39.37 43.56 40.26 44.43 46.11

Migration 4.28 6.57 5.02 4.19 12.09

Others 6.88 8.29 7.98 8.66 9.83

Table 4.3 presents the spatial distribution of the management traffic, in percentage to the

total management traffic. The results show that the traffic has a high locality inside the cluster.

The traffic between the PEGM and the PESL from other clusters is also significant, being composed

mainly of TASK ALLOCATION messages. The traffic between the Intra-cluster traffic and between

PESL is entirely composed of migration messages.

Table 4.3 – Spatial distribution of the management traffic.

Traffic TC 1 TC 2 TC 3 TC 4 TC 5

Intra-cluster traffic:
Manager PE ↔ PESL

58.94 56.28 54.77 51.60 41.75

Inter-cluster traffic:
PEGM ↔ PESL

34.62 34.71 37.84 41.20 42.56

Traffic between managers:
PEGM ↔ PELM

2.19 2.49 2.38 3.05 3.68

Intra-cluster traffic between PESL:

PESL ↔ PESL
4.25 6.52 5.02 4.15 12.01

The evaluation highlighted the behavior of the management traffic: (i) important number

of injected flits, especially if the application has QoS requirements; (ii) monitoring and allocation

traffic has an important role in the management traffic; (iii) spatial locality between the PESL and

their manager. Such evaluation suggests the usage of an additional network for the management

traffic to avoid interferences between the application and management traffic.

51

5. MANAGEMENT NETWORK DESIGN

This Chapter describes the main contribution of this work, the implementation of a

management NoC (M-NoC), parallel to the original Hermes-QoS NoC in the HeMPS-QoS platform.

Two topologies are explored: (i) full mesh interconnecting all the PEs; (ii) mesh interconnecting all

cluster managers. These M-NoCs topologies are integrated within the platform generation tool,

and can be selected or disabled in the platform configuration file. The flits used by the M-NoC can

be serialized/deserialized using specific components, allowing a further reduction of the network

area. Other topologies are qualitatively evaluated, based on the results presented by the

implemented topologies.

The M-NoC is used to offload the management traffic from the Hermes-QoS NoC (referred

as Data Network from now on) while the original network is mainly used to transmit the

application data traffic. This enables the isolation of the different traffic categories in the platform,

reducing interferences between management traffic and application traffic.

The NoC used as the reference for the M-NoC in both topologies is the Hermes NoC

[MOR04]. Some of its characteristics are listed below:

(i) mesh topology, where each central router has one input port and one output port in

each direction (North, South, East, West, Local). Border routers have unused ports

removed;

(ii) packets have multiple flits, with header and payload. The header contains the target

address and unused bits which can be used to signalize information specific to the

packet (the network does use those bits for any purpose). An additional bit transmitted

together with the flits indicates the end of packet – this characteristic is modified from

the original implementation;

(iii) no QoS support;

(iv) wormhole switching;

(v) deterministic XY routing algorithm;

(vi) no virtual channels;

(vii) each input port has a credit based input buffer;

(viii) centralized round-robin arbitration for the output ports.

52

Both the input buffer depth and flit width are configurable. The management network

implemented in this work adopts a fixed buffer depth of two flits and the flit-width is configurable.

The adoption of a 2-flit depth buffer aims the minimization of the area overhead of the M-NoC.

The M-NoC is simpler and considerably smaller than the data NoC employed in the

platform mainly due to having fewer and smaller buffers. The data router has a buffer depth of 8

flits, while the management router has a buffer depth of 2 flits. The data router also has 10 buffers

in total, since it has duplicated physical channels, while the management router has 5 buffers. The

flit width of both routers in this evaluation is of 16 flits. Table 5.1 lists the central router area results

for both networks using the buffer and flit configuration described previously. The central router

has input ports in all directions, being the largest possible version of this router. The routers were

synthesized using a 65 nm technology targeting the operating frequency of 100 MHz. The area of

management router is 30.7% of the data router area. In both cases, most of the area is spent on

the buffers, accounting for 60.7% of the data router area and 63.5% of the management router

area.

Table 5.1 – Router area comparison for different network types (Lib. CORE65GPSVT, 1.0V, 25º C)

 Area (µm2)

Component Data Router Management Router

Buffer (Avg.) 3,290 1,689

Crossbar 5,007 1,426

Control Logic 3,497 1,794

Router 43,361 13,294

MP networks is chosen over the use of VCs due to the possibility of adjusting the network

parameters, such as buffer depth and flit size, individually for each network. In addition, most of

the router area is spent in the buffers and crossbar, and this characteristic is not improved by the

use of VC, since each input port requires a number of input buffers equal to the number of VC

used by the network. Furthermore, when using shallow buffers, MP networks are more area and

energy efficient when compared to networks using VCs [YOO13].

5.1. Full Mesh M-NoC

In this topology, represented in Figure 5.1, the M-NoC interconnects all the PEs in the

network alongside the data network. All management traffic traverses through the management

53

NoC. The data NoC is dedicated to the application data services (as specified in Table 3.1), and to

the OPEN CONNECTION SERVICE and CLOSE CONNECTION SERVICE packets, since they are used to

establish/close the CS, which is only supported by the data NoC.

PEGM PESL

PESL PESL

PELM PESL

PESL PESL

PELM PESL

PESL

PELM PESL

PESL PESLPESL

Figure 5.1 – Full mesh management NoC topology.

The communication to the network is controlled by the NI, which supports three physical

channels (two for the data network, and one for the M-NoC). The NI is divided in receive and send

blocks, which allows the NI to simultaneously send and receive packets. The NI is also responsible

for serializing/de-serializing the flits, since the processor word width is 32 bits while the interface

used by both networks is 16 bits. Smaller flit widths for the M-NoC are serialized outside the NI in

dedicated modules.

The receive block of the NI contains control logic and an input buffer, which has the same

depth of the buffers used in the data network. Both the NI control logic and the input buffer are

shared between all physical channels. Thus, it is only possible to receive from a single channel at

a time. Packets in other channels must wait until the first packet is fully received. When a flit is

stored in the input buffer, the processor is interrupted so that the microkernel can configure the

DMA to receive the rest of the packet.

Figure 5.2 presents the receive control logic FSM. Initially, the control logic is in the Network

state, waiting the arrival of a packet from one of the networks. In this state, the NI signalizes to all

NoCs that there is no credit available in the input buffer, even if the input buffer is not full. When

one of the NoCs signalize the availability of packet through the rx signal, and there is space

54

available in the NI input buffer, indicated by the slot_available signal, the control logic goes to the

Header state to consume the header. Then, it alternates between the Receive Low and Receive High

states to de-serialize the packet, until the eop_i signal is active, indicating the end of the packet.

HEADER

RECEIVELOW

RECEIVE HIGH

rxslot_availabe

rxslot_availaberxslot_availabe

rxslot_availabeeop_i

rxslot_availabe

NETWORK

Figure 5.2 – NI receive control logic FSM.

The NI also generates monitoring packets after receiving a MESSAGE DELIVERY packet that

has a monitoring flag set in its header. When a packet of this type is received, the NI captures

specific positions of the packet that contains the packet size (used for the throughput control),

timestamp (used for the latency control), consumer task identification and producer task

identification. This information is used to generate the monitoring packet in the send block.

The send control logic is also shared for all output NoCs. Thus, the network can only send

packets to one channel at a time. The NI selects the network that a packet is going to be injected

according to an additional control word written to the NI before the packet contents. Packets

using the wormhole switching are injected into the low priority channel, regardless of the packet

priority, while packets using the CS are injected into the high priority channel. This allows

simplifying one of the router input buffers since high priority packets using wormhole switching

can change to the high priority channel inside the network, and does not represent a bottleneck

since the send control logic can just send a single packet at a time

Figure 5.3 presents the send control logic FSM. Initially, the control logic is in the Network

state, waiting the DMA to start transmitting the packet contents from the memory. The DMA uses

the send_data signal to indicate that a word is available to be sent to the NoC. The first word is

55

consumed by the NI and used to select the network that the packet is going to be sent. Then, the

header is sent to the network in the SEND HEADER state. The CHANGE_NETWORK is a special flag

set in the header that indicates that a packet can traverse multiple networks, thus the packet has

multiple headers. It is not used in the full mesh management network topology, however, it is

used in the management topology described later. The circuit state can advance if there is a new

word available from the memory and there is credit available in the NoC input buffer, indicated

by the signal credit_i. The payload size must follow the header, and is used by the NI to control the

number of remaining flits in the packet. After sending the packet size, the flits are serialized and

sent to the NoC in the SEND HIGH and SEND LOW states.

SENDHEADER

SEND SIZESENDHIGH

SENDLOW

send_data

send_datacredit_i

credit_isend_data

credit_isend_data

send_datapayload_size = “0”credit_i

credit_i
send_datapayload_size = “0”credit_i

send_datacredit_iCHANGE_NETWORK

NETWORK

Figure 5.3 – NI send control logic FSM.

The monitoring packet is sent to the manager PE when the send control logic is in the

Network state, and no other packet needs to be sent. In this situation, the send logic is temporarily

disabled, and a packet with a fixed structure is generated according to the information captured

from the MESSAGE DELIVERY packet.

At the software layer, in the microkernel, all packets are sent by the send_packet()

procedure. This procedure verifies the packet service, configures the packet to be sent to the

correct network, and prepares the packet header to be compatible to the selected network. In the

case of the data network, the header must include its QoS flags and the address must be converted

to the Hamiltonian address, since all address are represented as XY in the microkernel. Figure 5.4

presents a snippet of the code responsible for these actions.

56

if (p->service == MESSAGE_DELIVERY ||
 p->service == MESSAGE_REQUEST ||
 p->service == OPEN_CONNECTION_SERVICE ||
 p->service == CLOSE_CONNECTION_SERVICE) {
 p->header1 = DATA_NETWORK;
 p->header2 = get_qos_flags(p->net_priority, p->qos_flags) |
 xy_to_ham_addr(p->target_PE);
} else {
 p->header1 = MNG_NETWORK;
 p->header2 = p->target_PE;
}

Figure 5.4 – Source code responsible for selecting the network and adapting the packet header.

5.2. Mesh between the managers

In this topology, represent in Figure 5.5, the management network interconnects only the

manager PEs. The wire size between each router is kept small through the inclusion of repeaters.

PEGM PESL

PESL PESL

PELM PESL

PESL PESL

PELM PESL

PESL

PELM PESL

PESL PESLPESL

Figure 5.5 – Mesh between the masters management topology.

This network is used for the management traffic between different clusters. The

application and CS packets are constrained to the data network. However, in this topology, the

data network also transmits intra-cluster management packets.

57

The main motivation behind this topology is to avoid the interference between traffics

from different clusters, using a low-cost strategy. In addition, the manager inter-cluster

communication requires fewer hops since it is not necessary to cross multiple routers to reach its

destination, wasting fewer clock cycles due to router switching.

To reach its destination, a packet can take a path traversing both the management and

data networks. To support this path, a packet can have multiple headers, equal to the number of

networks that this packet will traverse. Each header contains the network target address and has

a special flag that indicates if the packet must change its network when it reaches its target.

Packets can only change the network in the manager PEs. Packets that must change its

network are delivered to manager NI and then, redirected to the new network. Every time that

this procedure is executed, the NI consumes a header flit.

All managers in this topology uses a modified version of the NI described in the Section

5.1. The PESL uses the same NI described previously, however, the signals which were previously

connected to the management network are grounded, and is not necessary to generate an

additional control word to select the packet network. All PESL packets are automatically sent to the

data network.

Figure 5.6 presents the receive control logic FSM for the manager NI. When a packet

reaches a manager NI and has the CHANGE_NETWORK flag in its header, the control logic advances

to the CONSUME_HEADER state, removing the first header and then advances to the

CHANGE_NETWORK state in the next cycle. In this state, the control logic verifies if the packet was

sent in its entirety to the other network through the eop_i signal, incoming from the NoC.

Figure 5.7 presents the send control logic FSM for the manager NI. When the receive logic

is in the CHANGE_NETWORK state, the send logic advances to the WAIT CHANGE NETWORK state.

This state connects the signals from the NoC that are used to receive packets (data_i, credit_o,

eop_i, rx), to the NoC signals that are used to send packets (data_o, credit_i, eop_o, tx). If the packet

arrives from one the channels from the data network, the packet is redirected to the management

network. Conversely, if the packet arrives from the management network, it is redirected to data

network low priority channel.

58

NETWORK

HEADER

RECEIVELOW

RECEIVEHIGH

rxslot_availabe

rxslot_availaberxslot_availabe

rxslot_availabeeop_i

rxslot_availabe

CONSUMEHEADERCHANGENETWORK

rxCHANGE_NETWORK
rxeop_icredit_i

Figure 5.6 – NI receive control logic FSM supporting network change.

NETWORK

SENDHEADER

SENDSIZESENDHIGH

SENDLOW

send_data

send_datacredit_i

credit_isend_data

credit_isend_data

send_datapayload_size = “0”credit_i

credit_i
send_datapayload_size = “0”credit_i

send_datacredit_iCHANGE_NETWORK

WAIT CHANGE NETWORK

STATE_RECEIVE = CHANGE NETWORKrxeop_incredit_i

Figure 5.7 – NI send control logic FSM supporting network change.

The change network operation uses the receive and send portions of the NI, thus, the

manager cannot receive nor send packets until the operation is completed.

59

In the software layer, the send_packet() procedure computes the route used by the

management packets using the algorithm shown in Figure 5.8 (CHANGE_NETWORK is abbreviated

to CN). Lines 2 to 17 are responsible for computing the route when the target PE is in a different

cluster than the sender PE. Lines 3 to 9 generates the headers required when the target is a PESL

in another cluster, thus requiring a network change. Lines 11 to 16 are used when the target is a

manager in a different cluster. Lines 19 to 22 are used when the target is in the same cluster.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

IF target is in a different cluster THEN
 IF target is not a manager THEN

 IF sender is a manager THEN
 add control word to use the management network
 ELSIF sender is not a manager THEN
 add header targeting the sender manager with CN flag
 END IF
 add header targeting the cluster address with CN flag
 add header targeting the final destination

 ELSIF target is a manager THEN
 IF sender is a manager THEN
 add control word to use the management network
 ELSIF sender is not a manager THEN
 add header targeting the sender manager with CN flag
 END IF
 add header targeting the final destination

 END IF
ELSIF target is in the same cluster THEN
 IF sender is a manager THEN
 add control word to use the data network
 END IF
 add header targeting the final destination
END IF

Figure 5.8 – Algorithm used to calculate management packet routes.

5.3. Serialization/Deserialization

To support smaller flit widths in the M-NoC, two modules, a serializer and a deserializer

modules interfaces the NI with the M-NoC. These modules are automatically inserted when

defining smaller flit widths for the M-NoC. The goal to use such modules is to reduce the area

overhead due to the additional network. Table 5.2 presents an area consumption comparison for

two different flit widths (16 bits and 8 bits). Reducing the flit width allows to reduce the router

area by 32%, due to a reduction in the area of buffer and crossbar.

60

Table 5.2 – Router area comparison for different flit widths (Library CORE65GPSVT, 1.0V, 25º C).

 Area (µm2)
Component Flit Width 16 Flit Width 8

Buffer (Avg.) 1,689 1,081
Crossbar 1,426 877
Control Logic 1,794 1,688
Router 13,294 9,030

5.3.1. Serializer

The serializer module is inserted between the NI data output signals and the M-NoC local

input port signals. Figure 5.9 presents the serializer module interface.

Data
EOP

Credit

TX

NI M-NoCData
EOP

Credit

TX

Serializer

Figure 5.9 – Serializer interface.

The serializer module stores the flit received from the NI in a register, and follows the FSM

shown in Figure 5.10 to serialize the flit to the M-NoC. The HEADER state formats the packet header

for the M-NoC, due to the flit width difference. The PAYLOAD state extracts parts (from the lowest

to the highest part) of the flit stored in the register and send it to the network. The END state

assures that the last flit and its EOP signal is correctly received by the M-NoC.

HEADER

PAYLOADEND

ni_tx = ‘1’noc_credit = ‘1’

ni_tx = ‘1’noc_credit = ‘1’ni_eop = ‘1’

noc_credit = ‘1’

ni_tx = ‘1’noc_credit = ‘1’

Figure 5.10 – Serializer FSM.

61

5.3.2. Deserializer

The deserializer module is inserted between the M-NoC output port signals and the NI data

input signals. Figure 5.11 presents the deserializer module interface.

Data
EOP

Credit

RX

NI M-NoCData
EOP

Credit

RX

Deserializer

Figure 5.11 – Deserializer Interface.

The deserializer module reads the flit received from the M-NoC, deserializes it, storing the

NI flit in a register during this process and signalizes the NI when a flit compatible with the NI flit

width is ready. Figure 5.12 presents the FSM used to deserialize the flit from the M-NoC to the NI.

The HEADER state adapts the packet header for the format used by the NI. The PAYLOAD state

reads the flit from the M-NoC and stores it in a part of the register, until it has read enough flits to

complete a NI word. The END state ensures that the last flit and its EOP signal are correctly received

by the NI.

HEADER

PAYLOADEND

noc_rx = ‘1’ni_credit = ‘1’

noc_rx = ‘1’ni_credit = ‘1’noc_eop = ‘1’

ni_credit = ‘1’

noc_rx = ‘1’ni_credit = ‘1’

Figure 5.12 – Deserializer FSM.

5.4. Management Network Evaluation

This section evaluates the implemented M-NoC network topologies, and compares it to

the original implementation with a single network.

62

5.4.1. Experimental Setup

To compare the different M-NoC topologies, six different scenarios are simulated in the

platform. Scenario 1 to 3 are executed in a 6x6 MPSoC with four 3x3 clusters. Scenario 4 to 6 are

executed in an 8x8 MPSoC with four 4x4 clusters. All scenarios are simulated for 100 ms, and each

PESL has two memory pages. Each scenario executes multiple instances of the application,

occupying all PESL pages in the system, and the application is reallocated when one instance of it

finishes. The applications are listed below:

 Scenario 1: DTW;

 Scenario 2: MPEG;

 Scenario 3: DTW, MPEG, Synthetic;

 Scenario 4: DTW;

 Scenario 5: MPEG;

 Scenario 6: DTW, MPEG, Synthetic.

The DTW and MPEG application only have their communication QoS enabled. The

computation QoS has a large impact on the execution time, since it ensures that the task only

executes for the defined execution time in a single period, therefore, the computation QoS is

disabled for this evaluation. The results are extracted from packet and application logs and

analyzed using scripts written in Python, developed for the evaluation of this work.

5.4.2. Application Messages Network Latency and Jitter Evaluation

Table 5.3 presents the average network latency and jitter for the application packets,

considering different management NoC topologies and flit widths. The results without the M-NoC

are also included, and in this case, the network latency and jitter are equal for both M-NoC flit

width columns. The latency is the number of clock cycles between the injection of the header flit

into the network until it reaches its target. Since only the first flit of the packet is considered in the

evaluation, and the NoC uses the wormhole switching mechanism, the results are independent of

the packet size, which has a large variation in this platform. The jitter is the standard deviation of

the network latency.

The first evaluation concerns the 16 and 8-bit “Full-mesh M-NoC”. The non serialized “Full-

mesh M-NoC” presents better latency and jitter values than the implementation without the M-

NoC, reducing the average network latency in 30% to 70% (46% in average between the evaluated

63

scenarios) and the jitter in 40% to 80% (60% in average). The serialized version of the M-NoC still

brings improvements over the version without the M-NoC, improving the network latency in 20%

to 60% (40% in average) and the jitter is improved up to 65% (37% in average).

Table 5.3 – Average Application Network Latency and Jitter (Clock Cycles) for different M-NoC
configurations

M-NoC 16-bit Flit Width

Non serialized
M-NoC 8-bit Flit Width

Serialized

Scenario M-NoC Avg. Lat. Jitter Avg. Lat. Jitter

1

None 41.3 257.4 - -

Full-Mesh 23.4 122.5 25.6 109.8

Mesh Mng 31.0 236.1 31.2 270.4

2

None 40.1 311.4 - -

Full-Mesh 26.3 179.2 32.5 378.8

Mesh Mng 39.9 283.9 49.5 499.5

3

None 33.3 230 - -

Full-Mesh 23.9 72.5 25.4 103.7

Mesh Mng 26.7 192.1 51.1 504.9

4

None 113.7 792.5 - -

Full-Mesh 35.9 157.5 46.6 271.0

Mesh Mng 106.7 841.4 119.2 1266.1

5

None 95.3 562.2 - -

Full-Mesh 34.3 139.6 37.5 390.3

Mesh Mng 85.6 574.6 150.8 1160.0

6

None 64.8 463.8 - -

Full-Mesh 37.1 267.9 40.2 302.8

Mesh Mng 61.2 433.4 78.6 663.9

The second evaluation concerns the 16 and 8-bit “Mesh between the managers M-NoC”

(Mesh Mng. rows). The “Mesh between the managers M-NoC” also presents performance

improvements when compared to the implementation without the M-NoC. The average network

latency is reduced up to 25%, being improved by 11.1% in average between the evaluated

scenarios. The jitter improves up to 17% (5% in average), while having a small degradation up to

2% in some specific cases. The serialized version of the M-NoC presents a network latency

degradation up to 53% (22% higher latency in average) and the jitter is degraded in 5% to 120%

(66% in average), when compared to the version without the M-NoC. The use of serialization when

64

the packet is transmitted between networks with different flit width present a degradation

because it causes congestions in the network which has the larger flit width.

5.4.3. Management Messages Network Latency and Jitter Evaluation

Table 5.4 presents the average network latency and jitter for the management packets,

considering different management NoC topologies and flit widths. The results without the M-NoC

are also included, and in this case, the network latency and jitter are equal for both M-NoC flit

width columns. The latency and jitter for the management packets are defined in the same

manner as the application packets.

Table 5.4 – Average Management Network Latency and Jitter (Clock Cycles) for different M-NoC
configurations

 M-NoC Flit Width 16 M-NoC Flit Width 8

Scenario M-NoC Avg. Lat. Jitter Avg. Lat. Jitter

1

None 329.8 1256.8 - -

Full-Mesh 331.6 1246.2 366.5 1088.3

Mesh Mng 580.2 1721.8 755.1 2336.2

2

None 126.3 593.3 - -

Full-Mesh 154.6 662.3 395.1 1168.5

Mesh Mng 296.2 1450.7 679.3 2343.8

3

None 357.0 1087.2 - -

Full-Mesh 315.5 1248 362.7 1276.7

Mesh Mng 429.4 1328.3 788.6 2785.7

4

None 758.0 3019.4 - -

Full-Mesh 648.3 2593.5 1326.7 3867.4

Mesh Mng 1330.8 4796 2878.8 8514.2

5

None 603.6 1907.7 - -

Full-Mesh 618.4 1918 1016.8 2457.5

Mesh Mng 976.8 2897.2 2004.6 5435.1

6

None 710.6 2631.8 - -

Full-Mesh 599.8 2106.8 795.1 2033.1

Mesh Mng 891.4 2982.2 1557.5 4077.3

For the management traffic, the improvements when using the M-NoC are less noticeable

when observing the average network latency. It is possible to observe that the average latency is

significantly higher for management packets than application packets. This emphasizes the

65

behavior of the reference platform: when the PE is receiving consecutive packets with a small

interval, the first packet is treated immediately, however subsequent packets have to wait in the

network until past packets are processed. Since multiple PESL generates traffic addressed to the

same manager PE, this situation is more evident for management packets. The use of a

management network reduces congestions for the application, since the management packets

are constrained to a different network.

The average latency for management packets when using the “Full-mesh M-NoC” ranges

between 20% higher in some scenarios, and 15% lower in others. The average latency between all

scenarios presents a small improvement of 2% when compared to the version without the M-NoC.

The jitter values range between 15% higher and 20% lower, being the average similar when

compared to the version without M-NoC.

For the “Mesh between the managers M-NoC”, the average latency is increased in 20% to

135% when compared to the version without the M-NoC (65% higher in average). The jitter

increases in 13% to 144% when compared to the version without the M-NoC (55% higher in

average).

The serialization had a large performance degradation for the management traffic. For the

“Full-mesh M-NoC” the average network latency increased by 63% and the jitter increased by 22%

when compared to the version without the M-NoC. The “Mesh between the managers M-NoC”,

the average latency increased by 220% and the jitter increased by 160%.

5.4.4. Execution Time

Table 5.5 lists the average application execution time, in milliseconds, for different M-NoC

configurations. When using the M-NoC flit width of 16 bits, the full-mesh presented an average

speed up of 3.1% compared to the single network version, while the mesh between the manager

did not present a significant difference in the execution time.

When using serialization, the results presented a small degradation. For the serialized full-

mesh network, the average execution time increased by 1.5% when compared to the not

serialized full-mesh network, while still being 1.7% faster than the version without M-NoC. The

serialized version of the mesh between the managers increases the average execution time by

2.1% compared to the non-serialized version, and by 2.3% compared to the version without M-

66

NoC. The increase in the execution time for the serialized version is mainly due to the increased

time required to allocate the intermediate application tasks.

In overall, the impact of the M-NoC in the execution time is small (the 16-bit Full-Mesh

reduced in average 3.1% the execution time). This is part explained when observing that the

average network latency of the application packets is not very high, being around 100 cycles even

for the worse cases. Applications with larger network latencies are more significantly impacted.

Table 5.5 – Execution Time (milliseconds) with different M-NoC configurations

 M-NoC Flit Width 16 M-NoC Flit Width 8

Scenario Application
No

M-NoC
Full-Mesh Mesh Mng Full-Mesh Mesh Mng

1 DTW 34.9 33.2 35.9 33.8 36.1

2 MPEG 31.3 31.1 30.7 31.5 30.9

3

DTW 30.1 28.8 30.0 29.5 31.3

MPEG 35.6 34.6 35.1 34.6 35.3

Synthetic 45.3 42.7 43.4 43.7 44.6

4 DTW 32.6 31.8 33.5 32.2 34.2

5 MPEG 30.6 30.5 31.8 31.1 32.2

6

DTW 27.5 28.3 27.9 28.4 29.0

MPEG 34.7 32.2 35.8 32.9 35.9

Synthetic 43.8 41.4 42.2 41.8 44.0

Average execution time compared
to a system without M-NoC -3.1% +0.3% -1.7% +2.3%

5.5. Qualitative Evaluation of Other M-NoC Topologies

Other management network topologies are qualitatively analyzed in this Section based on

the results obtained from the two M-NoC topologies, traffic behavior of the platform and the

evaluations conducted on the implemented M-NoC topologies. The other possible topologies for

the M-NoC are described as below.

 Hierarchical mesh: the M-NoC topology shown in Figure 5.13 follows a two-level

hierarchy. The mesh topology is adopted for both levels. The first level of this hierarchy

interconnects the PEs in a cluster and the second level interconnect the clusters. A

specific router is connected to both hierarchy levels, allowing the communication

67

between different clusters. This topology is a hybrid between the “Full-mesh network”

and the “Mesh between the managers network”.

Figure 5.13 – Mesh topology network interconnecting the cluster PEs and another mesh
topology interconnecting the clusters.

 Cluster ring and mesh: The M-NoC topology proposed in Figure 5.14 also follows a

two-level hierarch, and adopts a similar organization, where the first level

interconnects the PEs in a cluster and the second level interconnect the clusters.

However, instead of using the mesh topology for the cluster network, the PEs are

connected using the ring topology.

Figure 5.14 – Ring topology network interconnecting the cluster PEs, and a mesh topology
interconnecting the clusters.

68
  Clos: The M-NoC topology presented in Figure 5.15 is based on the clos network

[PAS08]. Up to four PEs are connected to a first stage router. The middle stages

connect the routers in the same cluster and to other middle stage routers.

Figure 5.15 – Clos topology network, where a single router interconnects multiple PEs in the
cluster, and the higher levels interconnect the clusters.

The motivation behind the proposed topologies is to reduce the number of overall input

buffers in the network (which are responsible for the largest area consumption). Considering a

central 4x4 cluster (with other clusters in its North, South, East and West), the hierarchical mesh

allows to reduce the number of input ports by 15%, from 80 to 68 (64 ports in the cluster plus 4

second level ports). The cluster ring and mesh allows to reduce the number of input ports by 55%,

from 80 to 36 (32 cluster ports plus 4 second level ports). The clos reduces the number of input

ports by 65%, from 80 to 28 (5 ports for each first stage router and 8 ports for the middle stage).

The hierarchical mesh increases the number of hops required for the PESL when

communication between different clusters is required. This type of communication is infrequent

in the platform, but is required in some reclustering and migration cases. The cluster ring and mesh

topology increases in overall the number of hops for the management packets. The clos network

reduces the number of required hops, since there are less routers in the platform.

These proposed networks tend to concentrate the traffic in a single point. The hierarchical

mesh and the cluster ring and mesh topologies increases the number of congestions near the

router capable of redirecting the packet to other network level. Furthermore, the lower number

69

of possible paths for the cluster ring and mesh and clos topologies may increase the number of

congestions in the network if the remaining network parameters are maintained constant.

The hierarchical mesh and cluster ring and mesh topologies require additional processing in

software to account the multiple network levels, similar to the mesh between the managers M-NoC.

The implementation of the cluster ring and mesh for variable cluster sizes is not trivial, since

it requires a Hamiltonian cycle inside the cluster, which may not be possible for certain cluster

sizes.

Both the hierarchical mesh and cluster ring and mesh present a single point of failure for an

entire cluster, since only one router connects an entire router.

5.6. Final Remarks

This chapter presented the main contribution of this work, the implementation of MP NoCs

in the reference platform isolating the management traffic from the application traffic. The

evaluation showed that this strategy brings benefits to the application communication

parameters.

 Among the proposed topologies, the Full-mesh topology simplifies the routing and

implementation of MP networks, being the chosen management topology for the reference

platform. The use of serialization is a promising path, since it presents a reduction in the area

consumption with a small performance impact when compared to the non-serialized version.

70

6. PLATFORM EVALUATION

In this chapter, several scenarios are evaluated aiming to demonstrate the influence of the

different QoS strategies. Three different platform configurations are used for each scenario:

(i) compQoS - with computation QoS mechanisms (scheduler and task migration), without

communication QoS and not using the M-NoC;

(ii) fullQoS - with computation and communication QoS mechanisms, not using the M-NoC;

(iii) fullQoS_MNoC - with computation and communication QoS mechanisms, using the M-

NoC.

The results without communication QoS and using the M-NoC are not included in this

evaluation since the amount of management traffic is significantly lower because there are no

communication QoS monitoring packets, on RT monitoring packets. The RT monitoring traffics is

smaller than the communication monitoring traffic, according to Table 4.1.

At each scenario, a specific application being affected by several communication

interferences is thoroughly analyzed according to its computation and communication latency.

The management traffic latency of each scenario is also evaluated.

The computation latency is defined as the time (in clock cycles) required to execute an

iteration of the application subject to RT, which is the sum of the execution time of all tasks in the

period, with the the computation interferences and the communication waiting time. For

example, for the MPEG application, the computation latency is the time from when the encoded

frame starts being read by the START task until it is completely decoded and finally presented by

the PRINT task. Another example, the DTW application, the computation latency is the time from

when the pattern is initially prepared to be sent by the BANK to the first worker task until the

reception of the last result received by the RECOGNIZER task. Therefore, the computation latency

is subject to several interferences, as resource sharing in the same processor, treatment of

interruptions generated from incoming packets, and traffic congestion in the NoC.

The network latency is defined as the time (in clock cycles) from when the message header

flit is initially injected into the network by the NI until its consumption at reception in the target

NI. Analyzing the latency considering just the header allows the latency value to be independent

of packet size, which has a large variation in this platform. The jitter is the standard deviation of

71

the network latency. The results evaluates the network latency and jitter for each application

communication flow and for the management traffic.

All scenarios in this Chapter are simulated for 75 ms, and consider a warm up time of 10

ms. The scenarios use a static mapping, aiming to demonstrate the impact of the disturbing traffic

over specific flows. For the results using the M-NoC, the adopted topology in all scenarios is the

Full-Mesh, since it presented real improvements, as shown in the management network

evaluation. The results are extracted from packet and application logs and analyzed using scripts

written in Python, developed for the evaluation of this work.

6.1. Scenario 1

This scenario consists in an MPEG application with computation and communication QoS

and 5 disturbing tasks. Figure 6.1 presents the task mapping (MPEG application is shown in green,

disturbing applications are shown in orange) and communication paths (shown in red) of the

disturbing applications for this scenario. The mapping utilized in this scenario aims to create a

case where the communication flow of the disturbing tasks mainly affects the communication

between the final tasks of the MPEG application, IDCT and PRINT. The utilization of the low priority

channel in the path used for the communication between those tasks is consistently kept around

100% due to the disturbing applications. The remaining flows of the MPEG application are not

heavily affected.

Prod (1)

Prod (2)

Manager

Prod (4)

Prod (5)

Cons (1)

Cons (5)

Cons (2)

START

IQUANT

Prod (3)

Cons (3) Cons (4)

PRINT

IVLC

IDCT

Figure 6.1 – Scenario 1 task mapping. Arrows represent the flows according to the Hamiltonean
routing.

72

Figure 6.2 and Table 6.1 presents the computation latency graph and the latency standard

deviation for the MPEG application, respectively. The fullQoS platform allows to reduce the

standard deviation of the computation latency by 80% compared to compQoS, since it allows the

MPEG application traffic to use the high priority communication channel, avoiding the disturbing

traffic. An important aspect of this scenario is that no communication flow changes its priority to

CS, the use of high priority flows is sufficient to guarantee a performance similar to the scenario

without interferences. Even when the priority is downgraded, the overall performance is not

affected since just one flow degrades its priority at a time, and its priority is quickly restored after

this. The impact of the network latency during the period when the priority is downgraded is in

part absorbed by the tasks’ slack time. The fullQoS_MNoC does not present a significant advantage

in this scenario since it has a low management traffic load because all applications are allocated

at the beginning of the execution and only the MPEG application generates monitoring traffic.

Co
m

pu
ta

tio
n

la
te

nc
y

(m
s)

 (a) (b) (c)

Figure 6.2 – MPEG computation latency for Scenario 1 (a) compQoS; (b) fullQoS; (c)
fullQoS_MNoC.

Table 6.1 – Standard deviation of the MPEG computation latency for Scenario 1.

 compQoS fullQoS fullQoS_MNoC

Standard Deviation (µs) 18.90 3.81 3.82

Table 6.2 presents the average network latency and jitter (in clock cycles) for different

communication flows of the MPEG application. The disturbing applications only affects the

communication between the last three tasks of the MPEG application: IQUANT, IDCT and PRINT.

The use of fullQoS allows to reduce the average network latency and jitter when compared to

0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94

10 20 30 40 50 60
Time (ms)

0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94

10 20 30 40 50 60
Time (ms)

0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94

10 20 30 40 50 60
Time (ms)

73

compQoS, improving the average network latency by 71.8% and the jitter by 26.5% in the IDCT 

PRINT flow. The fullQoS_MNoC further improves the latency result for this flow by 14.4% when

compared to the fullQoS.

Table 6.2 – Average network latency and jitter (in clock cycles) for the Scenario 1.

 compQoS fullQoS fullQoS_MNoC

Communication Flow Avg Lat Jitter Avg Lat Jitter Avg Lat Jitter

START  IVLC 30.0 0.0 30.0 0.0 31.0 0.0

IVLC  IQUANT 20.0 0.0 20.0 0.0 21.0 0.0

IQUANT  IDCT 270.5 374.4 114.1 396.6 83.3 222.9

IDCT  PRINT 809.4 705.2 227.6 517.7 194.9 585.7

Table 6.3 presents statistics for the management traffic in this scenario. As the

fullQoS_MNoC provides an exclusive path for the management traffic, the network latency

improves by 13.5% and the jitter by 13.1% when compared to the fullQoS. The compQoS has a

lower amount of management packets since only RT monitoring packets are generated.

Table 6.3 – Management communication statistics for the Scenario 1.

 compQoS fullQoS fullQoS_MNoC

Number of packets 253 567 514

Avg. Lat. (clock cycles) 1189.7 825.2 713.8

Jitter (clock cycles) 1607.6 1830.1 1590.0

6.2. Scenario 2

This scenario consists in an MPEG application and 4 disturbing applications. Figure 6.3

presents the task mapping and communication paths of the disturbing applications for this

scenario. In this scenario, the used mapping creates a situation where the disturbing traffic

interferes with most of MPEG tasks, instead of a specific flow. There is also an intra-application

disturbing since some of the flows overlap other tasks, i.e., the IDCT task is between the path of

the START and IVLC tasks. The average utilization of the links in the path used by the MPEG

application is around 40% to 80%.

74

Prod (3)

START

Manager

Prod (2)

Prod (4)

IQUANT

IDCT IVLC

PRINT

Cons (4)

Cons (3)

Cons (1)

Cons (2)

Prod (1)

Figure 6.3 – Scenario 2 task mapping.

Figure 6.4 and Table 6.4 presents the computation latency graph and the latency standard

deviation for the MPEG application in this scenario. The fullQoS reduces the standard deviation of

the computation latency by 63.4% compared to compQoS. The latency only stabilize when

multiple tasks have their communication priority changed to high, which can be observed in the

graphs for cases (b) and (c), around 20 ms to 30 ms and 40 ms to 50 ms. Outside these periods, the

communication priority of some flows downgrades, affecting the overall computation

performance. Thus, this scenario highlights how the behavior of the communication flows

impacts the computation QoS constraints. The fullQoS_MNoC did not present a significant

advantage in the computation performance since the management traffic is similar to the

Scenario 1.

Co
m

pu
ta

tio
n

la
te

nc
y

(m
s)

 (a) (b) (c)

Figure 6.4 – MPEG iteration latency for Scenario 2 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC.

0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94

10 20 30 40 50 60
Time (ms)

0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94

10 20 30 40 50 60
Time (ms)

0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94

10 20 30 40 50 60
Time (ms)

75

Table 6.4 - Standard deviation of the MPEG computation latency for Scenario 2.

 compQoS fullQoS fullQoS_MNoC

Standard Deviation (µs) 17.03 6.26 8.36

Table 6.5 presents the average network latency and jitter for different communication

flows of the MPEG application. The fullQoS platform present an improvement in the network

latency (66% in average) and jitter (51% in average) when compared to the compQoS. The

fullQoS_MNoC further improves the network latency (14% in average) and jitter (11.2% in

average), when compared to the fullQoS.

Table 6.5 – Average network latency and jitter for Scenario 2.

 compQoS fullQoS fullQoS_MNoC

Communication Flow Avg Lat Jitter Avg Lat Jitter Avg Lat Jitter

START  IVLC 498.0 570.2 151.7 327.4 109.5 262.4

IVLC  IQUANT 15.1 0.4 15.0 0.3 16.1 1.1

IQUANT  IDCT 237.5 909.1 110.0 274.9 87.3 235.5

IDCT  PRINT 497.2 473.7 155.9 352.7 162.4 350.2

Table 6.6 presents the average network latency and jitter for the management traffic. The

average latency of the management packet is high, and there is no significant advantage using

the fullQoS_MNoC in this case. This situation emphasizes a behavior of the reference platform: in

a situation where a PE is receiving consecutive packets with a small interval between these

packets, the first packet is treated by the PE at the moment the message reaches the NI. However,

the subsequent packets must wait in the network until the past packets are processed, increasing

significantly the network latency observed in the results. This behavior is further amplified in the

manager PEs, since this situation is more common because all PESL generate packets addressed to

the manager.

Table 6.6 – Management communication statistics for Scenario 2

 compQoS fullQoS fullQoS_MNoC

Number of packets 247 565 513

Avg. Lat. (clock cycles) 1460.0 899.7 889.2

Jitter (clock cycles) 2086.5 1975.8 1848.4

76

6.3. Scenario 3

This Scenario is similar to the Scenario 2 concerning the task mapping, however, instead

of using the MPEG application, the DTW application is used. Figure 6.5 presents the task mapping

of this scenario, showing that the disturbing tasks affect the communication between the Bank

and the worker tasks. Differently from the MPEG application, the DTW application has multiple

tasks executed in parallel, and a single task (BANK) communicates with multiple other tasks.

Prod (3)

BANK

P1

Manager

Prod (2)

Prod (4)

P2

P3

P4

RECOGNIZER

Cons (4)

Cons (3)

Cons (1)

Cons (2)

Prod (1)

Figure 6.5 – Scenario 3 task mapping.

Figure 6.6 and Table 6.7 presents the computation latency graph and the latency standard

deviation for the DTW application. In this scenario, the fullQoS presented a degradation in the

performance when compared to compQoS. This is mainly due to the CS, demonstrating a

limitation of this strategy. During the execution, a CS is established between the BANK and the

worker tasks. While the CS is enabled between two tasks, the high priority channel is dominated

by a single flow, negatively affecting the others, which are constrained to the low priority channel.

For example, a CS established between the BANK and the worker task P4 affects the

communication between the BANK and the tasks P1, P2 and P3. Another factor that affects the

computation performance, and is highlighted in this scenario is interruptions caused by packet

reception. When a packet is received, the processor is promptly interrupted to treat the received

packet, regardless the packet type and if the processor is currently executing a RT task, which

impacts negatively on the performance. This behavior is further emphasized by the DTW

application since this application is more susceptible to interruptions when compared to the

MPEG application because multiple tasks are executed in parallel. The fullQoS_MNoC presented

77

an advantage in this scenario since it had an overall lower network packet latency and a smaller

number of circuits (CS) established during the execution of the application.

Co
m

pu
ta

tio
n

la
te

nc
y

(m
s)

 (a) (b) (c)

Figure 6.6 – DTW computation latency for Scenario 3 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC.

Table 6.7 – Standard deviation of the DTW computation latency for Scenario 3.

 compQoS fullQoS fullQoS_MNoC

Standard Deviation (µs) 60.00 71.94 41.02

Table 6.8 presents the average network latency and jitter for different communication

flows of the DTW application. The use of fullQoS presents and improvement in the network latency

(around 56%) and a small improvement in the jitter (around 15.1%) compared to compQoS. The

fullQoS_MNoC presents also noticeable advantages for the tasks P1, P2 and P3, which are around

the manager, reducing the average network latency by 25.3% when compared to the compQoS.

Table 6.8 – Average network latency and jitter for Scenario 3.

 compQoS fullQoS fullQoS_MNoC

Communication Flow Avg Lat Jitter Avg Lat Jitter Avg Lat Jitter

BANK  P1 225.0 351.5 132.7 328.4 89.6 242.7

BANK  P2 238.6 455.4 123.5 306.2 101.4 244.0

BANK  P3 391.4 427.7 232.5 926.1 129.7 286.0

BANK  P4 721.2 1201.2 206.0 505.2 197.9 423.1

Table 6.9 presents statistics for the management traffic in this scenario. Overall, the

fullQoS_MNoC reduces the management traffic latency by 10% compared to fullQoS. The

0,75

0,80

0,85

0,90

0,95

1,00

1,05

10 20 30 40 50 60
Time (ms)

0,75

0,80

0,85

0,90

0,95

1,00

1,05

10 20 30 40 50 60
Time (ms)

0,75

0,80

0,85

0,90

0,95

1,00

1,05

10 20 30 40 50 60
Time (ms)

78

fullQoS_MNoC presented an advantage because the management packets are constrained to the

M-NoC instead of sharing the same path with application packets, reducing the number of packets

in the Data NoC around the manager. Thus, avoiding a situation where multiple management

packets are occupying the network, delaying the reception of the application packets by a PESL

near the manager, as shown in the flows communicating with the tasks P1, P2 and P3.

Table 6.9 – Management communication statistics for the Scenario 3

 compQoS fullQoS fullQoS_MNoC

Number of packets 266 586 539

Avg. Lat. (clock cycles) 1065.2 775.4 701.1

Jitter (clock cycles) 1729.3 1828.9 1660.9

6.4. Scenario 4

This scenario consists in a DTW and a MPEG application with computation constraints, and

multiple disturbing applications. The mapping for this scenario is shown in Figure 6.7. In this

mapping, disturbing tasks are allocated between the communication paths of the evaluated

applications. The RT applications in this scenario are executed during all the evaluation, while the

disturbing application executes for a smaller period, around 10 ms. However, when a disturbing

application finishes its execution, a new one is reallocated, and its tasks are mapped to the same

position. This leads that a new disturbing task is allocated every 500 us during the evaluation, and

allows simulating a larger amount of management traffic.

PROD (15)PROD (16)

P3PRINT

P2IQUANT

PROD (7)PROD (8)

Manager

CONS (15)CONS (16)

CONS (13)CONS (14)

CONS (7)CONS (8)

CONS (5)CONS (6)

P1START

PROD (17)PROD (18)

PROD (13)PROD (14)

PROD (9)PROD (10)

PROD (5)PROD (6)

PROD (1)PROD (2)

CONS (17)CONS (18)

CONS (11)CONS (12)

CONS (9)CONS (10)

CONS (3)CONS (4)

CONS (1)CONS (2)

BANKRECOGNIZER

IDCTP4

PROD (11)PROD (12)

IVLC

PROD (3)PROD (4)

Figure 6.7 – Scenario 4 task mapping.

79

In this scenario, there are multiple applications executing in the same PE. The computation

resources are shared between the RT tasks, since there are multiple RT tasks executing in the same

PE. The PEs dedicated to the execution of the disturbing applications also executes multiple

disturbing tasks. The link use between the producer/consumer tasks is around 20%.

Figure 6.8, Figure 6.9 and

Table 6.10 presents the computation latency and the latency standard deviation for the

MPEG and DTW applications, respectively.

Co
m

pu
ta

tio
n

la
te

nc
y

(m
s)

 (a) (b) (c)

Figure 6.8 – MPEG iteration latency for Scenario 4 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC.

Co
m

pu
ta

tio
n

la
te

nc
y

(m
s)

 (a) (b) (c)

Figure 6.9 – DTW iteration latency for Scenario 4 (a) compQoS; (b) fullQoS; (c) fullQoS_MNoC..

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8

10 30 50
Time (ms)

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8

10 30 50
Time (ms)

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8

10 30 50
Time (ms)

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8

10 30 50
Time (ms)

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8

10 30 50
Time (ms)

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8

10 30 50
Time (ms)

80

Table 6.10 – Standard deviation of the computation latency for Scenario 4.

 compQoS fullQoS fullQoS_MNoC

MPEG Std. Dev. (µs) 352.4 426.3 281.6

DTW Std. Dev. (µs) 137.7 104.3 68.6

In this scenario, the number of management packets is considerably larger than the

scenarios described previously, and it is possible to notice an advantage using the fullQoS_MNoC

for both the DTW and MPEG applications, presenting an improvement of 35% in the standard

variation of the computation latency for both applications when compared to the case using

compQoS.

Table 6.11 presents the average network latency and jitter for different communication

flows of the MPEG and DTW applications in this scenario. Some of the flows have its average

latency greatly reduced due to CS, such as the flow BANK  P1 in the case using only fullQoS. In

overall, the network latency is greatly reduce by around 70% when using fullQoS, and is further

improved by 35% when using the fullQoS_MNoC. The jitter also presents a reduction of 45% when

using fullQoS, and is further improved by 35% when using fullQoS_MNoC.

Table 6.11 – Average network latency and jitter for the Scenario 4.

 compQoS fullQoS fullQoS_MNoC

 Communication Flow Avg Lat Jitter Avg Lat Jitter Avg Lat Jitter

M
PE

G

START  IVLC 692.3 1430.0 299.0 746.8 143.3 305.2

IVLC  IQUANT 883.0 1212.7 50.8 148.4 80.8 236.0

IQUANT  IDCT 757.2 909.6 420.5 1245.9 128.1 297.6

IDCT  PRINT 567.6 1177.3 67.9 221.4 177.0 679.5

D
TW

BANK  P1 3707.6 2402.5 16.0 0.0 36.0 42.0

BANK  P2 4386.9 3131.0 2070.5 2342.0 1603.9 1574.2

BANK  P3 3061.4 2165.9 1307.4 2165.2 558.9 1286.5

BANK  P4 10.1 0.5 13.1 24.2 11.1 0.4

Table 6.12 presents the average latency and jitter for the management traffic in this

scenario. The use of fullQoS_MNoC allows significantly reducing in the average latency (77.4%)

and jitter (63.4%) when compared to fullQoS.

81

Table 6.12 - Management communication statistics for the Scenario 4.

 compQoS fullQoS fullQoS_MNoC

Number of packets 811 1450 1438

Avg. Lat. (clock cycles) 891.6 518.6 117.0

Jitter (clock cycles) 1700.8 1268.4 463.5

6.5. Final Remarks

This Chapter presented an evaluation of the platform, considering the implemented QoS

architecture. The evaluation highlighted several important aspects related to QoS in MPSoCs, such

as:

 The application communication performance has a significant impact in the

computation performance, especially when the application is under tight time

constraints;

 The use of communication QoS allows a large reduction of the application traffic

network latency and jitter, reducing it by more than 70% in some cases (as shown in

Scenario 1);

 Even when the NoC links have a relatively low utilization, around 20% for example, the

network latency and jitter suffers a significant degradation;

 The network structure must be able to support multiple high priority flows in the same

path. The current implementation of the CS dominates the use of the high priority

channel by a single flow, which may result in an overall performance degradation;

 The M-NoC brings improvements for the application communication performance,

benefitting both RT and BE applications. Even when the network used in the platform

supports QoS, isolating the management traffic and application traffic through the use

of MP NoCs benefits the average network latency and jitter for the application;

 The M-NoC allows to reduce the number of QoS actions in the platform;

 The M-NoC improves the management traffic network performance, allowing the

platform to act faster according to the platform requirements;

 The number of management services in the platform can largely increase when using

the M-NoC, without impairing the application traffic performance;

82
  The management traffic concentrates around the PE responsible for controlling the

management services in the platform and interferes with the PEs executing

applications near the manager PE. The M-NoC allows to mitigate this problem;

 Even an average load of management traffic impacts the application traffic. Larger

management loads increase the advantage of using the M-NoC;

 Interruption has a large impact on the application computation latency. Delaying the

treatment of interruption, and executing the treatment latter in non critical parts of the

software can bring large improvement for the computation latency. At the same time,

delaying the interruption treatment brings more congestion to the network. The

treatment of interruptions in the platform requires a further study.

83

7. CONCLUSIONS AND FUTURE WORKS

This work presented an MPSoC architecture supporting a large number of management

services, including communication QoS and computation QoS. This platform is the result of several

improvements to the HeMPS-QoS platform, including the restructuring of software source code,

correction of several bugs in the software, hardware and tools for this platform, and the

integration of features developed in other HeMPS platforms, such as support for computation

QoS. The platform has reached a stable level, and can be used as a starting point for the research

of further aspects related to the project of MPSoCs.

A main contribution of this work is the provision of an isolation between the different

traffic classes in MPSoCs by the use of MP networks. The decision of using MP in MPSoCs is based

on the platform traffic behavior and in the state of the art where multiple works explore the

aspects of MP networks. The distinct characteristic of the main traffic classes in the reference

platform – application data and management data – motivated the implementation of two

different topologies for the NoC targeting the management traffic, including a complete mesh

topology, similar to the network used for the application data, and a mesh interconnecting only

the managers, exploring the clusterization aspect of the platform. The use of MP NoCs with an

equal topology, adjusting the network parameters for each network, such as smaller flit widths is

a promising path for MPSoCs.

The evaluation of the management network highlighted several important aspects related

to QoS in MPSoCs. The separation of the traffic allows significant improvement on both the

computation and communication aspects of the applications executing in the platform, even

when considering that the single network implementation already has QoS resources.

7.1. Future Works

Specific future works targeting improvements in the QoS aspects of the platform, and the

use of MP networks include:

 Exploration of the physical aspects (energy and area) of MP networks;

 Implementation and evaluation of more applications for the platform;

 Improvements in the application network targeting communication QoS, such as the

use of multiple simple disjoint networks, allowing the support for multiple CS flows in

the same path;

84
  Improvements in the migration algorithm, allowing a better resource allocation in the

platform;

 Improvements in the interruption treatment, avoiding a computation overhead

impacting RT applications;

 Inclusion of more management services in the platform, such as security and fault

tolerance

7.2. Publications

The set of publications published during the development of the work included:

1. Martins, A.; Silva, D.; Castilhos, G.; Monteiro, T.; Moraes, F. “A Method for NoC-based MPSoC

Energy Consumption”.In: ICECS, 2014, pp. 427-430.

 Describes a method to characterize the power and energy of the NoC and the

processor of the PE. Despite the fact that power is not the performance figure

evaluated in this work, the method to generate and characterize the NoC enabled to

master the CAD tools to obtain the results of this work.

2. Silva, D.; Oliveira, B.; Moraes, F. “Effects of the NoC Architecture in the Performance of NoC-Based

MPSoCs”. In: ICECS, 2014, pp. 431-434.

 Evaluates the main architectural NoC parameters in such a way to determine the

influence of the buffers, the crossbar, and the control logic in the performance and area

of NoCs. The results of this paper guided the customization of the M-NoC, as shallow

buffers and serialized flits.

3. Silva, D.; Moraes, F. “Differentiation of MPSoCs Message Classes Using Multiple NoCs”. In: ICECS,

2015, pp. 312-315.

 This publication contains the results presented in Chapter 5 related to the two M-NoCs

developed. The effect of serialization is not presented in this paper.

85

REFERENCES

[ABO12] Abousamra, A.; Melhem, R.; Jones, A. “Déjà Vu Switching for Multiplane NoCs”. In:
NoCS, 2012, pp. 11-18.

[AGA02] Agarwal, A.; et. al. “The Raw Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs”. IEEE Micro, vol. 22, pp 25-35, 2002.

[AGA07] Agarwal, A.; et. al. “On-Chip Interconnection Architecture of the Tile Processor”.
IEEE Micro, vol. 27, pp 15-31, 2007.

[ALM09] Almeida, G.; Sassatelli, G.; Benoit, P.; Saint-Jean, N.; Varyani, S.; Torres, L.; Robert, M.
“An Adaptive Message Passing MPSoC Framework”. International Journal of
Reconfigurable Computing, vol. 2009, 20p, 2009.

[BAL08] Balfour, J.; Dally, W. “Design tradeoffs for tiled CMP on-chip networks”. In: ICS, 2006,
pp. 187-198.

[BAG08] Bagherzadeh, N.; Matsuura, M. “Performance Impact of Task-to-Task
Communication Protocol in Network-on-Chip”. In: ITNG, 2008, pp. 1101- 1106.

[BEN12] Benini, L.; Flamand, E.; Fuin, D.; Melpignano, D. “P2012: Building an ecosystem for a
scalable, modular and high-efficiency embedded computing accelerator”. In:
DATE, 2012, pp. 983-987.

[BJE06] Bjerregaard, T.; Mahadevan, S. “A survey of research and practices of Network-on-
chip”. ACM Computing Surveys, vol. 38, 51p, 2006.

[CAR09a] E. Carara; R. Oliveira; N. Calazans; F. Moraes. “HeMPS - a framework for NoC-based
MPSoC generation”. In: ISCAS, 2009, pp 1345-1348.

[CAR09b] Carara, E.; Calazans, N.; Moraes, F. “Managing QoS flows at task level in NoC-based
MPSoCs”. In: VLSI-SoC, 2009, pp. 133-138.

[CAR11] Carara, E. “Serviços de Comunicação Diferenciados em Sistemas Multiprocessados
em Chip Baseados em Redes Intra-Chip”. Ph.D. thesis, PUCRS, Porto Alegre, Brazil,
2011.

[CAS13] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F. “Distributed Resource
Management in NoC-Based MPSoCs with Dynamic Cluster Sizes”. In: ISVLSI, 2013,
pp. 153-158.

[CIO06] Ciordas, C.; Goossens, K.; Basten, T. “NoC Monitoring: Impact on the Design Flow”.
In: ISCAS, 2006, pp. 1981-1984.

[DAS13] Das, R.; Narayanasamy, S.; Satpathy, S.; Dreslinski, R. “Catnap: Energy Proportional
Multiple Network-on-Chip”. In: ISCA, 2013, pp. 320-331.

86

[DUA03] Duato, J.; Yalamanchili, S.; Ni, L. “Interconnection Networks: An Engineering
Approach”. Morgan Kaufmann. 2003. 600p

[FUW14] Fu, W.; Chen, T.; Wang, C.; Liu, L. “Optimizing memory access traffic via runtime
thread migration for on-chip distributed memory systems”. The Journal of
Supercomputing, vol 36, pp. 1491-1516, 2014.

[GRA07] Gratz, P.; Kim, C.; Sankaralingam, K.; Hanson, H.; Shivakumar, P.; Keckler, S.; Burger,
D. “On-Chip Interconnection Networks of the TRIPS Chip”. IEEE Micro, vol. 27, pp
41-50, 2007.

[GRO09] Grot, B.; Hestness, J.; Keckler, S.; Mutlu, O. “Express Cube Topologies for on-Chip
Interconnects”. In: HPCA, 2009, pp. 163-174.

[JOV08] Joven, J.; Font-Bach, O.; Castells-Rufas, D.; Martinez, R.; Teres, L.; Carrabina, J. “xENoC
- An eXperimental Network-On-Chip Environment for Parallel Distributed
Computing on NoC-based MPSoC Architectures”. In: PDP 2008, pp. 141-148.

[KOR13] Kornaros, G.; Pnevmatikatos, D. “A survey and taxonomy of on-chip monitoring of
multicore systems-on-chip”. ACM Transactions on Design Automation of Electronic
Systems, vol. 18, 38p, 2013.

[KRA93] Kranz, D.; Johnson, K.; Agarwal, A.; Kubiatowicz, J.; Lim, B. “Integrating message-
passing and shared-memory: early experience”. In: PPoPP, 1993, pp. 54-63.

[KUM02] Kumar, S.; Jantsch, A.; Soininen, J.; Forsell, M.; Millberg, M.; Öberg, J.; Tiensyrjä, K.;
Hemani, A. “A Network on Chip Architecture and Design Methodology”. In: ISVLSI
2002, 8p.

[LIU00] Liu, J.W.S. “Real-Time System”. Printice Hall, New Jersey, 2000, 592p.

[MAN15] M. Mandelli; L. Ost; G. Sassatelli; F. Moraes. “Trading-off System Load and
Communication in Mapping Heuristics for Improving NoC-Based MPSoCs
Reliability”. In: ISQED, 2015, pp. 392-396.

[MIG15] Miguel, J.; Jerger, N. “Data Criticality in Network-On-Chip Design”. In. NoCS, 2015,
8p.

[MOR04] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. “HERMES: an infrastructure for
low area overhead packet-switching networks on chip”. In: Integration, the VLSI
Journal, vol. 38, pp. 69-93, 2004.

[MOR12] Moraes, F.; Madalozzo, G.; Castilhos, G.; Carara, E. “Proposal and Evaluation of a Task
Migration Protocol for NoC-based MPSoCs”. In: ISCAS, 2012, pp. 644-647.

[PAS08] Pasricha, S.; Dutt, N. “On-Chip Communication Architectures: System on Chip
Interconnect”. Morgan Kaufmann. 2008. 522p.

[PET12] Petry, C.; Wachter, E.; Moraes, F.; Calazans, N.; Castilhos, G. “A Spectrum of MPSoC
Models for Design and Verification Spaces Exploration”. In: RSP, 2012, pp. 30-35.

87

[RHO10] Rhoads, S. “Plasma CPU”. Available at : http://plasmacpu.no-ip.org, 2010.

[RUA13] Ruaro, M.; Carara, E.; Moraes, F. “Adaptive QoS Techniques for NoC-Based MPSoCs”.
In: SoC, 2013, 6p.

[RUA15] Ruaro, M.; Madalozzo, G.; Moraes F. “A Hierarchical LST-Based Task Scheduler for
NoC-Based MPSoCs with Slack-Time Monitoring Support”. In: ICECS, 2015, pp. 308-
311.

[SEP15] Sepulveda, M.; Florez, D.; Das, S.; Gogniat, G., “Reconfigurable Security Architecture
for disrupted protection zones in NoC−Based MPSoCs”. In: ReCoSoC, 2015, 8p.

[SIL08] Silberschatz, A.; Galvin, P.; Gagne. G. “Operating System Concepts”. Wiley & Sons,
New Jersey, 2008, 992p, 8th edition.

[VOL12] Volos, S.; Seieculescu, C.; Grot, B.; Pour, N.; Falsafi, B.; Micheli, G. “CCNoC:
Specializing On-Chip Interconnects for Energy Effiency in Cache-Coherent Servers”.
In: NoCS, 2012, pp. 67-74.

[WOL08] Wolf, W.; Jerraya, A.; Martin, G. “Multiprocessor System-on-Chip (MPSoC)
Technology”. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and System, vol. 27, pp. 1701-1713, 2008.

