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CONTRIBUTIONS IN FACE DETECTION WITH
DEEP NEURAL NETWORKS

RESUMO

Reconhecimento facial é um dos assuntos mais estudos no campo de Visão Computaci-
onal. Dada uma imagem arbitrária ou um frame arbitrário, o objetivo do reconhecimento facial é
determinar se existem faces na imagem e, se existirem, obter a localização e a extensão de cada
face encontrada. Tal detecção é facilmente feita por seres humanos, porém continua sendo um
desafio em Visão Computacional. O alto grau de variabilidade e a dinamicidade da face humana
tornam-a difícil de detectar, principalmente em ambientes complexos. Recentementemente, abor-
dagens de Aprendizado Profundo começaram a ser utilizadas em tarefas de Visão Computacional
com bons resultados. Tais resultados abriram novas possibilidades de pesquisa em diferentes apli-
cações, incluindo Reconhecimento Facial. Embora abordagens de Aprendizado Profundo tenham
sido aplicadas com sucesso para tal tarefa, a maior parte das implementações estado da arte uti-
lizam detectores faciais off-the-shelf e não avaliam as diferenças entre eles. Em outros casos, os
detectores faciais são treinados para múltiplas tarefas, como detecção de pontos fiduciais, detecção
de idade, entre outros. Portanto, nós temos três principais objetivos. Primeiramente, nós resumi-
mos e explicamos alguns avanços do Aprendizado Profundo, detalhando como cada arquitetura e
implementação funcionam. Depois, focamos no problema de detecção facial em si, realizando uma
rigorosa análise de alguns dos detectores existentes assim como algumas implementações nossas.
Nós experimentamos e avaliamos variações de alguns hiper-parâmetros para cada um dos detectores
e seu impacto em diferentes bases de dados. Nós exploramos tanto implementações tradicionais
quanto mais recentes, além de implementarmos nosso próprio detector facial. Por fim, nós imple-
mentamos, testamos e comparamos uma abordagem de meta-aprendizado para detecção facial, que
visa aprender qual o melhor detector facial para uma determinada imagem. Nossos experimentos
contribuem para o entendimento do papel do Aprendizado Profundo em detecção facial, assim como
os detalhes relacionados a mudança de hiper-parâmetros dos detectores faciais e seu impacto no re-
sultado da detecção facial. Nós também mostramos o quão bem features obtidas com redes neurais
profundas — treinadas em bases de dados de propósito geral – combinadas com uma abordagem de
meta-aprendizado, se aplicam a detecção facial. Nossos experimentos e conclusões mostram que o
aprendizado profundo possui de fato um papel notável em detecção facial.

Palavras-Chave: Aprendizado Profundo, Reconhecimento Facial, Redes Neurais, Aprendizado de
Máquina, Visão Computacional.





CONTRIBUTIONS IN FACE DETECTION WITH
DEEP NEURAL NETWORKS

ABSTRACT

Face Detection is one of the most studied subjects in the Computer Vision field. Given
an arbitrary image or video frame, the goal of face detection is to determine whether there are any
faces in the image and, if present, return the image location and the extent of each face. Such a
detection is easily done by humans, but it is still a challenge within Computer Vision. The high
degree of variability and the dynamicity of the human face makes it an object very difficult to
detect, mainly in complex environments. Recently, Deep Learning approaches started to be applied
for Computer Vision tasks with great results. They opened new research possibilities in different
applications, including Face Detection. Even though Deep Learning has been successfully applied for
such a task, most of the state-of-the-art implementations make use of off-the-shelf face detectors
and do not evaluate differences among them. In other cases, the face detectors are trained in a
multitask manner that includes face landmark detection, age detection, and so on. Hence, our goal
is threefold. First, we summarize and explain many advances of deep learning, detailing how each
different architecture and implementation work. Second, we focus on the face detection problem
itself, performing a rigorous analysis of some of the existing face detectors as well as implementations
of our own. We experiment and evaluate variations of hyper-parameters for each of the detectors
and their impact in different datasets. We explore both traditional and more recent approaches,
as well as implementing our own face detectors. Finally, we implement, test, and compare a meta
learning approach for face detection, which aims to learn the best face detector for a given image.
Our experiments contribute in understanding the role of deep learning in face detection as well as
the subtleties of changing hyper-parameters of the face detectors and their impact in face detection.
We also show how well features obtained with deep neural networks trained on a general-purpose
dataset perform on a meta learning approach for face detection. Our experiments and conclusions
show that deep learning has indeed a notable role in face detection.

Keywords: Deep Learning, Face Detection, Neural Networks, Machine Learning, Computer Vision.
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1
Introduction

We live in an age that is dominated by technology in which Computer Science plays a
major role. In the beginning of Computer Science, algorithm was a common word for computer
scientists and related jobs, who were used to deal with technology daily. In the last years, algorithms
are everywhere, embedded not only in traditional computational devices such as notebooks and
smartphones, but also in our houses, our work, our lives. We enter work with our badge that
contains an RFID tag, which is used to access the building by reading the tag with an RFID reader
placed at the entrance door. As soon as we enter our car, our smartphone pairs with the car’s
firmware through Bluetooth, and immediately starts to play our Spotify’s playlist. Not limited to
that, the car also enable us to perform phone calls through voice commands. All these are examples
of algorithms present in our daily routines, and their existence is almost not perceived by us as the
technology becomes more pervasive and ubiquitous.

Algorithms are, in a simple manner, a set of instructions that tells the computer to execute
a given task to achieve a desired goal. They are the basis of Computer Science. Since the beginning,
programmers always had to explicitly say what the algorithms should do, writing its instructions in
a manually and maybe cumbersome way. In some cases, we do not even have an algorithm that is
able to solve the task at hand. For instance, classify whether an email is spam requires the algorithm
to decide if that email is legitimate or not based on the email message. As humans, when we face
a challenge similar to this one we refer ourselves to previous emails that are considered legitimate
and emails that are considered spams [26]. In other words, we look at data to learn what is the
difference between the two types. With that, researchers started to wonder if we could make our
computer learn from data in the same manner as we do. That is, algorithms look at available data
as to learn to execute a task with a goal without being explicitly told to do so. What if an algorithm
could read medical records, understand what causes certain diseases and automatically tell us the
correct treatment? What if we could optimize the energy costs of our houses based on the usage
patterns of people who live in it? [78].

Machine Learning is a field within Artificial Intelligence that aims to make algorithms
automatically learn and, thus, make machines learn. The idea that machines could improve with
experience was explored by Thomas Mitchell, back in the eighties [78]. Machine learning algorithms
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are able to learn how to perform relevant tasks by learning and generalizing from examples [25]. Such
algorithms can be roughly separated into four different classes: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning. Supervised learning algorithms are
those that learn from labeled data. They learn how to map a given input x into an output y. They are
usually used for classification, where we want to assign a label (also know as class) to a given input,
but also for regression, where the output is a continuous value — predicting stock prices, for example.
In unsupervised learning, we do not have labeled data but only the data itself. Hence, algorithms of
these paradigm aim to discover hidden structures of the data, learning relations between instances.
Examples include clustering algorithms, which group instances based on a similarity criteria, and
dimensionality reduction algorithms, which are able to reduce the representation size of the data.
Semi-supervised learning can be considered a mid-term between the two mentioned paradigms since
it uses labeled instances only in a part of the training process. This is motivated by the fact that there
is more unlabeled than labelled data, and it works by combining both to build powerful classifiers, for
example. Finally, reinforcement learning is derived from intelligent agents, whose goal is to perform
a task as to have maximum reward [54]. It basically does the same but allowing the agents to
learn a behavior based on feedback from the environment. One of its main uses is in the robotics
field [20, 80].

Recently, machines have reached the same level and even surpassed humans abilities in
many different tasks, such as Object Detection [93], Music Recommendation [117], and Image
Classification [60]. The majority of these results have been possible due to Deep Learning. Deep
learning can be understood as a machine learning approach that attempts to extract high-level and
hierarchical features from raw data, such as images, audio, and videos [64, 101]. Deep learning ap-
proaches are the current state-of-the-art in a plethora of challenging areas. In the Natural Language
Processing (NLP) field, deep learning is successfully applied for Text Translation [109], Question and
Answering [62, 123], and Text Classification [53]. In the Computer Vision field, for Object Detec-
tion [76], Image Captioning [126], and Image Segmentation [18]. It is also successfully applied for
audio tasks such as Speech Recognition [3, 39, 38, 99, 7, 124]. Very recently, they are yielding great
results for generative models like Generative Adversarial Networks [37, 88], and for Reinforcement
Learning [79, 122, 104] as well.

In the Computer Vision field, one of the most studied topics is Face Detection [130, 55].
Given an arbitrary image or video frame, the goal of face detection is to determine whether there are
any faces in the image and, if present, return the image location and the extent of each face [127].
Face detection is easily done by humans, but it is still a challenge within Computer Vision. The
high degree of variability and the dynamicity of the human face makes it an object very difficult to
detect, mainly in complex environments. Most of the existing complexity is due to occlusion (i.e.
face is partially visible), illumination conditions (e.g. darker and lighter environments), background
clutter (e.g. background and object in scene are too similar in color intensities), and so on. Face
detection is an important first step in different applications. It is used in, but not limited to, video
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surveillance [32], face authentication [40], organization and presentation of digital photo-albums [57],
and face recognition [102, 46, 71].

Face recognition is a topic that is studied for a long time, and it is one of the first Com-
puter Vision areas with work that dates back to 50 years [11, 100, 31]. From 1990 to the beginning
of 2000, a large amount of papers were published in the field [127, 45]. However, the implemen-
tations were not able to perform well under the unconstrained setting [130]. Unconstrained face
detection — also known as face detection in-the-wild — refers to recognizing faces in images in
real world conditions [47]. For instance, variations in pose, lighting, expression, race, ethnicity, age,
gender, clothing, hairstyles are unconstrained conditions. The Viola-Jones face detector was one
of the major breakthroughs because it allowed face detection to be feasible in real-world applica-
tions [120]. Most of the current digital cameras still use the Viola-Jones face detector. After that
seminal implementation, all the subsequent attempts were focused on beating such results in both
accuracy and speed. The main improvements can be roughly separated into four perspectives [130]:
new robust feature extractors such as Scale Invariant Feature Transform (SIFT) features [77] and
Histograms of Oriented Gradients (HOG) [19]; more powerful classifiers such as Support Vector
Machines (SVM) [17], and more recently, Deep Learning approaches [60]; large-scale unconstrained
face recognition datasets such as Labeled Faces in the Wild (LFW) [47] and FDDB [50]; the de-
velopment and availability of high-quality code in the form of libraries and frameworks, such as
OpenCV [12].

Along with the mentioned advances, several face detection and face recognition datasets
emerged. LFW was held during much time as the face recognition benchmark, as it was built to
study unconstrained face recognition. However, very recently the results became very high – around
99% – and the dataset does not represent a real challenge for the problem. Most of the current and
recent approaches are competing by decimals in the accuracy. Implementations like HyperFace [89],
DeepID3 [108], DeepFace [113], and FaceNet [102] are all based on deep learning and achieve
great results on LFW and other datasets. Since the results of some of these implementations are
due to the large private datasets they make use of (e.g. DeepFace from Facebook and FaceNet
from Google), some researchers started to compare their work only with models trained in public
datasets [84]. Face detection is fundamental in all these implementations as a first step in face
recognition, which is usually comprised of face detection, face aligment, feature extraction, and
classification [46]. Nevertheless, when looking at most of the state-of-the-art implementations, they
make use of off-the-shelf face detectors and do not seem to evaluate differences among them. In
other cases, the face detectors are trained along the network but in a multitask manner along with
face landmark detection, age detection, and so on. We argue that very few work indeed focused
on face detection, trying to both evaluate the existing algorithms as well as the impacts of their
differences in available datasets.

Hence, our proposal for this dissertation is to focus on the face detection problem itself,
aiming to contribute for the theme through a rigorous analysis of some of the existing face detectors
as well as implementations of our own, exploring the results and drawing conclusions for future work.
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1.1 Contributions

Our main goal is to evaluate some of the evolution in face detection algorithms and the
role of deep learning on these improvements. In addition, we implemented some ideas as to compare
with the existing ones. Our contributions can be summarized as follows:

• We detail many advances of deep learning in Computer Vision, explaining how different ar-
chitectures and implementations work. We believe that it is a valuable resource for future
researchers as a guideline for learning about deep learning or understanding some of its main
contents in a simple but consistent manner.

• We execute experiments with both hand-crafted and deep learning approaches for face de-
tection, focusing on some well-know face detectors such as Viola-Jones and comparing them
against more recent implementations.

• We propose and implement our own deep learning face detector, which is based on Faster
R-CNN implementation trained on face detection datasets. To the best of our knowledge, at
the time we started the implementation it was the first work to use such implementation for
face detection. However, at the time of publication of this dissertation, we found unpublished
work regarding the same idea.

• For all the before-mentioned implementations, we execute a large number of experiments with
different hyper-parameters as to have an idea of their impact in face detection. We compare
the visual differences of the different parameters and draw conclusions of the best parameters
for each implementation. To the best of our knowledge, it is the first work that performs such
an analysis of the given algorithms.

• The idea that no face detector is the best for every situation led us to try a meta learning
approach for this case. We propose, implement, and test a meta learning approach for face
detection, which aims to learn the best face detector for a given image. It is based on
different features extracted with different deep learning models in different datasets. We train
two different classifiers on top of these features and test them against the traditional face
detectors. To the best of our knowledge, it is the first time a meta learning approach based
on features extracted from deep learning models is used for face detection.

1.2 Outline

This dissertation is organized as follows.
Chapter 2 reviews and explains deep learning, focusing on convolutional neural networks

(CNNs). We detail how CNNs work, their different architectures and implementations. We also
explain how they are applied in classification, detection, and metric learning.
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Chapter 3 focuses on face detection itself, what it is, and an overview of both classic imple-
mentations and most recent ones. We detail our experiments with each of the selected approaches
and draw conclusions from them. We also explain, detail, and test our approach with meta learning,
evaluating the difference when compared with the other implementations.

Finally, Chapter 4 has our concluding remarks. We first explore the limitations of this
dissertation. Then, we detail and explain our directions for future work.
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2
Background

In this chapter, we present the background needed for the understanding deep learning
approaches of this work. The chapter focuses mostly on convolutional neural networks, a successful
approach for different machine learning tasks. It is organized as follows. First, we briefly introduce
to deep learning in Section 2.1. Then, we explain convolutional neural networks and its main
components in Section 2.2. Next, we present the application of convolutional neural networks
for classification and object localization in Sections 2.3 and 2.4, respectively. Finally, we detail
convolutional neural networks for metric learning in Section 2.5.

2.1 Introduction

Artificial Intelligence is an active area of research in Computer Science. Machine Learning
is a sub-area that is growing and evolving quickly, as it enables algorithms to automatically learn
how to perform a given task based on available data. Machine learning systems are used to, for
instance, recognize objects in images, select relevant results of a search, and transcribe speech
into text, just to name a few. Recently, these applications make use of a technique called deep
learning. Deep learning methods allow the models to have multiple processing layers and learn
complex representations from data, improving the state-of-the-art of different applications [64].

Traditional machine learning techniques are very limited to process raw data such as audio,
text, and images. The feature extraction portion is based on hand-crafted features, which demand
domain expertise to create and are domain specific. Domain experts need to carefully create al-
gorithms that transform the raw data (for example, pixels) into a representation that a machine
learning algorithm can detect patterns. Additionally, an algorithm that extracts features from faces
cannot be used to extract features to identify cats. On the other hand, deep learning techniques
can learn a feature extractor directly from raw data, which makes them powerful when compared
with hand-crafted feature extractors.

Figure 2.1 shows the difference between traditional and deep learning approaches for the
image classification problem. In traditional approaches, a hand-crafted feature extractor - the one
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created by domain experts - is used to get features from the cat image. Then, such features are
used as input to a trainable classifier (e.g. SVM). In this case, machine learning is applied only
to the classification part, where a model is trained to classify the images based on the extracted
hand-crafted features. On the contrary, deep learning approaches perform joint training, learning
not only to classify the image but also to extract representative features.

Traditional

Hand-crafted 
feature extractor

Trainable 
Classifier

Deep Learning

Trainable feature 
extractor

Trainable 
Classifier

Figure 2.1: Difference between traditional and deep learning approaches for the image classification
problem. In deep learning, the feature extractor is learned.

Deep learning does not have a single definition in the literature. However, all existing
definitions share common descriptions: multiple layers of processing units; layers form a hierarchy of
features, transforming the representation from low-level to a higher and more abstract level. Such
high-level features increase aspects of the input that are important for discrimination and suppress
irrelevant variations. If the input is an image, for example, the first layer may be able to detect the
presence or the absence of edges and contours. The next layer might detect more complex forms
by focusing on specific portions of the image. This process continues on the following layers, which
learn even more complex forms of objects and combinations of them. Figure 2.2 shows an intuition
behind the learning process enabled by the hierarchy of layers. Natural data is compositional, which
means it is a combination of simple forms and complex forms (a face is composed of two eyes, a
nose and a mouth). The key aspect is that these layers of features are learned from data, using a
general-purpose learning procedure [64].

Such characteristics allowed deep learning to improve the state-of-the-art in different areas
and applications. For instance, it outperformed previous implementations for image classification [60,
29], speech recognition [3, 98], and sentiment analysis [27], to name a few. Most of these results are
based on implementations of convolutional neural networks (CNNs), which were firstly successfully
implemented for image classification. Convolutional neural networks, how it works and its main
applications will be explored in details in the following sections.
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Faces Cars Elephants Chairs

Figure 2.2: Complex forms are a combination of simple forms. The top shows parts of a complex
form (for instance, eyes and mouths), whereas the bottom shows complex forms themselves. (Image
adapted from [68]).

2.2 Architecture of Convolutional Neural Networks

Convolutional Neural Networks — or simply ConvNets or CNNs — are feed-forward artifi-
cial neural networks that can learn features invariant to translation, rotation, and shifting. They are
neural networks that use convolutions instead of general matrix multiplication in at least one of their
layers [36]. They are able to process data that come in the form of multiple arrays - 1D, 2D and
even 3D [64]. Such flexibility enables one to create ConvNets to process signals and sequences [53],
images [60], audio spectrograms [23], and videos [51].

CNNs are inspired by the human visual cortex, which contains regions of cells that are
sensitive to sub-regions of the visual field [1]. Experiments with cats showed that individual neuronal
cells in the brain responded only to the presence of edges of a given orientation [48]. Some cells
only respond to horizontal edges whereas others to vertical edges and, hence, these cells always look
for specific characteristics. Additionally, these experiments showed that the visual cortex contains
simple, complex, and hyper complex cells, as well as combinations of them. The insights gathered
from [48] inspired some properties of the deep neural networks architecture, which contains local
connections, layering, and spatial invariance.

A typical CNN has three main layers: Convolution Layer, Pooling (or Subsampling) Layer,
and Fully-Connected Layer. These layers are stacked on top of each other to form the Convolutional
Neural Network. Figure 2.3 shows a network with two convolutional layers, two subsampling layers,
and one fully-connected layer at the end. The number of convolutional layers and subsampling layers
and the way they are stacked can vary. In the following sections, we will detail each of these different
layers.
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Input

C1 feature 
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S2 feature 
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C2 feature 
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Output

Convolutions ConvolutionsSubsampling Subsampling

Full
connection

Figure 2.3: A typical ConvNet architecture [67].

2.2.1 Convolution Layer

Convolution is a mathematical operation that convolves a filter — also called kernel —
over images. The filter slides over the image spatially, computing dot products between the input
matrix region and the kernel matrix. The output of a convolution operation is called feature map,
and feature maps can also be used as input to a convolution. Figure 2.4 shows an example of a
convolution operation with a given kernel using an image as input. On the left part of the figure we
can see the input image and on the right side the resulting feature map after applying the defined
kernel (expressed by the matrix in the middle). The output feature map is a representation of the
image, which extracts some characteristics (features) from it. In this scenario, the resulting feature
map represents the edges of the input image. Hence, we can understand that the convolution
operation with a given kernel is able to identify the presence of specific patterns in the image.

Convolution Kernel

-1 -1 -1

-1 8 -1

-1 -1 -1

Input image Feature Map

Figure 2.4: Example of convolution applied on an image using a kernel to detect edges [2].

Taking images as an example, the convolution is applied at convolutional layers to extract
features from neighborhood pixels on feature maps. The pair (x, y) refers to the position of a
given unit in feature map j of layer i, whose value is defined by vxy

ij . The value vxy
ij is given by

Equation 2.1, where bij is the bias for this feature map, k indexes over the set of feature maps in
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the (i− 1)th layer connected to the current feature map, wpq
ijk is the value at the position (p, q) of

the kernel connected to the kth feature map, Pi is the height, and Qi is the width of the kernel.
After the result of the three sums is computed and summed up with the bias term bij, an activation
function ψ (or non-linearity) is applied.

vxy
ij = ψ

bij +
∑

k

Pi−1∑
p=0

Qi−1∑
q=0

wpq
ijk v

(x+p)(y+q)
(i−1)k

 (2.1)

An activation function takes a single number and performs a specific mathematical oper-
ation over it. Such activation function aims to introduce non-linearity in the neural network, which
means that the output cannot be reproduced from a linear combination of the inputs. Traditional
neural networks make use of the Sigmoid activation function, which is given by Equation 2.2. It
maps the given number x into a range within [0, 1]. There are other activations functions such as
the Hyperbolic Tangent (Tanh) and the Rectified Linear Unit (ReLU). We will discuss details of
activation functions in Section 2.3.

ψ(x) = 1
1 + e−x

(2.2)

Convolutional layers have additional hyper-parameters other than the activation function:
number of filters, filter size, stride, and zero padding. The values of those hyper-parameters can
vary in different convolutional layers. Filter size determines the width and the height of the filters.
Stride is the distance between two consecutive positions of the filter: if the stride is one, the filter
jumps one position at a time. The larger the stride, the smaller the output volume (Figure 2.5 shows
how different stride values affect the output). Zero padding is the number of zeros added around
the input. For instance, if the input is 5 × 5 and zero padding is 1, the final input size is 7 × 7.
Zero padding allows one to control the spatial size of the output volumes. For example, the input
and the output can have the same width and height. It is important to mention that filters can
be seen as feature extractors and that such filters are learned with Backpropagation [96] (details in
Section 2.2.3).

There are three important aspects of convolutional layers: sparse connectivity, weight
sharing and equivariant representations [36]. Traditional neural networks have full connections
between layers, which means that every single input node is connected to every neuron in the
following layer. For instance, a 250 × 250-pixels gray image has 62, 500 values as input. If the
hidden layer contains 200 neurons, the total number of parameters would be 12, 500, 000. On the
other hand, convolutions are locally-connected, i.e. a given layer is connected to a particular region
of the image. Hence, sparse connectivity means that fewer parameters need to be stored in memory
and the number of computations is reduced.

The second important aspect is weight sharing. In traditional neural networks, a given
value of the weight matrix is used only once to compute the output. This is usually referred to as
tied weights, because the value of the weight applied to one input is tied to the value of a weight
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Figure 2.5: Effect of different stride values in the output feature map. The red arrow indicates the
kernel displacement caused by the stride.

applied elsewhere [36]. In CNNs, the same kernel weights are applied to a given input. Figure 2.6
illustrates how the same kernel is applied to a given input. The example has a 3× 3 kernel and an
input of 5× 5. The same kernel slides over the input, calculating a dot product between the kernel
and the region of the input. In the second step, the kernel jumps one position — considering a
stride of one. This process is repeated until the kernel slides over all image, generating the output
feature map. The final step is in the rightmost part of the figure, with the resulting feature map.

Finally, the last aspect is equivariant representation. This particular form of parameter
sharing enables the layer to be equivariant to translation. It means that if the input changes, the
output will change in the same way. For example, we have an image that has an object in its leftmost
region. A convolution applied on such image will yield a given feature map with specific values on its
leftmost part. If the object is shifted some pixels to the right and a convolution is applied, the values
that were in the leftmost part will be slightly shifted to the right in the output volume. Hence, we
can understand that when the kernel slides over the image, it is actually searching for given features
wherever they are. However, it is worth mentioning that convolution is not naturally equivariant to
transformations like scaling or rotation of the image [36].

2.2.2 Pooling Layer

Pooling layers are also an important part of a CNN architecture. The pooling operation
reduces the size of the feature map through a function that summarizes a given subregion [36]. This
reduction is performed with functions that take, e.g. the maximum or the average value within a
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Figure 2.6: Example of convolution with a 3 × 3 kernel over an input of 5 × 5 and a stride of 1.
The same kernel is applied while it slides over the input.

subregion, acting like a statistic summary of the neighbor values. Shrinking the size of the feature
map results in reduced number of parameters and computation of the network, and therefore it helps
to control overfitting. Pooling layers are usually used immediately after convolution layers.

Pooling works very similarly to a convolution: it slides a window over the input performing
some computation. The main difference is pooling does not require parameters. Figure 2.7 shows
an example of the max pooling operation. A window slides over the input and takes the maximum
value within a region. Each region in the figure is represented by different colors. Even though
max-pooling is the most common pooling function, average pooling (average within a region) and
stochastic pooling (pooling regions are selected randomly according to a multinomial distribution)
are also used.

Pooling has three important properties: it does not have additional parameters, it does
not change the output depth and it is invariant to small translations in the input. First, as pooling
operation uses a fixed function (e.g. max-pooling), no additional parameters are introduced. Hence,
pooling layers do not require additional memory use. Second, pooling does not change the output
depth. Recall that convolutions have three dimensions - height, width and depth (represented by
the number of kernels). When applying pooling, only the width and the height of the volume are
downsized, while the number of kernels are kept. Finally, pooling provides additional translation
invariance. If the values of the input suffer a small translation, the values of most of the output do
not change. It can be a very useful property since finding a given feature may be more interesting
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Figure 2.7: Example of max pooling with a 2 × 2 sliding window, an input of 4 × 4, and stride of
2. The colors indicate the positions of the sliding window.

than knowing exactly where it is [36]. Figure 2.8 illustrates the translation invariance. Even though
the values highlighted in red changed their position, the output values are the same.

Input

1 5 2 3

8 3 0 4

0 1 2 1

6 3 1 0

8 4

6 2

Output Input

5 8 4 3

1 3 0 2

6 1 1 1

3 0 2 0

8 4

6 2

Output

Figure 2.8: Translation invariance of the pooling operation. The red values are changes applied on
the original input within each highlighted region. Although the values changed, the output values
did not.

2.2.3 Fully-Connected Layer

The final layer of connections in a convolutional neural network is a fully-connected layer.
It takes all neurons in the previous layer, which can be convolutional, pooling or even other fully-
connected layer, and connects it to every single neuron it has. Typically, a CNN has more than
one fully-connected layer, where the last one is the output of the network. For instance, for a
classification problem of 10 classes, the last layer is fully-connected with 10 neurons, each of which
representing one class. Figure 2.9 shows an example of fully-connected layers.

A stack of fully-connected layers form a neural network. The input layer is where data gets
into the network. Hidden layers are responsible for learning representations of the data, learning
how to map the input values to output values. Finally, the output layer contains neurons that
are used for learning purposes, e.g. transforming the outputs in classes (labels). Each arrow in
Figure 2.9 represents the weights (parameters) of the network. The weights (along with the biases)
are learned during the training procedure, in which a neural network basically forwards the input
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Input Layer Hidden Layer Hidden Layer Output Layer

Figure 2.9: Example of fully-connected layers with one input layer, two hidden layers and an output
layer.

through the network, calculates the errors (difference between predicted values and expected values),
and propagates the errors backwards in order to update the weights. This procedure is called
Backpropagation [96]. Since the idea is to minimize the classification error of the network, an
algorithm is used to accelerate the convergence: Stochastic Gradient Descent (SGD). There are
other algorithms that enable the training procedure of a neural network minimize the error. We will
explore them along this dissertation.

Traditional neural networks, and hence fully-connected layers, accept only vectors as input
(one-dimensional input). The output of the last layer before the fully-connected is a volume (output
of a convolution or a pooling layer). Therefore the volume is flattened, resulting in a vector that is
used as input.

2.3 Convolutional Neural Networks for Classification

Classification is the task of assigning objects to one of several predefined categories [114].
It maps a given input instance x to a class label y (also known as category or target attribute).
For instance, detecting whether an email message is spam or not is a classification task. Another
example is character recognition, where a classification algorithm is able to recognize which number
is present in a given image. Classification algorithms are trained with examples and learn a model.
The learned model is then used to classify unseen examples. In character recognition, the training
set could be comprised of (x, y) pairs, where x are image pixel’s intensities and y indicates the label
of that image (0 if the image contains a 0, 1 if the image contains a 1, and so on). A machine
learning classification algorithm trained over such data learns a model, which is then used to classify
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new examples — data that has not been seen during training. In the training phase, a function
is used to compute how much the model is classifying the data correctly or not and what is the
classification error. This function is called the loss function..

Classification algorithms are among the most popular in Machine Learning. Examples
include Logistic Regression, Decision Trees, Support Vector Machines (SVM), and Neural Networks,
just to name a few. Each of these algorithms require different amounts of data in order to be able
to train a model effectively. Many public and domain-specific large datasets emerged recently, each
of which are used to solve problems that range from Speech Recognition to Object Classification.

A very notable dataset in the Computer Vision field is ImageNet [21]. ImageNet is a large
image dataset comprised of 14, 197, 122 annotated images organized in 21, 841 categories. Such a
large dataset enabled new challenges and competitions, which resulted in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [97]. ILSVRC is an annual challenge that is the current
benchmark for object category classification and object detection and it runs since 2010. In 2010 and
2011, the winners of the challenge were implementations based on classic image feature descriptors
combined with classification algorithms. In 2010, the authors used Histogram of Oriented Gradients
(HOG) and Local Binary Patterns (LBP) as feature descriptors (Chapter 3 explains them in more
detail), and SVM for classification [75]. On the other hand, in 2011, the implementation was based
on Fisher Vectors as feature descriptors, Product Quantization for dimensionality reduction and
SVM for classification [86]. The top-5 classification error was 28.20% for the 2010 implementation
and 25.80% in 2011. These approaches are considered shallow implementations, in the sense that
they have few hidden layers. Even though SVM is not a neural network, the portion that learns the
features can be considered a hidden layer. However, in 2012 a deep architecture was able to beat a
shallow implementation for the first time (with an error rate of 16.40%). That implementation was
based on convolutional neural networks and it is considered the debut of CNNs in the Computer
Vision field. The winning implementation architecture is called AlexNet [60], which can be seen in
Figure 2.10. AlexNet is a CNN architecture comprised of five convolutional layers, five max-pooling
layers, and three fully-connected layers. The first ten layers are interleaved (convolution followed
by pooling, forming a stack of convolutions), and there are three fully-connected layers at the end.
ReLU is the activation function.

CNNs act as feature extractors, which means that the convolutional layers extract features
from the data. The fully-connected layers at the end of the CNN can be seen as a regular neural
network. In the AlexNet case, the neural network architecture is the following: 4096 features as
input, two fully-connected layers of 4096 neurons each, and an output layer of 1000 neurons. The
input of the fully-connected layer must match the output of the last convolutional layer, which is
usually flattened into an array (explained in Section 2.2.3). The output layer classifies the data into
one of the available classes (in this case 1000 classes). Usually, the Softmax classifier is used and
it normalizes the output values, transforming them into probabilities. Softmax is a generalization of
the binary Logistic Regression. It is able to handle problems that can have more than two classes.
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Figure 2.10: AlexNet architecture in details. The two branches are used to illustrate the GPU
parallelism, where each branch is processed by a different GPU [60].

Let us take image classification problem as an example. A classifier receives an image as
input (pixels) and it aims to map such pixels to an output class label. Let us denote the input pixels
set as x and the weights learned by the neural network as W . The scoring function performs a
dot product between x and W . Such function is presented in Equation 2.3. The scoring function
outputs scores for the different available classes. In order to allow a neural network to learn the
weights W , one must choose among different loss functions and activation functions. The choice
depends on the type of the problem at hand and the goal. For example, different problems require
different activation functions and different loss functions. We will see now some examples.

s = f(xi,W ) = W xi (2.3)

Binary classification aims to classify an input among two classes. Usually, it indicates the
presence (true) or the absence (false) of a given property. For instance, classify whether an image
is a cat or not can be considered a binary classification problem. One could train a neural network
with a single output neuron, whose activation function is the Sigmoid. The Sigmoid outputs a value
between 0 and 1 and a threshold is used to determine if the given input belongs to a class or not.
For the cat classification problem, we could say that if the output of the Sigmoid function < 0.5,
the image is not of a cat. On the other hand, if the output is ≥ 0.5, the image is a cat. Different
loss functions can be used for binary classification problems. One classic implementation is the
binary cross-entropy — also known as logistic loss. The binary cross-entropy function is given by
Equation 2.4.

L = − 1
N

N∑
i=1

[
yi log ŷi + (1− yi) log(1− ŷi)

]
(2.4)

Such loss function is used for penalizing the classifier for being too confident. For instance,
if the predicted value ŷi is 0.7 (true for cat) but the correct value yi is 0 (false for cat), all the left
side of the loss function is equal to zero and the loss for the i-th instance is given by the rightmost
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part —- in this case, the resulting value is (1 − 0) log(1 − 0.7) = −0.52. On the contrary, if ŷi

is equal to 0.2 (false for cat), the resulting value (1 − 0) log(1 − 0.2) = −0.10. The larger the
resulting value (0.52 in this case) the larger the loss.

Recently, the Sigmoid function has been replaced by Softmax in the last layer of the neural
network (the classification one). Softmax is an activation function that squashes the output values
between 0 and 1, and the resulting sum of the values is 1. It is presented in Equation 2.5, where
k refers to a given class, xi is the current instance being classified, P (Y = k|X = xi) is the
probability of the correct class Y being k given the input xi, sk is the result of the scoring function
s for the k-th class, and ∑j sums over all results of the scoring function s applied to all k classes.

P (Y = k|X = xi) = esk∑
j e

sj
(2.5)

Figure 2.11 illustrates a simple example of Softmax. An image is used as input to a
simple classifier, which outputs the predictions for the four classes - cat, dog, car and frog. The
exponential operation is applied to such predictions, resulting in the unnormalized log probabilities
of the classes. Then, such predictions are normalized, resulting in different probabilities that sum
to 1. The resulting probabilities allow us to, for example, say that this picture is 10.62% dog and
2.61% frog. In this case, the classifier correctly identified that the image is a cat, with a probability
of 86.75% (highlighted in the rightmost table).

Input Image

Classifier

Class Score(s)

cat 3.7

dog 1.6

car -4.5

frog 0.3

Unnormalized 
Probabilities (e  )

40.45

4.95

0.01

1.22

Probabilities

0.8675

0.1062

0.0002

0.0261

Exp Normalize
s

Figure 2.11: Example of simple Softmax classification output.

Many classification problems require the algorithm to classify an instance among more
than two classes. Such problems are referred to as multiclass or multinomial classification. For
example, we may want to classify whether the image is a cat, a dog or a frog. The classification
algorithms make the assumption that each instance (in this case, an image) is assigned to one and
only one label: an image can be either a dog or a frog but not both at the same time. Since now
we have more than two classes, the binary cross-entropy (Equation 2.4) loss function is not suitable
anymore and, hence, a loss function that can handle more classes is needed. Equation 2.6 illustrates
the multiclass cross-entropy, also known as log-likelihood, which is used for that kind of problem.

Li = −loge

(
P (Y = ŷi|X = xi)

)
= −loge

(
esŷi∑
j e

sj

)
(2.6)

The loss of the i-th instance is the negative log of the Softmax function applied to the
given instance, where ŷi refers to the predicted class, xi is the current instance being classified,
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and P (Y = ŷi|X = xi) is the probability that instance xi belongs to class ŷi. Figure 2.12 shows
an example of loss computation. The flow on the top shows the loss computation of a correct
classification. In such a scenario, the input image is a cat and the output with highest probability
is cat (86.75%). On the other hand, the flow on the bottom contains an image of a dog as input,
which is classified as a frog (54.22%). We can see that the loss is closer to zero when the classifier is
correct, whereas it is higher when the input is misclassified. It is important to mention that the loss is
computed only with respect to the target (correct) class. For instance, in the incorrect classification
example, even though the highest probability is 54.22% (frog class), the loss is computed over the
dog probability 32.86%.
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Figure 2.12: Example of log-likelihood loss computation for two different images. The first one is a
correct classification while the second is an incorrect classification.

Another important aspect is that it is common to transform the target class values into
a representation called one-hot encoding, since only the target class matters when computing the
loss. Table 2.1 shows the example based on Figure 2.12. Each input is represented as a sparse
vector, with the value 1 on the corresponding target class positions and 0 on all other positions.
The loss function is then calculated as a sum over all classes K, which multiplies the negative
log-likelihood. Therefore, we can rewrite the loss for the i-th instance Li as Equation 2.7, where K
is the number of classes, yik is the value of the one-hot encoded vector y for class k and instance i.
Finally, Equation 2.8 computes the loss over all instances and divides the total sum by the number
of instances N .

Li =
K∑

k=1
−yikloge

(
esŷik∑

j e
sj

)
(2.7)

L = 1
N

N∑
i=1

Li (2.8)

Sigmoid and Softmax are very similar: they can be used for both binary and multi-class
classification problems. Nevertheless, they model different probability distributions. The probabilities
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in Sigmoid are not constrained to sum 1, which means that a class output could be 0.7 and another
class be 0.8. On the other hand, Softmax output probabilities that sum to 1 — Figure 2.11 shows
such example, where the outputs are 0.8675 + 0.1062 + 0.0002 + 0.0261. In other words, Sigmoid
models a marginal distribution, whereas Softmax models a joint distribution. A marginal distribution
is that with unconditional probabilities. That is, the probability P(A) of a given event occur does
not depend on any other event. Conversely, joint distributions are the ones whose probabilities are
determined jointly by all variables involved. For instance, let us assume a classification problem of
4 classes. For a marginal distribution, all class probabilities are independent — P(K=1), P(K=2),
P(K=3) and P(K=4). For a joint distribution, however, the probability of each class depends on
each other — P(K=1, K=2, K=3, K=4). Such differences allow one to choose among the two
depending on the problem at hand. For classification problems where classes are disjoint, Softmax
is preferred.

Table 2.1: One-hot encoding example

Classes

Input Cat Dog Car Frog

Cat image 1 0 0 0

Dog image 0 1 0 0

Traditional neural networks with Sigmoid activation function have problems when the
number of layers is increased. Intuitively, one might think that increasing the number of hidden layers
would allow a neural network to learn more from data and hence, learn more complex functions.
However, deep neural networks that make use of Sigmoid in their hidden layers suffer from a problem
called the vanishing gradient. Recall that in Section 2.2.3 we mentioned Backpropagation, which is
an algorithm that propagates the errors (also called gradients) in a neural network on a backward
fashion. When the architecture has many hidden layers, the gradients tend to vanish (that their
values are ≈ 0) and hence, the more distant to the output layer a hidden layer is, the slower it
learns [81]. Since Sigmoid outputs values in the range [0, 1], there are large regions of the input
space which are mapped to an extremely small range. In such regions, even a large change in the
input will produce a small change in the output and, hence, the gradient is small. This problem
gets worse when we have multiple layers, where this consecutive mapping of larger inputs to smaller
outputs affect the learning of the network. As a result, even a large change in the parameters of
the first layer will not change the output by much. An alternative to overcome such problems is
to use Rectified Linear Units (ReLU) instead of Sigmoid in the hidden layers of the network. ReLU
(Equation 2.9), is an activation function that outputs 0 if x ≤ 0, and x when x > 0. Therefore, all
activations are thresholded to 0.

ψ(x) = max(0, x) (2.9)

Unlike Sigmoid, ReLU does not squash the input space into small regions. Instead, it
thresholds the value to 0, but it does not limit the maximum value of the activation. Besides
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helping to solve the vanishing gradient, ReLU is preferred over other activation functions (for the
hidden layers) as it accelerates the convergence of stochastic gradient descent, thus accelerating the
training time [60]. Additionally, ReLU is also less computationally expensive when compared with
other activation functions. For instance, Sigmoid is exponential whereas ReLU is a simple threshold.

Convolutional neural networks started to be applied to other tasks after the success in
image classification, such as object detection and image verification. The next sections explore the
application of ConvNets to such domains.

2.4 Convolutional Neural Networks for Localization

Object localization (or detection) is the task of detecting objects of known classes in
images [6]. It searches for an object within an image and outputs its location, usually with bounding
boxes or any other type of location identification. For instance, detecting faces in images is an
object detection task. Another example is to detect people in surveillance videos. Along with object
detection, there is also object recognition. It refers to the task of both detecting/localizing an object
and assigning a label to it. A simple comparison between classification, detection, and recognition
can be seen in Figure 2.13. The classification task assigns a label (dog) to the first image. In the
middle image, a localization algorithm is able to detect two objects, without identifying them. In
the rightmost image, the dog and the ball are both detected and correctly classified (recognition).
Object detection is considered harder than image classification problems due to its complexity. The
localization of objects depends on numerous candidate object locations that need to be refined in
order to achieve a precise localization [34]. Sometimes, object detection is related to detecting and
recognizing objects. However, throughout this dissertation we will refer to object detection as the
task of only locating the object within an image, and object recognition as the task of detecting and
classifying it. Two datasets for object localization and recognition are notable: PASCAL VOC [28]
and MS COCO [74].

Classification

“Dog”

Object Detection

2 bounding boxes

Object Recognition

“Dog”, “Ball”

Figure 2.13: Comparison between image classification, object detection, and object recognition.

PASCAL Visual Object Classes (VOC) [28] is a dataset for building and evaluating algo-
rithms for image classification, object detection, and segmentation. The PASCAL VOC challenge ran
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from 2006 until 2012, and it has competitions for the three before-mentioned tasks: classification,
detection, and segmentation. The creators increased the quantity of images throughout the years
of the challenge. For instance, its 2010 version is comprised of around 10, 103 training images that
contain 23, 374 objects and 9, 637 test images that contain 22, 992 objects. All images in the dataset
were downloaded from Flickr 1 and they are organized into 20 different classes. PASCAL VOC is the
current benchmark for object detection and recognition and it is a reference for evaluation methods
as well.

Microsoft Common Objects in Context (MS COCO) [74] is a large-scale dataset for scene
understanding. It is comprised of 91 common object categories with 82 of them having more than
5, 000 labeled instances. The dataset is significantly larger in number of instances per category
than PASCAL VOC. When compared with ImageNet, MS COCO contains less classes but more
images per class. MS COCO is also a benchmark for current object recognition algorithms and it
is usually used for comparison along with PASCAL VOC. In 2015, MS COCO hold challenges for
object detection and image captioning (describe what an image contains with natural language),
whereas in 2016 the focus was on object detection and keypoint detection (simultaneously detecting
people and localizing their keypoints).

Object detection differs from classification in the evaluation methodology as well. In
classification, we compute whether the correct label is assigned to a given instance. In object
detection we need to evaluate whether a predicted bounding box is correct with respect to the
ground truth bounding box. A bounding box is an area defined by a quadruple (x, y, w, h), where x
and y are the coordinates of the beginning of the bounding box, w is the width and h is the height of
the box. A measure called Intersection Over Union (IoU) is used to calculate the amount of overlap
between two bounding boxes. Equation 2.10 shows how it is calculated. The IoU between two
bounding boxes A and B is given by the intersection between A and B divided by their union. The
result is in range [0, 1], where 1 represents 100% of overlap and 0 represents no overlap whatsoever.
Figure 2.14 shows an example of different bounding box predictions and the impact on the IoU
value. The larger the IoU value, the more similar are the two bounding boxes.

High Overlap (IoU = 0.82) Low Overlap (IoU = 0.26) No Overlap (IoU = 0.00)

Figure 2.14: Values of IoU for different predictions. The green bounding box represents the grount
truth. The red one is the prediction.

1Flickr is a photo management and sharing application. Available at: https://www.flickr.com
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IoU(A,B) = A ∩B
A ∪B

(2.10)

Similarly to classification, the first approaches that won the PASCAL VOC challenge were
based on hand-crafted features. For instance, in 2010 the winner implementation was based on HOG
and Discriminatively Trained Part Based Models [30]. After the success of ConvNets for ImageNet,
the research community wondered to what extent the CNN classification performance on ImageNet
could be generalized to the object detection task on the PASCAL VOC challenge. In 2014, R-CNN
was the first implementation based on CNNs that was able to beat hand-crafted approaches [35].
However, R-CNN had limitation mainly regarding training and prediction time, as well as disk usage.
Such problems were addressed first by Fast R-CNN [34] and then by Faster R-CNN[93]. Additionally,
many other deep learning based approaches such as Single Shot Detection [76], Yolo [91] and
MTCNN [132] emerged. We will explore some of these implementations in the following sections.

2.4.1 R-CNN

Regions with CNN features (R-CNN) is a combination of region proposals with convolu-
tional neural networks [35]. Figure 2.15 shows how R-CNN works. Given an input image, a region
proposal algorithm extracts regions of interest. Each extracted region is warped into a fixed size
representation and used as input to a pre-trained convolutional neural network. The CNN extracts
features of such regions, which are used as input to linear SVMs for classification. These steps are
detailed as follows.

Given an input image, a region proposal algorithm extracts around 2, 000 regions of interest
(RoI). Different region proposal algorithms exist in the literature, but R-CNN is agnostic to this
choice. Nevertheless, the authors of R-CNN make use of Selective Search [115] in order to compare
it with previous approaches mentioned in their paper. Selective Search is an algorithm that detects
objects at any scale, considers multiple grouping criteria (e.g. color, brightness and texture) and is
fast. It basically generates an initial segmentation of an image with candidate objects (bounding
boxes of regions). From this set of regions, the most similar are selected and combined into larger
ones. This is executed until only one region remains, which results in a hierarchy of regions. The
hierarchy is then used to produce candidate object locations. The segmentation performed prior to
the generation of candidate objects makes this algorithm both accurate and fast. More details are
available in [115] and [116].

Each region proposal is warped to a fixed size, which is used as input to a convolutional
neural network. The CNN is an AlexNet [60] and it extracts a 4096-dimensional feature vector
that is used for classification. In R-CNN, the CNN is pre-trained on ImageNet so it learns how
to classify images. The network is then fine-tuned on the PASCAL VOC dataset. The last fully-
connected layer is replaced, changing from 1000 to 21 classes, but the rest of the architecture remains
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CNN
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Figure 2.15: How R-CNN works (Image adapted from [35]).

unchanged [35]. Each region proposal is warped to 227× 227, to be compliant with AlexNet input
size.

The next step is to classify the features extracted from the fine-tuned CNN. In order to
use a CNN as a feature extractor, one must remove the classification layer. Therefore, the previous
layer — usually a fully-connected layer — is used as a feature vector that represents a given input
image. For R-CNN, the features in the fifth pooling layer are used as input to a binary SVM that is
optimized per class. Each binary SVM classifies a given region proposal as an object or background.

Object recognition algorithms have two outputs: a label for each identified object and
the bounding boxes. Besides training SVMs for classification, R-CNN also trains a bounding box
regressor with the goal of adjusting specific region proposals to output a final (and possibly more
accurate) bounding box prediction. It works as follows: in the training phase, the features extracted
from the CNN are used as input to a linear regression algorithm only if the IoU between the ground
truth bounding box GT and the region proposal P ≥ 0.6. The input for the training algorithm
is a set of N training pairs (P,GT ). A region proposal is represented by P i = (P i

x, P
i
y, P

i
w, P

i
h),

where P i
x and P i

y are the x and y coordinates of the bounding box and P i
w and P i

h are the height
and the width, respectively. Each GT bounding box is represented in the same manner GT i =
(GT i

x, GT
i
y, GT

i
w, GT

i
h). The linear regression aims to transform the input region proposal P into a

predicted bounding box P̂ . The transformation is parametrized by four functions that are learned:
dx(P ), dy(P ), dw(P ) and dh(P ) [35]. With these learned functions, P̂ is obtained with

P̂x = Pwdx(P ) + Px (2.11)
P̂y = Phdy(P ) + Py (2.12)
P̂w = Pwe

dw(P ) (2.13)
P̂h = Phe

dh(P ). (2.14)

Each d∗(P ) is modeled as a linear function between the features φ extracted from a given
region proposal P (Equation 2.15), where w∗ is the vector of learned weights and φ5 are the features
from the fifth pooling layer extracted with the CNN. The weights are learned with the optimization
of regularized least squares (also called ridge regression), given by Equation 2.16, where t∗ are the
regression targets for the training pair {P,GT}, which are defined as
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d∗ = wT
∗ φ5(P ) (2.15)

w∗ = argmin
N∑

i=1
(ti∗ − ŵT

∗ φ5(P i))2 + λ||ŵ||2 (2.16)

In test time, the trained algorithm predicts a new region proposal, generating the new
bounding boxes. All generated bounding boxes are passed to the Non-Maximum Suppression (NMS)
algorithm before being evaluated. NMS eliminates duplicated detections by the prioritization of
regions with higher classification scores according to the SVMs [69].

tx = (GTx − Px)
Pw

(2.17)

ty = (GTy − Py)
Ph

(2.18)

tw = log(GTw

Pw

) (2.19)

th = log(GTh

Ph

). (2.20)

R-CNN optimizes three different object functions at the same time: Log Loss for Softmax
classifier in the fine-tuning process, the Hinge Loss for SVM and least squares for bounding boxes
regression. The last two are post-hoc, which means they are executed after the CNN training is
completed and do not affect the weights learned. The training procedure takes almost 84 hours
and the extracted features require hundreds of gigabytes of storage [34]. The inference is also slow
because R-CNN applies the CNN for each of the 2, 000 region proposals in an image basis. The
slow inference problem was afterwards solved by SPP-Net [42].

Spatial Pyramid Pooling Network (SPP-Net) [42] aims to solve the problem of the CNN
accepting only fixed-size inputs while improving inference speed. The convolutional layers accept
arbitrary input sizes, but they produce outputs of variable sizes. On the other hand, the classifiers
(SVM or Softmax) or fully-connected layers require vectors of fixed size. Spatial pyramid pooling
performs the pooling operation in the so-called local spatial bins. These spatial bins have sizes
proportional to the image size, hence the number of bins is fixed regardless of the image size [63].
SPP-Net enables CNNs to have different input sizes by changing the last pooling layer with a spatial
pyramid pooling layer. The output are (k×M)-dimensional vectors, where M denotes the number
of bins and k is the number of filters in the last convolutional layer. Figure 2.16 shows more details
about SPP-Net.

R-CNN uses a CNN to extract features from 2, 000 different region proposals, which makes
this process one of its main bottlenecks. SPP-Net solves this issue by extracting the feature maps of
the image only once. It means that instead of using regions of the image as input, SPP-Net makes
use of regions in the feature maps. The spatial pyramid pooling is applied on each region of interest
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Figure 2.16: A network with spatial pyramid pooling layer [42].

within the feature maps to pool a fixed-length representation of this region. Since the convolution
operation was a big issue for inference, reducing drastically the number of convolutions resulted in
a faster implementation.

Even though SPP-Net solved the inference slowness of R-CNN, the other problems remain:
slow training time and disk consumption. Additionally, SPP-Net introduces a new problem, which
is related to the update of parameters that are below the spatial pyramid pooling layer during the
training phase. Such problems are addressed by the improved implementations of R-CNN: Fast
R-CNN and Faster R-CNN.

2.4.2 Fast R-CNN

Fast Region-based Convolutional Network (Fast R-CNN) [34] is an improved version of
R-CNN. One of the major improvements is that Fast R-CNN is trained to jointly learn to classify
object proposals and refine their spatial locations. Such change along with other choices reduce
training time and disk space requirements, making Fast R-CNN run faster and require less storage.
Additionally, it improves the main drawback of SPP-Net: the fine-tuning algorithm cannot update
the convolutional layers that lie before the spatial pyramid pooling. Such problem limits the accuracy
of very deep networks. Therefore, Fast R-CNN fixes the problems of both R-CNN and SPP-Net, as
well as being faster to train and to test. Additionally, Fast R-CNN has higher detection quality, it
is trained in a single stage pipeline with a multi-task loss (instead of three different loss functions),
the training process is able to update all network layers, and no features are cached into disk.
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Figure 2.17: How Fast R-CNN works (Image adapted from [34]).

The architecture changed compared with the original R-CNN architecture. Fast R-CNN
receives as input an image and a set of object proposals. The network processes the image and
outputs a feature map. As with SPP-Net, Fast R-CNN also uses a region of interest (RoI) pooling
layer, which extracts a fixed-length feature vector from the feature map for each object proposal.
The RoI pooling layer uses max-pooling to convert any region of interest features into a small feature
map with a fixed spatial size of H ×W , where H and W are layer hyper-parameters that are not
tied to any specific RoI. These feature vectors are used as input to fully-connected layers. Finally,
the fully-connected layers have two different output layers: a softmax layer to classify the object
proposals, and a layer to estimate the bounding boxes of each proposal (four real-valued numbers
representing bounding box positions). Figure 2.17 shows how Fast R-CNN works.

The authors tested three different convolutional neural network architectures with Fast R-
CNN: AlexNet (the same used in R-CNN), referred to as small S; VGG [15], referred to as medium
M; and very deep VGG [105], referred to as large L. VGG is a deep neural network developed by
Oxford’s Visual Geometry Group (VGG - hence the name), and it was the runner-up of ImageNet
2013 challenge. It has two different implementations, where one has 16 layers (VGG-16) and the
other has 19 layers (VGG-19). Figure 2.18 shows VGG-19 architecture. When compared with
AlexNet, it contains more layers and smaller kernels and it showed that increasing the depth of the
network improves the performance. Nevertheless, VGG is more expensive to evaluate and uses a lot
more memory and parameters.

Figure 2.18: VGG-19 architecture.

For pre-training, all networks suffered three changes: max-pooling layer replaced by a RoI
pooling layer; the last fully-connected layer and softmax are replaced with two sibling layers (a fully-
connected layer and a softmax and bounding box regressors), and the input is changed to accept
a list of images and a list of RoIs in such images. Besides these changes, Fast R-CNN also has
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feature sharing during training phase and joint optimization in the training process [34]. During the
CNN training, proposals from the same image share computation and memory in both forward and
backward passes of the network. This is achieved by sampling mini-batches hierarchically, sampling
by N images and by R/N proposals from each image. The authors used N = 2 and R = 128.
The training phase jointly optimizes a softmax classifier and the bounding box regressors instead of
having three separate stages like R-CNN. The joint optimization is possible due to a multi-task loss,
given by Equation 2.21.

L(p, u, tu, v) = Lcls(p, u) + λ[u >= 1]Lloc(tu, v) (2.21)

Given K + 1 classes (K classes plus background), p is a discrete probability distribution,
which is the output of the softmax for all K+1 classes. tk is the bounding box regression output for
each of the K object categories (indexed by k). Each RoI training instance has a ground truth class
label u and a ground truth bounding box target v. Lcls(p, u) is the log-likelihood for class u. Lloc

is computed with respect to a ground truth bounding box v for class u and a target t. Both are a
quadruple in the form (x, y, w, h). The expression [u >= 1] is equal to 1 if class u is larger or equal
to 1 and 0 otherwise. It means that such loss is computed for all classes except the background,
which is ignored. The bounding box regression loss is defined in Equation 2.22.

Lloc(tu, v) =
∑

i∈{x,y,w,h}
smoothL1(tui − vi) (2.22)

Instead of using L2 loss as in R-CNN, Fast R-CNN uses a L1 loss instead, given by
Equation 2.23. L1 loss is less sensitive to outliers [34]. The ground truth regression targets vi are
normalized to have zero mean and unit variance, as to not allow one feature "dominate" another.
The hyper-parameter λ in Equation 2.21 is used to control the balance between the two different
losses. In the original implementation the value of λ is 1.

smoothL1(x) =

 0.5x2 if |x| < 1
|x| − 0.5 otherwise

(2.23)

Fast R-CNN solved most of R-CNN gaps. The training and test time speed greatly in-
creased (9× faster in training and 213× faster in test), the features are no longer cached in disk, all
network parameters can be updated, training is a single-stage that makes use of a multi-task loss,
and it significantly improved detection results in Pascal VOC. However, Fast R-CNN still depends
on an "external" algorithm for generating region proposals (e.g. Selective Search). Faster R-CNN is
an upgrade of Fast R-CNN that implements the generation of region proposals within the network
pipeline.
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2.4.3 Faster R-CNN

Faster R-CNN [93] is the improved version of Fast R-CNN. The main limitation of Fast
R-CNN is that the region proposals are generated outside the network [34]. Algorithms as Selective
Search [115] or EdgeBoxes [135] are used to this end. Even though EdgeBoxes has a good proposal
quality and speed, the execution time is simillar to the running time of the detection network [93].
Faster R-CNN uses Region Proposal Network (RPN), which is a fully-convolutional network that
both predicts the bounding box position and the scores at each position. Such RPN is trained in
an end-to-end manner to generate high-quality region proposals that are used by Fast R-CNN for
detection. RPN and Fast R-CNN are merged into a single network and they share some convolutional
layers, which makes Faster R-CNN (the resulting combination) faster and more accurate than Fast
R-CNN. Figure 2.19 illustrates Faster R-CNN overall architecture. Faster R-CNN is comprised of
two modules. The first one is a convolutional neural network that proposes regions (RPN) and the
second is the Fast R-CNN detector, which uses the proposed regions.

Input Image

CNN

Extract features

Feature 
Maps

Output

Proposals

RoI feature 
vector

RPN
Classification

Bounding box 

Figure 2.19: How Faster R-CNN works.

RPN replaces the previous hand-crafted approaches for proposals generation. Given an
input image, it outputs a set of region proposals along with a score. Such score indicates whether
the given region proposal is from a class or from background. The generation of region proposals
work as follows: a window is slided over the convolutional feature map, generating the region
proposals. The proposals are mapped to a feature vector whose dimensionality is tied to the CNN
model being used. The feature vector is then used as input to two sibling fully-connected layers: a
bounding box regressor and a bounding box classifier. Figure 2.20 shows how RPN works. Multiple
proposals are generated at each sliding window location, where the maximum number of proposals
is defined as k. In Figure 2.20, we can see that the classification layer (cls) outputs 2k scores, while
the regression layer (reg) outputs 4k bounding box coordinates. 2k means that each proposal k
has 2 different outputs - background or the given class. The k proposals are generated based on
anchors. The anchor is centered at the given sliding window. Based on the center, 9 anchors are
generated - 3 different scales (areas of 1282, 2562 and 5122) with 3 different aspect ratios (1 : 1,
1 : 2 and 2 : 1) [93]. Hence, Faster R-CNN is able to classify and predict bounding boxes based on
anchor boxes of multiple scales and aspect ratios.
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Figure 2.20: Region Proposal Network [93].

RPN uses a multi-task loss similar to the one used in Fast R-CNN, given by Equation 2.24.
i is the index of a given anchor (proposal) and pi is the probability of such anchor be an object.
p∗i is the ground truth label, which is 1 if the anchor is an object and 0 otherwise. ti and t∗i are
the predicted and ground truth bounding boxes coordinates, respectively. In the RPN case, the
classification loss Lcls is over two classes (object and not object). The regression loss Lreg is the
same as in Fast R-CNN, which uses the smooth L1 function. It is ignored if the ground truth label
p∗i is 0, which means that it is not an object. Ncls and Nreg are normalizing both losses while λ is a
balancing parameter. As the k anchors have different sizes, k bounding box regressors are learned.
However, the regressors do not share weights.

L({pi}, {ti}) = 1
Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1
Nreg

∑
i

p∗iLreg(ti, t∗i ) (2.24)

Even though the authors mention that the network is trained in an end-to-end manner,
there are four different steps in Faster R-CNN training. The first step is to train the RPN. Such
network is pre-trained with ImageNet and fine-tuned on PASCAL VOC for the region proposal task.
The second step is to train the Fast R-CNN with the proposals generated by the RPN fine-tuned in
the first step. Fast R-CNN is also pre-trained with ImageNet. In the two first steps, no convolutional
layers are shared between RPN and Fast R-CNN. However, in the third step the convolutional layers
are shared but only RPN layers are fine-tuned. The final step is to fine-tune only the Fast R-CNN
layers.

The training method just described is the one used for all experiments in the Faster R-
CNN original paper [93]. However, the authors implemented another method that trains the whole
network as a single model, jointly optimizing regression and classification losses. Such version is
simpler to train and yields similar results in accuracy 2.

2Unpublished results are available at https://www.dropbox.com/s/xtr4yd4i5e0vw8g/iccv15_tutorial_training_
rbg.pdf?dl=0.
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2.4.4 MTCNN

Multi-task Cascaded Convolutional Networks (MTCNN) is an implementation that per-
forms both face detection and face alignment [132]. The implementation does both tasks in a
single pipeline using unified cascaded CNNs and a multi-task learning method. The architecture
is basically comprised of three stages. The first stage generates candidate windows with a shallow
CNN. The second refines the candidate windows with a more complex CNN, which is able to reject
windows that do not contain faces. Finally, the last stage has an even more complex CNN that
refines the windows again and outputs the bounding box along with face landmarks. The CNNs
are referred to as Proposal Network (P-Net), Refinement Network (R-Net) and Output Network
(O-Net), respectively. Figure 2.21 illustrates the pipeline.

Figure 2.21: Overview of MTCNN pipeline [132].

Before the first stage, a given image is resized to different scales in order to build an
image pyramid. The pyramid is used as input to the first stage, which contains the P-Net. P-Net
is a fully convolutional network (FCN) that obtains the candidate windows and their bounding box
regression vectors [132]. The windows are calibrated based on the bouding box regression vector.
Finally, nonmaximum supression is applied to combine windows that have a high overlap in a way
that is similar to Faster R-CNN. A fully convolutional network is very similar to a regular CNN, with
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the difference that it does not contain fully-connected layers at the end [103]. When we remove
fully-connected layers of a CNN we also remove the need of a fixed input size. Instead of a label or
a feature vector, the output of an FCN is called heatmap. Each point of the heatmap is related to
a region in the original input. Each activation is used as the proposal probability, which means that
every point in the original input image has a probability of being a face. Such probability is then
used to locate faces [129].

In the second stage, all proposals (candidate windows) are fed to another CNN: the R-
Net. R-Net is responsible for rejecting a large number of false proposals. It is also responsible for
performing calibration with bounding box regression. The final process of the second stage is to
apply nonmaximum supression. The third and final stage is very similar to the second one, the only
difference is that the CNN is deeper and the number of filters is increased. Figure 2.22 details the
three different architectures.

Figure 2.22: MTCNN networks in details: P-Net, R-Net and O-Net [132].

P-Net is a fully-convolutional network comprised of three convolutional layers, with 10,
16, and 32 filters, respectively. The kernel size for all convolutions is 3× 3. A max-pooling of 3× 3
is used after the first convolution. P-Net contains three outputs: the face classification, which is a
softmax; a bounding box regression (similar to Faster R-CNN); and a facial landmark localization,
which are 10 values representing 5 facial landmarks (five x, y pairs). The output of the bounding
box regression is used to project the bounding box in the input. The input is then completed with
zeros until reaching the size of 24× 24, which is used as input to R-Net. R-Net is a regular CNN,
comprised of three convolutional layers and a fully connected layer. The two first convolutions are
followed by max-pooling layers. R-Net contains more filters and larger volumes when compared
with P-Net. The output of the third convolution is flattened and connected to 128 fully-connected
neurons. This fully-connected layer has again three outputs, which are the same as P-Net. Again,
as it happens for P-Net, the bounding box regression output is projected in the input, completed
with zeros and used as input to the O-Net. O-Net is a more complex network, which contains four
convolutional layers and more neurons in the fully-connected layer at the end (256). The network
also contains three outputs, which are the final predictions of MTCNN.
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MTCNN uses a multi-task learning method that optimizes three different loss functions:
one for face classification, one for bounding box regression and another for facial landmark local-
ization. The first one makes use of the cross-entropy loss (Equation 2.4), which we explained in
Section 2.3. In this case, there are only two classes (1 and 0) that represent whether the input is
a face or not, respectively. We will denote this loss as Lface

i . The second uses the Euclidean loss,
represented by Equation 2.25. Lbox

i is the loss of input xi. t∗box
i is the ground truth bounding box

whereas tbox
i is the predicted bounding box. In this case, each bounding box is represented by four

values - top, left, height, and width. Finally, the facial landmark loss is computed similarly to the
bounding box regression. Equation 2.26 illustrates this loss, which is also an Euclidean loss, denoted
by Lland

i . t∗land
i are the ground truth facial landmark’s coordinates whereas tland

i are the predicted
facial landmark’s coordinates. There are five facial landmarks, including left eye, right eye, nose, left
mouth corner, and right mouth corner. Therefore, both tland

i and t∗land
i contain ten values, which

correspond to five (x, y) pairs (one for each coordinate).

Lbox
i = ||t∗box

i − tbox
i ||22 (2.25)

Lland
i = ||t∗land

i − tland
i ||22 (2.26)

The multi-task loss is given by Equation 2.27. N is the number of training instances. j
represents the task - classification (face), bounding box regression (box), or landmark detection
(land). αj represents the task importance. It is used because each network gives a different
importance for the different losses. P-Net and R-Net use αface = 1, αbox = 0.5, αland = 0.5, as
their main goal is to reject proposals without faces. On the other hand, O-Net uses αface = 1,
αbox = 0.5, αland = 1.0 aiming a better facial landmark localization. βj

i denotes the instance type.
If the given input instance is background (does not contain any face), only Lface

i loss is computed,
while the other two losses are set to 0 (setting their β to 0).

min
N∑

i=1

∑
j∈{face,box,land}

αjβj
iL

j
i (2.27)

MTCNN uses the idea of classical face detectors, which are based on a cascade of classifiers.
Each stage of the cascade aims to reject images that do not contain faces. The first stages are
easier, in the sense that they are simpler and lightweight. The last stages are more complex and
usually have a larger computational cost. We will detail the classic approaches of cascade classifiers
in Chapter 3.
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2.5 Convolutional Neural Networks for Metric Learning

Classification usually requires that all labels are known in advance and that each category
(class) contains training examples. Additionally, traditional classification methods may be unsuitable
for applications where the number of categories is very large or where the number of instances per
category is small, and where only a subset of the categories is known at time [16]. For example,
face recognition, where we may have a large amount of people but a few images per person. One
approach to such kind of problem is distance-based methods, which compute a similarity metric
(distance) between a given input and a dataset. Metric Learning — also known as Distance Metric
Learning — is the task of learning a distance metric (or function) for a given task [61]. The idea
is to learn a function that maps input patterns into a target space such that a distance measure in
the target space approximates the “semantic” distance in the input space [16].

Unlike classification, where training examples are given class labels, the training examples
of a metric learning algorithm are similar and dissimilar pairs. A similar pair is given by S = (xi, xj),
where xi and xj should be similar. A dissimilar pair is given by D = (xi, xk) where xi and xk should
be dissimilar. Therefore, xi should be more similar to xj than to xk. Besides, a label indicates
whether the given input pair is similar or dissimilar. Usually, the values 0 and 1 are used to indicate
such similarity. In some scenarios, such values indicate the distance itself, where 0 means that the
inputs are equal and 1 that they are completely different. Hence, based on a dataset comprised of
similar pairs S and dissimilar pairs D, a metric learning algorithm learns a distance function that is
able to measure how similar two objects are.

Content-based 
Image Retrieval 

Algorithm

Images
Dataset

Query Image Results

Figure 2.23: Simple example of Content-based Image Retrieval (Images from SIMPLIcity
dataset [121]).

Any application that requires the comparison between two instances could benefit from
metric learning. For instance, metric learning could learn a distance function that verifies whether
two faces are from the same person or not. Content-based image retrieval is another example. Given
an input image (also called query image), an algorithm must retrieve images that are most similar
to the input [95]. Figure 2.23 illustrates an example of image retrieval. Classic implementations
of content-based image retrieval are based on hand-crafted features and a distance-based algorithm
that evaluates whether the images are similar or not. For instance, a hand-crafted feature extractor
such as Local Binary Patterns (explained in details in Section 3.2.1.2) is used to extract a feature



67

vector that represents the images. Then, a distance-based algorithm like K-means is used to group
most the similar images [118].

Digital signature verification was a relevant problem back in the nineties. The idea is
to evaluate whether two signatures are the same or not. One successful implementation for such
problem is siamese neural networks. Siamese networks are an implementation of neural networks
that aim to learn a distance metric. They are a special kind of neural networks comprised of two
identical sub-networks that are joined at the output [13]. A siamese network has two inputs and it
outputs a similarity score that specifies whether the two inputs are similar. Figure 2.24 shows an
example of a siamese network architecture. x1 and x2 denote the inputs. GW is a complex function
(e.g. a regular neural network, a convolutional neural network). This complex function is the same
in both branches (one receives x1 whereas the other x2) and it is parametrized by W , which stands
for the weights of the neural network (shared between both branches).

G    (x)  WW G    (x)W

x 1 x 2

||G    (x  ) - G    (x  )||W W1 2

G    (x )W 1 G    (x )W 2

EW

Figure 2.24: Classical siamese network architecture [16].

A siamese architecture works as follows: given a complex function GW (x), it aims to find
the value of the weights W in a way that a similarity measure, given by Equation 2.28, yields
a small value if x1 and x2 are from the same class and a larger value otherwise. Equation 2.28
is an Energy Function, which is based on Energy-based Models. The idea behind Energy-based
Models is to capture the dependencies between variables, which are obtained by a measure of
compatibility among the variables (e.g. the energy function). These dependencies allow the learned
model to evaluate the values of unknown variables given the values of known variables [66]. Hence,
Equation 2.28 can be seen as an Energy Model that aims to measure the compatibility of x1 and
x2.

Ew(x1, x2) = ||GW (x1)−GW (x2)|| (2.28)
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The input of the siamese network may be a pair of images (x1, x2) and a label y, which
represents whether the pair of images is genuine, from the same category or class, or impostor,
different categories or classes. Usually, the values used are 0 for genuine pairs and 1 for impostor
pairs. The Contrastive Loss Function is used to calculate the loss and it is responsible for allowing
the training of such a network to happen [16]. This loss function is presented in Equation 2.29. P
is the number of training samples (pairs) and (y, x1, x2)i is the i-th sample (pair of instances and
label). LG is the partial loss function for a genuine pair whereas LI is the partial loss function for
an impostor pair. LG and LI aim to decrease the energy of genuine pairs and increase the energy of
the impostor pairs through the minimization of L. L can be different loss functions. One common
approach is given by Equation 2.31. DW is the distance between the pair (x1, x2), m is the margin
(larger than zero). The effect of such a margin is to allow dissimilar pairs to contribute to the loss
function only if their distance is within such margin [41].

L(W ) =
P∑

i=1
L(W , (y, x1, x2)i) (2.29)

L(W , (y, x1, x2)i) = (1− y)LG(EW (x1, x2)i) + (y)LI(EW (x1, x2)i) (2.30)

L(W , (y, x1, x2)) = (1− y)1
2(DW )2 + (y)1

2max(0,m−DW )2 (2.31)

GW is any given complex function. It can be a shallow neural network or even a convo-
lutional neural network. In the case of siamese convolutional neural networks, the architecture has
some differences when compared with classification CNNs, for example. A siamese CNN contains
two identical branches with the weights shared between the branches. However, instead of a classi-
fication layer (e.g. softmax) at the end of the network, the output layer of both networks are joined
in a layer that computes the distance between both outputs. Figure 2.25 shows an example.

There are implementations of siamese convolutional neural networks for different tasks.
We will talk about two implementations. The first one is related to dimensionality reduction with
siamese convolutional neural networks [41]. The problem is to learn a function that maps high
dimensional input patterns to lower dimensional outputs, given similarities between instances in a
given input space. The implementation uses a dataset of handwritten characters called MNIST [65].
MNIST is comprised of a training set of 60, 000 examples, and a test set of 10, 000 examples. All
examples are 32×32 images with handwritten digits. The data is organized in genuine and impostor
pairs, as to be compatible with the siamese network input. Figure 2.26 illustrates the architecture
used as GW . It is a simple convolutional neural network comprised of two convolutional layers, one
pooling layer, and a fully-connected layer. The output of the network is a vector of two positions,
which represents a (x, y) point in the Euclidean space. It is a reduced representation of the input
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Figure 2.25: Example of a siamese convolutional neural network. The output of both networks are
joined through a layer that computes distance, which is a L2 (Euclidean) distance in this case. The
output is a score that indicates how similar the two input instances are.

32 × 32. Figure 2.27 shows some results. We can see that the resulting reduced vectors that
represent each digit are easily separated.

Figure 2.26: CNN architecture that maps the MNIST data to a low dimensional space (Image
from [41]).

The second work is an implementation that learns an embedding for visual search in interior
design [9]. It makes use of a siamese CNN that is able to learn an embedding from images. The
embedding is used for different applications, such as finding products in images, finding designer
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A B
Figure 2.27: Experiments that demonstrate the dimensionality reduction results. A is an easy setup,
where the digits are simpler. B is a hard setup, where some noisy images are used. (Images
from [41]).

scenes that show products, and finding visually-similar products among different categories. They
downloaded 7, 249, 913 product photos and 6, 515, 869 room photos from Houzz 3. After removing
duplicate and incorrect images (those whose metadata is not compatible with the image), they kept
3, 387, 555 product and 6, 093, 452 room photos. From such images, they generated their genuine
and impostor pairs, which are used for training the siamese CNN.

Figure 2.28: Results from the product search implementation based on siamese networks. (Image
from [9]).

In Figure 2.28, the genuine pairs (Iq, Ip) are two views of the same object. Iq (image
query) is an image of the object in a given room. Ip is the object image itself. On the other hand,
impostor pairs are represented by the (Iq, In), where Iq is again the query image and In is a negative
example (an object of another class). Figure 2.28 shows some results of the embeddings learned by
the siamese network. For a given query image Iq, the table shows the three most similar images
(shortest distance). Just for reference, the table shows a tag object Ip, which was used along with Iq

3Houzz is a platform for home remodeling and design. Available at: http://www.houzz.com/
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for training. We can notice the top three images are visually similar to Ipe. Hence, the embedding
learned by the siamese network is very representative.

Most siamese networks make use of Contrastive Loss as an activation function. However,
other loss functions such as Triplet Loss [102] started to be used with siamese networks recently.
Instead of pairs as input, triplet loss receives a triplet as input. Therefore, instead of two sibling
branches, the siamese network is comprised of three network branches and that is why it is known as
triplet network. The triplet used as input is composed by two positive (genuine) instances and one
negative (impostor) instance. Using triplets as inputs, triplet loss minimizes the distance between an
anchor and a positive (similar to a genuine pair), while maximizing the distance between the same
anchor and a negative (similar to a impostor pair). Figure 2.29 illustrates this idea. Since the data
representation is two-dimensional, the intuition is that similar instances are closer in the Euclidean
space and different instances are farther.

Anchor

Negative

Positive

Anchor

Negative

Positive

Learning

Figure 2.29: Intuition on the triplet loss objects. Through a learning procedure, it minimizes the
distance between the anchor and the positive and maximizes the distance between the anchor and
the negative objects.(Image adapted from [102]).

A convolutional neural network implementation for face recognition called FaceNet is op-
timized with triplet loss. Therefore, the following explanation will use faces and images as examples.
Triplet loss wants to ensure that xa

i (anchor) of a specific person is closer to all other images xp
i

(positive) of the same person than it is to any image xn
i (negative) of any other person. The triplet

loss function is represented by Equation 2.32. f(x) denotes the embedding (representation vector
of face x) and α is a margin that is enforced between negative and positive pairs. Equation 2.33
defines the rule for margin α used in the loss function. It defines that the Euclidean distance be-
tween positive pairs embeddings ‖f(xa

i )− f(xp
i )‖2

2 summed with a given margin m must be smaller
than ‖f(xa

i ) − f(xn
i )‖2

2. It is the same rule as in the contrastive loss function in Equation 2.31.
Equation 2.33 defines the triplets. τ is the set of all possible triplets in the training set.

L =
N∑
i

[
‖f(xa

i )− f(xp
i )‖2

2 − ‖f(xa
i )− f(xn

i )‖2
2 +m

]
(2.32)

‖f(xa
i )− f(xp

i )‖2
2 +m < ‖f(xa

i )− f(xn
i )‖2

2 , (2.33)
∀(f(xa

i ), f(xp
i ), f(xn

i )) ∈ τ (2.34)
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2.6 Final Remarks

In this chapter we presented the theoretical basis needed for understanding the deep learn-
ing approaches used in this dissertation. First, we introduced deep learning, the current state-of-
the-art for many machine learning applications. Then, we introduced convolutional neural networks,
which are feed-forward artificial neural networks that are able to extract high-level features from
raw data. We also presented the application of convolutional neural networks for classification,
localization, and for metric learning, explaining in details each of them.

In Chapter 3 we will present an overview of face detection, which comprises some important
face detectors. Additionally, we will detail our proposed approach.
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3
Face detection

This chapter explains what is face detection and gives an overview of both classic imple-
mentations and most recent strategies. It is organized as follows. First, we give a brief introduction
of face detection in Section 3.1. Next, in Section 3.2 we present some face detection classic ap-
proaches, which are based on hand-crafted features. Then, in Section 3.3 we talk about deep learning
approaches for face detection. Finally, in Section 3.5 we explain our meta learning approach and
show results of our experiments.

3.1 Introduction

Face detection refers to the task of identifying human faces in images. Given an arbitrary
image, the goal of face detection is to determine whether there are any faces in the image and,
if present, return the image location and the extent of each face [127]. Face detection is easily
performed by humans, but it is still a challenge within Computer Vision. The high degree of
variability and the dynamicity of the human face makes it very difficult to detect, mainly in complex
environments. Most of the existing complexity is due to occlusion (i.e. face is partially visible),
illumination conditions (e.g. darker and lighter environments), background clutter (e.g. background
and object are too similar in color intensities), and so on.

Currently, face detection is one of the most studied topics in the Computer Vision litera-
ture [130]. The countless applications that make use of face detection contribute to such popularity.
Face detection is used in several applications in areas such as content-based image retrieval, video
coding, video conferencing, and crowd surveillance [45]. Many of the applications use face detection
algorithms as a first step. For instance, facial emotion recognition evaluates the emotion of a person
among a set of available emotions [8]. Before recognizing the emotion, the algorithm needs to
detect the face of the person. Another example is Facebook, which uses face detection as a prior
step to auto-tag friends on photos.

During the nineties, several implementations of face detection emerged. However, the ma-
jority of them were not able to yield good results in unconstrained conditions [130]. Unconstrained
face detection — also known as face detection in-the-wild — refers to recognizing faces in images
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in real-world conditions [47]. For instance, variations in pose, lighting, expression, race, ethnicity,
age, gender, clothing, hairstyles are unconstrained conditions. The Viola-Jones face detection im-
plementation was one of the major breakthroughs because it allowed face detection to be feasible
in real-world applications [120]. Most of the current digital cameras still use The Viola-Jones face
detector [130]. We will explain how it works in Section 3.2.1.

Large datasets have become available for face detection. A recent and very challenging
dataset is WIDER FACE [128]. It is a face detection benchmark dataset, composed of 32, 203
images and 393, 703 labeled faces. The images are organized into 61 different classes (60 classes
plus 1 for background) that represent events, such as Ceremony, Dancing, and Football. For each
event class, the authors randomly selected 40% of data as training, 10% as validation and 50% as
testing. The dataset is challenging mainly due to the high degree of variability in scale, pose, and
occlusion that the faces present. Figure 3.1 illustrates some scenarios. All images of WIDER FACE
are a subset of the well-known Web Image Dataset for Event Recognition (WIDER) dataset [125].
Other notable datasets are Face Detection Data Set and Benchmark (FDDB) [50] and IARPA Janus
Benchmark A dataset (IJB-A) [59]. FDDB contains 2, 845 images with 5, 171 labeled faces and all
images are from the Faces in the Wild Dataset [10]. On the other hand, IJB-A is a dataset that
contains both images and videos from 500 different subjects. In total, the dataset has 5, 712 images
and 2, 085 videos in a variety of positions. These datasets introduced not only a great quantity of
faces for training the algorithms, but also standard benchmarks for the evaluation of face detection
algorithms. Back in 2000, the lack of standard evaluation methods did not allow a fair comparison
between existing face detectors [45], which is now possible due to such datasets.

Scale Pose Occlusion Expression Makeup Illumination

Figure 3.1: Examples of images of WIDER FACE dataset.

The large amount of images in face detection datasets allowed deep learning algorithms
to learn representative features for detecting faces and outperform Viola-Jones and other previous
implementations. In the following sections, we will explore some implementation of face detectors
based on hand-crafted and deep learning approaches. We will explain how they work and execute
experiments to evaluate them in different datasets. Finally, we will detail our meta learning approach
for recommending the best face detector per image.
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3.2 Related Work Based on Hand-Crafted Features

3.2.1 Open CV (Viola-Jones)

Open Source Computer Vision (OpenCV)1 is an open source computer vision and machine
learning library that contains several functions for computer vision tasks. As it is mostly written in
C and C++, it enables fast real-time computer vision and is used in many different applications
(it also contains Python adapters). Among its functionalities, OpenCV contains two face detection
methods: the Haar Feature-based Cascade Classifiers [120], and Local Binary Patterns (LBP) [71].
OpenCV contains methods for training classifiers from scratch as well as methods that allow one to
use trained classifiers. In the next sections, we will explain how each of these classifiers work.

3.2.1.1 Haar Feature-based Cascade Classifiers (Viola-Jones Face Detector)

Haar Feature-based Cascade Classifiers is an effective method for object recognition, which
is based on machine learning [120]. It allows one to create an object recognition system (i.e.
recognizing cars, planes, people) using simply a set of positive and a set of negative examples. For
instance, in order to train a classifier to detect faces, one must provide a set of training images,
which is comprised of positive images and negative images. Positive images are the ones that contain
a face while the negative images are the ones without faces.

A B

DC

Figure 3.2: Example of Haar-like features used by Haar Feature-based Cascade Classifiers. A and B
show two-rectangle features. C shows a three-rectangle feature whereas D shows a four-rectangle
feature [120].

During the training phase, the algorithm extracts Haar-like features from the images rather
than using the pixels intensities. Haar-like features are based on Haar wavelets, which is a set of
functions that encode differences in average intensities between regions [83]. These features are
very similar to features extracted by convolutional kernels (refer to Chapter 2, for more details on
convolutions), which are used to detect whether the specific feature is present on a given image.

1Available at http://opencv.org/
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Figure 3.2 contains examples of such features. Besides the ones shown in Figure 3.2, there are other
Haar-like features, which are generated through the rotation of the existing ones [72].

In order to calculate the features, the sum of the pixels within the white rectangles is
subtracted from the sum of pixels in the black rectangles, which results in a single value. Never-
theless, to calculate such features in a whole image is computationally expensive, since there are
about 180, 000 different features in a 24 × 24 detector, for example. Therefore, instead of using a
regular image the Haar Feature-based Cascade Classifiers use an intermediate representation of the
image called integral image (Figure 3.3). Given an integral image at (x, y), it contains the sum of
all the pixels above and to the left of (x, y) inclusive, which can be computed in a single pass over
the original image [120]. It allows the algorithm to execute only once the most computationally
expensive portion and re-use the calculated values (integral image) to extract different Haar-like
features.
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1 2
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1 1 1
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2 4
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Figure 3.3: To calculate the integral image, we can imagine that a blue line is drawn in a given
region and all pixes above and to the left of that region are summed up. For instance, A, B, C, D,
and E illustrate different portions being calculated. F has the resulting integral image.

The next step of the algorithm is to select the best features to be used in the classifier.
For such a task, it is used a slightly modified version of AdaBoost [33]. AdaBoost is an algorithm
that boosts the classification of a simple (also called weak) learning algorithm. The modification
makes AdaBoost return a weak classifier that depends only on a single feature, acting like a feature
selector. Therefore, each of the resulting weak classifiers are combined to build a stronger one
(ensemble learning).

In training and in test time, each image is sampled in sub-windows. For each of these sub-
windows, all the Haar-like filters are applied, which leads to a considerable computational cost. In
order to solve this issue, the algorithm uses cascade classifiers. The cascade classifiers are comprised
of different stages, each of which have specific Haar-like features being extracted (Figure 3.4). As
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each image is sampled in sub-windows, each stage works in a way that allows it to discard sub-
windows that do not have the face before going to the next stage, avoiding unneeded computation.

Stage 0
Pass

Fail

Stage 1
Pass

Fail

Stage n
Face

Fail

...Input

Figure 3.4: Stages of cascade classifier. Each stage contains specific Haar-like feature extractors.
The input is considered a face only if it passes through all stages. It is not considered a face if the
verification fails in any of the stages.

3.2.1.2 Local Binary Patterns

Local Binary Patterns (LBP) is a simple but efficient feature extractor [82]. It is one
of the best performing texture descriptors and has been used for different applications such as
face detection, face recognition, facial expression analysis, and etc. [4]. LBP works in a 3 × 3
neighborhood, using the center pixel value as a threshold [87]. Therefore, it basically extracts
features of local structures through the comparison of a given pixel with its neighboring pixels,
thresholding the values of each pixel based on the given pixel (Figure 3.5). If the value of the pixel
being compared is larger or equal to the selected pixel, it is thresholded to 1, whereas if the value
is smaller it is thresholded to 0. As there are 8 neighbor pixels, a total of 28 = 256 texture units is
possible.

5 37 2

4 10 33

14 10 7

A

0 1 0

0 1

1 1 0

B

Thresholding

Binary

01010110

Decimal

86

Figure 3.5: LBP selects a given center pixel (10, in this case) and compares it to all the neighbor
pixels. If their value is larger or equal to the center pixel, it is assigned the value 1. Otherwise, it
is assigned to 0. The red arrow shows how the binary string representation is created. Afterwards,
these binary representation is converted to a decimal number, which results in the feature extracted
by LBP. Figure A is the original pixel matrix while Figure B is the thresholded version of it.

In the beginning, LBP was introduced as a texture descriptor. However, it started to be
used for feature extraction and classification due to two main advantages: the tolerance related to
monotonic illumination changes, and the computational efficiency [4]. Being robust to monotonic
illumination changes means that if all pixels in a given area suffer a small change due to illumination
conditions (for instance, all pixels intensities increase or decrease), LBP would still be able to extract
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the same features (see Figure 3.6). Therefore, a small invariance would not result in a different
feature extracted. However, it is important to mention that if a different illumination is present on
part of the image, for instance a shadow over a specific portion of an object, only a region of pixels
will be darkened, and hence it will have a different binary representation.

5 37 2

4 10 33

14 10 7

0 1 0

0 1

1 1 0

Binary

01010110

Decimal

86

8 42 7

6 18 37

21 19 9

1 32 0

2 8 27

10 8 4

Lighter environment

Darker environment

A

B

Figure 3.6: A and B show a possible representation of the left pixel matrix in a lighter and a darker
environment, respectively. We can notice that both output the same binary representation in the
end, which illustrates an interesting property of LBP.

0
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1 1 0
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A

5 37 2

4 10 3

14 10 7

0

0 9

4

4 3

14

7

8

Thresholding 

Average of the block: 
0 + 9 + 7 + 4 + 5 + 14 + 8 

+ 4 + 3 = 54 / 9 = 6 

B

Figure 3.7: 9× 9 MB-LBP.A illustrates how the image is divided into blocks and the mean of each
block. B shows the thresholded values. The top left part shows how the average of pixels’ values is
calculated, by summing up all pixels and dividing by the sub-region size.

The potential of LBP led to the development of a face descriptor based on it. Nevertheless,
the original LBP is not good enough to capture local information needed for face description, so a
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method able to capture such information was implemented [5]. In this method, the face is divided
into local regions and the texture descriptors are captured from each location. The descriptors (in
form of histograms) are then combined to form a single face descriptor.

Even though methods using LBP for face recognition evolved, they were still not able
to capture larger scale structure. To overcome such limitation, Multi-scale Block Local Binary
Pattern (MB-LBP) was proposed [71], which is the one used in OpenCV. Instead of computing in a
pixel level, MB-LBP is calculated based on the average values of sub-regions. Figure 3.7 shows an
example of a 9× 9 MB-LBP. It basically divides the region into 9 blocks, and in which the average
of pixels is calculated (represented by the red value). Then, the average of each sub-region is used
to threshold the values between 0 and 1 in the same manner as the regular LBP. AdaBoost is also
used to select the best region histogram features and construct a face classifier [131]. Therefore, as
it happens for Haar classification, OpenCV’s implementation of LBP also uses a cascade classifier
for face classification. It means the pipeline followed by Haar is the same for LBP: each stage of
the cascade classifier works in a way that allows it to discard sub-windows that do not have the face
before going to the next stage, avoiding unneeded computation.

3.2.2 Dlib

Dlib2 is an open source C++ library that contains machine learning algorithms and tools
to solve complex problems. It comprises a collection of different software components and it is
intended to both research and commercial use [58]. Among the different functions it offers, we
focused our attention on the tools for detecting objects in images, which includes a frontal face
detection algorithm. The main face detection algorithm in Dlib is based on Histograms of Oriented
Gradients (HOG).

Histograms of Oriented Gradients (HOG) is a dense feature descriptor that is used to
detect objects in images. Dense means that it extracts features for all locations over an image or a
region of interest instead of computing over local neighborhood pixels. It provides great performance
with respect to other object feature descriptors and it was first developed with the goal of identifying
pedestrians in images, which was not well achieved by the existing methods. The Haar feature-based
method, explained in Section 3.2.1.1, was one among such methods [19]. HOG is strongly based on
the intuition that the distribution of intensity gradients and edge directions can describe an object’s
shape and appearance in an image. It means the feature descriptor should be able to identify people,
for example, capturing the main edges and forms that distinguish people from other objects. An
image gradient is calculated by the computation of how much the intensity values change to a given
direction within a group of pixels. It denotes a directional change in the intensity of an image.
The magnitude of the gradient tells how quickly the image is changing whereas the direction of

2Available at: http://dlib.net/
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the gradient tells the direction in which the image is changing most rapidly. Figure 3.8 shows an
example of the gradients of a HOG face detection descriptor and the detection result.

Figure 3.8: On the left, the gradients orientation of HOG face detection descriptor. It is important
to notice that the gradients directions result in a face shape, which helps to understand the intuition
behind HOG and why it works. On the right, the face identified by the given descriptor.

The use of HOG has many precursors, but it only started to be more used along with Scale
Invariant Feature Transformation (SIFT) [77]. SIFT is an image feature descriptor that is invariant
to translation, scaling, and rotation. It basically transforms the image into a set of local feature
vectors, each of which with such invariance properties. The classic HOG implementation is done as
follows. After dividing the image into sub-regions called cells (or blocks), the first step is to compute
the gradients before-mentioned. They are calculated by convolving an image with a given kernel,
such as the Sobel Filter [106]. The second step relies on the creation of cell histograms, which is
achieved by accumulating the calculated gradients into a histogram. Finally, the cell histograms are
combined to form a single histogram, which represents the image. The main idea is that the cell
histogram will not change much if the cell moves slightly.

A more detailed explanation about each of these steps is available in [19, 14]. The good
results obtained with object recognition resulted into the use of HOG for face detection [22].

3.3 Related Work Based on Deep Learning

3.3.1 Faster R-CNN

Faster R-CNN [93] is a deep neural network that was created to address the object detection
problem. Nevertheless, the way it works can be adapted to handle face detection as well. Our
proposal is therefore to train Faster R-CNN with images that contain faces and use it as a face
detector. To the best of our knowledge, it is the first time Faster R-CNN is used as a face detector.
However, while developing this work, we found an unpublished work that presents a similar idea [52].
In order to use Faster R-CNN as a face detector, one must choose a face detection dataset and train
the network with it. For our case, we choose WIDER FACE [128] for training. Faster R-CNN has
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two different implementations available: one that is based on Matlab 3 and another in Python 4. As
our implementations are Python-based, we chose to use the Python one.

Faster R-CNN implementation contains scripts that enable one to use pre-trained models
and fine-tune the network on an object detection dataset. It contains scripts for fine-tuning on
PASCAL VOC and MS COCO. We changed the library to make it possible to train the network on
the WIDER FACE dataset. Usually, Faster R-CNN for object detection trained on a dataset with K
classes contains K+ 1 classes, where this extra class is used as background. In our case, we trained
our model with only 2 different classes, where one is the background and the other is face. We
consider that our target is to optimize the bounding box loss instead of the classification loss and
hence, we used only these 2 classes instead of all WIDER FACE classes. We used WIDER FACE
default training and validation sets. We detail our experiments in Section 3.4, as well as the different
models and hyper-parameters we tested.

3.3.2 MTCNN

MTCNN is a deep learning approach that aims to solve the face detection and alignment
problem. Differently from Faster R-CNN, MTCNN is already trained on face detection datasets.
The authors did not specify the training process, but data is carefully selected as to allow the three
networks to learn. The whole network is trained with four different types of data. First, negative
instances, which contain less than 0.3 IoU to any ground truth face. Second, positive instances,
which contain more than 0.65 to a ground truth face. Third, part face instances, which contain an
IoU between 0.4 and 0.65 to a ground truth face. Finally, the fourth are landmark faces instances,
which are faces labeled with five landmark positions. The IoU gap between negative and part
faces (0.3 to 0.4) is used to avoid confusion between the two types, mainly because they are very
similar [132]. Negative and positive instances are used for face classification tasks, whereas bounding
box regression uses positive and part faces instances. Landmark faces are used for facial landmark
localization. MTCNN has different implementations available. The original one is in Matlab 5.
There are other implementations in C++ and Python. We chose the Python implementation 6.

3.4 Individual Experiments

In order to evaluate each face detector individually, in the following sections we execute
the face detectors on a given set of images. For all experiments, we used the validation set from
the WIDER FACE dataset. The validation set is comprised of 3, 226 images divided into 61 classes.
However, for our evaluation we picked up 10% of each, which resulted in 326 images. Figure 3.9

3Available at: https://github.com/ShaoqingRen/faster_rcnn
4Available at: https://github.com/rbgirshick/py-faster-rcnn
5Available at: https://github.com/kpzhang93/MTCNN_face_detection_alignment
6Available at: https://github.com/DuinoDu/mtcnn
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shows the distribution of images per class. We can notice that the classes are distributed almost
equally. Our idea is to use such a dataset to evaluate face detectors individually due to the its
diversity between the classes. For instance, the dataset contains images from crowded places as well
as images that contain very few people. Figure 3.10 shows some examples. We can notice in the
images that there is a considerable variety of poses and environments. This is why such dataset is
very challenging.
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Figure 3.9: Images used for face detection tests. It is a subset of WIDER FACE validation set.

For the evaluation of each face detector, we followed an approach similar to [24]. It is a
modified version of the scheme used in PASCAL object detection challenges. For a given image, each
face detector should return N bounding boxes along with their confidence scores, which indicate the
confidence of the detector in the detected faces. For each detected bounding box, we calculate the
Intersection over Union (IoU) of the given bounding box with respect to the ground truth. The IoU
score is then used for assigning a detection to a given bounding box and it works as follows. After
executing a face detector on a given image, the detections are ordered in a decreasing fashion, from
highest to lowest confidence. The second part is to assign the detections to ground truths. For a
given ground truth and a given detection, the IoU is computed. If the IoU is larger than a threshold,
the detection is considered correct (a true positive), the detected face is removed from the detection
list and the routine picks up the next ground truth. Usually, the threshold used is 0.5, which means
that the ground truth and the detection should have an overlap that is larger than 50% [24]. This
process repeats until all ground truths were processed. The remaining ground truths — the ones
that were not assigned to any detection — are considered false negatives. The detected faces that
were not assigned to any ground truth are considered false positives. The evaluation process just
described is formally defined by Algorithm 3.1. Such algorithm has three input parameters for a
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given image: a list with the detected faces (ordered by confidence scores), a list with the ground
truths, and the IoU threshold. It yields true positives, false positives, and false negatives.

Award Ceremony Soccer Car Racing (Racing Car) Parade Marchingband

Figure 3.10: Some examples of images available in the validation set.

Algorithm 3.1: Algorithm for evaluating detected faces versus ground truth faces.

1: function evaluate_detection (detected_faces, gt_faces, iou_threshold)
2: true_positives← 0
3: false_positives← 0
4: false_negatives← 0
5: for each ground truth face gt_f in gt_faces do
6: for each detected face f in detected_faces do
7: iou← compute_iou (f, gt_f)
8: if iou > iou_threshold then
9: true_positives← true_positives+ 1
10: detected_faces.remove (f)
11: break
12: end if
13: end for
14: end for
15: false_negatives← length (gt_faces)− true_positives
16: false_positives← length (detected_faces)
17: return true_positives, false_positives, false_negatives

Next, after we obtained the number of true positives and true negatives, we can finally
compute metrics that enable us to evaluate how good our detection system is. For our experi-
ments, we compute three different measures: Precision, Recall and F1 measure. Precision, given
by Equation 3.1, determines the fraction of the detected faces that are actually faces, penalizing
the detector for incorrect detections. Recall, given by Equation 3.2, is the proportion of positive
cases that are properly identified. In our case, it is the fraction of ground truth faces that were
successfully detected. It means that if the detector does not find a large portion of the existing
faces, recall value will decrease. With precision and recall we can finally compute the F1 measure
(Equation 3.3). F1 represents the harmonic mean between recall and precision. Therefore, a high
value of F1 ensures that precision and recall are reasonably high [114]. In our experiments, we use
the F1 measure to compare each face detector and evalute which one is better.

Precision = tp

tp+ fp
(3.1)
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Recall = tp

tp+ fn
(3.2)

F1 = 2 ∗
(
Precision ∗Recall
Precision+Recall

)
(3.3)

As in previous sections, we divide the experiments in detection using hand-crafted and
deep learning approaches.

3.4.1 Hand-Crafted Approaches

Hand-crafted approaches are those based on hand-crafted feature extraction. Hence, the
following sections contain experiments with OpenCV and Dlib.

3.4.1.1 OpenCV

Haar-based and LBP-based feature classifiers work similarly, even though LBP is faster in
the cascade classifier training time. The face detector in OpenCV contains four main parameters:
Cascade File, Scale Factor, Minimum Neighbors, and Minimum size. The first parameter is related
to the trained cascade file, which is used for classification. For instance, there are files based on
Haar features and others based on LBP features. There are also files that are specific to detect
eyes, nose, or the face itself. Scale Factor is related to how much the image size is reduced at
each image scale. It means that one can find smaller faces by scaling larger ones, making the face
detectable by the algorithm. Minimum Neighbors refers to how many neighbors each candidate
rectangle should have to retain. If this parameter has a small value, the algorithm will be susceptible
to false positives. It means that larger values detect less but high-quality faces whereas small values
do the opposite. Finally, Minimum Size is related to the minimum object size. Any object (face)
found that is smaller than this parameter will be ignored.

We executed a considerable amount of possible combinations of parameters in OpenCV.
The values and parameters used are the following: 1.1, 1.3, 1.5, 1.7, 2.0 for Scale Factor; 0, 1, 2, 3
as Minimum Neighbors; (10, 10), (20, 20), (30, 30) as Minimum Size; and all 7 existing pre-trained
cascade files (Haar-based and LBP-based cascade classifiers). Therefore, we executed 420 different
executions, each of which containing variations of the before-mentioned parameters. Since face
detection executions are deterministic, we executed all experiments once and selected some of the
most interesting cases to show. We computed the F1 measure over all selected images (10% of the
WIDER FACE validation set), with all 420 different parameters, and with different IoU thresholds.
We generated plots as to give a better idea of the impact of changing parameters in OpenCV’s face
detectors. The results were organized in the following manner: for each of the cascade classifiers
(7 in total), we selected the Top-5 and Worst-5 results. All plots have IoU thresholds (overlap
threshold) and F1 measure values in the x and y axes, respectively.
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Figure 3.11 shows best OpenCV parameters for each different pre-trained cascade classifier.
Some results are straightforward: for instance, both profile face detectors in Figure 3.11(e) and
Figure 3.11(g) have the worst results overall. The nature of the images on the dataset could be
responsible for such results, as the majority of them do not contain profile faces. Another interesting
point is that Haar classifiers outperform LBP overall. We can also see that the best value for scale
factor is 1.1. In all plots, the best results (first and second, at least) use such value. The two
best results overall are in Figure 3.11(a) and Figure 3.11(c). Both are Haar classifiers, and the
top-5 are configured with scale factor of 1.1, minimum size of (10, 10) or (20, 20), and minimum
neighbors of 1, 2, or 3. All F1 scores are superiorly limited by 0.35. On the other hand, Figure 3.12
shows worst OpenCV parameters for each different pre-trained cascade classifier. All F1 measure
values are bounded by 0.12. Comparing both Top-5 and Worst-5, we can see that some parameters
make the detections decrease drastically. For instance, when the scale factor is 2.0 or 1.7 and the
minimum neighbors is 2 or 3, the detectors yield the worst results. We can see that the best results
are still based on Haar classifiers and frontal face detectors. A comparison with the Top-10 and
the Worst-10 results in a single plot are presented in Figure 3.14. It contains all the information
regarding parameters like the other plots, along with a new value C, which represents the cascade
file. For instance, C: (a) represents the pre-treined cascade classifier filename in Figure 3.11(a),
which is haarcascade_frontalface_alt.xml.

We can conclude that the best performance of OpenCV face detectors is achieved with the
following parameters: scale factor 1.1; minimum neighbors of 1 or 2; and minimum size of (10, 10),
(20, 20), or (30, 30). Such values corroborate with the results of the individual plots analysis. On
the contrary, we can conclude that any face detector based on lpbcascade_profileface_alt.xml and
with a scale factor different than 1.1 yields the worst results. Figure 3.14 shows all the 420 variations
of OpenCV parameters. We can see that it is crucial to evaluate the parameters in order to get
the best result from the detectors. Figure 3.13 shows an example of different parameters on the
same image. In A, scale factor is 2.0, minimum neighbors is 2, and minimum size is (20, 20). In B,
scale factor is 1.1, minimum neighbors is 2, and minimum size is (20, 20). We can see that by only
changing the scale factor, the impact is large. Green bounding boxes represent the ground truth
whereas red are the predicted ones.
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haarcascade_frontalface_alt.xml
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SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.1 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.1 | MN: 3 | MS: (10, 10)

(a) Haar frontal face alt
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haarcascade_frontalface_alt_tree.xml

SF: 1.1 | MN: 1 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.3 | MN: 0 | MS: (10, 10)
SF: 1.3 | MN: 0 | MS: (20, 20)
SF: 1.1 | MN: 0 | MS: (10, 10)

(b) Haar fontal face alt tree
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haarcascade_frontalface_alt2.xml

SF: 1.1 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.1 | MN: 3 | MS: (20, 20)

(c) Haar frontal face alt 2
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haarcascade_frontalface_default.xml

SF: 1.1 | MN: 3 | MS: (10, 10)
SF: 1.1 | MN: 3 | MS: (20, 20)
SF: 1.1 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.3 | MN: 1 | MS: (20, 20)

(d) Haar frontal face default
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haarcascade_profileface.xml

SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.1 | MN: 1 | MS: (20, 20)
SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.1 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 1 | MS: (30, 30)

(e) Haar profile face
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lbpcascade_frontalface.xml

SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.1 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 3 | MS: (10, 10)
SF: 1.1 | MN: 3 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (10, 10)

(f) LBP frontal face
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SF: 1.1 | MN: 0 | MS: (30, 30)
SF: 1.1 | MN: 0 | MS: (10, 10)
SF: 1.1 | MN: 0 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.1 | MN: 1 | MS: (20, 20)

(g) LBP profile face

Figure 3.11: Top-5 results for each cascade file. SF is the Scale Factor, MN is the Minimum
Neighbors parameter, and MS is the Minimum Size parameter. On the top of each plot, we can see
the name of the cascade file. Colors do not represent any particular order.
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(e) Haar profile face
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(g) LBP profile face

Figure 3.12: Worst-5 results for each cascade file. SF is the Scale Factor, MN is the Minimum
Neighbors parameter, and MS is the Minimum Size parameter. On the top of each plot, we can see
the name of the cascade file. Colors do not represent any particular order.
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A B
Figure 3.13: Examples of changing parameters in OpenCV in an input image. Green boxes are
ground truth whereas red are detections.
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SF: 1.1 | MN: 1 | MS: (20, 20) | C: a
SF: 1.1 | MN: 1 | MS: (10, 10) | C: a
SF: 1.1 | MN: 2 | MS: (10, 10) | C: c
SF: 1.1 | MN: 2 | MS: (20, 20) | C: c
SF: 1.1 | MN: 2 | MS: (10, 10) | C: a
SF: 1.1 | MN: 2 | MS: (20, 20) | C: a
SF: 1.1 | MN: 1 | MS: (20, 20) | C: c
SF: 1.1 | MN: 1 | MS: (10, 10) | C: c
SF: 1.1 | MN: 3 | MS: (20, 20) | C: c
SF: 1.1 | MN: 3 | MS: (10, 10) | C: c
SF: 2.0 | MN: 3 | MS: (10, 10) | C: g
SF: 2.0 | MN: 3 | MS: (30, 30) | C: g
SF: 2.0 | MN: 2 | MS: (30, 30) | C: g
SF: 2.0 | MN: 2 | MS: (10, 10) | C: g
SF: 2.0 | MN: 3 | MS: (20, 20) | C: g
SF: 2.0 | MN: 2 | MS: (20, 20) | C: g
SF: 1.7 | MN: 3 | MS: (10, 10) | C: g
SF: 1.7 | MN: 3 | MS: (20, 20) | C: g
SF: 1.7 | MN: 3 | MS: (30, 30) | C: g
SF: 1.5 | MN: 3 | MS: (30, 30) | C: g

Figure 3.14: Top-10 and Worst-10. The first 10 labels in the legend are the 10 best parameters
whereas the next 10 are the worst.

OpenCV is a well known library for Computer Vision, however we did not find any spec-
ification with the best parameters for its face detectors. For our experiments with WIDER FACE
images, the best parameters are Scale Factor 1.1, Minimum Neighbors of 1, and Minimum Size of
(10, 10). Nevertheless, we calculated the F1 score based on the whole dataset. It means that we
computed all true positives, false negatives, and false positives for each, summed all of them and
calculate the F1 score based on such values. One might argue that we should calculate the F1 score
on an image basis, sum all F1 scores and divide by the total number of images. In order to evaluate
the difference, we did exactly that: instead of calculating the F1 score only once based on all true
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Figure 3.15: All 420 variations of OpenCV parameters that we used in our experiments.

positives, false negatives, and false positives, we calculated the F1 score for each image and divided
by the total of images. The results can be seen in Figure 3.16.

Initially, the results seem straightforward. All the pre-trained classifiers that were better
when computing the overall F1 score continue to be the best when computing the same F1 score on
an image basis. However, when we look closely to the results, we can see that the best parameters
for each cascade classifier change slightly. For instance, let us compare the best cascade classifier
haarcascade_frontalface_alt.xml. In Figure 3.11(a), we can see that the best parameters are Scale
Factor 1.1, Minimum Neighbors of 1, and Minimum Size of (10, 10). It achieves an score of almost
0.3 when the overlap threshold is 0.5. In Figure 3.16(a), the best parameters are also Scale Factor
1.1 and Minimum Size as (10, 10), however the Minimum Neighbors parameter is 3. It results in
an F1 score of about 0.43 for the same IoU threshold of 0.5. Therefore, results indicate that when
comparing image by image, it is better to use a higher value for Minimum Neighbors.
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haarcascade_frontalface_alt.xml

SF: 1.1 | MN: 3 | MS: (10, 10)
SF: 1.1 | MN: 3 | MS: (20, 20)
SF: 1.1 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.1 | MN: 3 | MS: (30, 30)

(a) Haar frontal face alt
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haarcascade_frontalface_alt_tree.xml

SF: 1.1 | MN: 1 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.1 | MN: 1 | MS: (30, 30)
SF: 1.1 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 2 | MS: (20, 20)

(b) Haar fontal face alt tree
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haarcascade_frontalface_alt2.xml

SF: 1.1 | MN: 3 | MS: (20, 20)
SF: 1.1 | MN: 3 | MS: (10, 10)
SF: 1.3 | MN: 2 | MS: (20, 20)
SF: 1.3 | MN: 2 | MS: (10, 10)
SF: 1.1 | MN: 3 | MS: (30, 30)

(c) Haar frontal face alt 2
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haarcascade_frontalface_default.xml

SF: 1.3 | MN: 3 | MS: (20, 20)
SF: 1.3 | MN: 3 | MS: (10, 10)
SF: 1.3 | MN: 3 | MS: (30, 30)
SF: 1.3 | MN: 2 | MS: (20, 20)
SF: 1.3 | MN: 2 | MS: (10, 10)

(d) Haar frontal face default

0.0 0.2 0.4 0.6 0.8 1.0
Overlap Threshold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F1
 p

er
 im

ag
e

haarcascade_profileface.xml
SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.1 | MN: 1 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (30, 30)
SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.1 | MN: 2 | MS: (10, 10)

(e) Haar profile face
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lbpcascade_frontalface.xml

SF: 1.1 | MN: 3 | MS: (10, 10)
SF: 1.1 | MN: 3 | MS: (20, 20)
SF: 1.1 | MN: 3 | MS: (30, 30)
SF: 1.1 | MN: 2 | MS: (20, 20)
SF: 1.1 | MN: 2 | MS: (10, 10)

(f) LBP frontal face
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lbpcascade_profileface.xml
SF: 1.1 | MN: 1 | MS: (10, 10)
SF: 1.1 | MN: 1 | MS: (20, 20)
SF: 1.1 | MN: 1 | MS: (30, 30)
SF: 1.1 | MN: 2 | MS: (30, 30)
SF: 1.1 | MN: 2 | MS: (20, 20)

(g) LBP profile face

Figure 3.16: Top-5 results for each cascade file based on per-image F1 score. SF is the Scale Factor,
MN is the Minimum Neighbors parameter, and MS is the Minimum Size parameter. On the top of
each plot, we can see the name of the cascade file. Colors do not represent any particular order.
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We can conclude that the F1 score per image seems to be a reasonable choice when
compared with the overall F1 score. We believe that the overall score tends to penalize the best
results. For example, let us suppose that an image contains 100 faces and another one contains
10. Now, let us suppose that the detector found 5 faces and got only 3 correct in the first image.
However, in the second, it correctly detected 9 out of 10 faces. The results would be: 5 true positives,
3 false positives and 95 false negatives for the first image; 9 true positives, 1 false positives and 1
false negative for the second one. Computing the overall F1 score results in 0.22. However, when
computing the per image score, we would get 0.093 and 0.9 for the first and the second images,
respectively. Summing up such values and dividing by two results in around 0.5. Hence, we can see
that when computing the overall score the best detections are heavily penalized and the result tends
to be lower. Therefore, for the experiments with the next face detectors, we are going to show plots
based on both the overall F1 measure value and the per-image F1 measure.

3.4.1.2 Dlib

Differently from OpenCV, Dlib’s methods for face detection provide only one tunable
parameter. The parameter corresponds to the numbers of times an image will be upsampled. For
instance, let us suppose that we have an image of size 240×240. The method’s default configuration
is to look for faces that are at least 80×80 (regardless of the size of the input image). If the upsample
parameter is changed to 1 the minimum face size changes to 40 × 40. If it is 2 the minimum size
is 20 × 20, and so forth. Even though the detection rates raise when the parameter value is large,
the drawback is performance, which is degraded when running detection even over a single image.
Therefore, we executed experiments with four different upsample values: 1, 2, 3, and 4.

As we did for the experiments with OpenCV, we computed the F1 measure over all selected
images with 4 different parameters and with different IoU thresholds. Additionally, we also computed
the F1 measure value in an image basis. Figure 3.17 shows results of our experiments. We can
see that the larger the value of upsample used in Dlib the better. Additionally, we can notice that
the values 2, 3, and 4 are very similar in the results. Such results are understandable and smaller
because when we increase the upsample value, the face detector searches for smaller faces in the
image, being able to find more faces than usual. However, increasing upsample value results in
larger execution time to find a face. Also, we can see that when the IoU threshold is large — larger
than 0.6, for example — the difference between different upsample values decreases until 0.8 where
they yield almost the same F1 measure value. Increasing the threshold makes it more difficult for a
detector to detect faces correctly. One possible conclusion is that when we need a precise detection
of the faces, the upsample parameter does not make much difference when using Dlib.

In order to evaluate the impact of the upsample parameter in execution time in a more
concise manner, we randomly sampled 10 images from our subset of the WIDER FACE validation set.
We then executed face detection in these 10 images with different values of upsample. Figure 3.18
contains the results from the execution 7. To measure the execution time, we executed 10 times the

7All executions were performed in a server machine with 32GB of RAM memory and 2 Xeon processors.
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Figure 3.17: The 4 variations of upsample parameter that we used in our experiments with Dlib.

same experiment and calculated a simple average over the values. In Figure 3.18(a), we can see the
impact of the upsample parameter in the number of detected faces in a given image. As we could
see in Figure 3.17, the larger the value of upsample the better the results. Figure 3.18(b) shows the
impact of upsample in execution time. We can see that the time increases for values of upsample
larger than 2. Values larger than 4 showed to be impractical 8 in our experiments and hence we did
not perform experiments with larger values than that.
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Figure 3.18: Impact of changing upsample parameter in Dlib.

In Figure 3.18(a) larger upsample values sometimes find less faces than smaller values,
and the opposite also happens. We can see that images 3 and 7 respectively represent such cases.
We believe that larger upsample values are more susceptible to incorrect detections. To check
if our assumption is correct, we selected some cases among the 10 images used for performance
evaluation. They are depicted in Figure 3.19. All detection results show how changing upsample
affects the overall number of detected faces but not how good the detection is. Figure 3.19(a)
shows an interesting case. Recall that for image 5, the best result was with 4 as the upsample value.

8The detector took more than 1 hour to detect the faces in a single image.
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All different configurations found the three faces in the image. However, we can notice that the
leftmost person’s tie contain a tiny yellow square, which represents the second "face" detected by
Dlib with upsample equals to 4. Figure 3.19(b) shows a scenario where the four different setups
yielded the same results, finding all the six faces in the image. Figure 3.19(c) illustrates a case
similar to the one in Figure 3.19(a). All the setups found the face, however upsample equals to 3
found two faces. The tiny face found is on the right part of the image, inside the camera lens on the
back. Again, increasing the upsample value may find more faces but with a risk of increasing the
number of incorrect detections. Finally, the image in Figure 3.19(d) shows a case where upsample
of 2 was not able to find the given face. We are not sure of what exactly affected the detection
with such value and hence, we think it is an outlier case.

As we did for OpenCV, we computed the F1 score on an image basis. Figure 3.20 illustrates
the results. We can see that the results in Dlib improve considerably when computing the F1 score
individually, which is similar to OpenCV. In Figure 3.17, the largest F1 score was 0.33, while in
Figure 3.20 it is almost 0.5. Additionally, we can notice that now the best results are when the
upsample value is 2. These results corroborate with the detection results in Figure 3.19. When we
increase the upsample value, Dlib face detector is more susceptible to find false positives. Hence,
when computing the measure per image, upsample equals to 2 seems to be more robust than the
others. We believe that the number of false positives increase for larger upsample values because
the detector tries to find smaller faces (for instance 5× 5). As far as we could see, the smaller the
face the more susceptible to false positives Dlib face detector is.

With our experiments with different Dlib parameters we can conclude that upsample of 4
is the best overall when computing the F1 measure over all detections. However, when we consider
a per-image basis, upsample vof 2 outperforms the other values. We can also notice that when the
overlap threshold (IoU) increases, values 2, 3, and 4 seem to have a very similar performance, as
we can see in Figure 3.17 and Figure 3.20. Since the default IoU value is equal or larger than 0.5,
all our experiments with Dlib as a face detector will use upsample of 1 and 2. The choice of 2
instead of 3 and 4 is due to the fact that, when we compare image per image, 2 is better for almost
all thresholds. We will also use another Dlib face detector with upsample as 1 because when the
overlap is larger than 0.6, it becomes very similar to 2. Hence, in our future experiments, we will
refer to Dlib-1 and Dlib-2 to indicate a Dlib face detector with upsample of 1 and 2, respectively.

3.4.2 Deep Learning Approaches

Deep learning approaches are those based on learned feature extractors. In the following
sections, we will detail the experiments we performed with these approaches.



94

Image 5
Upsample: 1
Upsample: 2
Upsample: 3
Upsample: 4

(a)

Image 6
Upsample: 1
Upsample: 2
Upsample: 3
Upsample: 4

(b)

Image 7
Upsample: 1
Upsample: 2
Upsample: 3
Upsample: 4

(c)

Image 8
Upsample: 1
Upsample: 3
Upsample: 4

(d)

Figure 3.19: Results with Dlib face detector with different upsample values.

3.4.2.1 Faster R-CNN

Our main hypothesis is that deep learning based approaches are capable of outperforming
classic implementations because they learn how to extract the best features in order to classify
or execute a detection correctly. The two losses available in Faster R-CNN make it a network
very difficult to train. One cannot easily assume that a small loss is equal to a well-trained network.
Therefore, for our experiments with Faster R-CNN, we tested different models, each of which trained
for a different number of iterations. We followed an approach similar to [52] for training. We used
a VGG-16 model pre-trained on ImageNet and fine-tuned our model for 70, 000 iterations in the
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Figure 3.20: The 4 variations of upsample parameter that we used in our experiments with Dlib. In
this case, results are based on F1 computed per image instead of the overall computation.

WIDER FACE training set. For the first 50, 000 iterations, we used a learning rate of 0.04. For the
next 20, 000, we decreased the learning rate to 0.004. Every 10, 000 iterations we saved a snapshot
of the model in order to have more models to test. Therefore, we ended up with 7 different models.
Faster R-CNN also has parameters for the confidence threshold and the nonmaximum suppression.
We used the values 0.5, 0.6, 0.7, 0.8, and 0.9 for the confidence threshold, whereas for NMS we
used 0.5, 0.4, 0.3, 0.2, and 0.1. Such variations along with the 7 trained models resulted in 175
different combinations.

We followed the same idea for evaluation: computed the F1 measure over all selected
images varying the parameters of the detector and the IoU thresholds. We also computed the per-
image F1 score as it showed improved results with both OpenCV and Dlib (refer to Section 3.4.1.1
and Section 3.4.1.2). Figure 3.21 presents some results of our experiments. It shows the Top-10
results of our 175 different executions. We can see the impact of the fine-tuning for the last 20, 000
iterations. All the best results are from either iteration 60, 000 or 70, 000 and hence, we can conclude
that the fine-tuning is effective for our scenario. Additionally, the confidence threshold is 0.7 or 0.8,
which indicates that the higher the better. When we increase the NMS threshold, it seems to
negatively affect the results. Only one of the Top-10 results has a NMS threshold larger than 0.3,
and it is the worst result. However, when we increase the IoU value, those differences vanish. All
F1 measure values in Figure 3.21 are larger than those presented by the hand-crafted approaches,
which confirms our hypothesis — deep learning approaches should yield similar or better results than
hand-crafted ones.

Figure 3.22 shows all 175 variations of Faster R-CNN that were executed. As it happens for
OpenCV, we can see that it is crucial to evaluate the parameters in order to get the best result from
Faster R-CNN. Even though the last model snapshots (the ones trained for more iterations) should
yield the best results, we should carefully evaluate the confidence threshold and the NMS threshold
to get even better results. NMS ignores bounding boxes that significantly overlap each other and,
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Figure 3.21: Top-10 results with Faster R-CNN. M is the Model, CT is the Confidence Threshold
and NMS is the Nonmaximum Supression Threshold.
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Figure 3.22: All 240 variations of Faster R-CNN models that we used in our experiments.

hence, results in a better and more accurate detection. The confidence threshold indicates how
confident the model is with the detection — the higher the better. However, many good detections
(the ones between 0.7 and 0.9, for example) may be ignored with higher thresholds. Figure 3.22
illustrates an example of different parameters with the same image. In A, the model is from iteration
10, 000, with confidence threshold of 0.5 and NMS threshold of 0.5. All faces are detected, however
there are many false positives (e.g. the ball on the right) and detections that overlap. B shows an
improved version that is from iteration 10, 000 as well, but the confidence threshold is now 0.9. We
can see that the number of false positives reduced, however some of them continue on the image.
Additionally, the first athlete of the second row is not identified anymore. C makes use of the best
parameters for Faster R-CNN. It uses the model from iteration 60, 000, confidence threshold of 0.8
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and NMS threshold of 0.3. The results are according to our evaluation with all parameters based
on the F1 score, whose parameters were the same used for C.

B CA
Figure 3.23: Examples of detection results with different Faster R-CNN models and parameters. A
is result of a model from iteration 10, 000 with a low confidence threshold (0.5). B is of a model
from the same iteration but with a larger confidence threshold (0.9). Finally, C is our best model,
which is from iteration 60, 000 and has a confidence threshold of 0.8.

As we did for OpenCV and Dlib, we computed the F1 score on an image basis as well. The
results are shown in Figure 3.24. The F1 score increased and reached almost 0.9. All the Top-10
models are from iterations 50, 000, 60, 000, and 70, 000, as it happens with the Top-10 for the F1
computed for all images. However, the confidence threshold is now larger: all the models have a
confidence threshold of 0.9. The NMS threshold seems quite similar as all of them are between 0.1
and 0.4. Additionally, the models yield very similar F1 score per image and their difference is almost
not perceivable in the plot.
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Figure 3.24: Examples of detection results with different Faster R-CNN models and parameters.

With our experiments with different Faster R-CNN trained models and parameters we can
conclude that models from iteration 60, 000 outperform the other models. If we consider the Top-
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10 results with F1 score based on all images instead of those calculated individually, the confidence
threshold would be 0.8 and the NMS threshold 0.3 or 0.2. Nevertheless, our experiments with Faster
R-CNN will use the model from iteration 60, 000, a NMS threshold of 0.3 and a confidence threshold
of 0.9.

3.4.2.2 MTCNN

MTCNN experiments followed the same setup of the other experiments: execute the
detector on the subset of validation images with different parameters. The implementation is based
on three models (one per network) and it has three parameters: Minimum Size, Scale Factor, and
Thresholds. Differently from Faster R-CNN, MTCNN is a deep learning approach that is trained for
face detection and landmark localization. Therefore, we believe that it should yield better, or at least
similar results to Faster R-CNN. The original MTCNN implementation and the other adaptations
that we mentioned in Section 2.4.4 use different parameters. Some of them use 10 as the minimum
size whereas others use 20. The scale factor strangely is 0.79 or 0.709. The thresholds are a triple
that contains a threshold for the confidence of each of the three networks. The implementations also
have varying values. Therefore, we used all the variations in our tests: (0.6, 0.7, 0.7), (0.5, 0.3, 0.3),
and (0.6, 0.7, 0.8). We ended up with 12 different executions with MTCNN.
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Figure 3.25: Results of all MTCNN executions.

Figure 3.25 shows the results of all 12 MTCNN executions. The best result is the one
with 10 as minimum size, 0.79 as scale factor, and thresholds of (0.6, 0.7, 0.7). On the other hand,
the worst results have a larger minimum size of 20 and thresholds of (0.5, 0.3, 0.3). They indicate
the minimum size 10 yields better results than using 20. However, when we evaluate the F1 score
on an image basis, we can see in Figure 3.26 that the scenario changes. The best execution results
contain the same scale factor and thresholds but the minimum size is now 20 instead of 10. Our
hypothesis is that it is similar to what happens with upsample parameter in Dlib. For smaller values,
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the detector is able to find even smaller faces, however it is more susceptible to false positives
(incorrect detections). In order to evaluate the visual impacts of the different values, we selected
some images and executed the MTCNN detector.
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Figure 3.26: Results of all MTCNN executions. In this case, evaluation of F1 score per image.

The first example is illustrated in Figure 3.27. Both results A and B have 0.79 as the scale
factor and thresholds of (0.6, 0.7, 0.7). The only difference is that A uses a minimum size of 10
whereas B uses 20. We can see that both detect almost all faces in the image except the one on the
leftmost part (which is very difficult due to occlusion). However, in A there are two false positives:
one is in the bottom right portion of the image and it is not a face; the other is almost in the
middle and it is a detection very close to other detection that is correct. Figure 3.28 shows another
example of the impact of the parameters. We used the same parameters, but now we evaluate the
results on images with fewer faces. A has two cases where the detector identified the existing faces
correctly, however there were some false positives as well. On the other hand, B is the result of a
detector that correctly identified the faces. Again, we can see the subtle differences between the
same detector with different parameters.

The experiments we executed with MTCNN showed results compatible with Faster R-CNN.
Analyzing the different executions we performed, we can conclude that using a minimum size of 20,
scale factor of 0.79 and thresholds as (0.6, 0.7, 0.7) are the best choice. Therefore, for our next
experiments we will use such parameters.

3.4.3 Analysis

In the previous sections, we evaluated each face detector individually. Now we will evaluate
their behavior together. We selected the best result for each classifier based on the higher F1 score
for an IoU that is larger than 0.5. The choice of 0.5 is not arbitrary: this is the default threshold
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BA

Figure 3.27: Example of MTCNN execution with different parameters.

BA

Figure 3.28: Another example of MTCNN execution with different parameters.

for considering a detection as true positive or false positive. Therefore, we believe that choosing
the best result for each detector based on such score is a suitable approach. We selected both the
highest overall F1 score as well as the F1 score calculated in an image basis. Figure 3.29 shows the
results based on the overall F1 score. We can see that the best result in all different thresholds is
from the MTCNN implementation. It is significantly larger than OpenCV, Dlib-1, and Dlib-2, and
consistently larger than Faster R-CNN. OpenCV is better than Dlib-1 and very similar to Dlib-2.
However, we can see that Dlib-2 is slightly better than OpenCV overall.

We also plotted results with respect to F1 score per image. Figure 3.30 shows the results.
Now, Faster R-CNN is consistently better than MTCNN. The inflection point is when the IoU
threshold is 0.65, which is when MTCNN is slightly better than Faster R-CNN. If we analyze the
results based on 0.5 of IoU, which is the value we will use in our experiments, Faster R-CNN is the
best face detector. The difference between OpenCV and Dlib-2 increased: now Dlib is almost 0.1
better than OpenCV in F1 score. Besides, Dlib-1 is now better than OpenCV as well. This result
is confirms the unpublished results we found 9, which found Dlib-1 – equivalent to Dlib with its
default parameters – to be better than OpenCV for face detection. When evaluating both figures,
it is clear that we should not evaluate the detectors based on F1 score of only one threshold, as

9We did not find any research papers with these experiments. However, a video at Youtube shows some differences
regarding robustness – https://www.youtube.com/watch?v=LsK0hzcEyHI



101

0.0 0.2 0.4 0.6 0.8 1.0
Overlap Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 S

co
re

Dlib-1
Dlib-2
Faster R-CNN
MTCNN
OpenCV

Figure 3.29: Best results of each face detector based on overall F1 score (10% of validation set).

the difference between them changes along the different values. In addition, the F1 score per image
evaluation continues to give great insights about the face detectors and hence, we will keep using it
to compare with our meta classifier implementation.
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Figure 3.30: Best results of each face detector based on F1 score per image (10% of validation set).

The results indicate that Faster R-CNN is the best face detector based on F1 score per
image. However, one might argue that the experiments are based only on 10% of the validation
dataset of WIDER FACE and hence, such results may not represent the true results for the whole
dataset. Besides, the results do not indicate that for other images and other datasets the same
detectors will be the best ones. To solve such issues we: 1) executed the evaluation on all WIDER
FACE validation set; 2) executed experiments with other datasets along with our meta learning
approach.
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Figure 3.31 illustrates the results of executing all face detectors in all images of the WIDER
FACE validation set. We can see that the behavior is consistent with what happens for 10% of the
dataset. Faster R-CNN continues to be the best face detector overall, followed by MTCNN. The
differences between OpenCV, Dlib-1, and Dlib-2 are still the same. The main change is with respect
to the top limit F1 measure score for each face detector. All of them decreased proportionally —
about 0.1 or 0.2 in the overall score. Figure 3.32 shows the results based on the overall F1 score.
Recall that the values here are worst than in the previous figure. Again, the order of the detectors
is the same, following the behavior of Figure 3.29 – MTCNN is better than Faster R-CNN and
OpenCV is better than Dlib-1 but worst than Dlib-2.
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Figure 3.31: Best results of each face detector based on the per-image F1 score (complete validation
set).
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Figure 3.32: Best results of each face detector based on the overall F1 score (complete validation
set).



103

3.5 Meta Learning Approach

In the previous section, we evaluated each face detector and compared them against each
other. We believe that each face detector is suitable to specific images. For instance, for images
that contain many small faces in a crowd, the best face detector could be Faster R-CNN. However,
for images that contain faces that are larger, the best face detector could be OpenCV. Towards this
end, we propose an approach to evaluate each face detector individually as well as combinations
of them. For a combination of all different detectors, we implemented a Meta Learning approach.
Meta Learning aims to choose the best classifiers dynamically, as opposed to Base Learning where
a single trained classifier is used [119].

Our approach consists in training a classifier whose features are extracted from a given
image using a deep learning network trained on a general purpose dataset – for instance, ImageNet
or PASCAL VOC. We believe that specific features of an image will give the trained meta classifier
information to decide which is the best detector to be used. Additionally to all individual face
detectors and the meta learning approach, we also implemented a random classifier as to have a
baseline. Such classifier randomly chooses one face detector among the implemented ones for a given
image. We can roughly explain our approach in three different steps: meta training set creation,
training, and prediction. We will explain each of this steps in the following section. Section 3.5.1
details the meta training set creation, whereas Section 3.5.2 explains how we trained each of the
classifiers. Section 3.5.3 details how prediction works, while Section 3.5.4 details our experiments.
Finally, Section 3.5.5 concludes our experiments.

3.5.1 Meta Dataset Creation

In order to create our meta dataset we have four main steps: execute all face detectors
on a given image set; compare detections with ground truths and compute each detector F1 score
for each image; get a feature vector for each of the images by forwarding them to different trained
ConvNets; create the datasets themselves.

First, we use all face detectors we have explained in this work and the training set of the
IJB-A dataset. IJB-A contains 10 different folds for training (and testing). We executed experiments
with the first training set. The training set is comprised of 16, 010 images with faces. Figure 3.33
shows how the meta training set creation works. The first two steps are 1) computing F1 measure
over the resulting bounding boxes of each face detector and 2) extracting features from all images.
Hence, for each image we execute all face detectors, extract the bounding boxes, and compute the
F1 score. It results in a list with each image followed by the F1 score for each detector. With such
score, we are able to decide whether one face detector is better over another. In cases where two or
more face detectors have the same F1 score, we reject such instance. We argue that these instances
would confuse the meta classifier since a face detector would not be better than the other.
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In the second step, we extract the feature vector that represents the image. To do so,
we forward each image to a trained Convolutional Neural Network and get the feature vector from
a given layer. We executed tests with four different CNN architectures, namely VGG-16, VGG-19,
GoogLeNet Inception v3, and ResNet 50. The network architectures are the original implementation
or an evolution of an architecture that won — or was a runner-up, in the case of VGG — the
ImageNet Challenge, mentioned in Chapter 2. We have already detailed VGG-16 and VGG-19 in the
previous chapter. They are two deep architectures comprised of 16 and 19 layers, respectively. The
VGG-16 was the runner-up of the 2013 ImageNet Image Classification challenge, whereas VGG-19
is an improved implementation that contains more convolutional layers.
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Figure 3.33: How our metadataset is created.

Inception v3 [112] is an evolution of GoogleNet [111], which won the ImageNet challenge of
2013. GoogLeNet is a very deep neural network that is more complex than VGG but contains fewer
parameters (GoogLeNet has 5 million parameters while VGG has about 140 million parameters).
Its architecture is depicted in Figure 3.34. In summary, the main difference of GoogLeNet is the
so-called Inception module, which is illustrated in Figure 3.35(a). Instead of applying a convolution
of, let us say 3× 3, the Inception module applies different convolutions and combines their results
at the end. Each Inception module contains four different branches, each of which have different
convolutions with different filter sizes applied. From left to right, the first one is a convolution with
filter size of 1 × 1. The second is a convolution with filter 1 × 1 followed by a 3 × 3 convolution.
The next one is a convolution with filter 1× 1 followed by a 5× 5 convolution. Finally, the last is
a 3 × 3 max-pooling followed by a 1 × 1 convolution. The idea is that each convolution is able to
extract different aspects from the image, where the smaller filters look for more local information
while the larger ones look for more contextual information. Additionally, another contribution of
such an architecture is to remove the fully-connected layers at end, replacing them by an average
pooling [73]. Average pooling is a simple strategy that concatenates the output features maps of
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Figure 3.34: GoogleNet architecture (Image from [111]).
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the four different branches into a single vector. The vector is then followed by a Softmax layer,
which performs the classification. Inception v3 contains three different inception modules. The first
one is the same as in Figure 3.35(a). The second contains two 3× 3 convolutions instead of using
5× 5 convolutions, which is illustrated in Figure 3.35(b). Figure 3.35(c) shows the last one, where
one of the 3 × 3 and the 5 × 5 convolutions are replaced by two convolutions of size 3 × 1 and
1 × 3 each. The concept behind both new inception modules draws inspiration from convolution
factorization, which aims to increase the computational efficiency of the convolutions, changing
larger filters for smaller ones [112]. It results in a faster training and reduction of the number of
parameters (weights) of the network. Since Inception v-3 is a newer, faster, and, "lighter" version
of GoogLeNet, we will use its implementation as one of our CNN architectures.
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Figure 3.35: The three different Inception modules available in Inception v3. The first one is used
in the original GoogLeNet implementation.

ResNet 50 is a particular implementation of ResNet [43]. GoogLeNet advanced the state-
of-the-art in accuracy but also with respect to the depth of deep learning models – 22 layers
when compared with 19 layers from the larger VGG, and only 8 layers from AlexNet. ResNet
increased depth, reaching 50, 101, and 152 layers implementations. Figure 3.36 shows a simple
comparison between VGG-19, a regular neural network, and a residual neural network. ResNet is a
major improvement over previous architectures and was the winner of several competitions regarding
Computer Vision. In summary, ResNet was able to overcome the vanishing gradient problem by
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using the so-called residual connections. Figure 3.37 depicts a residual connection. It is a simple but
effective concept, which enables the network to send the gradient in back-propagation directly to
upper levels, skipping some layers. Hence, it helps during training and does not vanish the gradients
of very deep architectures [44]. ResNet, similarly to GoogLeNet, has no fully-connected layers at
the end and it makes use of an average pooling layer. For our experiments, we chose ResNet 50,
which is the representation comprised of 50 layers.

For each of those architectures, we extract features from different layers. Table 3.1 shows
the different layers we used for each of them. We chose the layers based on the use of them in
the literature. Usually, for feature extraction purposes, the last layer before a Softmax layer is used
as the representation of a given instance. FC2 is commonly used for any VGG architecture, even
though FC1 could be used as well. In the case of both Inception v3 and ResNet-50, the average
pooling layers are most commonly used. We selected different ConvNet architectures as to have
diversity on the features extracted from the images. As we will explain in the experiments section
(Section 3.5.4), features extracted from different architectures indeed yield different results.

Table 3.1: CNN architectures used followed by the respective layer that we used to extract features
and their dimensionality.

Architecture Layer Dimensionality

VGG-16 Second Fully-Connected - FC2 4096

VGG-19 Second Fully-Connected - FC2 4096

Inception v3 Average Pooling 2048

ResNet-50 Average Pooling 2048

The last step is related to the meta dataset creation itself. To do so, we simply chose the
detector whose F1 score is the largest. Each instance of our datasets is comprised of the feature
vector as the features and the detector as the label. With such a dataset, we can train a classifier
that is able to given a set of features from an image, choose which face detector to use. We created
four different meta training sets, each focusing on a different scenario/setup. The first one comprises
all five classes — namely OpenCV, Dlib-1, Dlib-2, MTCNN, and Faster R-CNN. The second one
is comprised of four classes, namely OpenCV, Dlib-1, MTCNN, and Faster R-CNN. The third is
comprised of two classes, where we chose one hand-crafted face detector — OpenCV — and one
based on deep learning — Faster R-CNN. The last one comprises the two deep learning approaches,
namely MTCNN and Faster R-CNN. Since we ignored cases where the F1 score is the same for
multiple detectors (and different than 0), the datasets ended up with different number of instances.
Table 3.2 shows all meta training sets. For each of them, the table shows the number of images
with faces detected per face detector, the number of images where there was a tie between two or
more face detectors, and the number of images where no face detector was able to find any face.
The last column Detected is a sum of all detections of the detectors used in the given meta dataset
without considering the ones with same F1 Score.
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Figure 3.36: Three different architectures, comparing VGG-19 (left), a regular deep neural network
(center), and a residual neural network with 34 layers (right). (Image from [43]).

When we observe Table 3.2, we can see interesting scenarios. For instance, when using
many face detectors (last row), the best face detectors are penalized — Faster R-CNN and MTCNN
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Figure 3.37: A residual block example.

— since they yield the same F1 score as some of the hand-crafted approaches. On the contrary,
when Faster R-CNN achieves its best detection is with the face detector that finds less faces, which
is Dlib-2. We can also see that deep learning approaches (MTCNN and Faster R-CNN) are better
than hand-crafted ones (OpenCV, Dlib-1, and Dlib-2) overall. If we compare the best number of
detections of hand-crafted features — 3854 for OpenCV, Dlib-1, and Dlib-2 — with deep learning —
4935 for MTCNN and Faster R-CNN — the difference is relatively small. If we take into account the
ones with same F1 Score, the numbers change to 5948 and 12204, which can be now seen as a large
difference. For our experiments, we choose only 4 out of the 10 available datasets. Table 3.3 shows
additional information regarding the meta training sets along with the chosen ones, highlighted in
red. The reasoning behind such choices is based on the number of detections summed up with the
number of detections with the same F1. We argue that detections whose F1 score are the same can
be considered successful detections because there was a tie between two detectors, meaning that at
least something was detected. It is important to mention that we compute Same F1 based only on
F1 scores larger than 0 — zero for F1 score is counted as Miss detections.

The first two chosen meta training sets are the two highest values for column All detected :
the one with all five classes — OpenCV, Dlib-1, Dlib-2,MTCNN, Faster R-CNN — and the one with
only four (without Dlib-2). We consider the one that has four classes without Dlib-1 too similar to
the one with it, and hence, we did not use it. The next one is a choice according to the results in the
individual experiments, which favors detectors based on deep learning – Faster R-CNN and MTCNN.
Finally, we chose the best one among the meta training sets with at least one hand-crafted feature
extractor — OpenCV and Faster R-CNN. We believe that the chosen meta datasets are sufficient
to cover our goals regarding experiments, since they are based on different combinations of hand-
crafted and deep learning approaches. These meta training sets were then used for training our
meta classifiers.
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Table 3.2: The created meta training sets with their classes, number of detections per type of face
detector, and total detections. The largest values of each column are bold.

Classes OpenCV Dlib-1 Dlib-2 MTCNN Faster R-CNN Same F1 Miss detections Detected

OpenCV, Dlib-1, Dlib-2 2527 682 645 - - 4260 7896 3854

Dlib-1, Dlib-2 - 1712 1501 - - 2735 10062 3213

OpenCV, Faster R-CNN 1081 - - - 6899 4126 3904 7980

OpenCV, MTCNN 1633 - - 5315 - 3911 5151 6948

Dlib-1, Faster R-CNN - 536 - - 7955 3292 4227 8491

Dlib-2, Faster R-CNN - - 497 - 8147 3141 4225 8644

Faster R-CNN, MTCNN - - - 1282 3653 7269 3806 4935

OpenCV, Dlib-1,

MTCNN, Faster R-CNN 596 142 - 889 2772 8230 3381 4399

OpenCV, Dlib-2,

MTCNN, Faster R-CNN 610 - 126 892 2787 8213 3382 4415

OpenCV, Dlib-1, Dlib-2,

MTCNN, Faster R-CNN 527 88 73 858 2706 8412 3346 4252

3.5.2 Training the Meta Classifiers

The second step is to train the meta classifier that predicts the best face detector to
be used given an input image. Towards this end, we tested different classifiers and compared the
performance of each of them. In our experiments, we trained two different types of classifiers, namely
SVMs and Neural Networks. We choose SVM because it is robust for high-dimensional data and
it has great generalization capability. Additionally, it is suitable for problems where few instances
are available, yielding results that are better than Neural Networks in some scenarios. On the other
hand, we consider Neural Networks a straightforward choice, mainly because most of our work is
based on them. For instance, the CNN models we used for feature extraction usually have a Neural
Network at the end of the architecture. We separated the data in 80% for training and 20% for
test, which is a common training/test split, in all setups. We will detail SVM and Neural Networks
training in the following sections.

3.5.2.1 SVM

Support Vector Machine (SVM) is a classifier often used for classification and regression
tasks before deep learning. It aims to find the best hyperplane that represents the largest margin
between classes. As we mentioned in Chapter 2, most of the traditional approaches make use of
a hand-crafted feature extractor and an SVM for classification. It is also a classifier that works
well for scenarios with a few instances, which is our case. We performed experiments with different
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Table 3.3: The meta datasets chosen for our experiments (in bold).

Classes Same F1 Miss detections Detected All detected

OpenCV, Dlib-1, Dlib-2 4260 7896 3854 8114

Dlib-1, Dlib-2 2735 10062 3213 5948

OpenCV, Faster R-CNN 4126 3904 7980 12106

OpenCV, MTCNN 3911 5151 6948 10859

Dlib-1, Faster R-CNN 3292 4227 8491 11783

Dlib-2, Faster R-CNN 3141 4225 8644 11785

Faster R-CNN, MTCNN 7269 3806 4935 12204

OpenCV, Dlib-1,

MTCNN, Faster R-CNN 8230 3381 4399 12629

OpenCV, Dlib-2,

MTCNN, Faster R-CNN 8213 3382 4415 12628

OpenCV, Dlib-1, Dlib-2,

MTCNN, Faster R-CNN 8412 3346 4252 12664

hyper-parameters, class weights, and data standardization. The SVM implementation from scikit-
learn [85] (the library we used) has as its default values C = 1 and Gaussian kernel with γ = auto (1
divided by the number of features). We tested SVM with C values [0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0]
and standardizing the data with standard score (also called z-score), which makes data have ap-
proximately zero mean and unit standard deviation. We tested SVM with features extracted from
all different networks specified in Table 3.1 and with the four specified meta training sets in Ta-
ble 3.3. Therefore, we ended up with about 160 different SVM executions. Since the datasets are
unbalanced, we also performed experiments with different weights for the classes.

The main results are illustrated in Table 3.4. We choose the model based on the largest F1
score presented in validation data. We started our experiments with the meta dataset comprised of
four classes - OpenCV, Dlib-1, MTCNN, and Faster R-CNN. We executed all the variations above-
mentioned along with different weights for the classes. The weights control the importance of the
classes, since they are very unbalanced. For instance, in this four-classes meta training set, Faster
R-CNN has larger F1 score in 2706 detections, which is larger than the sum of the other four, as
we can see in Table 3.2. Using weights in detection is a strategy that can make the loss function
of the classifier penalize correct classifications of a given class and reward correct classifications of
another class. Our results in Table 3.4 indicate that almost all the best cases of the SVM executions
make use of weights, except for the OpenCV and Faster R-CNN cases. For all meta training sets
we tested two variations of weights: i) we penalize only Faster R-CNN, considering weight of 0.5
and 1.0 for the others; ii) we penalize each method proportionally to its number of instances. The
impact of changing the weights can be seen in Table 3.5 (examples for Inception v3). We can see
that the difference in F1 score is considerable when compared with the results in Table 3.4. For
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instance, for the case of the meta training sets with four classes, the best case with Inception v3
features has F1 score of 0.61 in the validation set whereas with other weights it has a F1 score of
0.48. Hence, it is important to evaluate the weights used in classifiers to enhance its performance
with unbalanced data.

Table 3.4: Best trained SVM models.

Meta training set C Features Standardized Weights Train F1 Validation F1

OpenCV, Dlib-1, MTCNN, Faster R-CNN 2.0 VGG-16 Yes 1.0, 1.0, 1.0, 0.5 0.84 0.61

OpenCV, Dlib-1, MTCNN, Faster R-CNN 2.0 VGG-19 Yes 1.0, 1.0, 1.0, 0.5 0.84 0.62

OpenCV, Dlib-1, MTCNN, Faster R-CNN 2.0 Inception v3 Yes 1.0, 1.0, 1.0, 0.5 0.85 0.61

OpenCV, Dlib-1, MTCNN, Faster R-CNN 2.0 ResNet-50 Yes 1.0, 1.0, 1.0, 0.5 0.83 0.62

OpenCV, Faster R-CNN 2.0 VGG-16 Yes - 0.93 0.85

OpenCV, Faster R-CNN 2.0 VGG-19 Yes - 0.93 0.85

OpenCV, Faster R-CNN 2.0 Inception v3 Yes - 0.93 0.85

OpenCV, Faster R-CNN 2.0 ResNet-50 Yes - 0.92 0.85

MTCNN, Faster R-CNN 1.0 VGG-16 Yes 1.0, 0.4 0.83 0.73

MTCNN, Faster R-CNN 2.0 VGG-19 Yes 1.0, 0.4 0.83 0.74

MTCNN, Faster R-CNN 2.0 Inception v3 Yes 1.0, 0.4 0.89 0.74

MTCNN, Faster R-CNN 2.0 ResNet-50 Yes 1.0, 0.4 0.88 0.74

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN 2.0 VGG-16 Yes 1.0, 1.0, 1.0, 1.0, 0.5 0.84 0.60

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN 2.0 VGG-19 Yes 1.0, 1.0, 1.0, 1.0, 0.5 0.84 0.61

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN 2.0 Inception v3 Yes 1.0, 1.0, 1.0, 1.0, 0.5 0.84 0.62

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN 2.0 ResNet-50 Yes 1.0, 1.0, 1.0, 1.0, 0.5 0.83 0.62

Table 3.5: Comparison of the trained SVMs results with different weight schemes (only for Inception
v3). All results are using C = 2 and standardized data.

Meta training set Features Weights Train F1 Validation F1

OpenCV, Dlib-1, MTCNN, Faster R-CNN Inception v3 0.24, 1.0, 0.05, 0.16 0.56 0.48

OpenCV, Faster R-CNN Inception v3 0.15, 1.0 0.86 0.82

MTCNN, Faster R-CNN Inception v3 1.0, 0.3 0.84 0.71

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN Inception v3 0.2, 1.0, 1.0, 0.1, 0.04 0.60 0.55

Finally, after evaluating the training results, we selected all 16 models from Table 3.4
to our experiments. We choose all variations since each of them can perform differently in other
datasets. Additionally, such variations could provide insight regarding their generalization abilities.
The results are evaluated in Section 3.5.4.

3.5.2.2 Neural Network

Neural Networks are more complicated to train than SVMs due to variability of both hyper-
parameters and architecture. Neural networks can vary with respect to number of hidden layers,
number of neurons, optimizer, loss function, learning rate, regularization, and so on. No guideline
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is available on which is the best way to start training a neural network and what are the best
parameters, however some common practices are used. For instance, we usually start with a small
network (one or two hidden layers) and a few neurons on each of them. We start with an optimizer
that converges faster than the majority and a simple learning rate. We monitor the training and
try to overfit the data before generalizing in order to evaluate if the network is able to learn the
training data too well. Afterwards, we tweak its parameters to reduce overfitting until we reach an
interesting result, which may vary according to the application. Some of these common practices
are available at Stanford’s CS231 course notes [70], which we used as a guide for our training steps.

Based on our SVM experiments results we decided to follow some specific approaches in
our neural networks experiments. First, all data is normalized with z-score as it resulted in better
results and faster convergence – less iterations to train the model. Second, we learned that in
almost all best cases the same parameters were used for different features. For instance, if C = 2
and standardized data yielded best results for features extracted with VGG-16, it afterwards yielded
the best results for Inception v3 as well. Finally, in all datasets the parameters that yielded the worst
results are very similar. With all these in mind, we started our experiments with neural networks with
different network architectures and hyper-parameters, with VGG-16 features for the meta training
sets of five classes, and used the best results on it for the other features and datasets.

We firstly created simple neural networks, comprised of one hidden layer, 64 neurons, ReLU
as the activation function, no dropout, and no regularization. In an incremental fashion, we added
more hidden layers, more neurons, dropout, changed learning rate, and performed more changes
like using other activation functions. Our approach was to increase neurons from 64 to 128, 256,
and 512. In the meantime, before increasing the number of neurons, we added a new hidden layer
with the same number of neurons. We tested 65 variations of the mentioned parameters in our
experiments, starting with the meta training set of five classes. From these variations, we selected
the ones that yielded the largest F1 measure score in validation. Such selection resulted in 12
variations, which were then used for the experiments with the other datasets. These 12 variations
can be summarized in 4 different neural network architectures, which are depicted in Figure 3.38.
The difference between the architectures is a summary of what guided our experiments. In A, it is
a very simple neural network comprised of a single hidden layer with dropout. In B, we have the
same concept of A but with two hidden layers instead of one. C has a batch normalization layer
after each hidden layer. Finally, D has the same architecture as C, but the hidden layers’ weights
have a regularization term. We will now detail the rationale behind our different architectures.

We started with a very simple neural network A. In our first execution with only 64 neurons
in the hidden layer, we started to suffer from overfitting in one of the tested meta training sets.
The training accuracy was almost 99% but the validation accuracy was ≈ 60% in the meta training
set with five classes. A recent and well-known technique for tackling this kind of problem in a very
efficient way is dropout [107]. It basically randomly drops neurons from the neural network during
training. After this, we also wanted to test a model with at least two hidden layers, which is the
main goal behind neural network B. In model C we added batch normalization, which helps to reduce
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Figure 3.38: Prediction with the meta classifier.

problems of bad initialization of the weights and make convergence faster since the given batch is
normalized [49]. Finally, we tried another common technique to prevent overfitting and increase the
generalization capabilities of the model: L2 weight regularization, also known as Ridge, or Weight
Decay, or even Tikhonov regularization [36]. In all our executions we used a learning rate 0.0001,
trained for 100 epochs, and used Adam as our optimizer. The choice of all of them is based on the
results of our executions with the 65 variations. It is important to mention that if we consider the
four different features with the four different datasets, our 12 selected different architectures result
in 192 different models. The twelve selected architectures are shown in Table 3.6.

Table 3.6: The twelve selected architectures.

First Layer Second Layer

Reference Model Neurons Dropout Neurons Dropout

Model A 64 50% - -

Model A 128 50% - -

Model A 256 50% - -

Model A 512 70% - -

Model B 64 50% 64 50%

Model B 128 50% 128 50%

Model B 256 50% 256 50%

Model B 512 50% 512 50%

Model C 512 70% 512 50%

Model D 1024 50% 1024 50%

Model D 512 50% 512 50%

Model D 256 70% 256 70%

In order to choose among these 12 models, we adopted a different criteria. Instead of
looking for the largest F1 score, we plotted the model’s training and test accuracy and loss along
the epochs. Such plot help us to understand if the large results are due to overfitting, for example.
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Figure 3.39 shows one example of different results for loss whereas Figure 3.40 shows one example of
different results for accuracy. We can see that the results are very different for different models that
are similar in F1 score and accuracy. Regarding accuracy, the lower the distance between the training
and validation accuracy curves, the better. A large distance means that the model is suffering from
overfitting. In the case of loss, both curves need to drop in a very similar manner while keeping a
small distance. If one drops but the other does not, it is also a sign of overfitting. The selected
images show the training of different architectures with the same data, showing the impact in both
accuracy and loss. They do not represent our best model neither what the best model should look
like.

Figure 3.39: Different training and test losses during training.

Figure 3.40: Different training and test accuracies during training.

Finally, Table 3.7 shows our selected models for prediction. We can see that the F1 score
difference between the neural networks models and SVMs is narrow — the majority of cases is about
0.01 or 0.02. However, we can see that the difference is larger in training F1 values for some cases.
For instance, for the meta training set comprised of MTCNN and Faster R-CNN, the difference is
more than 0.1 (0.89 for the best SVM model against 0.99 for the neural network model). It shows
that neural networks are able to learn training data well when compared with SVMs. Nevertheless,
the resulting F1 score for validation is almost the same for both models, which means that even
though the neural network is able to learn well the training data, to generalize for unseen instances
is very hard for the problem at hand. The results of our executions with the selected models are
evaluated in Section 3.5.4.
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Table 3.7: Best trained neural network models.

Meta dataset Features Reference Model Train F1 Test F1

OpenCV, Dlib-1, MTCNN, Faster R-CNN VGG-16 Model D 0.90 0.62

OpenCV, Dlib-1, MTCNN, Faster R-CNN VGG-19 Model D 0.90 0.62

OpenCV, Dlib-1, MTCNN, Faster R-CNN Inception v3 Model D 0.92 0.61

OpenCV, Dlib-1, MTCNN, Faster R-CNN ResNet-50 Model D 0.89 0.61

OpenCV, Faster R-CNN VGG-16 Model D 0.95 0.85

OpenCV, Faster R-CNN VGG-19 Model D 0.95 0.85

OpenCV, Faster R-CNN Inception v3 Model D 0.99 0.86

OpenCV, Faster R-CNN ResNet-50 Model D 0.99 0.86

MTCNN, Faster R-CNN VGG-16 Model D 0.96 0.73

MTCNN, Faster R-CNN VGG-19 Model D 0.96 0.73

MTCNN, Faster R-CNN Inception v3 Model D 0.98 0.73

MTCNN, Faster R-CNN ResNet-50 Model D 0.97 0.76

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN VGG-16 Model B 0.95 0.61

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN VGG-19 Model D 0.97 0.62

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN Inception v3 Model C 0.97 0.61

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN ResNet-50 Model C 0.94 0.60

3.5.3 Prediction

After a classifier is trained, we are able to predict the best face detector for a given image.
Figure 3.41 details the process. Given an input image, we forward such image on the same CNN that
was used to extract features. To extract the features we get features from a specific layer, which
depends on the architecture being used (as we saw in Table 3.1). The features are used as input to
one of the trained classifiers, which outputs the possible best face detector for that particular image.
Notice that after the classifier outputs the best face detector, we need to use such face detector
over the image to detect the faces. Hence, the prediction can be summarized as follows. For a given
trained meta classifier, for instance a SVM trained in a meta training set with VGG-16 features, we:
1) forward each image to VGG-16 model; 2) extract its features from the second fully-connected
layer (FC2); 3) use the features as input to the trained SVM; 4) get resulting SVM prediction (class
that represents face detectors to be used) and execute the predicted face detector onto the image; 5)
compute the F1 score comparing each detection with its ground truth. The same applies for neural
networks, which receives the feature vectors as input and outputs the best face detector for it. For
the other five face detectors — OpenCV, Dlib-1, Dlib-2, MTCNN and Faster R-CNN — we execute
each of them over all images and compute the F1 score to compare with the meta classifiers. The
results are presented in details Section 3.5.4.
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3.5.4 Experiments

The previous sections described how we implemented our meta classifier approach, how
we trained the meta classifiers, and some decisions we made regarding our implementations. This
section focuses on showing results with the experiments we made, aggregating the individual face
detectors and the meta classifiers results. First, we will separate our evaluation among the two
datasets IJB-A and FDDB. Second, we will separate such evaluation in the different meta datasets,
comparing each meta classifier trained on top of them with individual approaches. Finally, we will
split these evaluations of each meta classifier in the ones based on SVMs and the ones based on
neural networks.

3.5.4.1 IJB-A

As we mentioned in the previous sections, our meta classifiers are trained with IJB-A
training data. Then, we test all meta classifiers and individual face detectors in the test set. In all
cases, we follow the same protocol of our experiments throughout the dissertation, which is based
on plots with F1 scores versus different IoU thresholds. We will start our analysis with the SVM
results. Figure 3.42 illustrates them. The five plots represent four meta classifiers results plus one for
random recommendation. The same applies for Figure 3.43, but now for Neural Networks instead.

The first thing we can notice is that all the approaches with meta classifiers yielded results
very similar to Faster R-CNN. The first intuition behind such result is that the combination of the
face detectors is superiorly limited by Faster R-CNN’s performance. Even though the models we
trained have weights that help to balance the unbalanced-classes scenario, it seems that Faster
R-CNN performance dictates the meta classifier performance. We can also see that little difference
is perceivable when comparing models trained with features extracted from different networks. One
of our hypothesis was that more recent architectures would yield at least a small improvement over
older ones, but it is not the case. Another interesting scenario is depicted in Figure 3.42(e), which is
related to random recommendation. We can see that the random classifier that is based on OpenCV
and Faster R-CNN yields results that are only smaller than the ones from Faster R-CNN itself. Hence,
we can conclude that such random classifier chose Faster R-CNN over OpenCV detector in many
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Figure 3.42: Results on the IJB-A dataset with SVM meta classifiers.

scenarios. As the plots are good to show an overview of the methods, we cannot see the subtle
differences between Faster R-CNN and the meta classifiers. Therefore, we added some of the results
in Table 3.8. We used the F1 score for three different overlap thresholds – 0.4, 0.5, 0.6. As we
mentioned throughout this dissertation, the current threshold for face detectors is 0.5, so the choice
of this threshold is straightforward. We also chose the other two to help get more intuition of the
curve’s behavior as the threshold augments. Looking at the results in the table, we can see that
the meta classifiers yield results that are really close to the ones yielded by the Faster R-CNN itself.
Even though we are now using more than one detector, in this scenario using Faster R-CNN alone
seems to be the best choice. We can see that the only scenario where Faster R-CNN has a smaller
F1 score is when the threshold is 0.6, but it is only by a small margin. For comparison purposes,
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the last line of the table shows results for random classifiers, which use different face detectors,
following the different meta training sets. We can notice that the two that have only two classes
and one of them is Faster R-CNN (MTCNN and Faster R-CNN, and OpenCV and Faster R-CNN0
yield the largest results.

Table 3.8: Comparison of different models/detectors for given IoU thresholds for IJB-A dataset.
The meta classifiers are based on SVMs.

Meta dataset Detector F1 with 0.4 F1 with 0.5 F1 with 0.6

- Faster R-CNN 0.8574 0.6846 0.3794

OpenCV, Faster R-CNN SVM VGG-19 0.8561 0.6842 0.3793

OpenCV, Faster R-CNN SVM VGG-16 0.8561 0.6842 0.3793

OpenCV, Faster R-CNN SVM Inception v3 0.8559 0.6838 0.3789

OpenCV, Faster R-CNN SVM ResNet 50 0.8559 0.6843 0.3798

MTCNN, Faster R-CNN SVM VGG-19 0.8521 0.6765 0.3702

MTCNN, Faster R-CNN SVM VGG-16 0.8523 0.6762 0.3705

MTCNN, Faster R-CNN SVM Inception v3 0.8531 0.6779 0.3699

MTCNN, Faster R-CNN SVM ResNet 50 0.8535 0.6773 0.3717

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM VGG-19 0.8517 0.6801 0.3768

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM VGG-16 0.8508 0.6804 0.3769

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM Inception v3 0.8499 0.6798 0.3781

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM ResNet 50 0.8519 0.6810 0.3783

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-19 0.8539 0.6833 0.3768

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-16 0.8528 0.6821 0.3779

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM Inception v3 0.8511 0.6802 0.3759

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM ResNet 50 0.8515 0.6804 0.3777

MTCNN, Faster R-CNN Random 0.7037 0.5344 0.2856

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN Random 0.6649 0.4321 0.1953

OpenCV, Faster R-CNN Random 0.8278 0.6306 0.3226

OpenCV, Dlib-1, MTCNN, Faster R-CNN Random 0.6949 0.4875 0.2268

On the other hand, Figure 3.43 shows the results with the meta classifiers based on neural
networks. In this case, we can see that the meta classifiers curves are still above MTCNN. However,
they now have a small distance when compared with Faster R-CNN. Since we evaluated the results
of the plot itself for the SVM case, we will now focus on the subtle changes in the F1 scores in the
same manner we did for SVM. Table 3.9 shows the results. We can see now that Faster R-CNN
is consistently better than all other meta classifiers in all the three given thresholds. Even though
some methods are very close in the score, for instance the model Neural Network ResNet 50 trained
on MTCNN and Faster R-CNN meta dataset, they are still not better than always using Faster
R-CNN. In other words, there is no reason why we should execute a meta classifier to output the
best face detector, and then execute such face detector, instead of executing Faster R-CNN directly.
Regardless of the results, the trained models are still better than the random ones, which indicates
that they in fact learned something from the images. As it happened for SVM, the best meta



120

classifiers are those that only contain two classes and one of them is Faster R-CNN. Hence, we can
again conclude that Faster R-CNN results are pushing the classifier results higher.
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Figure 3.43: Results on the IJB-A dataset with neural networks meta classifiers.

3.5.4.2 FDDB

The same methodology defined for IJB-A dataset experiments and explained throughout
this dissertation was used for FDDB as well. We also created two different plots for each of the meta
classifier types – neural nets and SVMs – and a table to show the subtle differences. Figure 3.44
shows the results that are based on SVMs. The first aspect we can notice is that MTCNN and
Faster R-CNN yield identical results for the first IoU thresholds. However, for thresholds that are
larger than 0.5, Faster R-CNN has better F1 scores. The meta classifiers results are very similar to
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Table 3.9: Comparison of different models/detectors for given IoU thresholds for IJB-A dataset.
The meta classifiers are based on neural networks.

Meta dataset Detector F1 with 0.4 F1 with 0.5 F1 with 0.6

- Faster R-CNN 0.8574 0.6846 0.3794

OpenCV, Faster R-CNN Neural Network VGG-19 0.8464 0.6762 0.3755

OpenCV, Faster R-CNN Neural Network VGG-16 0.8440 0.6787 0.3757

OpenCV, Faster R-CNN Neural Network Inception v3 0.8427 0.6740 0.3729

OpenCV, Faster R-CNN Neural Network ResNet 50 0.8460 0.6756 0.3757

MTCNN, Faster R-CNN Neural Network VGG-19 0.8503 0.6766 0.3670

MTCNN, Faster R-CNN Neural Network VGG-16 0.8504 0.6710 0.3602

MTCNN, Faster R-CNN Neural Network Inception v3 0.8535 0.6785 0.3691

MTCNN, Faster R-CNN Neural Network ResNet 50 0.8523 0.6775 0.3737

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network VGG-19 0.8362 0.6680 0.3687

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network VGG-16 0.8383 0.6641 0.3674

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network Inception v3 0.8397 0.6707 0.3713

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network ResNet 50 0.8392 0.6704 0.3733

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-19 0.8333 0.6626 0.3598

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-16 0.8458 0.6733 0.3717

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM Inception v3 0.8385 0.6678 0.3690

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM ResNet 50 0.8361 0.6667 0.3682

MTCNN, Faster R-CNN Random 0.7037 0.5344 0.2856

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN Random 0.6649 0.4321 0.1953

OpenCV, Faster R-CNN Random 0.8278 0.6306 0.3226

OpenCV, Dlib-1, MTCNN, Faster R-CNN Random 0.6949 0.4875 0.2268

the ones from Faster R-CNN, and once again are overall better than MTCNN (for IoU thresholds
larger than 0.5). The last plot, which is from the random classifiers, shows that randomly choosing
between Faster R-CNN and MTCNN yields results that are better than MTCNN alone, contributing
to our conclusion that Faster R-CNN pushes the F1 measure to larger values. Table 3.10 contains
results from all meta classifiers for thresholds 0.4, 0.5, and 0.6, as we did for IJB-A. The main
difference for FDDB is that the best results are not from Faster R-CNN, but for different approaches
depending on the specific IoU threshold. For 0.4, we can see that the best result is the random
classifier based on OpenCV and Faster R-CNN. We can conclude that almost all images that Faster
R-CNN got correct by itself are summed up with a few cases where OpenCV provide correct results
but Faster R-CNN did not. This result corroborates with our intuition that the combination of face
detectors should be better than a single face detector. However, when we look at the trained meta
classifier that is based on such detectors, it yields the exact same result as Faster R-CNN alone. It
seems that even though the meta classifier was able to learn how to choose the best face detector,
it has a bias towards Faster R-CNN. For the case where IoU threshold is 0.5, the best approach
is the meta classifier based on Faster R-CNN and MTCNN that uses Inception v3 features. Even
though it is better than Faster R-CNN, the difference is very small — 0.9433 to 0.9407. Finally, for
the 0.6 threshold the best result is the meta classifier with all detectors with VGG-16 features. The
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difference in this case is even smaller than the previous one — 0.8953 for the meta classifier against
0.8945 for Faster R-CNN. We can argue that Faster R-CNN is the best approach when compared
with the SVM meta classifiers.
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Figure 3.44: Results on FDDB dataset with SVM meta classifiers.

For the neural network meta classifiers, the results for each features are different. Fig-
ure 3.45 shows them. As it happened for SVM, the meta classifier approaches are better than
MTCNN overall, but only after 0.5 of IoU threshold. In this case, we can notice that there are
small differences in the F1 score among the meta classifiers. The F1 score results are detailed in
Table 3.11. When the threshold is 0.4, the best result is again a random detector that uses OpenCV
and Faster R-CNN as classes. We argue that is due to the same reason as before: it is slightly better
than Faster R-CNN because of the combination of both detectors, where OpenCV is better in cases
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Table 3.10: Comparison of different models/detectors for given IoU thresholds in the FDDB dataset.
The meta classifiers are based on SVMs.

Meta dataset Detector F1 with 0.4 F1 with 0.5 F1 with 0.6

- Faster R-CNN 0.9533 0.9407 0.8945

OpenCV, Faster R-CNN SVM VGG-19 0.9533 0.9407 0.8945

OpenCV, Faster R-CNN SVM VGG-16 0.9533 0.9407 0.8941

OpenCV, Faster R-CNN SVM Inception v3 0.9533 0.9407 0.8945

OpenCV, Faster R-CNN SVM ResNet 50 0.9533 0.9407 0.8945

MTCNN, Faster R-CNN SVM VGG-19 0.9534 0.9415 0.8908

MTCNN, Faster R-CNN SVM VGG-16 0.9540 0.9423 0.8919

MTCNN, Faster R-CNN SVM Inception v3 0.9547 0.9433 0.8867

MTCNN, Faster R-CNN SVM ResNet 50 0.9540 0.9432 0.8892

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM VGG-19 0.9522 0.9391 0.8929

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM VGG-16 0.9529 0.9402 0.8935

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM Inception v3 0.9527 0.9402 0.8853

OpenCV, Dlib-1, MTCNN, Faster R-CNN SVM ResNet 50 0.9518 0.9395 0.8891

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-19 0.9526 0.9398 0.8945

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-16 0.9529 0.9412 0.8953

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM Inception v3 0.9526 0.9396 0.8843

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM ResNet 50 0.9530 0.9410 0.8952

MTCNN, Faster R-CNN Random 0.9013 0.8695 0.7389

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN Random 0.9104 0.8443 0.6021

OpenCV, Faster R-CNN Random 0.9552 0.9418 0.8772

OpenCV, Dlib-1, MTCNN, Faster R-CNN Random 0.9178 0.8614 0.6696

that Faster R-CNN alone is not. Interestingly, the best result for 0.5 is also based on MTCNN and
Faster R-CNN, which is similar to the SVM. Nevertheless, it is based on VGG-16 features instead
of Inception v3. Finally, the best result for 0.6 threshold is Faster R-CNN, which is almost 0.004
better than the second best result.

3.5.5 Conclusion and Discussion

We executed a large amount of experiments with face detectors, evaluating them individu-
ally. In our individual evaluation, the best face detectors were MTCNN and Faster R-CNN, which are
both based on deep learning implementations. This result is according to all the literature related
to deep learning approaches overcoming traditional ones in different tasks. Our implementation
of Faster R-CNN yielded better results than MTCCN in our experiments. However, MTCNN is
composed of three light-weight networks and, hence, it requires less computational resources.

We proposed and implemented a meta learning approach, whose goal was to combine
different face detectors by choosing the most suitable given an input image. Our idea was that
different face detectors were better to specific situations. Our results show that our implementations
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Figure 3.45: Results on FDDB dataset with neural networks meta classifiers.

of meta learning classifiers were not able to learn the best face detector for each situation as well
as generalize to unseen examples. Such conclusion is supported by the experiments executed in the
IJB-A and FDDB datasets. Additionally, Faster R-CNN yielded results better or equal to all meta
learning approaches. Therefore, it is preferable to use Faster R-CNN than the meta classifiers, since
the meta classifier approaches we used contain extra steps (e.g. extract features with a given deep
learning architecture and classifying with a meta classifier prior to using the face detector directly).

With respect to the meta classifiers themselves, we noticed that our implementations with
SVM yielded better results than the ones with Neural Networks in the compared datasets. These
results corroborate with SVM’s suitability for cases with few instances as our meta datasets. We also
saw that features extracted with different deep learning architectures trained on the same dataset
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Table 3.11: Comparison of different models/detectors for given IoU thresholds for FDDB dataset.
The meta classifiers are based on neural networks.

Meta dataset Detector F1 with 0.4 F1 with 0.5 F1 with 0.6

- Faster R-CNN 0.9533 0.9407 0.8945

OpenCV, Faster R-CNN Neural Network VGG-19 0.9487 0.9350 0.8794

OpenCV, Faster R-CNN Neural Network VGG-16 0.9498 0.9356 0.8815

OpenCV, Faster R-CNN Neural Network Inception v3 0.9487 0.9361 0.8863

OpenCV, Faster R-CNN Neural Network ResNet 50 0.9514 0.9391 0.8875

MTCNN, Faster R-CNN Neural Network VGG-19 0.9531 0.9410 0.8881

MTCNN, Faster R-CNN Neural Network VGG-16 0.9549 0.9432 0.8914

MTCNN, Faster R-CNN Neural Network Inception v3 0.9531 0.9413 0.8878

MTCNN, Faster R-CNN Neural Network ResNet 50 0.9532 0.9416 0.8897

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network VGG-19 0.9495 0.9360 0.8818

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network VGG-16 0.9489 0.9348 0.8825

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network Inception v3 0.9486 0.9356 0.8724

OpenCV, Dlib-1, MTCNN, Faster R-CNN Neural Network ResNet 50 0.9485 0.9347 0.8780

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-19 0.9464 0.9318 0.8682

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM VGG-16 0.9525 0.9394 0.8858

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM Inception v3 0.9450 0.9320 0.8623

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN SVM ResNet 50 0.9485 0.9366 0.8779

MTCNN, Faster R-CNN Random 0.9013 0.8695 0.7389

OpenCV, Dlib-1, Dlib-2, MTCNN, Faster R-CNN Random 0.9104 0.8443 0.6021

OpenCV, Faster R-CNN Random 0.9552 0.9418 0.8772

OpenCV, Dlib-1, MTCNN, Faster R-CNN Random 0.9178 0.8614 0.6696

(ImageNet) did not yield much difference in the final evaluation. It means that using VGG-16 or
Inception v3 for our goal and with the data we used did not matter as much as it matters for other
scenarios.

Our experiments show that it is still difficult to extract features trained on a general
purpose scenario – image classification on ImageNet – to a complete different scenario – features to
determine the best face detector for a given case. We thought that some face detectors would be
better than others for, say, crowded images or profile faces. Our experiments showed that features do
not suffice for such goal and hence, other type of features could be used instead. As a result of our
study and experiments, we were able to enumerate a considerable number of possible improvements
that one could make use to explore even more the scenario here presented.

3.6 Final Remarks

In this chapter we presented face detection, explained what it is, and gave an overview of
both classic implementations and recent ones (based on deep learning). We introduced hand-crafted
approaches of face detection, namely OpenCV and Dlib face detectors. Next, we explained how we
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could make use of state-of-the-art deep learning approaches and apply them to face detection. Then,
we explained our meta learning approach, where we trained SVMs and neural networks with features
extracted with deep learning architectures. We executed experiments on some well-known face
detection datasets and evaluated the results of both existing face detection methods – OpenCV,
Dlib and MTCNN – and our implementations – Faster R-CNN and meta classifiers. We shown
that Faster R-CNN is the best implementation for both datasets, even when compared with meta
classifiers.
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4
Conclusion

This dissertation presented contributions to face detection with deep neural networks.
The face detection field is broadly studied in Computer Vision and the state-of-the-art is currently
changing. Hence, we evaluated the evolution of face detection algorithms and the role of deep
learning on such improvements.

We started explaining deep learning and one of tis main approaches — Convolutional
Neural Networks. We detailed how they work and what is the intuition behind their architecture.
We showed how they solve different problems, explaining in details their application for different
scenarios, namely classification, detection, and metric learning.

Then, we presented face detection itself, explaining why it is a subject that is important
to study as well as some challenges that it offers. We explained how traditional approaches for face
detection – as the ones based in Haar-like features and HOG features – work. We also detailed
how more recent techniques that are based on deep learning work, using MTCNN as an example.
Additionally, we implemented our own deep learning face detector, which is based on Faster R-CNN.
Our implementation shows promising results for further investigation in more approaches that are
based on deep learning. Our hyper-parameter evaluation contributes to researchers that want to use
face detection for any application and wonder which are the most suitable hyper-parameters to use.
To the best of knowledge, this is the first work to do such a detailed analysis with the proposed face
detectors.

We detailed and implemented a meta learning approach. Such kind of implementation
aims to use a combination of algorithms to obtain results better than the algorithms individually.
Our main assumption was that each face detector was better at a given set of images. For instance,
that Faster R-CNN could be better for crowded images while OpenCV could be better for frontal face
images. We created 10 different meta datasets, each of which comprised of different face detectors.
We extracted features with different deep neural networks that were all trained in ImageNet. We
then trained two types of meta classifiers – SVMs and neural networks. We performed a great
amount of experiments, where we varied the meta training sets, the features, and the classifier and
its hyper-parameters. To the best of our knowledge, this is the first time deep neural network’s
features are used to train a meta classifier. Our results suggest that the trained meta classifiers with
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the given setup do not improve the results of the best individual face detector. Our experiments
show that Faster R-CNN is overall the best face detector when compared with both the individual
face detectors and the meta classifier approaches.

4.1 Limitations

One of the first limitations of our work is regarding the criteria we used for selecting the
best face detectors to build the meta training sets. Such criteria led to a small number of instances
for training and, consequently, problems to train the models. We believe that such problem deeply
affected neural networks, as they became more prone to overfitting. We also believe that it affected
the generalization capabilities of the trained models, which were trained in a small and limited
number of examples.

A second limitation we see is related to the training of the meta classifiers itself. We
did not explore all the possibilities related to SVMs and, mainly, neural networks, with respect to
hyper-parameters. We believe that a more rigorous analysis could have been made as to have better
trained models. However, we argue that such limitation came from the trade-off between large
quantity of models and small hyper-parameters exploration versus small quantity of models vs large
hyper-parameter exploration.

Another limitation is regarding the execution time of the different approaches we explored
and implemented. Even though MTCNN and Faster R-CNN are much better than OpenCV and
Dlib implementations, the execution time for running face detection in CPU is very different. The
approaches based on deep neural networks have a larger execution time. In addition, the meta
learning approaches suffer from a similar problem, as they add an extra layer in the detection flow.

The face detectors have different execution time. We did not performed an analysis with
respect to the execution time of the face detectors, since some of them demand more computational
resources than others. For instance, Faster R-CNN inference is very fast in GPU but slower on CPU.
Hence, we believe that experiments assessing execution time should be performed.

Finally, our evaluation criteria is not the best at hand. We used datasets that are bench-
marks for face detection but we did not followed their standard evaluations, which are based on
the test sets. Such evaluation would allow us to compare our experiments with the current results
on such datasets, which would help us to publish our research. These two datasets have standard
submission formats that can be generated and submitted to their evaluation services. Additionally,
we based our evaluations on a single type of plot, which is based on F1 score for different IoU
thresholds. Even though it is intuitive and helps us understand the behavior of the detectors, there
are other options in the literature that could be explored.
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4.2 Opportunities for Future Work

In this section, we describe some opportunities that we foresee for future work. They all
represent what we discovered while working on this dissertation, as well as ideas that we had based
on recent improvements of the state-of-the-art of deep learning. We enumerate opportunities for
the face detectors themselves, for the meta learning approach we explored, and for the evaluation
methods.

4.2.1 Implement Face Detection based on Different Deep Learning Implementations

We used two different deep learning approaches for face detection: an off-the-shelf imple-
mentation called MTCNN, and we trained a Faster R-CNN on the WIDERFACE dataset. Both deep
learning implementations yielded the best results overall, which confirms once more their results in
other applications within Computer Vision.

Faster R-CNN is only one of the available deep learning object detectors. Hence, we believe
that one could explore the application of other models for face detection in the same manner we
did for Faster R-CNN. For instance, we can cite YOLO [91] and SSD [76]. The trade-off between
accuracy and speed of algorithms is always present regardless of the type of application we are
developing. You Only Look Once (YOLO) is an implementation that focuses on speed rather than
accuracy, but provides a reasonable accuracy on its detections. There is also an improved version
called YOLO9000 [92], which is even faster and more accurate than the previous one. Single Shot
MultiBox Detector (SSD) is another deep learning implementation for face detection that uses a
single neural network. It contains two versions: SSD300, which is able to process inputs of 300×300;
SSD512, which is able to process inputs of 512× 512. Both approaches are quite promising as they
are very similar to Faster R-CNN in terms of results in object detection. Moreover, they provide
open-source implementations 1 2.

4.2.2 Different Strategies for Feature Extraction

For extracting features from images that are used to train the meta classifiers, we basically
used four different convolutional neural network architectures: VGG-16, VGG-19, Inception v3, and
ResNet 50. Besides, all were trained on ImageNet dataset.

We believe that such setup is limited, in the sense that we are using architectures trained
for a general-purpose task (image classification), and expecting that the networks can generalize
well to extract features that are relevant to choose one among known face detectors. Moreover,

1YOLO and YOLO9000: http://pjreddie.com/darknet/yolo/
2SSD300 and SSD512: https://github.com/weiliu89/caffe/tree/ssd
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other deep learning and machine learning approaches could be used for such end. Hence, for each
of these situations we envision the following:

• Datasets: Datasets that may capture global information instead of object information are
an option, such as Places dataset [133]. Places is a dataset with around 10 million scene
photographs, labeled with scene semantic categories and attributes. A network trained on top
of such dataset might be able to capture global features of the image and thus help meta
classifiers to learn better what represents an image that contains a face easier or harder to
detect.

• Deep Learning Algorithms: One option is to use different CNN architectures instead of the
four used in this dissertation. For example, ResNet 101 and ResNet 152 [43], and Inception
v4 and Inception-ResNet [110]. Another possibility is to explore features that are learned by
unsupervised learning algorithms. An example is Generative Adversarial Networks (GANs),
which are able to learn useful representations in an unsupervised manner. Attempts to use
features learned by GANs for classification problems were proposed and they yielded promising
results [88].

One could say convolutional neural networks trained for face recognition could be used for
extracting features in this scenario. We argue that features relevant for face recognition might be
tied to specific subtleties in the face used to discriminate between different identities. Moreover, the
input of such networks is usually aligned and cropped, resulting in a distorted and small image. We
believe such transformations may lead to information loss that ends up not helping in the scenario
at hand. However, it is also an approach that worth pursuing.

4.2.3 Generate Meta Training Sets based on Alternative Metrics and Strategies

The generation of our meta training sets relied on F1 score, which is calculated based on
the resulting detections versus ground truth. Even though it is a well-used and standard measure,
in some scenarios it might not be the best strategy. For instance, in cases where the F1 score of
two face detectors yields the exact same result, which one should we choose? Depending on the
application, one could choose the one that is faster to execute or the one that uses less memory,
for example. In our case, we did not consider images where two or more face detectors had the
same results. We performed simple experiments (not reported in this dissertation) with all images,
using such cases too. To choose the face detector, we randomly choose one of the winning ones,
weighting the chance according to the results over the remaining set of images. That is, we run
all face detectors and computed the percentage each of them was the best alone. Afterwards, we
used such percentage to weight the randomness factor. Our preliminary experiments showed worst
accuracies and results for meta classifiers. Therefore, we believe that other criteria besides F1 score
could be used like, for instance, a combination of different measures or a combination of F1 with
confidence level of the detections.
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4.2.4 Train Meta Classifiers in Different Datasets

We trained our meta classifiers only with IJB-A training data. Even though IJB-A is
an interesting dataset, it contains few instances. Recently, large datasets became available, such
as MegaFace [56] and IMDB-WIKI [94]. MegaFace is a benchmark dataset for face recognition at
scale, and it is comprised of one million photos that capture more than 690, 000 different individuals.
IMDB-WIKI is dataset targeted for biological age prediction. It contains 524, 230 face images, which
were crawled from IMDB and Wikipedia. Both datasets contain bounding boxes for faces and could
be used for a scenario as ours. Hence, one could make use of such datasets to both improve the
meta classifiers providing more data and as benchmark for comparisons (in the same way FDDB is
used).

4.2.5 Evaluation with Larger IoU Thresholds

During all our evaluation process, we evaluate the models based on a fixed IoU threshold
of 0.5. It means that for a detection to be considered correct, its area must overlap with more
than 50% of the ground truth’s area. This threshold seems reasonable, but it affects the precision
of the detection with respect to the face. That is, the detected bounding boxes might be shifted
a little from the face, which may cause undesirable results depending on the type of application.
Additionally, deep learning approaches are trained based on these small thresholds and hence, could
be improved as well. We believe that an evolution similar to the one that happened in object detection
evaluation might happen here, where the threshold was enlarged from time to time. Nevertheless,
it is important to mention that the shift on the detection is not always a problem, which justifies
the flexibility currently available.

4.2.6 Implement Light-Weight and Faster Face Detectors

Real-time face detection and recognition is a broadly studied subject. Before the seminal
work of Viola Jones, most of the face detection algorithms were not suitable to run in devices with
less computational resources. Even though many approaches were able to outperform Viola-Jones
in terms of accuracy, there is still room for improvement for real-time face detection that could be
used in, for instance, edge devices (low-power devices that can perform local computations instead
of going to the cloud). YOLO is one implementation that focused on reducing both the execution
time and the computational resources needed. Hence, one approach could be to train YOLO for
face detection.

Another alternative that we envision is to work on models that are light-weight. For
instance, XNOR-Net [90] is an implementation that focuses exactly on this goal. The implementation
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is based on a a convolutional neural network for image classification that is trained using binary
weights, filters, and inputs. The implementation results in 58× faster convolutional operations and
32× memory savings [90]. Other recent approach is DoReFa-Net [134], which is able to handle
arbitrary bit-width in weights, activations, and gradients. Therefore, one could implement face
detection methods based on deep neural networks with binary representations, aiming to produce
light-weight and efficient models.

4.2.7 Evaluate the Impact of Improved Detectors in Face Recognition

Finally, a promising research venue could be to evaluate the impact of improved detectors in
face recognition. By improved we mean those based on the suggestions we proposed in this section.
The classic face recognition pipeline is comprised of four stages: face detection, face alignment,
feature extraction and classification/recognition [46]. Face detection is the first and potentially the
most important step of the pipeline. A small change on the precision of a given face detector could
lead to alignment of a region that does not cover the whole face, incorrect feature extraction, and
finally, poor recognition results. We believe that to assess the impact of these recent face detectors
in face recognition could lead to future improvements.
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