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MAIS DO QUE UM CIRCUITO RESILIENTE A VARIAÇÕES DE
ATRASO: UM ESTUDO DE CASO SOBRE MELHORIAS

ORIENTADAS À CONFIABILIDADE NO BLADE

RESUMO

À medida que o projeto de VLSI avança para tecnologias ultra submicron, as margens
de atraso adicionadas para compensar variabilidades de processo de fabricação, temperatura de
operação e tensão de alimentação, tornam-se uma parte significativa do período de relógio em
circuitos síncronos tradicionais. As arquiteturas resilientes a variações de atraso surgiram como uma
solução promissora para aliviar essas margens de tempo projetadas para o pior caso, melhorando o
desempenho do sistema e reduzindo o consumo de energia. Essas arquiteturas incorporam circuitos
adicionais para detecção e recuperação de violações de atraso que podem surgir ao projetar o circuito
com margens de tempo menores. Os sistemas assíncronos apresentam potencial para melhorar
a eficiência energética e o desempenho devido à ausência de um sinal de relógio global. Além
disso, os circuitos assíncronos são conhecidos por serem robustos a variações de processo, tensão e
temperatura. Blade é um modelo que incorpora as vantagens de projeto assíncrono e resilientes a
variações de atraso. No entanto, o Blade ainda apresenta desafios em relação à sua testabilidade,
o que dificulta sua aplicação comercial ou em larga escala. Embora o projeto visando testabilidade
com Scan seja amplamente utilizado na indústria, os altos custos de silício associados com o seu
uso no Blade podem ser proibitivos. Por outro lado, os circuitos assíncronos podem apresentar
vantagens para testes funcionais, enquanto o circuito resiliente fornece feedback contínuo durante o
funcionamento normal do circuito, uma característica que pode ser aplicada para testes concorrentes.
Nesta Tese, a testabilidade do Blade é avaliada sob uma perspectiva diferente, onde o circuito
implementado com o Blade apresenta propriedades de confiabilidade que podem ser exploradas para
testes. Inicialmente, um método de classificação de falhas que relaciona padrões comportamentais
com falhas estruturais dentro da lógica de detecção de erro e uma nova implementação orientada
para teste desse módulo de detecção são propostos. A parte de controle é analisada para falhas
internas, e um novo projeto é proposto, onde o teste é melhorado e o circuito pode ser otimizado pelo
fluxo de projeto. Um método original de medição de tempo das linhas de atraso também é abordado.



Finalmente, o teste de falhas de atrasos em caminhos críticos do caminho de dados é explorado como
uma consequência natural de um circuito implementado com Blade, onde o monitoramento contínuo
para detecção de violações de atraso fornece a informação necessária para a detecção concorrente
de violações que extrapolam a capacidade de recuperação do circuito resiliente. A integração de
todas as contribuições fornece uma cobertura de falha satisfatória para um custo de área que, para
os circuitos avaliados nesta Tese, pode variar de 4,24% a 6,87%, enquanto que a abordagem Scan
para os mesmos circuitos apresenta custo que varia de 50,19% a 112,70% em área, respectivamente.
As contribuições desta Tese demonstraram que, com algumas melhorias na arquitetura do Blade,
é possível expandir sua confiabilidade para além de um sistema de tolerância a violações de atraso
no caminho de dados, e também um avanço para teste de falhas (inclusive falhas online) de todo o
circuito, bem como melhorar seu rendimento, e lidar com questões de envelhecimento.

Palavras-Chave: projeto resiliente a variações de atraso, projeto assíncrono, projeto visando tes-
tabilidade, teste funcional, falhas de stuck-at, falhas de atraso, blade.



MORE THAN A TIMING RESILIENT TEMPLATE: A CASE STUDY
ON RELIABILITY-ORIENTED IMPROVEMENTS ON BLADE

ABSTRACT

As the VLSI design moves into ultra-deep-submicron technologies, timing margins added
due to variabilities in the manufacturing process, operation temperature and supply voltage become a
significant part of the clock period in traditional synchronous circuits. Timing resilient architectures
emerged as a promising solution to alleviate these worst-case timing margins, improving system
performance and/or reducing energy consumption. These architectures embed additional circuits
for detecting and recovering from timing violations that may arise after designing the circuit with
reduced time margins. Asynchronous systems, on the other hand, have a potential to improve energy
efficiency and performance due to the absence of a global clock. Moreover, asynchronous circuits are
known to be robust to process, voltage and temperature variations. Blade is an asynchronous timing
resilient template that leverages the advantages of both asynchronous and timing resilient techniques.
However, Blade still presents challenges regarding its testability, which hinders its commercial or
large-scale application. Although the design for testability with scan chains is widely applied in the
industry, the high silicon costs associated with its use in Blade can be prohibitive. Asynchronous
circuits can also present advantages for functional testing, and the timing resilient characteristic
provides continuous feedback during normal circuit operation, which can be applied for concurrent
testing. In this Thesis, Blade’s testability is evaluated from a different perspective, where circuits
implemented with Blade present reliability properties that can be explored for stuck-at and delay
faults testing. Initially, a fault classification method that relates behavioral patterns with structural
faults inside the error detection logic and a new test-driven implementation of this detection module
are proposed. The control part is analyzed for internal faults, and a new design is proposed, where
the test coverage is improved and the circuit can be further optimized by the design flow. An original
method for time measuring delay lines is also addressed. Finally, delay fault testing of critical paths
in the data path is explored as a natural consequence of a Blade circuit, where the continuous
monitoring for detecting timing violations provide the necessary feedback for online detection of
these delay faults. The integration of all the contributions provides a satisfactory fault coverage for
an area overhead that, for the evaluated circuits in this thesis, can vary from 4.24% to 6.87%, while



the scan approach for the same circuits implies an area overhead varying from 50.19% to 112.70%,
respectively. The contributions of this Thesis demonstrated that with a few improvements in the
Blade architecture it is possible to expand its reliability beyond a timing resilient system to delay
violations in the data path, but also advances for fault testing (including online faults) of the entire
circuit, yield, and aging.

Keywords: timing resilient design, asynchronous design, design for testability, functional testing,
stuck-at faults, delay faults, blade.
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1. INTRODUCTION

Energy efficiency has become one of the most constant and important demands for con-
temporary applications, such as for mobile devices, high-performance data centers, and embedded
systems. As VLSI design technologies approach more and more in the domain of low power, timing
margins become a significant factor when designing traditional synchronous circuits with optimal
clock period. These circuits must incorporate timing margins to ensure correct operation under
worst-case conditions. The designer must account for timing variability due to the manufacturing
process, circuit aging and circuit operation under a wide range of temperatures. Also, voltage supply
must also be conservative, even though the chip has the potential to operate at lower voltages, which
could help to reduce energy consumption. These timing uncertainties increase the delay margins
that must be incorporated to the clock period, which limits the performance gains and increases the
power consumption.

According to the 2011 ITRS (International Technology Roadmap for Semiconductors)
[ITR11], one of the main challenges in the development of modern integrated circuits is the dis-
tribution of a single clock signal for controlling the entire circuit. The asynchronous design style
removes the need of a global clock signal, thus eliminating problems related to clock skew and clock
distribution. Instead, synchronization occurs using a handshake protocol between circuit elements.
Asynchronous circuits are often implemented with one of two designs styles, quasi-delay-insensitive
(QDI) and bundled-data (BD). The first one embeds a completion signal in the data representation,
which makes the design robust to PVT variations [BEE07], but they are often larger (4x) if com-
pared to traditional synchronous implementations. The second one presents lower area than QDI,
but similar to synchronous circuits, they must also be implemented with sufficiently large margins to
account for PVT variations. Regarding these timing margins in BD designs, different solution were
proposed, such as duplicating the BD delay lines [CHA10] and constraining the design to regular
structures such as programmable logic array (PLA) [JAY06].

Timing resilient architectures also emerged as a promising solution to alleviate these pro-
cess, voltage and temperature (PVT) timing margins in synchronous designs [ERN03] [DAS09]
[FOJ13] [KWO14] and in asynchronous BD designs [HAN15] by allowing timing violations. How-
ever, these architectures need additional circuitry to detect and recover from these timing violations,
leading to high area and recovery penalties. Moreover, some of these architectures are susceptible
to metastability problems [BEE14] that can prevent their use.

The Blade template [HAN15] is an alternative that combines the advantages of the asyn-
chronous BD designs and timing resilient techniques to alleviate timing margins and address the
metastability issues of previous works. Blade uses two reconfigurable delay lines and error detection
logic to detect timing violations coupled to a novel speculative handshake protocol that improves
average-case performance. A Blade circuit can achieve as much as 30% power reduction at the
same performance, when compared to a similar synchronous circuit, for an area overhead of about
10%. Despite these promising results and increasing evolution of timing resilient architectures,
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Blade’s practical usage (as other timing resilient circuits) is still hindered by the challenges regarding
testability. In general, the Design for Testability (DfT) is a well established research area. Even for
asynchronous circuits a lot has been done in the last decades [PAG92] [KHO94] [PET95b] [RON96a]
[PET97] [KAN99] [BER02] [BEE03] [SHI05] [GIL06] [RON15].

In classic design style (synchronous non-timing resilient) the most common DfT approach is
to apply scan chains to add observability and controllability, and the internal states of the circuit can
be initialized by test patterns and the resulting computation of these patterns extracted for analysis.
It is further explained later that the fault models (e.g., stuck-at and delay) for synchronous and
asynchronous circuits are the same. The difference is how fault effects express themselves. Another
difference that affects the testability of asynchronous circuits is the absence of a global clock, which
provides a lock-stepped computation that eases the test control on synchronous circuits. Some
works address this problem by adding a synchronous test mode to the asynchronous implementation
[BEE03], so that a dedicated clock controls the sequential elements only during the test. In this
scenario, traditional static timing analysis is performed to identify critical paths in the circuit, and
scan-based structural approach with automatic test pattern generator (ATPG) is applied for testing
these paths. However, with increasing delay variations in modern technologies, static timing analysis
becomes inaccurate [KRS98], even for the classic synchronous design approach. With timing resilient
circuits, testing can become even more complicated, since now the timing analysis must not only
account for the PVT delay variabilities but it must also consider that a given path can produce
timing violations that are only observable and handled during at-speed functional operation.

Delay fault testing of timing resilient circuits is fundamentally different from testing con-
ventional circuits because the former tolerates some timing violations, and not all timing violations
become a fault. The work of Yuan [YUA13] is one of the first to address the testing challenges
of timing resilient architectures. Yuan proposed a scan-based approach for testing a synchronous
timing resilient architecture, where the error detection logic is reused as a fault detection mechanism
for path delay faults. To accomplish this task a clock divider and a duty-cycle controller are respon-
sible for creating specific clock configurations that allow delay fault detection through the detection
mechanism.

Although the work of Yuan presents a possible solution for testing Blade through a dedi-
cated synchronous mode implementation, the proposed scan design is custom made for the analyzed
architecture, and also rely on an additional clock divider and a duty-cycle controller circuitry, which
leads to another critical aspect of testing timing resilient architectures. As already mentioned, de-
tection mechanisms in resilient circuits incur area overheads. Thus, the area for test circuitry is
constrained. For example, when comparing Blade [HAN15] and Bubble Razor [FOJ13] to a classical
synchronous design, the overall area overhead for the Blade implementation is 8.4%, and 21% in-
crease in combinational logic and 280% in the sequential area for the Bubble Razor implementation.
The area overhead for DfT on Bubble Razor can be prohibitive, mainly due to the significant increase
in sequential area which leads to longer scan chains.
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In this sense, the usage of non-standard sequential components in asynchronous circuits
hinders the scan-based approach because it incurs in high area penalties. On the other hand,
asynchronous designs have some advantages over synchronous regarding its testability. For instance,
a stuck-at fault in the asynchronous controller can halt the entire circuit, making such fault detectable
with a functional test [PAG92]. Furthermore, timing resilient circuits provide constant time checking,
which can be explored for concurrent testing during functional operation.

1.1 Objectives

The Thesis general objective is to demonstrate that the Blade template, with few proposed
improvements, is more than an asynchronous timing resilient template. It is a possible DfT approach
for asynchronous BD design style, that can cover stuck-at and path delay faults in Blade’s specific
modules through different testing phases, from online testing to structural testing. The proposed
implementation present lower area overheads when compared to classic scan approach, and increased
yield and aging properties when compared to synchronous timing resilient and non-timing resilient
designs. To reach this goal, the following specific objectives were addressed during this Thesis:

• Implement a test environment to simulate and analyze the behavior of stuck-at
and path delay faults on Blade: This includes the description of a high-level simulation
environment to experiment and validate different approaches for testing Blade.

• Propose a test method for detecting faults in Blade: A circuit implemented with Blade
is divided into four blocks: (i) controller; (ii) error detection logic; (iii) delay lines; (iv) data
path. Each block is individually analyzed for its testability, and a method for detecting stuck-at
and/or path-delay faults is presented;

• Propose alternative implementations to improve fault coverage and area overhead
in Blade: A design implementation aiming testability to improve fault coverage and area
overhead for the proposed test method. Thus alternative designs of the controller and error
detection logic are considered;

• Modify the Blade design flow to allow automatic insertion of the proposed test
methods: One goal of this work is to modify Blade’s original synthesis flow to support
automated insertion of the proposed test methods;

• Evaluate area overhead and fault coverage of the proposed implementations: The
area overhead and fault coverage of each block is compared to the original implementation.

1.2 Contributions

The main contributions of the Thesis are:
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1. A fault classification method for Blade: A fault classification method and the fault analysis
of Blade’s error detection logic was proposed and published in [KUE16] (Section 4.3). The
presence of unconventional sequential cells inside the error detection logic prevents the use of
standard ATPG. In this case, the fault classification relates behavioral patterns generated by
the detection logic to existing faults;

2. A testable error detection logic for Blade: Based on the fault analysis of the original error
detection logic, a testable architecture of this block was proposed (Section 4.4). This approach
removes the necessity of making the data path scannable. Instead of standard ATPG, faults
are detected through the proposed fault classification method;

3. A Click-based controller for Blade: A controller with a single internal delay line implemen-
tation using Click [PEE10] was proposed. (Section 5.2). The Click-based design overcome
a limitation of the original Blade flow where the original Burst-Mode controller could not
be further optimized by the synthesys tool. Moreover, it presents higher fault coverage with
functional testing and lower overall area than the original controller;

4. A method for testing delay lines with Blade: An offline method for testing the Blade
delay lines according to the design specification and constraints (Section 5.3). Timing resilient
circuits account for process variabilities in the data path, but not for process variability in
Blade’s delay lines. Thus a method for properly measuring the path delay of the delay elements
is proposed;

5. A new method for testing path delay faults in critical paths: A concurrent test method
for detecting path delay faults in the critical path was proposed (Chapter 6). Path delay faults
are detected by transforming the error detection logic into a fault detection mechanism. The
proposed method presents minimal impact in the area while expanding Blade’s usage to yield
and aging improvements.

The following papers were derived from this Thesis:

• As first author:

– On the Reuse of Timing Resilient Architecture for Testing Path Delay Faults in Critical
Paths, F. A. Kuentzer, L. R. Juracy, and A. M. Amory: accepted for publication in DATE
2018 (Qualis A1);

– Fault Classification of the Error Detection Logic in the Blade Resilient Template, F. A.
Kuentzer, L. R. Juracy, and A. M. Amory: published on IEEE ASYNC 2016 (Qualis B2)

– Testable Error Detection Logic Design Applied to an Asynchronous Timing Resilient
Template: submitted to IEEE ISCAS 2018 (Qualis A1);

• As co-author:
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– Optimized Design of an LSSD Scan Cell, L. R. Juracy, M. T. Moreira, F. A. Kuentzer,
and A. M. Amory: published on IEEE Transaction on VLSI 2017 (Qualis A1);

– Testable Q-Flop: A Scannable Metastability-free Memory Element, L. R. Juracy, M. T.
Moreira, F. A. Kuentzer, and A. M. Amory: accepted for publication in IEEE Transaction
on VLSI 2018 (Qualis A1);

– An LSSD Compliant Scan Cell for Flip-Flops, L. R. Juracy, M. T. Moreira, F. A. Kuentzer,
and A. M. Amory: published on IEEE ISCAS 2018 (Qualis A1);

1.3 Document Structure

The rest of the document is organized as follows. Chapter 2 provides relevant background
information. Chapter 3 presents state of the art in timing resilient circuits and their testability. This
chapter also summarizes the main works in asynchronous BD design testing. Chapter 4 presents the
fault analysis and fault classification for Blade’s error detection logic along with the proposed testable
design. Chapter 5 evaluates the functional testing coverage for the original controller and presents
an alternative design that achieves higher coverage. Also, a method for testing the delay lines is
proposed. Next, Chapter 6 explores the reuse of Blade’s error detection mechanism for detecting
path delay faults in the critical paths. Chapter 7 summarizes the different test methods proposed
in this Thesis and their applications. All proposed methods were integrated into two case studies
to evaluate area overhead and compare these with the classic scan approach. Finally, Chapter 8
presents the final considerations of this work and discusses future works.
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2. CONCEPTS

This Chapter presents some basic concepts on DfT, an overview of two common fault
models, asynchronous circuits and some relevant BD templates, as well as timing resilient architec-
tures.

2.1 Design for Testability

As designs moved from small scale integration (SSI) to VLSI the complexity to test such
circuits became harder. A standard approach to test these VLSI circuits during the 1980s relied
mainly on fault simulation of functional patterns to extract a fault coverage. These patterns were
developed to exercise the internal states and detect manufacturing defects. Several functional
patterns were applied to increase fault coverage. Unfortunately, this approach typically reached a
fault coverage around 80%. The design quality dropped, and the costs increased, which led to the
development and deployment of Design for Testability (DfT).

The first challenge was to find simpler ways of exercising all internal states of design
and increase fault coverage. Initially, ad hoc techniques were proposed to aid the testability and
improve the controllability and observability of the circuit. These techniques relied on making local
modifications, such as insert test points, avoid combinational feedback loops, avoid asynchronous
logic and partition the circuit into small blocks. Even though these methods have substantially
improved the testability of a design, it was difficult to reach more than 90% of fault coverage for
large designs. Their effects are not systematic, and they have to be custom made for each new
project, often with unpredictable results.

An alternative approach for controlling and observing the internal states of sequential
circuits is the structured DfT, which allows direct external access to internal storage elements.
These storage elements with direct external access are called scan cells. This approach allows full
controllability and observability of internal states of the design and reduces the problem of testing
the sequential circuit to testing the combinational logic, for which many solutions and tools for
automatic test pattern generation (ATPG) already existed.

Scan design is probably the most popular structured DfT approach. Scan designs have
the storage elements replaced by scan cells to gain external access. These cells are interconnected
to additional scan input ports and shared/additional scan output ports, forming one or more shift
registers, called scan chains.

Numerous scan cell designs and scan architectures have been developed. The full-scan
architecture consists in replacing all memory elements by scan cells, and combinational ATPG is
used for test generation. In partial-scan architecture, only a subset of memory elements is replaced
by scan cells and connected into the scan chain, but sequential ATPG is typically used for test
generation, increasing the test complexity. The designer’s decision will depend on project constraints
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regarding area and performance overheads, test complexity and the fault coverage goal. As for
the scan technique, the edge-triggered mux-D scan [BUS02] and the level sensitive scan design
(LSSD) [EIC77] [JUR17] are best known and most widely practiced for synchronous circuits cells
types.

Scan design has also become the basis of more advanced DfT techniques, such as logic
built-in self-test (BIST). In such architecture, circuits that generate test patterns and analyze the
output responses of the functional circuitry are embedded in the chip or elsewhere on the same
board where the chip resides. These techniques emerged as an alternative to reduce the high test
expenses of traditional test techniques that use ATPG tools, and to alleviate some test problems
that appeared as the semiconductors manufacturing technologies advanced, for instance, the test of
assembled boards, system test, periodic maintenance and repair test [WAN06a].

Despite the extensive use of the scan-based approach for testing sequential designs in at
speed-tests, functional testing is an alternative way of testing a circuit, that consists in identifying
the functions that the circuit is expected to perform, create input data patterns based on these
function specifications and determine the expected output pattern for each input. As presented
in [KRS03], functional testing may translate into delay fault under-testing, where non-functional
delay paths are not covered. On the other hand, structural testing can over-test paths that are
not functionally activated, resulting in yield loss. Software-based functional testing can be used
to improve the fault coverage of processors [LAI00] [KRA05] [SIN06]. Functional test can also be
applied in-field to check the reliability of a device [TEH11].

2.2 Overview on Stuck-at and Delay Fault Models

Fault models are a computational abstraction used to represent defects [MOU00]. In the
context of manufacturing defects, the stuck-at fault model is one of the most common to detect
defects in integrated circuits. The fault is modeled by assigning a fixed logic value (0 or 1) to a
circuit wire. A line consists of an input or output of a logic gate, flip-flop or latch. The most
popular is the single stuck-at-1 and single stuck-at-0. For example, a logic OR gate of two inputs
with stuck-at-0 at the output will never assume the logical value 1, even in the presence of logic
value 1 at both its inputs.

Another type of manufacturing fault is a speed defect, which can be modeled as a delay
fault. A circuit has a delay fault when its output fails to reach the correct value within a predefined
time constraint. A signal transition is required to observe a delay defect, which involves the appli-
cation of vector pairs that affect the design delay significantly. One of these vectors is responsible
for initializing the circuit under test to a known state. The other is responsible for stimulating the
circuit so that, if the delay of a location or path exceeds the timing constraints of the project, invalid
values are captured by sequential cells or primary outputs, deviating from the expected values, which
characterizes the fault.
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Many delay fault models and test techniques have been proposed and used in digital
circuits [TEH08] [RED09] [BUS02] [JHA03] [CRO99]. The three basic models for delay faults are
transition fault model, gate-delay fault model, and path delay fault model [KRS98]. The transition
fault model [LEV86] [CHE93] assumes that the defect affects a single gate in the circuit, and each
gate can be associated with a slow-to-rise and a slow-to-fall transition fault. To detect a fault, the
transition model assumes that the extra delay prevents a transition from reaching a primary output
at the observation time. The advantage of the transition fault model is that the number of faults
is linear to the number of gates in the circuit, but expect that the delay fault is large enough to be
observed might not be realistic.

The gate delay fault model [CAR87] [PRA97] also assumes that the delay fault affects
only one gate, but unlike the transition model, the gate delay fault model implies that an increase
in delay might affect the performance. Since it takes into account the circuit delays, it is related
to a quantitative model and the transition model to a qualitative one. The limitations of the gate
delay model are similar, due to the single gate fault assumption, that may fail to detect delay faults
that are a sum of small delay defects. On the other hand, the path delay fault model [SMI85] can
detect small distributed delay defects. The delay of a path represents the sum of the gate delays
and interconnections on the path. A delay defect on a path can be observed by applying a transition
at the beginning of the path and observing its effect during the propagation through this path. A
limitation of this fault model is that the number of paths in the circuit can be very large, most
often exponential on the number of gates. For this reason, not all paths are tested. Usually, the
longest path containing a given signal or paths where the expected delay is greater than a specified
threshold are selected.

2.3 Asynchronous Circuits

Most currently fabricated digital circuits follow the paradigm of synchronous clocked de-
sign. In synchronous circuits, all components share a common discrete notion of time defined by
a global clock signal that significantly simplifies their design. On the other hand, asynchronous
circuits have no common notion of a discrete time. To perform synchronization, communication,
and sequencing of operations, asynchronous circuits use local handshake between communicating
components. In synchronous terms, it would be like having a circuit where registers are only clocked
where and when needed.

Asynchronous designs have showed advantages in different aspects compared to syn-
chronous designs, like: (i) low power consumption, due to power consumption in standby mode;
(ii) high operation speed, where speed is determined by local latencies instead of global worst-case
delay (the clock period); (iii) less emission of electromagnetic noise; (iv) robustness towards process,
voltage, and temperature variations; (v) no clock distribution and skew [SPA01].
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The choice of a handshake protocol and a data encoding scheme is called a template
[BEE10]. Currently, there are two main design styles of asynchronous templates, QDI and BD
[BEE10]. The first relies on multi-rail data encoding, where the completion signal is embedded into
the data representation. For instance, the dual-rail protocol uses two wires to represent one bit of
data and the corresponding request signal. Even though they provide relaxed timing constraints, the
circuits from this family are usually larger and have higher power consumption than their synchronous
counterparts. Since BD is the design style used in the asynchronous timing resilient template that
will be further treated here, the discussion focus on BD templates only.

BD templates use standard Boolean encoding to represent information, and separate,
request and acknowledge wires, are bundled with data signals to provide synchronization, see Figure
2.1(a). BD designs can employ 2-phase or 4-phase handshake protocols. The 4-phase term refers to
the number of communication actions. Figure 2.1(b) illustrates the waveform for a possible 4-phase
protocol: (1) the sender issues data and sets Req high, (2) the receiver stores the data and sets
Ack high, (3) the sender responds by taking Req low (at this point data is no longer guaranteed
to be valid) and (4) the receiver acknowledges by taking Ack low. At this moment the sender may
initiate a new communication cycle.

Req

Ack

Data

(a) Bundled-data channel

1

2

3

4

Req

Ack

Data

(b) 4-phase protocol

1

2

Req

Ack

Data

(c) 2-phase protocol

Figure 2.1 – (a) Bundled-data block diagram. (b) The 4-phase handshake protocol. (c) The 2-phase
handshake protocol.

The 4-phase protocol has the disadvantage of requiring return-to-zero (RTZ) transitions
that cost unnecessary time and energy, and potentially reduce the performance of the circuit. The
2-phase bundled-data protocol shown in Figure 2.1(c) avoids the RTZ. The request and acknowledge
are encoded as signal transitions. There is no consensus about the protocol type, while the 2-phase
improves performance, the 4-phase requires less complex control circuitry.

There are different design styles for implementing BD control blocks. The main available
templates in the literature use 2-phase handshake protocols. The concept of Micropipelines, intro-
duced in [SUT89], is implemented with particular capture-pass latches that are event-controlled,
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being these capable of sensing transitions at its inputs. Another approach is Mousetrap [SIN07],
which implements 2-phase BD circuits using level-sensitive latches and XOR gates.

A more recent template is Click [PEE10]. Instead of using latches and C-elements, that
are common in many asynchronous designs, the authors proposed a 2-phase BD template that
only uses edge-triggered flip-flops in both data path and control path. This approach facilitates
the asynchronous circuit design flow using standard (third-party) EDA tools, especially for physical
synthesis and static timing analysis.

Another template is a 2-phase BD that, different from the previous ones, does not avoid
RTZ. In the GasP [SUT01] template, instead of separate request and acknowledgment wires, a single
wire represents the full or empty states. With this template, in the first phase the sender rises the
state wire when valid data is available, and in the second phase, the receiver lowers the same state
wire, indicating that the data was consumed.

2.4 Timing Resilient Architectures

Scalability in circuit manufacturing processes allowed performance improvements and in-
creased energy efficiency, but it also led to undesirable side effects, such as PVT variations, and relia-
bility issues due to transistor degradation, which can cause premature failure of the system [TSC09].
Circuit designers add delay margins to compensate for PVT variations and achieve good yield, thus
affecting system performance. An alternative for removing some of the increasingly large delay
margins is the timing resilient design technique.

Different research areas use the resilient term. In physics, for instance, resiliency is a
property of materials that accumulate energy when subjected to stressful situations, such as ruptures.
In other words, resiliency is the ability to return something to its natural state, especially after some
critical or unusual condition. Thus, a circuit is said to be resilient when it can recover its normal
operating status, even after an internal error or caused by external factors.

Different timing resilient architectures have been proposed until now [ERN03] [DAS09]
[FOJ13] [KWO14] [HAN15]. These techniques allow the circuit to operate with relaxed timing
constraints that eventually cause a timing violation. For such cases, these techniques rely on some
error detection logic and on an error recovery mechanism.

For instance, the Razor [ERN03] family was one of the first timing resilient architectures for
synchronous circuits to be proposed. This synchronous approach consists in replacing flip-flops (FF)
on critical paths of the circuit by special ones called Razor Flip-flops. Figure 2.2 presents the basic
diagram of this implementation. The clk signal is designed with less pessimistic time margins, and
it controls the regular FF (Main Flip-flop) data sampling, while the Shadow Latch data sampling is
controlled by a delayed clock (clk_del) that meets the worst-case timing constraints that guarantee
valid data at the output of the latch. The comparison between the values of the Main Flip-flop and
the Shadows Latch flags a timing violation. The error signal causes the circuit to redirect the valid



30

Figure 2.2 – Razor flip-flop [ERN03].

data stored at the latch to be sampled by the FF with a one cycle penalty. The previous stage must
stall, and data at the following stages must be flushed.

Timing resilient circuits benefit from average-case performance. They rely on the fact
that errors have a low probability of occurrence and the recover penalties have a small effect on
performance. At this point, the error rate becomes a vital parameter of this type of design. In this
sense, it becomes a challenge to the designer to dominate and solve the trade-off between allowed
error rate and the performance, power, and reliability of the circuit.
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3. STATE OF THE ART

This Chapter presents an overview of current timing resilient architectures found in the
literature and their testability. The works are divided into four categories: Timing resilient architec-
tures, covering the Razor family and its successive developments and the synchronous Blade template
and other relevant timing resilient circuits; Testability of synchronous timing resilient circuits; Testa-
bility of asynchronous BD circuits since there are no previous works on testing asynchronous timing
resilient circuits. The last section presents conclusions about these topics.

3.1 Timing Resilient Templates

3.1.1 Razor

The Razor architecture [ERN03] emerged as an alternative for eliminating worst-case safety
margins by using a novel voltage management technique, where the processor operates with dynamic
voltage scaling (DVS). As mentioned in Section 2.4, in this technique, Razor FFs replace FFs in
critical paths of the circuit. The circuit then can have the supply voltage scaled down to the
point of the first failure for a given frequency, eliminating all margins due to global and local PVT
variation, thus resulting in energy savings. The supply voltage can be scaled even lower than the first
failure point to achieve additional energy savings. In this case, a targeted error rate is deliberately
tolerated, although this must be carefully considered, since the correction cost is 18 times more
expensive regarding energy than regular operation, as in a 64-bit Kogge-Stone adder.

Based on a set of simulated benchmark experiments, an error rate of 1.5% allows average
energy savings of 41% with a maximum performance slowdown of 6%. A 64-bit Alpha processor
using the Razor technique was manufactured in a 0.18 µm technology. The circuit operates at
200MHz, and the clock for the shadow latch was delayed by 1/2 the clock cycle from the system
clock. Results also show the error detection and correction circuitry represent a 3.1% total power
overhead in an error-free configuration.

3.1.2 Razor II

Razor II [DAS09] is a simplification of the original Razor FF. The Razor II FF removes
the error recovery mechanism from the original proposal and error recovery takes place through
architectural replay. The authors based their new approach on the fact that the error rate at the
point of the first failure is in the order of 1 error in 10 million cycles, which makes recovery energy
negligible. Substantially below the point of the first failure, the energy saving was small (≈10%)
compared to the energy gain from eliminating the PVT margins (≈ 35% to 45%).
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The Razor II FF uses a positive level-sensitive latch instead of a master-slave FF. It also
combines a transition detector (TD) controlled by a detection clock (DC) as presented in Figure
3.1. Valid data is captured if data stabilizes before the rising edge of the clock. If data changes
during the high-phase of the clock, while the latch is transparent, an error signal is flagged. To
prevent valid data transition from being flagged as a timing violation, a short negative pulse on DC
is used to disable the transition detector for a small period. It is equivalent to the propagation delay
from D to Q after the rising edge of the clock. When a timing violation occurs, the whole pipeline
is flushed, and the failing instruction is re-executed. If successive failures occur, the clock frequency
is reduced by half during 8 cycles.

Figure 3.1 – Razor II flip-flop [DAS09].

As a case study, a 64-bit 7-stage Alpha processor featuring Razor II was manufactured in
0.13 µm technology. Results show that with an error rate of 0.04%, energy savings reach up to
37.4%, if compared to the worst-case when the supply voltage is set to ensure correct operation.
The total overhead due to the presence of the Razor II circuitry in error-free operation is up to 1.2%
of the total power.

3.1.3 Razor Lite

Razor-Lite [KWO14] uses a side-channel detection strategy compatible with standard D
FF to reduce additional error detection circuitry. This approach is intended to well-balanced pipeline
implementations, which present a large number of critical paths. Thus the number of FFs that must
detect timing violations is high.

Figure 3.2 illustrates a conventional FF design and the added logic required by Razor-Lite.
The additional circuit connected to the virtual VDD (VVDD) and virtual VSS (VVSS) rails of the
FF acts as a transition detector. Under normal operation, after the rising edge of the clock VVDD
and VVSS are kept charged and discharged, respectively, and no error is flagged. A timing violation
is flagged if D changes after the rising edge of the clock. If D transition to logic level 0 VVDD is
discharged through node DN and VVSS is charged if D transitions to logic level 1. After the falling
edge of clock VVDD and VVSS are restored to their original state.

A 64-bit 7-stage Alpha architecture pipeline demonstrates the use of Razor-Lite. The
processor was prototyped in 45nm SOI CMOS technology, and all 492 decode and execute registers,
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Figure 3.2 – Razor-Lite schematic [KWO14].

which are the processor’s critical path, were replaced by Razor-Lite registers. Error outputs are
grouped via an OR-tree and recorded at a pipeline register. After the rollback, the clock frequency
is reduced by half during 4 cycles to allow the problematic instruction to execute correctly. The
total penalty for an error is 11 cycles. Razor-Lite circuitry increased area in 4.42% and power in
0.3%. Peak energy efficiency is improved by 83% compared to the baseline processor.

3.1.4 Bubble Razor

Bubble Razor [FOJ13] is an architecturally independent approach to timing error detection
and correction. Bubble Razor uses a two-phase latch-based data path instead of a flip-flop based
data path. The error detection circuit presented in Figure 3.3 is similar to the one used in the
original Razor. It is based on a shadow latch that captures the data before the main latch. An error
is flagged if the value at the main latch changes after it becomes transparent.

Figure 3.3 – Bubble Razor schematic [FOJ13].
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Error correction is accomplished by local stalling. When a timing violation is detected,
an error signal (bubble) is propagated to neighboring latches, preventing them from becoming
transparent. Propagating bubbles gate off clock pulses throughout the circuit. This is done by
a clock gating logic connected at each stage and adds time for the correct data to arrive at the
latch that identified the timing violation. Once a neighbor latch receives a bubble, the bubble is
propagated to the next stage and so on. For the cases where loops are present, the authors propose
a bubble propagation algorithm to avoid indefinite bubble propagation.

An ARM Cortex-M3 microcontroller with Bubble Razor was implemented at a 45nm SOI
CMOS technology. A flop-based design was converted to a latch-based implementation. The error
detection logic was added to all latches, resulting in 87% area overhead. When considering reduced
margins, this implementation enables 100% throughput increase or 60% energy reduction when
compared to the microcontroller with worst-case timing margins.

3.1.5 Transition Detector With Time Borrowing and Double Sampling With Time Borrowing

Bowman [BOW09] proposed two error detecting registers, the Transition Detector With
Time Borrowing (TDTB) and the Double Sampling With Time Borrowing (DSTB), and also an
instruction replay-based error recovery mechanism. The TDTB circuit illustrated in Figure 3.4(a)
is a latch-based register that detects input transitions during the high phase of the clock. A data
transition generates a pulse at the XOR output. The XOR output and the Clock feed a gate that
produces the ERROR signal. This gate is equivalent to an asymmetric C-element, a sequential
component used in asynchronous designs. This design removes the risks of metastability being
propagated to the data path. However, there is still the risk of the error signal becoming metastable.
This may happen if the data transitions occur slightly before the rising edge of CLK. In this case,
the metastability is propagated to the control path, compromising circuit operation.

(a) (b)

Figure 3.4 – (a) TDTB circuit [BOW09]; (b) DSTB circuit [BOW09].

The DSTB depicted in Figure 3.4(b) replaces the transition detector of the TDTB by a
shadow flip-flop. On the rising edge of CLK, the latch becomes transparent, and the input data
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is sampled by the Master-Slave Flip-Flop (MSFF). The latch remains transparent during the CLK
high phase. At the end of the CLK’s high phase, if the values from the latch and the MSFF differ,
an error is detected. Similar to TDTB, this approach eliminates data path metastability but also
introduces the risk of metastability on the error signal.

The error recovery mechanism proposed is based on instruction replay. When a timing
violation is detected, the erroneous data is invalidated, and the controller determines the appropriate
instruction replay. During this process, the clock frequency is halved, and once the replay is complete,
the clock is scaled back to its original frequency. A test chip using this technology was manufactured
in a 65nm technology. Results show throughput gains up to 32% when operating at nominal
supply voltage and up to 37% reduction in power consumption when reducing power supply while
maintaining the nominal throughput.

3.1.6 Safe Razor

All known implementations are prone to failures due to the nondeterministic timing behav-
ior producing metastability. SafeRazor [CAN15] is a Razor-based design that combines the Razor
principle with globally asynchronous locally synchronous (GALS) design. This approach removes the
metastability problems reported in [BEE14], and do not require a pipeline flush once a timing error
is detected.

Figure 3.5 – SafeRazor module [CAN15]

Figure 3.5 shows the SafeRazor diagram. In the STORAGE block, a metastability detec-
tor and a timing error detector are implemented. If metastability is detected, the MD stalls the
ring oscillator until resolving the metastability. If a timing error is detected, the Err input of the
multiplexer inside the ring oscillator is selected and the cycle period is extended by the delay d4.
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As a case study, a SafeRazor circuit with 3 GALS islands was implemented. Each island
contains a 4-stage pipeline multiplier. Also, a standard flip-flop version and a Razor version were
compared to SafeRazor. The designs were synthesized with Synopsys Design Compiler targeting
90nm standard cell library. Compared to the synchronous circuit, the total area overhead for Razor
is 27.7%, while for the SafeRazor the overhead is 50.6%. The area increase is mainly due to the
ring oscillator. The performance speeds up linearly, and for a higher operation frequency (60%) the
performance is 15% better than Razor, while for a doubled frequency it is 7% worse.

3.1.7 Blade Template

Blade [HAN15] is a bundled-data timing resilient asynchronous template that, similar to
the SafeRazor [CAN15], was proposed to overcome metastability issues in many of the proposed
timing resilient architectures reported in [BEE14], but also to reduce high timing error penalties
originated by the recovering mechanism of resilient architectures. Figure 3.6 illustrates the basic
Blade architecture. A circuit implemented with Blade can be divided into four main blocks: (i)
controller; (ii) delay lines (iii); error detection logic (EDL); (iv) data path. The Blade controller
communicates with other stages using typical bundled-data channels. The δ delay controls the
moment that data at the output of the combinational logic can be sampled and propagated through
the latch. The Δ delay defines the amount of time that the latch is transparent, and is defined as
the timing resiliency window (TRW). A timing violation is flagged if data changes during the TRW.
The delay values δ and Δ must be designed to be sufficiently large to cover the longest critical path
in their corresponding pipeline stage.
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Figure 3.6 – Blade template [HAN15].

The EDL flags a timing violation by asserting its Err signal. To recover from the timing
violation, the next stage delays by Δ its latch opening, until the correct data is propagated through
the combinational logic. The Blade controller then communicates with its neighbors using channel
L/R and an additional error channel LE/RE. These two channels are used to implement a new form of
asynchronous handshaking protocol, called speculative handshaking [HAN15]. The implementation
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is divided into three interacting Burst-Mode state machines [FUH95]. A more complete description
of these blocks is presented in the following Chapters along with their fault analysis.

Blade’s automated flow uses industry standard tools, including DesignCompiler and Prime-
Time from Synopsys and NC-Sim from Cadence. A set of TCL and Shell scripts are used to automate
the design flow, which converts a single CLK domain synchronous RTL design to an asynchronous
Blade design. Figure 3.7 shows the synthesis flow and its five main circuit conversion steps:

Figure 3.7 – Blade flow, adapted from [HAN15].

1. Synchronous Synthesis: The synchronous RTL description is synthesized to a flip-flop based
design at a given clock frequency;

2. FF to Latch Conversion: Flip-flops are converted to a master-slave latches;

3. Retiming: The latch-based netlist is retimed using a target TRW. In this step latches that
are near-critical path and thus should be converted to EDLs are identified;

4. Resynthesis: Minimize the area and timing overhead by reducing the number of EDLs. This
is done by constraining some latches in near-critical path to have a delay no greater than the
target frequency, which allows the use of standard latches rather than EDLs;

5. Blade Conversion: The resynthesized latch-based netlist is then converted to the Blade
template. Clock trees are replaced by Blade controllers, delay lines, and error detection logic
is also inserted, resulting in the final Blade netlist.

To validate the implementation a 3-stage version of the microprocessor Plasma [PLA14]
targeting a 28nm FD-SOI technology is used as a case study. The circuit was converted from a
666MHz synchronous design to a Blade implementation with a TRW 30% of the clock period. After
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retiming, a total of 456 latches were required to be converted to EDLs, and after the resynthesis, the
number of EDLs decreased 27%. Results show that the overall area overhead of the Blade version
is 8.4% when compared to the original synchronous design. The standard benchmark CoreMark was
used to evaluate performance. Performance of the Blade version increased 19%, with an average
frequency of 793MHz.

3.1.8 Sharp and Error Detecting Latch

Sharp [WAU17] derived from the Blade template [BEE17]. As shown in Figure 3.8, there
is one channel on each side of a controller. Both channels include three signals: Open, Close, and
Acknowledge. The open signal tells the controller to open the latches and close tells to close the
latches and acknowledge indicates that the close signal was received. The open signal speculates
that the input data is valid, while the close signal guarantees a valid data.

Figure 3.8 – The Sharp controller [WAU17].

Sharp uses a two-phase protocol. Latches are only opened when all neighboring blocks
acknowledge that their latches are closed. That means Clk goes high when the XOR output is
low and R.ack transitions. Open and close signals control the TRW in a Sharp controller. Sharp
uses error detecting latches (EDLs) to signal when data at the latches changes while the latches
are transparent [HUA16]. If an error is captured while the clock is high, instead of delaying the
opening of later stages, Sharp delays the closing of all the immediate downstream latches, so that
valid data propagates through those stages. Simulation results show that Sharp achieves 8% higher
throughput when compared to Blade controllers.

An important aspect of timing resilient circuits is the need to detect timing violations.
However, the area and power overheads resulting from replacing conventional sequential elements
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with their equivalent error detection version can be substantial. In this sense, Sharp uses a new
EDL architectures to detect timing violations [HUA16]. The two novel elements are the shadow-
latched-based (SLB) EDL, which favors robustness and sensitivity, and the delayed-input-based
(DIB) EDL that favors lower energy. Results show that proposed designs can achieve as much as
11.2% less overall power consumption and 7.8% smaller area when compared to state-of-the-art
EDLs TDTB [BOW09], Sense-amp [TAD16] and Charge-sharing [KIM15]. Despite these results,
neither Sharp or the new EDLs have had their testability addressed.

3.2 Testing Timing Resilient Circuits

A conventional VLSI chip is defective if it cannot pass at-speed delay tests, but timing
resilient circuits are inherently tolerant to timing violations [YUA13]. Therefore, the pass/fail criteria
for these circuits need to be re-examined. Furthermore, the additional circuitry for timing resiliency,
including the error detection logic and the recovery mechanism need to be fully tested.

There are few works in this area. In [ANA15] a Scan Razor flip-flop (SR-FF) is proposed.
This work is focused on reducing the power consumption by reusing the existing additional circuitry
of the Razor architecture to build a scan cell instead of adding a typical scan design. Another similar
approach is the Time Dilation (TimeD) scan architecture proposed in [FLO08]. In this case, a classic
mux-D is modified to act as a timing violation detector and recovery mechanism. Besides the support
for traditional off-line scan testing, the TimeD architecture is suitable for online (concurrent) timing
error detection and recovery. Like the previous work, the authors are more concerned with a design
that presents low area and performance overheads but do not show results about the testability
of the resilient circuit itself, neither address the supported fault models and fault coverage results.
On the other hand, the work of [YUA13], besides the DfT circuit design, it also addresses the new
challenges of testing timing resilient designs.

The work of Yuan [YUA13] is probably the first and only to the date that evaluates the
problems of testing timing resilient circuits, or as the authors refer to, timing speculative circuits.
The proposed test methodology is based on the DSTB design presented in [BOW09], that consists
of a latch, a shadow master-slave FF (MSFF) and an XOR gate, as depicted in Figure 3.9(a). The
latch operates as a data path memory element for regular computation, while the MSFF captures
the input value for timing violation detection. The latch is transparent on the high clock phase while
the MSFF samples at the rising edge of the clock. If a timing violation occurs the values stored
at the latch and the MSFF will be different, and the XOR gate sets the error signal accordingly.
Consequently, with such a timing speculator design, the high clock phase is the detection window
for timing violations. The Scan-based version of the DSTB is shown in Figure 3.9(b).

The test flow presented by [YUA13] consists of three parts. First, static fault testing (e.g.,
stuck-at faults) is performed in the combinational logic and the Error Generation and Propagation
(EGP) circuit that is used by the system recovery. Next, the delay test of the combinational logic
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(a) (b)

Figure 3.9 – (a) DSTB circuit [BOW09]; (b) Scan-based DSTB circuit [YUA13].

is performed, and at last, the delay testing of the EGP is conducted. As a way to identify delay
faults that exceed the detection window, the authors propose that during the test, the clock cycle
be increased, so that the high phase (detection window) is equivalent to the worst-case of the
combinational logic. If a timing violation is identified at this stage, it means that when in normal
operation the designed detection window is not able to detect a timing violation in the tested path.
This test approach assumes clock cycle controllability. Results show 100% coverage for the EGP
circuits, but despite the author’s comments about the low DfT costs, numbers about area overhead
are not explicitly shown. Even though the work has proposed an attractive solution for structural
testing of path delay and stuck-at faults, the test methodology is designed for synchronous circuits,
and the absence of a global clock may hinder the use of such approach with asynchronous timing
resilient circuits.

3.3 Testing Asynchronous Circuits

As previously discussed in Section 2.3, asynchronous circuits promise advantages over
synchronous circuits, such as lower power consumption, average-case rather than worst-case timing
behavior, improved modularity and more tolerance towards PVT variations. Moreover, in [WOJ14],
according to 2012 ITRS [ITR12], the asynchronous design style will be widely applied in future nano-
electronics. Even though this design style provides advantages, there are two factors that hinder its
massive use: (i) lack of mature design tools; (ii) test related approaches.

From the test perspective, the primary difference between asynchronous and synchronous is
the self-timed computation versus the lock-stepped computation. From the technology perspective,
there is no distinction between manufacturing asynchronous or synchronous CMOS circuits, which
means that defects are similar in both designs [RON99]. For this reason, synchronous test techniques
have been adapted to address the asynchronous test problem.
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Fault models are the same for synchronous counterparts, i.e., stuck-at faults, bridging
faults, delay faults, functional faults, etc. However, fault effects may be different when shifting
from synchronous to asynchronous circuits. For example, a stuck-at fault in the handshake control
signals (e.g., request or acknowledge) of an asynchronous template can result in a system halt, but
a stuck-at within the data path of the asynchronous circuit has the same effect as in its synchronous
counterpart.

According to Section 2.3, there are two main asynchronous design styles, QDI and BD.
As for testability, this division persists, and different test techniques have been proposed for both
styles. Remember that this research is focused on BD templates, more specifically, Micropipelines,
Mousetrap, GasP, and Click templates, which were recently addressed in works that deal with the
test of asynchronous circuits [RON15].

The Micropipeline concept was introduced in the late 80’s, and the papers about the test
of such circuits are from the early 90’s. The test problem is divided into three classes: (i) testing
the control part; (ii) testing the combinational logic in the data path; (iii) testing the memory
element (latches). This division is still used nowadays. Note that this division does not cover the
delay lines required for the correct operation of the Micropipelines. Despite the challenges of testing
asynchronous circuits, the authors state that the control part is easily testable, because a stuck-at
fault in this part halts the circuit. However, this is not entirely true for other approaches [SHI05],
such as Mousetrap. The test strategy proposed by Pagey [PAG92] consists in putting all latches
in transparent mode, creating a big and unique combinational circuit, where standard ATPG tools
for combinational circuits can be used. This approach can be applied for detecting stuck-at faults
and delay faults, except that for delay faults only the overall delay of the combinational logic is
evaluated, and not the individual blocks between stages. However, test pattern generation for this
technique becomes a complex task as the circuit size scales.

The scan technique is the most relevant DfT test technique in industry. It can be applied
to various types of faults including stuck-at, bridging, delay, etc. Full-scan approaches for testing
Micropipelines have been proposed by several authors [KHO94] [PET95a] [PET95b] [KAN99]. These
publications propose custom scan cells to create the scan path and they can test for stuck-at and
delay faults. The full-scan approaches of [BER02] [BEE02] [BEE03] adapt a level-sensitive scan
design (LSSD) for testing stuck-at faults in Micropipelines. The same authors later proposed,
in [BEE05], a multiplexer based scan design, where instead of latches multiplexers are used to
break the feedback loops, and thus they still use combinational test pattern generation without the
overhead of scan latches. The problem with these full-scan approaches is mainly the area overhead
that in the best scenarios are around 20% to 40% for the evaluated circuits.

The partial-scan technique was also adapted for testing asynchronous circuits to reduce
area overheads. In [KHO95], the partial-scan is applied to check for stuck-at faults in the control
part of the circuit. In their design method, control circuits are built using a variety of macro
modules, such as a TOGGLE module, which is modified to a scannable version. It is said to
be smaller than the full-can approaches, but few details are presented. The partial-scan method
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proposed in [RON96a] [RON96b] is used to test data paths and handshake components, such as
multiplexer MUX and sequencer (SEQ), that are necessary for their asynchronous design approach.
Test patterns are generated for stuck-at faults and bridging faults. Furthermore, a new handshake
component, HOLD, is proposed, and it is used to hold the circuit between the handshake protocol,
adding test controllability. A downside of this last approach is that it is specially developed for the
Tangram compilation methodology [BER93], where the control circuit is compiled directly from a
high-level source code into delay-insensitive modules, rather than being synthesized using a low-level
standard-cell library, as it is done in [KIS98]. The results show improvements in the total number of
dummy latches, which are the latches not used in normal operation, only for testing. The dummy
latches are reduced to less than 1%, but this is compared to a circuit that also has scan, so it is not
clear the total area overhead added to the circuit.

Petlin proposes a BIST technique for testing Micropipelines in [PET97]. It consists of
adapting the BILBO register [RUS89] to the asynchronous context. The asynchronous BILBO
register can be configured as a pseudo-random pattern generator, a signature analyzer, a shift
register or to operate in normal mode. This approach allows stuck-at and delay fault testing,
but the problem with this approach is the high area overhead required by the several functional
configurations. For instance, for delay testing, a double-sized BILBO register must be implemented.

The Mousetrap asynchronous template relies on certain timing constraints to guarantee
functional robustness, and unlike Micropipelines, a stuck-at fault may not lead to a pipeline stall
[SHI05]. The challenges for testing stuck-at and delay faults are considered by the following works.
Shi [SHI05] proposed a test method for the Mousetrap circuit. The data path test is similar to
the one presented by Pagey [PAG92], where the circuit is treated as a big and single combinational
circuit for stuck-at fault testing. The same research group proposed in [GIL06] a more general test
approach for delay fault testing of Mousetrap and GasP, where area and performance overheads
are reduced when compared to [SHI05]. However, this is not quantified in the results. The test
strategy relies on functional test methods for generating the test patterns that will load and unload
the pipeline and are likely to expose the delay faults. For stuck-at faults, the applied technique is
the same of [SHI05].

As presented in in Section 2.3, Click is a flop-based asynchronous template that resembles
synchronous circuits as much as possible. Besides simplifying the design flow, the use of flip-
flops in the control and data path also facilitates the DfT of such circuits, since conventional
synchronous scan techniques can be applied. A scan-testable version of the Click controller is
presented in [PEE10]. Except for the reference to the multiplexer based scan design method used
in the design flow [BEE05], no further details about the test is presented.

Except of [GIL06], all previous works address the testability for a particular design style.
An attempt to overcome this problem is presented by Roncken [RON15]. The so-called naturalized
communication unifies the existing families of BD circuits. Under this naturalized communication,
the difference between Micropipeline, Mousetrap, GasP and Click circuits becomes the communi-
cation channels, referred as links, while the flow control and data computation, called joints, are
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identical, thus making them interchangeable. The joints are the meeting points for links to co-
ordinate states and exchange data. Traditional scan test techniques are dedicated to controlling
state and a novel proper-start-stop circuit, called MrGO, is dedicated to controlling actions (adds
controllability), like freezing joints to put the circuit in a full state. Details about the MrGO cir-
cuitry are presented [RON15], but the scan approach used for testing delay and stuck-at faults is
not described, the same is true about fault coverage and the area overheads.

3.4 State of The Art Conclusion

Despite the increasing evolution of resilient architectures, little has been done regarding
the testability of these designs. A problem when considering the testability of timing resilient
architectures is the area overhead of test circuitry since the resilient implementation already incurs
in significant area overhead. Some error detection circuits also use custom sequential cells that are
not available in most technology libraries. Thus, it is not possible to take advantage of automated
DfT flow with commercial EDA and ATPG tools. Moreover, these detection circuits increase the
number of sequential cells, which increases the scan cost. Also, most of the existing resilient
architecture proposals suffer from metastability problems. Table 3.1 summarizes the timing resilient
architectures. The DfT column indicates if a DfT insertion is addressed in the literature. The
Metastability column informs if the design suffers from metastability problems and the last one if it
is a synchronous, asynchronous or GALS design style.

Table 3.1 – Summary of timing resilient architectures.

DfT Metastability Design Style
Razor [ANA15] Yes Sync

Razor II NA Yes Sync
Razor Lite NA Yes Sync

Bubble Razor NA Yes Sync
Safe Razor NA No GALS

TDTB/DSTB [YUA13] Yes Sync
Blade NA No Async
Sharp NA No Async

Along with Safe Razor, Blade addresses the metastability issues of previous Razor family
and the propagation of metastability for the control path observed with TDTB and DSTB. An
advantage of Blade is the lower area overhead when compared to original synchronous non-timing
resilient designs. Blade leverages the benefits of asynchronous (e.g., average-case timing behavior)
and timing resilient techniques (e.g., tolerance towards PVT variations). However, it inherits the
testability issues of both techniques, and adds new challenges, such as delay testing of timing
resilient circuits, addressed only in synchronous timing resilient circuits [YUA13], and the testability
of specific circuitry, such as the controller and the error detection logic.
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4. ERROR DETECTION LOGIC TESTABILITY

As mentioned before, the Blade test problem is divided into four main parts: the EDL,
the controller, the delay lines, and the data path. This Chapter presents the challenges of using
ATPG tools to test the EDL part, along with contributions 1 and 2 (see Section 1.2). The first
contributions consist in Blade’s EDL fault analysis, and the fault classification proposed to detect
faults in the EDL. The second contribution is the proposal of a testable error detection logic (TEDL).

4.1 Blade EDL

Before any further discussions, it is important to define how the elements are referred
to from now on. Different from other works, EDL refers to Error Detecting Logic and not Error
Detection Latch, which is the entire logic used to detect and propagate an error to the controller.
The set of sequential elements (latches or flip-flops) and the transition detector mechanism is called
Error Detecting Sequential (EDS), and the Transition Detector, which is located inside the EDS, is
referred as TD.

Blade’s EDL [HAN15] (Figure 4.1) consists of latch-based error detecting sequential, that
are based on the TDTB EDS [BOW09], asymmetric C-elements and Q-Flops [MOL88]. The TD is
based on an XOR function of the data input and a delayed version of this input, which produces a
pulse at X, thus indicating a data transition. The C-element acts as a memory cell that stores any
violation detected during the high phase of the CLK. Thus, the C-element switches to 0 when CLK
is at 0 and to 1 only when both the CLK and an XOR output is at 1. The output of the C-element
is sampled by the Q-Flop at the end of the TRW, defined next.

Figure 4.1 – Blade error detection logic diagram, adapted from [HAN15].
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The Q-Flop ensures safe operation against metastability in some X signal and the C-
element by applying a filter that prevents its outputs from becoming metastable. The dual-rail
signal Err, composed by wires Err0 and Err1, stalls the controller until the outputs are stable and it
can safely evaluate if an error occurred. The delay element tTD defines the transition detector pulse
width, while tcomp is a small compensation delay to ensure that a transition before the rising edge
of CLK is not flagged as a violation. The other logic elements (ORs and AND gates) are designed
to amortize the area overhead of the C-elements and Q-Flops across multiple pipeline stages.

The timing overheads associated with the EDL for a single Blade stage are shown in the
timing diagram of Figure 4.2. The delays are divided in five components: (i) the propagation delay
from Din to X, tX,pd; (ii) the pulse width of X defined by the delay element tTD shown in Figure 4.1,
tX,pw; (iii) the C-element propagation delay, tCE,pd; (iv) the Q-Flop setup time, tQF,setup; and (v)
the propagation delay of the OR gate before the Q-Flop, tOR,pd. The sum of components tX,pd and
tX,pw corresponds to the compensation delay tcomp described previously. Several timing constraints
must be considered for a Blade design [HAN15], such as Contamination Delay and Maximum TRW,
for this work the focus will be the TRW, which is defined in Equation 4.1.
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tQF,setup
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Figure 4.2 – Timing diagram of a timing violation being detected inside the EDL, adapted from
[HAN15].

TRW = Δ + tX,pw − (tCE,pd + tOR,pd + tQF,setup) (4.1)
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4.2 ATPG Fault Coverage Analysis

When considering the testability of timing resilient circuits, previous works look at tradi-
tional approaches used in industry, such as the scan technique, which can be applied to various types
of structural faults including stuck-at and delay. One of the challenges when testing these circuits
is their compatibility with commercial DfT tools, mainly due to the use of custom cells that are not
available in most technology libraries, and in the case of Blade, there is the asynchronous factor,
that is also not supported by these tools. The analysis in this Section is intended to show the EDL
fault coverage using standard DfT techniques and tools.

4.2.1 Test Scenario

A netlist targeting 28nm FDSOI technology is generated with DesignCompiler from Synop-
sys to evaluate the stuck-at fault coverage and the TetraMAX ATPG tool from Synopsys to reports
coverage results. The netlist consists of a two-stage Blade pipeline (Figure 4.3), where the EDSs of
the first stage are directly connected to the ones of the second stage. This scenario simplifies the
integration with the Synopsys tools since it removes the particularities of an asynchronous resilient
template from the analysis. Instead of asynchronous controllers, nonoverlapping clock signals are
created, one for each stage, and the circuit becomes essentially a synchronous latch based design,
where all primary inputs are controllable, and all primary outputs are observable.
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Figure 4.3 – A proposed ATPG test scenario. Transition detectors (TD) are connected to four-input
(CLK plus three TDs) C-elements (C) and the C-elemets connected to two-input OR gates. In total
there are 6 TDs to each OR gate. The OR gate is connected to a Q-Flop (QF). With 2 QF per
stage, each step is 12 bits wide.
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In Blade’s EDL three custom sequential cells are not available in the foundry standard cell
library, the EDS, the C-element and the Q-Flop. Moreover, their correspondent scan cells are either
not available in most libraries or not supported by commercial DfT flows. Thus, it would not be
possible to use automated tools to obtain the fault coverage reports. Therefore, these unconventional
sequential cells are modeled as macroblocks consisting of only cells already supported by the 28nm
FDSOI library, including latches and flip-flops, to implement the sequential behavior. An advantage
of this approach is that Blade’s EDL can be evaluated with or without a scan chain because the
sequential cells (latches and flip-flops) are recognized by the DfT tools to perform automatic scan
chain generation. The asymmetric C-element behavior is similar to the one in [BEE03] (Figure 4.4),
and the Q-Flop is described as a standard flop that is reset when its enable input is low, which is,
regarding behavior, equivalent to the Q-Flop.

Figure 4.4 – Asymmetric C-element with standard cells [BEE03].

4.2.2 Fault Coverage Results

The fault simulations performed by the ATPG tool considered only single stuck-at faults.
The tool is configured to ignore all the first stage, redundant wires, and internal nodes from the
macro cells, which gives a total of 12 fault points. These 12 points are the labeled wires of Figure 4.5,
named w1 to w12. The fault coverage of the Blade’s EDL is evaluated considering two scenarios:
using no scan structure and replacing all latches by Level Sensitive Scan Cells described in [JUR17].

Table 4.1 shows the summary reported by TetraMAX. The faults are classified into five
classes, and the fault coverage is calculated by the total number of faults divided by the number
of Detected plus the Possibly detected faults. The low fault coverage is related to the lack of
observability and controllability of internal nodes. Even replacing the latches for LSSD scan cells is
not enough to improve the fault coverage. This low coverage is mainly caused by the C-element and
the Q-Flop, that, due to their functional behavior, do not allow the tool to stimulate and observe
faults in their path.

4.3 Behavioral Fault Coverage Analysis

Different from the previous analysis, instead of relying on classic ATPG approach, a fault
classification method based on the functional behavior relates the existence of internal faults to
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Figure 4.5 – Blade’s EDL diagram with labeled wires, adapted from [HAN15].

Table 4.1 – TetraMAX stuck-at fault summary report for an EDL block.
no-Scan Scan

Detected 6 7
Possibly detected 2 1
Undetectable 1 1
ATPG untestable 0 0
Not detected 15 15

not-controlled (7) (7)
not-observed (8) (8)

Total Faults 24 24

Fault Coverage 33.3% 33.3%

certain behavioral patterns observed in the Blade design [KUE16]. Faults are simulated and reported
through the following fault simulation environment.

4.3.1 Fault Simulation Environment

This Section describes the fault simulation environment that allows controlled fault inser-
tion at specific locations of the circuit, such as forcing wires to fixed values to produce a stuck-at or
to modify the propagation delay of logic gates or other elements of the design to simulate a delay
fault. This is also possible to simulate the circuit with a timing violation at the EDL’s input. It
means that the combinational logic takes longer than the δ delay to propagate correct data. As
discussed in the following sections, the ability to generate a timing violation is essential to detect
some specific faults in the EDL.
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The behavioral description of the test scenario (Figure 4.6) consists in a 3-stage Blade
pipeline, where all stages are identical regarding the timing constraints. The Verilog descriptions
have signal assignments with configurable propagation delays to allow delay fault simulation, such as
presented in the code of Figure 4.7. Between each pair of stages, there is a string of inverters acting
as the combinational logic. The simulation generates a log file informing the timing violations found
in each stage. Another log file describes the injected data pattern at the first stage, and the output
data received at the last stage. From these logs, the environment extracts the results presented in
the next sections.

Figure 4.6 – Test scenario used for behavioral fault simulations.

The environment only simulates a single fault at a time, and these faults are always inserted
at the middle stage (the second one). The other two stages are fault-free, and they are used to
observe how the overall circuit behaves when one of the stages is faulty. The accepted faults are
stuck-at-0 (SA0), stuck-at-1 (SA1), shorter propagation delay (SPD) and longer propagation delay
(LPD). Stuck-at faults are inserted in all wires inside the error detection logic, and the propagation
delay fault is injected in all logic gates. Also, data is not masked by the combinational logic, and a
data transition is always propagated from one stage to another. In the following discussion, the use
of the term error indicates that a timing violation (not the stuck-at or propagation delay fault) was
detected by the EDL.

Faults are individually analyzed in the following sections. The elements and labeled wires
of Figure 4.5 identify the fault locations considered and state how these are referenced in the text.
Throughout the analysis, the observed fault effects are discussed concerning how they can be applied
to the fault detection. For the detection of some particular faults, a timing violation (TV) must be
generated to stimulate parts of EDL that are only activated in such situations. By default, a TV
is not required to detect the fault. However, when the TV is necessary, it is explicitly referred and
discussed in the text.



50

Figure 4.7 – A Q-Flop Verilog description with configurable propagation delays.

4.3.2 Stuck-at Fault Analysis

Although the controller testability is not the focus of this analysis, understanding its be-
havior once the EDL has a fault is important for the fault classification. In particular, there are four
signals inside the EDL that may affect the controller behaviour: CLK, Sample, Err1 and Err0. The
CLK signal controls the rise and fall of the δ delay line inside the controller, while Sample controls
Err1 and Err0 rise and fall. As previously described, the controller stalls waiting for Err1 or Err0
signals to either rise or fall before continuing the protocol process, and the same will happen if the
CLK signal does not change its value. More details about the controller are presented in Chapter
5. As demonstrated next, some particular faults in the EDL can halt the controller.

The first fault to be analyzed is an SA0 at w1. In this case, the pipeline halts waiting
for the CLK to go up. The same will happen with an SA1 in this wire, but instead, the pipeline
halts waiting for CLK to go down. Both faults are easily detectable with a functional test due to a
pipeline halt. An SA0 or an SA1 at w2 makes the latch to always capture a constant value due to
the stuck value in its input. These faults are detected at the output of the pipeline.

The next fault point is w3. An SA0 or an SA1 at this wire can cause a false error generation
that depends on the input data. For instance, if w3 is SA0, an error is asserted only if the input
data is at logic level 1. This means that the input data must be controllable. The observability of
Err1 or w7 would be enough to extract information regarding the presence of timing violations. For
the rest of the analyzes, the Err1 will be the observability point.

A stuck-at fault at w4 differs from a fault at w1 because the former does not affect the
latch. An SA1 at wire w4 always produces an error at the faulty stage, while an SA0 causes the
stage never to detect a timing violation since C-element clock never goes up. For this case, a TV
must be generated at the stage under test, and the Err1 signal of the next stage observed to detect
this SA0 fault. This is possible due to a particular feature of Blade’s template, where the timing
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violation missed at a stage, in this case because of a stuck-at fault, can still be detected in the
following stages assuming that the transition is not masked between stages. Since the faulty stage
does not capture the error, the delay is not extended as it would be expected in such a situation,
and an invalid data is propagated to the next stage. The following stage eventually detects the TV
and delays its latch opening, such that its following stage receives the correct data. This and some
other faults are defined as detectable in the next stage.

Another fault point is w5, but this fault analysis can also be extended to w6 and w7. An
SA0 at these nets cause the EDL not to detect timing violations. As in the previous analysis, a TV
must be inserted so that the fault is detectable at the next stage by observing its Err1 signal. The
SA1 is detected at the faulty stage since an error is always flagged by Err1. The next signal, w8,
is the Q-Flop Sample signal. The Blade controller requires that the signals Err0 or Err1 must go
up and later go down before a new protocol cycle is initiated. So, if w8 is SA0, both error signals
are also at logic level 0, causing the pipeline to halt. The SA1 has the same behavior but in the
opposite direction, while the SA0 halts the pipeline because Err0 or Err1 never go up, the SA1 halts
the pipe because the signals never go down.

As in the previous analysis, the next fault is also detected by a halt in the pipeline. A TV
must be generated in the faulty stage to detect an SA0 at w9. In this case the Err1 should go up
but, because of the fault, it never goes up. On the other hand, the SA1 at w9 can be detected with
a functional test when the pipeline halts waiting for Err1 to go down. The same is true for an SA1
at w11. The detection of an SA0 at w11 is similar to w9, except that a TV is not required in this
case. An SA0 at w10 can be detected with a functional test once the pipeline halts waiting for Err0
signaling. On the other hand, a TV must be injected at the data input to detect an SA1 fault. The
last fault point is w12, where for both SA0 and SA1, the pipeline halts waiting for Err0 to go up or
down, respectively, and they are both testable with functional testing.

4.3.3 Delay Fault Analysis

As mentioned earlier, the propagation delay of gates, latch and delay lines are considered
for the delay fault analysis. The faulty gate has either an SPD fault or an LPD fault, compared
to the design timing constraints. An SPD fault, except for the delay lines, does not represent a
threat to the overall circuit operation. For example, looking at the C-element or the following OR
gate, an SPD at anyone of these will increase the TRW presented in Section 3.1.7. With a bigger
TRW, the faulty stage catches timing violations that otherwise would not be captured by the EDL.
These group of faults that do not affect the circuit functionality can be defined as don’t care faults.
The Q-Flop and the following OR and AND gates, in the presence of an LPD fault, also do not
produce any catastrophic failure in the circuit. However, these faults can be detected by looking at
a performance degradation of the pipeline, since the slow propagation of signals Err0 or Err1 would
delay the completeness of the protocol cycle.
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Even though this analysis does not consider the data path testability, an LPD fault in the
latch can be seen as a delay fault in the data path. In this case, a timing violation is detected at
the next stage, and a high error rate at a pipeline stage would suggest that there is a delay fault in
the data path. Unlike SPD, an LPD at the C-element and the following OR gate reduces the TRW,
and this affects the circuit resiliency directly. In particular, this fault causes the circuit to behave
differently depending on the moment where the timing violation occurs. For example, looking at
the timing diagram of Figure 4.2, the tCE,pd can be so long that the last X pulse is not propagated
until the falling edge of the CLK, thus missing the TV. In this case, the violation is propagated to
the next stage. With the same propagation delay fault in tCE,pd, if this last X pulse appears right
after the rising edge of CLK, then the violation would still be captured at the faulty stage. This
demonstrates that the TV must be inserted at specific lines and specific moments inside the TRW.

The next fault is an LPD at the XOR gate. Using the timing diagram of Figure 4.2 as the
reference, this fault dislocates the X pulse inside the TRW by increasing the tX,pd, which produces
a false error that is dependent on the input data, like the analysis of a stuck-at fault at w3. Looking
at the DL2 delay line (Figure 4.5), an SPD fault at this element makes the X pulse width (tX,pw)
shorter. This fault harms circuit operation if the pulse gets shorter than the setup time of the
C-element. Otherwise, the fault is a dont’t care fault. In the case where the pulse width is shorter
than the setup time of the C-element an error is missed at the faulty stage, but the next stage
detects the error. A method for injecting a TV is necessary to detect this last fault. Similarly to
the XOR gate LPD fault, an LPD at the tTD delay line generates a false error that depends on the
input data, with the difference that instead of shifting the X pulse into the TRW, tX,pw increases
the pulse width that grows into the TRW.

The last delay fault analysis is at DL1. An SPD at this delay element reduces the compen-
sation delay added to ensure that X is not captured before the rising edge of CLK. In this case, the
C-element captures the X pulse before the correct time, which generates a false error. This fault
can be dependent on the input data, although it is unlikely that all inputs are always capturing the
same logic value. If at least one data input changes every clock cycle, an error is always observed
at Err1. An LPD at DL1 causes the C-element to late capture the X pulses. Comparing with the
timing diagram of Figure 4.2, this fault dislocates the CLK to the right, which can be seen as a
decrease in the TRW, and some timing violations may not be captured by the EDL. Like the LPD
fault at the C-element, to detect this fault, a TV must be inserted at the beginning of the TRW.
If this fault is present, the error is not captured at the faulty stage, only in the next stage. If the
TV is inserted at the end of the TRW, an error is flagged at the faulty stage, which is the expected
behavior of a fault-free stage. Thus the fault is not detected.

4.3.4 Discussion about the fault effects on the EDL

As noted in the previous fault analysis, a faulty EDL triggers different effects in the overall
circuit that can lead to fault detection. Some of these faults only affect the performance of the
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circuit. This behavior can either be caused by a high rate of false errors or due to an LPD at a
gate that does not prevent the EDL from detecting timing violations, such as the AND Gate. In
both cases, the circuit can still be commercialized at a lower cost, since it has some performance
degradation, but is fully functional.

There are some faults effects that directly impact the circuit resiliency, by completely
disabling the EDL (e.g., ST0 at w5, w6 and w7), increasing the TRW (e.g., SPD at C-element) or
decreasing the TRW (e.g., LPD at DL1). Similar to the performance problem, an EDL that has its
TRW increased by a fault is still functional and it can later detect timing violations compared to
the expected EDL behavior. When the TRW is reduced, the EDL may not capture all the timing
violations or, in the worst case, it may miss all the timing violations when the EDL is disabled by
a fault, such as an SA0 at the Q-Flop sample signal. The detection of these faults is critical, once
the faulty EDL propagates invalid data to be processed by the following combinational logic, which
can lead to a significant system failure.

The faults called detectable in the next stage can only be detected right in the next stage
if the TRW of the next stage is equal or longer than the TRW of the stage under test. Otherwise,
when the TRW of the next stage is shorter, the timing violation can be propagated beyond the next
stage.

4.3.5 Fault Classification

So far the faults were discussed individually, looking at the side effects observed in the
overall operation of the circuit and how each one can be detected. The presented classification
generalizes the relationship between cause and effect of the analyzed faults. Table 4.2 shows the
fault effects observed during the circuit simulation that are relevant to the fault classification.

Table 4.2 – Relevant effects for the fault classification.
Acronym Description

UN undetectable
PST pipeline output stuck at a value
PH pipeline halted

ERR_ST errors in the faulty stage
ERR_NST errors in the next stage

Based on the individual analysis of the faults, the cause, which is the fault simulated, is
correlated to the effects listed in Table 4.2. The result of this is a fault classification that groups
faults with similar effects. Tables 4.3 and 4.4 show the classification for the stuck-at faults and the
propagation delay faults, respectively. Both tables present the classification assuming that a method
to inject timing violations is available (w/ TV ) and without (wo/ TV ) this method. It is possible
to see that without the TV some faults are undetectable. It demonstrates that the ability to control
the injection of timing violations is important for the testability of the EDL.



54

Table 4.3 – Blade EDL classification for the stuck-at fault model. Timing Violation (TV).
Faulty SA0 SA1
Line wo/ TV w/ TV wo/ TV w/ TV

w1 PH PH PH PH
w2 PST PST PST PST
w3 ERR_ST ERR_ST ERR_ST ERR_ST
w4 UN ERR_NST ERR_ST ERR_ST
w5 UN ERR_NST ERR_ST ERR_ST
w6 UN ERR_NST ERR_ST ERR_ST
w7 UN ERR_NST ERR_ST ERR_ST
w8 PH PH PH PH
w9 UN PH PH PH
w10 PH PH UN PH
w11 UN PH PH PH
w12 PH PH PH PH

Table 4.4 – Blade EDL classification for the propagation delay fault model. Timing Violation (TV).
Faulty SPD LPD

Element wo/ TV w/ TV wo/ TV w/ TV

Latch - - ERR_NST ERR_ST / ERR_NST
tcomp ERR_ST ERR_ST UN ERR_ST / ERR_NST
tTD UN ERR_NST ERR_ST ERR_ST

XOR Gate - - ERR_ST ERR_ST
C-element - - UN ERR_NST
OR Gate - - UN ERR_NST
Q-Flop - - - -

OR Gate (Err1) - - - -
AND Gate (Err0) - - - -

The missing items in Table 4.4 represent the faults described in the analysis as don’t care.
Specifically for this classification, the LPD faults in the OR Gate (Err1) and the AND Gate (Err0)
are classified as don’t care, since the circuit operates as expected, but with lower performance.

This fault classification guides the next steps towards the design for testability of the EDL.
In Table 4.5, the three approaches were evaluated in terms of fault coverage of the 32 possible
faults (don’t care faults are not accounted). The functional test is the first alternative, and the
fault coverage is 34%, the smallest coverage among the three. The next approach assumes a scan
cell at the Err signals of each stage to enhance its observability. Another alternative would be to
make the Q-Flops of each stage scannable. Using scan cells at the border of EDL and the controller
could also help to improve the controllability of the controller. The observed fault coverage for
this second approach is 66%. For a fault coverage of 100%, a timing violation generator must be
included to fully exercise the EDL. As previously demonstrated, some faults are only observed when
the circuit has a timing violation and, in some particular cases, the timing violation must occur at
specific moments, such as at the end of the TRW for detecting a LPD in the C-element.
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Table 4.5 – Blade EDL fault coverage obtained per test approach. (*) Fault Detected.
Fault

Functional Scan Chain TV Gen.
Type Wire/

Element

SA0

w1 * * *
w2 * * *
w3 * *
w4 *
w5 *
w6 *
w7 *
w8 * * *
w9 *
w10 * * *
w11 *
w12 * * *

SA1

w1 * * *
w2 * * *
w3 * *
w4 * *
w5 * *
w6 * *
w7 * *
w8 * * *
w9 * * *
w10 *
w11 * * *
w12 * * *

SPD tcomp * *
tTD *

LPD

Latch * *
tcomp *
tTD * *

XOR Gate * *
C-element *
OR Gate *

Coverage 34% 66% 100%

4.4 Testable Error Detection Logic

In the previous sections a complete stuck-at and delay fault analysis of Blade’s EDL is
presented, where faults are detected through a fault classification method based on the functional
behavior of the entire EDL when in the presence of an internal fault. In other words, the EDL is
being self-tested by associating its functional response to the occurrence of a fault. By concurrently
observing its functional behavior it is possible to extract functional patterns with the proposed fault
classification. A similar concurrent test approach has been used for a network-on-chip [CHR16] and a
processor [WAN06b]. Chrysanthou et al. [CHR16] use a group of lightweight micro-checker modules
in a network-on-chip as concurrent hardware assertions, checking for illegal output patterns while
the circuit is in normal mode. This approach provides full fault coverage and diagnostic capability.
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Wang and Patel [WAN06b] propose the use of a symptom-based error detection approach to detect
atypical events that concurrently hint the occurrence of soft errors in a processor. These events
trigger a rollback to a safe checkpoint, restoring the processor state.

The previous study demonstrates that a single stuck-at fault might jeopardize the resilience
of part of the circuit. Although one of the goals of this work is to rely mostly on the existing circuitry
to detect internal faults, it has been observed that to achieve 100% of fault coverage, a successful
test method must be able to inject TV. The necessity of producing errors for testing the detection
logic was also addressed by Yuan [YUA13], that proposed a scannable version of the DSTB [BOW09].
The scan cell adds controllability over the error signal of each sequential element. With Blade, the
idea is to avoid as much as possible additional test circuitry.

Another observation based on the previous fault analysis is that some faults were only
detectable by observing the EDL error signals of the next stage, and not just the signals of the faulty
EDL. In these cases, when a fault prevents the EDL from detecting a TV, the TV is propagated
to a following stage, and this fault ends up detected, which additionally indicates that the previous
stage failed to identify the injected TV. However, the data might be logically masked by the fol-
lowing combinational logic before it reaches the next EDS, leading to an undetected fault. These
uncertainties motivate the development of a new testable error detection logic (TEDL) architecture.

4.4.1 Proposed Architecture

The proposed TEDL, depicted in Figure 4.8, is designed to add controllability and observ-
ability, for test purposes, and to avoid the assumptions and uncertainties of the previous approach.
As previously pointed, part of the EDL is only activated when a TV occurs. So, to properly test this
part of the EDL, one must be able to control the EDL’s input to produce TVs. The original Blade
EDS is modified to generate a TV. First, note that the TD is no longer part of the sequential ele-
ment. This approach allows better compatibility with commercial EDA tools since the tool no longer
sees a custom sequential cell, but a standard D latch. This isolated TD approach can also be applied
to the original Blade EDS, opening the possibility to use scan cells with automated commercial DfT
tools [JUR18a]. The problem with this approach is the positioning of the standard sequential cell
and the TD cell. In the placement phase of the design flow, the designer must guarantee that they
are placed side by side, and the timing constraints remain the same as in the original EDS design.
This can be done using a hierarchical approach that restricts the cell placement [JUR18a] [JUR18b].

The new TD has one new input called tv. This signal can be individually controlled at
each stage or it can be a global input signal connected to all TDs. In this work, the global approach
is applied. When tv is activated, it forces the X output of all TDs to be always high, independently
of the input Din, thus generating a behavior equivalent to a TV detection in all TDs of the circuit.
An alternative solution would be to add a two-input OR gate between each TD output and the
corresponding C-element input to force a TV, but there would be less controllability and higher area
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overhead. Another possible approach is to make the C-element scannable. Scannable C-elements
were proposed in the past, such as in [BEE05] and [IWA10]. However, these solutions are not
considered since they also present a higher impact in area.
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Figure 4.8 – TEDL diagram and labeled wires. The dark gates represent the additional logic included
to improve the testability.

The test mode (tm) port is another new global input signal. It controls whether the
output of the C-element or the output of G5 is forwarded. This gate and the other gray elements
highlighted in Figure 4.8 are concurrent checkers added to detect faults that, otherwise, would not
be detected. For instance, an SA0 in w5 cannot be detected if all X signals are at logic level 1,
since the C-element output rises if at least one of its inputs plus the CLK signal are activated, which
means that the fault will be masked and not observed.

It must be clear that the proposed approach has little impact on Blade’s timing constraints.
The timing overhead of the M1 multiplexer and the inverter inside the new TD can be compensated
in the DL2 delay line. Except for the M2 multiplexer, all the other new elements do not create
timing overheads compared to the original architecture. The diagnostics of the internal faults can be
obtained by observing the outputs w20, w11, w12, w21, w22 and w23, and the pattern associated
with internal faults. The observability method used to extract the patterns is still open for study.
Although the area of scan cells needed to add observability is presented in the experimental results
(section 4.4.4), the scan chain was not implemented in the final netlist. Instead, a behavioral
description of these cells is used to generate the captured patterns.
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4.4.2 TEDL Operational Modes

During simulation, the TEDL must switch between its four operational modes, defined by
the state of input signals tm and tv. The four modes are: normal mode (NM); normal mode with
timing violation (NMTV); test mode (TM); and test mode with timing violation (TMTV). In NM,
the multiplexer M1 selects the path that does not pass through the inverter and M2 selects the
w17 path. In NMTV, tv is enabled and the w15 path is selected, which forces all X signals of the
pipeline stage to 1. The TM is used basically to detect stuck-at faults in w5 by selecting the w18
path. Finally, the TMTV is applied to force all X signals to 1 and to pass them through the G5
gate.

The test procedure with the TEDL requires that the pipeline is full. With Blade, this is
done through the asynchronous handshaking protocol. A full pipeline will not accept a new input
data request until an output data is acknowledged, and a lockstep control of the circuit is created.
It allows the circuit to alternate between a test pattern capture phase and a test pattern shift phase.
The full pipeline also avoids that real TVs are generated since all stages are stable. At this moment,
the TEDLs can be configured to the different operation modes to produce the test patterns. After
each capture phase, a shift phase is also executed, and the faults are identified through the fault
classification method described below.

4.4.3 Fault Classification

The fault classification method principle presented in section 4.3.5 is still applied, but it
is modified to take into account the different modes of operation and the new signals used as test
patterns. A fault is detected whether the output pattern is different from the expected gold pattern
defined for each operational mode (Table 4.6). An important assumption of the classification method
is that once tv is active, all TDs produce a TV, and when it is deactivated, none of the TDs produce
a TV. It can be done by making the circuit to operate in a slower mode, which is possible with the
approach presented in Chapter 6.

Table 4.6 – TEDL operation modes and their expected outputs.

Mode Gold Pattern
TM tv w20 w11 w12 w21 w22 w23

NM 0 0 0 0 1 1 0 0
NMTV 0 1 1 1 0 0 1 1

TM 1 0 0 0 1 1 0 0
TMTV 1 1 1 1 0 0 1 1

The six output ports of Table 4.6 also enable some level of diagnostic. For instance, an
SA0 at w6 is detected through w22 when tv is active. Since all other lines of G2 are at 1, the
pattern of w20, w11, w12 and w21, do not differ from the gold pattern. On the other hand, an
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SA0 at w7 will affect w20 and w21. So, these two faults have distinct patterns, but this does not
mean that these are the only faults detected by these patterns. This is also the case for an SA0 at
w17, which is detected by the same pattern as the SA0 at w6. Also, like the previous method, some
faults are not detected by a specific pattern, but they halt the pipeline.

One important thing to notice about the fault patterns is that they cover the additional
gates and test signals (tm and tv). Also, signals tm and tv are considered in the fault pattern
generation. For instance, assume that there is a SA0 w7. If a TV occurs, this fault prevents the
Q-Flop from registering the TV, and the fault cannot be detected in the NM. Either the NMTV or
the TMTV modes put all G2 inputs at 1 and it is expected that an error is flagged for all internal
lines. However, since w7 is SA0, w20 remains at 0, indicating the existence of a fault. Another
example is w19 SA1. This wire is expected to be 1 only when tv is active, so in NM or TM w22
and w23 must be at 0. Since w19 is SA1, w23 rises, while w22 remains at 0 due to other non
faulty G6 gates.

4.4.4 TEDL Case Study: Plasma CPU

The Blade automated flow described in [HAN15] is modified to evaluate fault coverage
and area overhead of the proposed testable architecture. This flow uses industry standard tools,
including DesignCompiler and PrimeTime from Synopsys and NC-Sim from Cadence. As described
in Section 3.1.7, the flow converts a single clocked synchronous RTL design into a Blade netlist. It
consists of Tcl and shell scripts, a library of custom cells and a Verilog co-simulation environment.
The Blade Conversion step was modified to include the proposed TEDL. The same case study
of [HAN15], a 3-stage version of MIPS OpenCore CPU called Plasma [PLA14], targeting a 28nm
FDSOI technology, is implemented to compare the results.

The co-simulation environment implements a testbench where a stream of inputs is forked
to both the synchronous and Blade netlists, and the stream of outputs are compared to validate the
implementation. The fault simulation environment described in section 4.3.1 is incorporated into
this co-simulation environment. The fault simulation environment has as input parameters: a list of
fault points to inject faults, that consists of all the labeled wires presented in Figure 4.8; the gold
patterns for each one of the operation modes, shown in Table 4.6; the fault patterns that indicate
the existence of an internal fault; and the list of faults that can be related to those fault patterns
(diagnostic information).

4.4.5 Fault Coverage

A series of fault simulations were executed to validate the fault coverage of the TEDL, and
the modifications made to the flow and co-simulation environment. Each fault point was simulated
for a single SA0 and single SA1, alternating between the four test configurations in Table 4.6 to
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detect the injected faults. The simulation results showed that 100% of the stuck-at faults inside
the TEDL are detectable, while with the original EDL, a little over 30% of the stuck-at faults are
detected. There are three fault points in particular inside the TEDL that depend on a transition
in Din to produce a pattern that can be related to a fault. These are: w15 ; w16 ; and w3. Since
no control over Din is assumed, the source code executing on the Plasma CPU must be able to
generate these transitions. Also, since these three nets are internal to the TD cell, they would be
collapsed from the fault list, and the ATPG would ignore them.

4.4.6 Area Comparison

The area comparison of both implementations is shown in Table 4.7 and Table 4.8. Table
4.7 presents the EDL and TEDL number of elements and its corresponding area. Both Plasma
implementations have the 238 TDs divided into two groups, each one with its controller.

Table 4.7 – EDL vs. TEDL area overhead with the Plasma CPU case study.

Cell EDL TEDL
N Area µm2 N Area µm2

C-element 80 189.055 80 189.055
Q-Flop 20 91.280 20 91.280
Latch 238 427.258 238 427,258
TD 238 466.099 238 893.357

OR G2 20 52.224 20 52.224
OR G3 2 7.507 2 7.507

AND G4 2 7.507 2 7.507
AND G5 - - 80 112.934
AND G6 - - 20 55.488
AND G7 - - 2 7.507
OR G8 - - 2 7.507

AND G9 - - 2 7.507
OR G10 - - 2 7.507
MUX M2 - - 80 117.504
MUX-D - - 14 79.968

Total 362 1240.930 564 1920.606
Area Overhead 54.77%

Table 4.8 – Comparison of Plasma-EDL vs Plasma-TEDL in terms of area (µm2).
Plasma-EDL Plasma-TEDL

Combinational area 7095.28324 7829.35683
Buf/Inv area 608.89921 687.23522

Noncombinational area 7860.69133 7860.69133
Macro/Black Box area 228.57500 228.57500
Net Interconnect area undefined undefined

Total cell area 15184.54957 15918.62316
Area Overhead 4.61%
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Unlike the original EDL architecture, the TD in the TEDL is not incorporated into the
sequential element. To compare the original EDL architecture with the TEDL, instead of using a
custom cell, the original EDS is also decomposed in standard cells. The resulting area for the original
TD and the new TD is 1.958 µm2 and 3.754 µm2 respectively. In Table 4.7 the 893.357 µm2 TD
area refers to total number of TDs (3.754∗238). As previously mentioned, the experiment considers
that test patterns are captured through scan cells connected to the outputs w20, w11, w12, w21,
w22 and w23 of each stage, but any observability technique can be used. For this work area of a
MUX-D cell is used to generate the area overheads.

As the results show, the TEDL imposed an increment of 54.77% in area, when compared
to the original EDL in the Plasma design (Table 4.7). Note that this experiment is intended to
examine the TEDL using the same scenario of Blade’s proposal [HAN15], but Blade allows a trade-
off between critical paths covered by EDLs and the area overhead of its implementation. In this
particular setup, out of total 529 latches, 238 are modified. When looking at the overall area
overhead, with almost half of the latches modified, the Plasma-TEDL shows a 4.61% area overhead
when compared to Plasma-EDL, and the TEDL affects mainly the combinational area of the designs
(Table 4.8). For future improvements, the possibility of incorporating M2 multiplexer and G5 AND
gate to the C-element is a possibility, creating a custom test C-element cell that would have the
same behaviour, but less area. Note that custom cells usage in this context do not affect the fault
analysis, as long as their functional behavior is kept. Finally, the TD is implemented using standard
cells from the 28nm FDSOI library. Further area optimization is possible with the development of a
custom cell.
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5. CONTROLLER TESTABILITY

In Section 3.3, one of the first works to evaluate the testability of asynchronous circuits
was presented by Pagey [PAG92]. Pagey demonstrates that despite the challenges of testing asyn-
chronous circuits, testing the control part of asynchronous BD designs is an easy task, since the
controller tends to halt the entire circuit when it has a stuck-at fault. This statement is true
for Micropipeline [SUT89], but for other approaches, such as the Mousetrap [SIN07], this is not
true [SHI05]. In Chapter 4, the testability of the EDL is sometimes dependent on the correctness
of the controller, since the EDL testing relied on the controller halting to detect some faults. For
instance, if the err1 or err0 signals remain stuck at some value, the controller will not be able to
complete the protocol communication. For these particular signals, it was demonstrated in Section
4.3 that the controller halts. However, more signals must be evaluated to make sure that the Blade
controller halts for every stuck-at fault, including the handshake signals and the internal ones.

This Chapter presents contribution 3 (see Section 1.2), where the Blade controller testa-
bility is evaluated to check whether the controller halts for every stuck-at fault. Some modifications
are suggested for the original controller, and a new controller is proposed to improve even more the
testability. Contribution 4 is presented at the end of this Chapter, which consists of a test method
for testing the delay line inside the controller (Δ) and the data path delay line (δ).

5.1 Blade Controller

The Blade controller implements a new form of asynchronous handshaking protocol, called
speculative handshaking [HAN15]. The controller implements two BD channels that operate with
a 2-phase handshake protocol. Channel L/R is used as input and output control respectively, thus
controlling data propagation from one register to another. The request signals (L.req and R.req)
are associated with the δ delay line. The additional channel LE/RE is the error channel used for
recovering from a timing violation, so no data transfer is involved. This new protocol reduces the
timing violation recovery overhead when compared to synchronous resilience approaches discussed
in Chapter 3.

The request signal (L.req) is speculatively asserted assuming that the δ delay is long enough
to propagate data through the combinational logic to the next stage without timing violations. The
LE channel is used to check if the assumption was correct and a timing violation was not detected
by the previous stage. In this case, the previous stage controls how long the current stage needs to
wait for valid data input in case of timing violations. Figure 5.1(a) illustrates a situation where no
timing violation occurs. Note that the acknowledgment of the additional channel (LE.ack) occurs
right after LE.req. On the other hand, Figure 5.1(b) shows when a timing violation is detected
by the previous stage. Thus the acknowledgment is extended by Δ, allowing enough time for the
correct data to propagate through the data path.
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(a) Without extension (b) With extension

Figure 5.1 – Blade speculative handshaking protocol [HAN15].

The implementation is divided into three interacting Burst-Mode state machines [FUH95]
and synthesized using the tool 3D [YUN92]. Figure 5.2 presents the source code that describes one
of the finite state machines used in Blade. The code has a list of inputs and outputs, and how one
of these signals must behave in each state. In this example, all signals are initially at 0. For the
state machine to transition from state 0 to state 1 the input Lreq must rise (’+’ syntax indicates
a rise and ’−’ a fall), and when it occurs, the output LEreq must immediately rise too. Note that
only the signals specified in each state are allowed to transition, and the 3D tool guarantees this
behavior.

input Lreq 0
input LEack 0
input goL 0

output LEreq 0
output goR 0
output Lack 0

0 1 Lreq+           |    LEreq+
1 2 LEack+          |    goR+
2 3 goL+            |    Lack+
3 4 Lreq-           |    LEreq-
4 5 LEack-          |    goR-
5 0 goL-            |    Lack-

Figure 5.2 – Description of Blade’s Burst-Mode controller using 3D syntax.

The diagram of Figure 5.3 shows the three state machines used for pipeline stages with
EDLs. The intermediate signals goL, goR, and goD are communication signals between these state
machines, and signals delay, edi, and edo are used to add the Δ delay line into the controller. In
the original implementation of Blade’s controller the Δ delay line is duplicated between CLK −→
delay and edo −→ edi, and consolidating these delay lines is left for future work. As will be further
described, this merge is mandatory for the delay line testing proposed in Section 5.3.

As described by the authors of Blade [HAN15], the controller design is extended to a token
version, which generates an output request right after the reset, and other two, simplified versions,
for stages without EDL, creating four distinct Blade controllers. As a reminder, note that the Blade
flow does not replace all latches by an EDS, so a simplified controller is needed to control these
remaining latches. The 3D tool generates a sum-of-products description for each state machine,
which was manually optimized and mapped to an FDSOI 28nm library of gates. The optimization is



64

Figure 5.3 – Burst-mode state machines for the Blade controller [HAN15]

possible because the 3D tool does not implement the state machines together, and does not know
for instance, that the goR behaves just like the LE.ack. It is important to notice that this must
be done with caution by the designer. Otherwise, the generated circuit will not behave like the 3D
input specification.

5.1.1 Stuck-at Fault Analysis

Figure 5.4 illustrates the gate level implementation of the original Blade controller for
stages with EDL. For simplicity, the reset circuitry was omitted. The Lack circuit will be used as an
example to understand how this implementation works. In this circuit a 2-input OR gate groups a
2-input AND gate with the delay signal.

Assuming that reset sets all signals initially to 0, in order to have a transition at Sample,
one of the OR inputs must transition. For this circuit it will only happen when a transition at delay
occurs, since the Sample feedback loop prevents goD to act. Now Sample remains at 1 as long as
delay is at 1 or goD rises before delay fall. For a transition to 0 to take place at Sample, delay
must return to 0 and goD must return to 0 if a rise transition had occurred.

Based on the fault analysis of Section 4.3.2, a stuck-at fault in the Sample signal prevents
the controller from continuing with communication, causing the circuit to halt. For this circuit in
particular, an SA0 at delay will prevent the Sample from ever going up, and an SA1 at delay causes
an immediate activation of Sample, which can translate into a protocol violation, but also into a halt.
Since the controller expects Err1 and Err0 to return to 0 before continuing with communication, an
SA1 prevents this from happening. Looking at goD, an SA1 does not affect the first rise of Sample,
but does not allow it either to ever return to 0, and a halt occurs. However, an SA0 allows the
Sample to rise and fall following transitions of delay, not directly causing a system halt. Finally,
an SA1 in the internal signal and20 produces the same behavior as an SA1 at delay, and an SA0
presents the same behavior as an SA0 at goD.
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Figure 5.4 – Gate level implementation of the Burst-Mode Blade controller.

5.1.2 Fault Coverage

Although the analysis of this single part of the controller suggests that the Blade controller
does not halt for all stuck-at faults, it is necessary to evaluate the entire controller at once, because
goD is also used in other parts of the circuit, and these other parts may cause a system halt. For
this fault analysis, the fault simulation environment presented in Section 4.3.1 is also applied, where
single stuck-at faults are injected at all primary inputs and internal signals of the controller. Internal
signals include signals resulting from inverters. For example, the and23 signal can be affected by
a stuck-at fault placed before or after the inverters placed at the AND gate inputs. The fault
simulations also consider that TV can be generated to stimulate the parts of the controller that
handle captured violations.

From the gate level description of Figure 5.4, a total of 51 fault points are extracted for
simulation, resulting in 102 possible faults when considering SA0 and SA1 for each point. The
fault simulation considered detectable all faults that caused a system halt. The list of undetectable
faults is presented in Table 5.1. From the 102 simulated faults, 17 did not produce a system halt,
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Table 5.1 – List of undetected faults in the Burst-Mode controller.
Signal Undetected Fault

and0 SA0
and2 SA0
and3 SA0
and4 SA0
and5 SA0
and6 SA0
and7 SA0
and11 SA0
and15 SA0
and16 SA0
and17 SA0
and21 SA0
and22 SA0

inv_leack SA0
inv_leack SA1
inv_err1 SA1
inv_rereq SA1

an 83.3% fault coverage. Note that most of the undetected faults are SA0, differently from the
individual analysis of goD. In this last case, the AND gate that generates the CLK signal is affected
by the goD SA0, and the controller halts. The low fault coverage for stuck-at suggests that another
designs style should be considered. Thus, delay fault testing of the Burst-Mode controller was not
addressed.

5.2 Click-based Controller

The previous fault analysis of Blade’s Burst-Mode controller demonstrated that, as sug-
gested in [SIN07], not all asynchronous designs are prone to a system halt when the control part
is affected by a stuck-at fault. Therefore, the uncertainty about the existence of faults inside the
controller makes it impossible to apply the behavioral fault classification method proposed for test-
ing the EDL (see Section 4.3.5), since it assumes that the controller does not present any faults
associated with it.

Burst-mode controllers, in general, are not easily tested. One of the reasons is the presence
of feedback loops, which are cannot be treated easily by commercial ATPG tools. Feedback loops
are usually broken by the DfT tool to generate test patterns. The main problem of this approach
is related to a limitation of the original Blade flow, where the controller must be manually mapped
to the desired technology, not allowing any new tool optimization, that otherwise could modify the
circuit behaviour generated by the 3D tool.

Another alternative is to modify the state machines descriptions to produce a circuit that
presents a halt for every possible stuck-at fault. The problem here is the complexity of the Blade
handshaking protocol. Besides, the two BD channels implemented in Blade’s controller are 2-phase,
which on the one hand are faster than the 4-phase, but on the other hand present a higher complexity
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and leads to a larger circuit. For a 2-phase implementation, a control signal at logic values 0 or 1
represents two different communications, while with 4-phase a return to 0 is mandatory for a new
communication to start. The 2-phase adds redundancies to the circuit to accept the two possible
state transitions. For instance, Figure 5.3 shows that the state machine on the right, must accept
R.ack rising to rise goD and activating the state machine in the middle, but R.ack falling must
also produce the same transition in goD. So, a new Burst-Mode implementation would present an
increase in complexity and consequently more area overhead, but more importantly, it would still
not guarantee that all faults would halt the controller.

In the just explained context, a new controller is proposed. The new controller is imple-
mented using the Click template [PEE10]. Click is a 2-phase BD design that only uses edge-triggered
flip-flops in the control circuit. One of the advantages of this approach is that the design flow with
standard (third-party) EDA tools is facilitated, especially for physical synthesis and statical timing
analysis. Another advantage is that the authors already demonstrated how the controller could be-
come testable through a scan implementation. This approach for the Blade controller is not entirely
new since Sharp [WAU17] already proposed the use of Click-based controllers. However, testability is
not addressed in that work, and their implementation is more focused on performance improvements
with a new handshake protocol.

The Click-based controller proposed here is compatible with the original Blade speculative
handshaking protocol, using two 2-phase BD channels (L/R and LE/RE) to communicate with other
stages. In this new implementation, the two Δ delay lines are consolidated into a single one, as
suggested in [HAN15]. Sharp, on the other hand, has four different delay lines. The single delay
line implementation is believed to be a better approach when the testability of these delay elements
are taken into account. This is further discussed in Section 5.3.

Figure 5.5 – Click-based controller design for the EDL stages.

Like the original Blade proposal, there are also four versions of the proposed Click-based
design. The controller for EDL stages, illustrated in Figure 5.5, a token version to generate an
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output request after reset, and a simplified version for stages without EDL and its equivalent token
version. These last three implementations are in Appendix A. The speculative handshake protocol
remains the same as the original Burst-Mode implementation. The difference between the two is
how internal signals are activated to control the communication between controllers. Figure 5.6
shows the Click controller timing diagram for two data transactions, the first without extension and
the second one with extension. Except for the propagation time of δ and Δ delay lines, no other
propagating delays are represented.

Figure 5.6 – Speculative handshake protocol timing diagram with the Click-based controller.

After reset, all control signals are at logic level 0. The controller connected to the left
channel sends a request (Lreq) and LEreq is flagged back. The controller in the left channel
acknowledges that a valid data was propagated. This enables the DFF1 flop (dff1_en), which rises
the request for the controller connected to the right channel (Rreq). The Rreq signal is fed back as
Lack, which ends the communication with the left controller. Rreq feedback also resets the dff1_en.
However, the dff1_en is also used to generate the dff2_en. This creates a timing constraint that
must be satisfied during synthesis, in which the propagation time from dff1_en rising (Figure 5.5
dotted line) to dff2_en rising must be higher then the propagation time from dff1_en rising to
dff1_en falling.

The DFF2 flop activates the Δ delay line (delay_o) and consequently the CLK signal
through the XOR gate with delay_i and delay_o as inputs. The CLK stays high for Δ time,
which in other words can be translated into the TRW. Once delay_o is propagated through the
delay line, delay_i rises and deactivates CLK. The falling edge of CLK enables the DFF4 flop, that
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activates Sample. At the same time delay_i deactivates the dff2_en and blocks the dff1_en from
being activated again before ending the communication with the right channel. At this moment
the controller stalls waiting for one of the error signals to rise. In the first communication of the
timing diagram no timing violation is detected by the EDL, so err0 rises and dff2_en rises again,
which deactivates delay_o. Now the controller waits for the REreq from the controller at the right
channel. Once the REreq rises the DFF3 flop is enabled (dff3_en), and the REack is sent to the
right channel along with Sample deactivation. When the acknowledgment (Rack) from the right
channel rises, the controller is able to accept a new incoming data.

The timing diagram of Figure 5.6 also presents how the controller signals behave when
a timing violation is detected by the EDL. Initially the communication starts the same way as in
the previous description. The difference starts when the controller rises Sample and the err1 signal
rises too. Now dff2_en is blocked until the controller connected to the right channel changes the
REreq state. Only after REreq changes dff2_en rises, deactivating delay_o. The err1 also selects
the MUX input connected to delay_i. Since delay_i at this moment is still high, and dff3_en is
blocked until delay_i falls. Note that the single delay line serves two purposes: working as 2-phase
protocol, where a rising transition propagated through the delay line controls the high phase of CLK ;
and the fall transition controls the delay extension needed for the valid data to arrive at the next
stage. Finally, dff3_en is activated, and as previously, REack rises and Sample is deactivated. After
delay_i falls and Rack is sent by the controller to the channel, a new communication can be started.

The use of a single delay line does not affect the timing constraints from the original Burst-
Mode controller. As illustrated in Figure 5.3, the state machines connected to the delay lines expect
that at some point both delay and edi signals return to zero before starting a new communication.
This behavior is achieved in the Click-based design by the delay_i signal, that blocks different parts
of the circuit in its high phase.

5.2.1 Fault Coverage

The same simulation environment presented in Section 4.3.1 is used to extract stuck-at
fault coverage results for the new Click-based controller. The Burst-Mode controller replacement is
transparent for the rest of the circuit since it has the same interface and communication protocol.
Only single stuck-at faults are injected at all primary inputs and internal signals of the controller,
including the inverted signals. Also, TV is simulated to stimulate the parts that handle the error
recovery. The analysis of delay faults is left as future work. However, the delay lines test method
further described in Section 5.3 may be extended for this purpose, where controller’s internal delays
are incorporated into the delay lines paths.

In the Click-based controller, there are 35 fault points and a total of 70 possible faults
when considering SA0 and SA1 for each point. The experiments reported that the achieved fault
coverage achieved 100%. However, it is important to explain that not all faults caused a system halt
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but instead affected the CLK generation directly. For instance, an SA0 at delay_o does not block
the communication protocol, because DFF3 can still be enabled once REreq arrives. However, if
CLK never rises, data is not propagated through the data path, and the fault can still be detected.
From the total possible faults, 11 fall into this situation.

5.2.2 Area Comparison

In order to compare the Click design with the Burst-Mode design, a netlist targeting 28nm
FDSOI technology is generated for the different versions of each design. The Burst-Mode controllers
are manually mapped to the target technology, while the Click controllers are automatically mapped
from an RTL design using DesignCompiler from Synopsys. This automatic mapping is an important
advantage of this approach since the synthesis tool can freely optimize the circuit following the
design constraints. Moreover, DfT tools can be used for testing the circuit, where existing feedback
loops are already broken by the flip-flops. The flip-flops can also be automatically replaced by scan
cells as demonstrated by the proponents of Click [PEE10] to improve controllability and observability,
but this is left for future work.

Table 5.2 shows the area comparison for the different controllers. The Click Controller
version presents an area overhead of 21.10% when compared to the Burst-Mode equivalent, which
is the worst case among all comparison. On the other hand, the Click Token Controller version has
the same area as the Burst-Mode, and in the case of the Click Token Controller EDL, a reduction in
area is observed, with 8.38% less area than the Burst-Mode. Note that these results do not account
for the difference in the number of Δ delay lines.

Table 5.2 – Comparison of Burst-Mode controller vs Click-based controllers in terms of area.
Burst-Mode Click Overhead

Controller 14.0352 17.7888 21.10%
Token Controller 18.4416 18.4416 0.00%
Controller EDL 24.6432 26.4384 6.79%

Token Controller EDL 29.5392 27.2544 -8,38%

The size of the delay lines varies depending on the RTL design and the configuration
parameters of the Blade flow. The Plasma CPU case study presented in Section 4.4.4 is used to
extract these results. Disregarding the other elements of the final netlist, that are the same for both
designs, the total delay lines area for the Burst-Mode and the Click implementation corresponds
to 44.0640 µm2 and 22.0320 µm2 respectively, while Burst-Mode controllers area is 68.2176 µm2

and Click controllers area is 71.4816 µm2. The total area for the controllers differs from Table 5.2
because the final netlist does not implement any Token Controller, only the other three are used.
Therefore, when considering the delay lines area, the Click design is 20.07% lower than the Burst-
Mode. One can argue that the same approach of removing the additional delay line could be applied
to the Burst-Mode, but circuit complexity would increase, and area comparison would be even more
favorable to the Click-based approach.
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5.3 Delay Lines Testability

Asynchronous bundled-data designs, in general, must incorporate delay lines in the control
signal to compensate for data path propagation through computational logic. The correctness of
delay lines is crucial for the system to work correctly. One problem with bundle-data designs is
that, just as in the traditional synchronous designs, they suffer from PVT variations. Thus timing
margins must also be incorporated. Although timing resilient architectures alleviate the added timing
margins, variability can affect the entire circuit, including the delay lines in Blade.

In bundled-data designs, the circuit is faulty if the data path became slower or if the delay
lines became faster than the timing specifications. In the case where the data path is slower, there
are some alternatives before discarding the chip. One of them is presented in the next Chapter, but
this approach relies on delay lines properly tested, with their delays following the design constraints.
Thus testing the delay lines is necessary.

In the literature, there are not many works that address the testability of delay lines in
bundled-data designs. One of the few works that get near to solve the problem of testing delay
lines in bundled-data designs is presented by Sato [SAT15]. However, the proposed method does
not take delay measurements of the delay lines. It measures the delay of the combinational block.
Then the configurable delay lines are set to a value that is long enough to compensate for the data
path delay. The two-pattern test is used to activate data paths for delay measuring, where the first
pattern is set by the scan mode and the second pattern is the response of the first pattern from
the combinational logic. Timing information is captured by a time to digital Converter (TDC) and
shifted out through a scan chain implemented inside the TDC.

The test method proposed by Sato could be adapted for measuring the delay of the
combinational blocks in a circuit implemented with Blade since both δ and Δ delay lines are proposed
initially as reconfigurable delay lines. However, making the data path scannable to apply the two-
pattern test would incur in a considerable area overhead. Moreover, process variability can affect the
delay lines, and the delay time may not be as the designed timing constraints. If variability affects
the data path, the EDL should be able to detect the timing violations, but if variability affects the
delay lines, the circuit cannot rely on the timing violations flagged by the EDL, and the circuit must
be discarded. Therefore, the proposed method for testing Blade’s delay lines consists of an offline
test method for measuring the propagation delay of the delay lines of the manufactured circuit. This
test must be executed before delay testing of other structures, such as the combinational logic.

5.3.1 Proposed Method

The proposed method aims to use only primary inputs and outputs to take delay mea-
surements, which include the handshake protocol pins (L/R channel and LE/RE channel) and an
additional pin that serves as observation point for the EDL err1 signals. Besides that, a scan chain
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to add controllability over the Q-Flops state is assumed. As previously discussed, a scannable data
path is undesired for testing Blade due to high area overheads, but instead, the proposed method
assumes the replacement of Q-Flops for Scan Q-Flops (SQF), which represent a smaller number of
scan elements than a full scan. For instance, in the case study presented in section 4.4.4, there
are 238 latches and only 20 Q-Flops. The SQF is mandatory for the proposed test method since
the Q-Flop acts as a metastability filter, and there is an unbounded time for the metastability to
be resolved inside the Q-Flop filter and settle the correct output error signal. With the SQF, this
time uncertainty no longer exists, and correct timing assumptions can be made for the proposed test
method. The SQF cell development was addressed by Juracy et al. [JUR18b].

5.3.2 Test Architecture

Figure 5.7 shows a simplified 3-stage pipeline example of the architecture. In this scenario,
the left channels of C0 are connected to primary inputs and outputs, and the right channels of C2
are connected the primary inputs and outputs. There is a single SQF representation for each stage,
but in a real circuit implementation, this number increases, and the error signals are grouped before
the controller, see Section 4.1. Through the proposed scan chain err1 and err0 can be forced to
a controlled state immediately after Sample rises. Internal err1 signals are grouped with an OR
gate, and its output is mapped to a primary output pin called Error1. This design allows delay
measurement of the err1 rising moment for the different stages. In this case, it is assumed that only
ScanQflop1 (Figure 5.7) is configured to raise its err1 output signal, and all the others to rise only
their err0 signal. For this example, the rising edge observed at the primary output corresponds to
the err1 connected to controller C1, assuming no fault at the OR gate.

Figure 5.7 – Delay lines test scenario with Blade design.

A requirement for testing Blade’s delay lines with the proposed method is that the Δ
delay line inside the controller is consolidated into a single delay element. Thus, the Click-based
controller presented in Section 5.2 is used. Nevertheless, the proposed test method is compatible
with the Burst-Mode controller, as long as it is also modified to implement only one Δ delay line.
For Sharp [WAU17], the higher number of internal delay lines may suggest that the test principle
cannot be used. However, further analyzes are required before completely discarding the proposed
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test method for testing Sharp, since the handshake protocol is different, and the time measurements
could be derived from other pins and internal observation points. Accordingly, this is left for future
work, along with an extension to consider forks and joints.

5.3.3 Test Procedure

To understand the test procedure, some important aspects about the operation of the
controller and the implemented communication protocol must be clear, and the timing diagram of
Figure 5.6 can be used as the reference for the following explanations. The controller’s internal
delays are assumed to be compensated into the delay lines design, and wire delays are assumed to
be so small compared to the delay elements that they can be neglected. So, a request arriving at the
primary input Lreq is immediately forwarded from the left channel to the right channel connected to
C0. This means that if no timing violations are flagged (only err0 rises), and the pipeline is empty,
the time from Lreq to Rreq is equal to the sum of all δ delay lines propagation (δ0, δ1 and δ2).
Another thing to notice is that at the same time that Lreq is flagged, internally the CLK signal rises
and the Δ delay line is activated.

After the high phase of CLK the Sample signal rises, and err0 or err1 are immediately
flagged, which is possible with the use of the SQF previously configured through the scan chain. In
this case it is possible to assume that the time from Lreq to err1 or err0 is equal to the Δ delay
line propagation. For this test method, err1 is used as the observation point. The reason for this
choice is that during the different steps of the test, one stage at a time has its error signal observed
through the OR gate. If err0 were chosen, only the SQF in the observable stage would be configured
to propagate the err0, and all the other would activate the err1, which would activate the protocol
extension phase, thus modifying the delay measurements. Choosing err1 means that only one stage
will extend the delay, and the delay measurements will detect the additional time that corresponds
to the Δ delay extension.

One last thing to mention is that the REack is the protocol signal that acknowledges that
all delay lines ended their signal propagation, regardless of which error signal was flagged, as shown
in Figure 5.6. Now it is possible to describe the test steps and the equations used to calculate the
propagation delay of all delay lines in a circuit implemented with Blade. Between each step, the
circuit goes through a complete reset.

• Step 1: The first delay measurement corresponds to the sum of all δ delays. All SQFs
are configured to raise their err0 output signal and the communication is started at the left
channel. Equation 5.1 defines that for a given pipeline with N stages, the sum of all δ delays
is the difference time between the first Lreq transition (TLreq) and the first Rreq transition
(TRreq) that arrives at the end of the pipeline.



74

n=N−2�

i=0
δi = TRreq − TLreq (5.1)

• Step 2: This step is repeated for each controller to take the delay measurement of the internal
Δ delay line. For this test only the SQF connected to the target controller is configured to
raise its err1 output signal. By forcing the delay extension, the pipeline propagation time is
increased by the Delta delay. Equation 5.2 is used to calculate the Δ delay of each controller.
The difference time between the first Lreq transition (TLreq) and the first REack transition
(TREack) that arrives at the end of the pipeline, minus the sum of all δ delays calculated in
the previous step, is equal to the Δ delay of the target controller i.

Δi = TREack − TLreq − (
n=N−2�

i=0
δi) , for err1i = 1 (5.2)

• Step 3: The last step is used for measuring the δ delay lines between controllers. This step is
repeated for each δ delay line. For this test the SQF connected to the controller that follows
the target delay line is configured to rise the err1 signal, and the transition observed in Error1
corresponds to this SQF. Equation 5.3 is used to calculate the δ delay of each controller. The
target δ delay i is given by the difference time between the first Lreq transition (TLreq) and
the first Error1 transition (TError1), minus the sum of δ delays previously calculated in this
current step, minus the Δ delay of the controller that follows the target delay line (i + 1).
This last subtraction accounts for the fact that the i + 1 err1 only rises after the high phase
of CLK, which is controlled by the Δi+1.

δi = TError1 − TLreq − (
n=i−1�

k=0
δk) − Δi+1 , for err1i+1 = 1 (5.3)

5.3.4 Test Simulation Example

The same simulation environment presented in Section 4.3.1 is used. For each step,
a new simulation is started, and the testbench generates a log file with all primary inputs and
outputs transition times observed during the simulation. A post-processing script reads the log file
to extract the required time transitions needed for each step calculation. SQFs configurations are
applied through force commands during simulation, thus emulating the scan chain.

For the test scenario of Figure 5.7, the delays are: Δ0 = 0.66ns; Δ1 = 0.54ns; Δ2 =
0.86ns; δ0 = 1.54ns; δ1 = 1.80ns. The SQFs configuration is represented by a 3-bit vector <000>,
one for each SQF, where 1 means that the err1 must rise and 0 the err0 must rise. In the first step,
SQF vector is configured to <000>. After reset, the first Lreq transitions occurs at 50.00ns and
Rreq at 53.34ns. The result of Equation 5.1 is calculated and the result is 3.34ns.
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Now the simulation environment moves to the second step, where three simulations are
executed. For all these simulations TLreq is 50.00ns. In the first simulation, the SQF vector is
configured as <100>, and the first REack transition was captured at 54.00ns. For the second
simulation, the SQF vector is configured as <010>, and the first REack transition was captured
at 53.88ns. In the last simulation of this step, the SQF vector is configured as <001>, and the
first REack transition was captured at 54.20ns. Applying these values into the Equation 5.2, leads
to Δ0 = 54.00 − 50.00 − 3.34 = 0.66ns, Δ1 = 53.88 − 50.00 − 3.34 = 0.54ns and Δ2 =
54.20 − 50.00 − 3.34 = 0.86ns.

After finishing the second step, the third step can be executed. Like the in the previous
step, for all the simulations executed in this step the TLreq is 50.00ns. For measuring the δ0

delay, the SQF vector is configured as <010>. Note that SQF1 is configured to rise its err1,
which generates a trasition in Error1. In this simulation, the first Error1 transition was captured
at 52.08ns. For measuring δ1, the SQF2 is the one that configured to raise its err1, and the
vector is <001>. In this last experiment, the first Error1 transition was captured at 54.20ns.
Putting these times into the Equation 5.3, results in δ0 = 52.08−50.00−0.00−0.54 = 1.54ns and
δ1 = 54.20−50.00−1.54−0.86 = 1.80ns. Note that for the δ0, the sum of previous δ measurements
is 0.00, while for δ1 this sum is equal to δ0. At the end, the simulation environment presents a log
file with all the calculated delays. As future works, this part of the simulation environment will
be incorporated into the Blade design flow to experiment with a netlist mapped to a standard cell
library.
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6. DELAY FAULT TESTING OF CRITICAL PATHS

This Chapter presents contribution 5 (see Section 1.2). Different from the previous fault
analysis of the Blade specific blocks, this is focused on delay fault testing of the combinational
logic in the data pah, that is the same regardless of whether it is a classic synchronous or a Blade
implementation. This work is the object of recently published DATE conference paper [KUE18].

As previously discussed, from the technology perspective, there is no distinction between
manufacturing asynchronous or synchronous CMOS circuits, which means that expected defects are
similar in both designs [RON99]. This can also be extended to synchronous or asynchronous timing
resilient circuits. However, from the test perspective, timing resilient circuits are fundamentally
different when compared to conventional circuits, since the former tolerate some timing violations,
and not all timing violations are faults. So, a test method for delay fault testing of the combinational
logic must be capable of distinguishing between a recoverable timing violation and an actual delay
fault.

Despite this difference, a natural path when considering the testability of timing resilient
circuits is to look at classical approaches used in industry, such as the scan technique, which can be
applied to various types of structural faults, including stuck-at and delay. Some of these attempts
where presented in Section 3.2, such as the Scan Razor [ANA15], the TimeD scan architecture
[FLO08] and the test methodology presented in [YUA13] [HAN13]. All these works proposed to
transform EDS elements into scannable elements to test synchronous timing resilient circuits. As
already discussed, one of the problems with the scan approach for testing timing resilient circuits is
the area overhead of the test structures.

Different from the two first works ( [ANA15] and [FLO08]), the test method proposed
in [YUA13] [HAN13] address the problem of distinguishing a recoverable timing violation from an
actual delay fault. Their method reuses the error detection logic to detect delay faults by applying
two-pattern delay test through the data path scan chain. A clock divider and a duty-cycle control
circuit to select different test speeds and duty-cycle configurations are used to differentiate timing
violations from delay faults in the combinational logic. The idea of reusing the error detection logic
for test purposes is also developed in [YI14], but it is more focused on developing a scan-based aging
monitoring scheme. The circuit is monitored during normal operation, where no faster-than speed
testing is applied, and it gives an alarm if aging is detected so that actions can be taken before a
major failure, such as reducing the operating frequency of the circuit. Experimental results show
that the proposed solution has less switching activity, thus consuming less power. This method
also implies in relatively less overhead in large designs when compared to the previously reviewed
methods, including Razor [ERN03], because no data/clock delay circuit and additional clock tree
are needed. Unfortunately, the authors do not present synthesis results for area comparison. It is
interesting to see in these works that the reuse of the error detection logic for test purposes is often
applied. It reflects the area overhead problems frequently observed in timing resilient architectures,
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where the designer is looking for ways to amortize the test circuitry by reusing the resiliency circuit
for test purposes.

6.1 Proposed Test Method

The constant timing monitoring of resilient circuits provides feedback about the current
state of the circuit during functional operation, which suggests the reuse of the EDL for detecting
timing variations in the combinational logic that can be associated to a path delay fault. Therefore,
the test method proposed here explores the concurrent test capabilities of circuits implemented with
Blade by reusing the EDL as a fault detection mechanism. It also relies on functional testing to
produce test patterns for the critical paths, reducing the area overhead required by a dedicated scan
chain.

As presented in [KRS03], functional testing may translate into delay fault under-testing,
where non-functional delay paths are not covered. On the other hand, structural testing can over-
test paths that are not functionally activated, resulting in yield loss, because the chip is discarded
due to faults in non-functional paths. An important assumption the proposed test method is that
if the defect does not affect the behavior of the circuit in functional mode, a missed defect should
not cause the system failure. In this case, the chip should not be rejected based on a failure in
a non-functional path. Specifically for testing delay faults in critical paths with Blade circuitry,
functional testing can achieve a satisfactory fault coverage with a low test circuitry overhead.

The proposed test approach focuses on online testing of path delay faults of critical paths
as a natural consequence of Blade’s implementation, where critical paths have an EDL constantly
monitoring possible timing violations. The Blade controller is modified in this approach to detect
faults through the EDL by shifting the TRW, which essentially means to make pipeline stages to
operate slower. Note that this slower mode is only applied for testing, and the modifications do
not affect the functional mode of operation. With the shifted TRW, the EDL now detects timing
violations later than the violations identified during functional mode. These later timing violations
are in fact delay faults being detected, which would not be captured by the EDL.

6.1.1 Test Architecture

Despite the difference in the Burst-Mode and Click designs, the proposed test circuitry
is the same. The following examples use the Burst-Mode implementation as the reference, but all
functional results can be related to a circuit implemented with the Click based controller. Figure
6.1(a) shows the original delay CLK control, and Figure 6.1(b) illustrates the associated timing
diagram. Figure 6.1(c) shows the modified circuit that creates the shifted TRW for the Burst-
Mode controller. A Click-based example is illustrated in Appendix A (Figure A.4). The AND gate
before the multiplexer ensures the CLK deactivation immediately after the controller deactivates
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Figure 6.1 – (a) Original Blade burst-mode controller CLK output circuit. (b) Timing diagram of
the original controller circuit. (c) Modified CLK output circuit. (d) Timing diagram of the modified
circuit.

the int_clk. Otherwise, the TRW would also be extended by the additional Δ delay. The dtm
(delay test mode) signal selects whether the TRW must be shifted or not. The dtm signal is directly
connected to all controllers. Thus if activated, all controllers will shift TRW. The timing diagram
of Figure 6.1(d) illustrates this behavior.

The rest of the controller circuit remains unchanged, and the modifications are transparent
to the rest of the circuit, since the controller still waits for the delay signal transition to continue with
the handshake protocol. Timing constraints and the performance in normal mode are not affected
either, and the delays of the additional gates can be compensated in the delay line. Note that, the
method is limited to detect faults that do not exceed the extra Δ time, and faults that trespass the
shifted TRW are not captured.

The same way as the delay lines test method presented in Section 5.3, an OR gate groups
the err1 signals from all the EDLs on the circuit and its output are mapped to the Error1 pin as an
observation point for flagging the faults detected by an EDL. Once the dtm is enabled, the Error1
is constantly monitored while the circuit executes a functional test. If at any moment a transition
at Error1 occurs, a delay fault is considered detected.
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The proposed modifications assume that the TRW shift is implemented with an additional
delay line. This delay line is the one inside the dotted region of Figure 6.1(c). Although the test
method presented in Section 5.3 requires the removal of the extra delay line (edo −→ edi) from the
Burst-Mode controller (Figure 5.3), which led to the development of the Click based controller, the
additional delay line of Figure 6.1(c) does not affect its testability. Since they are interconnected,
the Step 2 (see Section 5.3) is split into two separate test. The first one with dtm enabled, resulting
in a time measurement that is equivalent to 2Δ, and the second test with dtm disabled, measuring
only the time of original delay line. The time difference between these two tests is used to extract
the propagation delay of each delay line.

Although the proposed method is limited to one TRW shift, it is also possible to have an
alternative design where, for instance, multiples activations of a single delay line are controlled, thus
extending the shift to detect longer delay faults. The necessity of detecting delay faults that exceed
the shifted TRW depends on more analysis that will be addressed in the future. However, there are
some modifications in the proposed architecture that are discussed in the following section.

6.1.2 Yield Improvement and Aging Monitoring

In the architecture presented in the previous section, a single primary input is connected to
all internal dtm signals, and it affects all controllers. In this case, all controllers will shift the TRW
at the same time. Alternatively, the dtm signal of each controller can be controlled individually by
using a scan chain as presented in Figure 6.2. The dashed global_dtm_i is replaced by an auxiliary
scan chain connected to dtm_i.

Figure 6.2 – An alternative design with individual control over the dtm signal.

This alternative design opens some new possibilities regarding fault diagnose, yield im-
provement and aging monitoring. For instance, assume that there is a delay fault in a critical path
between controllers C1 and C2. If the global_dtm_i approach is applied, there is no way to deter-
mine, just by observing Error1, which stage contains the fault. If the dtm of each controller can be
set individually, a diagnosis procedure can be executed to discover which stage captured the fault.
For this example, only the DTM2 scan register holds a dtm enable for shifting C2 TRW. In this
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scenario, the delay fault is captured, and it is known for sure that the Error1 transition came from
C2, and the combinational logic between C1 and C2 is faulty.

Individual control for each dtm can also be used to increase yield if the fault is detected
during manufacturing tests. For instance, if a delay fault is detected at the shifted TRW, and the
fault location can be diagnosed, the dtm signals of stages where faults were identified can be enabled
permanently, even during normal operation. The consequence is a stage that is Δ time slower than
its original design. Moreover, with the advantage of being an asynchronous design, only the faulty
stages can be slowed down, and the overall performance impact will not be like in a synchronous
circuit, where all stages would be affected by a clock frequency reduction that accounts only for the
faulty stages. In this case, a circuit that would be discarded can still be commercialized as a lower
performance version.

Still, on the new possibilities of this implementation, an aging monitoring mechanism can
be applied to detect a performance degradation during the circuit lifetime by monitoring the Error1
signal. The constant monitoring of this signal can be translated into a reliability metric, the error-
rate. An increase in the error-rate can be related to circuit aging, and actions can be taken to avoid
the circuit failure, increasing the circuit lifetime. Moreover, if aging is detected, a diagnose test,
similar to the one described earlier, can be performed to detect which stages are being affected.
Also, like the solution to increase yield, the affected stages could be purposely set to operate in a
slower mode by enabling their dtm during normal operation. Further evaluations on yield and aging
improvements using the proposed method are left as future works.

6.2 Experiments and Results

The proposed test method was included in Blade’s automated flow, automatically adding
dtm port, instantiating the OR gate to group the err1 signals and making their proper interconnec-
tions. The evaluated results consist of fault coverage and area overhead. Although the proposed
method can also improve yield and aging, these evaluations are left for future works. The flow
targets a 28nm FDSOI technology and the method is evaluated with a 32-bit XTEA crypto core,
based on the Speed XTEA described in [KAP08], and the same case study presented in [HAN15] was
implemented, a 3-stage 32-bit MIPS OpenCore CPU called Plasma [PLA14], including the original
Burst-Mode controller. For both case studies, the synchronous base netlist was synthesized for a
2.20ns clock period.

The fault simulation environment (see Section 4.3.1), previously incorporated into Blade’s
co-simulation environment for testing the TEDL (Section 4.4.4), now has some new input parame-
ters. The parameters are: a list of critical paths extracted from the Blade flow, where the EDL is
placed, and the delay faults are injected; the Δ delay; and the original SDF (Standard Delay Format)
file. For each critical path, a mutant SDF is generated with a timing violation for that specific path.
The additional time is equivalent to the Δ delay plus the slack of the path. It adds a propagation
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delay that shifts the path transitions to the shifted TRW, thus if any transition occurs in this path, it
will be flagged by the EDL as a delay fault. After all critical paths with EDL are simulated, the fault
simulation environment presents a report with the total simulated paths and the fault coverage.

Table 6.1 presents the fault coverage for both case studies. For the XTEA fault simulation,
a testbench executes 2000 encryption and decryption operations with randomly generated data,
totaling 2000 handshake cycles, while 18601 instructions are executed by the Plasma, one for each
handshake cycle. The simulation environment shows that 100% of the delay faults in the critical
paths were detected with the XTEA.

Table 6.1 – Fault coverage for critical paths of Blade implementations of the Plasma CPU and XTEA
crypto core.

Plasma XTEA
Total Critical Paths 625 6271
EDL Critical Paths 238 937

Detected Faults 172 937
Fault Coverage 72.27% 100%

The experiments with Plasma used the testbench provided with the OpenCore package to
produce the input data. Reports for Plasma fault simulation show a 72.27% fault coverage. This
lower fault coverage observed with Plasma is explained by the use of functional code that was not
developed aiming functional testing. Most of the uncovered paths are related to high-order bits from
registers that had no transition during the simulation, such as the program counter and memory
address registers. As already pointed, a transition must occur in the path, so the EDL captures
the delay fault. Although this is out of the scope of this work, software-based testing can be used
to improve fault coverage of processors [LAI00] [SIN06]. For example, the work in [KRA05] used
Plasma as a case study and reported 95% of fault coverage.

Table 6.2 – Comparison between Blade implementations with and without the proposed DTM
circuitry. Blade Plasma vs Blade Plasma-DTM (PDTM) and Blade XTEA vs Blade XTEA-DTM
(XDTM) in terms of area.

Plasma PDTM XTEA XDTM
Combinational 7095.28 7124.33 35561.44 35599.80

Buf/Inv 608.90 630.93 2959.80 2991.13
Noncombinational 7860.69 7860.69 21828.00 21828.00
Macro/Black Box 228.58 228.58 1280.01 1280.01
Net Interconnect undefined undefined undefined undefined

Total Area 15793.45 15844.53 61629.25 61698.94
Area Overhead - 0.32% - 0.11%

Table 6.2 shows that for both case studies have area overhead lower than 1%. The
additional area comes from the increment in the Combinational logic and the Buf/Inv, which is the
extra delay line. Moreover, the area overhead of the proposed test circuitry does not scales up with
the number of critical paths covered. If more paths are selected in the Blade flow to receive an
EDL, the area overhead comes only from the additional EDL circuitry. This way, the designer can
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tradeoff between additional EDL area and the number of paths covered by timing resilience and the
proposed test method. For future works, the area overhead can be further reduced by reusing the
existing delay line instead of creating a new one.
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7. CONTRIBUTIONS OVERVIEW

This Chapter presents an overview of this Thesis contributions, relating the different pro-
posed test approaches with the test application phase, the supported fault models for each approach
and an area overhead comparison between classic scan test approach and all the proposed test
techniques integrated into a final Blade netlist.

7.1 Scan Comparison

One of the biggest concerns that motivated the research of different test approaches for
Blade was the silicon area cost related to testing circuitry. Timing resilient architectures already incur
in significant area overheads for the detection and recovery circuitry, such as the 21% increase in
combinational logic and 280% increase in the sequential area for the Bubble Razor [FOJ13]. Even so,
some works proposed the classic scan approach for testing synchronous timing resilient architectures
with TimeD [FLO08] and the Scan Razor flip-flop [ANA15]. Despite the authors comments about
the lower area overheads of their approaches, they do not present quantitative results for a real case
study.

The original Blade [HAN15] has an overall area overhead of 8.4%, while the Bubble Razor
[FOJ13] the overall overhead is 87%. Like the Bubble Razor architecture, Blade is a latch-based
design, where LSSD [JUR17] is the scan design for this type of sequential cell, but LSSD presents
a significant area overhead once each latch is replaced by two latches. Moreover, Blade is also an
asynchronous design, thus scan DfT can present some challenges due absence of a global clock
and the usage of non-standard sequential components (C-element and Q-Flop). Therefore, it seems
that the use of scan technique for Blade can present a high area overhead, but the question is how
much higher. In this context, the work of Juracy [JUR18a] was developed in parallel to this Thesis,
exploring the DfT scan approach in Blade, and allowing a quantitative area comparison between the
proposed test methods and the scan design.

In his work, Juracy proposed an optimization for the LSSD [JUR17] and Clocked-LSSD test
cells. This last scan cell implements the LSSD protocol for flip-flops. Thus a design containing both
latches an flip-flops can be interconnected in the same scan chain. Juracy also presents a testable
implementation for the Q-Flop cell. His implementation allows automatic scan replacement of the
Q-FLop without affecting the internal metastability filter [JUR18b]. Automatic scan replacement
and connection is also described in [JUR18a], where the Blade flow described in Section 3.1.7 is
modified to implement a synchronous mode in the Blade design. Test clock trees are added and the
Blade controllers modified with an additional multiplexer to select between their internal clock and
the test clock externally generated during the synchronous test mode.

The area results for the scan approach presented by Juracy [JUR18a] and the proposed
test methods proposed in this Thesis considered two test cases, the 32-bit XTEA crypto core, based
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Speed XTEA described in [KAP08], and Plasma [PLA14], a 3-stage 32-bit MIPS OpenCore CPU.
Both synthesis target the 28nm FDSOI technology and a 2.20ns clock period. The synthesis results
are presented in Table 7.1.

Regarding the area results for this Thesis work, the results include the area of elements
that are not still incorporated automatically in the final netlist, which are the scan elements used
to extract the patterns for the TEDL proposed in Section 4.4 and the scan Q-Flop used for testing
the delay lines. These area estimations are calculated based on the cell area values extracted from
the 28 nm library documentation. The area of the 14 mux-D scan elements needed for both Plasma
and XTEA designs is 79.968 µm2. For the 20 Q-Flops of Plasma the additional area is 62.04 µm2,
and for the 112 Q-Flops of XTEA the additional area is 347.42 µm2

Table 7.1 – Synthesis results for the Blade XTEA (B-XTEA) and Blade Plasma (B-Plasma) designs
with scan DfT approach [JUR18a] and the implementations of this work.

Comb. Cells Seq. Cells Total Area (µm2) Overhead

B-Plasma 3603 1615 14964.74 -
B-Plasma Scan 3603 1615 22475.44 50.19%

B-Plasma This Work 3742 1631 15599.13 4.24%
B-XTEA 31205 15644 64532.75 -

B-XTEA Scan 31205 15756 137260.11 112.70%
B-XTEA This Work 32199 15660 68966.70 6.87%

Integrating all the proposed modifications of this work resulted in an area overhead of
4.24% with the Plasma and 6.87% with the XTEA, while the area overhead with the scan approach
is 50.19% with the Plasma and 112.70% with the XTEA. Regarding only the scan approach, Juracy
[JUR18a] explains that the significant difference in area overheads is related to sequential cells
proportion present in each case study. Comparing his results with this work demonstrate that silicon
cost for the proposed test methods is significantly lower than the classic scan approach. However,
these two test approaches are not covering the same set of faults. Thus a fault coverage comparison
would not reflect a qualitative measure adequately for each one. Even though, these results suggest
that the scan approach may be too expensive and not ideal for testing Blade.

7.2 Proposed Test Methods Application

As presented in Section 3.1.7, a Blade circuit can be divided into four main blocks: (i)
controllers; (ii) delay lines (iii); error detection logic (EDL); (iv) data path. Following this division,
each one of these blocks had their testability analyzed in the previous chapters, and different test
methods were proposed for detecting delay and stuck-at faults in these blocks. Table 7.2 summarizes
the fault models supported by the test method proposed for each block. The number of check marks
gives a notion of how efficient the proposed methods is for detecting the faults.

The fault classification and TEDL architecture proposed for testing Blade’s EDL presented
high stuck-at fault coverage, but delay faults were partially evaluated since only the original EDL
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Table 7.2 – Supported fault models by the proposed test methods for each Blade block.
Block Stuck-at Delay

EDL �� �
Controller �� -
Delay lines �� �
Datapath - �

architecture was analyzed. However, extending the fault classification to consider delay faults does
not require any modification in the proposed TEDL architecture and can be analyzed the same way
as the original EDL analysis. This analysis is left for future works.

Regarding the controller block, the analysis of the Burst-Mode and the proposed Click-
based only address the stuck-at faults, where the Click-based implementation achieved better results
when considering the detection of stuck-at faults through the observation of system halt. The delay
lines test method was only validated with the equations and behavioral simulations. Thus further
experiments are required to prove its efficiency. Stuck-at faults in the delay lines are equivalent to
stuck-at faults in the interconnections between the controllers, which cause the system halt. Delay
faults in critical paths of the data path are covered by the test method presented in Chapter 6, but it
relies strongly on functional test patterns to produce transitions in these critical paths, and stuck-at
faults cannot be detected through this method. A built-in self-test (BIST) method could be used
for this purpose, where the expected response is compressed with multiple-input signature registers
(MISR).

Table 7.3 shows a how the proposed test methods can be classified regarding the test
application phases. In this classification, there are three possible phases, manufacturing test, that
considers structural fault testing before selling the circuit, online test, where the circuit is tested
concurrently to its normal operation, and offline test, where the normal operation mode must be
suspended for the test.

Table 7.3 – Test phase classification of the proposed test methods.
Block Manufacturing Online Offline

EDL �� - �
Controller �� �� -
Delay lines �� - -
Datapath �� �� ��

As shown in Table 7.3, the fault testing method proposed for testing the EDL is used for
detecting stuck-at faults in the manufacturing phase, although it can be applied for periodic offline
testing. Online testing is not possible since the normal circuit operation must be suspended for
extracting the behavioral patterns for fault classification. The Click-based controller can be tested
during the manufacturing phase, where the circuit will be tested for a system halt detection. This
behavior can also be considered for online testing. If the controller circuit develops a stuck-at fault
over time, which can occur due to circuit aging, the fault can also be observed by the system halt.
The delay lines test method is only applied during circuit manufacturing to measure post-fabrication
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propagation delay. The test method proposed for testing the critical paths of the data path is
the one that presets the most possibilities since it can be used for detecting path delay faults in
the manufacturing phase, but also serves as an online monitoring mechanism, and even for offline
diagnosis (fault location and identification).

Finally, Table 7.4 presents a high-level comparison between classic scan approach applied
to Blade in [JUR18a] and the work of Yuan [YUA13], which also applies the scan approach. Different
from the work of Juracy [JUR18a], Yuan proposed a custom scan call for the DSTB, which is the
EDS used in their resilient architecture, while Juracy applies standard LSSD scan cells, that are
compatible with commercial DfT tools.

Table 7.4 – High level test phase comparison with three different approaches for testing timing
resilient circuits.

Test Application This Work Blade Scan [JUR18a] DSTB Scan [YUA13]

Manufacturing �� ��� ��
Online � - -
Offline �� - -
Yield � - -
Aging � - -

Since the works of Juracy [JUR18a] and Yuan [YUA13] are full scan approaches, they are
ideal for structural testing in the manufacturing phase and can be applied for full testing of the
data path. Yuan also addresses the reuse of EDS for testing, but still rely on the structural test
patterns, which are not applied for testing after manufacturing phase. However, the work of Yuan
may not be supported by commercial DfT and ATPG tools. Thus, the work of Juracy is more
suited for manufacturing test. Although the proposed test methods of this Thesis do not achieve
the level of fault testing and fault coverage of the other two works, they extend the testability of the
Blade template to different test applications phases that covers manufacturing, online and offline
testing. The yield and aging improvements discussed in Section 6.1.2 demonstrate that Blade can
be a reliability-oriented implementation for different test application phases, from manufacturing to
infield concurrent testing.

One last thing to discuss is how generic are the proposed test methods, and if they can be
applied to other similar timing resilient templates. The proposed fault classification can be extended
to other EDLs, but the behavioral patterns must be generated for each design, which is similar to
developing a fault model for different logic gates, necessary modifications (concurrent checkers),
such as the proposed TEDL must be custom made. Regarding the controller, relying on system
halt for detecting faults in the control part is restricted to asynchronous controllers. However, it
was demonstrated that this behavior is not present in all asynchronous controllers. Although the
asynchronous Sharp [WAU17] is also a Click implementation, Sharp implements a distinct handshake
protocol, which results in a different circuit. Thus, claiming that Sharp is also self-tested for stuck-at
faults like the Click-based design proposed for Blade, depends on further experiments, similar to the
ones executed in Chapter 5. The delay lines test method could be adapted, but it may not be ideal
for Sharp since the number o delay elements increase to four. Deriving the test time equations for
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the different delay lines would require additional observability and controllability. Finally, the delay
fault testing of critical paths seems to be applied to other asynchronous timing resilient with minimal
effort. In fact, the same circuit proposed in this Thesis could be used to shift the TRW for detecting
path delay faults. Assuming that the same circuit is used, the yield and aging improvements are
also applicable.
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8. CONCLUSION

Timing resilient architectures became a promising alternative for reducing the timing mar-
gins due to PVT variations, while still improving performance and energy efficiency. On the other
hand, some proposed designs suffer from metastability issues. They also present high recovery penal-
ties and high area overheads, which leads to restrictions for test circuitry. Still, the scan approach
is the most accepted, even for these resilient circuits. However, testing timing resilient circuits is
fundamentally different from testing standard synchronous designs since they tolerate timing vio-
lations, and the existence of a timing violation does not necessarily determine the chip should be
discarded. Thus the pass or fail criteria is different. All these factors hinder the usage of timing
resilient templates by the industry.

Different from the majority of timing resilient proposals, Blade is an asynchronous template
that presents lower area and recovery penalties while removing the metastability problems, but
testability can become even more challenging. The absence of a global clock in asynchronous
circuits and the usage of non-standard sequential cells difficult the implementation of scan-chains.
As a latch-based design, the use of scan-chains in Blade is limited to LSSD scan approach, which
is known for presenting high area overheads. The proposed test methods demonstrated that Blade
can be tested in different phases (manufacturing, online and offline) for stuck-at and delay faults.
Fault analysis and synthesis results presented throughout this document show that these reliability
improvements present a satisfactory fault coverage for an area overhead of 4.24% and 6.87% for
the Plasma CPU and the Speed XTEA crypto core respectively. The full scan approach was not
considered, and the Blade testability was evaluated from a different perspective, where Blade is not
only a timing resilient template, but a design with self-testing capabilities and increased reliability
properties, including high potentials for yield improvements and aging monitoring, which where not
explored in previous papers. Thus, the Blade’s features could be expanded from a timing resilient
template to a template with multiple reliability-oriented properties. The rest of this Chapter is
dedicated to present contributions and future works.

8.1 Contributions

This work presents a fault classification method for stuck-at and delay faults inside Blade’s
EDL. These faults were classified based on the functional behavior of the circuit in the presence of
a fault. Initially, the test method used with the fault classification relied solely on the existing EDL
circuitry to produce behavioral patterns for detecting faults. However, controllability and observ-
ability were necessary to improve fault coverage additional, which leads to another contribution, the
testable EDL. For the TEDL, the fault classification was expanded to incorporate additional obser-
vation points and to account for the possibility of forcing timing violations, improving the stuck-at
fault coverage.
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Another contribution is stuck-at fault analysis of Blade’s controller and the subsequent
development of the Click-based design for the speculative handshake protocol. The controller fault
analysis demonstrated that the testing of the original Burst-Mode could not rely on circuit halt.
However, this behavior was observed in the Click-based design, making it a better alternative for
Blade. Moreover, the Click-based approach presented an overall area reduction for the set of four
different versions required for the Blade flow. This reduction was mainly caused by the removal
of an additional delay line that was present in the original Burst-Mode implementation. Another
improvement regarding the Click-controller is that it can be automatically mapped to the desired
technology optimized by the synthesis tool, while for the Burst-Mode the technology mapping is
done manually, and synthesis optimization cannot be allowed since the synthesis tool may modify
redundancies implemented in the Burst-Mode circuits.

Testing the delay lines in the Blade template is another contribution. The proposed test
method assumes the Q-Flop controllability through a scan Q-Flop implementation and the observ-
ability of the internal error signals. The Click-based controller is required for this tests assuming
that a single internal delay is implemented. The test is offline, assuming controllability of primary
inputs and observability of primary outputs, and precise methods to measure time (e.g., test equip-
ment). Different test steps and measurements are required to solve the equations that define the
propagation delay of each delay line.

The last contribution provides a path delay fault detection for the critical path in a circuit
implemented with Blade. The Blade controller is modified to shift the timing resiliency window.
While the shifted window is enabled, the timing violation reported by the EDL are in fact path delay
faults that otherwise would be missed by the EDL. Functional testing is used to stimulate the circuit
paths during the test. The proposed circuit modifications present area overheads that vary from
0.32% to 0.11% depending on the case study, but most importantly, this proposal expands the Blade
usage for yield and aging improvements.

8.2 Future Works

Some research topics were not considered or not completely evaluated. Thus they can
be addressed in future works. The different topics are discussed following the contributions order
presented in the previous section. The first analysis presented for the Blade’s EDL considered
stuck-at and propagation delay faults, and fault simulations were executed with a high-level test
environment. However, for the TEDL, only stuck-at fault simulations were integrated into the co-
simulation environments of Blade’s flow. Thus, before extracting the delay fault coverage for the
TEDL, the Blade flow must be able to increase the propagation delay of the internal elements of
the TEDL. The next step would be to expand the fault classification to consider behavioral patterns
for the delay faults.
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Still, regarding the TEDL integration to the Blade flow, all the internal modification pro-
posed to increase the TEDL are automatically inserted by the logic synthesis, except for the scan
chain proposed for extracting the fault patterns. Once these scan elements are added to the final
netlist, the test simulation environment must be expanded to operate the scan chain and obtain the
patterns for the fault classification. Lastly, further area optimization can be achieved by developing
custom cells for the transition detector, which at this point is described with standard cells.

Like the TEDL, the Click-based controller was not evaluated for delay faults and requires
the integration of delay faults simulations into the Blade’s flow. An alternative approach is to detect
the delay faults in the controller through the delay lines test method. Another approach is to assess
first the Click-controllers testability separately from a Blade design, where commercial DfT and
ATPG tools are used. This approach is possible because the Click design only uses standard cells.
The flip-flops can also be automatically replaced by scan cells as demonstrated by the author of
Click to improve controllability and observability. In this scenario, all the fault models supported
by the commercial tools can be applied, such as bridging and stuck-open fault models, and the
post-fabrication tests of the controller would be isolated from the rest of the circuit.

The delay line testing was only validated with behavioral test environment using high-level
RTL descriptions for the different circuit components. Despite the successful simulations, the test
scenario does not describe a real circuit and the test method does not account for forks and joint.
Thus, it must be evaluated with more realistic circuits to prove its effectiveness. It is expected
that timing simulations of a real case study implemented with Blade will require an updated in
the proposed equations to account propagation delays inside the controller. Although Blade allows
reconfigurable delay lines, these were not accounted. However, the same test method could be
repeated for all delay line configurations for completeness or a subset of delay line configurations
when test speed is more important.

Another subject for the future works is related to the proposal for testing delay faults in the
critical paths of Blade’s data path. This proposed test method relies on functional testing. Thus,
software-based testing approaches can be further analyzed to improve fault coverage of Plasma
(or other processors) along with the development of other case studies. Moreover, the suggested
yield and aging improvements can also be explored with complete implementations and experiments.
Although the area overhead for this proposal is quite low, further area optimization can be applied.
The additional delay line required for shifting the resiliency window may be replaced by a circuit to
control multiple activations of a single delay line. This multiple activation delay line would also serve
to extend the shift to detect longer delay faults, but the actual necessity of detecting such longer
faults must be evaluated.

One last topic to be addressed in the future is regarding the compatibility of the pro-
posed test methods with other timing resilient templates, more specifically the Sharp template since
it is based on Blade. Finally, a more general study would evaluate performance and power over-
heads. Different from power, timing overheads of the proposed implementation were briefly discussed
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throughout this work suggesting that the impact is minimal to none. However, it is interesting to
demonstrate this analysis quantitatively.
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APPENDIX A – CLICK CONTROLLERS

Figure A.1 – Click-based token controller for EDL stages.
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Figure A.2 – Click-based controller circuit.
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Figure A.3 – Click-based token controller circuit.
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Figure A.4 – Click-based controller for EDL stages modified for the delay test mode (dtm).



 

 


