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Pontif́ıcia Universidade Católica do Rio Grande do Sul - FENG - PGETEMA
Porto Alegre, RS, Brazil

E-mail: rvargas@pucrs.br

Cynthia F. Segatto and Marco Túllio Vilhena
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Abstract. In this work, we report a genuine general analytical solution for the linearized
SN radiative-conductive transfer problem in a heterogeneous plane parallel atmosphere with
the albedo coefficient depending continuously on the spatial variable. By general solution, we
mean that the solution is valid for an arbitrary albedo coefficient continuous functions of the
spatial variable having the property of fulfill the requirements of existence and uniqueness. The
key feature of this novel approach embodies the steps: following the idea of the Decomposition
method, we transform the original problem into a set of recursive problems with constant albedo
coefficients, having the main feature that the sources terms takes the information of the spatial
dependency of the albedo coefficient into account. This procedure allows us to solve, analytically,
the resulting recursive system by the LTSN method developed for a constant albedo coefficient.
Finally, we present the error control analysis of the solution and numerical comparisons against
the literature results.

1. Introduction
Radiative transfer considers problems that model the physical phenomenon of energy transfer
by radiation in media. These phenomenon appears in variety of realms including engineering
applications like heat transport by radiation [1]. The nonlinearity of this equation comes from
the local thermal description using the Stefan-Boltzmann law that is related to heat transport
by radiation which in turn is related to the radiation intensity and renders the radiative transfer
problem a radiative-conductive one [2, 3]. Solutions in the literature are basically linearized
and of numerical nature [4, 5, 6, 7, 8, 9]. However, it is worth mentioning that a general
solution from an analytical approach for this type of problems exists only in the discrete ordinate
approximation and for homogeneous media as reported by Segatto et al. in reference [10]. Its
basic idea comprehends the steps: following the idea of the Decomposition method [11, 12],
the authors constructed a recursive system of linearized SN radiative-conductive equations with
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the main feature that the nonlinearity information is carried out by the source term, unlike
the well known Decomposition method [13] which expands the nonlinearity term in polynomials

series (Ân and An polynomials). Further, the authors also splitted the operator associated
to the equation considered, as a sum of the linear and non linear operators, but not likewise
the Decomposition approach, which decomposes the original problem as the summation of the
higher derivative, remaining linear and non linear operators. Morever the authors constructed
a recursive system of differential, but not integral equations like the Decomposition technique,
whith was then solved by the authors by the LTSN method [10]. For more detais see the works
of Segatto et al. [14], and Gonçalves et al. [15]. Motivated by the task of extending this of sort
solution for heterogeneous media, in this work, we report a genuine general analytical solution
for the linearized SN radiative-conductive transfer problem in a heterogeneous plane parallel
atmosphere with the albedo coefficient depending continuously on the spatial variable. By
general solution, we mean that the solution is valid for an arbitrary albedo coefficient continuous
functions of the spatial variable having the property of fulfill the requirements of existence and
uniqueness [16, 17]. By analytical we mean that no approximation is done along the solution

derivation. We are aware of the works of Ćengel and Özişik [9], and Garcia and Siewert [18],
but they are restricted for very specific albedo functions, namely polynomials and exponential
functions. The key feature of this novel approach embodies the steps: procceeding in similar
manner of the nonlinear problem discussed, we transform the original problem into a set of
recursive problems with constant albedo coefficients, having the main feature that the sources
terms takes the information of the spatial dependency of the albedo coefficient into account. This
procedure allows us to solve, analytically, the resulting system by the LTSN method developed
for a constant albedo coefficient. Therefore, the series solution attained, allow us to obtain
numerical results with a prescribed accuracy, by controlling the number of the terms in the
series solution. To our best knowledge this sort of solution is not found in literature. We
complete our analysis presenting simulations and comparisons against the literature results.

2. The Analytical Solution
To construct the analytical solution of the SN radiative transfer in an inhomogeneous, emitting,
absorbing and grey plane-parallel slab of optical thickness, with variable albedo coefficient with
position, without source [19], let us consider the problem:

µ
∂I

∂τ
(τ, µ) + I(τ, µ) =

ω(τ)

2

L∑
`=0

β`P`(µ)

∫ 1

−1
P`(µ

′)I(τ, µ′)dµ′, (1)

for 0 < τ < τ0 and to the ensuing reflecting and emitting boundary condition:

I(0, τ) = f1(µ) + 2ρ1

∫ 1

0
I(0,−µ)µdµ, µ > 0 (2)

and

I(τ0, τ) = f2(µ) + 2ρ2

∫ 1

0
I(τ0, µ)µdµ, µ > 0. (3)

Here I(τ, µ) is radiation intensity, is the space-dependent albedo coefficient, n is refractive
index of the medium, σ is the Stefan-Boltzmann constant, Ti, εi and ρi are respectively the
temperature, the diffuse emissivity and reflectivity at the boundary. Moreover the expansions
coefficients β` and the Legendre polynomials P`(µ) and P`(µ

′) are associated with the definition
of the anisotropic scattering phase-function expressed as:

p(µ, µ′) =

L∑
`=1

β`(µ)P`(µ)P`(µ
′) (4)
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here a0 = 1. In order to determine the searched analytical solution, we now consider that the
albedo coefficient has the form:

ω(τ) = ω̄ + ω0(τ) (5)

From this assumption, we recast equation (1) like:

L(I) = µ
∂I

∂τ
(τ, µ) + I(τ, µ)− ω̄

2

L∑
`=0

β`P`(µ
′)

∫ 1

−1
P`(µ

′)I(τ, µ′)dµ′ = S(I) (6)

where the source S(I) is written like:

S(I) =
ω0(τ)

2

L∑
`=0

β`P`(µ)

∫ 1

−1
P`(µ)I(τ, µ)dµ, (7)

Following this idea of Decomposition method [11], we assume that the radiation intensity reads
like:

I(τ, µ) =

M∑
m=1

Im(τ, µ) (8)

Replacing the expression (8) in equation (6) we come out with the following recursive system:

L(I0) = 0

L(I1) = S(I0)

...

L(Im) = S(Im−1)

(9)

for 0 ≤ m ≤ M . At this point, we must remark that the first equation of the recursive system
(9) satisfy the boundary condition given by equations (2) and (3), meanwhile the remaining
equations fulfill the homogeneous boundary condition mentioned. From the previous discussion,
we must realize that we reduce the solution of the original problem to a set of problems with
constant albedo coefficient which are then readly solved, analytically, by the well known LTSN

method [14]. Here we need underline that the number of recursive problems to be solved (M)
is governed by the prescribed accuracy to be reached. For sake of completeness, in sequel, we
report the LTSN solution for the set of recursive problems discussed:

I(τ) = X

(
E+(D(τ − τ0)) + E−(Dτ)

)
V + X

(∫ τ

0
(E−(D(τ − ξ))X−1S(ξ)dξ+

∫ 0

τ0

E+(D(τ − ξ))X−1S(ξ)dξ

)
M

(10)

where D and X are respectively the diagonal eingenvalues matrix and the eigenvector matrix of
the LTSN matrix A, whose entries are written as:

a(i, j) =



− 1

µi
+

ωj
2µi

[
L∑
`=0

β`P`(µi)P`(µj)

]
, se i = j

ωj
2µi

[
L∑
`=0

β`P`(µi)P`(µj)

]
, se i 6= j

. (11)
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Further, from the Decomposition of the diagonal matrix E(D(τ)):

E(D(τ)) = E+(D(τ)) + E−(D(τ)) (12)

we remark that the entries of E+(D(τ)) and E−(D(τ)) are respectively written like:

e+ii (τ) =

{
ediτ , if di > 0

0, if di < 0
, e−i (τ) =

{
ediτ , if di < 0

0, if di > 0
. (13)

In addition the column vetor M has the form:

M =

[
1

µ1

1

µ2
......

1

µN

]T
(14)

Further the integration constant vector V is a vector which is determined by solving the linear
system resulting form the application of the boundary condition. More information and details
about this solution is found in the works of Segatto et al. [10] and Vilhena et al. [1].

3. Numerical Results
In order to make comparisons with available results in literature, in the sequel, without loosing
generality, we specialize the application of the proposed methodology for the following problems:

In the first problem we focus our attention to show the convergence of the proposed solution
for heterogeneous media ranging the number of equations in the recursive system, from 1 to 10.
Bearing in mind the proved convergence of the LTSN method when N goes to the infinitive[20],
we report numerical simulations for N = 400. We will show in the next problem that this
value for N (400) is suitable for our purpose. To this end, let us consider the following radiative
transfer problem in a heterogeneous slab of thickness L = 1 mfp, assuming the albedo polynomial
function, ω(x) = 1−1.4x+0.6x2 and the boundary condition: ρ1 = ρ2 = 0, f1(µ) = 1, f2(µ) = 0.
Looking for the results displayed in table 1, we promptly realize the numerical convergence of
eight rounded places for the results attained for the heterogeneous problem considered. We
reinforce this affirmative noticing that all the recursive problems are solved by the LTS400

approach.
Next we display in table 2, numerical comparisons of our results for the reflectivity (R) and

transmissivity (T ) for the first and second order polynomial albedo coefficient functions for the
same problem against the one achieved by Cengel and Ozişik [9] . To highlight the generality
of this method we also report in table 3 numerical comparisons against the ones attained by
Garcia and Siewert [18].
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Table 3. The exit distribution I(τ, µ) for ω(τ) = exp(− τ
s )

I(0, µ)

µ s = 1 s = 10 s = 102 s = 103

Results Results Results Results

from [18] LTS400 from [18] LTS400 from [18] LTS400 from [18] LTS400

-1.0 .19055 .19055 .44517 .44517 .66146 .66146 .72904 .72904

-0.9 .20517 .20517 .46615 .46615 .67943 .67943 .74510 .74510

-0.8 .22223 .22223 .48910 .48910 .69805 .69805 .76139 .76139

-0.7 .24239 .24239 .51427 .51427 .71733 .71734 .77788 .77788

-0.6 .26656 .26656 .54197 .54197 .73730 .73730 .79455 .79455

-0.5 .29609 .29609 .57257 .57257 .75799 .75800 .81143 .81143

-0.4 .33296 .33296 .60647 .60647 .77946 .77946 .82857 .82857

-0.3 .38031 .38031 .64418 .64418 .80181 .80181 .84606 .84606

-0.2 .44328 .44328 .68632 .68632 .82523 .82523 .86410 .86410

-0.1 .53112 .53112 .73398 .73398 .85028 .85028 .88319 .88319

-0.05 .58966 .58966 .76081 .76082 .86400 .86400 .89361 .89361

I(5, µ)

µ s = 1 s = 10 s = 102 s = 103

0.05 .6075 (-5) .60745(-5) .58031(-2) .58026(-2) .62883(-1) .62881(-1) .96845(-1) .96843(-1)

0.1 .69252(-5) .69250(-5) .63702(-2) .63700(-2) .69024(-1) .69023(-1) .10629 .10629

0.2 .96423(-5) .96422(-5) .76183(-2) .76181(-2) .80567(-1) .80567(-1) .12363 .12363

0.3 .16234(-4) .16234(-4) .91482(-2) .91481(-2) .91918(-1) .91917(-1) .14012 .14012

0.4 .43858(-4) .43858(-4) .11119(-1) .11119(-1) .10342 .10342 .15622 .15622

0.5 .16937(-3) .16937(-3) .13725(-1) .13725(-1) .11523 .11523 .17211 .17211

0.6 .57347(-3) .57347(-3) .17183(-1) .17183(-1) .12744 .12744 .18790 .18790

0.7 .15128(-2) .15128(-2) .21680(-1) .21680(-1) .14010 .14010 .20364 .20364

0.8 .32437(-2) .32437(-2) .27331(-1) .27331(-1) .15319 .15319 .21933 .21933

0.9 .59604(-2) .59604(-2) .34166(-1) .34166(-1) .16667 .16667 .23496 .23496

1.0 .97712(-2) .97712(-2) .42142(-1) .42142(-1) .18047 .18047 .25049 .25049

Given a closer looking for the table 1,2 and 3, we promptly realize the very good comparison
with at least five rounds positions, with shows the good computational performance of the
discussed method for all the problems discussed.

4. Conclusion
The main idea of the classical method to handle radiative transfer problems in a heterogeneous
plane parallel atmosphere consists in the approximation of the heterogeneous media into a
multilayer slab, having the albedo coefficient in each layer an constant averaged or constant
value. Once the local solution for the homogeneous slab is known, the global solution for
the multilayered slab is then determined imposing the boundary condition and the interface
condition of continuity for the radiation intensity at the interfaces. The proposed approach
posses a new philosophy. In fact, we begin constructing the global solution, by solving the
radiative transfer equation in the entire domain, assuming an averaged value for the albedo
coefficient. The influence of the heterogeneity is then incorporated in the solution by solving
the discussed recursive system of problems in the entire domain, with the property that the
sources terms carry out the information of the heterogeneity. In fact, we construct the global
heterogeneous solution progressively from the homogeneous one. Besides the genuine character
of the proposed analytical solution for the SN approach of the radiative transfer equation, as well
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the very good comparisons of the encountered results against the ones of the literature, we are
confident to affirm that this approach is an interesting and promising methodology to work out
such problems in heterogeneous media with error control, once the solution for the same problem
in homogeneous media is known. We reinforce this claim recalling the proved convergence of
the LTSN method whe N goes to infinitive [20]. Furthermore, we need also to emphasize the
generality of this solution, in the sense it is valid for all albedo coefficient functions of the spatial
variable which fulfill the mathematical requirements of existence and uniqueness. By analytical
we mean that no approximation is done along the solution derivation. Therefore, in this sense
we may say that the solution given by equation (10) is an analytical solution of the SN problem
(1).

So far, bearing in mind that we pave the road to extend this solution for the nonlinear
radiative transfer problem in a heterogeneous plane parallel atmosphere taking the advantage of
the known solution for the same problem in homogeneous media [10], we shall focus our future
attention on this direction.
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