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Background. Respiratory syncytial virus (RSV) infection is the major cause of respiratory disease in lower respiratory tract in
infants and young children. Attempts to develop effective vaccines or pharmacological treatments to inhibit RSV infection without
undesired effects on human health have been unsuccessful. However, RSV infection has been reported to be affected by flavonoids.
The mechanisms underlying viral inhibition induced by these compounds are largely unknown, making the development of new
drugs difficult.Methods. To understand the mechanisms induced by flavonoids to inhibit RSV infection, a systems pharmacology-
based study was performed using microarray data from primary culture of human bronchial cells infected by RSV, together with
compound-proteomic interaction data available forHomo sapiens.Results.After an initial evaluation of 26 flavonoids, 5 compounds
(resveratrol, quercetin, myricetin, apigenin, and tricetin) were identified through topological analysis of a major chemical-protein
(CP) and protein-protein interacting (PPI) network. In a nonclustered form, these flavonoids regulate directly the activity of
two protein bottlenecks involved in inflammation and apoptosis. Conclusions. Our findings may potentially help uncovering
mechanisms of action of early RSV infection and provide chemical backbones and their protein targets in the difficult quest to
develop new effective drugs.

1. Introduction

Respiratory syncytial virus (RSV) is a major cause of lower
respiratory tract infection with high level of mortality in
children around the world [1–3]. It is estimated that all
children by two years of age have been infected by RSV
and more than half of them are reinfected [4]. Moreover,
RSV pathogenesis is notably associated with an increased

airway resistance characterized as wheezing, diagnosed as
bronchiolitis [2].

In the 1960 decade, a vaccine trial was performed with
unexpected and tragic results [5]. Hence, effective preven-
tive treatment to RSV infection is unavailable, since there
is no vaccine against the virus. However, several proto-
types are under study [6–9]. The prophylactic therapy with
palivizumab, a humanized monoclonal antibody, has been
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shown to reduce the number of RSV hospitalizations in
preterm infants [10], but the treatment has a very high cost,
and it is administered only to children with risk factors for
RSV bronchiolitis [11]. Another optional treatment against
RVS infection is ribavirin. It is a nucleoside analog that
introduces mutations into the RNA viral genome during
replication and was previously used routinely for infants
hospitalized with RSV. However, it has been associated with
undesired side-effects and was not considered an effective
treatment [12, 13].

The absence of a vaccine for RSV-induced bronchioli-
tis and the existence of few antiviral agents against RSV
constitute very important problems in pediatric medicine.
Thus, the development of novel anti-RSV drugs that can be
administered orally or parenteral to children is extremely
necessary.

A great variety of viruses have been reported to be
inhibited by natural compounds, such as flavonoids [14–16];
however, the molecular mechanisms underlying such effects
are largely unclear. In this sense, it is difficult to develop new
drugs.

In a search to provide new insights for RSV treat-
ments and to understand the multiples signaling pathways
affected by RSV infection, an integrative model based on
systems pharmacology predictions has been used. Moreover,
this methodology will allow understanding the effect of
flavonoid (FLA) compounds against RSV infection, integrat-
ing chemical-protein (CP) and protein-protein interaction
(PPI) networks.

2. Materials and Methods

2.1. Gene Expression Data from Primary Human Bronchial
Epithelial (PHBE) Cells Infected by RSV. The microarray
data GSE12144 were downloaded from the Gene Expres-
sion Omnibus (GEO) database [http://www.ncbi.nlm.nih
.gov/geo/]. Subsequently, a linear model was applied to nor-
malize this data, using Limma package from R/Bioconductor
to guaranteemaximal statistical stringency [17]. Additionally,
a contrast analysis was applied and differentially expressed
genes (PHBE mock versus PHBE RSV 24h) were identified
by Rank Product with a cutoff 𝑃 value of ≤ 0.05 [18].

2.2. Selection of Flavonoids. To select flavonoids with poten-
tial antiviral effect against pathogenic respiratory agents, a
literature mining was performed. Two flavonoids commonly
described against respiratory viral infections were selected:
quercetin [19–21] and resveratrol [22–24]. Quercetin is found
in abundance in onions, apples, broccoli, and berries [25],
whereas resveratrol is present in grapes, berries, and peanuts
[25].

In order to obtain drug-like compounds, a database-
dependent model was applied to calculate the drug-likeness
of all compounds similar to resveratrol or quercetin through
Tanimoto coefficient (Tc) [37]:

Tc =
∑
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where “a” is the molecular property of each compound
and “b” represents the average molecular properties
of the whole compounds in the Drugbank database
[http://www.drugbank.ca/]. The Drugbank database is a
unique bioinformatic resource that contains 6825 compound
data.These chemical compounds are FDA approved drugs or
are being evaluated in clinical trials. In our work a criterion
of Tc values ≥ 0.611 was used according to suggestion by
Drugbank site (data shown in the Table 1).

2.3. Design of CP-PPI Networks. To obtain CP-PPI networks,
the metasearch engine STITCH 3.1 [http://stitch.embl.de/]
was applied. STITCH software allows visualization of the
connections (edge) among different proteins, chemical
compounds, and compounds-proteins, where each edge
shows a degree of confidence between 0 (lowest con-
fidence) and 1.0 (highest confidence). To this present
work, the parameters used were as follows: all predic-
tion methods were enabled, excluding text mining; max-
imal of 10 interactions by node; degree of confidence,
medium (0.400); and a network depth equal to 1. In addi-
tion, GeneCard [http://www.genecards.org/] and Pubchem
[https://pubchem.ncbi.nlm.nih.gov/] databases were used to
search synonymous names of genes and compounds rec-
ognizable by STITCH. In sequence, the outcomes obtained
through these search engines were analyzed with Cytoscape
2.8.2 [38]. Nonconnected nodes were excluded from the
networks.

2.4. Modular Analysis of CPI-PPI Network. ClusterONE was
the tool used to discover densely connected and possibly
overlapping regions within the Cytoscape network [39].
Dense regions corresponded to protein or compound-protein
complexes or parts of them.

ClusterONE identifies subnetworks by the identification
of “growing” dense regions out of small seeds guided by a
quality function. The quality of a group was evaluated by the
number of internal edges divided by the number of edges
involving nodes of the group.

2.5. Gene Ontology Analysis. Gene ontology (GO) analy-
sis was determined by biological network gene ontology
(BiNGO) software 2.44 [http://chianti.ucsd.edu/cyto web/
plugins/index.php] [40]. The degree of functional enrich-
ment for a given category was assessed (𝑃 value ≤ 0.05) by
hypergeometric distribution [41] andmultiple test correction
was applied using the false discovery rate (FDR) algorithm
[42], from BiNGO software. Overrepresented biological pro-
cess categories were obtained after FDR correction, with a
significance level of 0.05.

2.6. Centralities Parameters and Topological Analysis. Major
network centralities (closeness, betweenness, and node
degree) were analyzed with the CP-PPI networks using the
Cytoscape plugin CentiScape 2.8.2 [43].
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Table 1: List of flavonoid compounds considered to chemical protein-protein network design. Chemical identification (Pubchem), Tanimoto
similarity scores, and the antiviral activity of each compound (manually curated from literature).

Compound ID Pubchem CID Tanimoto similarity (score) Antiviral RSV references
A∗

Resveratrol 445154 1 [22, 24, 26–29]
Piceatannol 667639 0.966 UD∗∗∗

AC1O4D7M 6365297 0.719 UD
Caffeic acid 689043 0.689 UD
Phenol 996 0.687 [30, 31]
HLF 5288545 0.684 UD
Sinapinate 637775 0.635 UD
Ferulic acid 445858 0.622 [32]
Isoferulic acid 736186 0.614 [32]
2MP 7249 0.621 UD
P-coumaric acid 637542 0.611 UD
B∗∗

Quercetin 5280343 1 [19, 25]
Myricetin 5281672 1 UD
ST059620 5281614 0.959 UD
Kaempferol 5280863 0.946 [25]
Tricetin 5281701 0.884 UD
Apigenin 5280443 0.823 [33]
Oroxylin A 5320315 0.791 [34]
Wogonin 5281703 0.765 [34]
Flavone 10680 0.714 [35]
EMD 21388 128600 0.636 UD
𝛼-Naphthoflavone 11790 0.711 [34]
𝛽-Naphthoflavone 2361 0.711 [35]
Rutin 5280805 0.631 UD
Genistein 5280961 0.618 [36]
DB07032 656936 0.612 UD
A∗Group with high similarity to resveratrol.
B∗∗Group with high similarity to quercetin.
UD∗∗∗Undescribed in the literature.

Closeness centralitywas used to evaluate the shortest path
among a random node (protein or chemical compound) and
all other nodes [43]:

Clo (V) = 1

∑𝑤 ∈ Vdist(V,𝑤)
, (2)

where the closeness value (Clo(V)) was calculated by comput-
ing the shortest path between the node V and all other nodes
𝑤 found within a network.

The average closeness (Clo) score was calculated by the
sum of different closeness scores (Clo𝑖) divided by the total
number of nodes analyzed (𝑁(V)):

⟨Clo⟩ =
∑
𝑖
Clo𝑖
𝑁(V)
. (3)

Also, the betweenness parameter was taken into account
in the analysis. This parameter is a measure equal to the

number of shortest paths from a couple of nodes that pass
through a different node [43, 44]:

Bet (V) = ∑
𝑠 ̸=V ̸=𝑤∈𝑉

𝜎𝑠𝑤 (V)
𝜎𝑠𝑤

, (4)

where 𝜎𝑠𝑤 is the total number of the shortest paths from node
𝑠 to node𝑤 and 𝜎𝑠𝑤(V) is the number of those paths that pass
through the node V.

The average betweenness score (Bet) of the network was
calculated using (5), where the sum of different betweenness
scores (Bet𝑖) is divided by the total number of nodes 𝑁(V)
analyzed:

⟨Bet⟩ =
∑
𝑖
Bet𝑖
𝑁(V)
. (5)
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The average betweenness score of CP-PPI network was
used to obtain responsible nodes of the control of the
flow of information in the network. These nodes are called
bottlenecks (B) and show higher probability of connections
of different modules or biological processes.

Finally, parameter degree was calculated. This parameter
is a measure that indicates the number of adjacent nodes (𝐸𝑖)
that are connected to a specific node (V), according to

Deg (V) = ∑𝐸𝑖. (6)

The average node degree of a network (Deg) is given by
(7), where the sum of different node degree scores (Deg

𝑖
)

is divided by the total number of nodes 𝑁(V) present in the
network:

⟨Deg⟩ =
∑
𝑖
Deg
𝑖

𝑁(V)
. (7)

Nodes with a high node degree score compared to the
average are called hubs (H) and are responsible for a central
regulatory role in the cell.

In this work, H-B (hub-bottleneck) may correspond to
central proteins or FLA compounds that are highly con-
nected to several complexes, while nodes that belong to
the NH (non-hub-B) group correspond to proteins or FLA
compounds that are important. In order to obtain H-B and
NH-nodes, mathematical means (threshold) generated for
betweenness and degree parameters were considered.

2.7. Molecular Parameters for the Development of a Potential
Drug. All compounds, which were chemically verified by
Zinc database [45, 46] were analyzed taking into account
the Lipinsky’s rule of five (xLogP, molecular weight, num-
ber of hydrogen bond acceptors, and donors). Toxicity
risks (mutagenic, tumorigenic, irritant, and reproductive
effect) were also examined by the Osiris Property Explorer
[http://www.organic-chemistry.org/prog/peo].

A diagram of methodological steps used in this work is
showed in Figure 1.

3. Results and Discussion

Studies of the FLA effects on viruses only have been per-
formed in vitro and in vivo but not in silico using high-
throughput (omic) approaches and network analysis based
on interactome data. This may occur due to the struc-
ture of flavonoids, which generally consist of two aromatic
rings, each containing at least one hydroxyl group that is
connected through a three-carbon “bridge” becoming later
part of a heterocyclic ring [47]. These chemical proprieties
allow increased permeability across the cellular membrane to
interact with multiple intracellular targets [48, 49]. As such,
these compounds possess a broad spectrum of biological
activities [50, 51], leading to the overrepresentation of many
biological pathways, which may not be necessarily linked to
antiviral potential. In this sense, systems pharmacology or
chemobiology strategies could be employed to define specific
targets of flavonoids.

Initial search
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(Text mining)

Cytoscape
+

ClusterONE

Cytoscape
+

CentiScape

Data interpretation/
predictive

compound effects

GeneCard

Resveratrol
Quercetin ↓
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Microarrays
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+

High Tanimoto
similarity

Cytoscape
+

BiNGO

CP-PPI networks

Differential gene
expression

Figure 1: Experimental approach employed to define poten-
tial treatments against RSV infection. The interactome data was
obtained from microarrays data derived from human bronchial
cells infected with RSV. Differential gene expression was considered
as initial input for network prospection. Additionally, the natu-
ral compounds from flavonoids obtained according to Tanimoto
similarity were added to the initial input in STITCH software.
The CP-PPI network generated was viewed by Cytoscape and
analyzed by ClusterONE in order to identify the major clusters
associated. Biological processes found within clusters were retrieved
by employing BiNGO plugin. Moreover, to find bottlenecks and
hubs, proteins/compounds used CentiScape plugin. Finally, data
interpretation was performed based on Zinc database and Osiris
Property Explorer.

3.1. Topological Design and Analysis of a Major CP-PPI Net-
work of PHBE Cells Infected by RSV. To focus on RSV antivi-
ral effects of flavonoids, we developed an interatomic net-
work considering 285 genes differentially expressed during
RSV infection of PHBE cells and 26 flavonoids compounds
(Table 1) as an initial input on STITCH software. As a result
of this approach, a major CP-PPI network composed of 57
nodes and 92 edges and integrated by five compound targets
with putative antiviral activity was obtained (Figure 2). It is
important to note thatminor networks without CPI were also
detected but were not considered for posterior analysis (Sup-
plementary Figure 1; see Supplementary Material available
online at http://dx.doi.org/10.1155/2014/301635).

Network topological features could successfully predict
FLA mechanisms of action against RSV infection. In this
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Figure 2: ClusterONE analysis of major chemical-protein (CP) and protein-protein interacting (PPI) network. All clustered proteins
(composing different subnetworks) and unclustered proteins are represented by nodes of different colors. Chemical compounds are
represented by square shape nodes. FLA compounds abbreviations: resveratrol (RESV), apigenin (APG), quercetin (QUER), myricetin
(MYR), tricetin (TRIC), and genistein (GEN).

sense, the global organization of clustering in the major net-
work suitable for flavonoid modulation was analyzed. Clus-
terONE identified four interconnected clusters (Figure 2).
Subnetworks of these clusters were created, representing four
discrete biological processes, as identified by gene ontology
analysis (GO) (Supplementary Table 1): (1) cell cycle phase
(corrected 𝑃 value: 2.33 × 10−6); (2) ubiquitin-dependent
protein catabolic process (corrected 𝑃 value: 1.61 × 10−5); (3)
nucleic acid metabolic process (corrected 𝑃 value: 4.68 ×
10−4); and (4) RNA splicing (corrected 𝑃 value: 1.65 × 10−6).
RSV-host studies have identified these processes that occur
upon infection [52–54]. However, all flavonoids and their

targets are unclustered in the major CP-PPI network. This
shows a compound-target regulation independent of cluster
network organization during early RSV infection. An alterna-
tive and possible strategy to understand RVS modulation by
flavonoids is to predict the best ranking of compound target
(high impact on the network) through network connectivity
analysis. In this sense, centrality properties were evaluated;
however, 11H-B nodeswere identified in theCP-PPI network,
represented only by proteins (Figure 3(a), Supplementary
Table 2).These sameH-B nodes possess high closeness values
(Figure 3(b), Supplementary Table 2), suggesting that these
nodes may have close communication with others in the
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Figure 3: Centrality analysis (a and b) of the major CP-PPI network. Dashed lines represent the threshold value calculated for each centrality.
Proteins are represented by black dots, while flavonoid compounds are marked in red. Only proteins or flavonoid compounds with bottleneck
scores above the network average are indicated. Legend: hub-bottleneck (H-B); non-hub-bottleneck (NH-B). FLACompounds abbreviations:
resveratrol (RESV); apigenin (APG); quercetin (QUER); myricetin (MYR); tricetin (TRIC), and genistein (GEN).

major network. All flavonoid compounds are H-NB andNH-
NB nodes, but these modulate directly 2 H-B proteins (PIM1
and BCL2).

3.1.1. PIM1 and BCL2, as FLA Targets against RSV Infection.
PIM1 is a protooncogene which encodes a serine/threonine
kinase [55]. This kinase controls cell survival, proliferation,
differentiation, and apoptosis [56]. In the context of res-
piratory diseases, a recent study suggests that PIM1 has
a role in the induction of allergic airway responses [57].
Therefore, PIM1 inhibition reduces the development of full
spectrum allergen-induced lung inflammatory responses, at
least partially through limiting the expansion and actions of
CD4+ and CD8 + effector T cells [57]. A similar function for
PIM1 has been described in acute RSV infections [58]. PIM1
inhibition attenuates induced RSV reinfection, enhancing
airway hyperresponsiveness and activation of the inflamma-
tory cascade. In our analyses, PIM1 showed to be upregulated
in comparison with noninfected control (log FC = 0.026)
and to interact with three flavonoids (tricetin, myricetin,
and quercetin). These compounds are cell-permeable and
directly inhibit PIM1 kinase activity [59]. In this sense, these
flavonoids are potential inhibitors of RSV-caused inflam-
mation in a target-specific manner, through yet unknown
mechanisms. It is important to note that anti-RSV activity
of myricetin and tricetin were not tested experimentally and
should be further investigated.

On the other hand, our data suggest BLC2 regulation
mediated by flavonoids. BCL2 is a regulator of programmed
cell death (apoptosis), in part by modulating the release of
proapoptotic molecules from mitochondria. For viruses in
general (included RSV), apoptotic death of infected cells is
a mechanism for reducing virus replication. After 24 h of
infection by RSV, several proapoptotic factors of the BCL2

family and caspases 3, 6, 7, 8, 9, and 10 are induced in
different epithelial cell lines (primary small airway cells,
primary tracheal-bronchial cells, A549, andHEp-2 but not for
PHBE) [60]. At the same time, RSV also mediates induction
of antiapoptotic factors of the BCL2 family [60], which
might account for the delayed induction of apoptosis of RSV-
infected cells. This indicates the importance of a complex
struggle between apoptotic (host) and antiapoptotic (virus)
pathways [60].

In our study, BCL2 was shown to be downregulated
in PHBE infected cells in comparison with noninfected
controls (log FC = −0.008). We hypothesized that differential
expression of this gene may be caused by overexpression of
PIM1. In hematopoietic cells, PIM1 kinase acts as a survival
factor in cooperation with a regulation of BCL2 [61]. This
mechanism should be investigated in RSV infected PHBE.

Furthermore, resveratrol and apigenin control the activity
of BCL2 in inducing apoptosis in cancer cells [62, 63], but
the effect of these flavonoids has not been explored in PHBE
cells or in in vivo models for RSV infection. However, these
compounds are described as inhibitors of RSV replication in
vitro (see Table 1).

3.2. In Silico Analysis of FLA Effects on Human Health. We
have also predicted potential undesired effects on human
health of each of the FLA compounds based on its chemical
structures (for more details, see Section 2.7 of Materials and
Methods). Our analysis suggests that tricetin may have low
risk to human health considering the four main parameters
of the analysis (mutagenic, tumorigenic, irritant, and repro-
ductive effectiveness), as shown in Table 2. The other four
flavonoids (resveratrol, quercetin, apigenin, and myricetin)
may require chemical modification to reduce human health
impact but provide versatile chemical backbones for drug
development. Biotransformation of flavonoids into drugs is
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Table 2: Prediction of effects of FLA compounds based on chemical structure.

Molecules 𝑥 log𝑃∗ H-bond acceptors∗ H-bond donors∗ MV (g/mol)∗ Mutagenic∗∗ Tumorigenic∗∗ Irritant∗∗ Reproductive
effect∗∗

Resveratrol 2.99 3 3 228.247 High-risk Low-risk Low-risk High-risk
Quercetin 1.68 7 5 302.238 High-risk Medium-risk Low-risk Medium-risk
Apigenin 2.46 5 3 270.24 High-risk Medium-risk Low-risk High-risk
Genistein 2.27 5 3 270.24 High-risk High-risk Low-risk High-risk
Myricetin 1.39 8 6 318.237 High-risk Low-risk Low-risk Low-risk
Tricetin 1.68 5 7 302.238 Low-risk Low-risk Low-risk Low-risk
∗All parameters related to Lipinsky’s rule of five were obtained from Zinc database.
∗∗All toxicity risks were predicted by Osiris Property Explorer.

the usual approach in the development of anticancer targets
[64, 65] but could also be applied in the search of new
therapies against RSV.

4. Conclusions

Our model network CPI-PPI identified five target flavonoid
compounds: resveratrol, quercetin, tricetin, apigenin, and
myricetin. These compounds are suggested as potential
candidates in the process of development of novel drugs
against early severe RSV infection. Despite these potentially
interesting associations, these findings are mainly relying
on statistical analysis. Thus, Further experimental testing of
these predictions will be required to support the in silico data.
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