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Abstract: An observer-based robust control strategy is proposed for controlling overflow
metabolism cultures operated in fed-batch mode. In order to maximize the biomass productivity,
the controller is designed to regulate the inhibitory by-product concentration at small levels
keeping the substrate concentration close to its critical level. To this end, a reduced order
nonlinear model of the bioprocess dynamics is obtained and a partial feedback linearizing
strategy is applied. The resulting free linear dynamics is designed by means of a convex
optimization problem aiming at mitigating the effects of non canceled nonlinearities and model
uncertainties. An adaptive extended Luenberger observer is also designed for estimating the by-
product concentration from the measurements of biomass and substrate concentrations. Realistic
numerical simulations demonstrate that the proposed observer based robust control strategy is
able to maximize the biomass concentration despite large disturbances on the measurements
(30 % for substrate and 15 % for biomass concentrations).
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1. INTRODUCTION

Fed-batch bioreactors are common processes in the phar-
maceutical industry producing recombinant proteins from
genetically manipulated host microorganisms. The current
objective of a fed-batch culture is to maximize the biomass
productivity through the manipulation of the feed rate
profile, despite the possible presence of inhibitory by-
products. This study considers cultures of microorgan-
isms subject to “overflow metabolism” also called “short-
term Crabtree effect” which involves the generation of
inhibitory by-products as a response to an excess of feed-
ing (Deken, 1966; Crabtree, 1929). This phenomenon is
observed, for instance, in Saccharomyces Cerevisiae, Es-
cherichia Coli, Pichia Pastoris and Mammalian cell cul-
tures with the production of ethanol, acetate, methanol
and lactate, respectively (Sonnleitner and Käppeli, 1986;
Rocha, 2003; Amribt et al., 2013).

Several feedback strategies have been proposed in the
specialized literature to control fed-batch bioreactors, such
as PID controllers (Axelsson, 1989), adaptive control (De-
wasme et al., 2011; Axelsson, 1988; Chen et al., 1995) and
nonlinear model predictive control (NMPC) (Hafidi et al.,
2008; Santos et al., 2012). An usual challenge is the avail-
ability of a number of measurement signals, a problem that
has often been handled using software sensor techniques
(Bastin and Dochain, 1990; Dewasme et al., 2013), since
hardware sensors are either expensive, unreliable or non-
existent.

This paper aims at designing a feedback strategy to max-
imize the biomass productivity of E. Coli cultures. The
proposed strategy consists in a simple partial linearizing
robust controller coupled to an extended adaptive Lu-
enberger observer. As in practice it is quite difficult to
measure the substrate critical concentration, the proposed
strategy regulates the by-product concentration at small
levels in order to improve cell respirative capacity. In this
setting, a reduced-order model of the by-product dynamics
is derived and a partial feedback linearizing control law is
designed. The resulting free linear dynamics is computed
in order to mitigate the effects of model uncertainty and of
the non-canceled dynamics by means of the linear matrix
inequality (LMI) framework. A robust extended Luen-
berger observer having two operating modes (respirative
and respiro-fermentative regimes) is designed to estimate
the by-product concentration. The observer gains are nu-
merically computed in the H∞ setting considering a linear
parameter varying (LPV) model of the bioreactor and a
common quadratic Lyapunov function to allow arbitrary
switching.

This paper is organized as follows: Section 2 presents
the bioreactor model detailing the overflow metabolism of
E.Coli cultures and the main operating regimes; Section
3 introduces the feedback control strategy consisting in
the robust control and the switching observer designs; The
overall behavior of the controller-observer is demonstrated
via realistic numerical simulations in Section 4, while
Section 5 draws some conclusions.
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2. BIOREACTOR DYNAMIC MODEL

The overflow metabolism of different strains (yeasts, bac-
teria, animal cells, etc.), which the fermentative pathway
follows a comparable mechanism from a macroscopic point
of view, have been extended and experimentally proved by
Rocha (2003); Amribt et al. (2013) and can be summarized
by the following three main catabolic reactions:

• Substrate Oxidation

k1S + k5O
φ1−→ X + k8C (1)

• Substrate Fermentation

k2S + k6O
φ2−→ X + k9C + k3A (2)

• By-product Oxidation

k4A+ k7O
φ3−→ X + k10C (3)

In the above reactions, in the particular case of E. Coli
cultures, the variables X, S, A, O and C denote respec-
tively the biomass, substrate, acetate, dissolved oxygen
and carbon dioxide concentrations, while the yield coef-
ficients are represented by ki. The nonlinear growth rates
φi, i = 1, 2, 3, are expressed as follows:

φi = µiX , i = 1, 2, 3 (4)

It is assumed that specific growth rates µi depend on the
operating regime (Rocha, 2003):

µ1 =
min(qS , qScrit)

k1
(5)

µ2 =
max(0, qS − qScrit)

k2
(6)

µ3=


max(0, qA)

k4
qSkOS + qAkOA≤qO,

if
max(0, (qO − qSkOS/kOA)

k4
otherwise

(7)

The substrate consumption qS , the critical substrate con-
sumption qS,crit, and the product oxidative rate qA are
modeled as follows:

qS = µS,max
S

S +KS
(8)

qS,crit =
qO
kOS

=
µO,max

kOS

O

KO +O

KiO

KiO +A
(9)

qA = µA,max
A

KA +A

KiA

KiA +A
(10)

where KS , KO and KA are the half saturation parameters
linked to each state and KiA and KiO are the inhibition
constants. kOS represents the yield coefficient between
oxygen and substrate consumptions and kOA between
oxygen and by-product consumptions. Smooth saturation
factors ruled by Monod laws are composed of µS,max,
µO,max and µA,max as maximal values of specific growth
rates and the inhibitory by-product is represented by A.

Sonnleitner and Käppeli (1986) have introduced the bot-
tleneck assumption to explain the metabolic switches of
microorganisms in relation to their limited oxidative ca-
pacity. The changes can be explained by the substrate inlet
flux and two operation regimes. The respiro-fermentative
(RF) regime occurs when the by-product is produced, as a
consequence of overfeeding (the concentration of substrate

Fig. 1. Bottleneck assumption for cell limited respira-
tory capacity (adapted from Sonnleitner and Käppeli
(1986)).

is larger than the critical concentration Scrit). The respi-
rative (R) regime takes place when both substrate and
by-product are oxidized (see Figure 1).

The fed-batch bioreactor dynamics are described with the
following differential equations:

dX

dt
=(µ1 + µ2 + µ3)X −DX

dS

dt
=−(k1µ1 + k2µ2)X −D(S + Sin)

dA

dt
=(k3µ2 − k4µ3)X −DA

dO

dt
=−(k5µ1 + k6µ2 + k7µ3)X −DO + kLa(Osat −O)

dC

dt
=(k8µ1 + k9µ2 + k10µ3)X −DC − kLa(Csat − C)

dV

dt
=Fin

(11)
where Sin is the inlet substrate concentration; Fin is the
inlet feed rate; V is the bioreactor volume; D the dilution
rate, expressed as D = Fin/V ; kLa is the volumetric
transfer coefficient; Osat and Csat are the dissolved oxygen
and carbon dioxide saturation concentrations, respectively.
For convenience, the state vector, the control input and the
measurements are often represented by

x = [ x1 x2 x3 x4 x5 x6 ]′ = [ X S A O C V ]′ ,

u = D and y = Cyx ,

respectively, with Cy being a given constant matrix to be
defined later.

3. CONTROL STRATEGY

In order to maximize the biomass production, a normal
procedure is to drive the substrate concentration to its
critical level Scrit. However, it is delicate to keep S close
to Scrit since the sensitivity of substrate probes are too low
for small concentrations. This practical disadvantage can
be circumvented by a suboptimal strategy involving the
regulation of the by-product concentration at a low level
(Valentinotti et al., 2003). In contrast with the strategy
of Coutinho and Vande Wouwer (2010) which considers
the estimation of µ1 and µ3, in this paper, an observer-
based partial feedback linearizing control law is applied
to regulate x3 around its set point reference value x∗3
(typically, very close to zero) as illustrated in Figure 2.
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Fig. 2. Proposed control strategy.

In the following, the partial feedback linearization and the
observer design are detailed.

3.1 Robust Control Law

The following assumptions for the control design are for-
mulated: (i) the theoretical value of Scrit is very small
(typically smaller than 0.1 g/L) and (ii) there is no ac-
cumulation of glucose in the bioreactor. Thus, the small
amount of glucose is instantly consumed by the microor-
ganisms, and in turn, dx2

dt ≈ 0 and x2 ≈ 0. Thus, the
following relation can be derived from the second equation
of (11)

µ2x1 ≈ −k1µ1x1 + Sinu

k2
(12)

Taking the by-product dynamics into account and apply-
ing equation (12) yields the following reduced-order model:

ẋ3=

(
−k3k1µ1

k2
− k4µ3

)
x1 +

(
k3Sin

k2
− x3

)
u (13)

To simplify the feedback linearizing design, it is assumed
that µ3 ≈ 0, due to the extremely low production of by-
product when the optimal conditions are reached. More-
over, the specific growth rate µ1 is modeled by the follow-
ing time-varying parameter:

µ1 = µ1(t) = µ̄1 + σ(t)µ̂1 , σ(t) ∈ [−1, 1] (14)

where µ̄1 is the mean value of µ1(t) and the term σ(t)µ̂1

is the deviation from µ̄1. Assuming that the maximum
(µ1max) and minimum (µ1min) values are known, µ̄1 and
µ̂1 can be computed using the following equations:

µ̄1=
µ1max + µ1min

2
, µ̂1=

µ1max − µ1min

2
. (15)

In view of the above simplifications and the reduced-order
model in (13), the following control law is proposed:

uPL =
1

k3Sin

k2
− x3

(
k3k1µ̄1x1

k2
+ λ(x∗3 − x3)

)
(16)

where λ(x∗3 − x3) is a free linear dynamic to be designed
later in this paper. This control law approximately drives
x3 towards x∗3, which is set as a small value. Note that Sin

is always positive and k3Sin/k2 − x3 is typically always
positive (since the controller only acts when the process
is in fed-batch mode and x3 has a small positive value)
which guarantees that (16) is non singular.

A robust control setting is considered for designing the
parameter λ, where the time-varying parameter σ = σ(t)

is used to bound the non-canceled nonlinearity of the
growth rate µ1 in the closed-loop system of (13) with (16).
Precisely, the closed-loop dynamics can be cast as follows:

ẋ3 = −λx3 + λx∗3 − k4µ3x1 +
k3k1
k2

(µ̄1 − µ1)x1

Applying the assumption of µ3 ≈ 0, the above dynamics
can be further simplified to the following:

ẋ3 = λ(x∗3 − x3) +
k3k1
k2

(µ̄1 − µ1)x1 (17)

By defining ξ = x∗3 − x3, the following input-output
mapping can be written to represent the tracking error
by-product dynamics:

M :

{
ξ̇ = −λξ − µ̂1σ(t)w

z = ξ
(18)

where w := k3k1

k2
x1 is the input disturbance to the system

M, σ(t) ∈ ∆ := [−1, 1] and z represents the performance
variable (i.e., the tracking error).

In this study, the parameter λ is computed by means of
the LMI framework. More precisely, a convex optimization
problem in terms of parameter-dependent LMI constraints
is derived in order to minimize an upper bound on the H∞
norm of the quasi-LPV model, ensuring robustness against
model uncertainties and exogenous disturbances.

Considering a finite time interval [0, T ],the L2-gain of M
is defined by assuming zero initial conditions:

∥Mwz∥∞,[0,T ] := sup
σ∈∆,0̸=w

∥z∥2,[0,T ]

∥w∥2,[0,T ]
(19)

where T is the batch period and w is assumed to be a
signal with finite energy in T .

An upper-bound α on ∥Mwz∥∞,[0,T ] can be minimized by
means of the following optimization problem:

min
λ,α

α : ∥Mwz∥∞,[0,T ] ≤ α , σ ∈ ∆ (20)

subject to the stability of M, where λ and α are the
decision variables.

Based on this idea, the following candidate control-
Lyapunov function is considered:

V (ξ) = ξ′Qξ (21)

where Q is a positive scalar to be determined.

The condition ∥z∥2,[0,T ] ≤ α∥w∥2,[0,T ] and the closed-loop
stability are ensured by means of the following Lyapunov-
like stability condition (Boyd et al., 1994):

min
σ∈∆

α : V (ξ) > 0 , V̇ (ξ) +
1

α
z′z − αw′w < 0 (22)

The time derivative of V (ξ) can be cast as follows:

V̇ (ξ) = 2ξ′Qξ̇ = 2ξ′Q(−λξ − µ̂1σw)

=

[
ξ
w

]′ [ −2Qλ −µ̂1Qσ
−µ̂1σQ 0

] [
ξ
w

]
(23)

Applying (23) in (22) yields the following inequality:[
ξ
w

]′ [ −2m −µ̂1Qσ
−µ̂1σQ −α

] [
ξ
w

]
− 1

α
z′z < 0 (24)

with m = λQ being the controller parameter.
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Using the Schur’s complement in the later expression leads
to the following convex optimization problem:

min
Q,m,α

α :



α > 0 , Q > 0 , m > 0 −2m −µ̂1σ1Q 1

−µ̂1σ1Q −α 0

1 0 −α

 < 0

 −2m −µ̂1σ2Q 1

−µ̂1σ2Q −α 0

1 0 −α

 < 0

(25)

for σ1 = −1 and σ2 = 1.

The LMI constraints on the right hand side of (25)
are sufficient conditions to ensure the local asymptotic
stability of system M. If there exists a solution to the
above optimization problem, then the parameter λ is
obtained by means of λ = mQ−1.

3.2 Extended Adaptive Luenberger Observer Design

In the preceding section, the controller is based on the
measurements of all needed outputs. Nonetheless, this is
not the case for E. Coli cultures, as acetate on-line probes
are barely available (Dewasme et al., 2013). To overcome
this problem, an extended Luenberger observer estimating
x3 is proposed. Note that, the model observability with
respect to substrate and biomass measurements has been
proved by Dewasme et al. (2013). Since the bioreactor dy-
namics depend on the operation regimes (respirative and
respiro-fermentative), the proposed extended Luenberger
observer has adaptive gains, precisely: one for the respira-
tive regime (LR) and another for the respiro-fermentative
(LRF ) regime. When the process reaches low concentra-
tions of substrate, the observer starts to switch between
LR and LRF depending on the regime (larger substrate
concentration than Scrit or smaller, respectively).

To implement an observer that adapts between the two
regimes it is assumed that the process dynamic can be
expressed as fj(x, u) with x = [x1; x2; x3; x4; x5; x6]
and j = [R RF ] (i.e.: the dynamic fR(x, u) represents
the process dynamics when the system is in the respira-
tive regime). Consequently, the Luenberger observer is de-
signed taking the nonlinear switching system into account:

ẋ = fj(x, u) +Bww
y = Cyx+Dww

(26)

where x ∈ X ⊂ ℜn is the state vector, u ∈ U ⊂ ℜnu

is the input vector, w ∈ W ⊂ ℜnw is the vector of
disturbance signals, y ∈ Y ⊂ ℜny is the output vector
and Bw ∈ ℜn×nw , Cy ∈ ℜny×n and Dw ∈ ℜny×nw are
constant matrices.

Based on equation (26), a Luenberger observer (Figure 2)
is proposed:

˙̂x = fj (x̂, u) + Lj(y − ŷ)
ŷ = h (x̂)

(27)

with x̂ the state vector estimate, Lj the observer gain.

Defining the observation error as e := x − x̂, the error
dynamics is approximated as follows:

ė = (Fj(x̂, u)− LjC) e+ (Bω − LjDω)ω (28)

where the state dependent elements of Fj(x, u) are con-
sidered as bounded time-varying parameters θj(t) in order

to determine the mode dependent observer gains Lj via a
convex optimization problem computed offline. Hence, the
error dynamics are redefined as follows:

ė = [ Fj (θj, u)−LjCy Bw−LjDw ]

[
e
w

]
(29)

where θj ∈ Θj ⊂ Rq and Θj is a known polytope.

Next, the Lyapunov theory is used to ensure the stability
of the system. For this purpose, the following quadratic
function is considered:

V (t) = V (e) = e′Pe , P = P ′ > 0 . (30)

The error dynamics will be locally asymptotically stable if
V̇ (e) < 0. In view of (30), the time derivative of V (e) is:

V̇ (e) = ėP e′ + e′P ė (31)

Taking (29) and (31) into account and defining υ =[
e′ w′ ]′ the time derivative of V (e) can be expressed as:

V̇ = υ′
[
PFj+F

′
jP− PLjCy− C ′

yL
′
jP ∗

B′
wP −D′

wL
′
jP 0

]
υ (32)

where the asterisks (*) denoting block matrices are inferred
by symmetry. Note that as both gains are computed with
the same Lyapunov function, the switching stability of
both are guaranteed (refer to Liberzon (2003)).

In addition to stability, an upper bound constraint on
the H∞ norm of the state estimation error over the state
measurement error is designed. Note that, as mentioned
in Section 3, the substrate sensor has low sensitivity for
low concentrations, resulting in a noisy measurement. To
this end, the same methodology proposed for the controller
design, equation (19), is used for the observer design, but
this time considering ω as the measurement disturbances.
The minimization problem can be rewritten as:

V̇ (x) + e′C ′
zγ

−1
j Cze− γjx

′x− γjw
′w < 0 (33)

Replacing the time derivative of the Lyapunov function
(31) in the last condition and applying the Schur comple-
ment, the following optimization problem arises:

min
P,Rj ,γj

γj :


P > 0 Πj ∗ ∗ ∗
B

′

wP−D
′

wR
′

j 0 -γjInw 0

Cz 0 0 -γjInz

<0
(34)

with Πj = Fj(θj)
′P −C ′

yR
′
j +PFj(θj)−RjCy, Rj=L

T
j P .

The variables for the optimization problem under LMI
constraints are γj , P and Rj from which the observer
gains are obtained by solving the LMIs at the vertices of
θj applying Lj = P−1Rj .

With this method, the observer may have a bias on its
estimated states. This can be resolved by restricting the
matrix Rj in a way that ∥Lj∥ ≤

√
ψI. Thus, the restriction

equation (35) is solved at the same time as (34).

min
P,Rj ,γj

γj :


(P − ψI) ≥ 0[
ψI R

′

j

Rj I

]
≥0

(35)

In order to obtain Fj (θj, u), the nonlinearities are grouped
in two polytopes to obtain LR and LRF , one for respirative
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regime θR = [ θ2 θ3 θ6 θ8 θ9 ] and another for respiro-
fermentative regime θRF = [ θ1 θ4 θ5 θ7 θ10 ]

θ1=
qS
k1

; θ2=
qS,crit
k2

; θ3=
(θ1 − θ2)

k3
;

θ4=
(qO − qSkOS/kOA)

k4
; θ5=(θ1)

′
x2
x1; θ6=(θ2)

′
x3
x1;

θ7=(θ4)
′
x3
x1; θ8=(θ2)

′
x2
x1; θ9=(θ1)

′
x3
x1;

θ10=(θ3)
′
x2
x1;

where (θind)
′
xind

denotes the partial derivative of θind by
xind.

4. SIMULATION RESULTS

The process simulation uses the parameters presented in
Table 1 and the process stops when the maximum tank
volume of five liters is reached. The critical concentration
of substrate is very small and is set to 0.03 g/L for this
application. The implemented control law is redefined as
follows:

uPL =
1

k3Sin

k2
− x̂3

(
k3k1µ̄1x̂1

k2
+ λ(x∗3 − x̂3)

)
(36)

The controller gain (equation (25)) and the observer gains
(equation (34) and (35)) are solved using the parser Yalmip
(Löfberg, 2004) and solver SDPT-3 in Matlab (Toh et al.,
1998).

The proposed control law is designed and the robust
feedback gain is computed by equation (25). The robust
gain is λ = 3.0631 × 103 and the by-product set-point
(x∗3) is set to 0.1 g/L. Note that the optimization routine
computes the largest gain possible, i.e. a robust gain,
that guaranties the stability objectives within the selected
boundaries.

Next, the extended adaptive Luenberger observer gains
LR and LRF are designed assuming x1 (biomass) and x2
(substrate) measurements, while taking the following two
polytopes of admissible values for the states into account
to design the observer:

XR={0≤S≤2.5; 0.2≤A≤ 1.2; 0≤X≤35; 0≤D≤0.045},
XRF={0≤S≤ 0.1; 0.1≤A≤1.2; 0≤X≤35; 0≤D≤0.045}.
Taking into account that the designed observer has two
groups of five nonlinearities, this implies that the stability
condition system has 210 vertices. The observer gains
resulting from (34) and (35) with ψ = 0.01, Bw = 1.0e6 ∗
In×n, Dw =

[
1.0e6 0 0 0 0; 0 1.0e3 0 0 0

]
and Cy =

[ 1 0 0 0 0; 0 1 0 0 0 ] are obtained from LR = P−1RT
R

and LRF = P−1RT
RF :

LR=


0.0173 −0.0105
−0.0244 0.0153
−0.0647 0.0391

0.0001 −6.0482e−5

−0.0002 0.0001

, LRF=


0.0120 −0.0206
−0.0168 0.0632
−0.0124 0.0603

−5.5303e−5 0.0003

4.4974e−5 −0.0003


For a more realistic simulation, disturbance with a normal
distribution and deviation of 15 % and 30 % of each signal
are added to the biomass and substrate measurement
respectively. The difference of percentages emulate less
reliability of substrate sensors.

X0 5.0 g/L S0 2.0 g/L
A0 0.5 g/L V0 3.17 L
Fin 0.001 L/h Sin 250 g/L
µS,max 1.832 g/g h k1 3.164 g/g
KS 0.1428 g/L k2 25.22 g/g
kOS 2.020 g/L k3 10.90 g/g
µO,max 0.7218 g/g h k4 6.382 g/g
KiO 6.952 g/L k5 1.074 g/g
µA,max 0.0967 g/g h k6 11.89 g/g
KA 0.5236 g/L k7 6.089 g/g
kOA 1.996 g/L k8 1.283 g/g
KiA 5.85 g/L k9 19.09 g/g

k10 6.57 g/g

Table 1. Inputs and model parameters (Hafidi
et al., 2008; Rocha, 2003).
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Fig. 3. Relative errors for the robust observer.

Taking advantage of the observer tolerance w.r.t noise,
instead of using the biomass measurement x1 for the
controller input, the estimated biomass (x̂1) is used. Fig-
ure 3 shows the relative errors of the observer and Fig-
ure 4 shows the process response, the aim of which is to
maximize biomass productivity. The process starts with
a batch until the acetate concentration reaches the set-
point. The controlled input flow rate then starts to act
to maintain the acetate at its setpoint. Due to the low
production of acetate and the nonlinearities, the process
switches between the respiro-fermentative and respirative
gains (see Figure 5). The robust observer guarantees for
each mode the fast convergence of the state estimator
for each different mode. This fast convergence allows to
combine observer and controller benefits.

5. CONCLUSION

This paper presents a control strategy to maximize pro-
duction of biomass in a fed-batch bioreactor using a robust
controller coupled to an observer. According to Lyapunov’s
arguments, it is possible to rewrite the problem in a LMI
framework that ensures the convergence and robustness of
the controller. As this requires the by-product concentra-
tion measurement, an extended adaptive Luenberger ob-
server is designed using the biomass and substrate concen-
tration measurements. The achieved biomass productivity
is similar to earlier studies (Santos et al., 2012; Dewasme
et al., 2011) but is reached with more robustness with
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Fig. 4. Simulation Results. Estimated states in green and
real values in blue.

Fig. 5. Observer switching between respirative gain and
respiro-fermentative gain.

respect to uncertainties and perturbations, and with the
use of only two measurement probes, decreasing the cost
of the established strategy.
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