Please use this identifier to cite or link to this item: http://hdl.handle.net/10923/8527
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPinho, Márcio Sarroglia
dc.contributor.advisorSilva, Isaac Newton Lima da
dc.contributor.authorFeijó, Gregory de Oliveira
dc.date.accessioned2016-07-05T12:04:09Z-
dc.date.available2016-07-05T12:04:09Z-
dc.date.issued2016pt_BR
dc.identifier.urihttp://hdl.handle.net/10923/8527-
dc.description.abstractFish monitoring has been recently used in many biological research fields to understand the effects of drug usage, for example. Monitoring tasks require the full trajectory of these animals for later evaluation. Evaluation by human observers is the main approach used nowadays. However, this is not a reliable approach because humans can not maintain focus on a source of information for too long. For this reason, digital image processing techniques have become a popular approach for monitoring tasks. The tracking of a single fish is a relatively simple problem that may be solved with traditional image processing techniques. On the other hand, the tracking of a group of fish is much more challenging. The biggest problem is to maintain each individual’s identity due to the frequent overlapping(occlusion) situation that occurs while these animals move inside the tank. Some known approaches use three-dimensional information obtained by multiple cameras which requires a laborious camera calibration step. Other approaches based on a single camera, can not correctly handle occlusion, resulting in a frequent identity swap between fish. This work presents a multi-object tracking method to track a group of fish in a tank. The proposed method is capable of maintaining the correct identity of each fish even in partial and full occlusion situations. In order to keep the correct identity, we take advantage of the Kalman Filter by estimating the future position of each fish based on its previous one. When there are more than one fish in the same region in the frame image, a partitioning algorithm is responsible for re-establishing each animal’s pose. The proposed algorithm was compared against a manually labeled ground truth in two videos. Preliminary tests show that the proposed method is capable of maintaining the animals identity in 98,04% of the occlusion cases.en_US
dc.description.abstractO monitoramento de peixes em aquários, tem sido utilizado em áreas de pesquisa biológica por exemplo, para entender o feito do uso de drogas. Este monitoramento requer a obtenção da trajetória destes animais para posterior análise. A utilização de observadores humanos, ainda é o principal método utilizado para este monitoramento. Entretanto, esta não é uma abordagem confiável devido à dificuldade em se manter o foco de atenção de um humano sobre uma fonte de informação por muito tempo. Por esta razão, tem se tornado comum o uso de técnicas de processamento de imagens para a tarefa de monitoramento. O rastreamento de um único peixe, é uma tarefa relativamente simples, que pode ser resolvida com o uso de métodos tradicionais de processamento de imagens e rastreamento. O rastreamento de vários peixes, entretanto, é uma tarefa mais desafiadora. O maior problema, nestes casos, é a manutenção da identidade de cada indivíduo devido às frequentes situações de sobreposição(oclusão) que ocorrem durante o movimento dos animais no aquário. Algumas das abordagens baseiam-se em informações tridimensionais obtidas de múltiplas câmeras, o que requer uma etapa de calibração trabalhosa.Já abordagens com uma única câmera têm dificuldade de tratar corretamente os casos de oclusão, resultando na troca de identidades com frequência. Este trabalho apresenta um método para rastrear um grupo de peixes em um aquário. O método é capaz, manter a identidade correta de cada indivíduo mesmo em casos de oclusão parcial e total. Para manter a identidade de um peixe ao longo do tempo, utiliza-se o Filtro de Kalman que permite estimar qual a posição futura de um objeto com base nas posições anteriores.. Em casos de oclusão, quando houver mais de um peixe em um mesmo local, executa-se um algortimo de particionamento de regiões, com o objetivo de reconstruir a forma original de cada indivíduo. O resultado do algoritmo foi comparado com um ground truth obtido manualmente em dois vídeos. Testes mostram que o método proposto é capaz de manter a identidade dos animais, em 98,04% dos casos de oclusão.pt_BR
dc.language.isoPortuguêspt_BR
dc.publisherPontifícia Universidade Católica do Rio Grande do Sulpt_BR
dc.rightsopenAccessen_US
dc.subjectPROCESSAMENTO DE IMAGENSpt_BR
dc.subjectPEIXES - PESQUISASpt_BR
dc.subjectALGORITMOSpt_BR
dc.subjectINFORMÁTICApt_BR
dc.titleUm algoritmo para o rastreamento em cardumes através da análise de imagens digitaispt_BR
dc.typemasterThesispt_BR
dc.degree.grantorPontifícia Universidade Católica do Rio Grande do Sulpt_BR
dc.degree.departmentFaculdade de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Ciência da Computaçãopt_BR
dc.degree.levelMestradopt_BR
dc.degree.date2016pt_BR
dc.publisher.placePorto Alegrept_BR
Appears in Collections:Dissertação e Tese

Files in This Item:
File Description SizeFormat 
000479139-Texto+Completo-0.pdfTexto Completo2,81 MBAdobe PDFOpen
View


All Items in PUCRS Repository are protected by copyright, with all rights reserved, and are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Read more.