2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

Mobile application testing on Clouds: challenges,
opportunities and architectural elements

Miguel G. Xavier, Kassiano J. Matteussi, Gabriel R. Franca, Wagner P. Pereira, and Cesar A. F. De Rose
Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Faculty of Informatics, Porto Alegre, Brazil
miguel.xavier @acad.pucrs.br

Abstract—With mobility increasing more each year, mobile
devices and operating system (OS) fragmentation are increasing
at an even faster pace. A multitude of screen sizes, network
connection types, and OS versions have emerged in the market
and led mobile developers to rethink testing practices to ensure
quality and a good experience for increasingly demanding users
who crave highly reliable and stable applications. Such best
practices come at the high cost for testing infrastructure and
maintenance, making most development teams bypass test cycles
and deliver applications before they are thoroughly validated.
And when teams pursue automated test cycles on clouds, expenses
due to high-cost services are not always worth the investment in
application development phases. As a result, test cycles which are
essential to validate application reliability and stability, such as
regression, functional, and leakage tests are left out, primarily af-
fecting user experience. This paper shows the challenges intrinsic
to mobile application testing in consonance with the opportunities
provided by clouds. We explored the state of the art to synthesize
current cloud-based mobile application testing architectures to
convey the need for a new concept and platform to minimize
maintenance and make testing infrastructures more cost-effective.
Hence, we proposed an alternative architecture using emulated
devices for testing automation, which aims for massive test cycles
at a lower cost.

Keywords—Mobile application, application testing, cloud com-
puting

I. INTRODUCTION

The world has witnessed an explosive growth of mobile
devices and applications driven by increased hardware capa-
bilities and network communications globally. This growing
number of devices has led developers to be concerned about
applications stability. Since device manufactures have designed
a variety of hardware architectures that differ in screen sizes,
input methods (touchscreen, physical keyboard), sensors, etc.,
an application that is designed to run on one particular mobile
device does not necessarily work well in another. In addition,
each OS has its own characteristics and limitations, so that
testing an application across multiple different OS versions
is indispensable to ensure stability, reliability, and interoper-
ability. Otherwise, applications tend to fail, primarily affecting
user experience.

The simplest and most common way to test a mobile
application involves running it on a number of devices and
OSs, and analyzing its behavior during run-time. This task is
toilsome given the multitude of hardware architectures and OS
fragmentation. The time-consuming nature of manual testing
and the number of OS versions make this solution unfeasible
and no longer cost-effective during development stages. A set
of testing tools has been developed to overcome this problem
by providing emulated devices on which applications can be
tested, stressed, and/or evaluated. Furthermore, some projects

2377-5750/17 $31.00 © 2017 IEEE
DOI 10.1109/PDP.2017.96

181

have focused on functional tests, providing frameworks for
testing automation. Mobile developers now have a lot of
opportunities, merging powerful frameworks for functional
tests with emulated platforms for stability analysis at a low
infrastructure cost.

On the other hand, cloud computing has evolved at a
rapid pace and has become an alternative platform for systems
that require scalability and high performance with unlimited
hardware resources. Such platforms have paved the way for
developers to migrate software development stages from local
to decentralized environments where distributed teams develop,
deploy, and manage applications without the complexity of
building and maintaining the infrastructure. This cloud com-
puting delivery model is called Platform as a Service (PaaS)
[1], and has been implemented by Internet players such as
Amazon, [2], IBM [3], Google [4], and Heroku [5].

Offering testing frameworks with mobile-emulated devices
in PaaS platforms as a new type of service will likely be a
trend in the near future. Hence, this paper introduces archi-
tectural elements necessary to execute not just tasks focused
on developing or deploying on clouds, but an ecosystem to
test, analyze, and diagnose potential issues proactively while
evaluating mobile applications on distinct hardware configura-
tions and under different conditions. Arguably, cloud platforms
can orchestrate many testing life cycles from different users to
provide a dynamic, resilient, and cost-effective testing infras-
tructure. As such, allow developers to submit their applications,
hardware requirements, and gather valuable information to
help them during the development phase.

Most research works have explored clouds as testing plat-
forms to orchestrate tests using actual devices. These solutions
look very attractive at first, but incur high infrastructure costs
and demands even more costs for maintaining. TestFairy [6],
for instance, depends on the collaboration of users to introduce
their own devices into a shared testing network to be used as
targets where applications can be tested, stressed and finally
evaluated. Further, Xamarin [7] is a complete testing platform
which uses dozens or even thousands of real devices in a data
center to support developer’s requests as they arrive. Is evident
that real devices produce more realistic results, however, for
high performance projects that execute many test cycles in
short time period, these platforms become very costly and may
be not preferable over simpler approaches as those based on
emulation. These scenarios have motivated our research and
have raised many fundamental issues that we will discuss and
show later how they will be treated in our architecture.

II. MOBILE APPLICATION TESTING: CHALLENGES AND

OPPORTUNITIES ON CLOUDS

An abundance of mobile devices and applications have
come into the market over the past few years. The set of display
resolutions, aspect ratios, processing capacity, and amount of
memory are all mandatory requirements for the design phase
of an application. The increasing number of requirements
have forced developers rethink testing practices to build high-
quality applications at low infrastructure costs. Testing mobile
applications is not a straightforward task and has challenged
developers due to the multitude of devices, OS fragmentation,
and the sheer number of test interfaces. Development and
Quality Assurance (QA) teams can not guarantee that an
application that works well on one device will work properly
on another because the screen resolution, CPU, memory, and
hardware differ in uncountable ways. Hence, many developers
have focused on high-end technologies, overlooking cheaper
and less powerful devices.

OS fragmentation poses a challenge for mobile application
testing. Engineering teams face many issues to ensure a
quality and consistent user experience given the variety of
OS versions. For example, when an Android application is
developed, it is necessary to deploy and test it across all
Android’s versions to ensure portability. When an application
supports multi-platforms, the number of versions grows even
further, making it very time-consuming and expensive for
developers. Also, the devices themselves can be expensive to
purchase.

Cloud computing platforms have been utilized to capitalize
on test automation and make the testing process less time-
consuming and more cost-effective. Distributed teams can
perform test cycles on the same physical device shared through
the cloud, instead of needing to buy the same hardware for
all distributed offices. Cloud platforms have to face all of the
challenges of testing mobile applications at a high scale using
device clusters. We have observed purpose-build platforms,
but related studies do not provide accurate nomenclature or
explanations for the functionality of these solutions. Hence,
we intend to classify these solutions according to the archi-
tectures we have found, which employee real, emulated, and
collaborative device clusters.

A. Cloud-based Real Device Clusters

This platform presents a set of physical mobile devices
linked on top of a datacenter as a device cluster, allowing for
the execution of multiple tests over a pool of real devices, as
depicted in Figure 1(a). Real device clusters are a simple way
to test any mobile application with distinct requirements and
configurations. Developers can upload test scripts without hav-
ing to worry about the installation of testing tools or acquiring
devices. Thus, the bugs can be caught through performance
statistics, logs, videos, and a set of screenshots in runtime, and
fixed before they are discovered by the user. Xamarin [7], AWS
Device Farm [8], PCloud [9], Sauce Labs [10] are examples
of this type of cloud platform. In contrast, infrastructures
composed of real devices may limit the number of tests per
user. Since there is a limited number of available devices, the
job’s makespan is steadily affected by the cloud throughput
and request arrival times, harming the test cycles.

B. Cloud-based Emulated Device Clusters

Similar to device clusters, this platform allows mobile
applications to be tested in a shared environment on the cloud

182

using emulated devices instead (Figure 1(b)). Devices are
created on-demand in an emulated form, enabling velocity
and dynamic delivery for teams that need automated tests
at a low cost. Emulators are wrapped into VMs, which are
kept alive only during the test cycle. When the tests are
completed, the VMs are destroyed and queued requests are
scheduled. The tests and results are projected in the same way
as device clusters. A comprehensive variety of devices and
configurations can be chosen. However, some compatibility
issues may occur when using an emulated cluster. For example,
when performing different versions of an OS, such as Android,
10S, Windows Phone, and so on. In addition, it is necessary to
provide resources (CPU, storage, memory, network) elastically
to avoid potential performance problems during mobile appli-
cation testing. As stated, emulation-based testing produces less
realistic results, but makes up for this with low maintenance
and infrastructure costs.

C. Cloud-based Real Device Collaborative Clusters

In collaborative device clusters, developers create groups
of devices distributed geographically, allowing real mobile
devices to be shared through the cloud (Figure 1(c)). This saves
infrastructure costs because the device is bought just once and
shared between distributed developers. The manual tests for
their applications are made on top of real devices picked by
users between available devices in the cloud (as a request)
and accessed by a browser without any software installation.
PCloud and AWS Device Farm are examples of this platform.
This cluster does not have the same devices available all the
time and also may present some instabilities due to hardware
failures, power outages, malicious applications, connection
problems (caused by the user or network issues), among other
things. Moreover, the number of available devices is driven
by the number of users sharing the network. The greater the
number of users, the greater the number of devices on the
clusters.

D. Cloud-based Device Heterogeneous Clusters

Device heterogeneous clusters link the three types of
platforms previously presented, as a solution for large-scale
testing, where developers may choose to run their tests on
real, emulated or request access to collaborative devices, Fig-
ure 1(d)) demonstrates this concept. This architecture allows
high availability, distributed processing, lower cost and also
resource sharing (real or emulated). Sauce Labs is a repre-
sentative of these solutions. Unfortunately, in this scenario,
we found a lot of problems such as unstable collaborative
mode condition, it can happen due the service to depend of
the user; still, the resource contention leading to the interfer-
ence because tests demand many parallel requests searching
for computational resources and finally, queues of tests may
be generated when existing only a small pool of available
resources (devices).

III. CLOUD-BASED EMULATED DEVICE ARCHITECTURE
STATEMENT

The cloud computing paradigm is composed essentially
of three service models that enable ubiquitous, convenient,
on-demand network access to a shared pool of configurable
computing resources: Software-as-a-Service (Saas), Platform-
as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) [1].
In addition, other platforms have been proposed to sup-
ply scenario-specific requirements, such as Datacenter-as-a-
Service (DaaS), Database-as-a-Service (DBaaS), and so forth.

e S N
S N
iy et
Apps [- Apps [-
V' Testing Cloud V. Testing Cloud
Platform

Platform

rder I ris 1. @g@ || |

pram e e S e

Real Devices VM-wrapped Emulated Devices

(a) Real Device Clusters (b) Emulated Device Clusters

Fig. 1. Cloud-based Device Clusters

Here we present architectural elements necessary to supply not
just mobile application testing requirements, but also demands
from distributed testing teams that do not fit in any of the
current service models. Though we have previously presented
four platforms for mobile test automation on clouds, we
focused exclusively on emulated device clusters, since we have
not seen any reference system using emulated devices.

We defined a cloud-based system architecture composed of
high-level client-server modules. The server module sits on top
of a virtualization system (hypervisor) and uses a cloud engine
to control the VMs to start the device emulators. On the other
hand, the client module is a REST-like interface through which
users submit their testable applications with hardware/software
requirements. REST APIs have been gaining ground for the
past few years as predominant Web service design models.
The workflow, from the user’s application submission to the
report the users receive, is presented in Figure 2.

Client
Controller

System
Controller

template
metadata

Fig. 2. Architecture Workflow Design

The workflow consists of: (1) receiving the application, the
test script and hardware/software requirements from the user
(OS, OS version, amount of memory, CPU, and network band-
width); (2) selecting from storage the template (flavor) that
fulfills the submitted requirements; (3) sending the hypervisor
information on the template to be used; (4) starting the VMs
containing the device emulators from the chosen template and
running the application on them; and (5) sending reports back
to the user during run-time.

The next sections describe the system’s low-level compo-

(c) Real Device Collaborative Clusters

183

A A
Mt bt
-_F “\._‘_ __/'"__
pps [figa “= Apps [, -
V' Testing Cloud V' Testing Cloud
Platform Platform
& 7
Request Devices
NN -
:] 1 1

Shared, Real and Emulated Devices

Shared Devices

(d) Device Heterogeneous Clusters

nents in detail.

A. Client Controller

The client controller aims to deliver an easy to use interface
to manage mobile application test cycles. The idea behind
the module is to provide an interface and work as a cloud-
based scalable service for testing applications, using dozens
or even hundreds of different emulated devices at the same
time. The interface defines a set of architectural principles by
which makes it possible to design Web services that focus
on the system’s resources, including how resource states are
addressed and transferred via a wide range of clients written in
different languages. In this context, we defined an interface that
allows anyone to check whether their applications have been
carried out correctly and efficiently across a variety of device
configurations with minimal effort. The designed interface’s
endpoints are as follows:

Resource request: The endpoint returns the amount of
available resources and the mobile OS versions currently
supported by the cloud platform. This is fundamental to ensure
applications’ execution and to avoid resource contention in our
proposed Cloud-based Emulated Device Clusters.

Application and test script submission: The service
receives a JSON file describing the hardware/software require-
ments, the testable application, and the test script. Immediately
after the script is sent, the API starts parsing the file, thereafter
generating an output according to the chosen OS (e.g., Mon-
keyRunner python script for Android), and then it sends the
final script to the controller. The service receives the binary
file in Base64 format and converts it back to binary as soon
as all bytes are transferred to the controller.

Monitoring: The service notifies users of the status of the
submitted tests. It returns information such as elapsed time,
completed percentage, and number of provisioned VMs. Also,
it displays the executed instructions of the submitted test in real
time, presenting exceptions that might have occurred during
the test and showing step-by-step execution times.

Management: The service is responsible for handling tests
in progress. It provides functions to cancel, pause or resume
a given test cycle at any time. To guarantee the appropriate
life cycle of each test, the application management must be
done all the time, providing and deallocating resources when
necessary.

Result request: The service gives users test statistics and
the results generated by the test script when it has finished.

Event results such as screen capturing or file creation can as
well be authenticated on the service.

Test script descriptor: To make the definition as generic as
possible, the input script must be written in only one language,
and also must work on any platform. Based on the work
by Jun-fei Huang et al. [11], we defined requirements for
a code generator which users XML as the input language,
where the customer can program it with universal commands.
It basically interprets the markup language and generates an
output descriptor script, according to the test tool used, e.g.,
a python output compatible with MonkeyRunner [12]. The
greatest advantage of this is that the customer does not have to
worry about the system characteristics before creating the test
cases, i.e., delays, dynamic storage paths, etc. The commands
we defined are shown in Table 1.

TABLE 1. COMMANDS TO DESCRIBE FUNCTIONAL TEST STEPS OF AN
APPLICATION
Command Description
touches a specific point on the screen,
touch . ;
given by X and Y coordinates
screenshot takes a snapshot of the screen

install app installs an app on the device

remove app removes an app off the device
. simulates a slide movement between
slide two points (X1; Y1) and (X2; Y2)
press presses a specific button, e.g., VOLUMEUP
upload file uploads a file to the device

B. System Controller

A template image is used to clone, convert or deploy more
VMs. Within these images are included the VM’s virtual disks
and settings. Templates have a great importance in the archi-
tecture. They contain pre-installed mobile OS emulators that
prevent the controller from installing virtual device emulators
one by one. The controller can deploy each OS version by
using the template specifically made for that version.

Admission

Control

|
i

|]

el]!

/, 1 1

Deployment [[awoa]
Planning A i
\ : |

Vo

Vo VM |

Andod], 1 !

Provisioning F-{1]_w__ | : |
H X ——

1 1

Fig. 3. Components of the system’s controller

The cloud platform controls the hypervisor which in turn
controls the VMs containing the mobile emulators. From the

184

architecture point of view, The cloud platform acts like the
resource manager and provides manageability features for the
components presented in Figure 3 and described below:

Admission Control: An admission control phase is re-
quired to check if current resources are sufficient for the
new request. The arrived request contains the user’s mobile
application, the test script and information about hardware
requirements and mobile platform version on which the ap-
plication will be evaluated. The Admission Control module
checks resource availability across the cloud compute nodes.
If resources are not available, then the job is placed in a
scheduling queue until the resources are released and become
available. It is up to the user the creation of the test script
before submitting the application to the platform.

Deployment Planning: Queued jobs are scheduled as they
arrived. In this process, the system must prepare a deployment
plan by choosing most suitable compute nodes from the pool of
available nodes. The scheduling decision may vary depending
on the hardware requirements and application design. Dis-
tributed applications convey data flows through the network
and have bandwidth limits that are connection-specific so that
different application instances are preferable to run on multiple
different compute nodes. Moreover, there may be scenarios
where a controlled network path between the nodes become
necessary to control either network latency or packet losses
with no disturbance from other applications.

Provisioning and Resource Allocation: The system allo-
cates resources to jobs based on the deployment plan. A re-
source manager system is necessary to manage the available re-
sources and to guarantee resource isolation between multiple-
consolidated test cycles. To this end, the cloud platform is
used to orchestrate the pool of compute nodes and assign them
to the jobs. The cloud platform can control a huge amount
of computing resources (processing, storage, and network) in
a data center. Once the resources are assigned to the jobs,
the system starts the device emulators within each compute
node and places the test application to run on those. Because
emulators are OS-specific, different image templates must be
build to support each OS independently. For example, there
must be a template for Android, i0OS, Windows Phone and
so forth. Additionally, the templates must also be partitioned
per OS version for ease of maintaining. Since the templates
are built, the system chooses one based on the user’s received
software requirements.

C. System Monitor

The system monitors test’s stages in all compute nodes to
improve agility and responsiveness. The system gives users the
possibility to track the progress of the submitted tests during
run-time and receive notifications when they are finished or
some test’s event are raised. Since the tests have been finished,
the user can visualize the results per stages through the
interface.

IV. EVALUATION

Experiments were conducted to compare a non-cloud test-
ing platform running in a single workstation versus the pro-
posed cloud-based platform with emulated devices. It enabled
testing for distributed and parallel mobile applications. In
addition, we analyzed performance, scalability, and the effects
caused by the time spent to deploy multiple tests and execute
their life cycle.

A. Experimental Environment

Our cloud setup consists of three identical nodes equipped
with two Intel Xeon x6550 processors (32 threads). They
communicate through a Gigabit ethernet switch interconnected
with a 800GB iSCSI SAN storage. For the local experiments,
we used a workstation equipped with two Intel Xeon E5530
processors (8 threads).

As a workload, we chose a simple 3-stage flashlight
application. Our test case is described as follows: in the first
stage, the user chooses the color of the light. In the second,
the user pushes the power button that matches the color
previously chosen. Finally, the application turns the flashlight
on. The stages were described through the commands we
defined in Table I. The VM-wrapped emulators have a unique
life cycle. They are provisioned as new requests arrive and
after the deployment planning is completed. When the test
cycle is finished, the corresponding VMs are deallocated and
the resources are released. The number of experimental test
rounds was given by a confidence interval of at least 95%.
The metrics collected were execution time per test cycle and
maximum number of requests.

B. Performance Analysis

By comparing the performance results of the emulated
platform in Figure 5 with the tests performed in the workstation
as presented in Figure 4, the difference in test cycle execution
times become noticeable. This difference occurs because the
workstation does not impose any resource limitation to the
tests because they were performed sequentially—running se-
quentially is a restriction imputable to the Android emulator
when running standalone. However, when the test cycles were
provisioned on the cloud infrastructure, it was possible to
consolidate them on the same physical machine and perform
them in parallel. Since the VMs start to compete for the same
hardware resource, it leads to a contention scenario where
performance may vary unpredictably.

Mobile Application Tests

1500 2000 2500 3000 3500

Execution Time (s)

0 500 1000

Fig. 4. Performance evaluation of tests running sequentially in a single
machine

2

2

&

<

2

g

g

<

°

2

8

=

0 500 1000 1500 2000 2500 3000 8500
Execution Time (s)

Fig. 5. Performance evaluation of multiple tests running simultaneously on
cloud.

Additionally, we also evaluated the CPU consumption
while the test cycles were carried out in the workstation. As

185

can be seen in Figure 6, the test cycles consumed the maximum
processing capacity of the machine throughout execution,
making it unusable for other tasks.

100

75

50

25

CPU Consumption (%)

1000 1500 2000 2500 3500

Execution Time (s)

0 500 3000

Fig. 6. CPU consumption throughout the tests in a single machine

It is worth noting that cloud computing is beneficial to
local test environments due to a number of factors, such as
higher scalability, lower infrastructure costs, and easier main-
tenance. Moreover, the results showed a super-linear behavior
when running tests locally, presenting about 80% performance
degradation compared to the cloud platform.

V. CONCLUSION AND FUTURE DIRECTIONS

Software testing tools make life easier for many developers.
Most of the testing methods and practices are not very different
from years ago. Although there are many tools and techniques
available, the goal of the proposed architecture is to use
cloud computing to automatically test mobile applications at
a low cost. Our experience conveys that the decision between
emulation versus real-based cloud solutions might depends on
the application development lifecycle. For example, developers
can use real-based ones to verify the application look and feel,
then move on and do large-scale tests on emulated devices.

Cloud computing has evolved at a rapid pace. We believe
this work is complementary for a new cloud computing model
generation which aims to deliver mobile application testing
as a service independent of mobile OS versions or resource
characteristics at a low cost.

REFERENCES

P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

“Amazon Web Services,” 2016. [Online]. Available:
http://aws.amazon.com/

P. Iannucci, M. Gupta et al., IBM SmartCloud: Building a Cloud
Enabled Data Center. IBM Redbooks, 2013.

“Google Cloud,” 2016. [Online]. Available: https://cloud.google.com/

N. Middleton, R. Schneeman et al., Heroku: Up and Running.
O’Reilly Media, Inc.”, 2013.

J. J. Arbon, “App quality: Secrets for agile app teams,” 2014.

[1]
[2]

[3]

2

“Xamarin test cloud: Mobile app testing made easy,” 2016. [Online].
Available: https://xamarin.com/test-cloud/

[8] “Amazon device farm,” 2016. [Online]. Available:
https://aws.amazon.com/pt/device-farm/

[91 “Pcloudy App Testing Tool,” 2016. [Online]. Available:
https://www.pcloudy.com//

[10] “Sauce Labs Mobile Testing,” 2016. [Online]. Available:
https://saucelabs.com/

J.-F. Huang and Y.-z. Gong, “Remote mobile test system: a mobile
phone cloud for application testing,” in Cloud Computing Technology
and Science (CloudCom), 2012 IEEE 4th International Conference on.
IEEE, 2012, pp. 1-4.

“Monkey Runner,” 2016. [Online]. Available:
https://developer.android.com/studio/test/monkeyrunner/index.html

[12]

