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EXPLORANDO ATOMICIDADE EM ARQUIVOS MAPEADOS EM
MEMÓRIA BASEADOS EM SISTEMAS DE ARQUIVOS PARA

MEMÓRIAS NÃO-VOLÁTEIS

RESUMO

As tecnologias de memórias não-voláteis são uma grande promessa na área de arquitetura
de computadores e é esperado que sejam poderosas ferramentas para solucionar os problemas refe-
rentes a manipulação eficiente de dados dos dias de hoje. Estas tecnologias provêm alta performance
e acesso em granularidade de bytes com a distinta vantagem de serem persistentes. Porém, afim de
explorar estas tecnologias em todo seu potencial, os sistemas e arquiteturas de hoje precisam buscar
meios de se adaptar a esta nova forma de acessar dados e de superar os desafios que vêm com ela.

Trabalhos existentes na área já propõem métodos para adaptar as arquiteturas existentes
para o uso de NVM bem como formas inovadoras de empregar estas memórias em futuras aplica-
ções. No entanto, o suporte dos sistemas operacionais a estas soluções, ainda que existente, ainda
é muito limitado. Neste trabalho, nós apresentamos duas variações da chamada de sistema msync,
modeladas para explorar as características das tecnologias de NVM e garantir consistência para os
dados dos usuários. Ambas são soluções simples que permitem aos usuários definirem checkpoints
de seus arquivos usando a sintaxe comum de sistemas de arquivos. Nós implementamos e testa-
mos estes métodos sobre o sistema operacional Linux utilizando como base um sistema de arquivo
nativamente voltado a NVM. Nossos resultados mostram que estes mecanismos são capazes de
garantir a integridade dos arquivos mesmo na presença de falhas no sistema enquanto mantém uma
performance razoável.

Palavras-Chave: Memórias Não-Voláteis, Sistemas Operacionais, Mapeamento Sistemático, Sis-
temas de Arquivos .





EXPLORING ATOMICITY ON MEMORY MAPPED FILES BASED ON
NON-VOLATILE MEMORY FILE SYSTEMS

ABSTRACT

Upcoming non-volatile memory technologies are a big promise in computer architecture
and are expected to be powerful tools to address today’s issues regarding efficient data manipulation.
They provide high performance and byte granularity while also having the distinct advantage of being
persistent. However in order to explore these technologies to their full potential, existing systems
and architecture must adapt to this new way of working with data and workaround the challenges
that come with it.

Existing work in the area already proposes methods to adapt existing architecture to NVM
as well as innovative ways to employ these memories in future applications. However operating
system support to such NVM-enabled solutions, although existent, still very limited. In this work,
we present two variations of the existing mmap system call, designed to both explore NVM charac-
teristics and provide user data consistency. Both are very simple solutions that allow users to control
the persistence and define checkpoints to their files while using the common mapped file syntax.
We have implemented and tested these methods over Linux using a NVM file system as our base.
Our results show that these mechanisms can ensure file integrity in the presence of system failures
while also providing a reasonable performance.

Keywords: Non-Volatile Memory (NVM), Operating Systems (OS), Systematic Mapping Study
(SMS), File Systems.
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1. INTRODUCTION

The increasing disparity between processor and memory performances led to the proposal
of many methods to mitigate memory and storage bottlenecks [98][5]. Moreover, the research
advances in the so called Non-Volatile Memories (NVMs) in recent years suggest that these tech-
nologies are quite promising and may eventually replace the entire memory hierarchy, drastically
changing computer architecture as we know today. One possibility of such architectural shift based
on NVM technology, for example, would be a radical memory-centric architecture [33]. NVMs pro-
vide performance speeds comparable to those of today’s DRAM (Dynamic Random Access Memory)
and, like DRAM, may be accessed randomly with little performance penalties. Unlike DRAM, how-
ever, NVMs are persistent, which means they do not lose data on power loss. In summary, NVM
technologies combine the advantages of both DRAM and Hard Disk Drives (HDDs).

These NVMs, of course, present many characteristics that make them substantially differ-
ent from HDDs. Therefore, working with data storage in NVM may take the advantage of using
different approaches and methods that systems designed to work with HDDs do not support. More-
over, since the advent of NAND flash memories, the use of NVM as a single layer of memory,
merging today’s concepts of main memory and back storage, has been proposed [89] [90], aiming
to replace the whole memory hierarchy as we know. Such change in the computer architecture
will certainly represent a huge shift on software development as well, since most applications and
operating systems are designed to store persistent data in the form of files in a secondary memory
and to swapp this data between layers of faster but volatile memories.

Even though all systems running in such an architecture would inevitably benefit from
migrating from disk to NVM, one of the first places one might look at, when considering this
hardware improvement, would be the file system. The file system is responsible for organizing data
in the storage device (in the form of files) and retrieving this data whenever the system needs it. File
systems are usually tailored for a specific storage device or for a specific purpose. For instance, an
HDD file system, like Ext4, usually tries to maintain the data blocks belonging to a file contiguously
or at least physically close to each other for performance reasons. A file system designed for flash
memory devices, like JFFS2, might avoid rewriting data in the same blocks repeatedly, since flash
memory blocks have limited endurance. The list could go on, but we can conclude that whenever
the storage hardware changes, the way data is stored and accessed must be reviewed. In all these
cases, file systems should be adapted to this new conditions in order to reduce complexity and to
achieve the best possible performance.

Concerning this adaptation for NVM, in the 2013 Linux Foundation Collaboration Summit
[22], the session "Preparing Linux for nonvolatile memory devices" proposed a three-step approach.
In the first step, file systems will access NVM devices using traditional block drivers. This step does
not explore the disruptive potential of NVM but is a fast way of making it accessible. In the second
step, existing file systems will be adapted to access NVM directly, in a more efficient way. This step
ensures that file systems are designed for NVM, but keep the traditional file system abstraction for
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compatibility purposes. The final step is the creation of byte-level I/O APIs for new applications
to use. This step will explore interfaces beyond the file system abstraction that may be enabled by
NVM. It has the most disruptive potential, but may break backward compatibility.

With this scenario in mind, we propose our contribution by exploring the needs and lim-
itations of current NVM file systems. First we survey the current state of the area of NVM file
systems, identifying challenges and issues as well as trends and potential research topics. Next we
explore and discuss these topics, pinpointing fundamental questions regarding NVM adoption and
prospecting future developments in the area. Finally, we propose our own solution, which focus on
providing future applications with basic atomicity constraints on the OS level while also exploring
the impact of using volatile RAM as write buffer for file updates.

We present two new methods of mapping files to process memory based on mechanisms
already consolidated by existing NVM file systems implementations. These methods seek to allow
applications to access persistent data efficiently by directly manipulating it in NVM while also
ensuring file integrity and atomicity. We implement and evaluate our solutions on a range of
different scenarios in order to explore its behavior as well as its limitations.

This work is organized as follows:

• Chapter 2 provides some basic background on NVM file systems and its related concepts.

• Chapter 3 details the process used in this work for selecting, analyzing and classifying studies
on the NVM file system topic.

• Chapter 4 presents the results of our survey process and discusses our findings.

• Chapter 5 shows an overview of the state-of-the-art of NVM file systems which is also the
base for our proposal.

• Chapter 6 describes our proposed solutions and its implementation details.

• Chapter 7 presents and discusses the results we have obtained by submitting our implemen-
tation to file system benchmarks and failure tests.

• Chapter 8 concludes this document, summarizing the obtained results and the expectations
for future works.
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2. BASIC CONCEPTS

This chapter is dedicated to the presentation of fundamental concepts behind this study.
These concepts are all intimately connected to each other and are also the base knowledge that
supports the idea of NVM file system. Further information regarding the context in which our work
is developed is presented in the coming chapters.

2.1 Non-volatile Memories

As the name might suggest, Non-Volatile Memory (NVM) technologies are storage devices
that provide access latency close to DRAM devices while also offering the persistence of traditional
HDDs. NVM is a relatively new and emerging technology that is expected to reduce the impact of
the storage bottleneck on the current architecture. The ever growing demand for data of today’s
applications poses a challenge for architectures and technology as they must find the means to
supply large amounts of data with high throughput. It is in this scenario that NVM technologies are
presented as a solution, able to provide a large persistent area with DRAM-like performance.

Besides its performance, NVM technologies are also designed to be more dense than
volatile-memories, which means that NVM devices may scale to much larger spaces than today’s
DRAM devices. Furthermore, NVM is byte-addressable and may be accessed by processors through
regular memory-bus interface. With these characteristics, NVM may be used as either main memory
or as storage. This enables architectures with large arrays of memory that may also be used for
persistent data, however without much of the overhead and complexity of I/O layers like block devices
and schedulers. It brings persistent data (like files) much closer to the processor and to applications,
drastically reducing the bureaucracy presented by file system operations and asynchronous I/O
transfers .

With this design comes a few challenges though. Current architecture, processors and
software are not yet suited to properly work with large amounts of persistent memory in the memory-
bus [33][4]. There are many well-known issues with this approach, for example, problems related to
addressing huge memory spaces, protecting persistent data in NVM from corruption and securing
sensitive data in NVM, to name a few. Researchers are already looking into these matters [100]
[56], but there are still questions with no answers and much potential to be explored.

NVM technologies also have some limitations of their own, like limited endurance and
asymmetry in performance and energy consumption. Writing in NVM cells is significantly more
expensive in terms of time and energy than reading from them. Different solutions have been
proposed to mitigate the impact of these writes or reduce the number of writes that actually reach
the NVM device [44][101]. This characteristic is also one of the reasons behind the designs that
employ NVM along side DRAM creating a hybrid memory layer. Among other things, this approach
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allows regular volatile memory to be used in cases where using NVM would be unfeasible (like
temporary data or frequently updated data and metadata).

In this paper we explore the most popular and mature of these memory technologies,
focusing on the general key aspects shared by NVM. There are other alternatives that have been
under development [65], which we do not describe. The technologies we cover are:

• Ferroelectric RAM: in FeRAM, ferroelectric material (the most common being lead zirconate
titanite or PZC) is used to create a ferroelectric capacitor (FeCap) to hold data persistently
on FeRAM cells [65]. The state of the cell is identified by the cell’s electric polarity and
may be written or read through the application of electric fields. FeRAM presents no power
leakage and therefore its cells do not require to be refreshed, which significantly reduces these
devices overall energy consumption. FeRAM also presents latency very close to that of DRAM
and better endurance when compared to other NVMs, e.g. Flash. The main disadvantage
of FeRAM is in its low capacity, which is somewhat similar to that of DRAM. This poses a
challenge to the adoption of such memories as long term storage.

• Magnetic RAM: Also known as Magnetoresistive RAM, Magnetic RAM (MRAM) is basically
composed of two magnetic tunnels whose polarity may be alternated through the application
of a magnetic field. Conventional MRAM (also called “toggle-mode” MRAM) uses a current
induced magnetic field to switch the Magnetic Tunnel Junction (MTJ a structured basically
composed of two magnetic tunnels whose polarity may be alternated through the application
of a magnetic field) magnetization. The amplitude of the magnetic field must increase as the
size of MTJ scales, which compromises MRAM scalability. Like FeRAM, MRAM presents high
endurance (over 1015 writes) and extremely low latencies (faster than DRAM) [130]. Also,
the energy necessary to read and write from MRAM cells is higher than on DRAM cells, hence
it is usually considered that MRAM is more energy efficient than DRAM due to its lack of
need for cell refresh. However MRAM suffers from a severe issue of density which prevents
it from scaling to storage levels. For that reason, much research was invested into exploring
new memory architectures to make MRAM usage more feasible.

• Spin-Torque Transfer RAM: Spin-Torque Transfer RAM (STT-RAM) is a variation of MRAM,
designed to address the scalability issues of its predecessor. The main difference between these
two technologies is in the cell write process: in STT-RAM, a spin-polarized current, instead of
a magnetic field, is used to set bits, which makes the cell structure much simpler and smaller.
Similar to MRAM, both the efficiency and endurance in STT-RAM are excellent, being able
to achieve latency lower than DRAM [65] and number of writes superior to Flash. The main
challenge in adopting STT-RAM at large scale is due to its low density, even though some
authors agree that the technology has a high chance to replace existing technologies such as
DRAM and NOR Flash [65].
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• Resistive RAM: The basic concept behind Resistive RAM (RRAM) technology is similar to that
of MRAM in that the electric resistance of components are modified by external operations to
change the state of the memory cells. The most typical method to do that is applying different
voltage levels to change the cell resistivity. In general, RRAM is known to be quite efficient,
both in terms of access latency and energy. One of the main advantages of these technologies
however, is their scalability that, supposedly, may easily surpass that of DRAM. The main
drawback of RRAM devices is their limited endurance. Reportedly, resistive technologies such
as Memristor can get around 107 [130] writes of lifetime, which may limit the usage of the
technology (as main memory, for example).

• Phase-Change RAM (PCRAM): Phase-Change Random Access Memory (also called PCRAM,
PRAM or PCM) is currently the most mature of the new memory technologies under research.
It relies on phase-change materials that exist in two different phases with distinct properties:
an amorphous phase, with high electrical resistivity, and a crystalline phase, with low electrical
resistivity [104]. PCRAM scales well and presents endurance comparable to that of NAND
Flash, which makes it a strong candidate for future high-speed storage devices. This technology
is slower than DRAM (between 5 and 15 times slower) and has a considerable disparity in
energy consumption due to its RESET operation dissipating a larger amount of energy than
other operations [104] [8].

• Flash Memory: Flash memory is the most popular and wide-spread technology on this list. The
original Flash memory structure was designed after traditional Electric Erasable Programmable
Read-Only Memory (EEPROM) to be able to perform erase operations over separate blocks,
instead of over the entire device. Flash memory is mainly divided into NOR and NAND Flash.
While NOR Flash is faster and may be written (but not erased) at byte granularity, NAND
presents superior density [14] and is significantly more durable. In general, Flash memory
is known for being several times slower than emerging byte-addressable NVM technologies
and usually employed as an I/O device, replacing magnetic disks. Despite that, Flash does
share a few key characteristics with upcoming NVM technologies, such as limited endurance,
density, energy constraints, different speeds for read and write and persistence. Since its
introduction, Flash memories have been extensively studied and a variety of mechanisms to
both cope with and explore its characteristics have been proposed [26][49][55]. This research
notably influenced current under development NVM technologies. Hence, we argue that,
although Flash memory may present significantly distinct characteristics when compared to
upcoming byte-addressable NVM, knowledge in many aspects and topics regarding Flash (such
as wear-leveling, garbage collection, log-structured file systems and address translation layer,
to name a few) may be useful to understand and guide research on emerging persistent memory
technologies. Furthermore, Flash memory is still currently extremely popular and it does not
seem likely that SSDs (Solid State Drives) are going to get obsolete anytime soon.
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Upcoming NVM technologies have much in common individually (such as low energy
leakage, fast access, efficient random access and lifetime limitations), but each one of them present
some kind of weakness: some have issues with endurance, some have lower performance, some do not
scale well. Table 2.1 summarizes the main characteristics of these memory technologies. Additionally
they are at different stages of development, some being studied in laboratories only, while some
are already being commercialized. All of these memories have a real potential to replace current
predominant technologies at some level of the memory hierarchy (such as HDDs for storage, DRAM
for main memory and SRAM for processor caches) and they all (with the exception of Flash, perhaps)
represent a huge shift in how persistent data is managed on today’s systems. Therefore researchers
have been thoroughly exploring the potential of these technologies and proposing solutions that may
either overlap or complement each other. That being said, in this work, we do not focus in any
particular NVM technology, even though we emphasize innovations and studies on byte-addressable
NVM as our main interest.

Table 2.1: Characteristics of the NVM technologies discussed in this work.

DRAM FeRAM MRAM STT-RAM RRAM PCRAM Flash
Density per Chip 8 - 16 Gb 128 Mb 16 - 32 Mb 2 - 16Mb 64Kb 1 Gb 256 - 512Gb

Endurance 1015 1015 1015 1015 105 107 104

Read Latency 10 - 60ns 75ns 5 - 10ns 5 - 10ns 10ns 50ns 25µs
Write Latency 10 - 60ns 50ns 12ns 12ns 10ns 40 - 150ns 200µs

Energy per Write 2 pJ 2 pJ 120 pJ 0.02 pJ 2 pJ 100 pJ 100 - 1000 mJ

2.2 File Systems

One of the simplest methods to provide access to NVM to applications is by simply mount-
ing a file system over it. Using special block drivers, it is possible to build traditional disk file systems,
like ReiserFS, XFS or the EXT family, over a memory range. Metadata and namespace management
is made by the file system while the block driver is responsible for the actual writes to the physical
memory. However, since these file systems were designed for much slower devices with very different
characteristics, they usually are not the best fit for NVM management. With this in mind, a handful
of alternative file systems, designed specifically for NVM, were proposed, designed and implemented
[32][21][126][128]. NVM file systems usually take in account issues such as minimizing processor
overhead, avoiding unnecessary data copies, tailoring metadata to NVM characteristics and ensuring
both data protection and consistency.

BPFS [21] and PMFS [32] are two early and well known examples of NVM improved file
systems, designed to provide efficient access to NVM with POSIX interface. Both systems are
designed for memory-bus attached NVM storage and attack common NVM-related issues such as
efficient consistency mechanisms, consistency with volatile processor cache and NVM optimized
structures. Among other things, BPFS proposes the epoch barrier mechanism, to reinforce ordering
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and maintain consistency when writing to NVM while also avoiding cache flushes, and the short-
circuit shadow paging which is a fine-grained NVM-friendly redesign of the traditional shadow paging.
PMFS, on the other hand, employs fine-grained journaling to ensure atomicity on metadata updates
while adopting the copy-on-write technique to ensure atomicity on file data updates. PMFS also
provides memory protection over the file system pages by marking them as read-only and allowing
them to be updated by kernel code only when necessary, during small time windows, by manipulating
the processor’s write protect control register.

A more recent example of NVM designed file system is NOVA [128]. Besides improving the
efficiency of file system structure and operations based on NVM characteristics NOVA also seeks to
provide support for NVM scalability. It minimizes the impacts of locking in the file system by keeping
per-CPU metadata and enforcing their autonomy. Like BPFS and PMFS, NOVA keeps some of its
structures in DRAM for performance reasons while also ensuring the integrity of metadata stored
in NVM. NOVA is also log-structured which is a common structure of file systems for persistent
memory due to their affinity with these technologies.

In addition to its simplicity and straightforwardness, the adoption of file systems is also
important to maintain a consistent interface with legacy software and to make data sharing easy.
Much of the interaction of today’s applications with persistent data is highly coupled with the
specification of file system operations. Although NVM file systems may eventually evolve beyond
the traditional norms of POSIX, it is important to keep compatibility with legacy code in mind when
redesigning and optimizing the access interface for NVM. In this scenario, even with the emergence
of alternative more memory friendly persistence models, like persistent heaps, file systems are still
essential for working with NVM.

2.3 File Mappings

Mapping files to memory regions is a common practice in modern software, being a flexible
and efficient alternative to traditional read/write file system operations. First the file is mapped
to a region of main memory. Accesses (reads or writes) to this region generate page faults, so
the operating system may perform the necessary I/O and addressing to allow the file’s data to be
accessed in a memory-like fashion through virtual addresses. Unless specified otherwise, the file is
mapped on demand: every access to a new page generates a page fault for the kernel to adjust the
process page table. The operating system is also responsible for writing back the file’s in-memory
dirty pages to the file system, thus not requiring any additional system calls from the user.

Naturally, in traditional systems where storage is based on HDDs and SSDs, much of this
work is made asynchronously, as swapping pages to and from the backing store are extremely slow
operations. For instance, mapping a file region using the mmap function creates the appropriate
operating system data structures, such as virtual memory areas (VMA) and page table entries, in
preparation for the incoming data. Before the pages of the mapped file can be accessed by the
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process, they must be loaded into the page cache from the file system. Once the pages are in
memory, the operating system modifies the process page table to point to the new copied pages
in page cache. When pages belonging to a mapped file become dirty, they become eligible to be
asynchronously copied back to their original file. Handling page table entries, dirty pages, I/O and
writebacks are all processes managed by the operating system, involving a minimum amount of
interaction from the user. In most cases this is very convenient as reducing the amount of calls
to the operating system (and consequentially the amount of context switches) may significantly
improve performance. On the other hand user control and guarantees over writes and ordering are
reduced and the additional overhead of manipulating (among other things) page table structures
may be considered drawbacks in some situations.

Regarding NVM storage, the primary issue with the described mapping process is that it
involves unnecessary I/O and processing that does not quite fit with a NVM enabled architecture.
Since NVM may be addressed in byte granularity by the processor and accessed with almost DRAM
speed, copying and swapping data blocks from NVM to main memory seems redundant. Further-
more, the expensive and bureaucratic I/O operations over which mmap is based, do not match the
much less complex and transparent access structure allowed by NVM. Based on these arguments,
some file systems offer the eXecute-In-Place (XIP) functionality. With XIP, entire layers of storage
subsystem, like I/O schedulers and page cache management, may be bypassed when accessed data
in memory-bus attached NVM. These are unnecessary layers that are not designed for NVM-based
storage and which would otherwise only slow down the file system operations. The result is a much
cleaner and efficient method to interface with NVM file systems and NVM storage in general.

Furthermore, adopting the XIP mechanism also allows applications to map files directly
in their address space, in a true zero-copy fashion. A simple implementation of such XIP-enabled
mappings is presented by PMFS. In PMFS, during page faults on a mapped area, instead of copying
the faulting block from the file into the page cache, the file system instead adds to the process page
table, an entry pointing to the block’s physical address. This means that writes are made directly
to the file and no paging is necessary. The mapped block is represented by a page frame number
and is managed by PMFS instead of the memory management subsystem.

Given its advantages and particularly its flexibility, the direct mapping mechanism is used
as basis for more robust and complex data store models. Tools such as persistent heaps [43][20]
and persistent regions [118] have a facilitator in the direct mapping functionality. They see direct
mappings as a simple mean to have direct access to a NVM region with minimum interference from
the operating system. The persistent regions presented by Mnemosyne, for instance, are actually
structures backed by a mapped file and managed by the Mnemosyne library. Frameworks like this
aim to provide more programming-friendly APIs (as an alternative to files semantics) as well as more
complex functionalities and guarantees (such as data integrity and atomicity), while delegating the
low-level management to the file system. It seems likely that, as NVM devices become more mature
and accessible, these kinds of tools may grow in popularity which would consequentially generate
demand for file system resilience and efficiency as well.
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3. SYSTEMATIC MAPPING STUDY

The first part of this work is dedicated to give an overview of the current state of research
in the area of NVM file systems. This overview will help us to develop the technical base and
motivation for this work and to situate it in the picture of current NVM research. To this end, we
adopt the model of Systematic Mapping Study (SMS), in order to build a framework of research
which helps both to reduce researcher bias and to allow replication in the future.

This chapter presents the protocol used in the systematic mapping study and how the
research was conducted. The method used by the SMS was based on processes used by other
similar studies conducted in both Computer Science and Software Engineering [98] [5] [58]. The
first step of this method is to define a protocol that presents some details of how the research was
conducted and how the selection of the analyzed studies was made using paper search engines and
manual searches. The idea of specifying a protocol may help future works and secondary researches
in the field, by providing a well-structured method of retrieving the studies used by this systematic
mapping. It also provides the context in which the research was conducted and helps to visualize
the goals and the scope of the systematic mapping, and how its results may be of use.

For the sake of completeness, during the execution of this survey, we broaden the meaning
of the term Non-volatile Memory to also incorporate technologies such as NAND Flash that are
not byte-addressable. Flash memory has much in common with currently under development byte-
addressable NVM, and much of the research dedicated to these upcoming technologies has its roots
in studies performed over flash. Therefore we do not distinguish byte-addressable NVM from Flash
in this SMS although we do focus on the issues common to both technologies.

3.1 Defining Scope

The goal of this survey is to map the state of the art of NVM file systems based on studies
conducted in the field. This should help to visualize the problems, challenges and main goals when
writing a file system designed for NVM technologies. It also helps to identify the trends of the field
and what currently seems to be the future of NVM usage and application, and how it may impact
on the overall computer architecture.

3.2 Establishing Research Questions

The use of research questions to guide an academic research is a common approach. These
questions help researchers to define the scope of the research, the premises on which the research will
be based on and what kind of data, arguments and experiments would represent a satisfactory answer
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(results of the research). The research questions also help to identify what kind of contribution the
research work will represent to the academic community knowledge.

In a systematic mapping study, the research questions are also used as the basis for the
search string, that will be used to query academic databases for papers related to the study’s subject.
Therefore, establishing a research question is an important part of the systematic mapping protocol.
This mapping was based on the following 4 questions:

• RQ1: What are the differences between disk-based and NVM file systems?

• RQ2: What are the challenges and problems addressed by NVM file systems?

• RQ3: What techniques and methods have been proposed to improve NVM file systems?

• RQ4: What is the impact of new file system models on the overall architecture?

3.3 Inclusion and Exclusion Criteria

To filter the papers used by the systematic mapping study, a set of inclusion and exclusion
criteria is usually applied during the research. This method helps to ensure that only relevant papers
will be selected and analyzed.

The inclusion criteria used are the following: (1) studies that provide a substantial compar-
ison between a NVM file system and another file system (designed for NVM or not) (2) studies that
propose new NVM file systems or new models of NVM usage, (3) studies that propose improvements
over general purpose file systems to work with NVM, and (4) studies that discuss or criticize existing
NVM file systems and NVM technologies.

The exclusion criteria are the following: (1) studies not written in English, (2) studies that
only mention the subject, but are not focused on it, (3) in case of duplicated or similar studies, only
the most recent one was considered, (4) studies that do not mention NVM file systems or NVM
technologies in its title and abstract, and (5) studies that only focus on NVM hardware aspects and
impacts.

3.4 Research Strategy and Search String

This section describes in detail how the research was conducted. In order to search aca-
demic databases for relevant studies, the key terms of the previously defined research questions were
extracted and used to create a well-formed search string. The search string was then applied to
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selected databases’ search engines in order to retrieve papers containing the main specified terms.
The set of databases accessed by this systematic mapping study is composed of IEEExplore Digital
Library, ACM Digital Library, Springer Link and EI Compendex.

The search string was built by extracting the meaningful terms of the established research
questions and organizing them into three groups: population, intervention, and outcome. This is a
common method used in medical research, but have been applied in software engineering studies as
well. The groups are organized as:

• Population: Non-volatile memory. Synonyms: NVM, persistent memory, storage class mem-
ory, byte-addressable memory.

• Intervention: File system. Synonyms: filesystem, file-system.

• Outcome: Problems and techniques. Synonyms: challenges, approaches, models, methods.

To make the search string as comprehensive as possible, “OR” operators were used to
establish the relationship between synonyms and similar terms, and “AND” operators were used to
connect population, intervention and outcome terms. The terms were also converted to singular for
convenience. The resulting search string is the following:

(”non-volatile memory” OR ”NVM” OR ”persistent memory” OR ”storage class mem-
ory” OR ”byte-addressable memory”) AND (”file system” OR ”filesystem” OR ”file-system”)
AND (”problem” OR ”technique” OR ”challenge” OR ”approach” OR ”model” OR ”method”)

After executing the search string in the aforementioned search engines, the next step taken
was to apply the insertion and exclusion criteria over the retrieved studies. To fit these studies in the
proposed criteria, information like publication year, paper title and abstract were read and analyzed.
Additionally, similar or redundant studies were discarded by selecting only the most recent one. The
output of this process is the set of primary studies that are going to be addressed by this survey.

To further broaden the range of material used by this SMS, relevant studies referenced by
the primary studies were also verified and, when appropriate, selected to be used in the systematic
mapping as well. The same criteria were applied over these referenced studies.

3.5 Applying the Search String

As explained previously, the research was conducted by querying four search engines (ACM
Library, EI Compendex, IEEExplore and SpringerLink) using the search string presented in Section
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Figure 3.1: Distribution of publications by year. Partial amount: number of publications relative to
July of 2016.

Table 3.1: Number of retrieved/selected studies by each search engine.

Engine Number of Retrieved Studies Number of Selected Studies
IEEExplore 105 42
ACM Library 105 35
Compendex 64 12
Springer Link 198 20

Total 472 109

3.4. Together, the four engines returned a total of 472 publications (including duplicates) from
which 109 were selected based on the inclusion and exclusion criteria. To apply the criteria and
select appropriate publications, the information in the title and abstract were used. Table 3.1 shows
the distribution of publications retrieved and selected for each search engine.

In this research, no date restrictions were specified. Figure 1 presents the number of papers
per year of publication. The figure shows that, though some papers in the NVM area date from as
far as 1992, most of the retrieved papers were published from 2008 and 2015. Additionally, some of
the most relevant papers (by number of citations) in the field date from before 2008 (like eNVy [27],
for example). Therefore it seems that not imposing a date range was the best option in this case.
The figure also shows a clear intensification of research in the NVM area in the last 6 years. This is
probably due to the growing popularity of NAND Flash Solid-State Disks (SSDs) and the growing
maturity and promising specifications of new NVM technologies, especially the Phase-Change RAM
(PCRAM) [127] and Spin-Transfer Torque RAM (STT-RAM) [85].

3.6 Collecting and Classifying the Results

This section presents the next step in the SMS, which involves analysis and classification
of the retrieved studies shown in Section 3.5. The classification presented here is driven by the
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previously established research questions, and is intended to provide a detailed view of the selected
studies in order to answer those questions.

Table 3.2: Selected studies categorized by the type of their contributions.

Contribution Occur. Studies

File System 26
[26], [37], [7], [70], [61], [89], [114], [21], [129], [1], [40],
[90], [126], [32], [132], [92], [52], [28], [119] [39], [51],
[29], [96], [111], [12], [69], [108], [128]

Alternative
software
layer

12 [55], [15], [76], [63], [43], [35], [82], [118], [54], [68], [74],
[67], [107]

Techniques 45

[27], [52], [12], [15], [76], [63], [82], [54], [72], [124], [10],
[3], [106], [57], [2], [45], [49], [42], [83], [109], [79], [88],
[38], [103], [13], [16], [48], [44], [64], [77], [80], [125], [73],
[95], [18], [75], [100], [91], [113], [60], [62], [78], [105],
[81], [120], [46], [56], [116]

Architecture 28
[89], [90], [27], [70], [129], [1], [132], [28], [119], [51], [29],
[96], [111], [10], [42], [103], [16], [44], [91], [120], [131],
[9], [11], [30], [59], [19], [112], [101], [46]

Alternative
applica-
tions of
NVM

16 [37], [7], [132], [52], [54], [68], [3], [57], [83], [103], [64],
[60], [30], [17], [53], [41]

Aggregated
knowledge 13 [127], [85], [9], [17], [86], [97], [102], [36], [93], [94], [4],

[34], [66], [71], [31], [123], [110]

Table 3.2 classifies the studies according to the type of proposals and contributions they
present. The categories listed in Table 3.2 were derived from the approach patterns identified while
analyzing the retrieved studies. These categories reflect the major concerns when working with NVM
and the research effort invested by the academic community on different approaches to deal with
these concerns. The table also shows that many different applications of NVM technology have been
proposed, ranging from non-volatile caches to completely NVM hierarchies. It is also important to
notice that the same study may be related to more than one category, meaning that that study
makes multiple proposals (that probably complement each other) in different aspects of the NVM
usage. The categories of contribution identified and used by this work are the following:

• File systems: publications under this category focus their efforts on proposing the use of a
file system designed specifically for persistent memories. The file system may be an alternate
version of an existing file system adapted to work with persistent memory, or may be a new
file system designed to work with NVM.

• Alternative software layer: although a file system may be the first piece of software we con-
sider when studying the impact of new NVM technologies over the traditional architecture,
there are other software layers and subsystems responsible for managing memory and storage.
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These software layers intend, for example, to allow traditional file systems to work with NVM
more efficiently. Common examples are object-based storage systems (both as an alternative
to file systems or as a complementary software layer), translation layers and block drivers.

• Techniques: this category is reserved for those studies that instead of presenting a complete
software layer, propose some methods that aim to address specific problems or improve the
usage of NVMs. These methods are usually integrated into existing systems (e.g. a file
system) for evaluation. Techniques detailed by these studies are usually driven by common
concerns related to memory and storage management, like metadata storage improvement,
block allocation algorithms or wear leveling.

• Architecture: the majority of the studies involving NVM assume the use of persistent memory
in two architecture models: (1) where NVM is used as storage, replacing traditional HDDs,
and (2) where NVM is used as main memory, replacing partially or completely the DRAM-
based main memory. In the scope of this work, it is considered that any publication that
presents an architecture different of (1) and (2) is proposing a new architecture or an archi-
tecture adaptation and, therefore is categorized under this category. Some examples of these
architecture proposals involve the use of NVM to improve metadata management and mixing
NVM with volatile memory for performance reasons.

• Alternative NVM applications: the most common and straightforward application of emerging
NVM technologies is to either use them as a block device to provide high speed storage, or to
plug them into the main memory bus, giving the CPU direct access to the NVM and using it
as a persistent main memory. Studies of this category explore the application of these same
NVM technologies in other levels of the memory hierarchy, like buffers and caches. Differently
from the Architecture category, these studies do not focus on NVM as a mean of storage, but
as a mechanism to improve performance and reliability of storage and RAM devices, comple-
menting their functionalities. Also, theses studies are usually driven by limitations of current
NVM (related to density, cost and durability) or focused on embedded systems. Alternative
applications addressed by these publications include persistent processor cache and persistent
buffer for disks.

• Aggregated knowledge: publications under this category do not focus on proposing methods
to improve NVM usage. Instead, these works present aggregated knowledge over the NVM
area, exploring characteristics of NVMs and the impact of these technologies in the many
aspects of the current computer architecture.
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The purpose of the classification presented in Table 3.3 is to identify different applications
that researchers believe that could benefit from the advantages of NVMs. Although it seems obvious
that any data-intensive application, like databases, search engines and data mining applications can
get significant improvements from persistent memory, efficient methods to explore the full potential
of NVM under these workloads are still under invetigaton. Furthermore, in their current state,
NVM technologies still present limitations in density and resilience that prevents them from being
adopted in large scale. Besides, these technologies have a few other characteristics aside from its
low latencies that may represent significant improvements in other fields of application. The most
foreseeable case is that of embedded and mobile systems, that may benefit from memories that are
impact resistant and energy efficient, while also being byte-addressable.

Table 3.3: Selected studies categorized by their area of application.

Application Studies

General purpose

[89], [90], [27], [127], [85], [61], [114], [21], [129],
[126], [32], [132], [92], [28], [119], [39], [51], [111],
[12], [69], [55], [15], [63], [43], [35], [82], [118], [54],
[68], [67], [72], [124], [10], [3], [83], [109], [38], [16],
[48], [44], [100], [60], [131], [53], [86], [97], [102],
[36], [4], [66], [116] [71], [31], [123], [108], [56],
[110], [107], [128]

Embedded Systems [26], [70], [40], [96], [2], [64], [77], [81], [30], [101],
[93], [94]

Mobile Systems [29], [106], [2], [45], [38], [13], [77], [80], [125], [18],
[62], [105], [59], [112]

Distributed systems/Clusters [7], [52], [57], [103], [95], [11], [17], [46]
HPC/Scientific Applications [52], [57], [78], [120], [9], [41], [34], [46]

Data intensive applications/Databases [27], [37], [42], [9]
Large and Long Running Systems [91], [113]

Streaming Systems [88], [59]
Others [26], [1], [76], [74], [42], [73], [75], [19]

Table 3.3 also shows that most solutions proposed in the selected studies do not focus
on a single niche. Instead, they focus on providing solutions to common NVM-related problems or
problems related to a specific architecture, and presenting alternative applications of NVM. This
does not necessarily mean that these solutions may not benefit specific applications, but that they
were not developed having a specific class of problems in mind, or at least none was specified by
the authors in their respective papers.

The solutions that are not categorized as general purpose may be divided in basically
3 categories: mobile, embedded and distributed systems. Studies that focus on mobile systems
usually explore the benefits of low power consumption and byte-addressability of NVMs. Although
the term “mobile devices” may refer to many types of hardware with different architectures, usually
those studies explore the characteristics of today’s mobile phones and use common mobile phone
applications’ workloads to evaluate new solutions and techniques. Similarly to mobile systems, the
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studies classified as embedded systems focus on NVMs energy efficiency, impact resistance, and
small size. However, those studies could cover a larger array of applications and architectures,
like wireless sensor networks and consumer electronics. Additionally, like in some general purpose
studies, those studies usually assume limited capacities and high cost for NVM chips, since these
technologies are still under development. Therefore, those works present some efforts to save physical
memory, like avoiding duplicates through the memory hierarchy and providing compression. Finally,
distributed systems focus mostly on the impact of NVM latency and persistence over the performance
of compute-intensive distributed software and high-performance computing systems. Applications
in this class include scientific applications and distributed file systems. The solutions explored by
those papers usually explore the use of NVM to hide network latency, to improve the performance
of distributed storage systems or to guarantee consistency among nodes. Solutions and problems
addressed by those publications will be presented later in this document.

Other applications that, according to those papers, may also benefit from NVMs, but are
less frequently targeted, include High Performance Computing (HPC), scientific computing, data
intensive applications, long running systems and streaming applications. HPC and scientific systems
are related to CPU-intensive workloads that, naturally, can greatly benefit from throughput offered
by low latency persistent memories that may be placed close to the CPU. Data intensive applications
include storage systems, databases and data mining applications, and are usually concerned with
consistency, atomicity and performance optimization. These applications are very storage-dependent,
and it is easy to see how they can be improved by NVM. Data-intensive and HPC systems are also
usually associated with clusters and distributed architectures, inheriting the concerns of these classes
as well. Long running systems are systems that are projected for high and long-term availability and
should present a high grade of resilience and fault tolerance. In this case, NVM may be adopted
to increase the amount of system memory and to reduce traditional complexity of moving data
from operating memory to persistent devices. Streaming applications load large amounts of data in
smaller chunks on demand (e.g. file transfer and streaming events, such as in IoT, security) and
allow partial data to be processed before the entire object (e.g. file) is transfered. These applications
usually work with sequential and predictable data accesses, which can be optimized for NVM with
techniques like prefetching. Other applications include sensor networks [26], transactional systems
[42], highly concurrent systems [76], semantic storage and application [1], high reliability (through
data redundancy) systems [73], virtualized systems [74], and multidimensional storages [75].

This classification helps to understand the benefits and advantages of NVMs and to see
these advantages from different perspectives. It also helps to understand the motivation behind the
solutions proposed by those studies and, therefore, contributes to answering the research questions
investigated in this work.

The next classification focuses on the problems addressed by each publication. The idea
now is to identify the common problems impacting the use of NVM technologies as well as the
methods used to address them. Naturally, the categories listed here are intimately related to the
type of contribution categorized earlier in this work.
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Table 3.4: Topics closely related to storage and file systems on NVM and the studies that explore
them.

Problem Studies
Access
Interface

[89], [90], [114], [1], [126], [132], [92], [52], [51], [111], [43], [35], [82],
[118], [57], [16], [95], [9], [97], [4], [56], [116]

Metadata
Management

[70], [129], [1], [28], [119], [51], [29], [96], [111], [12], [55], [68], [43],
[106], [13], [16], [80], [18], [75], [56], [107], [128]

Space
Efficiency [127], [26], [114], [21],[55], [68], [48], [80],[100], [9], [86],[94]

Garbage
Collection

[27], [26], [126], [29], [96], [63],[54], [80], [36], [93], [128]
Atomicity [37], [21], [132], [12], [83], [38], [16], [95], [110], [116], [128]
Write
Amplification [21], [82], [72], [45],[49], [16], [62], [78],[102]

Fragmentation [70], [126], [76], [81]
Parallelism [127], [52], [76], [110]
Transparency [70], [55], [15], [131]
Mounting
Time

[129], [51], [96], [128]

Therefore, Table 3.4 and Table 3.5 list the most common issues addressed by the analyzed
studies. Table 3.4 shows topics that are considered to be concerns when NVM is used as storage.
For this purpose, storage is considered whenever a structure, like file system or object store, is
built over NVM and used to consistently store long term data and metadata. Thus, cases where
NVM is used as operating memory, like current volatile memory, or used as buffer or cache, are not
considered examples of storage. In Table 3.5 are listed topics that are not storage exclusive: they
are also relevant when NVM is used for other ends like main memory or write buffer.

Both tables are ordered by the number of times each problem is addressed in the analyzed
studies, in order to highlight the most frequently targeted problems in the area. This classification
tries to maintain a balance between the generalization and specification of each problem looking to
enumerate a reasonable number of categories, while also providing as much detail and information
about the focus of each analyzed study. For instance, studies that focus on optimizing a file
system’s block allocation and studies that aim to avoid data duplication in the memory hierarchy
could both be classified as software overhead studies, since these studies try to reduce software
generated latencies that are traditionally used to improve disk-based storage performance. However,
the approach followed by these two lines of research are very distinct and have different impacts in
the overall system. Hence, in order to preserve these unique characteristics, they should be divided
into two different categories. Each of these problems will be further detailed in future sections
(Section 4.2 and Section 4.3).

The classification also shows a relation between the studies retrieved and the NVM-related
problems they address. Many of these studies focus on exploring the advantages of NVM to improve
performance, reliability and usability of existing architectures and applications. However, since the
focus on this classification is to identify common problems that impact NVM usage, only the problems
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Table 3.5: Topics that are not exclusive to file system or storage.

Problem Studies

Consistency
Guanratee

[26], [37], [21], [126], [32], [132], [119], [51], [29], [111], [69], [55], [15],
[43], [82], [118], [67], [72], [57], [49], [83], [38], [13], [16], [44], [73], [95],
[91], [113], [60], [62], [78], [105], [81], [112], [102], [94], [4], [108], [123],
[107], [116], [128]

Endurance [27], [127], [129], [40], [96], [12], [55], [82], [124], [2], [45], [49], [125], [75],
[131], [112], [101], [102], [36], [93], [94], [123]

Asymmetric
Latency

[27], [127], [85], [40], [96], [3], [2], [49], [88], [44], [64], [75], [120], [131],
[112], [101], [86], [66], [123]

Persistent
Cache

[127], [7], [132], [54], [68], [74], [3], [83], [64], [60], [30], [59], [17], [53],
[41], [71], [46], [123]

Software
Overhead

[90], [21], [126], [111], [43], [10], [42],[131], [9], [11],[102], [108],
[56],[31],[107], [128]

Energy
Efficiency [127], [26], [39], [3], [88], [64], [77], [11], [59], [97],[123]

Block/Page
Allocation

[89],[90], [40], [126], [92], [63], [106], [102], [36], [123], [128]
Cache
Optimization [27],[21], [63], [109], [100], [120], [19], [102], [71]

Cache
Consistency [61], [21], [32], [132], [63], [118], [42], [123]

Memory
Protection

[89], [126], [32], [92], [15], [118], [38], [128]
Reliability [69], [79], [38], [91], [113], [102], [4]
Data
Placement

[27], [119], [88], [103], [131], [56], [46]
Data
Duplication [89],[61], [32], [92], [108], [107]

Scalability [100], [56] , [128]

directly related to the characteristics of NVM technologies addressed by these works were considered.
Architecture, application and scope specific problems were, therefore, ignored.
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4. ANALYZING THE RESULTS

In this chapter the results of the presented systematic mapping are discussed and the
research questions established in Section 3.3 are reviewed. The classification presented previously
will be used to illustrate the answers of these questions.

4.1 What are the differences between disk-based and NVM file systems?

One of the first concerns that arises, when migrating from HDDs to NVM-based devices,
is related to the processing overhead of the many different software layers that currently compose
the storage subsystems [126] and [32]. This overhead is acceptable when working with disk-based
storage, since seek operations in a disk are much slower than both main memory access latencies
and CPU cycles, which means that the overhead of RAM and CPU (which is only a fraction of a disk
seek) to minimize disk seeks is a necessary sacrifice. However, in the case of NVM, access latency is
supposed to be very similar to regular DRAM latency. Therefore, NVM file systems are designed to
reduce this overhead, usually using simplified data structures and policies and sometimes bypassing
[10] [32] or completely abolishing some software layers, like block drivers, schedulers or page cache.

Another frequently discussed question is related to the access interface to these new mem-
ories. The POSIX file-oriented interface is certainly the main starting point. Although it is an
important API for legacy systems, as well as for standardization of storage access, it seems unlikely
that POSIX will remain untouched through the way of adapting today’s computers for using NVM
technologies. Since most NVM technologies are byte-addressable, many studies [97] [126] argue
that the best way to access these devices is connecting them into the memory bus, giving the pro-
cessor direct access to these memories through a memory-like interface. Some studies [55] [43] [118]
propose a simplified and friendly interface to access NVM (usually based in a key-value object store)
while providing the same functionalities and guarantees of regular file systems. Other studies [15]
[90] [11], however, choose to access NVM using block granularity to maintain compatibility with
legacy systems. In that approach, NVM may be either connected in the memory bus or into an I/O
bus (like PCI) to avoid interfering with (or competing with) main memory related hardware, like the
memory bus itself and the Translation Lookaside Buffer (TLB).

Connecting NVM to the memory bus and accessing it directly brings a few challenges like
avoiding exposing data to stray writes and the lack of consistency with the processor cache. The
former is related to the fact that, on today’s hardware enforced page-based protection, bugs in the
code of the user, the file system or even the kernel, may generate undesired writes in the NVM,
leaving it in an inconsistent state. Given the persistent nature of NVM, a single stray write may
corrupt the entire file system. This is not a problem in disks, since there are multiple layers in the
memory hierarchy that are responsible to check for this kind of error before data is persisted in the
secondary storage. The problem with cache consistency is due to the fact that to ensure atomicity
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and consistency, the system needs a certain degree of ordering, for example to ensure that metadata
is updated only after its corresponding data is already written. However, due to cache eviction
policies, data may be transferred from cache to the memory out of order. Thus, a method to ensure
ordering of writing from cache to NVM is necessary. Both these problems are further explored in
the next section.

4.2 What are the challenges and problems addressed by NVM file systems?

A list of common problems addressed by studies in the area of NVM can be seen in Tables
3.4 and 3.5. In this section these problems and their impact over the system are detailed.

Consistency Guarantee and Atomicity

In order to avoid system corruption and data loss through multiple writes and erases,
most file systems implement a mechanism to ensure full consistency. This means that data stored
in a physical medium, by a file system, must be consistent at all time, in such a way that if a
power failure or system crash occurs during a write operation, data will not be permanently lost.
Common mechanisms of consistency guarantee include journaling, shadow paging, log-structured
file systems and checkpointing. Although these techniques are very important in overall consistency
maintenance, they are among the main sources of overhead in storage systems. For instance, the
simplest method of performing journaling involves writing all data in a pre-allocated space in storage,
called journal, before updating this data in the file system itself. This is known for being extremely
inefficient, as every write issued to the file system incurs in at least two writes to the physical device
(write amplification). Atomicity mechanisms are also closely related to consistency: they ensure that
operations (like updates to user data, for instance) are either completely successful or completely
ignored. However, atomic models, like transactions are not trivially applied to NVM as they were
to disks and specially regarding scalability and overhead issues. Hence, many studies [43] [21] [55]
[67] [116] [128] propose different methods to improve the performance of these mechanisms while
also enforcing the consistency and security of the storage system.

Access Interface and Transparency

An issue that is extensively discussed in several papers is regarding the method of accessing
and managing NVMs. Regarding NVM Interface, the most common question is whether NVM
devices should be accessed as a block device (through a block driver, like current flash SSD and
magnetic HDD), through main memory interface or through a new interface, like heap-based and
key-value interfaces [43] [55]. Additionally, many studies propose approaches to provide users with
the means of allocating and accessing persistent areas of memory, through, for example, system
calls and programming libraries directives [35] [118]. Some of these studies seek efficient methods
to support legacy applications (e.g. using POSIX file system operations) while also improving NVM
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usage and leveraging its performance. They try to provide transparency for the upper layers of
software, hiding NVM specific details and implementations.

Reliability, Memory Protection and Endurance

Another highly desirable storage characteristic is reliability. Upcoming NVM technologies
present some limitations in the endurance and reliability aspects. As mentioned before, the limited
endurance of NVM devices may cause some blocks to wear-out faster than others, since some data
blocks are updated more frequently than others [106] [125] [55]. This results in the permanent
loss of these blocks and the consequential reduced storage capacity. Reliability, as it is used in this
survey, is related to loss of data caused by some physical failure in the device. For example, as
memory chips’ density increases, the possibility of operations performed in the device cells creating
noises in other cells becomes more likely [79]. Other problems, related to bus communication, may
become a threat to reliability as well.

Stray writes (e.g. writes performed on an invalid pointer, possibly referencing memory out
of the process’ address space) may be the result of bugs in the kernel or in system’s drivers, and
represent another threat to memory consistency [15]. Since data in NVM is persistent, it can be
permanently corrupted by this kind of failure. Therefore, some studies propose different methods
of memory protection to avoid improper access to memory pages[32] [15]. These methods can be
implemented in software or use specific hardware.

Asymmetric Latency

Another common property shared by NVM technologies is the asymmetry in the latency
of its operations [3] [49] [44] [75]. In these memories, write (and erase) operations are much slower
than read operations. In some cases, like NAND flash memories, for example, where data cannot be
updated in-place (blocks need to be erased before they are rewritten), the problem with slow writes
is even more problematic. Thus, strategies must be adopted to avoid unnecessary writes to NVM or
to reduce the latency of these operations. This property is a key factor in the design of most NVM
file systems.

Metadata Management

Another critical point of optimization in file systems is related to metadata structure and
management. It is known that access to metadata is intensive [16] and updates are very frequent.
Furthermore, corruption in metadata may lead to the corruption of big portions or of the entire
file system. Thus, it is highly desirable for metadata management to have low overhead while also
providing an efficient structure to index data within the file system. Optimizing metadata for NVM
file systems must consider many aspects, like the limited space of NVM devices, the inefficiency of
write operations, the limited endurance of the pages and the byte granularity. Many studies [70]
[129] [28] suggest the use of NVM as a metadata-only storage in hybrid memories, considering the
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high cost-per-byte of pure NVM devices in the near future. This approach aims to leverage storage’s
overall performance without losing reliability and using small amounts of NVM.

Space and Energy Efficiency

Space and energy efficiency are among the first desirable characteristics that one might
expect from a storage system, and are not limited to NVM-based storages. File systems and tech-
niques that focus on reducing energy consumption and space allocation in storage are usually aimed
for systems with limited physical storage and power supply, like mobile and embedded systems [26]
[64] [77]. The most common methods of reducing space usage is by employing some compression
methods or simplified metadata structures [55] [114]. Energy efficiency may be improved by elimi-
nating unnecessary operations, especially writes and erases (e.g. using buffers or read-before-write
methods), since these operations are more costly than reads [127] [59] [39].

Persistent Cache

Given the challenges of integrating volatile caches with persistent storage layers, some
studies [7] [64] [132] [53] [74] suggest the use of NVM for caches and buffers. Since NVM does not
lose data in cases of power outage, NVM buffers can be very useful in improving storage reliability
and security, while also reducing the necessity of periodic flushes to long-term storages, improving
system’s overall performance. Studies that explore NVM cache management usually present metrics
and policies to take full advantage of these persistent caches and buffers, while also studying their
impact on the overall architecture.

Software Overhead, Block/Page Allocation and Data Duplication

Since, in magnetic and optical disks, sequential writes and reads are much more efficient
than random operations, great effort is made by the file system to avoid fragmentation of a file and
reduce disk seek times. However, while this additional processing generated by the file system is
acceptable for disk-based storage (CPU and main memory operations are usually thousands of times
faster than disk operations), since NVM latency is similar to current DRAM latencies, this processing
overhead may significantly degrade overall system performance. Besides, for NVM storage, random
access is fast and file fragmentation does not represent a performance penalty for itself, although
highly fragmented data may become an issue due to complex management of fragmented files,
buffering of multiple blocks and garbage collector’s inefficiency when working with random data.
Also, performing additional copies, for page and buffer cache for example, between NVM and main
memory (DRAM) may also become a source of unnecessary overhead, since data can be accessed
directly from the NVM device with DRAM-like speed. To address these questions, many studies try
to identify and eliminate functions and layers of software that would no longer be necessary given
the properties of upcoming NVM technologies [10] [9] [126]. Generally, these studies aim to reduce
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software overhead, optimize block and page allocation and avoid unnecessary duplication of data
through the memory hierarchy.

Garbage Collection and Write Amplification

As previously discussed, wear-leveling techniques are used to extend a device’s lifetime.
However, they may introduce the problem of additional writes, known as write amplification. Some
studies explore methods to avoid or to reduce the occurrence of these additional writes, while still
providing some wear-leveling mechanism. Another consequence of wear-leveling techniques is the
usage of a garbage collector. Usually, to avoid data to be re-written in the same block and therefore
reducing its life time, data is written out-of-place. This means that the update is actually written in
a new block and the old version of the updated data is marked as invalid. The garbage collector is
responsible for erasing data marked as invalid in order to allocate space for new data. This may, or
may not, involve additional writes as well. Although this process is executed asynchronously (ideally
when the storage device is idle), it has significant impact in the storage overall performance, as well
as energy efficiency and is a point of optimization by itself.

Cache Consistency and Cache Optimization

Some studies [42] [32] [132] address the problems of the integration of NVM with other
memory layers in the memory hierarchy, like the processor cache for instance. Like previously stated,
when the NVM device is connected to the memory bus and directly accessible by the CPU, data
may be written directly into NVM from the CPU’s cache. Something similar occurs when NVM is
employed as secondary storage and volatile write buffers are used to reduce the number of writes or
hide latency. Since caches and buffers are volatile memories, data stored in cache lines may be lost
upon system failures. Additionally, data must reach the memory in a consistent order so mechanisms
like journaling can work correctly. Hence, some additional process is needed to ensure that cached
data is correctly written back to the NVM.

While the aforementioned studies focus on providing cache and buffer consistency, others
focus on tailoring buffer management and cache policies to NVM storages or main memory. These
studies seek the optimization of cache and buffers using NVM-aware algorithms. For example, write
buffers designed for disks and flash SSDs work with data in blocks and sectors since these are the
units supported by the underlying persistent devices. However, NVM technologies (excluding NAND
flash) can be accessed on a byte granularity and taking advantage of this granularity may significantly
improve performance [32] [44]. However, for the system to benefit from this advantage, the buffer
management needs to take this factor into consideration.

Data Placement

Another similar and common trend in hybrid memories is to use fast memory (NVM or
DRAM) to store frequently accessed data. In this case, the file system needs a strategy of block
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placement to decide whether data (pages, blocks or files) should be stored in the faster memory
or in the slower, denser and, presumably, persistent memory [131] [103] [27]. This strategy must
identify critical data and determine whether they are temporary or must be persisted.

Fragmentation

As mentioned in 4.2, although fragmentation in NVM does not directly result in perfor-
mance penalty, it may be a problem in some cases. For instance, scattering multiple pages of a
file through different erase blocks in NAND flash may cause an increase in the number of block
merges [70]. In other cases, dealing with larger page sizes (larger than the traditional 4 KB), or
even segments, may cause problems of internal fragmentation [126].

Mounting time and parallelism

One of the problems addressed by traditional flash file systems is regarding the file system
mounting performance. On one hand, since NVM technologies have endurance limitations, keeping
frequently updated data, like superblocks and inodes, in a fixed position in the device may not be
a good idea. On the other hand, since NVMs may, eventually, scale up to petabytes, scanning the
whole NVM device is not an option either. Thus, reducing scan time, the scanned area and memory
footprint may be somewhat challenging especially in log-based file systems [51]. Furthermore, the
growing parallelism in SSDs architectures is rapidly increasing, greatly improving the throughput of
NVM-based block devices. However, traditional file systems usually fail to take full advantage of
such parallelism wasting valuable resources [127].

Scalability

One of the main advantages of novel NVM technologies over current volatile memories is
their superior density. Allied with its low energy consumption, this factor allows systems to have
large amounts of main memory (e.g. petabytes). However, managing such a large main memory is
not common in today’s architectures and, in order to do it in an efficient way, some challenges may
need to be solved. For instance, addressing in such memory is not trivial. On one hand, issuing
addresses on a page granularity (which usually range from 4 to 16 KB in current systems) may be
inefficient as too many addresses may take a toll on address translation performance [100]. On the
other hand, using larger or multiple page sizes or even segmentation may cause problems like internal
fragmentation, write amplification, protection issues and drastically increase memory management
complexity.
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Figure 4.1: Bubble plot illustrating the focus and distribution of research on the field

4.3 What techniques and methods have been proposed to improve NVM file sys-
tems?

In last few years, many different mechanisms and solutions have been proposed both to
explore utility and performance of NVM technologies and to mitigate its weaknesses. Figure 4.1
helps us to visualize how the research effort in the area is currently distributed and which problems
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discussed previously have received most attention from researchers. The tendencies shown in Figure
4.1 are also useful to identify poorly explored territory within the NVM area and possible opportunities
or niche areas for study.

In this section we do not present the techniques and methods directly, but rather the
problems as discussed previously and then regarding each problem, we discuss the technique or
method that was used to solve it.

Consistency Guarantee and Atomicity

Relative to the file system consistency, traditional mechanisms, like journaling and shadow
paging are tailored to obtain improved performance in NVM. An example of fine-grain (e.g. 128
bytes per log entry) metadata journaling is presented in FSMAC [16]. FSMAC creates multiple
versions of the metadata before committing data to in-place update, enabling the operation to be
undone. PMFS [32] uses a similar method of fine-grain journaling for metadata while also using
copy-on-write for file data pages. In [44] a two-level logging scheme is presented, mixing a fine-
grain journaling mechanism with a log-based file system structure. In-memory Write-ahead Logging
(IMWAL) [105] involves reusing the data log to update the database file by remapping memory
addresses, thus reducing the number of writes required for a commit operation. It also proposes
to make the in-memory file system the only responsible for journaling, avoiding the "Journaling of
Journals" issue when both database manager and file system perform logging separately.

The Byte-addressable Persistent memory File System (BPFS) [21] uses a tree structure of
indexes for its files. Metadata is updated in-place through atomic updates (up to 8 bytes), therefore
no additional writes or data copies are necessary in this case. For larger updates, BPFS uses an
extension of the shadow paging technique: it performs a copy of the blocks being updated, update
the necessary data and write these copies in new blocks. The main drawbacks of this solution is
that 8-byte atomic writes support is mandatory and updates may cause a cascade update in large
or sparse writes, generating extra copies and write amplification.

On the other hand, on Kiln’s [132] approach for consistency data is written to a persistent
cache before it reaches the long term NVM storage (accessible through the memory bus). In this
design, data from volatile cache lines is written to a NVM cache in a transaction fashion. When
the transaction is committed, the remaining volatile cache lines belonging to that transaction are
flushed to the NVM cache and the transaction is committed. When cache lines are evicted from
the NVM cache they are copied back to the NVM storage. This approach also needs additional
hardware and modifications to the cache controller.

A file system mechanism that is particularly susceptible to consistency problems is the
file mapping. File mappings is a popular method data access model which is also the base for
other storage systems like Mnemosyne [118]. While traditional mapping mechanisms require data
to be copied back and forth from the disk to DRAM, NVM file systems like PMFS [32] allow
applications to access NVM pages of mapped files directly by simply mapping them in the process
address space. However in both cases, the application has no control over the order in which data
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is made persistent, which may cause inconsistencies within a file’s data. With that in mind, a few
studies propose making these mappings perform updates in the file atomically [95] [116] [128]. Even
though the implementation of the solutions may differ, all studies seem to agree on giving the user
the control over when the data written in this mappings are made durable (through fsync and msync
calls, for instance)

Access Interface and Transparency

In order to provide transparency and a rich interface to access NVM devices, Muninn
presents an object-based storage model. In this approach, data and metadata management is
delegated to an object-based storage device (analogous to a block device), that exports an object
interface. This interface provides basic operations to manipulate variable-size objects, like reading,
writing and deleting objects from the system. For more flexibility, Muninn allows file systems to
access the object-based storage device functionalities in a publish-subscribe fashion, enabling the
object-based devices interface to be extended, offering device-specific operations to the system. In
this model, to maintain compatibility with legacy systems, an object-based file system can be used to
provide a POSIX interface to applications and operating system. This file system is then responsible
for translating these POSIX-format requests to object semantic and to call the appropriate object-
based device operation.

SCMFS [126] reuses Linux memory management module to work with NVM. This allows
SCMFS to work with a contiguous address space, using memory page mapping mechanisms to trans-
late logical addresses to NVM physical addresses. SCMFS also extends the memory management
interface to allow users to allocate and map NVM space. For example, a new function nvmalloc is
designed to allocate a contiguous space in NVM virtual address and two functions nvmalloc_expand
and nvmalloc_shrink are included to respectively increase the size and release unused space of an
allocated NVM space. There is also a clflush_cache_range function that combines the features of
the cflush and mfence operations to ensure the persistence of critical data by avoiding retention in
volatile caches.

Mnemosyne [118] grants users access to NVM by persistent regions. Persistent regions are
segments of memory that can be manipulated like regular memory by user code but are allocated
in NVM. In order to allocate these persistent regions, users can either mark a variable as pstatic
or calling the pmap function. These persistent regions are stored in files (that may be kept in a
secondary storage, like a SSD) and mapped (through mmap system call) by demand to the NVM
when their owner process is started. Additionally, Mnemosyne offers the user the possibility of
persisting data atomically through durable memory transactions. Users can mark blocks of code
with the atomic keyword and Mnemosyne will ensure ACID (Atomicity, Consistency, Integrity and
Durability) properties of all changes made to persistent data inside this block of code through a
transaction structure.
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Reliability, Memory Protection and Endurance

To improve reliability of operations performed in NVM, error-correction codes are usually
the solution [102]. These codes are used to verify the integrity of data after performing a physical
operation, similar to the use of Cyclic Redundancy Check (CRC) and checksums in network com-
munications. A higher level solution for reliability is the file system snapshot mechanism. Snapshot
techniques store older versions of the file system data and metadata ensuring its overall integrity
through redundancy [69]. As for memory protection, a simple and common method is to mark
pages as read-only while mapping them into virtual address space and marking only the pages to be
updated as writable when a write is issued. One possible solution [38] is to explore a combination
of the EVENODD error correction code algorithm and memory protection to improve the security
of storage systems. In that solution, pages are locked for read-only purposes, and are only unlocked
when a write is explicitly issued. PMFS [32] does something similar to ensure memory protection,
avoiding corruption by stray writes. Mnemosyne [118] avoids that memory leaks generated by a
program corrupt the system or other programs by separating the virtual persistent memory regions
of each program and storing them into different files.

One of the most problematic and intensively studied limitations of NAND flash memory
is regarding its limited endurance [93] [2] [125] [82]. Much of this knowledge can be applied to
byte-addressable NVM as well since, in their current state of development, they suffer from the
same limitation. However, techniques somewhat differ from flash to Phase Change Memory (PCM),
because, for example, PCM can be written in-place and in terms of bytes instead of pages or blocks.
In order to improve the lifetime of both these technologies, two approaches are usually explored:
reducing the total number of writes that reach the physical device [82] [127] and using wear-leveling
techniques to distribute writes and erases equally over all the devices blocks in order to delay the
wear-out of physical structures. Wear-leveling techniques can be separated in two types as well
[124]: techniques that try to spread writes and erase equally over the entire memory’s surface and
techniques that try to identify hot and cold files and blocks in order to store more frequently accessed
data in less worn-out blocks.

The W-Buddy [106] is a wear-aware memory allocator that extends the Buddy [50] memory
allocation technique to consider the endurance of memory pages and to provide wear-leveling. In this
technique, memory is organized in a binary tree-like structure, where each level contains a different
size of memory chunk, where the root node contains chunks of N bytes (where N is the size of the
biggest chunk allowed) and the second level contains twice the number of chunks presented in the
root, and each chunk is (N/2) bytes long. Each chunk stores a counter S representing the number of
times that the chunk was updated and a bitmap used to identify free sub-chunks in the lower levels
of the tree. When the system needs to allocate a chunk of a certain size, the W-Buddy allocator
starts the search for the best fit by looking at the root of the tree and run through the levels using
the S counter and the allocation bitmap to locate the less worn-out chunk available.

The Differentiated Space Allocation (DSA) algorithm [45] is a wear-leveling technique
designed for PCM that focus on providing a method of increasing a device’s lifetime with low
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overhead and without the necessity of a garbage collector. To this end, DSA uses over-provisioned
space (hidden from the operating system) to write frequently updated data, and only maintains
an update counter for recently accessed chunks of the memory. When the update counter of a
chunk reaches a determined threshold, a new chunk from the over-provisioned space is allocated
and the old chunk is marked as expired. The same happens with the new chunk if it also reaches
the threshold. When all chunks from the over-provisioned space are either allocated or expired, DSA
allocates new chunks to be used as additional area and free the older expired chunks. The chunks
to be used by DSA as over-provisioned space are selected randomly in order to avoid the time and
space overhead of looking for the less updated chunks.

In [124] and [125] two different heuristics to identify frequently updated (hot) files are
presented. For instance, files that are marked as read-only, files belonging to specific users that
rarely log into the system, read-only operating system files and files that are rarely accessed or are
related to processes that are rarely run, are good candidates for cold or frequently read files. On
the other hand, database files and logs are good example of hot data. In [125] these heuristics are
applied to the Android operating system, exploring the way this operating system organizes files in
the storage and specific metadata, like the application a file belongs to.

Asymmetric Latency

The next subject is the asymmetry between write and read latencies that NVM technologies
present. A common way to deal with the high cost of writes is by simply employing a DRAM either
as a write buffer or as a part of the main memory composing a hybrid memory layer. In a hybrid
memory model (DRAM and PCM) [101], techniques like lazy and fine-grain writes could reduce the
amount of writes to reach the PCM device and to improve its lifetime. The results show significant
performance improvement (up to 2 times faster in some cases) over a purely PCM memory, while
adopting small amounts of DRAM.

Another approach [3] explores the fact that the amount of energy and time needed to
make a write to the physical memory is directly proportional to the duration of the persistence.
This means that higher latency and energy dissipation is needed to make data durable in NVM
for longer periods. However, some portions of data are updated very frequently (e.g. file system
metadata) while others may belong to temporary files. In this case, the persistence process can
be relaxed, reducing the durability of data but also the latency of write operations. The system
can distinguish hot and cold files and apply different write intensity in each one, which, since hot
files usually dominate the accesses to storage, may improve performance as well as energy efficiency
significantly.

Another interesting method to reduce write latency is the read-before-write technique [77].
In this technique, before a page of data is updated, the bitwise difference between the old and the
new data is calculated. The device then proceeds to change only the necessary bits in the updated
page, reducing the amount of work performed and, consequently, the latency of the write operation.
The study further improves this technique by locating free pages that contain bit values similar to
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the data being written. It keeps small bit samples for each free page, uses a specific hardware to
make bitwise comparisons to the pages being written and select the page according to the grade of
similarity.

Metadata Management

Due to its byte-accessibility and low latencies, multiple studies propose the adoption of
NVM in metadata management and storage. FSMAC [16], for example, proposes an architecture
where DRAM-based main memory is expanded by NVM. At runtime, metadata is loaded from
the disk into NVM and is accessed through a byte-addressable interface, just like it happens in
current systems where metadata is loaded into DRAM before being accessed. FSMAC manages
NVM separately from DRAM and allows metadata from multiple file systems to be stored into the
persistent memory region at the same time. The fine grain log mechanism, mentioned earlier, is
used to maintain the integrity of this metadata across multiple updates. Since metadata is loaded
into NVM once and only written back to disk at the time of unmount, this approach greatly reduces
the number of effective write operations to reach the slow long-term storage.

Muninn [55] explores the byte-addressability and random access speed of NVM to im-
plement an object and hash based system structure. It uses hash functions and bloom filters to
address key-value pairs, eliminating additional metadata and address translation information. LiFS
[1] also exploits the advantages of persistent memories, in this case to expand the capabilities of
metadata in order to store more meaningful information in these structures. It proposes a model
of extensible metadata that allows the creation of links and relationships between multiple files and
custom attributes. This additional information can be used by operating systems and applications
for the purposes of indexing, semantics analysis and optimization.

In another approach [107], the file index metadata is designed to be similar to the kernel’s
page tables. This approach allows the user process to map a file into its address space by simply
adding a single entry in its page table. This approach also eliminates the overhead of faulting pages
into the user’s process address space. When the process halts or the file is unmapped, the file
address space is safely released by the operating system. In this case, metadata is not designed to
leverage NVM byte-addressability or to be space efficient, but rather to make access to files easier.

Space and Energy Efficiency

In general, to improve space utilization in a NVM storage, studies propose the use of
compression techniques and simpler data structures. Muninn [55], for example, uses bloom filters,
that are data structures known for being space efficient, to reduce the amount of stored metadata.
MRAMFS [114] is a file system designed to be space efficient. It compresses file data as well as
metadata, trying to balance the tradeoff between access performance and compression level. A
different approach is given by the dynamic over-provisioning technique [48], that focus on efficiently
using the additional space inside flash SSDs, which is used to allow efficient out-of-place updates and
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garbage collection (over-provisioning). This additional space is used by the dynamic over-provisioning
technique to store temporary data in the cases of high storage demand.

In the case of energy efficiency, optimization is usually made in terms of reducing the
amount of data written into the physical device [127]. This is because the amount of energy
necessary to perform a write operation is much higher than the energy necessary for a read operation.
A simple method uses a small portion of volatile memory as write buffer, reducing the number of
writes that reach the persistent device. However, volatile memories like DRAM and SRAM usually
consume more energy than NVMs while they are not being accessed. In another method [64], NVM
is used as an instruction cache in order to leverage performance while also improving the persistent
memory’s lifetime by storing only read-intensive data (in this case, instructions). Copy-before-write
can also be used in order to change the minimum number of bits in a page [77]. The algorithm
search, among the pages stored in the device, for pages similar to the one being written. When a
page is selected, only the divergent bits are flipped and, therefore, less work is performed.

Persistent Cache

Many papers study the impact of NVM-based buffers and caches and propose optimizations
for these memories. For example, four different eviction policies are proposed to be used with a
persistent NVM-based write buffer for SSD storage [54]. These policies are optimized for flash
memory storage and are FTL (Flash Translation Layer) aware. Therefore, the policies aim to explore
temporal locality while favoring sequential writes to the flash device (e.g. by clustering sequential
pages and flushing them altogether to the SSD) and avoiding the costly merges made by FTL’s
garbage collector. The study [54] also presents the design of a simplified FTL design optimized for
these buffer policies.

TxCache [83] employs NVM as a disk cache and provides a transaction model to allow
consistent and versioned writes to this cache. In order to support transactional semantics, TxCache
exports an extended SSD interface offering methods to, for example, start, commit and rollback a
transaction (BEGIN, COMMIT and ABORT). Writing data into the TxCache device using trans-
actions guarantee atomicity and consistency of write operations, because TxCache always keeps a
backup of older version of the pages being updated by the transactions in the disk. Furthermore,
pages being updated through transactions (in the disk cache) will only be written back to disk once
their corresponding transactions have already been committed. This guarantees that, if a transac-
tion fails for some reason (e.g. system failure or power outage), either the most recent version (in
disk cache) or the older version (in disk) will be available for recovery. TxCache also keeps track
of all pages updated by a transaction using page metadata, which speeds up the system recovery
process in case of crashes and may also help to enforce sequential writes to the disk.

The persistent processor cache scheme [132] uses something similar to TxCache transac-
tions. Data is transferred from volatile to non-volatile cache in a transaction fashion and, once
the transaction is committed, the cache controller flushes all dirty data relative to the committed
transaction that still resides in the volatile cache to the persistent cache. Once all data is written
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to the non-volatile cache, data is considered persistent. The same assumption made by TxCache
is used: NVM-based cache will always have the most up-to-date data, while the storage have an
older copy, and, therefore, no additional consistency mechanism is needed. Once the transaction is
completed, cache lines from the persistent cache are allowed to be written back to the NVM storage
by the cache eviction policies.

NVM can be used also in combination with regular volatile memory to compose a hybrid
page cache [68]. In this type of architecture, volatile memory is used to speed up the access to
frequently accessed blocks and reduce the number of writes that reach the storage. The NVM,
on the other hand, is accessed in a byte level and is used as a cache buffer, storing only updated
fragments of data as a backup for the storage in the case of critical failures. Data is written back to
the storage device when selected to be evicted from either volatile or non-volatile cache. Something
similar is proposed elsewhere [44]. But, as mentioned earlier in that survey, in this case, instead of
updating data in-place, the two-level logging scheme merges modified data with unmodified data in
the data block in the long-term storage. This process creates a new version of the modified data
block and invalidates the older version, avoiding partial writes and improving the system’s reliability.
In both these approaches, cache write-backs and flushes can be greatly reduced while reliability and
consistency is guaranteed.

Software Overhead, Block/Page Allocation and Data Duplication

Much of the performance degradation of NVM devices in traditional systems is the result
of file system and operating system software overhead. Thus, minimizing software complexity is
another point of optimization targeted by studies in the area. Moneta-D [10] architecture moves
file system’s and operating system’s permission checks and policy enforcement to hardware. This
architecture also allows accesses to NVM to bypass I/O schedulers and avoid context switches. Data
is accessed through channels provided by a user space implementation driver library that manages
the low-level mechanisms of Moneta-D and offers a POSIX-compatible interface for legacy systems.
The Moneta-D architecture also offers high parallelism through the replication of hardware and
memory controllers.

Another file system proposal [108] relies on user-space code to avoid the overhead caused
by the I/O stack of the operating system. Building a file system in user level has some key advantages
to that end, like minimizing the number of context switches, bypassing unnecessary kernel space
layers and allowing more fine-grained data management. The file system further improves the
performance to access data by keeping the file mapping overhead to minimum by employing the
file virtual address space framework [107]. In this framework, every file has its own address space,
as they are composed of an index structure that mimics the structure of the kernel’s page tables.
Therefore, when an application maps or open a file, all the system has to do is to add a single entry
into the highest level of the application’s page table, pointing to the file’s address space structure.
Hence, the file is mapped into the process address space, and the file’s pages may be accessed
directly with no further paging.
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Another way to improve file system performance is by optimizing block allocation and
deallocation policies. SCMFS [126], for example, uses space pre-allocation, preemptively allocating
null files and allowing existing files to keep extra space allocated. This mechanism makes the file
creation process, as well as future data updates and appends, easier. The W-Buddy [106] algorithm,
presented previously, organizes free memory space in a structure similar to a binary tree, and uses
allocation bitmaps and update counters in order to find the best fit when allocating new portions
of memory. The binary search is significantly more efficient than a sequential search, reducing the
time necessary to find a page to allocate, but also allowing the location of ideal fits.

The problem of duplication of data across NVM and DRAM is yet another process that
remains from the traditional storage model. To address this problem, PMFS [32] integrates the
execute-in-place (XIP) [117] functionality that allows data in persistent storage to be accessed
directly. XIP bypasses the page cache and I/O scheduler, eliminating unnecessary duplicates of data
from the NVM to DRAM. The same applies to mapped files: page descriptors are allocated and
point to the mapped file in the NVM storage, but no pages are actually copied to the cache. Data
is directly placed in the process user space in order to be accessed and updated by the processor.

Garbage Collection and Write Amplification

Regarding the common methods used to address the ensured consistency and endurance
problems, minimizing the write amplification is usually one of the main goals aimed by the studied
techniques. OFTL [82] uses page level metadata and reverse indexes in order to allow the tree
structure of objects to be recovered in case of corruption of the indexes. In OFTL, each object
contains a tree structured index where the leaf nodes contain the pages with the object’s data and
metadata. Each page contains data about which object they belong to and the offset inside the
object. Therefore, even if the object’s index structure is corrupted, it can be recovered using this
information, hence, eliminating the need of journaling or shadow paging. To reduce the effort that
would be needed in order to scan the device for these pages and recreate the indexes, a window
containing the most recently updated blocks is maintained by OFTL. OFTL further reduces the
number of page write operations by grouping multiple small writes (smaller than a page, for that
matter) in a single page before effectively writing them into the device.

The fine-grain log mechanism used to maintain consistency by FSMAC [16] is an approach
to minimize the impact of write amplification in the file system. By writing only the necessary
metadata to the log, FSMAC reduces the overhead versioning and the amount of data replicated
by additional writes. The differentiated space allocation presented earlier, uses the reverse index
mechanism and over-provisioned space in order to eliminate the necessity of journaling and garbage
collector. Since the mechanism allows a chunk of physical memory to be overwritten in-place a
certain number of times (threshold), it reduces the replication of data using copy-on-write techniques
like other wear-leveling mechanisms. Another technique called Delta Journaling [62] reduces the
number of writes required by persistent memory file system logging by means of storing the delta of
the changed blocks when a high compression ratio can be attained. Similarly, FCKPT [78] proposes
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using only the delta of modified memory pages for the persistent memory checkpoint file of High
Performance Computing applications.

The garbage collector is a mechanism introduced by flash-based SSDs that is responsible
for erasing invalid blocks, merging blocks and allocating free space. ELF [26] presents a simple
implementation of a garbage collector. When the number of free pages reaches a determined
threshold, the cleaner process is started. The cleaner is responsible for identifying and erasing
blocks belonging to deleted files, as well as updating indexes and bitmaps. It also may perform merge
between partially valid blocks (blocks that contain some pages marked as invalid) to free additional
space. DFTL [63] optimizes the garbage collection process by avoiding fragmentation and enforcing
sequential writes, reducing the occurrence of costly merges between partially valid blocks. It also
allows the free pages threshold (that determines the frequency of garbage collection execution) to
be tuned according to the system’s workload. The NOVA log-structured file system [128] employs
two garbage collection algorithms: a fast light-weight one used to free pages composed exclusively
by old log entries and a slower thorough one that may perform merging operations, copying valid
log entries from multiple pages in a new page.

Cache Consistency and Cache Optimization

The problem of consistency in file system may face some additional challenges when it
comes to working with the processor cache. Since these caches are volatile and hold data for a
significant amount of time, in cases of power failures, data that are assumed to be in the persistent
memory may be lost. This may become a serious reliability issue. The most simple way to deal
with this is by simply avoiding cache (write through). However, this may have serious performance
impact in the overall system. Additionally, there is also the problem with data reordering, mentioned
earlier.

The most common method for dealing with these problems is by issuing (explicitly or not)
barrier and flush commands to the cache in order to ensure the persistence of cache lines and the
order in which data will be written to NVM. SCMFS [126], HEAPO [43] and PMFS [32] use a
combination of mfence and clflush to ensure ordering and consistency. The clflush operation forces
the eviction of cache lines, invalidating them and causing them to be written back to the memory.
The order in which data will become visible in the memory may be defined by barriers through
a memory fence instruction (mfence). The mfence instruction is a barrier that ensures that all
operations prior to the mfence call will be performed before the instructions that follow the mfence
call. The increased traffic caused by periodic flushes plus the overhead of the ordering instructions
may significantly degrade performance [132].

To avoid both periodic flush and write-through methods, BPFS implements the concept
of epoch barriers. In this approach, additional control is added to caches in order to organize cache
lines in epochs. The epoch barriers are issued through an epoch instruction, just like with mfence.
In the cache, each cache line is marked as belonging to a specific epoch and each epoch have a
precedence (through a sequential number, for example). In this case, if the epoch A precedes the
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epoch B, the cache lines belonging to the epoch B can only be evicted if every cache line from A
has already been evicted. Thus, cache is not flushed and data is only written to persistent storage
when evicted, reducing memory bus traffic. Another way to reduce flush to memory is the persistent
processor cache [132]. Since the NVM cache is physically close to the volatile cache and does not
compete for the memory bus, there is no need to explicitly issue an ordering instruction when writing
between volatile and non-volatile caches [132].

Data Placement

Another architecture design trend involves the combination of NVM and DRAM or SRAM
in a single, hybrid memory. Because of the many differences between these two types of memory,
a block placement policy is needed for the system to be able to determine in which memory it
would be more advantageous to place each piece of data. One strategy could be an architecture
that features an NVM/DRAM hybrid cache [103]. In order to optimize the utilization of this
hybrid cache structure, the Rank-aware Cooperative Caching (RaCC) block placement algorithm
is proposed. This algorithm uses multiple queues with different priorities to store descriptors for
each cached object. These descriptors are used to keep track of the number of times an object in
the cache was referenced and when it was last accessed. RaCC prioritizes the allocation of volatile
memory (DRAM) for the most popular objects, since DRAM is significantly faster than current NVM
technologies. Thus, when the number of accesses to an object cached in NVM reaches a certain
threshold, it is moved to DRAM and vice-versa. Objects can be released either when the cache is
full and new objects need to be cached or when the system detects that an object was not accessed
for a certain amount of time.

In a more generic implementation, the algorithm shown in [27] uses dynamic programming
to track the cost of each cached data block for each type of cache. This includes the cost of moving
blocks through different caches. The algorithm then uses a couple of heuristics to minimize the
overall access cost and to find the optimal placement for every cached block. The algorithm in terms
of time and space is polynomial. Conquest [119] chooses a simpler approach: since, statistically,
most accesses go to small popular files and most of a system’s storage space is consumed by large
files, Conquest simply stores large files (larger than a predefined size) into disk and small files and
metadata into NVM. This results in a significantly more simplistic mechanism than block placement
algorithms, which also means less overhead in NVM management.

Although no specific algorithm for data placement is proposed by pVM [56], the overall
structure adopted by the persistent virtual memory model makes page allocation and data placement
across different memory technologies significantly easier. pVM treats NVM as a NUMA node in order
to both account for the difference in bandwidth between DRAM and NVM and also to make the
transition to the pVM model simpler. This design allows pVM to be extended in order to support
more sophisticated data placement policies sensible to different NVM technologies.
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Fragmentation

The hybrid FTL design presented in [70] employs byte-addressable NVM to store important
storage metadata, like allocation bitmaps and mapping tables. These structures provide informa-
tion about the status of physical blocks and space usage. The FTL then uses the information to
avoid placing logically related pages in different erase blocks, prioritizing keeping related pages con-
tiguously. Additionally, since structures that are traditionally stored in volatile memory, like page
mappings, are kept in persistent memory, they do not need to be frequently flushed to be consistent,
increasing both performance and robustness of the storage system. The adoption of superpages in
SCMFS [126] (see 4.3) is an example of mechanism that can lead to internal fragmentation. In this
specific case, in order to reduce the impact of internal fragmentation, regular sized (4 KB) pages are
used for more fine-grain data. This solution adds complexity to the page management (depending
on implementation) although it still may gain in performance due to the improvement on the address
translation process.

Mounting time and parallelism

An efficient (and relatively simple) way to deal with the mounting time constraint is
proposed by FRASH [51] and PFFS [129]. Both are systems designed for hybrid storage models
that use byte-addressable NVM to store metadata and indexes while using NAND flash for general
storage. This approach has many advantages: the scanned area is much smaller (since the amount of
byte-addressable NVM adopted is much smaller than the amount of flash), the scan speed is much
faster due to byte-addressable NVM low latency (compared to NAND flash) and memory copies
may be reduced, since metadata can be directly accessed in NVM. Regarding parallelism, PASS is
a scheduler developed specifically to take advantage of SSD architectures. To do so, PASS divides
the storage in scheduling units in order to avoid interference caused by concurrent operations.

Scalability

In [100] a problem with SCMFS design is described, where access to the file system’s pages
pollutes the TLB which increases the number of misses during address translation. To alleviate this
problem, SCMFS employs an alternative type of page, called superpage, that is 2 MB long, thus
reducing the number of addresses needed to designate large portions of data. These superpages are
used to address large files, while regular pages are used for the remaining data, in order to maintain
space efficiency. SCMFS initially allocates normal pages for every file, and upgrades to superpages
as the size of the file increases. It is a relatively simple solution that may compromise space efficiency
in a small scale, may cause write amplification and adds complexity to the file system for the sake
translation performance.

The NOVA file system [128] addresses scalability by employing per-CPU metadata. Each
CPU has its own journal and inode table in order to leverage the system’s concurrency and avoid
locking. The CPUs also have separate free-page lists used by the memory allocator mechanism.
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Whenever a new page is needed, the CPU first tries to allocate it from its own page list before
resorting to other CPU’s free pages. It is important to note that, naturally, locking mechanisms and
critical regions are still used in NOVA, however the file system is built to keep process locking to a
minimum, exploring the advantages multiprocessors.

The study in which pVM is presented [56] criticizes the usage of VFS as basis for future
NVM storage due to its scalability and flexibility limitations. According to the study, the main issues
are that persistent memory cannot be transparently allocated when NVM is exposed as a file system
(e.g. during memory pressure times) and that file system operations (e.g. updating metadata and
logging) significantly increase TLB and cache miss ratio. Given these limitations, pVM chooses to
extend the kernel’s virtual memory subsystem, allowing applications to allocate persistent memory
through an API extension of the existing VM API (e.g. malloc and free functions). In this design,
NVM may be allocated just like regular DRAM and application virtual memory may be transparently
allocated from NVM when the system is in DRAM shortage. For data storage, with a semantic closer
to that of a file system, pVM also provides an object store that is accessible through a user-level
library.

4.4 What is the impact of new file system models on the overall architecture?

Many of the studies analyzed and discussed by this work explore alternative approaches
to optimize the usage of NVM devices. Although the architecture of current systems may greatly
benefit from upcoming memory technologies by simply replacing disks for NVM-based devices in
their storages, it is clear that such approach presents many limitations that prevent systems from
exploring the full potential of the new memory technologies. Adjusting the current architecture
to accommodate NVM devices must take in consideration many different aspects of both current
hardware and software. Additionally, it must be considered that, given its limitations (especially in
density, compared to disks), current NVM is not yet ready to replace HDD, and this will be the
reality for a long time. Thus NVM devices are supposed to close the gap between HDDs, SSDs and
main memory providing both low latency and persistence.

Regarding the NVM access, the simplest method is to access it through a block driver
and mount a regular file system over it. Modifications in software and hardware necessary are
much less dramatic in this case and legacy applications can enjoy the high speeds of NVM without
any further optimization. Alternatively, a NVM-specific file system may be mounted over a NVM
device, in order to explore its advantages and overcome its deficiencies while also providing a POSIX
compatible interface. In this case, while the file system can maintain compatibility by presenting a
standard interface, it may also expand this interface providing optimized functions. Finally, NVM
can be accessed through a memory-like interface (e.g. pmalloc, pmap) or through more user-friendly
interfaces provided by NVM-specialized libraries and persistent heaps.
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Giving the CPU direct access to NVM by connecting NVM device into memory bus can
cause a significant increase of data traffic in the memory bus and concurrency for memory resources
like mapping tables [126]. Also, reliability and endurance problems may arise, especially if NVM is
used as main memory, in which case access should be much more frequent compared to storage
access. Hardware mechanisms to provide error control, memory protection and permission checks
can eliminate much of software complexity and overhead, thus improving overall performance.

The study presented in [4] shows a prediction of the impact, over the operating system, of
adopting NVM as storage, main memory or integrating both in a single memory layer. It discusses
some interesting topics, like the implication of persistent application faults and errors and data
portability. The latter refers to the fact that if architecture specific and kernel internal memory
structures are used to maintain persistent data, then porting data from a system to another becomes
more complex. This may also represent a challenge when working with multiple versions of a same
system. The non-volatility of data may also introduce new exploits and security breaches, like cold-
boot attacks. Some other characteristics of NVM technology may also be exploited by malicious
software, like, for example, the limited endurance of devices. In general, the study shows that the
adoption of a single layer of persistent memory serving as storage and main memory could vastly
simplify memory management by eliminating concerns like page swapping, multiple address spaces
and page caches. But it would also introduce new problems, like reliability, portability and security.

However, it seems unlikely, at least for the near future, that NVM will replace DRAM as
main memory, but, instead, used in cooperation with it in a hybrid memory layer. In fact, many
studies already study the possibilities of exploring hybrid memory. Contributions in this area includes
data placement algorithms [27] and methods to integrate the file system and memory management
[89] [90]. These are important steps to optimize the usage and explore the advantages of both
volatile and persistent memories

Finally, foreseeing the limitations of NVM for the near future, multiple studies [129] [38]
[16] [30] propose the use of small amounts of NVM, using them as write buffers or metadata-only
storage, supporting a larger storage based in NAND flash or magnetic disk. This is an interesting
way to improve storage performance and endurance while employing a reasonable amount of NVM.
Other studies [70] explore the usage of small amounts of NVM to store only frequently accessed
blocks of the disk/SSD, just like a cache. In yet another example, [64] presents a model of persistent
instruction cache. In this case, the focus is on reducing the energy consumption for very low-power
systems, which is achieved by storing read-intensive information (instruction loops) in NVM, avoiding
the high cost of writes and the idle dissipated energy of DRAM.
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5. ANALYZING THE STATE OF THE ART AND DISCUSSION

This section seeks to present an overview on current solutions and implementations of
file system designed for NVM and on the main trends that seem to be the main target for future
studies in the area. This overview is based on the patterns identified in the analyzed studies and
on recent NVM-related technology advances and projects. The goal in this step of the study is to
identify areas of the NVM-based storage that may need more attention (that may represent research
opportunities) as well as the areas that are already saturated with research and that (according to
the retrieved studies) already seem to have a few concrete solution models.

Table 5.1 shows different storage solutions that target NVM and the issues they address.
It provides a simple overview and also a comparison between the main studied storage systems,
enumerating the problems that each of them addresses. The last column of the table presents a
simple conclusion about the research development of each specific topic. It helps to illustrate the
current level of development of the NVM-based studies. The table also shows which topics need
further exploration and which topics have been extensively studied and that have solutions proposed
in the literature that seem to be accepted as good solutions.

Advanced : these issues have been targeted by a significant amount of research and some
solutions have already been proposed and implemented. Most solutions to these problems seem to
follow the same patterns and employ the same ideas, creating a clear model around which a concrete
and robust mechanism could be built. It means that at least one existing solution could be adopted
in an existing storage system and present satisfactory results.

Non-critical : the issue is either expected to be solved when the technology reaches a
certain level of maturity, or it simply does not represent a threat in the architecture specified in
Section 5.1 These issues may eventually become points of interest, as NVM-based systems evolve
and change, but for the foreseeable future, it does not seem they are critical issues.

Lacking : topics that must be explored further or that have not received enough attention
yet. These topics are probably the ones with the most research potential in the moment.

Figure 5.1: Target architecture – single address space model
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Table 5.1: Comparison of studied storage solutions.

Problem NVM System Samples StatusTMPFS DAX PMFS BPFS Mnemosyne HEAPO SCMFS
Consistency
Guarantee NO YES YES YES YES YES YES ADVANCED

Atomicity NO YES YES YES YES YES YES ADVANCED
Endurance NO NO NO NO NO NO NO ADVANCED
Access
Interface

NO NO NO NO YES YES NO LACKING
Asymmetric
Latency NO NO NO NO NO NO NO LACKING

Metadata
Management NO NO YES YES YES YES YES LACKING

Space
Efficiency NO NO NO NO YES NO NO N/C

Software
Overhead NO YES YES YES YES YES YES ADVANCED

Block/Page
Allocation NO YES YES YES YES YES YES ADVANCED

Energy
Efficiency NO NO NO NO NO NO NO N/C

Garbage
Collection

NO NO NO NO NO NO YES N/C
Memory
Protection

NO N/A YES YES N/A YES YES LACKING
Cache
Consistency N/A NO YES YES YES NO YES ADVANCED

Cache
Optimization NO NO NO YES NO NO NO ADVANCED

Reliability YES YES YES NO NO NO NO ADVANCED
Write
Amplification NO NO NO YES YES NO NO ADVANCED

Data
Placement

NO NO NO NO NO NO NO LACKING
Access
Transparency YES YES YES YES YES NO YES ADVANCED

Data
Duplication YES YES YES NO NO YES YES ADVANCED

Fragmentation NO YES NO NO NO NO NO N/C
Persistent
Cache NO NO NO NO NO NO NO N/C

Parallelism N/A N/A N/A N/A N/A N/A N/A N/C
Mounting
Time NO NO NO NO NO NO YES N/C

Scalability NO YES NO NO NO NO YES LACKING

5.1 Architecture

Although the studies discussed in this survey work with different architectures and have
different technologies as target, it would be extremely hard to point and discuss the directions and
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trends in NVM related studies for all of these distinct models. Furthermore, it seems clear that the
dominant approach to insert NVM in the current architecture is by connecting it to the memory
bus. Thus, Figure 5.1 presents the target architecture. In this approach, memory is exposed directly
to the processor and may be accessed directly on byte or word granularity (with load and store
commands, for example). From a performance point of view, this is one of the most efficient ways
to access persistent memory, but it has a few drawbacks. Additionally, as discussed previously, the
presence of multiple layers of cache also impose some challenges.

5.2 Discussion

This section offers an overview about the current level of development, existing solutions
and future work on the different topics regarding the area of NVM storage systems. The conclusions
presented here are based in the analysis of the mapped studies, current non-academic works in NVM
area (like file system and block driver implementations or kernel adaptations) and current market
trends. Although many aspects of NVM and many of its applications have been studied throughout
this work, the focus of this discussion is on the file system level and its responsibilities. Thus,
some contributions like user level programming models and architectures alternatives to the one we
established earlier may be not taken into account when discussing the trends and future directions.

Consistency Guarantee and Atomicity

Looking at Figure 4.1, it becomes clear that methods of consistency appears to be the
most commonly researched concept regarding NVM file systems. This is no surprise since, in a file
system, consistency and atomicity techniques are among the main source of overhead, and when
the file system is moved to low latency NVM devices, this overhead becomes even more critical.
The result is a large variety of techniques, each with its own focus and advantages. Most of these
techniques are strongly based on existing solutions for SSDs and HDDs. Consistency and atomicity
techniques designed for SSDs and HDDs usually work on page or block granularity, meaning that,
even if an update changes a single word in the file system, a whole block must be updated, causing
write amplification. Byte-addressable NVM on the other hand, can work on word or byte granularity,
updating only necessary data, and can perform in-place updates, without the need to perform copies.
PMFS explores this property by employing a fine-grain journaling technique to log metadata. For
user data updates (usually larger) it uses copy-on-write. Another example of adoption of fine-grain
logs is presented by the two-level logging technique [44], which logs data at a sub-page level (128
bytes) before merging it with data in the block-based storage. Another potential solution is the log-
structured design. Log-structured file systems are very popular solutions for NAND flash storage,
since they naturally ensure consistency while also performing wear-leveling. In this model, the file
system simply appends data to files (in the form of logs), updating the necessary metadata, and
no additional copies are needed. Old versions of these logs can be kept in the file system for long
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periods and are erased asynchronously by garbage collectors. However, these file systems are natively
block-oriented and additional experimentation would be needed in order to adapt it to a fine-grain
solution. As for the atomicity of operations, simple transaction models, like the one presented by
Kiln [132] or FSMAC can be adapted. Transactions are useful to establish points of consistency
on file system, and they must be very lightweight. Again, the transaction system may need to be
modified to deal with small structures, like inodes. It is important to note that, in order to adopt
such models, it is necessary for data to be ordered when moved from the cache.

Endurance

The endurance problem is one of the biggest concerns regarding NVM devices. Although
the impact of limited endurance of NVM is critical, much research has already been dedicated to
this matter (see Figure 4.1). Furthermore, the endurance of these technologies are expected to
be greatly improved as they achieve a higher maturity level in their development. Besides, NVM
might still coexist with volatile technologies like DRAM and SRAM in many architectures, which
also reduces the write frequency in persistent memories and the risk of premature failures. And even
so, while such durability is not provided by present day NVM technologies, wear-leveling and other
techniques can be decoupled from file systems implementations by, for example, implementing them
under the memory management, or by adopting specialized hardware (e.g. remapping logical to
physical addresses when necessary, similar to the solutions presented in SSDs FTL). These solutions
are transparent to the file system, which helps such systems to be a bit more technology agnostic
and adapt to further improvements on NVM.

Access interface

Even though many persistent memory file systems [21] [32] are POSIX compliant and
access to these systems are basically provided by traditional functions (like read/write and mmap), it
does not seem that these are best fit to access memory-like devices. Operating system optimizations
(like XIP and direct mappings) as well as application level directives (for example, persistent regions
and key-value access) have been proposed to leverage the advantages of byte-addressable NVM, but
no definitive framework and model exist at the moment. Furthermore, these solutions often present
some expressive trade-offs, like trading portability for simplicity or sharing for security. Many of these
solutions are based on today’s programming models and patterns and as programming evolves and
adapts to NVM-enabled environments, the storage interface and access methods must evolve as well.
The adoption of NVM brings storage much closer to the main memory, opening new possibilities for
data management and enabling mechanisms and models previously unfeasible. Therefore, it seems
clear that this area has much to be explored in both system level and programming level.



59

Asymmetric Latency

The problem of slow writes may represent a challenge in many applications of NVM.
In traditional file systems, most of the time, intensively modified data will be kept in cache and
volatile RAM, and are written to secondary memory asynchronously. To minimize the number of
writes to NVM, traditional techniques of buffering writes can also be employed in NVM systems,
especially in write dominant workloads. These methods, however, may result in data duplication
and write amplification and there are many cases in which they may not perform well. The impact
of the write latency can also be mitigated through fine-grain writes allowed by the byte-addressable
NVM technologies. More complex solutions to these problems could involve additional hardware
and specific algorithms. An example is presented in [3] and also mentioned in [87], where writes
to persistent memory sacrifice durability in favor of lower latencies. Another possibility is the use
of read-before-write techniques in lower levels of the memory management to reduce the impact of
writes [77]. These solutions involve more complex mechanisms, require additional hardware tuning,
are out of the scope of a file system and will probably not be available in the near future, which
keeps this topic open for innovation.

Metadata Management

Metadata dictates how user data will be persisted and retrieved from storage and is inti-
mately related to the file system overall structure and functionality. Its design is, therefore, a critical
point in optimizing storage over NVM devices. Upcoming byte-addressable NVM brings a lot of
questions to the table, like whether hierarchical or flat name space would be a best fit and whether
files are even the best abstraction to work with memory-based storage. Although a fair amount of
research has been invested in metadata designs, most of them are, at some level, based on structures
developed for disks and flash devices, and many of the aforementioned questions remain with no
definitive answer.

Currently, a significant amount of effort and overhead is performed in order to persist
data. In-memory data, organized in structures and objects, for example, needs to be transformed
into persistent formats, like tables and files, before it can be persisted. Since NVM can be accessed
in bytes, memory-like structures can be used to store data. However, it is unclear how this memory
could provide the flexibility and portability of regular files and databases, since data and metadata
structures may be application or operating system dependent. Additionally, many studies agree that
current metadata is optimized for block-based storage devices and propose their own file system
metadata models.

Furthermore, NVM byte-addressability and the shorter distance between storage and pro-
cess memory enables new features, like more meaningful metadata [1] and page table structured files.
Many of the points stated in Section 5.2 are valid for the case of metadata as well. New features,
as well as metadata structures, should evolve along with data and storage systems concepts and
perhaps today’s metadata may even gain new purposes in future systems.
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Space Efficiency

One of the main characteristics of NVM is that it is more dense than DRAM and it has
the potential to surpass flash memory in terms of capacity. In high-end systems and servers NVM is
supposed to easily provide tens or hundreds of terabytes of storage space. Thus, NVM can actually
represent a solution for today’s storage limitations. Besides, thanks to its byte-addressability and low
latency, metadata structures may be simplified and its amount reduced giving space to additional
user data. Storage capacity may still be a critical factor for embedded and mobile devices, especially
since these devices have been target of much research and development in the latest years. In
systems such as these, where the space efficiency is mandatory, compression algorithms (some of
which are designed for NVM [77] [114]) may be employed to further improve storage utilization.

Software overhead

Most of the software overhead in traditional file system models has been already eliminated
by most NVM file systems by simply eliminating layers like I/O schedulers and page caches. Further
performance improvement is possible by also bypassing caching procedures and mapping pages
directly to user space, using mechanisms like XIP [32] [61] that are already supported by Linux.
Besides, much of the complexity presented by some file system policies, like techniques to avoid
fragmentation, can be simplified or even discarded by NVM-based file systems. Further improvements
may be implemented to avoid more low-level procedures, like entering kernel mode. One way to
avoid switching permission levels is through memory mapping, where physical persistent memory
pages are mapped into the process address space and no further system calls are needed to read
from, or write to, these pages. Memory mapping can also be used to implement more complex
and robust models of persistence, like the persistent variables and persistent regions presented by
Mnemosyne [118]. A possible alternative is shown in [10], where operating system and file system
level permission checks are implemented in hardware, eliminating the need of switching to kernel
mode. Finally, as extensively explored in some studies [107] [108], storage systems can also benefit
from moving the processing to the application side, bypassing the kernel and its I/O layers that are
usually the main source of software overhead.

Block Allocation

Regarding block and page allocation, most policies aim to provide wear-leveling and mit-
igate fragmentation levels. However, block allocation policies that seek to maximize the device’s
lifetime may be redundant, since many alternative methods to improve NVM lifetime have been pro-
posed, some of which may be decoupled from the file system itself (see Section 5.2). Furthermore, it
is expected that, as it reaches more mature levels, the endurance of NVM become less of a problem.
Without file system level implementations of functionalities like wear-leveling and garbage collector
(see Section 5.2) the impact of fragmentation in the system’s overall performance is significantly
reduced. Thus, complex block allocation methods may be unnecessary in many cases and may, in
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fact, represent unwanted overhead for the file system. On the other hand, some specific techniques
may be employed to boost performance in some cases, like pre-allocation methods presented by
SCMFS [126] and Ext4 that simplify the allocation of memory for files and may also be used for
consistency purposes (e.g. log structures). These techniques are heavily based on today’s workloads
characteristics, therefore, as workloads evolve to embrace the characteristics of upcoming NVM
technologies, new allocation techniques may be studied to better reflect application’s necessities.

Energy Efficiency

Much like space efficiency, energy efficiency may be greatly improved in existing systems
by NVM thanks to its capability to hold data without an energy source. This is another factor
that allows the adoption of large amounts of NVM in the main memory level partially or completely
replacing DRAM. Still, there may be specific cases where energy is scarce and must be used carefully.
In these cases, the energy consumption of NVM-based storage may be improved through low-level
techniques like copy-before-write [77]. Since writing to the device is the main source of energy cost
in NVM (writing to NVM is significantly expensive), generic methods to reduce writes (like improved
metadata design, and techniques to minimize write amplification) can also help to create a very low
energy storage layer.

Garbage Collection

The garbage collector is usually employed to asynchronously detect and erase data remain-
ing from consistency and wear-leveling mechanisms, especially in solutions for flash memory. Thus,
the garbage collection mechanism depends heavily on the consistency method implemented by the
file system and whether it implements any wear-leveling method. In some cases, like in log-structured
file systems, garbage collection could be used to eliminate older versions of pages or blocks. There
are a few simple implementations of garbage collection designed for this purpose, in the literature,
that can easily take on this task. In general, the necessity and, occasionally, the implementation
of garbage collection will naturally depend on the mechanism generating the data to be collected,
which makes the possibility of a general-purpose garbage collection algorithm unlikely.

Memory Protection

The memory protection problem exposes the possible hazards of persistent data being
in the same memory hierarchy level of volatile data. Such hazards may expose critical data to
bugs or even be explored by malicious attacks (these are out of the scope of this topic). But even if
traditional block-based storage isolation level is desirable in some cases, it could also mean increasing
the distance between persistent memory and volatile memory as well as CPU, which might result in
sacrificing performance and adding complexity. Currently, the trend on protecting byte-addressable
NVM exposed directly to the CPU seems to be exploring the protection bits of page table entries.
Although, on today’s hardware updating the protection of pages is a relatively expensive operation,
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more complex solutions, like memory protection keys [24] are already being developed. However
these solutions are still in experimental phase and it is unclear whether they are robust enough to
be considered a definitive solution and what are their impact on a real NVM-enabled system. It is
also worth to mention that some of these solutions depend on new hardware, a factor that, in some
cases, may cause some resistance in the adoption of these solutions in the near future.

Cache Consistency

In order to ensure the persistence and integrity of data in a NVM file system, having a
processor cache that is also persistent would probably be the ideal solution. However, the access
speed and endurance of current NVM technology makes a NVM-based cache unfeasible. Even if
the endurance of these technologies are expected to be greatly improved in the future and will not
be a problem for main memory, it is not clear whether this will be true for the cache level as well,
since the write intensity is much higher in this layer. Besides, even the most advanced (in terms
of development) persistent memory technologies at the moment are significantly slower than the
SRAM (Static RAM) used in most caches. Therefore, persistent caches will probably not be a reality
in the near future, and alternative ways to deal with cache consistency are required.

In this case, using memory fence and flush instructions, together to ensure that writes
to the file system reach the persistent memory, seems to be a reasonable solution that works for
most cases and applications. However flushing cache lines may be an expensive process and, in
some cases, frequently performing cache flushes may dramatically degrade performance. In fact, a
study that presents a comparison of different cache modes [6] shows that in some cases, using a
combination of memory fence and flush along with write-back cache mode performs 2 times worse
than write-through and, in some scenarios, it may be worse than not caching data at all.

To enforce consistency with volatile cache, new processor instructions have been developed
in the last years, to improve on the ordering and flushing scheme, by, for example, not invalidating
the cache lines on flush. Naturally, adopting such instructions may require some adaptations either
in application or operating system level or both. Although it seems that, at the moment, using these
instructions is the trending way to ensure cache consistency, new mechanisms for more robust and
transparent cache management (like, for example, the epoch barriers [21]) may be researched in the
future providing alternative approaches to this matter.

Cache Optimization

Cache and buffer optimizations are usually designed to improve SSD-based storages.
Hence, most of these optimizations do not apply to byte-addressable NVM-based file systems. In
an architecture where long-term storage is combined with main memory, the processor cache is the
main point for cache optimization. Thus, techniques that try to enforce consistency between cache
and NVM efficiently (see Section 5.2) represent the main contribution. Another possible point of
improvement is the TLB. For instance, SCMFS [126] proposes the use of superpages (2MB pages)
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to reduce the impact of in-memory file system in the address translation performance, by allowing
larger regions of memory to be mapped by a small number of addresses. This is also a good example
of a method to address possible problems with scalability, which is a relevant field that will probably
receive significant attention in the next years.

Reliability

Reliability in NVM systems may be achieved in different levels. For most cases, ECC [38]
seems to be a reasonable solution that is already in use in today’s memory and storage devices.
This can avoid data corruption caused mostly by unexpected physical problems that would be,
otherwise, made persistent in NVM devices. NVM also offers the possibility to improve on another
common reliability mechanism, known as check-pointing. Check-pointing can be used to provide fault
tolerance, security and instant process restarts. Besides the existing check-pointing mechanisms, a
few models have already been proposed for NVM-based storage [113] [91]. Other common fault
tolerance methods based on data redundancy, like disk RAIDs, can also be useful to leverage the
security of NVM file systems. It is unclear, however, how this data redundancy could be treated in
a NVM-based architecture or the impacts of such techniques and none of the studies analyzed in
this survey deeply explored this possibility.

Write Amplification

Along with additional CPU cycles caused by software overhead, unnecessary writes to the
backing storage is one of the main sources of performance degradation in NVM storages. The
write amplification problem is closely related to other functionalities like consistency and reliability
mechanisms, wear-leveling algorithms and atomicity methods. Although much effort has been put
in these mechanics, only a fraction of these studies focus on presenting methods to reduce write
amplification. Techniques like fine-grain logs, direct mappings and atomic in-place updates con-
tribute to reducing overall write amplification, but other techniques commonly responsible for write
amplification (like copy-on-write and tree-based updates) are still very common among the studied
solutions.

Data Placement

In the target architecture, adopting a block placement policy may be very useful in cases
where a hybrid memory approach is adopted (e.g. DRAM and PCM). Although copying data in
memory is certainly undesirable, exploring faster memories (like DRAM) for caching frequently used
data (like metadata) or as write buffer may be interesting in some cases. Thus, some policies are
needed to determine whether moving data from a device to another is advantageous and whether
using fast volatile memory to improve performance when accessing persistent data is acceptable.
Although some studies explore the block placement topic, only a few are actually designed for hybrid
memory layer model similar to the target architecture described in Section 5.1.
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Access transparency

Regarding byte-addressable NVM, most studies try to leverage NVM characteristics in order
to reach maximum performance and, in many cases, avoiding traditional block-oriented approaches
and layers like block drivers. In this context, transparency is related to compatibility and legacy
systems accessing NVM storage in an efficient way with traditional interfaces. For future systems,
where NVM is accessed like regular DRAM, it should not be one of file system’s concerns to ensure
compatibility with technologies, as the backing device hardware should be (it could be interesting,
however, in case of hybrid memories).

Data Duplication

In an architecture where the file system is built in the main memory, the amount of data
replication will naturally be reduced, since, in this case, many of the buffers, caches and software
layers that compose the traditional storage system will no longer exist. Also, since file data is
now in a byte-addressable memory and may be accessed by the CPU directly, processes may access
persistent data directly without the need of copies or page swaps. Thus, a mechanism like XIP
that allows pages to be directly mapped into user space represents a solution that involves little to
no data duplication at all. Of course, since data is directly written to persistent memory without
passing through the file system API, regular consistency mechanisms, like logging, would not be
able to provide the same level of reliability. To improve security in these cases, either some kind of
consistency mechanism must be implemented in application level, or a more robust (and probably
more complex) solution would have to be proposed at the operating system level.

Fragmentation

Fragmentation in file systems has always been of big concern: in HDD fragmentation
could result in long seek times caused by the magnetic disks mechanical parts, while in NAND
flash SSDs fragmentation could negatively impact the performance of block merges and garbage
collection. Byte-addressable NVM on the other hand does not present many of these characteristics
and external fragmentation is only a problem in specific cases, like, for example, when files are
always allocated contiguously in virtual memory [126]. Also, due to the fact that NVM is expected
to be adopted in large amounts in the future (e.g. petabytes in the same address space), the size
of memory units, like pages, may need to be adapted in order to efficiently address such a huge
memory. Adopting larger page sizes (that today range usually from 4 KB to 16 KB) could lead to
internal fragmentation. This is a problem connected to the topic of scalability on new architectures,
which is an area that will probably need more attention and intense research in the near future
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Persistent cache

In most cases, persistent cache acts as disk caches or write buffers, and do not quite fit in
the architecture targeted by this discussion. Most policies designed for persistent caches and buffers
usually aim to serve a very slow I/O storage device in the lower memory layer, like NAND-based
SSDs or HDDs. On the other hand, as discussed in Section 5.2, making processor cache persistent
may be a robust and, perhaps a definitive solution to the volatile cache and reordering problem.
However, due to latencies and endurance of current NVM technologies, it seems unlikely that such
non-volatile caches will become a reality in the near future, or, at least, that they will not replace the
existing volatile cache layer. Nonetheless, these studies do help to illustrate that, if the non-volatile
processor cache approach is adopted in the future, existing cache policies may not be the best fit
for such model.

Mounting time and parallelism

Mounting a file system sometimes may be a problem in flash-based SSDs, since it involves
locating and copying metadata from the storage to main memory and metadata location may not
be fixed. In byte-addressable NVM, however, metadata may be easily moved between memories
or even accessed directly in NVM. Although unifying operating system and file system metadata is
not a trivial task (for example, Linux has its own representations of inodes and super-blocks and
storing these could limit portability) this concern seems to be much more related to the metadata
management issue. As for parallelism, in the scope of this SMS, this term refers to exploration
of hardware internal parallelism that is related to SSD architectures and is not relevant for the
established architecture (Section 5.1) and scope.

Scalability

As the amount of memory available in the memory bus increases, some challenges may
emerge. These challenges are generally connected to the concept of a large amount of memory in a
single address space. When NVM is attached to the memory bus, it will, at least initially, use memory
management resources, like memory controller, TLB, translation mechanisms and the bus itself. It
is unclear how these mechanisms will perform with large pools (petabytes) of memory on the same
bus. Compared to consistency and endurance problems, scalability issues are not very frequently
addressed in academic studies. This may be caused by the fact that NVM technology currently has
limited capacity and is quite expensive. However, as the technology reaches its maturity, computers
with large amount of main memory will be available, especially for servers, and today’s operating
system might not be ready for such a huge memory in a single flat address space. Thus, this topic
is very important and, although research on it seems to be lacking, it will certainly receive more
attention in the future.

One instance of the scalability problem is discussed in SCMFS [100]: the difficulty of
efficiently addressing a large dataset. It points out that addressing the whole memory (in this case
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it also includes the file system) using 4 KB pages may become problematic, since it would have
a great impact on TLB. In this case, the adopted solution was to include an alternative type of
page, called super-page, that would be 2 MB long. As mentioned previously, this approach has
some drawbacks, like internal fragmentation, coarse-grain memory protection and potentially write
amplification issues.

On the other hand, the VFS design can be inherently cache and TLB inefficient, which
makes in-memory file systems challenging to properly scale [56]. Hence, pVM adopts the NUMA
node abstraction to work with NVM, making allocation and data placement more flexible and
scalable. pVM solution is based on virtual memory, persistent memory regions and object store, and
is closely related to solutions proposed by Mnemosyne [118] and HEAPO [43] than to a file system
like SCMFS. This solution is not designed to replace file systems, however, as it does not provide
file system functionality or semantics (e.g. file and directory hierarchy and user permissions) and it
also has some portability limitations.

5.3 Industry Status and Trends

This section is dedicated to recent topics, trends and solutions discussed in the computer
industry regarding the adoption of existing and upcoming NVM technologies. We start by under-
standing the industry needs that drive NVM adoption. The amount of data stored and exchanged
by today’s applications has been growing at an unprecedent rate, a growth that is not expected to
slow down in the coming years. The huge latency gap between volatile main memory and persis-
tent storage imposes a big challenge on systems design. Even with the growing sophistication and
adoption of SSDs, the distance between volatile and persistent data still one of the main bottle-
necks in current architecture, as applications demand faster access to persistent data. That leads
to the multiplication of hardware and software tiers, which in turn lead to more data copying and
movement, reducing overall system efficiency.

In order to make the memory/storage stack more efficient, it becomes necessary to con-
solidate the different stack layers, reducing data copies and movement. This can be achieved by
new technologies introducing characteristics, such as low latency, high density, low cost/bit, high
scalability, reliability and endurance. Despite the fact that no memory technology today can provide
all of these features [99], new NVM technologies being developed promise to narrow the gap be-
tween memory and storage. Driven by this perspective, significant effort is being directed to create
standards, interfaces, functions and programming models dedicated to allow efficient adoption and
usage of NVM by operating systems, programming languages, and applications.
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5.3.1 Tools and Standards

The ACPI (Advanced Configuration and Power Interface) specification [115] is a standard
used to allow operating systems to configure, manage and discover hardware components. Version
6.0 added the NVDIMM Firmware Interface Table (NFIT) to the standard in order to provide infor-
mation about features, configuration and addresses of NVM devices. The NFIT describes persistent
memory regions, provides hints to make efficient use of cache flushes necessary to ensure durabil-
ity of writes operations to these regions, and the definition of block data window regions in case
apertures are required to access the NVM. The JEDEC Byte Addressable Energy Backed Interface
standard [47] specifies the low-level access interface for NVDIMM devices. It is intended to simplify
BIOS and NVM access and to provide a single interface (that may have multiple implementations)
to the operating system.

The Linux PMEM driver is a block driver based on the Block RAM Driver (also known
as brd used to create RAM disks) designed to work with NVMDIMM [133]. PMEM was developed
by Intel and eventually incorporated into Linux kernel 4.1. PMEM uses a memory addressing range
reserved by the system, similarly to ranges used to communicate with I/O devices. PMEM may
be used to create and mount regular file systems over memory regions, whether the memory is
persistent or not, allowing users to emulate persistent memory with PMEM. Currently, the PMEM
driver is being updated to support the features of ACPI NFIT.

The Linux LIBNVDIMM is composed of the NFIT-aware PMEM along with a few other
drivers currently under development. It is a kernel subsystem adding NFIT support to Linux [122].
One of the main capabilities implemented by these drivers is the support for the block window
transfer feature described in the ACPI specification. The block window transfer is more complex
than regular direct access to NVM as it requires an additional translation steps for the CPU to
access physical addresses in the persistent memory device. However, by adding this additional layer
of address translation, it allows access to memory not mapped in the kernel address space, which
means that the amount of available memory is not limited by the OS addressing capacity. It also
means that memory accessed using Block Windows are not in danger of being affected by stray
writes, ensuring memory protection.

Another feature provided by PMEM is the block mode access to NVM. As the name
suggests, in block mode data is transferred to persistent memory in blocks, in a similar fashion to
block drivers. The block-grained access, although inherently slower than load/store based access,
has a few key advantages, for example, when it comes to handling memory errors, which are more
difficult to address when executing direct access to NVM. Accessing NVM in block mode allows
errors during NVM access (e.g. "bad blocks") to be treated by the kernel, while managing errors
when accessing NVM directly with load/store instructions is much harder and might cause a system
crash. The block mode access also ensures atomicity at block granularity, which may be useful in
some cases.



68

Another Linux feature implemented to improve its compatibility with NVM is the DAX
(Direct Access) functionality [23]. The concept behind DAX is very similar to the concept of
XIP (eXecute In Place), employed by some of the file systems discussed previously [32] [92]. The
principle of DAX is to bypass Linux page cache, avoiding additional copies of data that, when
storage is built over NVM, would only represent unnecessary overhead. With DAX NVM can also
be directly accessed by applications through the mapping of memory regions in the address space
of user processes. In order to support DAX, file systems and block drivers must implement a few
functions that compose the DAX interface, allowing the kernel to perform specific operations, such
as allocating pages using page frame numbers. To date, the file systems that offer DAX support are
Ext2, Ext4 and XFS. DAX combines improved NVM access mechanisms with modern and mature
file systems designs.

5.3.2 Architecture Support and Limitations

Even though NVM presents highly desirable attributes, like low latency and high density,
architectural support for these memories is still missing. A good examples of this fact is regarding
the limited physical addressing capacity of current machines. An address space containing terabytes
(or even petabytes) of NVM is well beyond what today’s processors are capable of supporting
[33]. Additional address bits would be necessary to work with large-scale memory (although there
are some workarounds for it, such as mapping NVM regions temporarily into the address space
of CPUs). However, it is still unclear the overall implications of scaling memory to that amount
(increased occurrence of TLB and cache misses, increased overhead of memory zeroing and copying
large amounts of memory, etc.). Ultimately, memory scaling is an open challenge that processors
designs must cope with.

The processor caches have issues with persistent memory as well, some of which have
already been discussed in Section 5.2. As explained in Section 4.3, the fact that writes to NVM
are retained in volatile cache and may be reordered before reaching persistent memory represent
a challenge on ensuring persistence and consistency. Existing barrier and cache flush instructions,
although useful to mitigate these limitations, represent a performance drawback as they are expensive
operations and may serialize execution within the processor pipeline. When flushing a cache line
with these instructions, there is usually no guarantee that data is immediately written back to NVM.
Hence, Intel introduced a few instructions to their new processors, like clwb, pcommit and clflushopt.
These instructions are similar to the clflush and mfence instructions described earlier, except that
they do not invalidate cache lines, or stall the CPU and, in the case of clflushopt, may be pipelined.
Additionally, the pcommit instruction can be used to ensure that writes accepted by the memory
controller are committed to the persistent memory synchronously.

Another example of processor support for NVM is the addition of memory protection keys
(see Section 5.2). This mechanism added new registers to the processor that allow systems to
define up to 16 protection keys, assign these keys to page addresses and choose which of these
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keys are writable and which are read-only. These keys provide an efficient method to lock a range
of memory against writes while also avoiding changes in page tables and TLB flushes. The TLB
is yet another point of improvement in current architecture. This address translation buffer is
critical to address translation (and, therefore, to the whole system’s performance) but may represent
a scalability limitation on systems with huge amounts of memory. Additionally, some memory
subsystem operations require flushing this buffer which, like in the processor cache example, is a
very expensive process. Even though software techniques, such as segmentation and coarse-grained
pages, may be used to alleviate the scalability problem, any improvements to this mechanism may
be an important step towards a more efficient NVM addressing scheme.

5.3.3 Programming Models

As briefly discussed in Section 5.2, traditional access methods and programming models
may not be the best fit for NVM storage due to their singular characteristics. Therefore, different
programming models and access methods aiming to explore the features of byte-addressable NVM
have been introduced [118] [25]. The Storage and Networking Industry Association (SNIA) has
defined and published the NVM Programming Model (NPD) specification in order to provide some
directions for developers to provide common and extensible NVM access model. The specification
is also useful for users to understand what can be expected and what operations can be performed
over NVM systems. The NPD defines multiple modes of access (e.g. file mode, block mode), what
they have in common, how they differ, at what level of the architecture they operate and what
kind of operations and attributes should be supported by these modes. The specification provides
detailed information about methods to discover the supported operations provided by a specific
implementation and the high-level description of these operations (inputs, behavior, outputs, etc.).
Finally, NPD also provides a few use cases to illustrate the usage of the specified behaviors and
describes a few directions to make programming interfaces compliant with the specification. The
NVM Library (NVML) [25] is a set of open libraries designed to provide applications with easy and
efficient access to NVM. The NVML follows the design principles that are specified in the NPD, but
also adds an array of specific features to make development for memory storage more intuitive. It
has tools to work with different abstractions such as objects, files, append logs and blocks. It also
exposes to users useful low-level functions, like cache flushing, optimized memory copy and optimized
file mapping. On higher-level libraries, NVML allows atomic transactions, persistent pointers and
lists as well as synchronization for multithreading. Finally, NVML also provides a C++ version of
the API (still under development), allowing more intuitive and robust object-oriented programming
over NVM.
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6. ATOMIC ACCESS TO MEMORY MAPPED FILES

One of the most important discussion topics identified in Chapter 4 refers to the interface
with which NVM-based storage systems are accessed: what are the most efficient ways to access
data in NVM? How should be NVM be exposed to applications? When are file systems semantics
really necessary and when are alternative models (like key-value stores) more appropriate? As we
have seen, these questions have driven much of the research in the NVM area [97][4][43][35].

At the center of the NVM access topic is the traditional mmap system call. Memory
mapped files are well-known and efficient methods to give applications memory-like access to per-
sistent files’ data. Furthermore, with the adoption of the eXecute-In-Place (XIP) concept (already
integrated in Linux) [117], it is possible to simply map files from the file system into the application’s
address space. Due to the freedom it gives, this method is used by many libraries and frameworks de-
signed to provide more dynamic and efficient storage models such as persistent regions and key-value
stores [118][20][43][56].

In this chapter, we present two variations of the XIP-enabled file mapping that add trans-
actional semantics to the mmap function, allowing applications to prevent file corruption. For that,
we modify the Linux kernel to perform copies of the file data being update by the application,
ensuring that the original content of the file may be retrieved at any time. After that, user data
are made durable once the file is synchronized (through a msync call for example). After the file
synchronization is completed, the new file version is guaranteed to be in persistent state.

It should be made clear that both these mechanisms are designed for an architecture where
persistent memory is attached to the memory bus. Naturally, this memory must be byte-addressable
in order to be accessed by the CPU. Therefore, for this chapter, we refer to byte-addressable NVM
simply as NVM for simplicity’s sake.

6.1 Motivation

File mapping is a flexible and efficient alternative to traditional read and write based file
access. It allows users to access a file like a memory array by simply mapping a region of the process
address space to a file and copying the file’s blocks into page cache on demand. In XIP-enabled file
systems, this method is even more interesting, since applications can map their virtual addresses to
NVM physical memory directly, thus avoiding, among other things, the page cache copy step.

The price for this simplicity is the loose file integrity guarantees. In traditional mapping,
pages of a mapped file may be made persistent by the OS at any time, creating a relatively large
critical window of time where a system crash could damage the integrity of the mapped file in
storage. In XIP mappings (which we will refer to as direct mappings from now on), integrity is even
more fragile, as writes to the mapped file are expected to become persistent (although they are
usually cached in the processor) immediately and at byte granularity.
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As result, in most cases applications and libraries based on file mapping have to implement
their own consistency models (e.g. based on transactions). However, implementing such mechanisms
may be tricky and loss of data caused by bugs in the code may be fatal. Furthermore, developing
such low level mechanisms or employing third party code to ensure data consistence may represent a
penalty in optimization and portability in some cases. Therefore we believe that the operating system
should provide the means for users to ensure their data is safe (in terms of consistency) at all times
using file mappings. It is important to note that more fine-grained and specialized solutions, like the
ones implemented by NV-HEAPS and Mnemosyne [118][20] may be more efficient and optimized
in many cases. We argue, though, that a solution based on existing mapping implementation in
the OS level has the advantage of being more flexible, portable and simple while also being able to
maintain a common traditional file system interface.

As NVM technologies grow in maturity and popularity, new implementations of frameworks
and tools designed for NVM-based storage, like persistent heaps, will become more common. Since
file mappings is a simple and straight forward manner to building persistent structures, like objects
or data tables, over NVM, it is fair to assume that this may be a popular design trend for these
pieces of software. Considering that most of these tools will also have to offer some level of data
integrity to their users, adding consistency guarantees to the semantic of functions like mmap could
significantly reduce the amount of responsibility given to third party systems and libraries and a save
a lot of work for both tools developers and end users.

6.2 Related Work

Guided by the current NVM promises of fast access in byte granularity and non-volatility,
many researchers have proposed alternative ways to access NVM to use for NVM-enabled systems
instead of traditional file system semantics. Such models usually aim to give users the possibility
to manipulate persistent data in a format closer to that of memory structures, hence avoiding the
process of serializing it into file or database formats. These solutions also seek common goals as
well such as minimizing processing overhead and write amplification. Many of these tools, however,
depend on an underlying file system and usually rely on directly mapped files to freely manipulate
data in NVM.

One such framework is Mnemosyne [118]. Mnemosyne provides programming friendly
mechanisms to handle persistent data, such as persistent variables and persistent regions. Mnemosyne
uses mapped files in NVM as back store and manages the access to these areas. In order to ensure
persistence and consistency, Mnemosyne implements and offers a variety of options, such as append
and shadow updates as well as atomic transactions. It also offers a few primitives to make the job
of creating custom consistency mechanisms easier.

Another tool designed to bring NVM closer to application level data structures is NV-
Heaps [20]. NV-Heaps is based on the concept of persistent objects and heaps and it aims to



73

minimize bugs and reliability issues when working with NVM while also exploring the performance
advantages offered by them. It provides an array of primitives and abstractions that allow users to
build persistent objects while also allowing some additional useful operations such as definition of
atomic blocks and persistent pointers. The actual heaps are stored on directly mapped files and
managed by the NV-Heaps user-space code. For atomicity, NV-Heaps implements fine-grained and
log-based transactions that perform security copies of persistent objects before allowing users to
modify them.

Due to the demand for stronger consistency constraints on mapped files, a few studies have
proposed methods to increase these mechanisms’ reliability and allow atomic updates on mapped
files. One such study is described in [95], and proposes a failure atomic variation of the mmap
and msync system calls. It presents a very simple concept: data written to a mapped file must be
written to disk only during the msync call and such write must be made atomic (in this case using
a redo journal). Failure-atomic msync is designed and implemented for (and evaluated on) I/O
storage devices such as HDD and SSD and thus does not take in consideration NVM characteristics.
Similarly, the NOVA file system [128] provides an atomic mmap mechanism to provide the means
of ensuring user data integrity. NOVA’s solution is a little more complicated as it involves creating
and mapping replica pages (copies of the mapped file’s pages) on NVM and copying data from this
replicas back to the original data page during msync.

Table 6.1: Summary of the characteristics of the file mapping mechanisms in our version of PMFS

MAP_SHARED MAP_COW MAP_ATOMIC
Guarantee of User Data Consistency NO YES YES

Process writes to NVM DRAM NVM
Perform Out-Of-Place Updates NO YES NO

Shareability SHARED PRIVATE SHARED

6.3 Design of the Solution

In this work we present two different solutions to the problem of consistency on mapped
files. The first, called Copy-On-Write mapping, creates copies of updated file data while exploring
the superior performance of DRAM to mitigate performance loss. During writes to a mapped file,
the mechanism performs copies of the original file pages to new pages allocated in the system’s
volatile RAM, hence the name Copy-On-Write (COW) mapping. The second one, Atomic mapping,
is based on performing back up copies of updated pages and storing them in the file system to
perform file recovery after crashes or kernel panics. This sections describes in detail both solutions
as well as their advantages and drawbacks. Table 6.1 shows a summary of the characteristic of all
the mapping methods studied in this throughout this work.
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6.3.1 Copy-On-Write Mappings

The concept behind COW mappings is quite simple: in order to protect the original file,
the operating system creates a copy of the file block being updated and write updates to the copy.
The copies are stored in main memory, which in our target architecture is composed of DRAM. We
choose to keep the copied pages in volatile memory in order to improve the mapping’s performance
on multiple overlaying writes while also compensating for the additional overhead of copying pages
from NVM. This is because writing to volatile RAM is considerably cheaper than writing to NVM
(although the size of this gap varies depending on the NVM technology). As we will show later
in this work, storing these copies in NVM would be much more expensive, specially in more write
intensive workload. Figure 6.1 illustrates how a file mapped with by this method would look like in
the memory hierarchy.

Figure 6.1: Copy-On-Write mapping scheme: data may be read directly from NVM but must be
copied to DRAM in order to be updated.

On the other hand, reading from the COW mapping does not trigger the copy-on-write
process at all. When being read a COW mapping works similarly to the regular direct mapping: the
file’s data blocks are accessed directly like any other memory page. This may greatly improve COW
mapping efficiency the system perform copy-on-write only on the necessary data blocks. Also,in this
scenario this approach does not necessarily represent a performance hazard, since read operations
are significantly faster than writes operations in NVM and closer to DRAM performance [97].

When the mapping is synchronized with the original file (through the msync call), these
updated copies are atomically written back to the file. After the synchronization is performed, the
file is in a new consistent state. If during the writing or the synchronization the system halts for
some reason (energy outage, hardware error, kernel panic, etc) the original non-modified version of
the file may be easily recovered. Additional reads and writes to the faulted segments of the mapped
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file are still served by the copied pages: no additional kernel interrupts are needed in this case. The
copied pages are only discarded once the file is unmapped.

With this approach, the user process never writes directly to the mapped file, but instead to
copies of the file’s blocks. The user is responsible for defining when the mapping must be persisted by
explicitly issuing a flush operation, hence deciding whether the file is in a consistent state. Therefore,
COW mappings ensure file consistency at all times, protecting data against failures. The main
disadvantage of this solution is naturally the additional overhead from copying pages back and forth
from the file system, which, makes COW mapping significantly slower than regular direct mappings
even when employing DRAM as a buffer. However, COW mapping is a very flexible mechanic, and
its performance highly depends on the application’s needs and on how it manipulates the mapping.
Our results show that in some cases, intensively writing to a COW mapping is considerably faster
than writing directly to NVM through direct mappings.

6.3.2 Atomic Mappings

Our second proposed mechanism, atomic mapping, is a variation of the copy-on-write
mapping discussed earlier. Just like COW mappings, data is read directly from NVM by mapping
the file’s blocks as pages in user process level. However, during writes to the file’s blocks, instead
of coying the blocks’ contents to main memory, security copies of these blocks are stored in the file
system itself. These security copies are never actually accessed by the user process: they are kept in
separated blocks of the file system allocated specifically for this purpose. These copies are kept for
recovery purpose only, being used to overwrite the file’s blocks modified by the user-level process in
case of crashes. The user process instead writes to the original file block directly. The design of a
file mapped by this method is shown in figure 6.2.

Figure 6.2: Atomic mapping scheme: file data is accessed directly from NVM and security copies
are stored in the file system and logged into the journal.

The security copies are kept by the file system until explicitly released, through the mapping
synchronization process (implemented by the msync call). In this case, the original file is not touched
by the mapping synchronization process, therefore there is no risk of data corruption. If the file is
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unmapped or the process halts (either unexpectedly or as a valid result of the process execution)
before the mapping is synchronized, all non-synchronized blocks are replaced by their respective
security copies, and all modifications made to them are lost. This property not only ensures that
the file will keep its integrity whether the writes to the atomic mapping are successful or not but
also gives the user more control over the file state and the data flow.

After the security copies have been released by the file system, new writes to the original
file blocks will trigger new copies. This is the main source of overhead and the main disadvantage
of this method. The atomic mapping is designed as an alternative to COW mapping and targeted
at systems where there is no hybrid memory. In these cases, there is no performance advantage in
copying the data blocks to main memory: the costs of accessing memory pages and file blocks are
the same. It is in this scenario that atomic mappings may be a good fit as its process is even more
simple than COW mappings and it involves less copies. We evaluate the performance differences of
atomic mappings and copy-on-write mappings in both architectures later in this study.

6.4 Implementation

To evaluate the feasibility of our solution, we implemented a prototype of both atomic
mappings and copy-on-write mappings over PMFS. As we presented earlier in this work, PMFS is
designed for memory-bus attached NVM and with NVM characteristics in mind. It also implements
the XIP functionality which is essential for both atomic and COW mappings to work properly.
Naturally, our implementation of the proposed mappings use the direct mapping implementation of
PMFS as their base, making development easier and more reliable.

We chose PMFS as our test platform because of both its simplicity and flexibility as well
as its generality. PMFS is built over an allocated region of the system’s memory that is no mapped
by the operating system. PMFS manages its space autonomously and writes to memory directly
without the need of additional layers, like block drivers. It also keeps the implementation of its
mechanisms (such as journaling, transactions and file mappings) quite simple, in order to minimize
the processor overhead. Finally, PMFS metadata structure and operations are very similar to the
other file systems, both NVM and HDD-based. This is an important factor, since we are more likely
to be able to replicate the behavior observed on PMFS on other similar systems.

We also modify the Linux kernel code that is bundled with PMFS implementation. Al-
though the kernel is already tailored to work with PMFS, modifications are necessary to perform
actions during page faults, like the copy-on-write step of the COW mapping. We focus on working
over PMFS code, and keep our changes to the kernel to a minimum in order to maintain the file
mapping mechanism simple and easy to migrate to other systems or kernel versions. As we discuss
later in this work, additional modifications to the kernel could improve our solution’s performance
and usability, however we leave these questions for future works.
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6.4.1 Copy-on-write Mapping

In order to provide access to the copy-on-write mapping implementation, we introduced a
new mmap flag, MAP_XIP_COW. Mostly, all this flag does is mark the mapping’s virtual memory
area (VMA) as a copy-on-write VMA. It also sets the mapping protection as read-only while marking
the VMA as writable, so writing to its pages will trigger page faults. With this configuration, the
operating system is able to identify that the VMA is supposed to perform the copy-on-write precedure
on page faults caused by protection restrictions. The process of copy-on-write in our implementation
is very similar to the existing used for private mappings (MAP_PRIVATE).

After finishing the mmap routine, the COW mapping will be ready to be accessed. Nat-
urally, however, since the pages are not actually mapped in the process address space yet (they
have not received a virtual address), accessing the mapping address range results in a page fault.
The kernel notifies PMFS that a page within a PMFS file mapping is being requested. PMFS then
finds the file block being requested and creates a new page table entry based on the block’s page
frame number. The page table entry is created with the protection defined on the mapping’s VMA
structure, therefore the entry is marked read-only. Finally, the entry is added to the process page
table. This process is enough to provide reading access to the user process: we do not need to
perform a page copy at this point.

Once the file’s block has been mapped into the process page table, it is ready to be accessed
for reading. Writing to it, however, will trigger another page fault, since it is write protected at this
point. This time, the kernel allocates a new page from virtual memory and copies the content of
the faulted read-only page to this new page. The kernel then adds this copy to the process address
space, overwriting the page table entry pointing to the file’s data block with a new one, pointing
to the copy. The copy’s page table entry is made writable, thus allowing write operations over the
copy page. The copy page is not cached by Linux (into page cache) and is never written back to the
original file, except during the msync call. Once the copy page is mapped into the process virtual
address space, any further access to its address range will be served by the data in virtual memory
instead of the actual file data. This copy will be kept in memory even after mapping synchronization,
being only released when the mapping it belongs to is unmapped. Releasing a COW mapping will
cause the kernel to release its volatile copied pages back to the virtual memory and any data on
dirty pages at this moment will be lost.

During the (msync) system call, the kernel checks that the mapping is, in fact, a COW
mapping, and delivers it to PMFS to be handled. The first thing PMFS do is create a transaction
and add the current inode state to the jornal. PMFS uses the concept of transaction to control
atomic updates and uses an undo journal (stored in NVM) to ensure metadata consistency during
updates. Next, PMFS checks every page of the address range being flushed, searching for dirty
pages. For every dirty page found, PMFS replaces its file block counterpart with a newly allocated
block (from persistente memory). The index of the original data block is journaled before the inode
is updated, as part of the file system copy-on-write mechanism to ensure file data consistency. PMFS
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only journals metadata, such as inodes and inode indexes: file data is never actually written to the
journal. Instead PMFS keeps the original state of the inode index (which is a 64-bit address) in the
jornal, so as long as we do not modify the original file data block, its data is safe in NVM. If the
msync process fails for any reason, the file may be reversed to its original state, by simply restoring
the inode and the original data blocks’ indexes.

After securing the old block, PMFS finally writes the content of the dirty volatile page
inside the new empty block and marks the page as clean once again. In order to ensure persistence
and avoid part of the data from being retained in cache, we bypass the caching procedure by using
non-temporal stores. This may also helps us avoid polluting the cache in some cases: in COW
mappings, the data blocks in NVM are not expected to be accessed again anytime soon. The pages
in DRAM are the ones that may be frequently needed by the process and the ones we actually want
to cache.

After all pages were successfully written back to the original file in NVM, the PMFs
transaction is finally commited. By commiting the transaction, one last entry is written to the
journal, a commit entry, signalizing that the flush procedure was completed with success. It is also
during the commit fase that the old file blocks are released to PMFS. The blocks are delivered to
PMFS and handled by a block cleaner thread, that mark them as free blocks once again.

Finally, the life cycle of a mapped file in COW mapping ends when the file is unmapped.
This may be done by the user explicitly by calling the munmap function or whenever the user process
ends its execution. Once the file is unmapped all pages of the COW mapping are released back
to the kernel. All non-flushed data in these pages is lost and mapping the file again will require
faulting all its blocks back into DRAM. This characteristic may also allow applications to "rollback"
modifications to a file in some situations.

6.4.2 Atomic Mapping

To provide access to atomic mapping, yet another option was added to the mmap function:
the MAP_ATOMIC flag. Its purpose is very similar to that of MAP_XIP_COW, as it prepares the
VMA’s flags and protection scheme. During the mapping procedure, PMFS starts a new transaction.
This transaction will be used to manage the atomic mapping, including the journaled data and the
allocation of the security copies.

Just like COW mappings, accessing a page for the first time in an atomic mapping will
cause a page fault in order to allow PMFS to map the appropriate file data block into the process
address space. The block is mapped as read-only, thus triggering a page fault when accessed for
writes. Once it is verified that the mapping is in fact atomic and the page is allowed to become
writable, the kernel notifies PMFS that the page table entry related to the faulting address is about
to become writable. It is at this moment that PMFS allocates a new block on NVM and copies into
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it the content of the faulting page. This copy is kept safe in the journal space of PMFS, so it may
be used to restore the file whenever necessary.

These copies are kept along with the transaction until the mapping is either flushed by
msync or unmapped. At msync time all PMFS does is release and commit the transaction referring
to that mapping along with all block copies created up to that point. Once both transaction and
security copies have been freed, a new transaction is created in order to keep track of the copies
generated by the upcoming updates to the file. With this step we ensure that there is always a
transaction linked to the atomic mapping. At this point, the file is durable and in a new consistent
state. The entries in the process page table are made read-only again. This step is necessary for
PMFS to be notified by the kernel whenever these pages are being written. This means that writing
to the mapping will once again cause page faults.

Similarly to the COW mapping, when an atomic mapping is unmapped, all the updates
not yet flushed to PMFS are lost and the file is reverted to its previous state. However, unlike
COW mappings, both versions of data (the original and the partially updated) are kept in NVM
and are persistent. This could enable more complex data recovery methods, such as retrieving a
transaction from the point it stopped or merging old data with new data to leave the file in a
mixed but consistent state. Such mechanisms would not be possible in COW mappings and direct
mappings since either the original or the updated version of the file is lost during crashes.

6.5 Discussing the Implementation

This section is intended mainly to discuss a few relevant implementation points and share
our experiences while developing the mechanisms described previously and provide some insight on
the relationship of NVM with today’s operating systems. These are mostly effects of accessing NVM
as a file system and may be explored in future works. In this work we try to keep our implementation
as simple as possible, mostly to allow ourselves to isolate and explore the most relevant points of
the solution, such as feasibility (in terms of both performance and complexity) and usability but
also to ensure the portability of our methods. We do, however, believe that the our solution may
be significantly improved from more complex and sophisticated mechanisms and we hope to pursue
these benefits in the future.

The first and perhaps most important topic, is about the challenge of sharing data through
multiple process spaces with COW mappings. As described previously, the COW mapping behaves
similarly to private mappings in traditional file systems. In both cases, during the page fault, the
page being accessed (for write) has its content copied to a new page and added into the owner
process address space. However this page is not kept in the page cache and is not shared by the
other processes, thus the page is not visible to other processes mapping the same file. This means
that every process mapping the file using the COW mapping technique will have its own version of
the pages in volatile memory, which does not happens in traditional or direct file mappings (and
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consequentially not on atomic mappings). One way to allow multiple process to share data using
the same COW mapping is by sharing page table entries which is not a new concept and already
have been studied for other purposes [84]. Also, A persistent page table-like structure for files is
described in [107] which could be an effective alternative that also reduces the overhead of mapping
files into applications address space.

On the other hand, allowing multiple processes to write to the same page of the same file
may risk file data consistency in some cases. For example, if two processes A and B write to the
same page X and this single page is shared among them, once process A flushes its updates on X
to PMFS, X is also carrying the modifications made by B. Since the data written by process B may
not yet be in a consistent state, once A flushes page X to NVM, the file may be in an inconsistent
state. In this case, if B fails for any reason, the file will be dirty and PMFS will not be able to
recover it. There is no easy solution for these cases. As it is in other solutions, applications have to
manage access to critical areas and avoid concurrency races themselves [128] otherwise consistency
may be compromised.

In Section 7 we compare the performance of our solution against the existing mapping
in PMFS and analyze the results. One characteristic that directly impacts these results is that,
in PMFS direct mappings, whenever the msync system call is issued, since there are no pages in
memory to be flushed in this case, all the file system does is flush any remaining data in cache.
This may be expensive for the application but is necessary to ensure that all updates are written
to the NVM. In COW mappings, however, this does not happen as the data cached on application
operations (e.g. writes to the pages in DRAM) and the data stored in NVM are two separate things.
When copying data from DRAM to NVM, our solution does not cache writes, but it can read the
current state of data in DRAM even if it is retained in cache. It is also worth noting that, according
to our tests, the cost of flushing cache lines also depends on the processor and overall architecture.

As described earlier in this work, our implemented mapping methods may need to ma-
nipulate the process page table entries directly in some cases. In order to avoid having to access
the main memory every time a virtual address needs to be translated, current systems cache these
entries in the Translation Look-aside Buffer (TLB). The issue here is that once we updated the
state of a page table entry (e.g. marking them clean or marking them read-only), we must flush the
TLB in order to synchronize these modifications otherwise the system may behave in unexpected
ways. Flushing the TLB is an expensive operation and in some cases may represent a significant
performance penalty.

Finally, another limitation of our solution is that it cannot allow accessing the same file
pages through both a direct way (such as through atomic or direct mappings) and an out-of-place
way (such as through COW mappings and COW-enabled writes) at the same time. This is because
updating these pages using a copy-on-write technique may generate conflicts with methods that
map the pages directly into the user’s address space, since during the copy-on-write process, the
original data page is released at the end. This constraint is also presented and discussed by the
NOVA file system, regarding the possibility of allowing users to directly map NOVA’s files.
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7. EVALUATION

We evaluate our proposed file mapping implementations to both verify its correctness in
keeping user data in consistent state and to determine whether it is a feasible alternative to existing
access methods such as direct mappings and read/write functions. For the correctness part, we try
to force file corruption by injecting errors in both user and kernel code, and check whether the file
system recovery process is able to revert the file to a consistent state. For the feasibility part, we use
file system benchmarks to measure the performance of both atomic and COW mappings and then
compare the results to the ones obtained using regular file mapping techniques. To some extent
we agree that using traditional benchmarks to measure [31] performance on NVM file systems may
present some bias, however this is the methods used by most researchers today to evaluate their
proposals, including the original PMFS evaluation [32][126][100][15].

7.1 NVM Emulation

As discussed earlier in this work, the idea behind our solution is partially based on the fact
that NVM (in its current state) is significantly slower than today’s DRAM technology, specially when
it comes to write operations. More specifically, our COW mapping design employs kernel virtual
memory to speed up write operations to the mapping region. However most NVM technologies
are currently under development and access to machines with such technology is still very limited.
Therefore we chose to emulate NVM using regular DRAM. Doing so is quite a simple task, since
PMFS is already designed to be built over a pre-allocated region of the system’s RAM.

Regarding the latency difference between DRAM and NVM technologies (such as PCRAM)
we emulate NVM latency by artificially introducing additional overhead to regular memory access
when writing to the file system region (which is built over DRAM). The idea is to adopt processor-
level operations to account for the additional access time NVM technologies has in relation to
DRAM. We do not consider the overhead on read operations as the disparity between DRAM and
NVM in regard of read operations is much less expressive than in writes and it would also be much
trickier. Since we are not necessarily aiming for high fidelity to the actual NVM bandwidth and
performance in our results but instead we want to check how close to existing access methods our
implementation can get, we only emulate latency for write operations.

Our emulation of NVM latency is based on the values for PCM presented in Table 2.1
and also on the Mnemosyne implementation. For our performance tests, writes to PCRAM are 4
times slower than writes to DRAM. The idea is to use processor operations to delay the processor
for a limited time whenever a write to NVM occurs. We insert these operations in all the main
points where PMFS writes to NVM, such as during writes to user data, inode updates, journaling,
recovery process, among others. Besides Mnemosyne, our method for NVM emulation through
artificial overhead is somewhat similar to the ones adopted by other studies [32][15].
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Figure 7.1: Performance of mapping and overwriting an entire file before performing msync and
munmap.

7.2 Evaluating Correctness

The correctness of our implementation is determined by whether it can ensure that files
manipulated by it may be restored to a consistent state at any time. To test our implementation we
employ a process that continuously writes to different files and program its halt at random points of
the execution. We then check the file data and its metadata for corruption and validate its content.
We have performed this test over 30 times for each of 5 different files (different extensions - images,
pdf and text - and size - ranging from 50-100 KB to 12-18 MB) with no file corruption in any case.
This test ensures that issues that occurs at nay point during the execution of user level code will
not compromise the structure of the file or the file system.

Performing the same check on kernel side is a little more complicated, as, in our case, we
cannot simply halt the entire system or simulate kernel panics, as the file system data is stored in
DRAM and would be completely lost during system reboot. Hence, we chose to once again forcibly
halt the operating system by triggering errors in the kernel code. In this case we may need to trigger
the file system recovery process either manually or by remounting PMFS as, in some cases, the file
system will not replay the journal automatically. This happens, for example, when the process is
locked in kernel side due to fatal errors in the kernel.

To test our kernel-side code, we chose to provoke these kernel crashes in specific places,
rather then on complete random, for both practicality and simplicity reasons. This approach also
helped to identify issues with the implementation and their their precise root cause, making it easy
to correct them. We have selected critical points in the life-cycle of both mapping implementations
to perform this evaluation, such as, to name a few: during the page fault process, during the msync
call when the mapping is only partially flushed back to the file, after a log-entry is written but before
it is committed, after a page is logged but before it is written, during a page write back among
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others. We have performed well over a hundred of these tests (about 10 for each major point of the
code we selected) with no files lost. With this test we ensure that failures when executing kernel
code may be reverted on file system mount and will not compromise file consistency.

Figure 7.2: Performance of mapping and reading an entire file.

7.3 Performance evaluation

To evaluate our implementation’s performance, we employ the FIO file system benchmark,
mostly for its popularity and for its intuitive source code. It is also the microbenchmark used to
evaluate PMFS mmap performance in its original paper. We run the benchmark over a HP BL620c
G7 cluster node with two Intel Xeon E7 2850 2.0 GHz and 80 GB of DRAM. Our PMFs partition
takes 25 GB from the DRAM space. For compatibility reasons with PMFS 3.11.0 Linux kernel, our
system runs on Ubuntu 12.04.

Each test was performed from 5 to 10 times (depending on the variation of the results),
during a period of 10 minutes each test. Although the machine used for these tests was allocated
exclusively for benchmarking PMFS, at least once for each test case, we reboot and remount the
file system to ensure no bias created by Os unexpected behavior. We believe these precautions to
be enough to ensure the reliability of the results presented here.

We have also performed many (undocumented) performances tests on controlled simulated
environments using virtual machines. The goal of these tests were to analyze the behavior of our
solutions and to ensure our results (obtained in the real machine) are plausible. Although these results
were not written down and therefore are not shown here, we believe they are worth mentioning here
as these preliminary tests are much extensive in number than the ones presented here and are just
as relevant to this work.
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(a) (b)
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Figure 7.3: Performance results of FIO benchmark: FIO writes the whole file up to 5 times and
flushes data to PMFS through msync.

7.3.1 Microbenchmark evaluation

We try to maintain modifications to FIO to a minimum in order to maintain its con-
sistency and avoiding creating any kind of bias. We do however explore different aspects of our
implementations by making a few modifications in FIO source code. We configure FIO to write to
a file continuously and perform the msync and munmap calls in a fixed rate (usually after the file
is completely written). In our initial test, each file mapping implementation writes the entire file
before flushing and unmapping it. The results are shown in Figure 7.1. Unlike COW and atomic
mappings, in direct mappings, msync call is not necessary to make writes persistent. It is, however,
important to provide the guarantee that data has reached the file system in some cases, hence, in
this test we evaluate direct mappings both with and without the msync system call at the end of
each writing cycle.

The results show that COW mappings may present a performance roughly 2 times slower
than direct mapping, while atomic mappings shows results almost 4 times worse in this same case.
By flushing direct mappings periodically, we see that its performance drastically falls, to the point
where it is more inefficient than performing COWmapping in most cases. The performance difference
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floats between 27% of loss to 9% of increase at most for COW mapped files and it is evident specially
on larger files where the cost of flushing the cache grows and surpasses the COW mappings cost of
copy-on-write. The atomic mappings, that also performs cache flush and do not benefit from the
same behavior of COW, presents between 36% to 48% performance loss when compared to direct
mappings.

On the other hand, on Figure 7.2 we see the comparison on read performance only. Since
all three mappings behave basically the same way on read operations, their performance is roughly
the same. The small gap between them may be attributed to a small overhead during the mapping
and unmapping processes, regarding transaction control. It is important to note that we do not
perform the msync operation in this test case since it is not necessary and would not change the
benchmark behavior whatsoever.

In some cases, simply allowing users to checkpoint their files by giving them a primitive to
flush its mapped data to the back file may be just enough. COW mapping implements consistency
in two levels at different moments: during writes to the mapped region (by writing to a page copy
in DRAM instead) and during flushes to the backing file (using PMFS journal and copy-on-write
techniques). We may relax the reliability constraints in Copy-On-Write mappings by skipping the
PMFS side copy-on-write during the flush process, thus losing the guarantee of consistency during
the execution of msync. Thus, in Figure 7.1 we show the impact of bypassing the PMFS copy-on-
write on performance. In this figure we are able to see the overhead incurred by the file system level
consistency mechanics of COW mappings, which is around 17%.

Writing to the file once and flushing it to the file system, although an acceptable and
somewhat common usage of file mappings, it is not the best case scenario for both atomic and COW
mappings. These solutions were designed to perform better with less frequently synchronizations
with the backing file and to give the user the control over the trade-off of performance and reliability.
With that in mind, we evaluate the impact of delaying the synchronization process by allowing FIO
to write the files multiple times before issuing the msync call.

The results are presented in Figure 7.3 and show a significant improvement in the through-
put and a steady growth in performance on all mapping mechanisms with larger time windows be-
tween synchronizations. In this scenario we see that the COW mapping may present results ranging
from 10% and 65% of performance loss up to 110% and 58% of improvement when compared
to direct mappings with and without the msync operation respectively. On the other hand, the
performance disparity between atomic mappings and the direct mappings is situated between 43%
and 18%. These numbers grow to 75% and 38% when compared to the direct mapping’s results
without the flush procedure.

However, how feasible it is to write these files multiple times? Naturally, writing twice an
entire 8 GB file takes much more time than writing twice a 512 Kb file. Therefore, to have a more
practical view on the advantages of lazily writing on mapped files with our proposed methods, we
evaluate lazy writes using a fixed time windows to determine the checkpoints of the file, instead of
the number of whole-file updates we have used in the previous evaluation.
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Figure 7.4: Performance results of FIO benchmark: FIO writes to a file during up to 10 seconds
before committing the data to PMFS msync.

The results on Figure 7.4 show that, for small and medium files, we clearly have a gain
in performance for larger time windows, which is specially apparent for COW mappings. In the
case of atomic and direct mappings, larger time windows present significantly less impact as the
throughput in both cases is mostly limited by the emulated NVM throughput and cache usage. The
best example of COW mapping expected behavior shown on Figure 7.4c, with 1 GB file size, where
it becomes clear that the first write to the mapped file is much slower than the subsequent writes.
For larger files, the performance of all mapping models drop drastically, as the amount of pages
being written twice becomes smaller and the performance gets closer to that of writing the file only
once before flushing it.

Figure 7.4 gives us an idea of the applicability of lazily flushing modifications to PMFS in
order to increase efficiency. Naturally, the actual amounts of time needed to obtain any relevant
performance gains depends greatly on the workload behavior and throughput of the NVM technology,
among other things. The graphic also illustrates the amount of data the applications may risk losing
during crashes, by delaying the commits to PMFS file. This is yet another detail developers must
be aware of when designing their applications.
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7.3.2 Uniform memory evaluation

(a) (b)

(c)

Figure 7.5: Performance results of FIO benchmark without NVM latency simulation.

In the previous section we evaluated COW and atomic mapping on a hybrid memory envi-
ronment (where DRAM coexists with NVM), by simulating NVM latency. In this section we abandon
the NVM simulation code and evaluate our implementation on a uniform memory technology envi-
ronment. With this setup we expect to comparatively measure how our solution would behave in a
pure NVM system. With this environment we also want to give atomic mappings a fair performance
evaluation, as its design was greatly driven by the possibility of a NVM-only architecture. In these
conditions we reapply the tests with the FIO benchmark and analyze the results accordingly.

In Figure 7.5 we see the results of our experiment. It shows that the performance of our
proposed implementations are very close to that of flushed direct mappings. In terms of efficiency,
this is the worst case scenario for our solutions: the file’s data is replicated once for atomic mappings
(during the creation of the safe copy) and twice on the COW mapping (once during while faulting
the pages into the process address space and once during the msync call) with no faster memory
to be used as buffer. This is reflected on the results, as our methods can get up to 6 times slower
than direct mapping (the version with no msync), specially for small files.
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One thing that calls our attention on Figure 7.5 is that atomic mappings still significantly
slower than our COW-based solution, even though it clearly performs less work. We credit that
once again to the process of cache flush. Atomic mappings has to force every cache line related
to the address range given to msync to be flushed, in order to ensure all data is persisted before
committing the transaction. As we have seen with direct mappings previously, this process may be
very expensive and represent a serious performance penalty. As we have discussed earlier in this
work, improving efficiency of cache with NVM-based storage is one of the main topics of research
in NVM and some solutions have already been developed. It is also worth noting that the cost of
this operation depends greatly on the architecture.

Figure 7.6: Performance of mapping and reading and entire file.

Figure 7.7: Performance of mapping and reading and entire file.
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7.3.3 Macrobenchmark evaluation

To complement the results obtained previously with the FIO microbenchmark we also
perform macrobenchmark tests, in order to evaluate the efficiency of our solution when used with
common real-world workloads. For our macrobenchmark evaluation, we use the well-known filebench
benchmark. We chose filebench due to its flexibility and simple structure. We modify filebench to use
memory mapped files for its operations and design a few workloads based on traditional workloads
shipped with filebench. Unlike FIO in our previous evaluation, these workloads perform combinations
of reads, writes and appends and manipulate thousands of small files.

We show the results of filebench execution in Figure 7.6. Similar to our microbenchmarks
results, these graphics show that the performance penalty of our proposed solution is very close
to that of calling msync in order to ensure data reaches the storage. The throughput difference
between direct mapping and atomic mapping (which is our slower implementation, as we have seen
in previous tests) is roughly 11.5% in the worst case.

We also apply filebench evaluation on uniform memory model in order to validate our
implementation on a a single memory technology environment. The results are shown in Figure
7.7. Even without the additional overhead of writing to a slower memory, we see little difference on
the results. This is the reflection of combining small writes of low overhead with small reads that
have near to zero overhead. Although the solutions proposed in this paper were aimed at a different
scenario (namely systems that map and manage large chunks of NVM), these results are still useful
to illustrate the the impacts as well as the versatility of such simple mechanisms.
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8. CONCLUSION

In this study, we presented two methods of accessing data stored in NVM file systems
based on the already well established XIP-enabled memory mapped file concept. Both are methods
that enforce file persistence and consistency by delegating to the user the decision of when data
must be persisted and giving him the ability to perform checkpoints over its own files. Our goal
with this work is to provide to users and framework developers the means to securely write to NVM
file systems without having to implement their own mechanisms. We also study the advantages of
using DRAM as a buffer for file mapped pages in order to compensate for our solution’s additional
overhead.

We have demonstrated that our solutions can guarantee file consistency even during unex-
pected system halts by adopting simple techniques such as out-of-place updates and copy-on-write.
The performance penalty for incorporating these reliability mechanisms on memory mapped files
may vary greatly, depending on how users employ these mapping methods. We also successfully
mitigated this performance penalty by adopting DRAM as write buffer for memory mapped files,
to the point of obtaining significant performance improvement over directly mapped files with no
reliability guarantees in some cases. Through the implementation of COW and atomic mappings,
we also managed to observe a couple behavioral characteristics of file access on NVM, such as
the impact of cache flushing on large sequential writes. Additionally, our implementation, although
straightforward and effective, presents some limitations, specially regarding file sharing across mul-
tiple processes. Although we agree that these topics are worth exploring further, we leave them for
future work.

We have also thoroughly surveyed current research in the NVM file system area, attempting
to identify the relevant topics and common challenges and solution designs. Although these studies
present various interesting proposals and insights, there are no definitive approaches, even though
some trends can already be identified. For instance, one matter that is currently receiving a significant
amount of attention is the one regarding NVM scalability. Because of its superior density (compared
to DRAM), NVM is expected to be employed in large amounts in future systems. However, today’s
operating systems (and processors) are not yet prepared to manage such large memories. This
memory pool is expected to grow to the level of petabytes, which, consequentially, leads to many
concerns regarding the scalability of these architectures, especially when treating details like memory
addressing, cache coherency and handling failure to memory accesses.

Migrating current concepts and mechanics to an NVM-enabled architecture is going to be
an iterative process and much work has to be done until the memory hierarchy is adjusted to this
new paradigm. Although it may seem that NVM storage is a distant reality sometimes, existing
projects are already available and aim to transparently provide current systems access to persistent
memories. These are the first steps towards a more efficient and reliable memory architecture that
will explore interfaces beyond the file system abstraction unleashing the full disruptive potential of
NVM systems.
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Finally, it should be clear that we believe that mapping file system regions will be an
important mechanism for both applications and tools that aim to work with NVM efficiently. Thus,
optimizing this type of access is very important and it is currently a common target of research
in the area of NVM [121][108][128][32]. We expect this optimization to touch various aspects of
memory management and file system like more efficient addressing solutions, alternative file system
consistency methods and more fine grained data persistence.
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