
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

COMPUTER SCIENCE GRADUATE PROGRAM

PERSISTENT MEMORY AND
ORTHOGONAL PERSISTENCE:
A PERSISTENT HEAP DESIGN
AND ITS IMPLEMENTATION

FOR THE JAVA VIRTUAL MACHINE

TACIANO DRECKMANN PEREZ

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fulfillment of the requirements for the degree
of Ph. D. in Computer Science.

Advisor: Prof. CÉSAR A. F. DE ROSE

Porto Alegre
2017

Taciano Dreckmann Perez

Persistent Memory and Orthogonal Persistence:
A persistent heap design and its implementation for the Java

Virtual Machine

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor of

Computer Science, of the Graduate Program in

Computer Science, School of Computer Science of

the Pontifícia Universidade Católica do Rio Grande do

Sul.

Sanctioned on May 3rd, 2017.

COMMITTEE MEMBERS:

Prof. Dr. Dejan S. Milojicic (Hewlett Packard Labs)

Prof. Dr. Rodolfo Azevedo (IC/UNICAMP)

Prof. Dr. Avelino Zorzo (PPGCC/PUCRS)

Prof. Dr. César A. F. De Rose (PPGCC/PUCRS - Advisor)

To my family.

“The incoherence and complexity arising from utilizing many different programming mechanisms
increases the cost both intellectually and mechanically of building even the simplest of systems.”

Atkinson and Morrison, Orthogonally Persistent Object Systems [10]

“Disks are a hack, not a design feature.

The time and complexity penalty for using disks is so severe that nothing short of enormous
cost-differential could compel us to rely on them. Disks do not make computers better, more

powerful, faster, or easier to use. Instead, they make computers weaker, slower, and more complex.
They are a compromise, a dilution of the solid-state architecture of digital computers. (...)

Wherever disk technology has left its mark on the design of our software, it has done so for
implementation purposes only, and not in the service of users or any goal-directed design rationale.”

Alan Cooper, About Face 2.0 [24]

ACKNOWLEDGEMENTS

This work has been developed in two interconnected research environments: PUCRS and Hewlett-
Packard. I would like to thank both these institutions for providing me support, funding, equipment,
and the opportunity to perform this research. I would also like to extend my gratitude to all my
colleagues, managers, and teachers in both PUCRS and HP.

My advisor, Prof. César A. F. De Rose, guided me through the joys and challenges of academic
research. He has been a counselor, a guide, and a friend, for which I am deeply grateful.

I would like to thank all the staff of the HP/PUCRS/LIS lab, and especially Maiki Buffet, Gabriel
Chiele, Natan Facchin, Rafael Furtado, Pedro Gyrão, Cristovam Lage, Matheus Alves, and Ícaro
Raupp Henrique for their contributions to the implementation of JaphaVM. It was great belonging
to this team.

I owe a great debt to Pedro Garcez Monteiro, for his valuable contributions to JaphaVM, first
at the LIS lab, and later as an HP colleague. Diego Rahn Medaglia and Marcelo S. Neves made
important contributions to adapt the OO7 benchmark, create testing environments, and discuss
experimental results. You guys are awesome.

Haris Volos and Susan Spence, from HP Labs, and Prof. Avelino Zorzo, from PUCRS, reviewed
early drafts of this text and made many valuable suggestions. Dejan S. Milojicic, also from HP Labs,
provided support and guidance in many ways. I am truly grateful for all their contributions.

I would also like to thank collectively all the pioneer researchers of orthogonal persistence, for
seeing further into the future.

None of this would have been possible without my family: my wife Ana Paula da Fonseca, my
daughter Valentina Velez and my mother-in-law Ana Maria Beati. They kept me sane and fed and
warm and loved. I dearly love you all.

Since I was too young to remember, my mother, Neusa Marisa Elias Dreckmann, fanned the
fires of my curiosity and taught me by example how to have the drive and resilience to turn visions
into reality. I wouldn’t be here if not for her, in many ways.

PERSISTENT MEMORY AND ORTHOGONAL PERSISTENCE:
A PERSISTENT HEAP DESIGN AND ITS IMPLEMENTATION FOR

THE JAVA VIRTUAL MACHINE

ABSTRACT

Current computer systems separate main memory from storage. Programming languages typically
reflect this distinction using different representations for data in memory (e.g. data structures,
objects) and storage (e.g. files, databases). Moving data back and forth between these different
layers and representations compromise both programming and execution efficiency. Recent non-
volatile memory technologies, such as Phase-Change Memory, Resistive RAM, and Magnetoresistive
RAM make it possible to collapse main memory and storage into a single layer of persistent memory,
opening the way for simpler and more efficient programming abstractions for handling persistence.

This Ph.D. thesis introduces a design for the runtime environment for languages with automatic
memory management, based on an original combination of orthogonal persistence, persistent memory
programming, persistence by reachability, and lock-based failure-atomic transactions. Such design
can significantly increase programming and execution efficiency, as in-memory data structures are
transparently persistent, without the need for programmatic persistence handling, and removing the
need for crossing semantic boundaries.

In order to validate and demonstrate the proposed concepts, this work also presents JaphaVM,
the first Java Virtual Machine specifically designed for persistent memory. In experimental results
using benchmarks and real-world applications, JaphaVM in most cases executed the same operations
between one and two orders of magnitude faster than database- and file-based implementations,
while requiring significantly less lines of code.

Keywords: Non-Volatile Memory; Storage-Class Memory; Persistent Memory; Orthogonal Persis-
tence; Java; Java Virtual Machine.

MEMÓRIA PERSISTENTE E PERSISTÊNCIA ORTOGONAL:
UM PROJETO DE HEAP PERSISTENTE E SUA IMPLEMENTAçÃO

PARA A MÁQUINA VIRTUAL JAVA

RESUMO

Sistemas computacionais da atualidade tradicionalmente separam memória e armazenamento. Lin-
guagens de programação tipicamente refletem essa distinção usando diferentes representações para
dados em memória (ex. estruturas de dados, objetos) e armazenamento (ex. arquivos, bancos
de dados). A movimentação de dados entre esses dois níveis e representações, bidirecionalmente,
compromete tanto a eficiência do programador quanto de execução dos programas. Tecnologias
recentes de memoria não-volátil, tais como memória de transição de fase, resistiva e magnetoresis-
tiva, possibilitam combinar memória principal e armazenamento em uma única entidade de memória
persistente, abrindo caminho para abstrações mais eficientes para lidar com persistência de dados.

Essa tese de doutorado introduz uma abordagem de projeto para o ambiente de execução de
linguagens com gerência automática de memória, baseado numa combinação original de persistên-
cia ortogonal, programação para memória persistente, persistência por alcance, e transações com
atomicidade em caso de falha. Esta abordagem pode melhorar significativamente a produtividade do
programador e a eficiência de execução dos programas, uma vez que estruturas de dados em memória
passam a ser persistentes de forma transparente, sem a necessidade de programar explicitamente o
armazenamento, e removendo a necessidade de cruzar fronteiras semânticas.

De forma a validar e demonstrar a abordagem proposta, esse trabalho também apresenta
JaphaVM, a primeira Máquina Virtual Java especificamente projetada para memória persistente.
Resultados experimentais usando benchmarks e aplicações reais demonstram que a JaphaVM, na
maioria dos casos, executa as mesmas operações cerca de uma a duas ordens de magnitude mais
rapidamente do que implementações equivalentes usando bancos de dados ou arquivos, e, ao mesmo
tempo, requer significativamente menos linhas de código.

Palavras-chave: Memória Não-Volátil; Memória Persistente; Persistência Ortogonal; Java; Máquina
Virtual Java.

LIST OF FIGURES

Figure 2.1 Napier88 architecture . 35
Figure 2.2 SoftPM Architecture . 39
Figure 3.1 Mnemosyne architecture . 45
Figure 3.2 HEAPO API and system organization . 51
Figure 4.1 Example of persistence by class attribute 66
Figure 4.2 Example of persistence by indirect class attribute reference 67
Figure 4.3 Example of persistence by stack reference 69
Figure 4.4 In-memory file system containing a heap file 70
Figure 5.1 Comparison of execution times for OO7 traversals of different db sizes (secs,

log scale) . 86
Figure 5.2 Curves with execution times for OO7 traversals across different db sizes

(seconds, logarithmic scale) . 87
Figure A.1 Overview of JamVM initialization steps . 112
Figure A.2 Chunks organization inside heap . 114
Figure A.3 Chunk header format . 114
Figure A.4 Class organization in JamVM memory . 115

LIST OF TABLES

Table 2.1 SoftPM API. 38
Table 3.1 Comparison of memory/storage technologies. 41
Table 3.2 Mnemosyne programming interface. 46
Table 5.1 Properties of OO7 database size presets. 85
Table 5.2 I/O counters for tiny DB creation. 88
Table 5.3 I/O counters for small DB creation. 88
Table 5.4 I/O counters for medium DB creation. 88
Table 5.5 I/O counters for Traversal 1 on tiny DB. 89
Table 5.6 I/O counters for Traversal 1 on small DB. 89
Table 5.7 I/O counters for Traversal 1 on medium DB. 89
Table 5.8 Lucene execution times (ms). 92
Table 5.9 Lucene Indexing I/O counters. 93
Table 5.10 Lucene single-term query I/O counters. 93
Table 5.11 Lucene double-term query I/O counters. 93
Table 5.12 Development complexity for OO7 scenarios. 94
Table 5.13 Development complexity for Lucene scenarios. 95

LIST OF ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability 25

API Application Programming Interface 25

AOP Aspect-Oriented Programming 25

AOT Ahead of Time Compilation 25

CPU Central Processing Unit 25

DBMS Database Management System 25

DIMM Dual In-Line Memory Module 25

DRAM Dynamic Random-Access Memory 25

GC Garbage Collection 25

HDD Hard Disk Drive 25

JEDEC Joint Electron Devices Engineering Council 25

JNI Java Native Interface 25

JIT Just In Time 25

JVM Java Virtual Machine 25

LOC Lines Of Code 25

MDS Managed Data Structures 25

MRAM Magnetoresistive Random-Access Memory 25

NVM Non-Volatile Memory 25

NVMe NVM Express 25

NVML Non-Volatile Memory Library 25

NV-DIMM Non-Volatile Dual In-line Memory Module 25

OODBMS Object-Oriented Database Management System 25

OOM Out-Of-Memory 25

OP Orthogonal Persistence 25

OS Operating System 25

PCJ Persistent Collections for Java 25

PCRAM Phase-Change Random-Access Memory 25

PCM Phase-Change Memory 25

PM Persistent Memory 25

POS Persistent Object Store 25

PRAM Phase-change Random-Access Memory 25

RAM Random-Access Memory 25

ReRAM Resistive Random-Access Memory 25

SNIA Storage and Networking Industry Association 25

RRAM Resistive Random-Access Memory 25

SRAM Static Random-Access Memory 25

SSD Solid-State Drive 25

STT-MRAM Spin-Torque Transfer Magnetoresistive Random-Access Memory 25

TML Tunneling Magneto-Resistance 25

UML Unified Modeling Language 25

VM Virtual Machine 25

TABLE OF CONTENTS

1. INTRODUCTION 27
1.1 Hypothesis and Research Questions . 28
1.2 Thesis Organization . 28

2. ORTHOGONAL PERSISTENCE 31
2.1 Orthogonal Persistence . 31
2.2 Orthogonal Persistence and Programming Languages 32

2.2.1 PS-algol . 32
2.2.2 Napier88 . 34
2.2.3 Persistent Java . 35
2.2.4 Java Card . 37
2.2.5 SoftPM . 37

2.3 Limitations and Criticism of Orthogonal Persistence 38
2.4 Conclusion . 39

3. NON-VOLATILE MEMORY AND PERSISTENT MEMORY 41
3.1 Non-Volatile Memory . 41

3.1.1 Phase-Change RAM (PCRAM) . 41
3.1.2 Resistive RAM (ReRAM) . 42
3.1.3 STT-MRAM . 42

3.2 Persistent Memory . 42
3.3 Operating System Support for Persistent Memory 44
3.4 Programming Languages Support for Persistent Memory: A Survey 44

3.4.1 Mnemosyne . 44
3.4.2 NV-heaps . 47
3.4.3 Atlas . 49
3.4.4 Heapo . 51
3.4.5 NVML . 52
3.4.6 PyNVM . 55
3.4.7 Persistent Collections for Java (PCJ) . 57
3.4.8 Managed Data Structures (MDS) . 58
3.4.9 Apache Mnemonic . 59

3.5 Conclusion . 61

4. A DESIGN OF ORTHOGONALLY-PERSISTENT HEAPS FOR PERSISTENT MEMORY 63
4.1 Motivation . 63
4.2 System Assumptions . 64
4.3 Requirements . 64
4.4 Persistent Heap Adherent to Orthogonal Persistence Concepts 64
4.5 Persistence by Class Attribute Reachability . 65
4.6 Persistence by Stack Reachability . 67
4.7 Storage and Management of Persistent Heaps . 68

4.7.1 Data Persistence . 70
4.7.2 Execution Persistence . 71

4.8 Consistency and Transactional Properties . 72
4.9 Challenges . 72

4.9.1 Sharing Data Across Different Programs and Programming Languages 72
4.9.2 Type Evolution . 73
4.9.3 Consistency and Transactional Properties 74
4.9.4 Persistent Bugs . 75
4.9.5 External State . 75
4.9.6 Security . 76

4.10 Conclusion . 76

5. JAPHAVM: AN ORTHOGONALLY-PERSISTENT JAVA VIRTUAL MACHINE DESIGNED
FOR PERSISTENT MEMORY 77

5.1 JaphaVM Design . 77
5.1.1 Rationale . 77
5.1.2 JamVM and GNU Classpath . 77
5.1.3 Initial Design and its Limitations . 77
5.1.4 Final Design with Transactional Support 78
5.1.5 Summary of JVM Modifications . 78
5.1.6 Prototype Limitations . 82

5.2 JaphaVM Evaluation . 83
5.2.1 Experimental Setting . 83
5.2.2 OO7 Benchmark . 83
5.2.3 Apache Lucene . 90
5.2.4 Development Complexity . 93

5.3 Evaluation Summary . 95
5.4 Conclusion . 96

6. RELATED WORK 97

7. CONCLUSION 99
7.1 Concluding Remarks . 100
7.2 Future Research . 101

Bibliography 103

A. APPENDIX: JAPHAVM IMPLEMENTATION DETAILS 111
A.1 JamVM Overview . 111

A.1.1 JamVM Initialization . 111
A.1.2 Internal Data Structures . 113
A.1.3 Threads and Thread Stacks . 118
A.1.4 Symbols Hash Table . 119

A.2 Changes Required to Implement JaphaVM . 122
A.2.1 Invocation Arguments . 122
A.2.2 Heap Persistence . 123
A.2.3 NVML Transactions . 125
A.2.4 NVML Memory Pool Initialization . 125
A.2.5 VM Initialization . 127
A.2.6 Persistent Heap Allocation . 128
A.2.7 Non-Heap Objects Persistence . 132
A.2.8 Hash Tables Persistence . 136
A.2.9 Context Recovery . 138
A.2.10 Java Opcodes . 138
A.2.11 Garbage Collection . 145
A.2.12 Handling External State: Console I/O . 148
A.2.13 JaphaVM Prototype Limitations . 152

27

1. INTRODUCTION

Existing computer systems traditionally separate main memory from storage. This distinction is
not a design imperative, but rather imposed by limitations of access latency, cost, volatility, power
or capacity of the existing memory and storage technologies.

Programming languages typically reflect this distinction using semantically different represen-
tations for data in memory (e.g. data structures, objects) and in storage (e.g. files, databases).
Moving and translating data back and forth between these different representations is inefficient both
for programming (additional effort, complexity, maintenance challenges, and probability of defects)
and execution (unnecessary data movement and duplication, increased number of instruction cycles
and memory/storage usage). Data type protection offered by programming languages is also often
lost across this mapping. This problem, dubbed impedance mismatch, has been described as the
Vietnam of Computer Science [31].

Based on these observations, the concept of orthogonal persistence (OP) was proposed in the
early 1980s [11]. It proposes that from a programmer’s standpoint there should be no differences
in the way that short-term and long-term data are manipulated. In other words, persistence should
be an orthogonal property of data, independent of data type and the way in which data is handled.
Programmers should focus on the core aspects of their applications, while the runtime environment
would take care of managing the longevity of data. During the 1980s and 1990s, this concept was
explored in several research initiatives, including programming languages, operating systems, and
object-oriented databases [29,31]. However, OP ended up not being widely adopted, as its underlying
implementation still had to cope with the complexity of moving data between memory and storage,
and the resulting performance consequences.

Recent byte-addressable, non-volatile memory (NVM) technologies such as Phase-Change RAM
(PCRAM) [50,74], Resistive RAM (ReRAM) [79], and Magnetoresistive RAM (MRAM) [18,32,49]
are expected to enable memory devices that are non-volatile, require low-energy and have density
and latency closer to DRAM. These technologies make it possible to collapse main memory and
storage into a single entity: persistent memory (PM).

As consequence, many recent studies proposed persistent memory programming interfaces to
manipulate data in byte-addressable, non-volatile memory [77]. Interfaces were proposed for languages
with explicit memory management (such as C and C++) as early as 2011 [20,22,27,40,44,82]. Until
very recently, little work had been carried out in order to explore persistent memory programming
interfaces in languages with managed runtimes and automatic memory management, such as Java,
Python, Ruby, and JavaScript, among others. Since 2016, works such as PyNVM [69], Persistent
Collections for Java [28], Managed Data Structures [34], and Apache Mnemonic [5]) introduced
specialized libraries for persistent memory in this category of programming languages.

This work introduces a design for the runtime environment of languages with automatic memory
management based on an original combination of orthogonal persistence, persistent memory pro-

28

gramming, persistence by reachability, and lock-based failure-atomic transactions. It also presents
JaphaVM, an implementation of the proposed design based on the JamVM [55] open-source Java
Virtual Machine, in order to validate and demonstrate the presented concepts. To the best of our
knowledge, our work is the first to propose an orthogonal persistence-oriented design for program-
ming languages using persistent memory, and JaphaVM is the first JVM especially designed to take
advantage of non-volatile memory technologies.

1.1 Hypothesis and Research Questions

The aim of this Ph.D. research is to investigate the hypothesis that persistent memory can be used
to solve the performance and complexity issues historically associated with orthogonal persistence
support in programming languages with automatic memory management. To guide this investigation,
fundamental research questions associated with the hypothesis are defined as follows:

1. Can we use a persistent heap on top of persistent memory to transparently store objects across
multiple program executions? The objective of this research question is to determine if it is
possible to lower the complexity of implementing orthogonal persistence by using persistent
memory as the single representation of data, avoiding dual memory vs. storage representations.
The use of a persistent heap is expected not only to lower the design complexity, but also to
improve execution performance.

2. Is it possible to leverage automatic memory management mechanisms to determine the per-
sistence lifecycle of ordinary objects when using a persistent heap? The aim of this question
is to determine if existing automatic memory management features (e.g., garbage collection)
can be successfully used to transparently determine the persistence lifetime of ordinary objects
in a persistent heap in persistent memory.

3. How to automatically ensure the consistency of a persistent heap in the presence of failures?
The motivation for this research question comes from the fact that unexpected failures during
the execution of a program directly accessing persistent memory can potentially leave data in
inconsistent states. How can the runtime system address this problem instead of transferring
it to the application programmer?

4. What is the performance of an orthogonally-persistent system using a persistent heap relative
to traditional storage approaches? This objective of this research question is to identify if
the proposed system has performance advantages over existing storage approaches (e.g. files,
relational databases).

1.2 Thesis Organization

The remainder of this thesis is organized as follows:

29

• Chapter 2 reviews the concepts of orthogonal persistence and summarizes the past efforts to
incorporate them into programming languages, before the development of persistent memory.

• Chapter 3 surveys the main non-volatile memory technologies and the current research efforts
to design programming languages and operating system support for persistent memory.

• Chapter 4 describes our proposal for revisiting orthogonal persistence concepts in the context
of persistent memory, and presents a design for the runtime environment of languages with
automatic memory management based on an original combination of OP, persistent memory
programming, persistence by reachability, and lock-based failure-atomic transactions. This
chapter addresses research questions 1—3.

• Chapter 5 introduces JaphaVM, an implementation of the proposed design, and evaluation
results considering performance and ease-of-programming aspects. This chapter addresses
research questions 1—4.

• Chapter 6 discusses related work.

• Chapter 7 summarizes the thesis and presents our concluding remarks. It restates the answers
to the research questions and the main contributions, and presents possible directions for future
work.

• Appendix A provides an in-depth description of JaphaVM’s implementation.

30

31

2. ORTHOGONAL PERSISTENCE

As mentioned in the previous chapter, the cost of mapping data as represented in memory to
either files or databases (and vice-versa) is known as impedance mismatch, and adds significant
complexity to both software development and execution [31]. Orthogonally persistent object systems
propose to solve this problem by supporting a uniform treatment of objects irrespective of their types,
allowing values of all types to have whatever longevity is required.

In this chapter, we recap the evolution of orthogonal persistence research and resulting concepts
and challenges.

2.1 Orthogonal Persistence

In early 1980s, a research group led by Malcolm Atkinson proposed the concept of orthogonal
persistence [11]. They observed that most programming languages provide separate abstractions
for handling short-term and long-term data: short-term data are typically stored in memory, and
manipulated using concepts such as arrays, records, sets, monitors and abstract data types (a.k.a
objects), while long-term data are typically stored in file systems or database management systems
(DBMS), and manipulated through file abstractions or DBMS models, such as the relational, hier-
archical, network and functional models. The existence of two different views of data presents two
problems, according to Atkinson et al. [11]:

1. In a typical program, about 30% of the code is concerned with transferring data to and from
files or a DBMS. Is it necessary to spend effort in writing, maintaining and executing this
code, and the quality of the application programs may be impaired by the mapping between
the program’s form of data and the form used for the long term storage medium.

2. Data type protection offered by programming language is often lost across this mapping. The
structure that might have been exploited in a program to aid comprehension is neither apparent
nor protected and is soon lost.

In order to solve these problems, they propose that from a programmer’s standpoint there should
be no differences in the way that short-term and long-term data are manipulated. In other words,
persistence should be an orthogonal property of data, independent of data type and the way in which
data is manipulated, thus the term orthogonal persistence. During the decades of 1980 and 1990,
this concept was explored in several research initiatives, including both programming languages and
operating systems. The works of Alan Dearle et al. [29,31] provide a good overview of this research,
and the remaining of this chapter is largely based on these texts.

The key idea of orthogonally-persistent object systems is to support a uniform treatment of objects
irrespective of their types by allowing values of all types to have whatever longevity is required. The
benefits of orthogonal persistence can be summarized as [31]:

32

• improving programming productivity from simpler semantics;

• avoiding ad hoc arrangements for data translation and long-term data storage;

• providing type protection mechanisms over the whole environment;

• supporting incremental evolution; and

• automatically preserving referential integrity over the entire computational environment for the
whole life-time of an application.

Atkinson and Morrison [10] identified three principles that, if applied, would yield orthogonal persis-
tence:

1. The Principle of Persistence Independence: the form of a program is independent of
the longevity of the data it manipulates. Programs look the same whether they manipulate
short-term or long-term data.

2. The Principle of Data Type Orthogonality: all data objects should be allowed the full
range of persistence irrespective of their type. There are no special cases where objects are
not allowed to be long-lived or are not allowed to be transient.

3. The Principle of Persistence Identification: the choice of how to identify and provide
persistent objects is orthogonal to the universe of discourse of the system. The mechanism for
identifying persistent objects is not related to the type system.

These principles were applied in different degrees in several experimental programming languages
and operating systems. The next sections present a survey of these initiatives.

2.2 Orthogonal Persistence and Programming Languages

2.2.1 PS-algol

The first language to provide orthogonal persistence was PS-algol [11, 31]. It extended the
existing S-algol language, providing persistence by reachability, where the identification of data to
be persisted is made by reachability from a persistent root. Later, experience would show that this
mechanism, also known as transitive persistence, is the only one that can be used to implement
orthogonal persistence in languages that support references. It added the following abstractions to
S-algol:

• Tables — associative stores (hash maps). A few functions are added to handle tables, such
as s.lookup, which retrieves a value associated with a key in a table, and s.enter, which
creates an association between a key and a value. Strictly speaking, tables are not directly
related with persistence, but are useful abstractions that were not originally part of S-algol.

33

Listing 2.1 – PS-algol example of adding a record to a table
1 structure person(string name, phone; pntr addr)
2 structure address(int no ; string street, town)
3

4 let db = open.database("addr.db", "write")
5 if db is error.record
6 do { write "Can’t open database"; abort }
7

8 let table = s.lookup("addr.table", db)
9 let p = person("al", 3250,

10 address(76, "North St", "St Andrews"))
11 s.enter("al", table, p)
12

13 commit

Listing 2.2 – PS-algol example of retrieving a record from a table
1 structure person(string name, phone; pntr addr)
2 structure person (string name, phone; pntr addr)
3

4 let db = open.database("addr.db", "read")
5 if db is error.record
6 do { write "Can’t open database"; abort }
7

8 let table = s.lookup("addr.table", db)
9 let p = s.lookup("al", table)

10 if p = nil then write "Person not known"
11 else write "phone number: ", p(phone)

• Databases — the roots of persistence in PS-algol, containing a pointer to a table. Everything
referenced directly or indirectly by this table (including other tables) is identified as persistent.
Databases can be dynamically created, and are manipulated through the open.database
and close.database functions.

• Transactions boundaries — explicitly defined by the commit and abort functions.

In order to give a flavour of the language, two examples are provided. The first example (see Code
Listing 2.1) opens a database called “addr.db” and places a person object into a table associated
with the key “addr.table” found at its root. When commit is called, the persistence of all objects
reachable from the root is ensured, including the updated table, the person object and the address
object referenced by the person object.

The second example (Code Listing 2.2) opens the same database, retrieves the same person
object and writes out their phone number:

A second version of PS-algol considered procedures as data objects, thus allowing both code and
data to be persisted. PS-algol had no support for concurrency (other than at database level), which
required additional programming effort.

34

Listing 2.3 – Napier88 program example
1 type person is structure (name, address : string)
2 let ps = PS()
3 project ps as X onto
4 person:
5 begin
6 X(name) := "Ronald Morrison"
7 X(address) := "St Andrews"
8 end
9 default: \{\}

2.2.2 Napier88

Napier88 [31,60] consisted not only of a language, but a complete self-contained persistent system,
incorporating the whole language support within a strongly typed persistent store. It provides a
pre-populated strongly typed stable store containing libraries for handling concurrency, distribution
and user transactions, and a complete programming environment. Figure 2.1 displays the layered
architecture of the Napier88 system.

Napier88 borrows from PS-algol the notion of persistence by reachability from a persistent root,
but adds capabilities of dynamic type coercion, allowing the programmer to explicitly specify the
type that a value being read from the persistent store will assume in the current context. This can
be visualized in the example in Code Listing 2.3, that extracts a value from the persistent store,
projects it into the person type and changes its name and address.

In the first line, the person type is declared. The PS() procedure, that returns the root of the
persistent store, is then called and assigned to the variable ps. The ps variable is coerced to the
type person. If this coercion is successful, a code block is executed to set the name and address
of these types to constant values. If the coercion is not successful, the default option is executed
(in this particular case, in case of failure the program does nothing). In order for the type coercion
to be successful, the root of the persistent store must contain a pointer to data that can be cast to
the person type.

The main additions that Napier88 introduces over PS-algol are listed below [31]:

• the infinite union type any, which facilitates partial and incremental specification of the
structure of the data;

• the infinite union type environment, which provides dynamically extensible collections of
bindings;

• parametric polymorphism, in a style similar to Java generics and C++ templates;

• existentially quantified abstract data types;

• a programming environment, with graphical windowing library, object browser, program editor
and compiler, implemented as persistent objects withing the store;

35

Figure 2.1 – Napier88 layered architecture. Extracted from [60].

• support for hyper-code, in which program source code can contain embedded direct references
to extant objects;

• support for structural reflection, allowing a program to generate new program fragments and
integrate those into itself.

2.2.3 Persistent Java

During the second half of the 1990s, several orthogonally-persistent versions of Java have been
implemented.

PJama [9] started in 1995 as a collaboration between the Persistence and Distribution Research
Group (PADRG) at Department of Computing Science at University of Glasgow and the Forest
Research Group (FRG) at Sun Labs. It was actively developed and evolved until 2000, and served
as reference for the Orthogonal Persistence for Java (OPJ) specification [46]. PJama implements
persistence by reachability from the same roots used during garbage collection (the set of live threads
and the static variables of the set of loaded classes) and from explicit persistent roots. The complete
Java Virtual Machine (JVM) is checkpointed periodically, and its execution may be resumed in an
arbitrary moment of the future from one of these checkpoints. The Runtime class is augmented with
two methods: checkpoint, to explicitly generate a checkpoint and continue execution afterwards,
and suspend to generate a checkpoint and then stop JVM execution. Since version 1.0, PJama
started using its own custom persistent object store, called Sphere [72].

Code Listing 2.4 provides an example of a simple PJama program that increments an integer
and explicitly triggers a checkpoint.

Some of the most notable limitations/challenges of the PJama implementation are:

1. Handling of bulk types — There is no query language for the manipulation of large object
collections [8].

36

Listing 2.4 – Simple PJama program that increments an integer and explicitly triggers a checkpoint
1 public class Simple {
2

3 static int count = 0;
4

5 public static void main(String argv[]) {
6 System.out.println(count);
7 count++;
8 // explicitly trigger a checkpoint
9 org.opj.OPRuntime.checkpoint();

10 }
11

12 }

2. Conflict with traditional Java programming constructs — Java is based on some concepts
that follow a traditional programming approach and are somewhat conflicting with orthogonal
persistence principles, such as the transient keyword definition, the extensive usage of
native code (via Java Native Interface - JNI) for windowing frameworks and handling of external
resources, such as files and network-related structures [8].

3. Performance and complexity — relatively slow performance and high implementation complexity
[51].

PJama influenced the design of PEVM [51], a JVM with native support for OP using a file-based
persistent object store. PEVM is 10 faster than PJama Classic, largely due to its pointer swizzling
strategy, which made it simple to modify its optimizing JIT while preserving almost all of the speed
of the code it generates, and also due to its use of direct object pointers minimizing CPU overhead.
Programming interfaces are very similar to PJama.

Another implementation of Persistent Java was made in the Grasshopper operating system [30].
Grasshopper supported persistence at operating system level, so no modifications were made to the
Java language or virtual machine. All state was persisted in this implementation, but it relies on a
special operating system designed for persistent memory.

ANU-OPJ [58] implemented persistence transparently through the dynamic manipulation of
bytecodes, during class loading. All objects reachable from the roots during garbage collection
were considered persistent and stored in the Shore storage manager. This approach results in full
portability of Java programs, since it does not require a special JVM or Java compiler.

In the early 2000s, two articles [16, 80] proposed a form of OP supported by whole-system
checkpointing of the JVM, its heap and threads. Both involve externalizing the JVM execution state
to a file, which can be stored for later execution, or migrated over the network to a different node.

More recently, a number of papers [2, 63,76] proposed Java OP implementations using Aspect-
Oriented Programming (AOP). These implementations attempt to make the programmer oblivious
to persistence concerns, which is handled as an aspect; persistence code is modularized and kept
separate from application-specific code. Internally, a relational or object-oriented DBMS is used to

37

Listing 2.5 – Example of Java Card applet with persistent and transient data
1 import javacard.framework.*;
2

3 public class JavaCardApp extends Applet {
4

5 private JavaCardApp() {
6

7 this.persistent_array = new byte[ARRAY_SIZE];
8

9 this.transient_array = JCSystem.makeTransientByteArray(
10 ARRAY_SIZE, JCSystem.CLEAR_ON_DESELECT);
11 }
12

13 }

store data.
All the systems above removed from the programmer the burden of explicitly translating data

representations between memory and storage; however, the problem was transferred to the internal
system implementation, which still had to cope with moving data between these different domains.
This implied into high internal complexity and performance issues.

2.2.4 Java Card

The Java Card programming interface [61], used in JVM-based Smartcards, follows some elements
from the Orthogonally Persistent approach. All objects are persistent by default, and stored in a
persistent heap on top of EEPROM memory. In order to make an object transient (and thus mapped to
RAM), it is necessary to declare it explicitly by using a static method makeTransient...Array,
as shown in Code Listing 2.5. However, only arrays of primitive types can be made transient, which
violates the principle of data type orthogonality. The lack of transient objects and the restriction
on transient arrays requires the programmer to load and store values from persistent objects into
transient arrays and vice versa.

An article from 1998 [61] proposes a transient environment composed by all objects referenced
directly or indirectly from a transient root. It is analogous to the concept of persistence by reachability,
defining transience by reachability in an environment where data is persistent by default. The condition
is that references to transient objects are forbidden to be held in the persistent set, which must be
enforced by the runtime environment.This scheme would be compliant with the principle of data
type orthogonality, but was never adopted by the Java Card API specification.

2.2.5 SoftPM

SoftPM [40] is a programming abstraction for C providing orthogonal persistence for applications
by means of containers that have a common persistence root.

Table 2.1 shows SoftPM’s API for creating and managing containers. A container, or persis-

38

Table 2.1 – SoftPM API. Extracted from [40].

tence root, is allocated using the pCAlloc function, but its contents are not made persistent at
this point. Whenever the pPoint function is called, it creates a persistence point, i.e., all data
reachable from the container will be made persistent. In subsequent executions of the program, the
pCRestore function returns a pointer to a container previously created. Code Listing 2.6 describes
the implementation of a persistent list. pCAlloc allocates a container and pPoint makes it
persistent.

Listing 2.6 – SoftPM Example
1 struct c root

2 {

3 list t *l;

4 } *cr;

5

6 id = pCAlloc(m, sizeof(*cr), &cr);

7 cr->l = list head;

8 pPoint(id);

SoftPM’s implementation consists of two main components: the Location Independent Memory
Allocator (LIMA), and the Storage Optimized I/O Driver (SID). LIMA manages the container’s
persistent data as a collection of memory pages marked for persistence. When creating a persistence
point, LIMA is responsible for identifying the graph of data structures referenced by the container
and mark the ones which were modified, in order to be persisted. SID atomically commits container
data to persistent storage, which can be disks, flash drives, network, or memcachedb. SoftPM’s
architecture is depicted on Figure 2.2.

2.3 Limitations and Criticism of Orthogonal Persistence

In the past, systems implementing orthogonal persistence handled internally the movement
between memory and secondary storage, removing this burden from the programmer at the cost
of increasing the internal complexity of these systems. The price paid in performance by doing so
is one of the reasons that prevented orthogonally persistent systems from becoming a mainstream
technology. As an example, Marquez et al. [57] compared the performance of different versions

39

Figure 2.2 – SoftPM Architecture. Extracted from [40].

of PJama and ANU-OPJ using the OO7 benchmark [45], and in all scenarios the introduction of
orthogonal persistence resulted in overheads of one or two orders of magnitude when compared to a
standard JVM.

Several Persistent Operating Systems (POSs), i.e., OSs supporting abstractions to make per-
sistence interfaces simpler, were explored. This body of research is summarized in [29] and [42].
Many of the challenges faced by such POSs were due to the need of managing movements of data
between main memory and secondary storage. For instance, Multics, MONADS, and Clouds cannot
guarantee consistency in the presence of unexpected failures, since changes to main memory may
still not have been committed to secondary storage. Eumel/L3 solves this problem by taking periodic
snapshots of the entire machine state, but incurs in performance and latency penalties in order to do
so. Grasshopper faces overheads handling page faults due to secondary storage latency and several
switches between the user-level/kernel boundary [42].

Cooper and Wise [25] argue that unrestricted orthogonal persistence, where a great number of
objects live in a large memory addressing space and are shared by many different programs, can lead
to bugs where programmers unintentionally modify data used by other programs, or keep references
to objects no longer necessary. They propose a protection mechanism based on coarse-grained objects
that contain many fine-grained objects, and apply protection and authorization mechanisms for the
contained objects. The authors call this mechanism Type-Orthogonal Persistence, since any kind of
object can still be persisted.

2.4 Conclusion

In this chapter, we have reviewed the evolution of orthogonal persistence research across the
decades of 1980 and 1990, its results and limitations.

In the next chapter, we survey the existing efforts to design programming language support for
persistent memory, which to the moment do not include OP-based interfaces.

40

41

3. NON-VOLATILE MEMORY AND PERSISTENT MEMORY

The previous chapter described how orthogonal persistence (OP) was created in the past to
remove from the programmer the burden of explicitly managing data in both memory and storage,
but how OP implementations still had to cope with the complexity of moving data between these
two layers, and the resulting performance consequences. This chapter presents new non-volatile
memory technologies that make it possible to collapse main memory and storage into a single entity:
persistent memory (PM)

3.1 Non-Volatile Memory

There are several new non-volatile memory (NVM) technologies under research today to provide
memory devices that are non-volatile, energy-efficient, with latencies close to DRAM and storage-class
capacity. We have surveyed NVM technologies extensively in [64], and reproduce here a summary of
the most mature technologies [49]: Phase-Change RAM (PCRAM), Resistive RAM (ReRAM), and
Spin-Torque Transfer Magnetoresistive RAM (STT-MRAM).

Table 3.1 compares the main properties of traditional memory/storage technologies with PCRAM,
ReRAM and STT-MRAM. Data was obtained from [18,32,49,52,59,74].

3.1.1 Phase-Change RAM (PCRAM)

Phase-Change Random Access Memory (also called PCRAM, PRAM or PCM) is currently the
most mature of the new memory technologies under research. It relies on some materials, called phase-
change materials, that exist in two different phases with distinct properties: an amorphous phase,
characterized by high electrical resistivity, and a crystalline phase, characterized by low electrical
resistivity [75]. These two phases can be repeatedly and rapidly cycled by applying heat to the
material [18, 75].

Table 3.1 – Comparison of memory/storage technologies.

SRAM DRAM Disk NAND
Flash

PCRAM ReRAM STT-
MRAM

Maturity product product product product adv. dev. early dev. adv. dev.
Read latency <10 ns 10-60 ns 8.5 ms 25 µs 48 ns <10 ns <10 ns
Write latency <10 ns 10-60 ns 9.5 ms 200 µs 40-150 ns 10 ns 12.5 ns
Static power yes yes no no no no no
Endurance >1015 >1015 >1015 >104 >108 >105 >1015

Non-volatile no no yes yes yes yes yes

42

3.1.2 Resistive RAM (ReRAM)

Despite the fact that PCRAM also uses resistance variances to store bit values, the term Resistive
RAM (ReRAM) has been applied to a distinct set of technologies that explore the same phenomenon.
Essentially these technologies fall into one of two categories [18]:

1. Insulator resistive memories: based on bipolar resistance switching properties of some metal
oxides. The most important example is the memristor memory device, which will be further
described in more detail.

2. Solid-electrolyte memories: based on solid-electrolyte containing mobile metal ions sandwiched
between a cathode and an anode. Also known as Programmable Metallization Cell (PMC) or
Conductive Bridge RAM (CBRAM).

There is a long list of ReRAM technologies [17,18,49,88].
A memristor [88] is a two-terminal device whose resistance depends on the magnitude and polarity

of the voltage applied to it and the length of time that voltage has been applied. When the voltage
is turned off, the memristor remembers its most recent resistance until the next time it is turned
on. The property of storing resistance values means that a memristor can be used as a nonvolatile
memory [85].

3.1.3 STT-MRAM

Magnetoresistive RAM (MRAM), sometimes called Magnetic RAM, is a memory technology that
explores a component called Magnetic Tunnel Junction (MTJ), consisting MTJ of two ferromagnetic
layers separated by an oxide tunnel barrier layer. One of the ferromagnetic layers, called the reference
layer, keeps its magnetic direction fixed, while the other, called the free layer, can have its direction
changed by means of either a magnetic field or a polarized current. When both the reference layer
and the free layer have the same direction, the resistance of the MTJ is low. If they have different
directions, the resistance is high. This phenomenon is known as Tunneling Magneto-Resistance
(TMR) [18,32,49].

Conventional MRAM (also called “toggle-mode” MRAM) uses a current induced magnetic field
to switch the MTJ magnetization. The amplitude of the magnetic field must increase as the size
of MTJ scales, which compromises MRAM scalability. Spin-Torque Transfer MRAM (STT-MRAM)
technology tries to achieve better scalability by employing a different write mechanism based on spin
polarization [53].

3.2 Persistent Memory

These novel memory technologies can potentially make a significant amount of NVM available to
computer systems via memory bus. It would thus make it possible for main memory and secondary
storage to be collapsed into a single entity: persistent memory (PM). NVM would be available to

43

the operating system as byte-addressable, persistent memory that can be directly addressed by the
processor in the same way that DRAM is today, but with the advantage of being non-volatile, or, in
other words, persistent.

There are several advantages in using persistent memory instead of separating the memory
hierarchy in volatile main memory and persistent storage. HDDs and SSDs are widely employed
today not for any goal-directed design rationale, but for the fact that today’s technology standards
make them extremely cost-effective, and it has been so since the beginning of commercial computing.
As Alan Cooper [24] pointed out, “Disks do not make computers better, more powerful, faster, or
easier to use. Instead, they make computers weaker, slower, and more complex. (...) Wherever
disk technology has left its mark on the design of our software, it has done so for implementation
purposes only, and not in the service of users or any goal-directed design rationale."

But decades of separation between volatile main memory and persistent storage have left deep
marks in computer design, including hardware, basic software and application software. If the
emerging memory technologies fulfill their promise of enabling persistent memory, several layers of
the hardware and software stack will be affected.

Changing hardware, operating systems and programming languages internal implementations can
be challenging for computer scientists and engineers, but they potentially have a mild impact on
application software when compared to conceptual changes that affect the interfaces exposed by
programming languages. Nonetheless, we believe that in order to reap the major rewards potentially
offered by persistent main memory, it will be necessary to change the way application developers
approach programming. Current programming interfaces have separate abstractions for handling
memory (data structures) and secondary storage (files, databases). A good deal of development
effort is directed towards moving data between these two layers; a seminal study estimates around
30% [11].

In our M.Sc. dissertation [64], we evaluated the impacts on latency and energy of a computer
system with persistent memory. We simulated scenarios of systems using different technologies for
main memory (DRAM, PCRAM and Memristor) using a full-system architectural simulator (Virtutech
Simics [56]), and compared the execution of workloads using both a typical scenario using the file
system as storage backend and an API specific for persistent memory in C/C++ (Mnemosyne [82]).
Additional results were also published in [66] and [67]. During that study, our own development
effort using an API designed for persistent memory produced less than half lines of code and was
more than 4x faster to develop than using traditional file-oriented APIs. Our conclusion was that in
order to leverage persistent memory to simplify the task of designing, developing and maintaining
software, we need to change programming interfaces.

The next sections survey the current efforts towards designing operating systems and programming
languages exploiting persistent memory.

44

3.3 Operating System Support for Persistent Memory

The emergence of new NVM technologies is reigniting the interest on OS support for persistent
memory. In the 2013 Linux Foundation Collaboration Summit [26], the session "Preparing Linux for
nonvolatile memory devices" proposed a three-step approach:

1. In a first moment, access NVM devices using traditional block drivers, by means of existing
file systems. This step does not explore the disruptive potential of NVM but is a fast way of
making it accessible.

2. In a second moment, adapt existing file systems to access NVM directly, in a more efficient
way. This step ensures that file systems are designed for NVM, but keeps the traditional file
system abstraction.

3. The final step is thinking about the creation of byte-level I/O APIs for new applications to
use. This step will explore interfaces beyond the file system abstraction that may be enabled
by NVM. It has the most disruptive potential, but requires applications to be modified to use
such interfaces.

Bailey et al. [12] discuss additional changes to paging, virtual memory, reliability and security.
In the past few years, several file system designs were proposed addressing step 2: PRAMFS [78],

BPFS [23], SCMFS [86], PMFS [33], Aerie [81], and Ext4/DAX [84]. They expose NVM using a file
system interface, and perform significantly better than disk- or flash-based file systems since they
bypass the page cache, and remove other steps rendered unnecessary by NVM, which can be directly
accessed by the processor at byte granularity.

More recently, Microsoft announced persistent memory support starting in Windows Server 2016
and Windows 10, including native file systems [21].

3.4 Programming Languages Support for Persistent Memory: A Survey

Recent works proposed interfaces for manipulating data directly in persistent memory, such as
Mnemosyne [82], NV-Heaps [22], Atlas [20], Heapo [44], NVML [27], PyNVM [69], PCJ [28],
MDS [34], and Apache Mnemonic [5]. These interfaces greatly simplify data manipulation, avoiding
the translation between memory data structures and a file (or database) format. However, they are
not OP implementations, and still require specific interfaces and explicit manipulation of persistent
data. In the next sections, we present an original survey of these proposals, discussing them in detail.

3.4.1 Mnemosyne

Mnemosyne [82] proposes an abstraction of persistent memory to be made available by operating
systems to applications. This abstraction enables programmers to make in-memory data structures
persistent without converting it to serialized formats. Direct access also reduces latency because

45

Figure 3.1 – Mnemosyne architecture. Extracted from [82].

it bypasses many software layers including system calls, file systems and device drivers. It uses
transactional memory constructs in order to ensure consistency. Mnemosyne’s goals are providing a
simple interface for the programmer, ensure consistency across modifications and being compatible
with existing commodity processors.

Mnemosyne provides a low-level programming interface, similar to C, for accessing persistent
memory. It supports three main abstractions:

1. Persistent memory regions — segments of virtual memory mapped to non-volatile memory.
Regions can be created automatically to hold variables labeled with the keyword pstatic or
allocated dynamically. Persistent regions are implemented by swapping non-volatile memory
pages into a backing file.

2. Persistence primitives — low-level operations that support consistently updating data.

3. Durable memory transactions — mechanism that enables consistent in-place updates of arbi-
trary data structures.

The Mnemosyne architecture can be seen at Figure 3.1.
Mnemosyne is originally implemented in Linux and extends the OS virtual memory system by

adding a region manager, responsible for memory management in the non-volatile space address. A
list of the virtual pages allocated in persistent memory is maintained in a persistent mapping table.
The region manager reconstructs persistent regions when the OS boots. Persistent pages are mapped
to backing files, using a variation of the mmap() system call.

Mnemosyne provides persistence primitives of distinct abstraction levels, as depicted in Table 3.2.
At the lowest level, there are hardware primitives to allow storing and flushing data into persistent

46

Table 3.2 – Summary of Mnemosyne’s programming interface. Extracted from [82].

memory. At a higher level, variables can be automatically assigned to be persisted, both statically
(through the pstatic declaration) and dynamically (being allocated/freed with pmalloc/pfree).
At the highest level, all code inside an atomic block has transactional properties. Mnemosyne
uses write-ahead redo logging to ensure the atomicity of transactions, and exposes its log API so
application code can also make use of it for their own purposes.

Code Listing 3.1 is an example of using Mnemosyne with static variables. Every time the program
executes, the value of the integer variable flag will switch between 0 and 1.

Listing 3.1 – Mnemosyne Example Using Static Variables
1 #include <stdio.h>

2 #include <mnemosyne.h>

3 #include <mtm.h>

4

5 MNEMOSYNE_PERSISTENT int flag = 0;

6

7 int main (int argc, char const *argv[]) {

8 printf("flag: %d", flag);

9 MNEMOSYNE_ATOMIC {

10 if (flag == 0) { flag = 1; }

11 else { flag = 0; }

12 }

13 printf(" --> %d\n", flag);

14 return 0;

15 }

A second example (Code Listing 3.2) shows a simple hash table being manipulated with dynamic
variables.

Listing 3.2 – Mnemosyne Example Using Dynamic Variables
1 #include <mnemosyne.h>

47

2 #include <mtm.h>

3

4 MNEMOSYNE_PERSISTENT hash = NULL;

5

6 main() {

7 if (!hash) {

8 pmalloc(N*sizeof(*bucket), &hash);

9 }

10 }

11

12 update_hash(key, value) {

13 lock(mutex);

14 MNEMOSYNE_ATOMIC {

15 pmalloc(sizeof(*bucket), &bucket);

16 bucket->key = key;

17 bucket->value = value;

18 insert(hash, bucket);

19 }

20 unlock(mutex);

21 }

The performance of applications such as OpenLDAP and Tokyo Cabinet (a key-value store) using
Mnemosyne’s persistent memory increased by 35–117 percent when compared to Berkeley DB or
flushing the data to disk [82]. In some scenarios, Tokyo Cabinet performance improved by a factor
of 15.

The implementation of Mnemosyne consists of a pair of libraries and a small set of modifications
to the Linux kernel for allocating and virtualizing non-volatile memory pages. It runs on conven-
tional processors. Optionally, Makalu [14] provides an alternative memory allocator with improved
performance.

The purpose of Mnemosyne is to reduce the cost of making data persistent, since current programs
devote large bodies of code to handling file system and/or database access. On the other hand,
Mnemosyne is proposed not as a replacement for files, but as a fast mechanism to store moderate
amounts of data; thus, applications should still use files for interchanging data and for compatibility
between program versions when internal data-structure layouts change.

3.4.2 NV-heaps

Non-volatile Memory Heaps (NV-heaps) [22] is a persistent object system implemented specifically
for non-volatile memory technologies such as PCM and MRAM. It was designed concurrently with
Mnemosyne. NV-heaps was designed to present the following properties:

1. Pointer safety — it prevents programmers, to the extent possible, from inadvertently cor-
rupting their data structures by pointer misuse or memory allocation errors.

48

2. Flexible ACID transactions — NV-heaps supports multiple threads accessing common data,
and provides consistency across system failures.

3. Familiar interface — the programming interface is similar to the familiar interface for pro-
gramming volatile data.

4. High performance — it was designed to explore as much as possible the speed of the
underlying persistent memory hardware.

5. Scalability — NV-heaps scale to datastructures up to many terabytes.

NV-heaps proposes the following abstractions:

• NV-heaps — non-volatile heaps that are managed as files by a memory-based ordinary file
system (which provides naming, storage management and access control), and that can be
mapped by the framework directly into the program space address.

• Persistent objects — objects that inherit from a superclass provided by the framework
(NVObject), and can be persisted to NV-heaps.

• Root pointer — every NV-heap has a root pointer from which all objects reachable are
persisted.

• Smart pointers — smart pointers are needed to reference persistent objects. NV-heaps uses
these pointers to do reference counting and manage object locks. Two types of pointers are
supported: V-to-NV (volatile references to non-volatile data) and NV-to-NV (non-volatile
references to non-volatile data).

• Transactions — programmers explicitly define the boundaries of transactions with ACID
properties.

NV-heaps is implemented as a C++ library under Linux. NV-heaps are created as regular files,
and mapped to to the application’s virtual address space using mmap().

Code listing 3.3 exemplifies the removal of a value k from a persistent linked list.

Listing 3.3 – NV-Heaps Example
1 class NVList : public NVObject {

2 DECLARE_POINTER_TYPES(NVList);

3

4 public:

5 DECLARE_MEMBER(int, value);

6 DECLARE_PTR_MEMBER(NVList::NVPtr, next);

7 };

8

9 void remove(int k) {

10 NVHeap * nv = NVHOpen("foo.nvheap");

49

11 NVList::VPtr a = nv->GetRoot<NVList::NVPtr>();

12 AtomicBegin {

13 while(a->get_next() != NULL) {

14 if (a->get_next()->get_value() == k) {

15 a->set_next(a->get_next()->get_next());

16 }

17 a = a->get_next();

18 }

19 } AtomicEnd;

20 }

The NVList class extends NVObject, thus being persistent. The DECLARE_POINTER_TYPES,
DECLARE_MEMBER and DECLARE_PTR_MEMBER macros declare the smart pointer types for NV-
to-NV (NVList::NV_Ptr) and V-to-NV (NVList::V_Ptr) and declare two fields. The decla-
rations generate private fields in the class and public accessor functions (e.g., get_next() and
set_next() that provide access to data and perform logging and locking).

The program invokes NVHOpen to open an NV-heap and retrieves the root pointer. The block
delimited by AtomicBegin/AtomicEnd atomically iterates through the nodes of the linked list
and removes all that are equal to k.

3.4.3 Atlas

Atlas [20] is a system that leverages locks for ensuring consistency in non-volatile memory, adding
durability to lock-based code. It is currently implemented in C.

Atlas defines containers called persistent regions for identifying persistent data. A persistent
region is similar to memory-mapped file with associated metadata. It consists of an identifier and a
list of virtual address ranges. Each persistent region has a persistence root, and all data contained
by persistent regions that is reachable from their roots is considered implicitly persistent. Data in
transient regions or not reachable from persistent region roots are considered transient. Code listing
3.4 shows an example of how to access persistent regions in Atlas.

Listing 3.4 – Accessing Persistent Regions in Atlas
1 pr = find_or_create_pr(name);

2 persistent_data = get_root_pointer(pr);

3 if (persistent_data) { A; // restart-only code }

4 else { B; set_root_pointer(...); // initialize }

5 C; // use persistent_data

Durable updates are stores to persistent memory that are in consistent state during subsequent
executions of a program. The current Atlas implementation uses an undo log to ensure that a set of
stores inside a failure-atomic section will be consistent and will respect atomicity. The boundaries of
failure-atomic sections are defined by regular locks defined by the program. During compilation, the
object code is instrumented to add instructions handling failure-atomic sections and log operations.

50

Code Listing 3.5 shows a simple alarm clock example using Atlas.

Listing 3.5 – Simple Alarm Clock Example Using Atlas

1 struct Alarm {int hr; int min; Alarm *next;};

2 mutex m;

3 // protects updates to Alarm structure PR alarm_pr;

4 main() {

5 alarm_pr = find_or_create_pr("alarm_clock");

6 Alarm *a = get_root_pointer(alarm_pr);

7 if (a) print(a);

8 // restart-only code

9 // Actual code for the following is not shown.

10 // Two threads are created. Thread 1 can set/

11 // update an alarm by calling set_or_update_alarm.

12 // Thread 2 runs thread_2 below to sound the

13 // alarm when appropriate.

14 }

15 void set_or_update_alarm(int hr, int min) {

16 m.lock();

17 Alarm *a = get_root_pointer(alarm_pr);

18 if (!a) {

19 a = (Alarm*)pmalloc(sizeof(Alarm), alarm_pr);

20 set_root_pointer(alarm_pr, a);

21 }

22 a->hr = hr; a->min = min; a->next = NULL;

23 m.unlock();

24 }

25 void thread_2() {

26 for (;;) {

27 int cur_hr, cur_min;

28 get_current_time(&cur_hr, &cur_min);

29 m.lock();

30 Alarm *a = get_root_pointer(alarm_pr);

31 if (a && cur_hr == a->hr && cur_min == a->min){

32 sound_alarm();

33 // cancel alarm

34 set_root_pointer(alarm_pr, NULL); pfree(a);

35 }

36 m.unlock();

37 sleep_a_few_seconds();

38 }

39 }

Optionally, Makalu [14] provides an alternative memory allocator with improved performance.

51

Figure 3.2 – HEAPO API and system organization. Extracted from [44].

3.4.4 Heapo

Heapo [44] is a persistent heap implementation for C.
Differently from Mnemosyne, NV-Heaps and Atlas, its implementation does not use memory-

mapped files. HEAPO implements a native layer in the OS kernel, with its own metadata, heap
layout, access control, name space, and other parameters. HEAPO reserves a fixed address range
in the virtual address space for the persistent heap, and HEAPO uses the existing Linux buddy
memory allocation algorithm [48] to manage persistent memory. It maintains page frame allocation
information on the first page of persistent memory. It addresses crash-recovery by means of an
undo-log.

Each persistent object has its own metadata in a native HEAPO namespace. By analogy,
persistent objects in HEAPO are similar to files in a file system, from a namespace perspective. In
order to be used, an existing object must be attached. HEAPO’s API and system organization is
depicted in Figure 3.2.

HEAPO is designed to contain large size persistent objects, for example, in-memory key-value
stores, XML-based documents, etc. It is not fit for maintaining small size kernel objects, for example,
inodes, sockets, file objects. A persistent object is initially allocated in a 4KByte page. Expanding a
persistent object involves attaching one or more pages from the persistent heap to the virtual address
space of the caller.

Code Listing 3.6 exemplifies a simple program using HEAPO. This code creates a persistent
linked list. The application creates a persistent object named "list" in line 12. If this object already
exists (line 13), the application attaches it to its virtual address space. Line 15 obtains the starting
address of the persistent object. If "list" is new, HEAPO reserves a fraction of the persistent heap

52

Listing 3.6 – HEAPO example code
1 #include <heapo.h>
2

3 struct list {
4 int data;
5 struct list *next;
6 };
7

8 int main(void) {
9 struct list *head, *node;

10 int i;
11

12 if (heapo_create("list") == 0)
13 heapo_map("list");
14

15 head = heapo_get_prime_node("list");
16 node = (struct list *) heapo_malloc("list", sizeof(struct list));
17 node->data = rand();
18 node->next = head;
19 heapo_set_prime_node("list", node);
20

21 heapo_unmap("list");
22 return 0;
23 }

for it. At this phase, the persistent page has not been allocated yet. The persistent node is allocated
to the persistent object by calling heapo_malloc() (line 16). Once the application is done with
accessing the persistent object, it detaches the persistent object from its name space (line 21).

3.4.5 NVML

The NVM Library (NVML) [27] is a set of open-source libraries specifically designed for persistent
memory programming in C/C++. NVML is a user-space library providing constructs for developers
to program access to byte-addressable, persistent memory while abstracting away much of the com-
plexity of dealing with memory management, transactions, locking, lists, and other implementation
challenges.

NVML is organized into a set of libraries, each one with a different purpose:

• libpmemobj — provides a transactional object store, providing memory allocation, transactions,
and general facilities for persistent memory programming.

• libpmemblk — supports arrays of pmem-resident blocks of the same size that are atomically
updated, e.g., a program keeping a cache of fixed-size objects.

• libpmemlog — provides a pmem-resident log file, useful for programs such as databases that
append frequently to a log file.

53

• libpmem — provides low level persistent memory support. The libraries above are implemented
using libpmem.

• libvmem — turns a pool of persistent memory into a volatile memory pool, similar to the
system heap but kept separate and with its own malloc-style API.

• libvmmalloc — transparently converts all the dynamic memory allocations into persistent
memory allocations. This allows the use of persistent memory as volatile memory without
modifying the target application.

• libpmempool — support for off-line pool management and diagnostics.

• librpmem — low-level support for remote access to persistent memory utilizing RDMA-capable
RNICs. The library can be used to replicate content of local persistent memory regions to
persistent memory on a remote node over RDMA protocol.

• C++ bindings — aiming at providing an easier to use, less error prone implementation of
libpmemobj.

Persistent Programming using NVML allow memory data structures to be the single representation
for both manipulating and storing data. This avoids the need for translating different data formats,
simplifying the code and improving execution performance.

Code listing 3.7 shows a very simple example of libpmemobj usage. Line 11 creates a PMEM
object pool, which is a named memory region that can be used by NVML programs (it is implemented
as a memory-mapped file on top of PM). The PMEM object pool has a root object that can be
retrieved using NVML functions; in line 15, the pmemobj_root() functions returns the address
of the root object as a PMEMoid, which is a relocatable address relative to the pool base. The
pmemobj_direct() function called in line 16 converts the PMEMoid to a plain C pointer. The
root struct contents are changed in lines 19—20, and the pmemobj_persist() function in line
21 ensures that the changes are committed to PM (e.g. calling libpmem lower-level functions to issue
ordering barriers and flush volatile caches). The pmemobj_memcpy_persist() function in line
22 copies the contents of buf to rootp->buf and ensures this copy is committed to persistent
memory. Finally, the pool pmemobj_close() function is called in line 25 to perform resources
cleanup and close the pool.

Listing 3.7 – Example NVML Program with Atomic Transaction
1 #define POOL_NAME "mypool"

2 #define LAYOUT_NAME "mylayout"

3 #define MAX_BUF_LEN 10

4

5 struct my_root {

6 size_t len;

7 char buf[MAX_BUF_LEN];

8 };

54

9

10 int main(int argc, char *argv[]) {

11 /* create PMEM object pool */

12 PMEMobjpool *pop = pmemobj_create(POOL_NAME, LAYOUT_NAME, PMEMOBJ_MIN_POOL,

0666);

13

14 /* get a direct pointer to the pool’s root struct */

15 PMEMoid root = pmemobj_root(pop, sizeof(struct my_root));

16 struct my_root *rootp = pmemobj_direct(root);

17

18 /* populate the root struct */

19 char buf[MAX_BUF_LEN];

20 rootp->len = strlen(buf);

21 pmemobj_persist(pop, &rootp->len, sizeof(rootp->len));

22 pmemobj_memcpy_persist(pop, rootp->buf, buf, rootp->len);

23

24 /* close the PMEM object pool */

25 pmemobj_close(pop);

26 }

NVML also provides atomic transactions by means of an undo log in PM. In order to specify that
a memory range will be part of a transaction, the pmemobj_tx_add_range() function must first
be called prior to any modification. This function copies the original contents of the given memory
region to an undo log, which can be used in case of transaction rollback.Also, NVML assumes that
when you add the memory range you intend to write to it and the memory is automatically persisted
when committing the transaction, so the programmer does not need to call pmemobj_persist()
directly. Code listing 3.8 presents a program similar to the previous one, but with an atomic
transaction, delimited by the NVML macros in lines 20 and 24. Before any memory contents are
modified, they are added to the undo log in line 21.

Listing 3.8 – Example NVML Program
1 #define POOL_NAME "mypool"

2 #define LAYOUT_NAME "mylayout"

3 #define MAX_BUF_LEN 10

4

5 struct my_root {

6 size_t len;

7 char buf[MAX_BUF_LEN];

8 };

9

10 int main(int argc, char *argv[]) {

11 /* create PMEM object pool */

12 PMEMobjpool *pop = pmemobj_create(POOL_NAME, LAYOUT_NAME, PMEMOBJ_MIN_POOL,

0666);

13

55

14 /* get a direct pointer to the pool’s root struct */

15 PMEMoid root = pmemobj_root(pop, sizeof(struct my_root));

16 struct my_root *rootp = pmemobj_direct(root);

17

18 /* populate the root struct */

19 char buf[MAX_BUF_LEN];

20 TX_BEGIN(pop) {

21 pmemobj_tx_add_range(root, 0, sizeof(struct my_root));

22 rootp->len = strlen(buf);

23 memcpy(rootp->buf, buf, strlen(buf));

24 } TX_END

25

26 /* close the PMEM object pool */

27 pmemobj_close(pop);

28 }

Libpmemobj defines a set of macros that provides a static type enforcement, catching potential
errors at compile time. For example, a compile-time error is generated when an attempt is made to
assign a handle to an object of one type to the object handle variable of another type of object.

The most part of the pmemobj library functions are thread-safe. The library provides a pthread-
like API for adding locks to PM data structures. There is no need to initialize those locks or to verify
their state; when an application crashes, they are all automatically unlocked.

To improve reliability and eliminate single points of failure, data stored in an PMEM object
pool can be automatically written to local or remote pool replicas, thereby providing a backup for a
persistent memory pool by producing a mirrored pool set.

NVML provides many other capabilities, and is being actively developed and extended to other
programming languages. The next sections present PyNVM and Persistent Collections for Java, and
both use NVML for internal implementation.

3.4.6 PyNVM

PyNVM [68,69] is a Python module written by Christian S. Perone providing Python bindings
for the NVML libraries. These bindings use the Python CFFI package (C Foreign Function Interface
for Python) and the NVML library itself.

Code Listing 3.9 provides an example of a simple PyNVM program. Lines 6—7 create and
initialize a file using functions from the standard os and fallocate modules. Line 10 invokes the
PyNVM module to obtain a persistent memory-mapped view of the file. Lines 12—19 exemplify how
to write and read contents from the persistent memory-mapped file. Line 23 calls a PyNVM function
to ensure that all modifications are flushed from volatile caches and committed to persistent media.

Listing 3.9 – Example PyNVM Program
1 import os

2 from nvm import pmem

56

3 from fallocate import posix_fallocate

4

5 # Open file to write and fallocate space

6 fhandle = open("dst.dat", "w+")

7 posix_fallocate(fhandle, 0, 4096)

8

9 # mmap it using pmem

10 reg = pmem.map(fhandle, 4096)

11

12 # Write on it and seek to position zero

13 reg.write("lol" * 10)

14 reg.write("aaaa")

15 reg.seek(0)

16

17 # Read what was written

18 print reg.read(10)

19 print reg.read(10)

20

21 # Persist the data into the persistent memory

22 # (flush and hardware drain)

23 pmem.persist(reg)

PyNVM also supports context managers providing syntactic sugar to avoid explicitly calling
pmem.persist and pmem.unmap, as illustrated by Code Listing 3.10.

Listing 3.10 – Example PyNVM Program with Context Manager

1 import os

2 import numpy as np

3 from nvm import pmem

4 from fallocate import posix_fallocate

5

6 fhandle = open("dst.dat", "w+")

7 posix_fallocate(fhandle, 0, 4096)

8

9 # Will persist (pmem_persist) and unmap

10 # automatically

11 with pmem.map(fhandle, 4096) as reg:

12 reg.write("lol" * 10)

13 reg.write("aaaa")

PyNVM supports many NVML libraries, such as libpmem, libpmemlog, and libpmemblk, although
it does not cover all the features from NVML.

57

3.4.7 Persistent Collections for Java (PCJ)

Persistent Collections for Java (PCJ) [28] is a library for Java objects stored in persistent memory
recently published by Intel. The library aims to make programming with persistent objects feel
natural to a Java developer, for example, by using familiar Java constructs when incorporating
persistence elements such as data consistency and object lifetime. The implementation of PCJ uses
the libpmemobj library from NVML.

PCJ provides 8 Java classes whose instances can persist (i.e. remain reachable) beyond the life
of a Java VM instance:

• PersistentByteBuffer — similar to java.nio.ByteBuffer.

• PersistentTreeMap — a java.util.SortedMap whose keys and values are persistent objects.

• PersistentString — stores immutable string data.

• PersistentLong — a boxed long object.

• PersistentArray — an array of persistent objects.

• PersistentTuples — tuples of possibly mixed-type persistent objects.

• ObjectDirectory — a statically reachable map between String keys and persistent objects.

• MemoryRegionObject — a persistent object offering low level getters and setters for primitive
integral types.

• Transaction — a construct for atomic grouping of operations on persistent data.

Code Listing 3.11 exemplifies a simple PCJ program. In the doPut() method, lines 6—7
create a SortedMap called employees in persistent memory and registers it in the ObjectDirectory.
Lines 10—17 allocate PersistentByteBuffer objects from persistent memory and put them into the
employees map. In the doGet() method in line 21, a reference to the employees maps is
obtained from the ObjectDirectory, and lines 23—37 retrieve the employee data by their id and print
the results in the console.

Listing 3.11 – Example PCJ Program
1 import lib.persistent.*;

2

3 public class PutGet {

4

5 public static void doPut() {

6 PersistentTreeMap<PersistentByteBuffer, PersistentByteBuffer> employees =

new PersistentTreeMap<PersistentByteBuffer, PersistentByteBuffer>();

7 ObjectDirectory.put("employees", employees);

8

58

9 PersistentByteBuffer id = PersistentByteBuffer.allocate(8);

10 id.putLong(1457);

11 String name = "Bob Smith";

12 int len = name.length();

13 int salary = 25000;

14 PersistentByteBuffer data = PersistentByteBuffer.allocate(len + 4 + 4);

15 data.putInt(len).put(name.getBytes()).putInt(salary);

16

17 employees.put(id, data);

18 }

19

20 public static void doGet() {

21 PersistentTreeMap<PersistentByteBuffer, PersistentByteBuffer> employees =

ObjectDirectory.get("employees", PersistentTreeMap.class);

22

23 long empId = 1457;

24 PersistentByteBuffer id = PersistentByteBuffer.allocate(8);

25 id.putLong(empId);

26

27 PersistentByteBuffer data = employees.get(id);

28

29 int len = data.rewind().getInt();

30 byte[] bytes = new byte[len];

31 data.get(bytes);

32 String name = new String(bytes);

33

34 int salary = data.getInt();

35

36 System.out.println("Employee id" + "\t" + "Name" + "\t" + "Salary");

37 System.out.println(empId + "\t" + name + "\t" + salary);

38 }

39 }

3.4.8 Managed Data Structures (MDS)

The Managed Data Structures (MDS) library [34], created by Hewlett-Packard Enterprise, pro-
vides a high-level programming model for persistent memory. It is designed to take advantage of large,
random-access, non-volatile memory and highly-parallel processing. Application programmers use
and persist their data directly in their application, in common data structures such as lists, maps and
graphs, and the MDS library manages this data. The library supports multi-threaded, multi-process
creation, use and sharing of managed data structures, via APIs in multiple programming languages,
Java and C++.

A programmer creates a managed data structure using the MDS API. Code Listing 3.12 provides
an example of a Java program that creates a ManagedArray of integers, populates the array, and

59

Listing 3.12 – MDS array example
1 ManagedIntArray inventory_i = ManagedInt.TYPE.createArray(size);
2

3 inventory_i.set(0,0);
4 inventory_i.set(1,1);
5 inventory_i.set(2,2);
6

7 int total = 0;
8 for (ManagedInt i: inventory_i) {
9 System.out.println("inventory: i: " + i.asInt());

10 total += i.asInt();
11 System.out.println("total so far: " + total);
12 }
13 System.out.println("Total inventory: " + total);

iterate over the elements.
When a programmer creates a managed data structure, like this ManagedArray, MDS allocates

this object directly in the MDS Managed Space. This Managed Space is one large virtual pool of
memory; a shared, persistent heap in which MDS allocates and manages MDS application objects,
with the help of the Multi-Process Garbage Collector. MDS objects are allocated in the MDS
Managed Space using create method calls on an object type; in contrast with a programmer calling
the new method to create a standard Java object in the Java single-process volatile heap.

All MDS objects are strongly typed. Managed types support a createArray() method to create a
managed array of that type; for example, ManagedInt.TYPE (the managed type for integers) has
a createArray() method call to create instances of ManagedIntArray, a type for managed arrays of
integers. MDS is designed to support primitive types, strings, data structures and records, and it
enables users to specify their own record types composed of these MDS supported types. To avoid
the user having to write a lot of boiler-plate code for a ManagedRecord type, MDS provides support
for high-level specification of a ManagedRecord type using Java annotations.

To make an MDS object accessible beyond the process that creates it, object must be bound to
a name in the MDS namespace, as exemplified in Code Listing 3.13 line 2. Another application can
then look up the same MDS object by name (line 5), either concurrently or long after the original
creator process has finished, and get back a reference to it in the MDS Managed Space.

MDS also allows isolating updates to managed objects using a transactional IsolationContext
(Code Listing 3.13, lines 7—9), preventing potential conflicts with other updates being made con-
currently by another thread or process.

3.4.9 Apache Mnemonic

Apache Mnemonic [5] is a Java-based non-volatile memory library for in-place structured data
processing and computing. It provides unified interfaces for data manipulation on heterogeneous
block and byte-addressable devices, such as DRAM, persistent memory, NVMe, SSD, and cloud
network devices.

60

Listing 3.13 – MDS example of namespace binding and isolated execution
1 // Application #1
2 inventory_i.bindName("inventory_i");
3

4 // Application #2
5 ManagedIntArray inventory_i = ManagedIntArray.TYPE.lookupName("inventory_i");
6

7 isolated(() -> {
8 inventory_i.set(3,3);
9 });

Mnemonic defines Non-Volatile Java objects that store data fields in persistent memory and
storage. During the program runtime, only methods and volatile fields are instantiated in Java heap,
Non-Volatile data fields are directly accessed via GET/SET operation to and from persistent memory
and storage. Mnemonic avoids serialization/de-serialization of objects, reducing data movement and
the amount of garbage produced in the JVM heap.

According to its proposal [6], Apache Mnemonic offers the following advantages:

• Provides an abstract level of viewpoint to utilize heterogeneous block/byte-addressable device
as a whole (e.g., DRAM, persistent memory, NVMe, SSD, HDD, cloud network storage).

• Provides seamless support object oriented design and programming without adding burden to
transfer object data to different form.

• Avoids the object data serialization/de-serialization for data retrieval, caching and storage.

• Reduces the consumption of on-heap memory and in turn to reduce and stabilize Java Garbage
Collection (GC) pauses for latency sensitive applications.

• Overcomes current limitations of Java GC to manage much larger memory resources for massive
dataset processing and computing.

• Supports the migration data usage model from traditional NVMe/SSD/HDD to non-volatile
memory with ease.

• Uses lazy loading mechanism to avoid unnecessary memory consumption if some data does
not need to use for computing immediately.

• Bypasses JNI call for the interaction between Java runtime application and its native code.

• Provides an allocation aware auto-reclaim mechanism to prevent external memory resource
leaking.

Code Listing 3.14 shows an example of how to define a non-volatile class using Apache Mnemonic.
Such classes must be abstract, implement the Durable interface and be marked with a @DurableEntity

61

Listing 3.14 – Apache Mnemonic - defining a non-volatile class
1 @DurableEntity
2 public abstract class Person<E> implements Durable, Comparable<Person<E>> {
3 E element; // Generic Type
4

5 @Override
6 public void initializeAfterCreate() {
7 System.out.println("Initializing After Created");
8 }
9

10 @Override
11 public void initializeAfterRestore() {
12 System.out.println("Initializing After Restored");
13 }
14

15 @DurableGetter(Id = 1L)
16 abstract public String getName() throws RetrieveDurableEntityError;
17

18 @DurableSetter
19 abstract public void setName(String name, boolean destroy) throws

OutOfPersistentMemory, RetrieveDurableEntityError;
20 }

annotation. Getters and setters also must be abstract, use special annotations and throw specific
exceptions (OutOfPersistentMemory and RetrieveDurableEntityError). These classes also need to
implement callback methods for initializing each object after creating and after restoring them.

Code listing 3.15 exemplifies how to create and retrieve durable objects using Apache Mnemonic.
In line 2 we obtain a reference to a NonVolatileMemoryAllocator, the object that represents a
named data store in persistent memory. Lines 5—7 exemplify how to create a durable object, set its
attributes, and associate it with a key ID inside the allocator. Lines 11—17 show how to retrieve
objects using the allocator object. Finally, line 20 shows how to close the allocator after use.

3.5 Conclusion

In this chapter, we have presented the concept of persistent memory, and recent works leveraging
it to simplify persistence abstractions and improve performance. All these works have in common the
fact that persistent data are represented or allocated in a different way than volatile data. Mnemosyne,
Atlas, HEAPO, NVML, PyNVM and Apache Mnemonic require special memory allocators to be used
for persistent data. NV-heaps, PCJ, MDS, and again Apache Mnemonic use specialized types for
persistent objects. In addition, NV-heaps and NVML also use special pointers to refer to persistent
objects.

Having a distinction between short- and long-lived data representations yields an impedance mis-
match that adds complexity to software development. The three principles of orthogonal persistence
described in Section 2.1 try to address this problem by supporting a uniform treatment of objects
irrespective of their types, allowing values of all types to have whatever longevity is required. By using

62

Listing 3.15 – Apache Mnemonic - creating and using a non-volatile object
1 // create an allocator instance
2 NonVolatileMemAllocator act = new NonVolatileMemAllocator(1024 * 1024 * 8,

"./pobj_person.dat", true);
3

4 // create a new non-volatile person object from this specific allocator
5 person = PersonFactory.create(act);
6 person.setName(String.format("Name: [%s]", "John Doe"), true);
7 // keep this person on non-volatile handler store
8 act.setHandler(keyidx, person.getHandler());
9

10 // fetch handler store capacity from this non-volatile storage managed by
this allocator

11 long KEYCAPACITY = act.handlerCapacity();
12

13 // iterate non-volatile handlers from handler store of this specific
allocator

14 for (long i = 0; i < KEYCAPACITY; ++i) {
15 // restore person objects from this specific allocator
16 Person<Integer> person = PersonFactory.restore(act, val, true);
17 }
18

19 // close allocator after use
20 act.close();

special types, allocators or pointers for persistent data, all the programming interfaces described
above do not adhere to one or more of these principles.

In the next chapter we propose an orthogonally-persistent heap design specifically created for
persistent memory.

63

4. A DESIGN OF ORTHOGONALLY-PERSISTENT HEAPS FOR
PERSISTENT MEMORY

In Chapter 2, we have described how orthogonal persistence can be used to remove from the
programmer the burden of explicitly handling persistence, but how its implementation on top of
traditional storage adds complexity and decreases performance. In chapter 3, we described the
current efforts to design programming language interfaces supporting persistent memory, but how
the existing proposals still require the programmer to explicitly handle persistence (although in much
more simplified way, since they do not require crossing the semantic boundary between memory data
structures and files or databases).

In this chapter, we combine both approaches by leveraging persistent memory in an attempt
to solve the performance and complexity issues historically associated with orthogonal persistence.
We do this by introducing a design for the runtime environment for languages with automatic
memory management, based on an original combination of orthogonal persistence, persistent memory
programming, persistence by reachability, and lock-based failure-atomic transactions. Such design
can significantly increase programming and execution efficiency, as in-memory data structures are
transparently persistent, without the need for programmatic persistence handling, and removing the
need for crossing semantic boundaries.

The existence of different abstractions for representing data in memory and in persistent storage
is not a fundamental necessity of programming languages, but an accidental result of the current
technology that mandates the separation of fast, small, volatile main memory from slow, abundant,
non-volatile secondary storage. If these two different layers are collapsed into persistent memory, then
orthogonal persistence can overcome its past implementation challenges, and provide an interface
that requires less code complexity and programmer effort.

4.1 Motivation

For about 30 years, between 1983 and 2001, an intense research agenda around orthogonal
persistence was carried out. Many researchers invested effort creating programming interfaces and
abstractions that could simplify software development and maintenance by removing the impedance
mismatch between memory and storage data representations. However, implementing orthogonally-
persistent systems on top of traditional storage posed performance challenges that prevented many
of these abstractions from reaching mainstream software development.

But now, the imminent advent of persistent memory opens new possibilities for implementing
orthogonally-persistent systems using technologies that are more naturally suited to the task. The
main motivation for our design is to combine the previous studies on orthogonal persistence with
modern research on persistent memory in order to enable the creation of software applications that
are easy to both write and maintain, and have significantly superior performance than today.

64

4.2 System Assumptions

We assume the hardware platform to have the following characteristics:

• Non-volatile memory devices are accessed directly using CPU loads and stores;

• Volatile processor caches are still present;

• Non-volatile memory load/store latencies are similar to DRAM (an assumption also made
by [20,40,44]).

From an operating system perspective, we assume it uses a PM-aware file system, which is
designed specifically for persistent memory [77]. Such a file system provides direct access to PM,
performing significantly better than disk- or flash-based file systems. The performance improvement
comes from eliminating the block I/O layer, bypassing the page cache, and removing other steps
rendered unnecessary by PM, as it can be directly addressed by the processor at byte granularity.
Examples of such file systems are BPFS [23], PRAMFS [78], PMFS [33], Ext4/DAX [84], SCMFS [86],
Aerie [81], NOVA [87], NTFS [21] and M1FS [71].

4.3 Requirements

Our proposal is based on the following requirements:

• Simplified development and maintenance of persistence code, by adhering to the OP principles;

• Backward compatibility with legacy source and executable code whenever possible;

• Generalizable design that can be applied to Object-Oriented languages with automatic memory
management (e.g. garbage collection).

4.4 Persistent Heap Adherent to Orthogonal Persistence Concepts

Orthogonal persistence (OP) (described in Chapter 2) provides abstractions to address the
impedance mismatch between memory and storage by means of supporting a uniform treatment of
objects irrespective of their types, allowing values of all types to have whatever longevity is required.

We propose that object-oriented languages with automatic memory management can implement
OP concepts by means of a persistent heap that can be reused across executions. In this work, we
consider the term persistent heap as referring to all state that can be made persistent, which may
include not only the heap itself, but other elements, such as threads, stacks, type definitions, method
code, and other data as required by the particular implementation.

In order to determine the longevity of objects, we advocate the use of persistence by reachability,
i.e. all objects still reachable from roots of persistence are considered persistent, while objects that
are unreachable can be disposed. We also advocate using as roots of persistence the static variables

65

of all classes that are persistent and the stack of all active threads. This approach leverages the
same reachability criteria used for Java garbage collection [39], and has been successfully used in
previous OP Java implementations [9, 51,57].

In the next sections we list what needs to be stored in the persistent heap in order to support
persistence by reachability of both class attributes and stack references.

We use Java as the programming language for our examples, but the design is generalizable to
other object-oriented languages with automatic memory management.

4.5 Persistence by Class Attribute Reachability

A persistent heap in which persistence is defined by class attribute reachability contains at least
the following elements:

• Type (classes, interfaces, etc.) definitions.

• Objects (type instances).

Using persistence by class attribute reachability, only objects referenced from class attributes
are considered persistent and must be spared by the Garbage Collector. When a program with a
persistent heap of this variant is executed, class definitions that are already present on the persistent
heap will not be loaded again, and their class attributes point to objects already present on the
persistent heap.

Code Listing 4.1 is an example of persistence by class attribute reachability in Java.

Listing 4.1 – An example of persistence by class attribute reachability
1 public class PersistenceExample {

2

3 private static String aString = "";

4

5 public static void main(String[] args) {

6 aString += "AB";

7 System.out.println("aString = " + aString);

8 }

9 }

Line 3 declares the static attribute aString. When the class is loaded, the value of aString
is set to the empty string "". When the method main() is executed for the first time, the initial
value of aString is concatenated to the string "AB" (Line 6), and thus aString points to a
new String object with the value "AB" (it points to a new object since strings are immutable objects
in Java). When the program is executed for the second time, it will create a third String object with
the value "ABAB". At this point, only this last String object is reachable from a class attribute,
and thus should be made persistent, while the other strings previously created are disposable. This
sequence of steps is depicted in Figure 4.1.

66

Figure 4.1 – Example of persistence by class attribute.

1. When the PersistenceExample class is loaded into the persistent heap (at an arbitrary
location), its class attribute aString points to the String object (1), which contains the
value "".

2. After the first execution of the main() method, a new String object (2) containing the value
"AB" is created, and the aString attribute is now referencing it. The String object (1) is
available for disposal, since no class attribute references it.

3. After the second execution of the main() method, a new String object (3) containing the
value "ABAB" is created, and the aString attribute is now referencing it. The String object
(2) also becomes available for disposal, since no class attribute references it anymore.

In the previous example, objects that were directly referenced by class attributes were considered
persistent. It is also true for objects that are indirectly referenced by class attributes as well. Code
Listing 4.2 illustrates this case.

Listing 4.2 – An example of persistence by indirect class attribute reachability
1 public class Proxy {

2 public String aString;

3 Proxy() {

4 aString = "";

5 }

6 }

7

8 public class IndirectExample {

9 private static Proxy proxy = new Proxy();

10 public static void main(String[] args) {

11 proxy.aString += "AB";

12 System.out.println("aString = " + proxy.aString);

67

Figure 4.2 – Example of persistence by indirect class attribute reference.

13 }

14 }

Proxy is a simple class which contains one instance attribute called aString. The class
IndirectExample has one class attribute of the type Proxy called proxy. Every time the method
main() is invoked, it concatenates "AB" to proxy.aString value (Line 11). As Java Strings
are immutable, every concatenation generates a new String object in the heap. It is similar to the
previous example, but now the references from a class attribute are indirect.

4.6 Persistence by Stack Reachability

Persistence by class attribute, described in the previous section, provides a way to access persistent
data created during previous program executions. By adding persistence by stack reachability, it
becomes possible to create a snapshot, or checkpoint, of a given execution state and make it
persistent, so it can be resumed in the future.

Using persistence by stack reachability, the stack is also part of the persistent state, and objects
that are directly or indirectly referenced by any of the active stack frames are considered persistent
and are not disposable by the Garbage Collector.

A persistent heap in which persistence is defined by stack reachability contains the following
elements:

• Type (classes, interfaces, etc.) definitions;

68

• Objects (type instances);

• Stack;

• Threads.

Code Listing 4.3 is an example of persistence by stack reachability in Java.

Listing 4.3 – An example of persistence by stack reachability
1 public class StackExample {

2

3 public void doConcat() {

4 String aString = "";

5 for (int i=0;i<2;i++) {

6 aString += "AB";

7 System.out.println(aString);

8 }

9 }

10

11 public static void main(String[] args) {

12 StackExample ex = new StackExample();

13 ex.doConcat();

14 }

15 }

Line 12 creates a new StackExample object in the heap. The stack frame of the main() method
contains a variable ex referencing an StackExample object, so it will be considered persistent until
method main() completes. Line 13 calls method doConcat(), thus creating a new stack frame.
Line 4 declares string aString, initialized to value "". Lines 5—8 list a loop that will concatenate
"AB" to aString, for two iterations. Every loop iteration will create a new String object in the
heap (since strings are immutable in Java), but only the string object referenced by aString will be
considered persistent, since it is referenced by a valid stack frame. When doConcat() finishes
its execution, all string objects will be disposable, since no active stack frame references it. This
sequence of steps is depicted in Figure 4.3.

Persistence by stack reachability allows the complete execution state of a program to be auto-
matically persisted, so execution can be resumed from the same point in a future moment. If the
execution is suspended or interrupted at an arbitrary moment, it can be resumed exactly from that
point.

4.7 Storage and Management of Persistent Heaps

As previously stated, we consider the term persistent heap as referring to the persistent state that
can be bound to a program, which may include the heap itself and other elements of the persistent

69

Figure 4.3 – Example of persistence by stack reference.

state, such as threads, stacks, loaded types (classes), JVM metadata, and other data as required by
the implementation.

We assume a PM-aware file system providing namespace management and user access control
to chunks of persistent memory [77]. The file system contains persistent heap files, which can be
mapped to the addressing space of any process via persistent memory programming, either by directly
calling the mmap() system call or using higher-level APIs for PM such as [20,22,27,40,44,82]. Once
mapped to the addressing space, the process can manipulate persistent memory directly, without
page caches. This scenario is depicted on Figure 4.4

When the runtime environment of a program is invoked (e.g. JVM), the file containing the
persistent heap can be provided (for example, as an argument).

In this work, we explore only the scenario where one process is bound to a single persistent heap
at a given point in time. It is an interesting research problem for future work to consider multiple
persistent heaps to a single process, as well as multiple processes to a single persistent heap (i.e., a
shared persistent heap).

The persistent heap can contain only persistent data, or it can contain also a persistent execution
state. Both are described in the next sections.

70

JVM heap

PM-aware
file system

heap file

persistent memory

mmap

classes

threads

stacks

object
heap

JVM process

Figure 4.4 – persistent memory hosting an in-memory file system, which contains a persistent heap
file

4.7.1 Data Persistence

Data persistence stores program data in a persistent heap, but does not store the program
execution state. After the process execution is terminated, or interrupted, all persistent data (defined
by class attribute reachability, as described in Section 4.5) is available to be bound to a new process,
which can be either from the same program or a different one.

Code Listing 4.4 provides an example of a program using data persistence. The program is
always executed from the beginning in every invocation. Line 32 verifies if the persistent object
addrListByName is uninitialized, which will be true in the first execution. It will be initialized in
subsequent executions using the same persistent heap.

Another example of data persistence is the original implementation of orthogonal persistence
described in [11].

One way to instantiate data persistence is invoking a program while passing the persistent heap
as an execution argument for it or for its runtime environment. Taking the program described in Code
Listing 4.4 as an example, and assuming a JVM with support for orthogonal persistence, it could be
called by the command line java -persistent-heap=heapfile.ph AddressList. In
that example, the program would be bound to the persistent data state contained in heapfile.ph.

Listing 4.4 – An example of persistence using data state binding
1 /**

2 * Class representing a single address.

3 */

4 public class Address {

5 private String name;

6 private String phoneNumber;

7 public Address(String name, String phoneNumber) {

8 this.name = name;

9 this.phoneNumber = phoneNumber;

10 }

71

11 public String getName() {

12 return this.name;

13 }

14 public String getPhoneNumber() {

15 return this.phoneNumber;

16 }

17 }

18

19

20 import java.util.Map;

21 import java.util.HashMap;

22

23 /**

24 * Program to maintain an address list

25 * using Orthogonal Persistence (data state binding).

26 */

27 public class AddressList {

28

29 private static Map<String,Address> addrListByName;

30

31 public static void main(String[] args) {

32 if (addrListByName == null) {

33 // initialize address list

34 addrListByName = new HashMap<String,Address>();

35 }

36 if (args.length >= 2) {

37 // add a new entry

38 addrListByName.put(args[0], new Address(args[0], args[1]));

39 }

40 // list existing entries

41 for (Map.Entry<String, Address> entry : addrListByName.entrySet()) {

42 Address addr = (Address) entry.getValue();

43 System.out.println("Name: " + addr.getName());

44 System.out.println("Phone Number: " + addr.getPhoneNumber());

45 }

46 }

47

48 }

4.7.2 Execution Persistence

Execution persistence implies that both data and the execution state of a given program are
contained by the persistent heap. In this case, both persistence by class attribute reachability and
by stack reachability (described respectively in Sections 4.5 and 4.6) are used. The persistent heap
contains both data and program code. After the process is terminated, or interrupted, the persistent

72

heap contains a snapshot of the execution state at a specific consistent point in time, and can be
resumed from that point.

Smalltalk virtual images [38] are a good example of execution persistence. Existing Smalltalk
Virtual Machine (VM) implementations use files to store the virtual image. A Smalltalk VM mapping
its virtual image to persistent main memory would be an instantiation of an in-memory persistent
heap as we define it.

Merpati [80] is a prototype implementation of checkpoints of the JVM execution state in Java.
It proposes a mechanism similar to the one we described, with two main differences: a) it is
implemented using traditional file storage; b) the JVM execution is suspended at arbitrary moments
for checkpointing, while in our proposal the persistent heap is manipulated directly during program
execution without interruptions or checkpoints.

4.8 Consistency and Transactional Properties

The persistent heap must be kept in a consistent state even in the presence of failures, such
as abnormal program termination due to power outages, runtime faults, resource exhaustion, etc.
In order to accomplish this, it is necessary to make modifications to the persistent heap in the
context of failure-atomic transactions. Persistent memory programming APIs such as [27,82] provide
failure-atomic transactions by means of transactional memory and journaling, respectively.

It is also desirable to provide ways for the programmer to express application-specific transactional
semantics. We advocate the use of locks defined by the application programmer to identify the
scope of failure atomic transactions (lock-based failure-atomic transactions), since they can be
easily expressed by synchronized methods and/or blocks. In the context of Java, synchronized
methods and blocks define locks around specific objects by means of calls to monitorenter and
monitorexit opcodes. Atlas [20] introduces a similar approach for the C language, and [83]
demonstrates that Java synchronization locks can be used to express transactional semantics.

4.9 Challenges

There are many challenges and open points that must be addressed in order to have a robust
persistent heap solution. In the next subsections, we list some of these challenges. Many of them are
not specific to OP, being applicable to other memory persistence approaches as well. In this work
we have addressed some of these points, as described in Section 5.1, while others must be addressed
by future research works.

4.9.1 Sharing Data Across Different Programs and Programming Languages

It is often necessary to share persistent data across multiple distinct programs, sometimes with
concurrent access.These programs can be written in the same programming language, or in different

73

programming languages. The most commonly proposed solution for this problem is to provide a
Persistent Object Store (POS) [10] holding persistent objects that can be accessed by programs.

There are many design alternatives for a POS:

• POS as a library of a specific programming language: the POS is implemented by a library
written in a specific programming language, and only programs written in that language can
access data. A recent example is provided in [3].

• POS as part of the runtime system of a specific programming language: the execution envi-
ronment of a specific programming language is modified to provide a POS. Only programs of
that language can access data. Our proposal fits into that category, and other examples are
provided by [51], [80] and [16].

• POS integrated by design into a specific programming language: the programming language
is designed with orthogonal persistence support as a requirement. Only programs of that
language have access to persistent data. One example is PS-algol [11].

• POS as a separate store supporting multiple programming languages: the POS is a separate
process, providing support to multiple separate programs and languages, which may be in a
distributed environment. This is the approach followed by most Object-Oriented Database
Management Systems (OODMBS) [7]. Some examples are [36] and [62].

4.9.2 Type Evolution

Each object in a heap belongs to a specific type. In our proposed design, the type definition is
contained by the persistent heap (unless it is defined by the programming language, such as primitive
types in Java [39]). In this scenario, when a reference type is changed, objects that already exist in
the heap must be bound to a new type, and its data and code must be adjusted appropriately to
convey the semantics intended by the programmer. This process is known as Type or Class Evolution.

Farkas and Dearle [35] described system evolution as encompassing evolving data, evolving code,
and evolving types. They propose a mechanism for type evolution based on a persistent store browser,
i.e., a tool that traverses object graphs applying a function to the objects it encounters. The browser
could then find and update all the instances of a given type in a persistent store. However, they
identified some limitations:

1. The impossibility to reach certain values due to encapsulation.

2. Evolved code needs to be bound to evolved data, and evolved data needs to be bound to
evolved code, creating a circular dependency.

3. The lack of support for type evolution.

74

In order to address these limitations, they propose a reflection mechanism called Octopus, which
allows all bindings in an arbitrary graph of objects to be examined and manipulated.

Atkinson and Jordan [8] describe two approaches for class evolution. The first one is to handle
evolution by external action, from outside the programming environment. The PJama prototype
(described in Chapter 2) implemented an evolution tool that operates off-line in a quiescent store.
One of the limitations of this approach is that such tools are specific for a JVM implementation.
The second approach is to provide an evolution mechanism as part of the programming model, for
example, by extending the reflection API to modify classes at runtime, an approach used by Smalltalk.
The Octopus mechanism would also fit in that category.

A recent paper by Piccioni et al. [70] proposes a mechanism, called ESCHER, which automatically
updates objects from one class version to another using information provided by abstract syntax
trees, that can be augmented by information stored in Integrated Development Environments (IDEs)
during program development.

4.9.3 Consistency and Transactional Properties

The persistent heap must be kept in a consistent state even in the presence of failures, such as
abnormal program termination due to power outages, runtime faults, resource exhaustion, etc. It
also must provide ways for the programmer to execute concurrent code without undesirable effects.

Blackburn and Zigman [15] discuss the challenges that OP faces handling concurrency and
consistency, and group the existing solutions in two approaches: transactions and checkpoints.

Transactions

In databases, the main constructs to handle these concerns are transactions. Transactions are a
group of operations that exhibit Atomicity, Consistency, Isolation and Durability (ACID) properties.
According to the authors, OP would require that computation should take place only from within
ACID transactional contexts, in order to satisfy the principle of persistence independence. However,
since a transaction invoked from within a transaction becomes a nested transaction that can only
be successfully committed along with the parent one, the whole program execution would become
a single transaction. Such a coarse-grained transaction scope limits its usefulness for controlling
concurrency within a program. In other words, the transaction approach only makes sense when
transactions can be invoked from non-transactional context. For OP implementations persisting
execution state (as described in section 4.7.2) this would be a challenge, but transactions would be
more feasible for implementations that persist only data (see section 4.7.1).

Checkpoints

In addition to the inherent challenges of integrating the concepts of OP and ACID transactions,
there are also obstacles for implementing transactions as a mechanism naturally integrated to specific
programming languages, such as Java [8]. An alternative approach described by the authors is for

75

the virtual machine to periodically take snapshots, or checkpoints of its internal state, and resume
from these checkpoints in case of unexpected termination. The challenge of this approach is how to
identify globally stable and consistent states in complex multi-threaded programs in order to capture
them in checkpoints.

PEVM [51] addresses consistency by means of checkpoints. There is a persistent store in disk and
an object cache (heap) in memory. When an object is written to the persistent store and removed
from the object cache, its pointer is replaced by the location of the object in the persistent store (a
process known as pointer swizzling). Objects are written to the persistent store during checkpoints.
The first step for a checkpoint is calling checkpoint listeners that can be defined by the programmer,
followed by stopping all threads but the one making the checkpoint. It then does a first pass to
identify objects that needs to be persisted, and a second pass to actually save the objects in the
persistent store. PEVM persists only data, and considers the execution state is volatile.

Other examples of checkpointing in Java are described in [41], [16], and [80].
Lumberjack [43] is a log-structured persistent object store that is used to support the Persistent

Abstract Machine layer of the Napier88 system, although it was designed to be generic enough to
support other systems. It can support both concepts of transactions and checkpoints, and applies
the log-structured approach, consisting of a circular log for holding both data and meta-data. Its
benefits are efficient commits and support for incremental parallel garbage collection.

Consistency and transactional properties are also important when dealing with concurrency.
Berryhill et al. [13] describe potential issues and alternative solutions to manage concurrent access
to a shared heap in persistent memory.

4.9.4 Persistent Bugs

A system with Execution Persistence may incur in persistent deterministic bugs that crash or
impair subsequent executions.

One alternative for dealing with persistent bugs would be resetting the system to its initial state,
which may not be acceptable for many applications. Another alternative would be to directly modify
the persistent heap to get rid of the bug, which may require a special debugging program.

4.9.5 External State

Some objects and variables represent state that is external to the virtual machine. Notable
examples are networking resources (e.g. sockets), files, and elements that vary from one system to
another, such as locale.

Atkinson and Jordan [8] describe the main challenges that OP faces handling external state, in
the context of the PJama implementation. They highlight that there is a fundamental incompatibility
arising from the fact that OP assumes that all state is persistent by default, while in a transient
program all variables are re-initialized on each run. One solution approach is to somehow identify
variables representing external state, treat them as a cache that is discarded when the program

76

is finished (either due to graceful termination or failure) and re-establish the active state during
restart, which may require saving metadata about the state to be re-established. For example, a
file descriptor FD based on a file named FN would not be valid across restarts, but can be reopened
returning an equivalent descriptor FDnew based on FN. Still, the program must ensure that FDnew
is still consistent with program semantics. This is even more challenging when the whole execution
state is persisted (as described previously in section 4.7.2. Networking communication is particularly
problematic.

These problems cannot be solved in a way that is completely transparent to the programmer,
and are difficult to solve without creating specific libraries/frameworks.

One example is how external state is handled by PEVM [51]. The special static method
OPTransient.mark() is used to mark objects as transient (this is required since the tran-
sient keyword of the Java language cannot be used since its definition conflicts with OP’s definition
of transient state). These objects can implement the OPResumeListener interface to automati-
cally re-establish object state during virtual machine restart, as well as the OPResumable interface
that is invoked before the object is first used to perform lazy initialization activities.

The Orthogonal Persistence for Java (OPJ) specification [46] proposes to add the transient
storage modifier to the language as a means to identify variables that must be reset to a default
state upon resumption. Classes can register interest in runtime life-cycle events, such as checkpoint,
resume and shutdown, and take appropriate action.

4.9.6 Security

When using a persistent heap, potentially sensitive data becomes vulnerable to unauthorized
access. To circumvent that, persistent heap data should be encrypted. Software-based encryption
is possible but would have a huge performance impact. Hardware-based encryption provided by the
underlying platform would probably be the most efficient mechanism.

Security of persistent memory systems is an important and broad research topic, and is beyond
the proposed scope for this work.

4.10 Conclusion

In this chapter we have presented a design for a persistent heap based on an original combination of
orthogonal persistence, persistent memory programming, persistence by reachability, and lock-based
failure-atomic transactions.

In the next chapter we present JaphaVM, a prototype to validate and evaluate the effectiveness
of such design.

77

5. JAPHAVM: AN ORTHOGONALLY-PERSISTENT JAVA VIRTUAL
MACHINE DESIGNED FOR PERSISTENT MEMORY

In this chapter we present JaphaVM, a prototype to validate and evaluate the effectiveness of the
concepts proposed in Chapter 4. We start by describing the main design decisions behind JaphaVM,
and then proceed to present and analyze experimental results.

5.1 JaphaVM Design

5.1.1 Rationale

Many object-oriented languages can be adapted to employ the OP abstractions. We opted
for Java since its use is widespread in a variety of environments, from embedded devices to high-
performance computing applications, and its garbage collection mechanism already manages the
object longevity by reachability, which can be leveraged for persistence by reachability.

Some previous OP implementations in Java, such as ANU OPJ [57], followed the approach of
bytecode transformation, allowing portability across different Java Virtual Machines (JVMs). Other
implementations, such as PJama [9] and PEVM [51], chose to modify the JVM itself, permitting
deeper modifications of the Java execution environment. We propose to use the latter approach,
making modifications to the JVM, in order to have complete control over the data structures used
to manage heap, stacks, threads, and type definitions. Since the mentioned OP-oriented JVMs are
not available anymore, only current JVMs can be used as implementation baseline. Our choice was
JamVM [55], due to its simple and straightforward implementation.

5.1.2 JamVM and GNU Classpath

JamVM runs on top of a wide set of Unix-like Operating Systems, including Linux, FreeBSD,
OpenBSD, Solaris, OpenSolaris, Darwin, Android and iOS. It runs on x86, x86-64, Sparc, MIPS and
PowerPC architectures. It was the first JVM used in the Android OS, before it was replaced by the
Dalvik JVM. JamVM version 1.5.4 was used as baseline for our prototype, which was developed on
Linux/x86.

JamVM requires an implementation of the Java class libraries. In this work, the GNU Classpath
[37] V0.92 open source implementation was used. Some modifications to GNU Classpath were made
to address design issues, as will be described in Section 5.1.5.

5.1.3 Initial Design and its Limitations

The baseline JamVM version uses an anonymous, non-file-backed memory-mapped area via the
mmap function in order to allocate space for the JVM heap.

78

We attempted a first implementation of the persistent heap simply modifying the mmap flags
to use a shared memory mapping backed by a file on top of a PM-aware file system. Functional
tests performed on this initial implementation answered affirmatively research question 1, i.e., that
"we can use a persistent heap on top of persistent memory to transparently store objects across
multiple program executions". No specific memory management features for persistent objects were
implemented, using the standard garbage collection mechanisms, and the results of functional testing
addressed research question 2, demonstrating that "it is possible to leverage automatic memory
management mechanisms to determine the persistence lifecycle of ordinary objects".

However, consistency was not guaranteed in the presence of failures, as confirmed by tests where
the prototype process was randomly killed.

5.1.4 Final Design with Transactional Support

Our current persistent heap implementation uses the NVML pmemobj library [27] for manipulating
persistent heap data in order to ensure fault-tolerance, as NVML provides journaled transactions via
an undo log in PM. As consequence, the persistent heap is stored in an NVML memory pool, which
is mapped to a file in PM. NVML has been chosen for currently being one of the most active and
widely adopted persistent memory programming API, and providing a suitable transactional model.

We have employed failure-atomic transactions provided by NVML, as described in more detail in
the next sections. The final prototype implementation, using this mechanism, successfully addressed
research question 3, demonstrating a way "to automatically ensure the consistency of a persistent
heap in the presence of failures".

5.1.5 Summary of JVM Modifications

The next sections summarize the main changes made to the baseline JamVM code. Most of
them were made to keep heap data and metadata in the NVML memory pool and manipulated in
a way that ensures fault-tolerance. Some changes were also made to the GNU Classpath library to
address the handling of external state (such as standard console input/output), as explained later.
The full source code can be found at [65], and Appendix A contains a more detailed description of
all modifications made to create JaphaVM.

Invocation Arguments

In order to allow the invocation of the JamVM with a persistent heap, we have added a new
invocation argument -persistentheap:<heapname> to alternate between persistent and non-
persistent modes.

79

Persistent Heap

As mentioned in Section 5.1.3, the anonymous memory mapping used in the first JaphaVM
version was replaced by an NVML memory pool in the final version. We created a struct called
PHeap (Code Listing 5.1) that contains heap data and metadata, and acts as the memory pool’s
root data structure. When the JVM is executed with a persistent heap for the first time, the memory
pool is created using the pmemobj_create() function, and opened in posterior executions with
pmemobj_open().

Listing 5.1 – PHeap struct

1 typedef struct pheap {

2 void *base_address;

3 Chunk *freelist;

4 Chunk **chunkpp;

5 unsigned long heapfree;

6 unsigned long maxHeap;

7 char *heapbase;

8 char *heapmax;

9 char *heaplimit;

10 nvmChunk *nvmfreelist;

11 nvmChunk **nvmChunkpp;

12 unsigned int nvmFreeSpace;

13 unsigned int nvmCurrentSize;

14 unsigned long nvm_limit;

15 OPC opc;

16 char* utf8_ht[UTF8_HT_SIZE];

17 char* bootCl_ht[BOOTCL_HT_SIZE];

18 char* bootPck_ht[BOOTPCK_HT_SIZE];

19 char* string_ht[STRING_HT_SIZE];

20 char* classes_ht[CLASSES_HT_SIZE];

21 char* monitor_ht[MONITOR_HT_SIZE];

22 char* zip_ht[ZIP_HT_SIZE];

23 char nvm[NVM_INIT_SIZE];

24 char heapMem[HEAP_SIZE];// heap contents

25 } PHeap;

PHeap member heapMem provisions the actual heap allocation space. Members heapFree,
maxHeap, heapBase, heapMax, heaplimit, freelist and chunkpp hold heap meta-
data. Members nvmFreeList, nvmChunkpp, nvmFreeSpace, nvmCurrentSize, and
nvmLimit contain pointers for a separate chunk area specific for non-heap metadata, provisioned in
member nvm. Struct member opc contains a pointer to an OPC data structure containing additional
metadata used for managing internal VM hash tables and Garbage Collection, among others.

80

Type Definitions and Compiled Methods

We need to ensure that all data structures that are referenced by heap objects, such as type defi-
nitions and compiled methods, are persisted and can be retrieved in future executions. Many of these
structures were stored outside of the heap allocation space in the baseline JamVM implementation,
using a function called sysMalloc().

We have created a new function called sysMalloc_persistent() (and corresponding
sysFree() and sysRealloc() functions) storing data in the non-heap metadata area, managed
using a chunk-based approach similar to the one used by the JamVM heap.

Internal Hash Tables

JamVM uses a set of internal hash tables to keep track of loaded symbols, classes, and other data
that must be stored across JVM executions. This was accomplished by modifying the gcMemMalloc()
function implementation to point it to PHeap members ending with _ht containing the tables.

Failure-atomic Transactions

In order to meet the consistency requirements described in Section 4.8, we have modified all Java
opcodes that change persistent data to happen in the context of NVML transactions. These opcodes
are: astore, aastore, bastore, castore, fastore, iastore, lastore, dastore,
new, newarray, anewarray, multianewarray, putstatic, and putfield.

In order to enable programmers to define the transactional behavior of applications using
synchronized methods and blocks, we have modified the monitorenter and monitorexit
opcodes. When monitorenter is called, it starts a new NVML transaction. NVML transactions
can be nested, so all subsequent opcodes will execute in the context of this transaction. Conversely,
monitorexit completes the corresponding transaction. In the context of JaphaVM, we call those
user transactions, as their scope is determined by the application programmer.

If any of the opcodes that change heap data are invoked outside the scope of an ongoing user
transaction, each will begin a fine-grained transaction with the scope of the opcode execution. In
the context of JaphaVM, we call those automatic transactions, as they are triggered internally by
the JVM to define consistency points when modifying the heap.

Garbage Collection

As Garbage Collection (GC) modifies the persistent heap state, it must happen in the context of
an NVML transaction. We have modified the gc0 function responsible for GC, which is called in two
situations: a) during a synchronous GC, triggered by the VM running out of heap space to satisfy
an allocation request, in which case the GC will happen inside a transaction that is already started;
b) during an asynchronous GC, invoked by a specialized thread that triggers a GC periodically when

81

the VM is idle. In JaphaVM, asynchronous GCs are only triggered when there are no outstanding
transactions, to avoid isolation problems.

Handling External State

As described in Section 4.9.5, one of the challenges of OP is how to handle references to state
that is external to the system. An example of that are file descriptors for stdin, stdout, and
stderr.

In GNU Classpath, these file descriptors are opened by native code that is invoked from the static
initializer of the Java library class gnu.java.nio.FileChannelImpl. The Java Language
Specification [39] determines that a static initializer is executed when the class is initialized, which
takes place just once, when the class is originally loaded. However, we need to open the console file
descriptors every time the VM is executed. None of the existing Java language abstractions provides
a way to express this.

We have taken the approach used previously for PEVM [51] and PJama [9], exposing to developers
an API for making classes and objects resumable, i.e., providing an interface for specifying methods
to be executed every time the VM execution is resumed.

To be resumable, an object must implement the interface OPResumeListener, which defines a
void resume()method, and be registered by the OPRuntime.addListener() class method.
In order to execute resume code at the class scope, the class must implement a static resume()
method and be registered by the OPRuntime.addStaticListener() class method.

We have implemented the OPRuntime class as part of GNU Classpath (its interface is depicted
on Figure 5.2). In order to get the resume() methods to be executed whenever the JVM resumes
execution, JaphaVM invokes OPRuntime.resumeAllListeners()just before the execution
of the application’s main() method.

Finally, we applied it to reopen the console file descriptors, modifying gnu.java.nio.FileChannelImpl
to re-initialize them inside a static resume() method that is invoked in two occasions: 1) by its
static initializer; and 2) by OPRuntime.resumeAllListeners(), since it is registered using
OPRuntime.addStaticListener() by the static initializer.

This mechanism violates OP’s principle of persistence independence, as the programmer is required
to manually implement resume behavior when holding references to objects that represent volatile
external state, such as files and sockets. However, there seems to be no obvious way to solve this
transparently [31]. On the other hand, it requires small programmer involvement when compared to
traditional file- or database-oriented approaches, so we deemed it a reasonable compromise for our
prototype. A similar approach has been taken by the Apache Mnemonic library, described previously
in Section 3.4.9.

Listing 5.2 – OPRuntime class definition
1 /**

2 * This class registers OPResumeListener objects for execution

3 * upon JVM re-initialization.

82

4 */

5 public class OPRuntime {

6

7 /**

8 * Adds a new listener.

9 */

10 public static void addListener(OPResumeListener listener);

11

12 /**

13 * Adds a new listener to a class that has a

14 * static resume() method.

15 */

16 public static void addStaticListener(Class<?> clazz);

17

18 /**

19 * Method called by the JVM runtime to re-initialize

20 * OPResumeListener objects.

21 */

22 public static void resumeAllListeners();

23

24 }

5.1.6 Prototype Limitations

The current version of the JaphaVM prototype has the following limitations, which we plan to
address in future versions:

• Interpreter inlining — support for interpreter inlining (code-copying JIT) is not yet implemented;

• Heap size — the heap size is currently fixed;

• Heap address relocation — internal pointers to heap objects use fixed memory addresses in
the current version, so the persistent heap must be always mapped to the same virtual address
range;

• Data vs. execution persistence — the current version supports only data persistence (see
Sections 4.7.1, 4.7.2);

• Type evolution — JaphaVM currently does not support type evolution.

Despite these limitations, the current JaphaVM prototype can execute a wide range of complex
programs, as exemplified in the next sections, and functions as a vehicle for both performance and
development complexity experiments and evaluation.

In this section we have described the key design decisions for implementing JaphaVM. A more
in-depth description of JaphaVM implementation can be found in Appendix A. In the next section
we evaluate JaphaVM’s effectiveness and efficiency.

83

5.2 JaphaVM Evaluation

In order to assess the effectiveness of our design, and to address research question 4 "what is
the performance of an orthogonally-persistent system using a persistent heap relative to traditional
storage approaches?", we verified the JaphaVM prototype implementation along two axes:

1. Execution Performance — verify the relative performance of selected programs using or-
thogonally persistent data in PM compared to traditional implementations storing data in
either files and databases;

2. Development Complexity— verify if the proposed design reduces the complexity of programs
that rely on persistent data. Less complexity leads to reducing development effort and improved
quality [1, 47].

In order to assess both development effort and execution performance, we have used two different
workloads: a) the OO7 benchmark; and b) a modified version of the Lucene search engine. Both are
described in the next sections.

5.2.1 Experimental Setting

Both OO7 and Lucene experiments were executed on a 32-core machine with 244GB of main
memory running Ubuntu Linux 12.04. All experiments were executed three times to identify variation
and outliers. The results of the multiple executions were generally consistent, and the average results
are presented.

Since computers using NVM to implement persistent memory are not yet available, we used
DRAM to simulate PM, an approach employed by previous studies [20, 44]. An area of 32GB was
reserved for a PM-aware file system: M1FS [71], a configuration optimized for working directly with
byte-addressable memory storage. JaphaVM was executed using a persistent heap with capacity of
8GB, without considering heap metadata.

5.2.2 OO7 Benchmark

The OO7 benchmark [19, 45] was originally aimed at object-oriented database management
systems (OODBMS), and used in previous Java OP research [36,51,57].

This benchmark in a first step creates a database of objects combined in a tree-like hierarchy,
whose nodes point to finer-grained objects with mutual references, forming a graph; as a second
step, it performs multiple traversals through the graph (some of them modifying the contents of
some nodes), and queries on the stored objects. The size of the OO7 database is configurable.

We have chosen the OO7 benchmark for a number of reasons. Since it was used in previous Java
OP works, it permits a basic level of comparison. It models both read- and write-intensive tasks on
top of an in-memory graph, which is a common use case today. Finally, it permits a comparison of

84

performance and development complexity between an OP implementation and a traditional relational
database backend.

In our experiments, the relational database is mapped to Java objects by means of Hibernate,
an Object-Relational Mapping (ORM) framework. ORM is the preferred approach for most real-
world, complex applications, as it removes from the programmer the burden of manually translating
relational tables into objects and vice-versa. In Section 5.2.3 we discuss a different application that
uses files as the backing store.

Experiment Description

Tests with OO7 were executed in the following distinct configurations:

I Disk-based DB — backed by a traditional disk-based database (PostgreSQL version 9.1),
using the Hibernate framework version 3.2 for ORM;

II Memory-based DB — backed by the H2 in-memory database (version 1.3.176), also using
Hibernate;

III JaphaVM — backed by a modified version of the benchmark using JaphaVM’s persistence
semantics; an in-memory data structure holds the data, Hibernate is not used. The NVML
memory pool containing the persistent heap was created in M1FS, so as to simulate the
behavior of a persistent memory environment. JaphaVM was executed separately with three
approaches for handling transactions (see Section 5.1.5):

1. Automatic Transactions, where each Java opcode modifying heap data is a self-contained
transaction;

2. User Transactions, where the whole traversal is a single transaction within the bounds of
a synchronized block;

3. No transactions, where there is no transactional overhead but also no fault tolerance
(included for reference).

We ran each configuration with three different database size presets (payloads): tiny, small,
and medium. These presets are described in detail in Table 5.1. In order to understand the I/O
profile of each scenario, during the execution of the benchmarks we collected statistics using the
/proc/PID/io special file system interface.

Analysis of Results

Looking at the overall results of the OO7 benchmark, we observe that JaphaVM can create and
traverse large object graphs with a performance two orders of magnitude better than database-backed
scenarios using ORM layers.

85

Table 5.1 – Properties of OO7 database size presets.

Property Tiny Small Medium
DB DB DB

modules 1 1 1
assemblies 40 1,093 1,093
base assemblies 27 729 729
composite parts 50 500 500
base assemblies per complex assembly 3 3 3
assembly levels 4 7 7
complex assemblies 121 3,280 3,280
document size 2 MB 2 MB 20 MB
atomic parts / composite parts 4 20 200
atomic parts 200 10,000 100,000
connections / atomic part 3 3 6
connections 600 30,000 600,000
updates T2a 54 2,184 2,183
updates T2b 162 11,475 99,892
updates T2c 486 39,348 393,019
manual size 10 MB 100 MB 1,000 MB
Total size in JaphaVM heap 60 MiB 160 MiB 710 MiB

Figures 5.1a—5.1c compare the execution time of creating the databases and each traversal for
the different database sizes. We can observe in Figures 5.2a—5.2e that all execution scenarios have
similar trends, despite the execution times being orders of magnitude different. Figures 5.2a—5.2e
show the same data with a different perspective, highlighting how the execution time increases for
different database sizes in each traversal.

Tables 5.2—5.4 show I/O and execution counters for creating each database size, while Tables
5.5—5.7 show the same information for Traversal 1 on each database size. The lines "read characters"
and "written characters" show the total number of characters read and written through system calls
invoked by the program, irrespective whether the operation was satisfied from the page cache or
from the backing storage. Console I/O is also included in the read/written characters count. The
lines "read system calls" and "write system calls" show the number of system calls invocations. The
remaining lines display the number of voluntary and involuntary context switches.

As seen on Figure 5.1a, for the tiny database size JaphaVM takes about two seconds longer than
PostgreSQL and H2 to create the database, due to memory pool initialization. However, for the
creation of the small and medium databases (Figures 5.1b—5.1c), JaphaVM scenarios execute one
or two orders of magnitude faster than the relational databases. This is explained by the fact that
JaphaVM requires less data movement and copy, which is confirmed by the data in Tables 5.2—5.4
(we show a single column for JaphaVM because I/O counters for all transactional scenarios were
identical).

86

0.01

0.10

1.00

10.00

DB Creation Traversal 1 Traversal 2a Traversal 2b Traversal 2c Traversal 6

T
im

e
(s
)

OO7 DB Creation & Traversal Times: Tiny Database Size

PostgreSQL H2 JaphaVM Automatic Tx JaphaVM User Tx JaphaVM No Tx

(a) Comparison of execution times for tiny database size.

0.01

0.10

1.00

10.00

100.00

DB Creation Traversal 1 Traversal 2a Traversal 2b Traversal 2c Traversal 6

T
im

e
(s
)

OO7 DB Creation & Traversal Times: Small Database Size

PostgreSQL H2 JaphaVM Automatic Tx JaphaVM User Tx JaphaVM No Tx

(b) Comparison of execution times for small database size.

0.10

1.00

10.00

100.00

1,000.00

DB Creation Traversal 1 Traversal 2a Traversal 2b Traversal 2c Traversal 6

T
im

e
(s
)

OO7 DB Creation & Traversal Times: Medium Database Size

PostgreSQL H2 JaphaVM Automatic Tx JaphaVM User Tx JaphaVM No Tx

(c) Comparison of execution times medium database size.

Figure 5.1 – Comparison of execution times for OO7 traversals of different db sizes (secs, log scale)

87

(a) Comparison of execution times for traversal 1. (b) Comparison of execution times for traversal 2a.

(c) Comparison of execution times for traversal 2b. (d) Comparison of execution times for traversal 2c.

(e) Comparison of execution times for traversal 6.

Figure 5.2 – Curves with execution times for OO7 traversals across different db sizes (seconds,
logarithmic scale)

88

Table 5.2 – I/O counters for tiny DB creation.

Counter PostgreSQL H2 JaphaVM
DB DB

read characters 3,208,732 3,517,082 36,060
written characters 405,182 577,291 499
read system calls 4,126 6,285 73
write system calls 1,602 3,763 16
voluntary context switches 138 123 13
involuntary context switches 1 1 1

Table 5.3 – I/O counters for small DB creation.

Counter PostgreSQL H2 JaphaVM
DB DB

read characters 9,102,770 17,936,590 82,105
written characters 11,150,783 19,702,246 74,490
read system calls 56,468 150,443 1,174
write system calls 53,958 147,928 1,116
voluntary context switches 1231 1225 1104
involuntary context switches 1 1 1

Table 5.4 – I/O counters for medium DB creation.

Counter PostgreSQL H2 JaphaVM
DB DB

read characters 75,888,918 172,910,579 82,540
written characters 129,663,311 243,547,947 74,490
read system calls 742,750 2,151,069 1,174
write system calls 741,264 2,148,581 1,116
voluntary context switches 1209 1238 1104
involuntary context switches 1 1 1

The ORM layer used on the relational database scenarios creates many additional short-lived
objects, and as consequence, the JVM spends more time doing Garbage Collection (GC). For the
medium database size, all objects created by JaphaVM fit into the 8GB heap, not requiring GC; while
the relational database scenarios required between 56—68 GCs (15—16 of them also performing
heap compactions), which accounted for 15.62%—17.31% of the overall database creation time.

We also observe that JaphaVM execution has less context switches. This happens because it
performs significantly less storage access, and thus is less blocked by I/O waits, which are a common
cause for voluntary context switches.

As expected, the JaphaVM scenarios with less transactional overhead have better performance,
i.e. coarse-grained transactions (User Tx) have better performance than fine-grained transactions

89

(Automatic Tx), and not supporting transactions at all has the best performance.

Table 5.5 – I/O counters for Traversal 1 on tiny DB.

Counter PostgreSQL H2 JaphaVM
DB DB

read characters 3,590,297 4,393,436 29,636
written characters 539,701 1,047,596 504
read system calls 3,972 5,827 70
write system calls 1,421 3,320 16
voluntary context switches 62 62 13
involuntary context switches 1 1 1

Table 5.6 – I/O counters for Traversal 1 on small DB.

Counter PostgreSQL H2 JaphaVM
DB DB

read characters 34,465,024 78,717,157 29,652
written characters 33,360,993 60,359,612 520
read system calls 87,846 190,519 51
write system calls 85,294 335 11
voluntary context switches 62 62 13
involuntary context switches 1 1 1

Table 5.7 – I/O counters for Traversal 1 on medium DB.

Counter PostgreSQL H2 JaphaVM
DB DB

read characters 384,046,805 803,662,022 86,127
written characters 308,148,130 553,984,993 75,953
read system calls 800,981 1,763,481 1,173
write system calls 798,418 1,760,978 1,180
voluntary context switches 66 66 13
involuntary context switches 1 1 1

The relational database scenarios (PostgreSQL and H2) consistently take the longest time to
execute traversal benchmarks. This is explained by the fact that these scenarios require ORM
translation and access to storage, resulting in larger amount of data movement, which can be
observed on Tables 5.5—5.7. Data movement is proportional to payload; the larger the database,
more data movement is observed. PostgreSQL and H2 have very similar execution times, despite
the former storing data on disk and the latter in memory. This happens because the experimental
system has enough memory to keep the PostreSQL database fully cached in memory. The trend for
less context switches on JaphaVM is still observable, for the same reasons presented in the database
creation analysis.

90

JaphaVM with automatic transactions (i.e., a distinct transaction for each individual Java opcode
modifying persistent heap data) executes the same traversals up to three times faster than PostgreSQL
and H2, as it requires significantly less computational effort than the ORM scenarios. These results
are achieved not only because JaphaVM runs completely in memory, but also because its software
stack is shorter and optimized for PM. These effects can be observed in the small amount of
data being read/written from the I/O subsystem. Its advantage is even more apparent with the
larger database configurations, as the ratio between overhead and data volume for the Disk-based
and Memory-based DB scenarios is higher. Additional gains can also be attributed to the lack of
interprocess communication between the application and a database server in the JaphaVM scenario.

JaphaVM with a single user transaction executes two orders of magnitude faster than the ORM
scenarios, and almost one order of magnitude faster than JaphaVM with automatic transactions. In
the latter, the great number of fine-grained NVML transactions impose a considerable overhead,
as each single transaction needs to issue memory fences and cache drains to ensure that changes
to the memory pool have reached the persistence domain upon transaction commit. By using a
single coarse-grained transaction instead of multiple fine-grained ones, performance is significantly
improved.

Results for JaphaVM with no transactions are listed as reference, because its practical use is very
limited due to its lack of fault-tolerance. We observe that this scenario executes about 30% faster
than JaphaVM with a single user transaction, due to the absence of transactional overhead.

On the next section, we describe another experiment, this time using a real-world application
(Apache Lucene) instead of a synthetic benchmark.

5.2.3 Apache Lucene

We have created a modified version of the Apache Lucene search engine library [4] using orthogonal
persistence on top of JaphaVM. Lucene is a library written in Java that provides the ability of creating
inverted indices of text documents, then allowing queries on what documents contains which terms.
Lucene version 3.6.2 was used as baseline.

The original version of Lucene stores the inverted index in a set of segment files. Our Lucene-OP
version uses instead a java.util.HashMap in the persistent heap, where each key is a term
and each value is a java.util.HashSet referencing the documents that contain that term (see
Figure 5.3). Other than that, both versions perform the same tasks, such as tokenization, stop word
filtering, stemming, and querying.

We have decided to experiment with a search engine since it is a critical, well-known real-world
task, performed both in personal computers (e.g. e-mail search) and huge parallel machines (e.g.
web search), which depends critically on persistent data that can be easily held either in memory
or in storage. We have chosen Lucene because it is the de facto standard library for text indexing
and searching in Java. The fact that its original version uses files as backing store makes a good
complement to our previous experiments with relational databases using OO7.

91

Listing 5.3 – Code of Lucene OP inverted index
1 public class InvertedIndex {

2

3 protected Map<String, Set<Document>> invertedIndex;

4 protected int numberOfDocs = 0;

5 protected Map<Integer, Document> documents;

6

7 public InvertedIndex() {

8 invertedIndex = new HashMap<String, Set<Document>>();

9 }

10

11 public void addDocument(String term, Document doc) {

12 // add to term/doc map

13 Set<Document> documentSet = invertedIndex.get(term);

14 if (documentSet == null) {

15 documentSet = new HashSet<Document>();

16 invertedIndex.put(term, documentSet);

17 }

18 documentSet.add(doc);

19 }

20

21 public Set<Document> getDocsForTerm(String term) {

22 return invertedIndex.get(term);

23

24 }

25

26 }

Experiment Description

We have compared Lucene and Lucene-OP executing three tasks:

1. Indexing — index a corpus of text documents, namely Project Gutenberg’s Aug 2003 compi-
lation [73] containing 680MB of texts, distributed across 595 documents containing 684,420
different terms;

2. Single-term query — query all documents containing a single term term1, resulting in 523
hits;

3. Double-term query — query the documents containing both term1 and term2, resulting in
49 hits.

Lucene-OP was executed with both user transactions and no transactional support. When
executed with user transactions, during the indexing process, each transaction encompassed the
complete indexing of a single document, and during querying each transaction encompassed the
complete query.

92

Analysis of Results

Examining the overall results of the Lucene experiments, we confirm the observations from OO7
that graph traversal and pointer-chasing tasks are completed more than one order of magnitude
faster using JaphaVM. However, we also observe that for tasks that are dominated by writes (such as
the creation of an inverted index), writing to traditional files is potentially faster than their JaphaVM
counterparts, due to the extra transactional overhead to keep the persistent heap failure-tolerant on
the latter. This overhead is introduced by the journaled transactions mechanism used by NVML [27].
Before modifying the contents of a memory address for the first time (and only on the first time),
it necessary to copy them to the undo log; in order to keep track of the address ranges that were
already added to the undo log, NVML uses a radix tree. As more and more contiguous ranges are
added to the undo log, the radix tree becomes deeper and traversal times increase. Since every data
modification requires going through this process, writing transactionally to PM using an undo log is
more expensive than reading.

In summary, this result indicates different trade-offs for the two scenarios: when accessing storage
devices, writes typically perform better than reads; however, when accessing PM with journaled
transactions (using an undo log), writes are more expensive than reads.

Table 5.8 – Lucene execution times (ms).

Time (ms) Lucene Lucene-OP Lucene-OP
(Baseline) User Tx No Tx

Indexing 1,124,932 2,491,539 1,052,148
Single-term Query 93 6.5 4
Double-term Query 113 7.5 4

Table 5.8 shows the execution time (in milliseconds) of each scenario using Lucene and Lucene-OP,
the latter divided into user transactions or no transactions (for reference).

We observe that the indexing time of Lucene-OP without transactions is 7% shorter than the
original Lucene version. However, when transactions are introduced, Lucene-OP takes 55% longer
than the baseline. This can be explained by the fact that both Lucene and Lucene-OP undergo a
similar effort to read the input files (as we can infer from Table 5.9), but the index writing effort
is directed either to files (Lucene) or to memory (Lucene-OP); writing to files is typically a fast
operation (data are written to a buffer, and actual writes to disk are deferred), while writing to PM
with transactional support carries additional overhead, as previously discussed in Section 5.2.2.

However, once data are committed to PM, queries become much faster than their file I/O
counterparts. Looking at query execution times on Table 5.8, we observe that they are more than
one order of magnitude faster than the baseline version. We can also observe that since queries are
read-most operations (as confirmed by the I/O counters on Tables 5.10 and 5.11), the transactional
overhead has less impact than on the indexing task.

93

Table 5.9 – Lucene Indexing I/O counters.

Time (ms) Baseline Lucene-OP

read characters 543,801,327 426,434,910
written characters 229,084,470 62,716
read system calls 51,784 27,715
write system calls 15,334 1,209
voluntary context switches 598 601
involuntary context switches 987 355

Table 5.10 – Lucene single-term query I/O counters.

Time (ms) Baseline Lucene-OP

read characters 1,417,374 118,902
written characters 49,711 49,762
read system calls 1,972 640
write system calls 1,058 1,060
voluntary context switches 527 527
involuntary context switches 1,079 1,081

In the next section, we evaluate development complexity metrics for JaphaVM compared to
traditional persistence approaches.

5.2.4 Development Complexity

It is a known fact that less complexity leads to reduced software development and maintenance
effort, and improved quality [1, 47]. For this reason, it is desirable to keep programs as simple as
possible, while ensuring that they perform their tasks correctly and efficiently; the advent of automatic

Table 5.11 – Lucene double-term query I/O counters.

Time (ms) Baseline Lucene-OP

read characters 800,702 96,617
written characters 5,141 5,192
read system calls 869 166
write system calls 110 112
voluntary context switches 53 54
involuntary context switches 131 133

94

memory management is an example of technique that was adopted with that purpose. Program
complexity can be measured using diverse metrics, including lines of code, number of elements (such
as classes, attributes, methods, etc.) and class coupling, among others.

One of the main motivations for the OP approach is to remove from the programmer the burden
of explicitly dealing with persistence, thus reducing program complexity. In the early 80s, Atkinson
et al. [11] stated in the founding paper of OP that about 30% of the lines of any program with
a considerable amount of code would be concerned with transferring data to and from files or a
DBMS. In a later study [10] they added that not only the program length increased complexity, but
also the use of multiple application and system building mechanisms, such as databases, mapping
frameworks and communication systems. They stated that this environmental complexity distracts
the programmer from the task in hand, forcing them to concentrate on mastering the multiplicity of
programming systems rather than the application being developed.

We have not identified recent studies quantifying the impact of persistence-specific code on
program complexity, but our experience porting OO7 and Lucene to OP confirmed the expectation
that they require less lines of code, components, dependencies, and overall development effort than
their database- or file-oriented counterparts. We did not perform an extensive complexity evaluation,
but we have gathered some simple metrics from these examples that provide initial insights on this
subject.

Table 5.12 – Development complexity for OO7 scenarios.

Metric OO7 OO7 Hibernate
JaphaVM DB Framework

LOC 987 1,217 102,165
Classes 18 19 1,340
Methods 163 172 12,281

We have compared both OO7 and Lucene baselines against their OP versions. Three simple
complexity metrics were collected for each implementation: logical lines of code (LOC), number of
classes and number of methods. The OO7 results are listed on Table 5.12 and Lucene’s on Table
5.13.

When retrofitting OO7 for using JaphaVM’s persistence semantics, we leveraged the existing
classes implemented by the benchmark (Modules and Assemblies). Most of the work consisted of
creating specialized subclasses that removed the ORM mapping from these classes to the database.
As a result, the OO7 version using JaphaVM is slightly less complex than the traditional version
using relational databases. However, the traditional version uses the Hibernate framework, which has
a number of lines of code more than a hundred times larger than the OO7 benchmark itself, and a
number of classes and methods about 75 times larger. The use of an ORM makes development simpler
than manually programming the application interactions with the database, but is still reasonably
more complex than handling persistence orthogonally, requiring from the programmer to master the

95

ORM framework, and potentially additional runtime components.

Table 5.13 – Development complexity for Lucene scenarios.

Metric Lucene-OP Lucene

LOC 1,067 8,314
Classes 79 314
Methods 247 1,513

Lucene-OP leverages many unmodified classes from the baseline implementation, especially for
doing tokenization, stemming, and filtering. However, the code for both storing and querying inverted
indices is significantly simpler on Lucene-OP. Table 5.13 shows that it requires seven times less
LOCs, four times less classes and six times less methods to perform the same tasks.

In future works, we intend to do further research considering more experiments and metrics of
development productivity, while expanding our sample of applications and programmers.

5.3 Evaluation Summary

This chapter has presented JaphaVM, a Java Virtual Machine designed for persistent memory and
based on orthogonal persistence. JaphaVM’s programming interface is inspired by previous research
on orthogonally-persistent Java Virtual Machines, but its design leverages persistent memory, resulting
in a simpler implementation with better performance. It uses an original combination of orthogonal
persistence, persistent memory programming, persistence by reachability, and lock-based failure-
atomic transactions, a concept that can be applied for other managed runtime languages, such as
Python, Ruby, and JavaScript.

We have also described our prototype implementation, and evaluated its advantages over tra-
ditional persistence approaches, such as relational databases and files, considering both execution
performance and programming complexity. In our experiments, JaphaVM executed the same op-
erations between one and two orders of magnitude faster than the traditional implementations,
with the exception of write-intensive tasks to files, and achieved the same results requiring sig-
nificantly less lines of code, addressing research question 4, i.e., "what is the performance of an
orthogonally-persistent system using a persistent heap relative to traditional storage approaches?".

The current version of JaphaVM presents some shortcomings, such as lack of type evolution and
execution persistence, which we suggest as interesting problems for future research work. However,
it provides a good starting point for evaluating the advantages that persistent memory is expected
to bring to Java and other managed runtime applications: programs that are easier to write and
maintain, and have significantly superior performance.

96

5.4 Conclusion

In this chapter, we have presented JaphaVM, a prototype to validate and evaluate the effectiveness
of the concepts proposed in Chapter 4. We have described the main design decisions behind JaphaVM,
as well as experimental results concerning both execution performance and code complexity.

In the next chapter, we consider the present research in the context of related work.

97

6. RELATED WORK

In Section 3.4 we described several recent works proposing programming interfaces for persistent
memory, including Mnemosyne [82], NV-Heaps [22], Atlas [20], Heapo [44], NVML [27], PyNVM [69],
PCJ [28], MDS [34], and Apache Mnemonic [5]. All these works have in common the fact that
persistent data are represented or allocated in a different way than volatile data. Mnemosyne, Atlas,
HEAPO, NVML, PyNVM, and Apache Mnemonic require special memory allocators to be used
for persistent data. NV-heaps, PCJ, MDS, and again Apache Mnemonic use specialized types for
persistent objects. In addition, NV-heaps and NVML also use special pointers to refer to persistent
objects.

Having a distinction between short- and long-lived data representations establishes an impedance
mismatch that adds complexity to software development. The three principles of orthogonal per-
sistence described in Section 2.1 try to address this problem by supporting a uniform treatment of
objects irrespective of their types, allowing values of all types to have whatever longevity is required.
By using special types, allocators or pointers for persistent data, all the programming interfaces
described above do not conform to one or more of these principles.

Our design (described in Chapter 4), however, attempts to follow orthogonal persistence principles.
Such principles can significantly increase programming and execution efficiency, as memory data
structures are transparently persistent, without the need for programmatic persistence handling, and
removing the need for crossing semantic boundaries.

JaphaVM, the vehicle for validating our design, can be compared with previous implementations
of Java with orthogonal persistence, such as PJama [9], PEVM [51], ANU OPJ [57], Merpati [80],
and Aspect-Oriented Programming implementations [2,63,76]. JaphaVM’s programming interface
approach is similar to these previous works, and has borrowed abstractions from them, especially
persistence by reachability interfaces and callbacks for handling of external state. However, differently
from JaphaVM, none of these systems was designed for persistent memory, so they still have to
manage and move data across memory and storage, with all the entailed complexity and performance
implications. PJama, PEVM, ANU OPJ have their own data stores implemented over binary files
manipulated by special libraries. SoftPM and the AOP approach described in [2] support pluggable
data stores, including databases and files. AOP implementations proposed in [63,76] use relational
databases. Marquez et al. [57] compared the performance of different versions of PJama and ANU-
OPJ using the OO7 benchmark, and in all scenarios the introduction of orthogonal persistence resulted
in overheads of one or two orders of magnitude when compared to a standard JVM. JaphaVM, on
the other hand, is one or two orders of magnitude faster than traditional storage counterparts, due
to its use of persistent memory, as discussed in Chapter 5.

Many programming interfaces for persistent memory use some form of persistence by reachability
[20,22,27,34,40]. However, they define framework-specific persistence roots. JaphaVM leverages the
persistence roots already used by Java’s automatic memory management, satisfying the orthogonal

98

persistence principle of persistence identification, similarly to previous orthogonally-persistent Java
interfaces [9, 51, 57]. We have chosen NVML as a lower-level layer for JaphaVM’s failure-tolerant
implementation, although others among the aforementioned C/C++ programming interfaces would
be alternatives as well.

In summary, to the best of our knowledge, our work is the first to propose a design for languages
with automatic memory management supporting orthogonal persistence principles and specific for
persistent memory, based on an original combination of orthogonal persistence, persistent memory
programming, persistence by reachability, and lock-based failure-atomic transactions.

99

7. CONCLUSION

We started this thesis by posing our high-level research goal, namely to investigate the hypothesis
that persistent memory could be used to solve the performance and complexity issues historically
associated with orthogonal persistence support in programming languages with automatic memory
management. We then refined this high level goal into different research questions, which were
addressed by this thesis. We now summarize the answers and present our concluding remarks as well
as possible directions for future work.

We first studied the evolution of Orthogonal Persistence concepts and systems, which attempted
to alleviate the cost of mapping data as represented in memory to either files or databases (and
vice-versa) by supporting a uniform treatment of objects irrespective of their types, allowing values
of all types to have whatever longevity is required. We identified that previous implementations
succeeded in providing simpler and easier programming interfaces, but had to cope internally with
moving data between memory and storage. This challenge increased the integral system complexity,
and led to performance constraints that ultimately prevented Orthogonal Persistence from becoming
a mainstream approach.

Then, we studied recent non-volatile memory technologies that make it possible to collapse
memory and storage into a single entity, known as persistent memory. We investigated several
works adding Persistent Memory support for different programming languages, and identified that all
of them provided simpler programming interfaces while still performing efficiently (since persistent
memory removes the need for managing data movement between memory and storage). However,
we also identified that none of the existing programming interfaces for persistent memory satisfied
the orthogonal persistence goal of supporting a uniform treatment of objects independently of their
types.

Based on these findings, we introduced a design for the runtime environment for languages with
automatic memory management satisfying orthogonal persistence principles, based on an original
combination of persistent memory programming, persistence by reachability, and lock-based failure-
atomic transactions. Such design can significantly increase programming and execution efficiency, as
in-memory data structures are transparently persistent, without the need for programmatic persistence
handling, and removing the need for crossing semantic boundaries.

In order to validate and evaluate the effectiveness of this design, we have created JaphaVM, a
prototype Java Virtual Machine designed for persistent memory and based on Orthogonal Persistence.
JaphaVM’s programming interface is inspired by previous research on orthogonally-persistent Java
Virtual Machines, but its design leverages Persistent Memory, resulting in a simpler implementation
with better performance.

The initial prototype implementation of our design used a simple memory mapping to a file in
persistent memory to store the heap and other runtime structures, without any PM-specific APIs to

100

handle in-memory transactions. Functional tests performed on this initial implementation answered
affirmatively research question 1, i.e., that "we can use a persistent heap on top of persistent memory
to transparently store objects across multiple program executions". No specific memory management
features for persistent objects were implemented, using the standard garbage collection mechanisms,
and the results of functional testing addressed research question 2, demonstrating that "it is possible
to leverage automatic memory management mechanisms to determine the persistence lifecycle of
ordinary objects".

However, consistency was not guaranteed in the presence of failures, as confirmed by tests where
the prototype process was randomly killed. That led us to consider the use of lock-based failure-
atomic transactions, i.e., using failure-atomic transactions (provided by libraries such as NVML)
automatically at runtime. The final prototype implementation, using this mechanism, successfully
addressed research question 3, demonstrating a way "to automatically ensure the consistency of a
persistent heap in the presence of failures".

To address research question 4, i.e., "what is the performance of an orthogonally-persistent
system using a persistent heap relative to traditional storage approaches?", we evaluated JaphaVM’s
advantages over relational databases and files, considering both execution performance and program-
ming complexity. In our experiments, JaphaVM executed the same operations between one and two
orders of magnitude faster than the traditional implementations, with the exception of write-intensive
tasks to files, and achieved the same results requiring significantly less lines of code.

By addressing these different research questions, we believe to have successfully confirmed the
hypothesis that persistent memory can be used to solve the performance and complexity issues
historically associated with orthogonal persistence support in programming languages with automatic
memory management.

7.1 Concluding Remarks

Based on the research work presented in this thesis, our main conclusion is that it is possible
to leverage persistent memory to create orthogonally-persistent systems that are easy to both write
and maintain, and have significantly superior performance. The present work has laid out conceptual
foundations to design such systems for languages with automatic memory management, and has
demonstrated it is technically feasible by means of a prototype implementation. Furthermore, we have
shown through this work that there is great potential and value in investigating orthogonally-persistent
programming interfaces for persistent memory.

Additionally, we list the main contributions (including technical and scientific contributions) of
this work as follows:

• survey of persistent memory programming interfaces and evaluation against Orthogonal Per-
sistence principles;

• proposal of a persistent heap adherent to orthogonal persistence concepts for languages with

101

automatic memory management, based on an original combination of persistent memory
programming, persistence by reachability, and lock-based failure-atomic transactions;

• study of requirements and open challenges to achieve a robust orthogonally-persistent heap;

• creation of JaphaVM, a prototype Java Virtual Machine in order to validate and evaluate the
proposed persistent heap design;

• study of JaphaVM’s effectiveness and efficiency compared to traditional database- and file-based
data stores using, respectively, OO7 and Apache Lucene workloads.

Lastly, from a more elevated perspective, we rate the present work as a tangible value case
supporting the adoption of persistent memory and orthogonal persistence in order to create simpler
programming interfaces with superior performance.

7.2 Future Research

There are many possible directions for future research based on this work. Firstly, our study
identified many open challenges for the design of persistent heaps leveraging Persistent Memory.
Secondly, JaphaVM, our prototype implementation, did not address some important concerns, such
as type evolution and execution persistence. Lastly, the proposed design can be explored in other
programming languages with automatic memory management beyond Java. We suggest some
possibilities for further research as follows.

• Our persistent heap design can be extended to cover a) sharing data across different programs
and programming languages, perhaps allowing a distributed, shared persistent heap; b) type
evolution; c) mechanisms to detect and fix persistent bugs; d) abstractions for dealing with
external state that are more integrated into the programming language and do not violate the
persistence independence principle; e) security of data at rest and during computations.

• A deeper study of the effort required to write and maintain orthogonally-persistent applications
in comparison to traditional database- and file-based persistence approaches. Atkinson et
al. [11] stated in 1983 that about 30% of the lines of code were dedicated to persistence
handling, and in a previous work [67] and in Section 5.2.4 of the present thesis we have made
initial evaluations of the impact of persistent memory programming interfaces to development
complexity. However, a broader and deeper study is necessary.

• The current version of JaphaVM can be evolved to address shortcomings, such as a) lack of
execution persistence; b) lack of type evolution; c) not supporting Just-In-Time (JIT) compi-
lation; and d) fixed heap size and address. Such evolution could allow broader investigations
of the merits and shortcomings of its design.

102

• Explore the use of the proposed persistent heap design in other languages with managed run-
times and automatic memory management beyond Java, such as Python, Ruby, and JavaScript,
among others.

103

Bibliography

[1] F. Akiyama. An example of software system debugging. In Information Processing, vol. 71,
pages 353–379, 1971.

[2] M. Al-Mansari, S. Hanenberg, and R. Unland. Orthogonal persistence and aop: a balancing act.
In Proceedings of the 6th workshop on Aspects, components, and patterns for infrastructure
software. ACM, 2007.

[3] S. Alagic and A. Yonezawa. Ambients of persistent concurrent objects. In Proceedings of the
3rd International Conference on Advances in Databases, Knowledge, and Data Applications
(DBKDA), pages 155–161, 2011.

[4] Apache Software Foundation. Apache lucene. https://lucene.apache.org/, August
2016.

[5] Apache Software Foundation. Apache mnemonic. https://github.com/apache/

incubator-mnemonic, March 2017.

[6] Apache Software Foundation. Apache mnemonic proposal. https://wiki.apache.org/
incubator/MnemonicProposal, March 2017.

[7] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In DOOD, volume 89, pages 40–57, 1989.

[8] M. Atkinson and M. Jordan. Issues raised by three years of developing pjama: An orthogonally
persistent platform for java. In Database Theory, ICDT99, pages 1–30. Springer, 1999.

[9] M. Atkinson and M. Jordan. A review of the rationale and architectures of pjama: a durable,
flexible, evolvable and scalable orthogonally persistent programming platform. Sun Microsystems,
Inc. Mountain View, CA, USA, 2000.

[10] M. Atkinson and R. Morrison. Orthogonally persistent object systems. The VLDB Journal,
4(3):319–401, 1995.

[11] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, P.W. Cockshott, and R. Morrison. An approach to
persistent programming. The computer journal, 26(4):360, 1983.

[12] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Operating system implications of fast,
cheap, non-volatile memory. In Proceedings of the 13th USENIX conference on Hot topics in
operating systems, 2011.

104

[13] R. Berryhill, W. Golab, and M. Tripunitara. Robust Shared Objects for Non-Volatile Main
Memory. In Proceedings of the 19th International Conference on Principles of Distributed
Systems (OPODIS 2015), number 20, pages 1–17, 2015.

[14] K. Bhandari, D. R. Chakrabarti, and Hans-J. Boehm. Makalu: Fast recoverable allocation of
non-volatile memory. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, pages
677–694, New York, NY, USA, 2016. ACM.

[15] S. M. Blackburn and J. N. Zigman. Concurrency — the fly in the ointment? In Advances
in Persistent Object Systems: Proceedings of the Eighth International Workshop on Persistent
Object Systems (POS-8) and the Third International Workshop on Persistence and Java (PJAVA-
3), August 30-September 4, 1998, Tiburon, California, page 259. Morgan Kaufmann, 1999.

[16] S. Bouchenak. Making java applications mobile or persistent. In COOTS, pages 159–172,
2001.

[17] R. Bruchhaus and R. Waser. Bipolar resistive switching in oxides for memory applications. In
Thin Film Metal-Oxides, pages 131–167. Springer, 2010.

[18] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, and R.S. Shenoy. Overview
of candidate device technologies for storage-class memory. IBM Journal of Research and
Development, 52(4):449–464, 2008.

[19] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 007 benchmark. In Proceedings of the
1993 ACM SIGMOD international conference on Management of data (SIGMOD ’93), Peter
Buneman and Sushil Jajodia (Eds.), pages 12–21. ACM, 1993.

[20] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Leveraging locks for non-volatile
memory consistency. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages 433–452, New
York, NY, USA, 2014. ACM.

[21] N. Christiansen. Windows Persistent Memory Support. In Flash Memory Summit. SNIA, 2016.

[22] J. Coburn, A.M. Caulfield, A. Akel, L.M. Grupp, R.K. Gupta, R. Jhala, and S. Swanson. Nv-
heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. In
Proceedings of the sixteenth international conference on Architectural support for programming
languages and operating systems, pages 105–118. ACM, 2011.

[23] J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee. Better
I/O through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 133–146. ACM, 2009.

105

[24] A. Cooper, R. Reimann, and H. Dubberly. About face 2.0: the essentials of interaction design.
John Wiley & Sons, Inc., 2003.

[25] T. Cooper and M. Wise. Critique of orthogonal persistence. In Proceedings of the 5th
International Workshop on Object-Orientation in Operating Systems, pages 122–126. IEEE,
1996.

[26] J. Corbet. Lfcs: Preparing linux for nonvolatile memory devices. http://lwn.net/

Articles/547903/, April 2013.

[27] Intel Corp. Non-Volatile Memory Library (NVML). http://pmem.io/nvml/, August
2016.

[28] Intel Corp. Persistent Collections for Java. https://github.com/pmem/pcj, January
2017.

[29] A. Dearle and D. Hulse. Operating system support for persistent systems: past, present and
future. Software-Practice and Experience, 30(4):295–324, 2000.

[30] A. Dearle, D. Hulse, and A. Farkas. Operating system support for java. In Proceedings of the
First International Workshop on Persistence and Java, Drymen, Scotland, 1996. Captured in:
http://blogs.cs.st-andrews.ac.uk/al/research/research-publications/, August 2011.

[31] A. Dearle, G. Kirby, and R. Morrison. Orthogonal persistence revisited. Object Databases,
pages 1–22, 2010.

[32] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen. Circuit and microarchitecture evaluation
of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In Proceedings of
the 45th ACM/IEEE Design Automation Conference (DAC 2008), pages 554–559. IEEE, 2008.

[33] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and J. Jackson.
System software for persistent memory. In Proceedings of the Ninth European Conference on
Computer Systems, page 15. ACM, 2014.

[34] Hewlett-Packard Enterprise. Managed Data Structures. https://github.com/

HewlettPackard/mds, February 2017.

[35] A. Farkas and A. Dearle. Changing persistent applications. In M. Atkinson, D. Maier, and
V. Benzaken, editors, Persistent Object Systems, Workshops in Computing, pages 302–315.
Springer London, 1995.

[36] P. Ferreira and M. Shapiro. Larchant: Persistence by reachability in distributed shared memory
through garbage collection. In Proceedings of the 16th International Conference on Distributed
Computing Systems, pages 394–401. IEEE, 1996.

106

[37] GNU Foundation. GNU Classpath. http://http://www.gnu.org/s/classpath/,
January 2015.

[38] A. Goldberg and D. Robson. Smalltalk-80: the language and its implementation. Addison-
Wesley Longman Publishing Co., Inc., 1983.

[39] J. Gosling. The Java language specification. Addison-Wesley Professional, 2000.

[40] J. Guerra, L. Mármol, D. Campello, C. Crespo, R. Rangaswami, and J. Wei. Software persistent
memory. In USENIX Annual Technical Conference, pages 319–331, 2012.

[41] J. Howell. Straightforward java persistence through checkpointing. Advances in Persistent
Object Systems, pages 322–334, 1999.

[42] D. Hulse and A. Dearle. RT1R1/2: Report on the efficacy of persistent operating systems
in supporting persistent application systems. Research Paper, University of Stirling, Scotland,
1999.

[43] D. Hulse, A. Dearle, and A. Howells. Lumberjack: A log-structured persistent object store.
In Proceedings of the 8th International Workshop on Persistent Object Systems (POS8) and
Proceedings of the 3rd International Workshop on Persistence and Java (PJW3): Advances in
Persistent Object Systems, pages 187–198. Morgan Kaufmann Publishers Inc., 1999.

[44] T. Hwang, J. Jung, and Y. Won. Heapo: Heap-based persistent object store. ACM Transactions
on Storage (TOS), 11(1):3, 2014.

[45] A. Ibrahim and W. R. Cook. Public implementation of oo7 benchmark. https:

//sourceforge.net/projects/oo7/, April 2013.

[46] M. Jordan and M. Atkinson. Orthogonal persistence for the java platform — specification.
Technical report, Sun Microsystems, Inc., Mountain View, CA, USA, 2000.

[47] B. A. Kitchenham, L. M. Pickard, and S. J. Linkman. An evaluation of some design metrics.
In Software Engineering Journal 5(1), pages 50–58. Springer, 1990.

[48] K. C. Knowlton. A fast storage allocator. Communications of the ACM, 8(10):623–624, 1965.

[49] M.H. Kryder and C.S. Kim. After Hard Drives - What Comes Next? IEEE Transactions on
Magnetics, 45(10):3406–3413, 2009.

[50] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable
dram alternative. ACM SIGARCH Computer Architecture News, 37(3):2–13, 2009.

[51] B. T. Lewis, B. Mathiske, and N. Gafter. Architecture of the pevm: A high-performance
orthogonally persistent java [tm] virtual machine. Technical report, Sun Microsystems, Inc.,
2000.

107

[52] D.L. Lewis and H.H.S. Lee. Architectural evaluation of 3D stacked RRAM caches. In
Proceedings of the IEEE International Conference on 3D System Integration (3DIC 2009),
pages 1–4. IEEE, 2009.

[53] H. Li and Y. Chen. An overview of non-volatile memory technology and the implication for tools
and architectures. In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition 2009 (DATE’09), pages 731–736. IEEE, 2009.

[54] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine Specification.
Addison-Wesley, 2013.

[55] R. Lougher. JamVM - a compact java virtual machine. http://jamvm.sourceforge.

net/, June 2014.

[56] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Haallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system simulation platform. IEEE Computer,
pages 50–58, 2002.

[57] A. Marquez, S. Blackburn, G. Mercer, and J. Zigman. Implementing orthogonally persistent
java. In Persistent Object Systems: Design, Implementation, and Use, pages 247–261. Springer,
2001.

[58] A. Marquez, J.N. Zigman, and S.M. Blackburn. Fast portable orthogonally persistent java.
Software - Practice and Experience, 30(4):449–479, 2000.

[59] J.C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating system support for NVM+
DRAM hybrid main memory. In Proceedings of the 12th conference on Hot topics in operating
systems, pages 14–14. USENIX Association, 2009.

[60] R. Morrison, R.C.H. Connor, G.N.C. Kirby, D.S. Munro, M.P. Atkinson, Q.I. Cutts, A.L.
Brown, and A. Dearle. The Napier88 persistent programming language and environment. Fully
Integrated Data Environments, pages 98–154, 1999.

[61] M. Oestreicher and K. Krishna. Object lifetimes in java card. In USENIX Workshop on
Smartcard Technology. USENIX, 1999.

[62] A. O’Lenskie, A. Dearle, and D. Hulse. Orthogonally persistent support for persistent corba
objects. Technical report, Technical Report 151, University of Stirling, Scotland, 2000.

[63] R.H.R. Pereira and J.B. Perez-Schofield. Orthogonal persistence and aop: a balancing act. In
Proceedings of the 6th Iberian Conference on Information Systems and Technologies (CISTI).
IEEE, 2011.

[64] T. Perez. Evaluation of system-level impacts of a persistent main memory architecture. Master’s
thesis, Pontifícia Universidade Católica do Rio Grande do Sul, 2012.

108

[65] T. Perez. JaphaVM code repository (GitHub). https://github.com/

taciano-perez/JaphaVM, March 2017.

[66] T. Perez, N.L.V. Calazans, and C.A.F. De Rose. A preliminary study on system-level impact
of persistent main memory. In Proceedings of the 13rd International Symposium on Quality
Electronic Design (ISQED 2012), pages 85–90. IEEE, 2012.

[67] T. Perez, N.L.V. Calazans, and C.A.F. De Rose. System-level impacts of persistent main
memory using a search engine. Microelectronics Journal, 45(2):211–216, 2014.

[68] C. S. Perone. Documentation of python bindings for nvml library. http://pynvm.

readthedocs.io/en/v0.1/, February 2016.

[69] C. S. Perone. Python bindings for nvml. https://github.com/perone/pynvm,
February 2016.

[70] M. Piccioni, M. Oriol, and B. Meyer. Class schema evolution for persistent object-oriented
software: Model, empirical study, and automated support. IEEE Transactions on Software
Engineering, 39(2):184–196, 2013.

[71] Plexistor, https://sourceforge.net/projects/oo7/. Plexistor SDM User Guide,
12 2005.

[72] T. Printezis, M. Atkinson, L. Daynes, S. Spence, and P. Bailey. The design of a new persistent
object store for pjama. In Proceedings of the Second International Workshop on Persistence
and Java (PJW2), pages 61–74, 1997.

[73] Project Gutenberg. Project gutenberg aug 2003 cd. https://www.gutenberg.org/

wiki/Gutenberg:The_CD_and_DVD_Project, August 2003.

[74] M.K. Qureshi, V. Srinivasan, and J.A. Rivers. Scalable high performance main memory system
using phase-change memory technology. In Proceedings of the 36th annual international
symposium on computer architecture, pages 24–33. ACM, 2009.

[75] S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M. Shelby, M. Salinga,
D. Krebs, S.H. Chen, H.L. Lung, et al. Phase-change random access memory: A scalable
technology. IBM Journal of Research and Development, 52(4.5):465–479, 2010.

[76] A. Rashid and R. Chitchyan. Persistence as an aspect. In Proceedings of the 2nd international
conference on Aspect-oriented software development. ACM, 2003.

[77] Storage and Networking Industry Association (SNIA). NVM Programming Model (NPM), 3
2015. Version 1.1.

109

[78] M. Stornelli. Protected and persistent ram filesystem. http://pramfs.sourceforge.

net/, June 2013.

[79] D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams. The missing memristor found.
Nature, 453(7191):80–83, 2008.

[80] T. Suezawa. Persistent execution state of a Java virtual machine. In Proceedings of the ACM
2000 conference on Java Grande - JAVA ’00, pages 160–167, San Francisco, 2000. ACM Press.

[81] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and M. M. Swift. Aerie:
flexible file-system interfaces to storage-class memory. In Proceedings of the Ninth European
Conference on Computer Systems, page 14. ACM, 2014.

[82] H. Volos, A.J. Tack, and M.M. Swift. Mnemosyne: Lightweight persistent memory. In
Proceedings of the sixteenth international conference on Architectural support for programming
languages and operating systems, pages 91–104. ACM, 2011.

[83] A. Welc, A. L. Hosking, and S. Jagannathan. Transparently reconciling transactions with locking
for java synchronization. In Proceedings of the 2006 European Conference on Object-Oriented
Programming, pages 148–173. Springer, 2006.

[84] M. Wilcox. Support ext4 on nv-dimms. http://lwn.net/Articles/588218/, Febru-
ary 2014.

[85] R.S. Williams. How we found the missing memristor. IEEE spectrum, 45(12):28–35, 2008.

[86] X. Wu and A.L. Reddy. Scmfs: a file system for storage class memory. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis,
page 39. ACM, 2011.

[87] J. Xu and S. Swanson. Nova: a log-structured file system for hybrid volatile/non-volatile main
memories. In 14th USENIX Conference on File and Storage Technologies (FAST 16), pages
323–338, 2016.

[88] J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, and R.S. Williams. Memristive
switching mechanism for metal/oxide/metal nanodevices. Nature nanotechnology, 3(7):429–
433, 2008.

110

111

A. APPENDIX: JAPHAVM IMPLEMENTATION DETAILS

This appendix describes the JaphaVM prototype implementation in detail. The full source code
can be found at [65].

A.1 JamVM Overview

JaphaVM is implemented using the open-source JamVM [55] Java Virtual Machine as baseline.
In order to describe the modifications we have made to implement JaphaVM, first we need to provide
an overview of how JamVMs works, which is done in this section.

JamVM runs on top of a wide set of Unix-like Operating Systems, including Linux, FreeBSD,
OpenBSD, Solaris, OpenSolaris, Darwin, Android and iOS. It is ported to x86, x86-64, Sparc, MIPS
and PowerPC architectures. It was the first JVM used in the Android OS, before it was replaced by
the Dalvik JVM.

JamVM version 1.5.4, which conforms to the JVM specification version 2 (blue book), was used
as baseline for JaphaVM.

JamVM implements Ahead of Time Compilation (AOT). AOT is the act of compiling a high-
level programming language (or intermediate, such as Java Bytecode) into native machine code. It
is different from Just In Time (JIT) compilation, which is the compilation done during execution
of a program (runtime) rather than prior to execution; JIT compilation is a combination of the
two traditional approaches for translation to machine code: AOT and interpretation. The JamVM
supports AOT but not JIT.

JamVM requires an implementation of the Java class libraries. We used the GNU Classpath [37]
V0.92 open source implementation. Some modifications to GNU Classpath were made to address
design issues, as described in the sections below.

A.1.1 JamVM Initialization

When a JamVM process is initiated, it performs a set of initialization steps, and then executes
the main() method of a class specified as an argument during invocation. This sequence of steps
is listed in Figure A.1

During execution, JamVM relies on a set of parameters that specify runtime behavior, including
minimum and maximum size of heap, garbage collection parameters, among others. The first steps
performed by JamVM populate these parameters with default values, and then replace the values of
those passed as command line arguments.

The Initialize Virtual Machine step performs many essential activities necessary for the VM
execution:

1. Initialize Platform.

112

Figure A.1 – Overview of JamVM initialization steps

Detects the current platform and perform specific configurations.

2. Initialize Hooks.
Register exit hooks, specifying functions that will be called upon VM termination.

3. Initialize Properties.
Set user-defined command line properties.

4. Initialize Allocation.
Allocate heap and set its base (heap data structures will be described in more detail below).

5. Initialize DLL.
Allocate and initialize the DLL hash table.

6. Initialize Symbols Hash Table.
Allocate and initialize a hash table used to index several data structures. The keys are strings
encoded using UTF-8 and the values are pointers to the appropriate structures.

7. Initialize Threads - stage 1.
Set stack size and establish locks utilized internally by the JamVM.

8. Initialize Symbols.
Add symbols to the symbols hash table.

9. Initialize Classes.
Load and initialize boot loader class.

10. Initialize Monitors.
Allocate and initialize Java monitors hash table.

11. Initialize String.
Load and initialize String class.

12. Initialize Exception.
Load and register Exception classes.

113

13. Initialize Natives.
Initialize protection domains.

14. Initialize JNI.
Initialize the global reference tables, cache classes and methods/fields for JNI 1.4 NIO support.

15. Initialize interpreter.
Start interpreter.

16. Initialize Threads - stage 2
Start main thread.

17. Initialize garbage collector.
Initialize OOM (Out Of Memory) class and start finalizer and handler threads.

After initialization activities are finalized, the JamVM locates the appropriate class loader, loads
the main class and invokes its main() method.

A.1.2 Internal Data Structures

The data structures that are more important to our purposes are the ones storing object instances
(heap), type (class/interface) definitions, threads, and thread stacks.

Heap

The JamVM heap stores object instances (including arrays) and type definitions. the mmap()
call is used in order to allocate a contiguous memory space. The heap has an initial minimum size
and may grow up to a maximum value. Both minimum and maximum values are configurable.

In order to manage allocated/free space inside the heap, data is organized by chunks. Chunks
are indexed by a linked list called freelist and are ordered by their place on the heap. This list
is often manipulated by the Garbage Collector (GC) in order to reclaim free space.

During JamVM initialization, a chunk covering the entire heap is created. New chunks are created
during runtime when loading classes and instantiating objects. Allocation of chunks inside the heap
is made by the gcMalloc() and gcRealloc() functions. Release of heap space is made by the
GC. The freelist is updated every time GC or the allocation functions are executed. The chunk
list inside the heap is depicted in Figure A.2.

Chunks have a simple structure consisting of a header, a pointer to the next chunk, and the
chunk’s contents. The header layout is depicted in Figure A.3

Description of header fields:

• 31: Has hash code bit

• 30: Hash code taken bit

114

Figure A.2 – Chunks organization inside heap

Figure A.3 – Chunk header format

• 29-3(Block Size): Quantity of allocated bytes

• 2: Is special bit

• 1: FLC bit

• 0: Allocated bit

Allocation/release of data inside the heap is made through the functions gcMalloc(), gcRealloc(),
and gcFree().

Memory allocation outside the heap is generally made using sysMalloc(), sysFree(),
sysRealloc(). Its implementation uses standard malloc(), free() and realloc() C
functions.

115

Types and Objects

Each definition of a Java type (class or interface) consists of a Classblock associated with
a set of Fieldblocks and a set of Methodblocks. Classblocks are allocated inside the
heap, while Fieldblocks and Methodblocks are allocated outside of the heap area. Figure
A.4 depicts these data structures and their relationships.

Figure A.4 – Class organization in JamVM memory

Types and objects are implemented using the same object struct presented in code listing
A.1. The *class pointer references the Classblock address inside the heap + 1 (32-bit chunk
header offset). Every object references its type.

Listing A.1 – Class structure
1 typedef struct object Class;

2

3 typedef struct object {

4 uintptr_t lock;

5 Class *class;

6 } Object;

Classblock
The Classblock is the root structure of a type, holding references to all other structures. Its

definition can be viewed in code listing A.2.

116

Listing A.2 – Classblock structure
1 typedef struct classblock {

2 uintptr_t pad[CLASS_PAD_SIZE];

3 char *name;

4 char *signature;

5 char *super_name;

6 char *source_file_name;

7 Class *super;

8 u1 state;

9 u2 flags;

10 u2 access_flags;

11 u2 interfaces_count;

12 u2 fields_count;

13 u2 methods_count;

14 u2 constant_pool_count;

15 int object_size;

16 FieldBlock *fields;

17 MethodBlock *methods;

18 Class **interfaces;

19 ConstantPool constant_pool;

20 int method_table_size;

21 MethodBlock **method_table;

22 int imethod_table_size;

23 ITableEntry *imethod_table;

24 Class *element_class;

25 int initing_tid;

26 int dim;

27 Object *class_loader;

28 u2 declaring_class;

29 u2 inner_access_flags;

30 u2 inner_class_count;

31 u2 *inner_classes;

32 int refs_offsets_size;

33 RefsOffsetsEntry *refs_offsets_table;

34 u2 enclosing_class;

35 u2 enclosing_method;

36 AnnotationData *annotations;

37 } ClassBlock;

Fieldblock
In lines 12 and 16 of code listing A.2, variable fields_count and the fields array are

declared. When a class is loaded and defined in JamVM the fields array points to FieldBlock
structs with fields_count positions. These structs are allocated outside of the heap, and hold
all class attributes.

The Fieldblock definition can be viewed in code listing A.3.

117

Listing A.3 – Fieldblock struct
1 typedef struct fieldblock {

2 Class *class;

3 char *name;

4 char *type;

5 char *signature;

6 u2 access_flags;

7 u2 constant;

8 AnnotationData *annotations;

9 union {

10 union {

11 char data[8];

12 uintptr_t u;

13 long long l;

14 void *p;

15 int i;

16 } static_value;

17 u4 offset;

18 } u;

19 } FieldBlock;

Methodblock
In lines 13 and 17 of code listing A.2, variable methods_count and array methods array, are

declared. When a class is loaded and defined in JamVM, array methods references Methodblock
structs with methods_count positions. These structs are allocated outside of the heap, and hold
all class attributes.

The Methodblock implementation can be viewed in code listing A.4.

Listing A.4 – Methodblock struct
1 struct methodblock {

2 Class *class;

3 char *name;

4 char *type;

5 char *signature;

6 u2 access_flags;

7 u2 max_stack;

8 u2 max_locals;

9 u2 args_count;

10 u2 throw_table_size;

11 u2 exception_table_size;

12 u2 line_no_table_size;

13 int native_extra_arg;

14 NativeMethod native_invoker;

15 void *code;

16 int code_size;

17 u2 *throw_table;

118

18 ExceptionTableEntry *exception_table;

19 LineNoTableEntry *line_no_table;

20 int method_table_index;

21 MethodAnnotationData *annotations;

22 #ifdef INLINING

23 QuickPrepareInfo *quick_prepare_info;

24 ProfileInfo *profile_info;

25 #endif

26 };

Constant Pool
In line 14 and 19 of code listing A.2, variable constant_pool_count and array constant_pool

are defined. When a class is loaded and defined in JamVM, a table of constant_pool_count
* sizeof(ConstantPoolEntry) is allocated outside of the heap to hold the constant pool
table of a type. The definition of ConstantPoolEntry showed in code listing A.5 follows its
standard definition suggested by the Java Virtual Machine Specification [54].

Listing A.5 – ConstantPoolEntry structure
1 typedef uintptr_t ConstantPoolEntry;

2

3 typedef struct constant_pool {

4 volatile u1 *type;

5 ConstantPoolEntry *info;

6 } ConstantPool;

A.1.3 Threads and Thread Stacks

The loading and initialization of Thread classes are performed in distinct steps by the JamVM.
This happens because the Class Loader needs to be executed in a valid thread and execution
environment, but in order to create and initialize a Thread it is required to load the Thread class.

In the loading step, classes are loaded from their .class files, but the initializers, static blocks
and constructors are not executed.

In the initialization step, after the Thread class is loaded, the initializers, and static blocks and
constructors are executed, allowing the main thread to proceed.

JamVM threads are allocated outside the heap. All threads allocate at least 1 MB for stack
space. The thread struct presented on code listing A.6 holds all thread-related information.

Listing A.6 – Thread structure
1 struct thread {

2 int id;

3 pthread_t tid;

4 char state;

5 char suspend;

119

6 char blocking;

7 char park_state;

8 char interrupted;

9 char interrupting;

10 ExecEnv *ee;

11 void *stack_top;

12 void *stack_base;

13 Monitor *wait_mon;

14 Monitor *blocked_mon;

15 Thread *wait_prev;

16 Thread *wait_next;

17 pthread_cond_t wait_cv;

18 pthread_cond_t park_cv;

19 pthread_mutex_t park_lock;

20 long long blocked_count;

21 long long waited_count;

22 Thread *prev, *next;

23 unsigned int wait_id;

24 unsigned int notify_id;

25 };

In line 10, an Execution Environment is declared. The ExecEnv struct can be viewed on code
listing A.7.

Listing A.7 – ExecutionEnvironment structure
1 typedef struct exec_env {

2 Object *exception;

3 char *stack;

4 char *stack_end;

5 int stack_size;

6 Frame *last_frame;

7 Object *thread;

8 char overflow;

9 } ExecEnv;

A.1.4 Symbols Hash Table

JamVM uses indices implemented as hash tables to keep track and perform quick searches of
different entries on the JamVM environment.

The hash tables used by JamVM are allocated outside the heap, using the gcMemMalloc(),
gcMemFree(), and gcMemRealloc() functions.

All hash tables have a generic structure as depicted on code listing A.8 and a generic function
for finding, adding and resizing as depicted on code listing A.9.

120

Listing A.8 – HashTable structs
1 typedef struct hash_entry {

2 void *data;

3 int hash;

4 } HashEntry;

5

6 typedef struct hash_table {

7 HashEntry *hash_table;

8 int hash_size;

9 int hash_count;

10 VMLock lock;

11 } HashTable;

Listing A.9 – findHashEntry function
1 #define findHashEntry(table, ptr, ptr2, add_if_absent, scavenge, locked)

2 {

3 int hash = HASH(ptr);

4 int i;

5

6 Thread *self;

7 if(locked)

8 {

9 self = threadSelf();

10 lockHashTable0(&table, self);

11 }

12

13 i = hash & (table.hash_size - 1);

14

15 for(;;)

16 {

17 ptr2 = table.hash_table[i].data;

18 if((ptr2 == NULL) || (COMPARE(ptr, ptr2, hash, table.hash_table[i].

hash)))

19 break;

20

21 i = (i+1) & (table.hash_size - 1);

22 }

23

24 if(ptr2)

25 {

26 ptr2 = FOUND(ptr, ptr2);

27 } else

28 if(add_if_absent)

29 {

30 table.hash_table[i].hash = hash;

31 ptr2 = table.hash_table[i].data = PREPARE(ptr);

121

32

33 if(ptr2)

34 {

35 table.hash_count++;

36 if((table.hash_count * 4) > (table.hash_size * 3))

37 {

38 int new_size;

39 if(scavenge)

40 {

41 HashEntry *entry = table.hash_table;

42 int cnt = table.hash_count;

43 for(; cnt; entry++)

44 {

45 void *data = entry->data;

46 if(data)

47 {

48 if(SCAVENGE(data))

49 {

50 entry->data = NULL;

51 table.hash_count--;

52 }

53 cnt--;

54 }

55 }

56 if((table.hash_count * 3) > (table.hash_size * 2))

57 {

58 new_size = table.hash_size*2;

59 }

60 else

61 {

62 new_size = table.hash_size;

63 }

64 }

65 else

66 {

67 new_size = table.hash_size*2;

68 }

69 resizeHash(&table, new_size);

70 }

71 }

72 }

73 if(locked)

74 {

75 unlockHashTable0(&table, self);

76 }

77 }

122

Each hash table has a specific function for hash creation and comparison.
JamVM has the following hash tables:

• Symbols hash table — contains symbols encoded with UTF-8. Hash creation and comparisons
are made using UTF-8 strings.

• Classes hash table — contains classes pointers to the heap. Hash creation and comparisons
are made using UTF-8 strings.

• Boot Packages hash table — contains packages loaded by the boot loader. Hash creation and
comparisons are made using UTF-8 strings.

• Boot classes hash table — contains classes loaded by the boot loader and internally created
arrays. Hash creation and comparisons are made using UTF-8 strings.

• Strings hash table — contains Java strings. Hash creation and comparisons are made using
string data.

• DLL hash table — Contains file descriptors to external structures (e.g. Operational system
files). Hash creation and comparisons are made using file names.

A.2 Changes Required to Implement JaphaVM

As expected, most changes made to implement JaphaVM are related to memory management,
such as persistence of heap structures, data referenced by heap structures, and JamVM hash tables.
Additional changes were made to the GNU Classpath Java class library to address the handling of
external state (such as standard console input/output).

The following sections present all changes made to the JamVM baseline in order to implement
the JaphaVM prototype.

A.2.1 Invocation Arguments

In order to allow the invocation of the JamVM with a persistent heap, we have added a new
invocation argument -persistentheap:<heapname> that alternates between a persistent
mode and non-persistent mode as depicted on code listing A.10. The persistent heap file name
must be informed as a parameter. On the initialization functions, a global boolean variable called
persistent is created in order to verify the execution mode throughout the code.

Listing A.10 – New invocation argument (jam.c)
1 ...

2 args->persistent_heap = FALSE;

3 ...

4 if (strncmp(argv[i], "-persistentheap:", 16) == 0) {

5 args->persistent_heap = TRUE;

123

6 args->heap_file = argv[i] + 16;

7 persistent = TRUE;

8 }

Invoking the virtual machine with the -persistentheap flag will execute in persistent heap
mode. Otherwise, it will execute the standard JamVM, simplifying tests and comparisons.

A.2.2 Heap Persistence

As previously mentioned, the original JamVM implementation uses a private memory mapped
area via the mmap function in order to allocate memory for the JVM heap.

Our initial implementation of the persistent heap only modified the mmap flags to use a shared
memory mapping using a file on top of a PM-aware file system. Although this implementation indeed
worked to provide heap persistence, it was not fault-tolerant, and unexpected application termination
could leave the persistent heap in an inconsistent state.

The final JaphaVM implementation uses the NVML library [27] in order to provide fault-tolerance,
as NVML provides journaled transactions via an undo log in PM.

We introduced a data structure that represents the persistent heap and contains pointers to its
data and metadata. The PHeap data structure is shown on Listing A.11.

Listing A.11 – PHeap structure (jam.h)
1 typedef struct pheap {

2 void *base_address;

3 Chunk *freelist;

4 Chunk **chunkpp;

5 unsigned long heapfree;

6 unsigned long maxHeap;

7 char *heapbase;

8 char *heapmax;

9 char *heaplimit;

10 nvmChunk *nvmfreelist;

11 nvmChunk **nvmChunkpp;

12 unsigned int nvmFreeSpace;

13 unsigned int nvmCurrentSize;

14 unsigned long nvm_limit;

15 OPC opc;

16 char* utf8_ht[UTF8_HT_SIZE];

17 char* bootCl_ht[BOOTCL_HT_SIZE];

18 char* bootPck_ht[BOOTPCK_HT_SIZE];

19 char* string_ht[STRING_HT_SIZE];

20 char* classes_ht[CLASSES_HT_SIZE];

21 char* monitor_ht[MONITOR_HT_SIZE];

22 char* zip_ht[ZIP_HT_SIZE];

23 char nvm[NVM_INIT_SIZE];

24 char heapMem[HEAP_SIZE];// heap contents

124

25 } PHeap;

PHeap member heapMem provisions the actual heap allocation space. Its size is currently
defined by HEAP_SIZE at compile time and is not dynamically resizable.

The member base_address exists to guarantee that the persistent heap will be mapped to
the same base address across multiple executions of the JVM. This is necessary to ensure that
persistent pointers will continue pointing to the right addresses. It would be possible to avoid the
need for using the same base address by using relocatable pointers provided by NVML (PMEMoids).
However, that would require the modification of all JamVM opcodes. For this experiment, we decided
for simplicity reasons to use absolute pointers and require the persistent heap to be always remapped
to the same base address. As consequence, before executing the JVM it is necessary to set the
NVML environment variable PMEM_MMAP_HINT to the desired base address.

Pheap members heapfree, maxHeap, heapbase, heapmax, and heaplimit hold heap
metadata. Members freelist and chunkpp contain pointers to heap memory chunks, as
described in Section A.1.2.

Pheaap members nvmfreelist, nvmChunkpp, nvmFreeSpace, nvmCurrentSize, and
nvm_limit contain pointers for a separate chunk area specific for non-heap metadata, provisioned
in member nvm. The size of the latter is defined by NVM_INIT_SIZE at compile time and is not
dynamically resizable. Non-heap metadata are described in further detail in Section A.2.7.

Members ending with _ht hold pointers to internal hash tables, described in more detail in
Section A.2.8.

The member opc contains a pointer to an OPC data structure containing additional metadata
used for managing internal VM hash tables and Garbage Collection, among others. The OPC struct
is listed on Listing A.12.

Listing A.12 – OPC struct
1 typedef struct opc {

2 int ldr_vmdata_offset;

3 Class *java_lang_Class;

4 unsigned long chunkpp;

5 uintptr_t freelist_header;

6 struct chunk *freelist_next;

7 unsigned int heapfree;

8 int boot_classes_hash_count;

9 int boot_packages_hash_count;

10 int classes_hash_count;

11 int string_hash_count;

12 int utf8_hash_count;

13 Class *prim_classes[9];

14 Object **has_finaliser_list;

15 int has_finaliser_count;

16 int has_finaliser_size;

17 } OPC;

125

A.2.3 NVML Transactions

As mentioned previously, we have chosen to use the NVML library in order to make persistent
heap operations fault-tolerant by means of transactions.

In order to have proper transactional behavior using NVML, we need to start/end transactions
at the appropriate points, and we need to ensure that all data about to be modified is added to the
undo log before the actual modification.

We have created three macros to define the start and the end of a execution as well as a macro
to add data to the undo log, depicted on A.13. These macros are used every time data inside the
NVML Memory Pool is modified.

Listing A.13 – NVML transaction macros
1 uint total_tx_count;

2 #define NVML_DIRECT(TYPE, PTR, SIZE) if(pmemobj_tx_stage() ==

TX_STAGE_WORK) { \

3 if(errr = pmemobj_tx_add_range_direct(PTR, SIZE)) { \

4 printf("%s ERROR %d: could not add range to

transaction\n", TYPE, errr); \

5 } \

6 }

7

8 #define BEGIN_TX(TYPE) if(errr = pmemobj_tx_begin(pop_heap, NULL,

TX_LOCK_NONE)) { \

9 printf("ERROR %d at BEGIN\n", errr); \

10 } else { \

11 total_tx_count++; \

12 } \

13

14 #define END_TX(TYPE) if(pmemobj_tx_stage() == TX_STAGE_WORK) { \

15 pmemobj_tx_process(); \

16 } \

17 if(pmemobj_tx_stage() != TX_STAGE_NONE) { \

18 flushPHValues(); \

19 pmemobj_tx_end(); \

20 total_tx_count--; \

21 }

A.2.4 NVML Memory Pool Initialization

In order to access data in PM via NVML, it is necessary to declare a Memory Pool. The memory
pool declaration is depicted on Listing A.14.

126

Listing A.14 – NVML Memory Pool declaration (jam.h)
1 POBJ_LAYOUT_BEGIN(HEAP_POOL);

2 POBJ_LAYOUT_ROOT(HEAP_POOL, PHeap);

3 POBJ_LAYOUT_END(HEAP_POOL);

4

5 int nvml_alloc, persistent, errr, first_ex;

6 PMEMobjpool *pop_heap;

7 PMEMoid root_heap;

8 PHeap *pheap;

Once the memory pool is defined, it needs to be created by means of the NVML function
pmemobj_create(). In posterior executions of the VM, it can be reopened with pmemobj_open().
Both operations are shown on Listing A.15.

Listing A.15 – NVML File initialization method (alloc.c)
1 int initialiseRoot(InitArgs *args) {

2 unsigned long heap_size;

3

4 if(HEAP_SIZE < PMEMOBJ_MIN_POOL)

5 heap_size = PMEMOBJ_MIN_POOL;

6 else

7 heap_size = HEAP_SIZE;

8

9 if(access(PATH, F_OK) != 0) {

10 if((pop_heap = pmemobj_create(PATH, POBJ_LAYOUT_NAME(HEAP_POOL),

PHEAP_SIZE, 0666)) == NULL) {//8388608

11 printf("failed to create pool\n");

12 printf("error msg:\t%s\n", pmem_errormsg());

13 return FALSE;

14 }

15 BEGIN_TX("INITIALISEROOT CREATING")

16 root_heap = pmemobj_root(pop_heap, heap_size);

17 pheap = (PHeap*) pmemobj_direct(root_heap);

18 pheap->base_address = pheap;

19 pheap->heapfree = HEAP_SIZE - sizeof(Chunk);

20 pheap->maxHeap = HEAP_SIZE;

21 pheap->heapbase = (char*) (((uintptr_t)pheap->heapMem + HEADER_SIZE +

OBJECT_GRAIN-1) & ~(OBJECT_GRAIN-1)) - HEADER_SIZE;

22 pheap->heapmax = pheap->heapbase + ((args->max_heap - (pheap->heapbase -

pheap->heapMem)) & ~(OBJECT_GRAIN - 1));

23 pheap->heaplimit = pheap->heapbase + ((args->min_heap - (pheap->heapbase

- pheap->heapMem)) & ~(OBJECT_GRAIN - 1));

24 pheap->freelist = (Chunk*) pheap->heapbase;

25 pheap->freelist->header = pheap->heaplimit - pheap->heapbase;

26 pheap->freelist->next = NULL;

27 pheap->chunkpp = &(pheap->freelist);

28 }

127

29 else {

30 if((pop_heap = pmemobj_open(PATH, POBJ_LAYOUT_NAME(HEAP_POOL))) == NULL)

{

31 printf("failed to open pool\n");

32 return FALSE;

33 }

34 BEGIN_TX("INITIALISEROOT OPENING")

35 root_heap = pmemobj_root(pop_heap, heap_size);

36 pheap = (struct pheap*) pmemobj_direct(root_heap);

37 if(pheap->base_address != pheap) {

38 printf("ERROR: base addresses are different, will abort VM execution\n"

);

39 printf("Expected base address was %p, but current base address is %p\n"

, pheap->base_address, pheap);

40 //pmemobj_close(pop_heap); // attempt to close memory pool is

generating segfault, so we’ll just skip it

41 exit(-1);

42 }

43 }

44

45 return TRUE;

46 }

A.2.5 VM Initialization

The whole VM initialization process happens inside a single NVML transaction. This way, if the
VM is interrupted unexpectedly in the middle of initialization, it will not leave a corrupt Memory
Pool behind. This transactions starts when the Memory Pool is opened (Listing A.15) and ends
when the initVM function finishes (see Listing A.16).

Listing A.16 – InitVM function (init.c)
1 void initVM(InitArgs *args) {

2 /* Perform platform dependent initialisation */

3 initialisePlatform();

4

5 nvml_alloc = TRUE;

6

7 initialiseHooks(args);

8 initialiseProperties(args);

9 initialiseAlloc(args);

10 initialiseUtf8(args);

11 initialiseThreadStage1(args);

12 initialiseSymbol();

13 initialiseClass(args);

14 initialiseMonitor(args);

128

15 initialiseString(args);

16 initialiseException();

17 initialiseDll(args);

18 initialiseNatives();

19 initialiseJNI();

20 initialiseInterpreter(args);

21 initialiseThreadStage2(args);

22 initialiseGC(args);

23

24 END_TX("INITVM")

25 nvml_alloc = VM_initing = FALSE;

26 }

A.2.6 Persistent Heap Allocation

The function responsible for heap allocation in the original JamVM code is gcMalloc. Our
implementation introduces the ph_malloc function that is used when the persistent heap is
enabled. This function manipulates heap chunks in the Memory Pool in transactional context. The
ph_malloc function is listed on Listing A.17.

Listing A.17 – ph_malloc function (alloc.c)
1 void *ph_malloc(int len2) {

2 uintptr_t largest;

3 Chunk *found;

4 Thread *self;

5 int err;

6 int have_remaining = FALSE;

7

8 char *ret_addr;

9

10 int n = (len2+HEADER_SIZE+OBJECT_GRAIN-1)&~(OBJECT_GRAIN-1);

11 /* Grab the heap lock, hopefully without having to

12 wait for it to avoid disabling suspension */

13 self = threadSelf();

14 if(!tryLockVMLock(heap_lock, self)) {

15 disableSuspend(self);

16 lockVMLock(heap_lock, self);

17 enableSuspend(self);

18 }

19

20 /* Scan freelist looking for a chunk big enough to

21 satisfy allocation request */

22 int has_found = FALSE;

23

24 if(nvml_alloc) {

129

25 NVML_DIRECT("CHUNKPP", &pheap->chunkpp, sizeof(Chunk*))

26 }

27

28 for (;;) {

29

30 uintptr_t len;

31 while(*(pheap->chunkpp)) {

32 len = (*(pheap->chunkpp))->header;

33 if(len == n) {

34 found = *pheap->chunkpp;

35 *pheap->chunkpp = found->next;

36 has_found = TRUE;

37 goto got_it_pmem;

38 }

39 if(len > n) {

40 Chunk *rem;

41 found = *pheap->chunkpp;

42 rem = (Chunk*)((char*)found + n);

43 rem->header = len - n;

44

45 /* Chain the remainder onto the freelist only

46 if it’s large enough to hold an object */

47 if(rem->header >= MIN_OBJECT_SIZE) {

48 have_remaining = TRUE;

49 rem->next = found->next;

50 *pheap->chunkpp = rem;

51 } else

52 *pheap->chunkpp = found->next;

53

54 has_found = TRUE;

55 goto got_it_pmem;

56 }

57 pheap->chunkpp = &(*pheap->chunkpp)->next;

58 }

59

60 if (!has_found) {

61 if(verbosegc) jam_printf("<GC: Alloc attempt for %d bytes failed.>\n",

n);

62

63 /* The state determines what action to take in the event of

64 allocation failure. The states go up in seriousness,

65 and are visible to other threads */

66 static enum { gc, run_finalizers, throw_oom } state = gc;

67

68 switch(state) {

69

70 case gc:

130

71 /* Normal failure. Do a garbage-collection and retry

72 allocation if the largest block satisfies the request.

73 Attempt to ensure heap is at least 25% free, to stop

74 rapid gc cycles */

75 largest = gc0_pmem(TRUE, FALSE);

76

77 if(n <= largest && (pheap->heapfree * 4 >= (pheap->heaplimit -

pheap->heapbase)))

78 break;

79

80 /* We fall through into the next state, but we need to set

81 the state as it will be visible to other threads */

82 state = run_finalizers;

83

84 case run_finalizers:

85 /* Before expanding heap try to run outstanding finalizers.

86 If gc found new finalizers, this gives the finalizer chance

87 to run them */

88 /* XXX NVM CHANGE 000.000.000 */

89 //msync(heapMem, maxHeap, MS_SYNC);

90 unlockVMLock(heap_lock, self);

91 disableSuspend(self);

92

93 if(verbosegc)

94 jam_printf("<GC: Waiting for finalizers to be ran.>\n");

95

96 runFinalizers0(self, 200);

97 lockVMLock(heap_lock, self);

98 enableSuspend(self);

99

100 if(state != run_finalizers)

101 break;

102

103 /* Retry gc, but this time compact the heap rather than just

104 sweeping it */

105 largest = gc0_pmem(TRUE, TRUE);

106 if(n <= largest && (pheap->heapfree * 4 >= (pheap->heaplimit -

pheap->heapbase))) {

107 state = gc;

108 break;

109 }

110

111 /* Still not freed enough memory so try to expand the heap.

112 Note we retry allocation even if the heap couldn’t be

113 expanded sufficiently -- there’s a chance gc may merge

114 adjacent blocks together at the top of the heap */

115 /*

131

116 if(heaplimit < heapmax) {

117 expandHeap(n);

118 state = gc;

119 break;

120 }

121 */

122

123 if(verbosegc)

124 jam_printf("<GC: Stack at maximum already."

125 " Clearing Soft References>\n");

126

127 /* Can’t expand the heap any more. Try GC again but this time

128 clearing all soft references. Note we succeed if we can

129 satisfy the request -- we may have been able to all along,

130 but with nothing spare. We may thrash, but it’s better

131 than throwing OOM */

132 largest = gc0_pmem(FALSE, TRUE);

133 if(n <= largest) {

134 state = gc;

135 break;

136 }

137

138 if(verbosegc)

139 jam_printf("<GC: completely out of heap space"

140 " - throwing OutOfMemoryError>\n");

141

142 state = throw_oom;

143 unlockVMLock(heap_lock, self);

144 signalException(java_lang_OutOfMemoryError, NULL);

145 return NULL;

146 break;

147

148 case throw_oom:

149 /* Already throwing an OutOfMemoryError in some thread. In

150 both cases, throw an already prepared OOM (no stacktrace).

151 Could have a * per-thread flag, so we try to throw a new

152 OOM in each thread, but if we’re this low on memory I

153 doubt it’ll make much difference. */

154

155 if(verbosegc)

156 jam_printf("<GC: completely out of heap space"

157 " - throwing prepared OutOfMemoryError>\n");

158

159 state = gc;

160 unlockVMLock(heap_lock, self);

161 setException(oom);

162 return NULL;

132

163 break;

164 }

165 }

166 }

167

168 got_it_pmem:

169 if(nvml_alloc) {

170 NVML_DIRECT("HEAPFREE", &(pheap->heapfree), sizeof(pheap->heapfree))

171 }

172

173 pheap->heapfree -= n;

174

175 if(have_remaining) {

176 if(nvml_alloc) {

177 NVML_DIRECT("FOUND", found, HEADER_SIZE * 2 + n)

178 }

179 }

180 else {

181 if(nvml_alloc) {

182 NVML_DIRECT("FOUND2", found, HEADER_SIZE + n)

183 }

184 }

185

186 found->header = n | ALLOC_BIT;

187

188 /* Found is a block pointer - if we unlock now, small window

189 * where new object ref is not held and will therefore be gc’ed.

190 * Setup ret_addr before unlocking to prevent this.

191 */

192

193 ret_addr = ((char*)found)+HEADER_SIZE;

194 memset(ret_addr, 0, n-HEADER_SIZE);

195 unlockVMLock(heap_lock, self);

196

197 return ret_addr;

198 }

A.2.7 Non-Heap Objects Persistence

We need to ensure that all data structures that are referenced by heap objects, such as class
definitions and compiled methods, are persisted and can be retrieved in future executions. However,
many of these structures are stored outside of the heap allocation space in the original JamVM
implementation. In order to overcome this problem, we created a second persistent allocation space,
using the same chunk-based management mechanism used for the heap.

Chunks managed in this memory region have the format defined in Listing A.18.

133

Listing A.18 – NVMChunk struct (jam.h)
1 typedef struct nvmChunk

2 {

3 int allocBit;

4 unsigned int chunkSize;

5 struct nvmChunk *next;

6 } nvmChunk;

NVMChunk member allocBit indicates if the chunk is being used, chunkSize is the size
of the chunk in bytes and next is a pointer to the next chunk on the list. As we are replacing the
standard malloc function an alignment is necessary due to JamVM pointer masks.

A new set of allocation functions were created to handle data structures in this non-heap persistent
space, as listed below.

• sysMalloc_persistent

This function, as depicted on Listing A.19, searches for the first free chunk that can hold the
specified size, allocates that chunk, and returns its address.

Listing A.19 – sysMalloc_persistent function (alloc.c)
1 void *sysMalloc_persistent(unsigned int size){

2 if (persistent){

3 uint n = size < sizeof(void*) ? sizeof(void*) : size;

4 uint have_remaining = FALSE;

5 void *ret_addr = NULL;

6 nvmChunk *rem = NULL;

7 nvmChunk *found = NULL;

8 int err;

9 int shift = 0;

10

11 unsigned int len = 0;

12 if(nvml_alloc) {

13 NVML_DIRECT("NVMCHUNKPP", &pheap->nvmChunkpp, sizeof(nvmChunk*))

14 }

15 while (*(pheap->nvmChunkpp)){

16

17 /* search unallocated chunk */

18 if ((*(pheap->nvmChunkpp))->allocBit == 1) {

19 pheap->nvmChunkpp = &(*(pheap->nvmChunkpp))->next;

20 continue;

21 }

22 len = (*(pheap->nvmChunkpp))->chunkSize;

23

24 if(len > n) {

25 found = *(pheap->nvmChunkpp);

26 /* check if remaining space can hold a chunk */

134

27 if((int)(len - (nvmHeaderSize + n)) >= minSize) {

28 /* ptr + header + content = OK */

29 rem = (nvmChunk*)((char*)found + nvmHeaderSize + n);

30

31 have_remaining = TRUE;

32 if (shift = (unsigned int)rem & 0x3){

33 shift = (0x4 - shift);

34 memset(rem, 0 , shift);

35 rem = ((char*)rem + shift);

36 }

37 rem->allocBit = 0;

38 rem->chunkSize = len - (shift + nvmHeaderSize + n);

39 rem->next = found->next;

40 }

41 ret_addr = ((void*)found + nvmHeaderSize);

42 break;

43 }

44

45 if(len == n) {

46 found = *(pheap->nvmChunkpp);

47 ret_addr = ((void*)found + nvmHeaderSize);

48 break;

49 }

50 pheap->nvmChunkpp = &(*(pheap->nvmChunkpp))->next;

51 }

52

53 if (found == NULL) {

54 // we couldn’t find any chunk with the desired size

55 // since we don’t have GC yet, we’ll have to exit the JVM

56 jam_fprintf(stderr, "We’re out of chunks and don’t have GC for

sysMalloc_persistent.\n");

57 exitVM(1);

58 }

59

60 if(have_remaining) {

61 if(nvml_alloc) {

62 NVML_DIRECT("FOUND3", found, nvmHeaderSize * 2 + n)

63 }

64 }

65 else {

66 if(nvml_alloc) {

67 NVML_DIRECT("FOUND4", found, nvmHeaderSize + n)

68 }

69 }

70

71 found->allocBit = 1;

72 found->chunkSize = n;

135

73

74 if(have_remaining)

75 found->next = rem;

76

77 if(nvml_alloc) {

78 NVML_DIRECT("NVMFREESPACE", &(pheap->nvmFreeSpace), sizeof(pheap->

nvmFreeSpace))

79 }

80

81 if(have_remaining)

82 pheap->nvmFreeSpace = pheap->nvmFreeSpace - nvmHeaderSize - shift

- sizeof(nvmChunk);

83 else

84 pheap->nvmFreeSpace = pheap->nvmFreeSpace - found->chunkSize -

sizeof(nvmChunk);

85

86 if (nvml_alloc) {

87 if ((void*)found >= (void*)(pheap->nvm + pheap->nvmCurrentSize)) {

88 printf("NVM_LIMIT exceeded %p >= %p\n", (void*)found, (void*)

pheap->nvm_limit);

89 }

90 }

91

92 /* clear chunk */

93 memset(ret_addr, 0, found->chunkSize);

94

95 return ret_addr;

96 }else

97 return sysMalloc(size);

98 }

• sysFree_persistent

This function (Listing A.20) sets the allocBit of a given chunk to zero, indicating its now
free, and erases its content.

Listing A.20 – sysFree_persistent function (alloc.c)
1 void sysFree_persistent(void* addr) {

2 if(persistent) {

3 int err;

4 unsigned long ptr = (unsigned long) addr;

5 /* chunk = ptr - header */

6 nvmChunk *toFree = (nvmChunk*)(ptr-nvmHeaderSize);

7 if(nvml_alloc) {

8 NVML_DIRECT("NVMFREESPACE", &(pheap->nvmFreeSpace), sizeof(

pheap->nvmFreeSpace))

9 }

136

10 pheap->nvmFreeSpace = pheap->nvmFreeSpace + toFree->chunkSize;

11 if(nvml_alloc) {

12 NVML_DIRECT("TOFREE", toFree, toFree->chunkSize +

nvmHeaderSize)

13 }

14 toFree->allocBit = 0;

15 memset((void*)ptr, 0, toFree->chunkSize);

16 } else {

17 sysFree(addr);

18 }

19 }

• sysRealloc_persistent

This function (Listing A.21) is similar to standard realloc function: it copies the content
to a new chunk with the given size, erases the old data and set the old chunk as free.

Listing A.21 – sysRealloc_persistent function (alloc.c)
1 void *sysRealloc_persistent(void *addr, unsigned int size) {

2 void *mem;

3 if (persistent) {

4 /* chunk = ptr - header */

5 nvmChunk *toRealloc = (addr-nvmHeaderSize);

6 mem = sysMalloc_persistent(size);

7 if (addr != NULL) {

8 if ((toRealloc->chunkSize <= size)) {

9 memcpy(mem, ((void*)toRealloc+nvmHeaderSize), toRealloc->

chunkSize);

10 } else {

11 memcpy(mem, ((void*)toRealloc+nvmHeaderSize), size);

12 }

13 sysFree_persistent(addr);

14 }

15 return mem;

16 } else {

17 return sysRealloc(addr, size);

18 }

19 }

A.2.8 Hash Tables Persistence

JamVM stores several internals hash tables containing metadata. In JaphaVM, these hash tables
are contained by the PHeap data structure, and the gcMemMalloc function (listed on A.22)
returns pointers to where each hash table is stored in the non-heap area.

The Hash table initialization code was changed to avoid resetting all entries during JVM startup.

137

The DLL hash table is not stored, and thus needs to be recreated at each JVM execution.

Listing A.22 – gcMemMalloc function (alloc.c)
1 void *gcMemMalloc(int n, char* name, int create_file) {

2 uintptr_t size = n + sizeof(uintptr_t);

3 uintptr_t *mem;

4 int fd;

5

6 if (persistent && create_file) {

7 if(strcmp(name, HT_NAME_UTF8) == 0) {

8 return pheap->utf8_ht;

9 } else

10 if(strcmp(name, HT_NAME_BOOT) == 0) {

11 return pheap->bootCl_ht;

12 } else

13 if(strcmp(name, HT_NAME_BOOTPKG) == 0) {

14 return pheap->bootPck_ht;

15 } else

16 if(strcmp(name, HT_NAME_STRING) == 0) {

17 return pheap->string_ht;

18 } else

19 if(strcmp(name, HT_NAME_CLASS) == 0) {

20 return pheap->classes_ht;

21 } else

22 if(strcmp(name, HT_NAME_MONITOR) == 0) {

23 return pheap->monitor_ht;

24 } else

25 if(strcmp(name, HT_NAME_MONITOR) == 0) {

26 return pheap->monitor_ht;

27 } else

28 if(strcmp(name, HT_NAME_ZIP) == 0) {

29 return pheap->zip_ht;

30 }

31

32 unsigned long buffer[1];

33 size = size + sizeof(unsigned long);

34 if(access(name, F_OK) != -1) {

35 fd = open (name, O_RDWR | O_APPEND , S_IRUSR | S_IWUSR);

36 read(fd, &buffer, sizeof(unsigned long)+sizeof(uintptr_t));

37 mem = (uintptr_t*)mmap((void*)buffer[0],buffer[1], PROT_READ|PROT_WRITE

, MAP_SHARED, fd, 0);

38 *mem++ = (unsigned long)mem;

39 } else {

40 fd = open (name, O_RDWR | O_CREAT , S_IRUSR | S_IWUSR);

41 lseek (fd, size-1, SEEK_SET);

42 write(fd,"",1);

43 mem = (uintptr_t*)mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd,

138

0);

44 *mem++ = (unsigned long)mem;

45 }

46 msync(mem, size, MS_SYNC);

47 } else {

48 mem = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,

0);

49 }

50

51 if(mem == MAP_FAILED) {

52 jam_fprintf(stderr, "Mmap failed - aborting VM...\n");

53 exitVM(1);

54 }

55

56 *mem++ = size;

57 return mem;

58 }

A.2.9 Context Recovery

JamVM uses several static values that are set during load, link or init of classes. As in persistent
mode it will only pass through these steps once (on first execution) a new mechanism was made to
set this values in every subsequent execution.

A struct called OPC (Orthogonal Persistence Context), shown previously on Listing A.12, contains
the most up to date value of the current execution and is updated at the end of each NVML
transaction.

The OPC member first_ex is a flag indicating if the current execution is the first one.

A.2.10 Java Opcodes

The implementation of all Java opcodes that change heap state must store/access data inside
the Memory Pool, and ensure that all modifications happen in transactional context. Listings A.23
— A.35 describe all changes made.

• ARRAY_STORE MACRO

Listing A.23 – ARRAY STORE macro (interp/engine/interp.c)
1 #define ARRAY_STORE(TYPE) \

2 { \

3 if(persistent) { \

4 BEGIN_TX("ARRAY_STORE") \

5 } \

6 int val = ARRAY_STORE_VAL; \

7 int idx = ARRAY_STORE_IDX; \

139

8 Object *array = (Object *)*--ostack; \

9 \

10 NULL_POINTER_CHECK(array); \

11 ARRAY_BOUNDS_CHECK(array, idx); \

12 if(persistent) { \

13 NVML_DIRECT("ARRAY_STORE", \

14 &(ARRAY_DATA(array, TYPE)[idx]), \

15 sizeof(val)) \

16 } \

17 ARRAY_DATA(array, TYPE)[idx] = val; \

18 if(persistent) { \

19 END_TX("ARRAY_STORE") \

20 } \

21 DISPATCH(0, 1); \

22 }

• MONITOR_ENTER OPCODE

Listing A.24 – MONITOR ENTER macro (interp/engine/interp.c)
1 DEF_OPC_210(OPC_MONITORENTER, {

2 Object *obj = (Object *)*--ostack;

3 NULL_POINTER_CHECK(obj);

4 if(persistent) {

5 BEGIN_TX("MONITORENTER")

6 NVML_DIRECT("ENTEROBJ", obj, sizeof(Object));

7 }

8 objectLock(obj);

9 DISPATCH(0, 1);

10 })

• MONITOR_EXIT OPCODE

Listing A.25 – MONITOR EXIT macro (interp/engine/interp.c)
1 DEF_OPC_210(OPC_MONITOREXIT, {

2 Object *obj = (Object *)*--ostack;

3 NULL_POINTER_CHECK(obj);

4 objectUnlock(obj);

5 if(persistent) {

6 END_TX("MONITOREXIT")

7 }

8 DISPATCH(0, 1);

9 })

• AASTORE OPCODE

140

Listing A.26 – AASTORE opcode (interp/engine/interp.c)
1 DEF_OPC_012(OPC_AASTORE, {

2 if(persistent) {

3 BEGIN_TX("AASTORE")

4 }

5 Object *obj = (Object*)ARRAY_STORE_VAL;

6 int idx = ARRAY_STORE_IDX;

7 Object *array = (Object *)*--ostack;

8

9 NULL_POINTER_CHECK(array);

10 ARRAY_BOUNDS_CHECK(array, idx);

11

12 if((obj != NULL) && !arrayStoreCheck(array->class, obj->class))

13 THROW_EXCEPTION(java_lang_ArrayStoreException, NULL);

14

15 if(persistent) {

16 NVML_DIRECT("AASTORE", &(ARRAY_DATA(array, Object*)[idx]), sizeof(

obj))

17 }

18 ARRAY_DATA(array, Object*)[idx] = obj;

19 if(persistent) {

20 END_TX("AASTORE")

21 }

22 DISPATCH(0, 1);

23 })

• LASTORE and DASTORE OPCODES

Listing A.27 – LASTORE and DASTORE opcodes (interp/engine/interp.c)
1 DEF_OPC_012_2(

2 OPC_LASTORE,

3 OPC_DASTORE, {

4 if(persistent) {

5 BEGIN_TX("LASTORE - DASTORE")

6 }

7 int idx = ostack[-3];

8 Object *array = (Object *)ostack[-4];

9

10 if(persistent) {

11 NVML_DIRECT("L&D ASTORE", &(ARRAY_DATA(array, u8)[idx]), sizeof(u8))

12 }

13 ostack -= 4;

14 NULL_POINTER_CHECK(array);

15 ARRAY_BOUNDS_CHECK(array, idx);

16

17 ARRAY_DATA(array, u8)[idx] = *(u8*)&ostack[2];

141

18 if(persistent) {

19 END_TX("LASTORE - DASTORE")

20 }

21 DISPATCH(0, 1);

22 })

• NEW_QUICK OPCODE

Listing A.28 – NEW QUICK opcode (interp/engine/interp.c)
1 DEF_OPC_210(OPC_NEW_QUICK, {

2 if(persistent) {

3 BEGIN_TX("NEW_QUICK")

4 nvml_alloc = TRUE;

5 }

6 Class *class = RESOLVED_CLASS(pc);

7 Object *obj;

8

9 frame->last_pc = pc;

10 if((obj = allocObject(class)) == NULL)

11 goto throwException;

12

13 if(persistent) {

14 END_TX("NEW_QUICK")

15 nvml_alloc = FALSE;

16 }

17 PUSH_0((uintptr_t)obj, 3);

18 })

• NEWARRAY OPCODE

Listing A.29 – NEWARRAY opcode (interp/engine/interp.c)
1 DEF_OPC_210(OPC_NEWARRAY, {

2 if(persistent) {

3 BEGIN_TX("NEWARRAY")

4 nvml_alloc = TRUE;

5 }

6 int type = ARRAY_TYPE(pc);

7 int count = *--ostack;

8 Object *obj;

9

10 frame->last_pc = pc;

11 if((obj = allocTypeArray(type, count)) == NULL)

12 goto throwException;

13

14 if(persistent) {

15 END_TX("NEWARRAY")

142

16 nvml_alloc = FALSE;

17 }

18 PUSH_0((uintptr_t)obj, 2);

19 })

• ANEWARRAY_QUICK OPCODE

Listing A.30 – ANEWARRAY QUICK opcode (interp/engine/interp.c)
1 DEF_OPC_210(OPC_ANEWARRAY_QUICK, {

2 if(persistent) {

3 BEGIN_TX("ANEWARRAY_QUICK")

4 nvml_alloc = TRUE;

5 }

6 Class *class = RESOLVED_CLASS(pc);

7 char *name = CLASS_CB(class)->name;

8 int count = *--ostack;

9 Class *array_class;

10 char *ac_name;

11 Object *obj;

12

13 frame->last_pc = pc;

14

15 if(count < 0) {

16 signalException(java_lang_NegativeArraySizeException, NULL);

17 goto throwException;

18 }

19

20 ac_name = sysMalloc(strlen(name) + 4);

21

22 if(name[0] == ’[’)

23 strcat(strcpy(ac_name, "["), name);

24 else

25 strcat(strcat(strcpy(ac_name, "[L"), name), ";");

26

27 array_class = findArrayClassFromClass(ac_name, mb->class);

28 free(ac_name);

29

30 if(exceptionOccurred0(ee))

31 goto throwException;

32

33 if((obj = allocArray(array_class, count, sizeof(Object*))) == NULL)

34 goto throwException;

35

36 if(persistent) {

37 END_TX("ANEWARRAY_QUICK")

38 nvml_alloc = FALSE;

143

39 }

40 PUSH_0((uintptr_t)obj, 3);

41 })

• MULTIANEWARRAY_QUICK OPCODE

Listing A.31 – MULTIANEWARRAY QUICK opcode (interp/engine/interp.c)
1 DEF_OPC_210(OPC_MULTIANEWARRAY_QUICK, ({

2 if(persistent) {

3 BEGIN_TX("MULTIANEWARRAY_QUICK")

4 nvml_alloc = TRUE;

5 }

6 Class *class = RESOLVED_CLASS(pc);

7 int i, dim = MULTI_ARRAY_DIM(pc);

8 Object *obj;

9

10 ostack -= dim;

11 frame->last_pc = pc;

12

13 for(i = 0; i < dim; i++)

14 if((intptr_t)ostack[i] < 0) {

15 signalException(java_lang_NegativeArraySizeException, NULL);

16 goto throwException;

17 }

18

19 if((obj = allocMultiArray(class, dim, (intptr_t *)ostack)) == NULL)

20 goto throwException;

21

22 if(persistent) {

23 END_TX("MULTIANEWARRAY_QUICK")

24 nvml_alloc = FALSE;

25 }

26 PUSH_0((uintptr_t)obj, 4);

27 });)

• PUTSTATIC_QUICK OPCODE

Listing A.32 – PUTSTATIC QUICK opcode (interp/engine/interp.c)
1 DEF_OPC(OPC_PUTSTATIC_QUICK##suffix, level, \

2 if(persistent) { \

3 BEGIN_TX("PUTSTATIC_QUICK") \

4 NVML_DIRECT("PUTSTATICQUICK", \

5 RESOLVED_FIELD(pc), sizeof(FieldBlock)); \

6 END_TX("PUTSTATIC_QUICK") \

7 } \

8 POP_##level(*(type*) \

144

9 (RESOLVED_FIELD(pc)->u.static_value.data), 3); \

10)

• PUTSTATIC2_QUICK OPCODE

Listing A.33 – PUTSTATIC2 QUICK opcode (interp/engine/interp.c)
1 DEF_OPC_012(OPC_PUTSTATIC2_QUICK, {

2 if(persistent) {

3 BEGIN_TX("PUTSTATIC2_QUICK")

4 }

5 FieldBlock *fb = RESOLVED_FIELD(pc);

6 if(persistent) {

7 NVML_DIRECT("PUTSTATIC2_QUICK", fb, sizeof(FieldBlock))

8 END_TX("PUTSTATIC2_QUICK")

9 }

10 POP_LONG(fb->u.static_value.l, 3);

11 })

• PUTFIELD_QUICK OPCODE

Listing A.34 – PUTFIELD QUICK opcode (interp/engine/interp.c)
1 DEF_OPC_012(OPC_PUTFIELD_QUICK##suffix, { \

2 if(persistent) { \

3 BEGIN_TX("PUTFIELD_QUICK") \

4 } \

5 Object *obj = (Object *)ostack[-2]; \

6 \

7 ostack -= 2; \

8 NULL_POINTER_CHECK(obj); \

9 if(persistent) { \

10 NVML_DIRECT("PUTFIELD_QUICK",&(INST_DATA(obj, \

11 type, SINGLE_INDEX(pc))),sizeof(type)) \

12 } \

13 INST_DATA(obj, type, SINGLE_INDEX(pc)) = ostack[1]; \

14 if(persistent) { \

15 END_TX("PUTFIELD_QUICK") \

16 } \

17 DISPATCH(0, 3); \

18 })

• PUTFIELD2_QUICK OPCODE

Listing A.35 – PUTFIELD2 QUICK opcode (interp/engine/interp.c)
1 DEF_OPC_012(OPC_PUTFIELD2_QUICK, {

2 if(persistent) {

145

3 BEGIN_TX("PUTFIELD2_QUICK")

4 }

5 Object *obj = (Object *)ostack[-3];

6

7 ostack -= 3;

8 NULL_POINTER_CHECK(obj);

9 if(persistent) {

10 NVML_DIRECT("PUTFIELD2_QUICK",&(INST_DATA(obj, u8, SINGLE_INDEX(pc))

),sizeof(u8))

11 }

12 INST_DATA(obj, u8, SINGLE_INDEX(pc)) = *(u8*)&ostack[1];

13 if(persistent) {

14 END_TX("PUTFIELD2_QUICK")

15 }

16 DISPATCH(0, 3);

17 })

A.2.11 Garbage Collection

As Garbage Collection (GC) modified the persistent heap state, it must happen in the context
of a NVML transaction. We have created new versions of the GC function, which is used when the
persistent heap is enabled: gc0_pmem (Listing A.36).

Listing A.36 – Function gc0_pmem (alloc.c)
1 unsigned long gc0_pmem(int mark_soft_refs, int compact) {

2 Thread *self = threadSelf();

3 uintptr_t largest;

4

5 /* Override compact if compaction has been specified

6 on the command line */

7 if(compact_override)

8 compact = compact_value;

9

10 /* Reset flags. Will be set during GC if a thread needs

11 to be woken up */

12 notify_finaliser_thread = notify_reference_thread = FALSE;

13

14 /* Grab locks associated with the suspension blocked

15 regions. This ensures all threads have suspended

16 or gone to sleep, and cannot modify a list or obtain

17 a reference after the reference scans */

18

19 /* Potential threads adding a newly created object */

20 lockVMLock(has_fnlzr_lock, self);

21

22 /* Held by the finaliser thread */

146

23 lockVMWaitLock(run_finaliser_lock, self);

24

25 /* Held by the reference handler thread */

26 lockVMWaitLock(reference_lock, self);

27

28 /* Stop the world */

29 disableSuspend(self);

30 suspendAllThreads(self);

31

32 if(verbosegc) {

33 struct timeval start;

34 float mark_time;

35 float scan_time;

36

37 getTime(&start);

38 BEGIN_TX("GC-VERBOSE");

39 doMark(self, mark_soft_refs);

40 mark_time = endTime(&start)/1000000.0;

41

42 getTime(&start);

43 largest = compact ? doCompact() : doSweep(self);

44 END_TX("GC-VERBOSE");

45 scan_time = endTime(&start)/1000000.0;

46

47 jam_printf("<GC: Mark took %f seconds, %s took %f seconds>\n",

48 mark_time, compact ? "compact" : "scan", scan_time

);

49 } else {

50 BEGIN_TX("GC");

51 doMark(self, mark_soft_refs);

52 largest = compact ? doCompact() : doSweep(self);

53 END_TX("GC");

54 }

55

56 /* Restart the world */

57 resumeAllThreads(self);

58 enableSuspend(self);

59

60 /* Notify the finaliser thread if new finalisers

61 need to be ran */

62 if(notify_finaliser_thread)

63 notifyAllVMWaitLock(run_finaliser_lock, self);

64

65 /* Notify the reference thread if new references

66 have been enqueued */

67 if(notify_reference_thread)

68 notifyAllVMWaitLock(reference_lock, self);

147

69

70 /* Release the locks */

71 unlockVMLock(has_fnlzr_lock, self);

72 unlockVMWaitLock(reference_lock, self);

73 unlockVMWaitLock(run_finaliser_lock, self);

74

75 freeConservativeRoots();

76 freePendingFrees();

77

78 return largest;

79 }

The gc0_pmem function is called in two situations: a) during a synchronous GC, triggered by
the VM running out of heap space to satisfy an allocation request, in which case the GC will happen
inside a transaction that is already started; b) during an asynchronous GC, invoked by a specialized
thread that triggers a GC periodically when the VM is idle. In the second case we need to start a new
transaction, but can only do that if there are no concurrent transactions, to avoid isolation problems.
In order to solve this problem, we have added a global transaction counter (updated every time that
BEGIN_TX / END_TX are called, and check this counter before triggering an asynchronous GC (see
Listing A.37).

Listing A.37 – Function gc1 (alloc.c)
1 void gc1() {

2 Thread *self;

3 disableSuspend(self = threadSelf());

4 lockVMLock(heap_lock, self);

5 // JAPHA modification to add async tx GC

6 if(verbosegc) jam_printf("<GC: Attempting async GC>, tx_count=%u\n",

total_tx_count);

7 if (total_tx_count == 0) { // only perform async GC if there is no

ongoing NVML transaction

8 if(verbosegc) jam_printf("<GC: Will execute async GC>\n");

9 enableSuspend(self);

10 if (persistent) {

11 gc0_pmem(TRUE, FALSE);

12 } else {

13 gc0(TRUE, FALSE);

14 }

15 }

16 // end of JAPHA modification

17 unlockVMLock(heap_lock, self);

18 }

Finally, two data structures have to be persisted in order for the garbage collection process to
work properly:

148

• Primary classes array

Primary classes are allocated inside an array lazily, so to keep the data context the array had
to be persisted. We added this array to OPC->prim_classes (see code listing A.12).

• Has finalizer list

Objects that have a finalizer are stored inside a list, so to keep the context of objects that have
finalizers the list had to be persisted. We added this to OPC->has_finaliser_list (see
code listing A.12).

A.2.12 Handling External State: Console I/O

As described in section 4.9.5, one of the challenges of OP is how to handle references to state
that is external to the system. An example of that are file descriptors for stdin, stdout, and
stderr.

In GNU Classpath, these file descriptors are opened by native code that is invoked from the static
initializer of the Java library class gnu.java.nio.FileChannelImpl. The Java Language
Specification [39] determines that a static initializer is executed when the class is initialized, which
happens one time when the class is originally loaded. However, we need to open the console file
descriptors every time the VM is executed. None of the existing Java language abstractions provide
a way to express this.

We have taken the approach used previously for PJama and PEVM [9,51], exposing for developers
an API to make classes and objects resumable, i.e., providing an interface for specifying methods to
be executed every time the VM execution is resumed. To be resumable, an object must implement
the interface OPResumeListener, which defines a void resume() method, and be registered
by the OPRuntime.addListener() class method. In order to execute resume code at the
class scope, the class must implement a static void resume() method and be registered by the
OPRuntime.addStaticListener() class method.

We have implemented the OPRuntime class as part of GNU Classpath (see code listing A.38).
In order to get the resume() methods to be executed whenever the JVM resumes execution,
we have modified the JamVM to add a resumeAllListeners function, called just before the
execution of the Java main method. See code listing A.39.

Finally, we applied this solution to reopen the console file descriptors, as shown in code listing
A.40.

Listing A.38 – OPRuntime class (OPRuntime.java)
1 /**

2 * This class registers OPResumeListener objects for execution

3 * upon JVM re-initialization.

4 */

5 public class OPRuntime {

6

149

7 private static Set<OPResumeListener> listeners = null;

8

9 private static Set<Class<?>> staticListeners = null;

10

11 /**

12 * Adds a new listener.

13 */

14 public static void addListener(OPResumeListener listener) {

15 // initialize listeners set if necessary

16 if (listeners == null) {

17 listeners = new HashSet<OPResumeListener>();

18 }

19 // add listener to listeners set

20 listeners.add(listener);

21 }

22

23 /**

24 * Adds a new listener to a class that has a static resume() method.

25 */

26 public static void addStaticListener(Class<?> clazz) {

27 // initialize listeners set if necessary

28 if (staticListeners == null) {

29 staticListeners = new HashSet<Class<?>>();

30 }

31 // add listener to listeners set

32 staticListeners.add(clazz);

33 }

34

35 /**

36 * Method called by the JVM runtime to re-initialize OPResumeListener

objects.

37 */

38 public static void resumeAllListeners() {

39 // resume all listeners

40 if (listeners != null) {

41 Iterator<OPResumeListener> it = listeners.iterator();

42 while(it.hasNext()) {

43 OPResumeListener listener = it.next();

44 listener.resume();

45 }

46 }

47

48 // resume all static listeners

49 if (staticListeners != null) {

50 Iterator<Class<?>> it = staticListeners.iterator();

51 while(it.hasNext()) {

52 Class<?> clazz = it.next();

150

53 Method method;

54 try {

55 method = clazz.getMethod("resume", null);

56 method.invoke(null, (Object[])null);

57 } catch (NoSuchMethodException e) {

58 e.printStackTrace();

59 } catch (SecurityException e) {

60 e.printStackTrace();

61 } catch (IllegalAccessException e) {

62 e.printStackTrace();

63 } catch (IllegalArgumentException e) {

64 e.printStackTrace();

65 } catch (InvocationTargetException e) {

66 e.printStackTrace();

67 }

68 }

69 }

70 }

71 }

Listing A.39 – resumeAllListeners() function (jam.c)
1 int resumeAllListeners(Object *system_loader)

2 {

3 Class *op_runtime = findClassFromClassLoader("javax.op.OPRuntime",

system_loader);

4 Class *vm_channel = findClassFromClassLoader("gnu.java.nio.VMChannel",

system_loader);

5

6 if(op_runtime != NULL)

7 initClass(op_runtime);

8

9 if(exceptionOccurred())

10 return FALSE;

11

12 MethodBlock *mb = lookupMethod(op_runtime, SYMBOL(resumeAllListeners),

13 SYMBOL(___V));

14

15 if(mb == NULL || !(mb->access_flags & ACC_STATIC))

16 {

17 signalException(java_lang_NoSuchMethodError, "resumeAllListeners");

18 return FALSE;

19 }

20

21 executeStaticMethod(op_runtime, mb, NULL);

22

23 if(vm_channel != NULL)

151

24 initClass(vm_channel);

25

26 if(exceptionOccurred())

27 return FALSE;

28

29 if((mb = findMethod(vm_channel, SYMBOL(class_init), SYMBOL(___V))) !=

NULL)

30 executeStaticMethod(vm_channel, mb);

31

32 return TRUE;

33

34 }

Listing A.40 – FileChannelImpl resume implementation (FileChannelImpl.java)
1 ...

2 public static FileChannelImpl in;

3 public static FileChannelImpl out;

4 public static FileChannelImpl err;

5 //private static native void init();

6 static

7 {

8 // XXX NVM CHANGE - moved initialization block code to resume() method,

which implements the OPResumeListener

9 resume();

10 OPRuntime.addStaticListener(FileChannelImpl.class);

11 }

12 public static void resume() {

13 if (Configuration.INIT_LOAD_LIBRARY)

14 {

15 System.loadLibrary("javanio");

16 }

17 FileChannelImpl ch = null;

18 try

19 {

20 ch = new FileChannelImpl(VMChannel.getStdin(), READ);

21 }

22 catch (IOException ioe)

23 {

24 throw new Error(ioe);

25 }

26 in = ch;

27 ch = null;

28 try

29 {

30 ch = new FileChannelImpl(VMChannel.getStdout(), WRITE);

31 }

152

32 catch (IOException ioe)

33 {

34 throw new Error(ioe);

35 }

36 out = ch;

37 ch = null;

38 try

39 {

40 ch = new FileChannelImpl(VMChannel.getStderr(), WRITE);

41 }

42 catch (IOException ioe)

43 {

44 throw new Error(ioe);

45 }

46 err = ch;

47 }

48 ...

A.2.13 JaphaVM Prototype Limitations

The current version of the JaphaVM prototype has the following limitations, which we plan to
address in future versions:

• Interpreter inlining — support for interpreter inlining (code-copying JIT) is not yet implemented;

• Heap size — the heap size is currently fixed;

• Heap address relocation — internal pointers to heap objects use fixed memory addresses in
the current version, so the persistent heap must be always mapped to the same virtual address
range;

• Data vs. execution persistence — the current version supports only data persistence (see
Sections 4.7.1, 4.7.2);

• Type evolution — JaphaVM currently does not support type evolution.

Despite these limitations, the current JaphaVM prototype can execute a wide range of complex
programs, and functions as a vehicle for both performance and development complexity experiments
and evaluation, as presented in chapter 5.

