Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10923/1509
Registro completo de metadatos
Campo DCValorIdioma
dc.contributor.advisorFernandes, Paulo Henrique Lemelleen_US
dc.contributor.authorTaschetto, Dioneen_US
dc.date.accessioned2013-08-07T18:42:37Z-
dc.date.available2013-08-07T18:42:37Z-
dc.date.issued2010pt_BR
dc.identifier.urihttp://hdl.handle.net/10923/1509-
dc.description.abstractAtravés de formalismos Markovianos é possível modelar diversos sistemas e resolvê-los através de soluções computacionais específicas possibilitando prever ou avaliar seus padrões de comportamento. O formalismo de Redes de Autômatos Estocásticos (SAN) permite descrever modelos Markovianos de forma compacta e modular. Além disso, é utilizado para obter íındices de desempenho de sistemas através de soluções numéricas iterativas que se baseiam em um descritor e um vetor cujo tamanho é igual ao espaço de estados do modelo. Dependendo do tamanho do modelo esta operaçao torna-se computacionalmente onerosa e muitas vezes impraticável. Um método alternativo para calcular índices a partir de um modelo é a simulação, principalmente porque ela simplesmente exige a definição de um gerador de números pseudo-aleatórios e funções de transição entre estados que permitem a criação de uma trajetória. O processo de amostragem pode ser diferente para cada técnica estabelecendo algumas regras para coleta de amostras para posterior análise estatística. As técnicas de simulação, normalmente requerem muitas amostras para calcular índices de desempenho estatisticamente relevantes. Este trabalho proporciona comparações da precisão dos resultados de alguns modelos Markovianos obtidos a partir da execução de diferentes técnicas de simulação. Além disso, propõe uma maneira distinta de simular modelos Markovianos usando um método baseado em estatística Bootstrap para minimizar o efeito de escolha das amostras. A eficácia do método proposto, denominado Bootstrap simulation, é comparado com resultados da solução numérica para um conjunto de exemplos descritos por meio do formalismo de modelagem SAN.pt_BR
dc.description.abstractThe use of Markovian formalisms make possible the use and the computational solution of several systems enabling the prediction and evaluation of their behavior standards. The Stochastic Automata Networks (SAN) formalism provides a compact and modular description for Markovian models. Moreover, SAN is suitable to derive performance indices for systems analysis and interpretation using iterative numerical solutions based on a descriptor and a state space sized probability vector. Depending on the size of the model this operation is computationally onerous and sometimes impracticable. An alternative method to compute indices from a model is simulation, mainly because it simply requires the definition of a pseudorandom generator and transition functions for states that enable the creation of a trajectory. The sampling process can be different for each technique, establishing some rules to collect samples for further statistical analysis. Simulation techniques often demand lots of samples in order to calculate statistically relevant performance indices. This work provides comparisons with accuracy of results from some Markovian models which were obtained from the execution of different simulation techniques. It also proposes a different way to simulate Markovian models by using a Bootstrap-based statistical method to minimize the effect of sample choices. The effectiveness of the proposed method, called Bootstrap simulation, is compared to the numerical solution results for a set of examples described using SAN modeling formalism.en_US
dc.language.isoPortuguêspt_BR
dc.publisherPontifícia Universidade Católica do Rio Grande do Sulpt_BR
dc.subjectINFORMÁTICApt_BR
dc.subjectREDES DE AUTÔMATOS ESTOCÁSTICOSpt_BR
dc.subjectAVALIAÇÃO DE DESEMPENHO (INFORMÁTICA)pt_BR
dc.subjectSIMULAÇÃO E MODELAGEM EM COMPUTADORESpt_BR
dc.titlePrecisão de simulações para solução de modelos estocásticospt_BR
dc.typemasterThesispt_BR
dc.degree.grantorPontifícia Universidade Católica do Rio Grande do Sulpt_BR
dc.degree.departmentFaculdade de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Ciência da Computaçãopt_BR
dc.degree.levelMestradopt_BR
dc.degree.date2010pt_BR
dc.publisher.placePorto Alegrept_BR
Aparece en las colecciones:Dissertação e Tese

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
000427631-Texto+Completo-0.pdfTexto Completo893,34 kBAdobe PDFAbrir
Ver


Todos los ítems en el Repositorio de la PUCRS están protegidos por derechos de autor, con todos los derechos reservados, y están bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Sepa más.