Utilize este identificador para citar ou criar um atalho para este documento: http://hdl.handle.net/10923/1532
Tipo: masterThesis
Título: Recomendação de tags para mídia social colaborativa: da generalização à personalização
Autor(es): Ziesemer, Angelina de Carvalho A.
Orientador: Oliveira, Joao Batista Souza de
Editora: Pontifícia Universidade Católica do Rio Grande do Sul
Programa: Programa de Pós-Graduação em Ciência da Computação
Data de Publicação: 2012
Palavras-chave: INFORMÁTICA
SISTEMAS DE RECUPERAÇÃO DA INFORMAÇÃO
REDES SOCIAIS
Resumo: Sistemas de mídia social como Flickr, Youtube e Picasa tornaram-se muito populares devido ao seu ambiente para compartilhamento de imagens, vídeos e suporte à atribuição de tags, avaliações e comentários. Sistemas colaborativos possuem grandes quantidades de conteúdo provido pelos usuários, os quais fornecem informações relevantes para engines de recomendação. O uso de tags também permite a clusterização e busca de conteúdo baseado em palavras-chaves. Neste trabalho foi investigado um mecanismo para recomendar tags, desenvolvendo medidas de co-ocorrência, popularidade e relevância de tags comumente usadas em itens similares e por usuários similares. Foi desenvolvido um sistema para recomendar possíveis tags relevantes baseadas na similaridade contextual de outras tags providas pelos usuários. Para o desenvolvimento do experimento, foi utilizado um dataset do Flickr para gerar recomendações e analisar o comportamento do algoritmo e as atribuições efetuadas pelos usuários participantes. Os resultados obtidos demonstraram padrões de atribuição e desempenho de acordo com o conteúdo/contexto da imagem. Utilizando a frequência de atribuição baseada no histórico de cada perfil é sugerido um novo modelo personalizado para recomendação de tags.
Social media systems such as Flickr, Youtube and Picasa have become very popular as they provide a collaborative environment to share photos and videos supporting tags, ratings and comments. This kind of interaction includes a lot of content provided by users, which may bring meaningful information to recommendation systems. The aggregation of tags is also a way to cluster items and provide tag-based search content. We investigate how to support tag recommendation by ranking the co-occurrence, popularity and relevance of commonly-used tags in similar items and by similar users. We developed a tag recommendation system to recommend of possibly relevant tags. We use Flickr’s dataset to analyze our algorithm’s behavior and present the results provide by the experiment. A new model using personalized recommendation was developed using the experiment results and the behavior of each user.
URI: http://hdl.handle.net/10923/1532
Aparece nas Coleções:Dissertação e Tese

Arquivos neste item:
Arquivo Descrição TamanhoFormato 
000438773-Texto+Completo-0.pdfTexto Completo3,5 MBAdobe PDFAbrir
Exibir


Todos os itens no Repositório da PUCRS estão protegidos por copyright, com todos os direitos reservados, e estão licenciados com uma Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional. Saiba mais.