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Abstract—Cloud resources and services are offered based on
Service Level Agreements (SLAs) that state usage terms and
penalties in case of violations. Although, there is a large body
of work in the area of SLA provisioning and monitoring at
infrastructure and platform layers, SLAs are usually assumed
to be guaranteed at the application layer. However, application
monitoring is a challenging task due to monitored metrics of the
platform or infrastructure layer that cannot be easily mapped to
the required metrics at the application layer. Sophisticated SLA
monitoring among those layers to avoid costly SLA penalties
and maximize the provider profit is still an open research
challenge. This paper proposes an application monitoring archi-
tecture named CASViD, which stands for Cloud Application SLA
Violation Detection architecture. CASViD architecture monitors
and detects SLA violations at the application layer, and in-
cludes tools for resource allocation, scheduling, and deployment.
Different from most of the existing monitoring architectures,
CASViD focuses on application level monitoring, which is rel-
evant when multiple customers share the same resources in a
Cloud environment. We evaluate our architecture in a real Cloud
testbed using applications that exhibit heterogeneous behaviors
in order to investigate the effective measurement intervals for
efficient monitoring of different application types. The achieved
results show that our architecture, with low intrusion level, is
able to monitor, detect SLA violations, and suggest effective
measurement intervals for various workloads.

Index Terms—Service Level Agreement, Application Monitor-
ing, Cloud Resource Provisioning, SLA Management

I. INTRODUCTION

Cloud computing facilitates on-demand and scalable re-

source provisioning as services in a pay-as-you-go manner

[10] thereby making resources available at all times from

every location. Like in other business engagements, resource

and service provisioning in Clouds are based on Service

Level Agreements (SLAs), which are contracts signed between

providers and their customers detailing the terms of the

provisioning including non-functional requirements, such as

Quality of Service (QoS) and penalties in case of violations

[10], [14].

To establish Cloud computing as a reliable state of the

art form of on-demand computing, Cloud providers have to

offer scalability, reliable resources, competitive prices, and

minimize interactions with the customers in case of failures or

environmental changes. However, ensuring SLA for different

Cloud actors at different layers (i.e. resource, platform, and

application) is not a trivial task, especially for the applica-

tion layer. Monitoring at this layer is necessary as several

applications may share the same VMs (e.g. to reduce energy

consumption and cost) or one application may run on multiple

VMs (e.g. large scale distributed or parallel applications).

Although a large body of work considers the development of

reliable Cloud management infrastructures [7], [22], [25], there

is still a lack of efficient application monitoring infrastructures

capable to adequately monitor and detect SLA violations of

different customer applications. Besides application monitor-

ing, determination of the effective monitoring interval for

applications executing on the same host is still an open

research challenge.

This paper proposes CASViD (Cloud Application SLA

Violations Detection) architecture for efficient monitoring

and SLA violation detection at the application provisioning

layer in Clouds. Its core component is the application-level

monitor, which is capable of monitoring application metrics

at runtime to determine their resource consumption behav-

iors and performance. The main contributions of this paper

are: (i) the conceptual design of the application monitoring

techniques, (ii) the build-up, design, and integration of the

CASViD components, (iii) description of the implementation

choices for the proposed architecture, (iv) presentation of an

algorithm for investigating the effective measurement interval

for monitoring of different application types, and evaluation

of the CASViD architecture in a real Cloud testbed using

heterogeneous applications.

The rest of the paper is organized as follows: Section II

presents the related work. In Section III, we describe the

design of the CASViD architecture and give details of its

components. Furthermore, we illustrate an example of how the

architecture can be used to automatically determine the effec-

tive measurement interval to detect SLA violations. Section IV
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presents the implementation decisions for the architecture and

Section V discusses the experimental evaluations. We present

the conclusions and future work in Section VI.

II. RELATED WORK

We divide the related work into two categories (i) moni-

toring strategies [3]–[6], [13], [17], [31], [32], and (ii) SLA

management including violation detection [7], [14], [15], [20],

[22], [25]. In the analysis of the existing work in this area, we

consider also Grid and service-oriented based systems, since

they are related areas to Cloud computing.

Balis et al. [5] propose an infrastructure for Grid application

monitoring. Their approach is based on OCM-G, which is a

distributed monitoring system for obtaining information and

manipulating applications running on the Grid. They aim

to consider Grid-specific requirement and design a suitable

monitoring architecture to be integrated into the OCM-G

system. However, their approach considers only Grid spe-

cific applications. Bubak et al. [6] discuss the monitoring of

Grid applications with Grid-Enabled OMIS monitor, which

provides a standardized interface for accessing services. In

their approach, they described the architecture of the system

and provides some design details for the monitoring system

to fit well in the Grid environment and support monitoring

of interactive applications. Their monitoring goal is focused

toward application development and they do not consider

detecting application SLA violations. Kacsuk et al. [4] propose

application monitoring in Grid with GRM and PROVE, which

were originally developed as part of the P-GRADE graphical

program development environment running on Clusters. In

their work, they showed how they transformed GRM and

PROVE into a standalone Grid monitoring tool. However,

their approach does not consider finding effective measure-

ment intervals. Balaton et al. [3] discuss resource and job

monitoring in the Grid. They presented a monitoring archi-

tecture with advanced functions like actuators and guaranteed

data delivery. Their motivations toward application monitoring

are to understand its internal operations and detect failure

situations. They do not consider the monitoring of application

resource consumption behaviours. Emeakaroha et al. [17]

propose DeSVi, an architecture for monitoring and detecting

SLA violation at Cloud infrastructure layers. But, they do not

consider monitoring and detection of SLA violations at Cloud

application layer.

Clayman et al. [13] present Lattice framework for Cloud

service monitoring in the RESERVOIR EU project. It is

capable of monitoring physical resources, virtual machines

and customized applications embedded with probes. Com-

pared to our approach, the Lattice framework is not generic

because its application monitoring capabilities are restricted

to applications preconfigured with probes and it does not

consider measurement intervals in its operation. Ferrer et al.
[20] present fundamentals for a toolkit for service platform

architectures that enable flexible and dynamic provisioning of

Cloud services within the OPTIMIS EU project. The focus of

the toolkit is aimed at optimizing the whole service lifecycle

including service construction, deployment, and operation. It

does neither detail the application monitoring strategy nor

consider the determination of effective measurement intervals.

Rak et al. [31] propose Cloud application monitoring using

the mOSAIC approach. In a first step, the authors describe

the development of customized applications using mOSAIC

API to be deployed on Cloud environments. For these ap-

plications, they propose in a second step some monitoring

techniques. Their interest is only to gather information that

can be used to perform manual or automatic load-balancing,

increase/decrease the number of virtual machines or calculate

the total cost of application execution. Their approach does not

consider the detection of SLA violations to avoid SLA penalty

cost and moreover, it is not generic since it monitors only

applications developed using the mOSAIC API. Shao et al.
[32] present a performance guarantee for Cloud applications

based on monitoring. The authors extract performance model

from runtime monitored data using data mining techniques,

which is then used to adjust the provisioning strategy to

achieve a certain performance goals. They do not consider

finding effective measurement intervals.

Boniface et al. [7] discuss dynamic service provisioning

using GRIA SLAs. They describe service provisioning based

on SLAs to avoid violations. But, their approach does not

consider monitoring of multiple applications on a single host.

Koller et al. [25] discuss autonomous QoS management using

a proxy-like approach. Their implementation is based on WS-

Agreement. Thereby, SLAs can be exploited to define certain

QoS parameters that a service has to maintain during its

interaction with a specific customer. However, their approach

is limited to Web services and does not consider other ap-

plications types. Frutos et al. [22] discuss the main approach

of the EU project BREIN [9] to develop a framework that

extends the characteristics of computational Grids by driving

their usage inside new target areas in the business domain

for advanced SLA management. BREIN applies SLA manage-

ment to Grids, whereas we target SLA management in Clouds.

Dobson et al. [15] present a unified QoS ontology applicable

to QoS-based Web services selection, QoS monitoring, and

QoS adaptation. However, they do not consider application

provisioning strategies. Comuzzi et al. [14] define the pro-

cess for SLA establishment adopted within the EU project

SLA@SOI framework. The authors propose the architecture

for monitoring SLAs considering two requirements introduced

by SLA establishment: the availability of historical data for

evaluating SLA offers and the assessment of the capability to

monitor the terms in an SLA offer. But, they do not consider

application monitoring to guarantee the agreed SLA parameter

objectives.

In the next section, we present the design descriptions of

our proposed monitoring architecture.

III. CASVID: DESIGN DESCRIPTIONS AND USAGES

CASViD (Cloud Application SLA Violations Detection)

architecture is capable of handling the whole service pro-

visioning lifecycle in a Cloud environment, which includes
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resource allocation to services, service scheduling, application

monitoring, and SLA violation detection (Figure 1).

Fig. 1. CASViD Architecture.

Customers place their service requests through a defined

interface to the front-end node (step 1, Figure 1), which

acts as the management node in the Cloud environment. The

VM configurator sets up the Cloud environment by deploying

preconfigured VM images (step 2) on physical machines and

making them accessible for service provisioning. The request

is received by the service interface and delivered to the SLA

management framework for validation (step 3), which is done

to ensure that the request comes from the right customer. In

the next step the service request is passed to the application

deployer (step 4), which allocates resources for the service

execution and deploys it in the Cloud environment (step 5).

After deploying the service application, CASViD monitors the

application execution and sends the monitored information to

the SLA management framework (step 6) for processing and

detection of SLA violations.

The VM configurator and application deployer are com-

ponents for allocating resources and deploying applications

on our Cloud testbed. They are included in the architecture

to show our complete solution. The Application Deployer is

responsible for managing the execution of user applications,

similar to brokers in the Grid literature [1], [16], [26], [30],

focusing on parameter sweeping executions [11]. It simplifies

the processes of transferring application input data to each

VM, starting the execution, and collecting the results from the

VMs to the front-end node. The mapping of application tasks

to VMs is performed dynamically by a scheduler located in

the Application Deployer—each slave process consumes tasks

whenever the VM is idle. Further details on this component

and VM configurator are found in our previous work [17],

[18]. The execution of the applications and the monitoring

process can be done automatically by the Cloud provider,

or can be incorporated into a Cloud Service that can be

instantiated by the users.

The proposed CASViD architecture is generic in its usage

as it is not designed for a particular set of applications. The

service interface supports the provisioning of transactional as

well as computational applications. The SLA management

framework can handle the provisioning of all application

types based on the pre-negotiated SLAs. Description of the

negotiation process and components is out of scope of this

paper and is discussed by Brandic et al. [8].

A. System and Application Monitor

CASViD architecture contains a flexible monitoring frame-

work based on the SNMP (Simple Network Management

Protocol) standard [12]. It receives instructions to monitor

applications from the SLA management framework and de-

livers the monitored information. It is based on the traditional

manager/agent model used in network management. Figure

2 presents the monitor architecture. The manager, located in

the management node, polls periodically each agent in the

cluster to get the monitored information. In order to enhance

its scalability, the monitor uses asynchronous communication

with all cluster agents. It is composed of a library and an agent.

The monitor agent implements the methods to capture each

metric defined in the CASViD monitor MIB (Management

Information Base). At the manager side, the monitor library

provides methods to configure which metrics should be cap-

tured and which nodes should be included in the monitoring.

The SLA management framework in the system architecture

uses this library to configure the monitoring process and

retrieve the desired metrics. The retrievement process can be

done by collecting the metrics’ information from application

or operating system log files.

Fig. 2. CASViD Monitor Overview.

Similar to other monitoring systems [21], [29], CASViD

monitor is general purpose and supports the acquisition of

common application metrics, and even system metrics such as

CPU and memory utilization. The application metrics (SLA

parameters) to be monitored depends on the application type

and how to ensure its performance.

B. SLA Management Framework

The service provisioning management and detection of ap-

plication SLA objective violations are performed by the SLA

management framework component. This component is central

and interacts with the Service Interface, Application Deployer,

and CASViD monitor. In order to manage the SLA violations,
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it receives the monitored information from the monitor agents

embedded in the computing nodes where the applications

are executing. The management framework is designed to

access the SLA database containing the originally agreed

SLAs between the customer and the provider. It retrieves from

this database the SLA objectives, which are used together with

predefined thresholds to calculate future SLA violation threat

or detect real violation situation.

The strategy of detecting SLA violations is based on the

use of predefined threat thresholds, which are more restrictive

threshold than the violation thresholds. A violation threshold is

a value indicating the least acceptable performance level for an

application. For example Response time ≤ 2ms. In this case,

2ms is the violation threshold and the threat threshold could

be about 1.5ms, which allows the system to have 0.5ms of

reaction time. In this paper, the violation thresholds are derived

from the SLA documents and the threat thresholds are defined

manually by the Cloud provider considering its experience

with the various workloads running in its environment.

Exceeding the threat threshold values indicates the occur-

rence of future SLA violations. With this information the

system can react quickly to avert the violation threat and

save the Cloud provider from costly SLA violation penalties.

In case the violation threat cannot be averted and the real

violation threshold is exceeded, the system logs the necessary

information for calculating the appropriate SLA violation

penalties.

C. Algorithm for Obtaining Effective Interval

The proposed CASViD architecture can be used in several

Cloud management scenarios. For example to facilitate the

execution of multiple applications on a single computing node

to reduce cost and save energy in a Cloud environment.

CASViD can also assist management systems to migrate

applications between computing nodes in order to shutdown

some nodes to save energy. The applications could belong to

different customers and provisioned based on their agreed SLA

terms. The architecture measures the resource consumption

and performance of each application to detect SLA violations.

In order to achieve this, there is a need of finding an interval

for effective measurements.

The effective measurement interval depends on the appli-

cation and its input and such interval has to be determined

automatically. Thus, the provider can automatically select the

effective measurement interval for each independent applica-

tion by sampling different intervals until the provider utility

gets stable. Algorithm 1 presents the pseudo-code for obtaining

the effective measurement interval.

As presented in Algorithm 1, the variables are first initial-

ized (lines 1-4). Then the algorithm evaluates each interval to

find the effective one (line 5). The algorithm uses each interval

to monitor the application for a maximum specified time (line

6) after which it checks if the net utility gained with the current

interval is higher than the highest net utility so far (line 7). If

yes, this net utility gain becomes the highest net utility (line

8) and this interval is set to be the current effective interval

Algorithm 1: Pseudo-code for Obtaining the Effective

Measurement Intervals.

intervalList ← set list of possible intervals1

effectiveInterval ← intervalList[0]2

maxTime ← MAXTIME3

netUtility ← 04

for ∀interval ∈ intervalList do5

tmpNetUtility ← monitorApp(maxTime)6

if tmpNetUtility > netUtility then7

netUtility ← tmpNetUtility8

effectiveInterval ← interval9

return effectiveInterval10

(line 9). If no, the previous highest net utility is retained. The

algorithm goes back to step 5 and checks the other interval

using the same procedure. At the end, the interval with the

highest net utility is returned as the effective measurement

interval (line 10). The calculation of the net utility is described

in Section V-B.

IV. CASVID: IMPLEMENTATION DETAILS

This section presents the implementation choices and deci-

sion for the CASViD architecture. The implementation aims at

fulfilling some of the fundamental Cloud computing require-

ments such as scalability, efficiency, and reliability.

A. CASViD Monitor

The CASViD monitor uses the SNMP protocol for the

communication between the manager and the agent in each

cluster node. It is composed of a library and an agent.

The monitor library is implemented in Java and uses the

SNMP4J library1, which provides access to all functionalities

of the SNMP protocol for Java applications. The monitor uses

version 2c of the SNMP protocol to communicate with the

agents. The communication is performed using asynchronous

requests to enhance the scalability. Each request to an agent

creates a listener process which is automatically called when

the message arrives.

The CASViD monitor agent is implemented in Python and

receives the SNMP request through the net-snmp daemon2 that

is installed in each node. The net-snmp daemon forwards all

requests for the metrics defined in the CASViD monitor MIB

to the monitor agent. The monitor agent periodically processes

the requests, which are instructions to probe the application

metrics and returns the obtained results to be packaged in an

SNMP message and sent back to the manager by the net-snmp

daemon.

We used SNMP in the CASViD monitor to realize a

generic solution deployable in various platforms and operating

systems. SNMP is well established, and even many hardware

devices today are being managed based on SNMP protocol.

1SNMP4j - Free Open Source SNMP API for Java - http://www.snmp4j.org/
2Net-SNMP - http://www.net-snmp.org

497497500502



B. CASViD SLA Framework

The whole framework is implemented in Java language.

To realize the SLA violation detection, it interacts with the

monitor through a defined interface where it receives a data

structure holding the metric-value pairs monitored by the mon-

itor agents. With the metric-value pairs, it builds a message

buffer for the Java Messaging Service (JMS) [24]. The JMS is

used together with Apache ActiveMQ [2] to realize a scalable

communication mechanism for the framework.

The message passes through ESPER engine [19], which

filters out identical monitored values so that only changed

values between measurements are delivered for the evaluations

against the predefined thresholds. The filtering reduces the

number of messages to be processed in order to increase the

scalability of the framework. We use MySQL DB to store

the processed messages. In this respect, we use HIBERNATE

to map our Java classes into DB tables for easy storing and

retrieving of information.

This framework is implemented to be highly scalable. The

JMS and ActiveMQ are used because they are platform inde-

pendent and due to the scalability of the underlying ActiveMQ

queues. Furthermore, the application of ESPER to filter out

identical monitored information reduces drastically the number

of messages to be processed. Especially in situations where the

agents are monitoring in short intervals.

V. EVALUATION

The primary goal of this evaluation is to provide a proof

of concept. In this regard, we evaluate two aspects: (i) the

ability of the architecture to monitor applications at runtime to

detect SLA violations and (ii) the capability of automatically

determining the effective measurement interval for efficient

monitoring. We carry out these evaluations using real world

applications provisioning scenarios executed on a real Cloud

testbed and discuss the applicability of the CASViD architec-

ture in large-scale Cloud environments. We also show results

on monitoring intrusion of the CASViD monitor.

A. Environmental Configurations

The basic hardware components of our experimental Cloud

testbed is shown in Table I. The table shows the resource

capacities of the physical and the virtual machines being used

in the Cloud testbed. We use Xen virtualization technology

in our testbed, precisely we run Xen 3.4.0 on top of Oracle

Virtual Machine (OVM) server. This experiment testbed is

located at the High Performance Computing Lab at Catholic

University of Rio Grande do Sul Brazil.

TABLE I
CLOUD ENVIRONMENT COMPOSED OF 36 VIRTUAL MACHINES.

Machine Type = Physical Machine
OS CPU Cores Memory Storage
OVM Server AMD Opteron 2 GHz 2 8 GB 250 GB

Machine Type = Virtual Machine
OS CPU Cores Memory Storage
Linux/Ubuntu AMD Opteron 2 GHz 1 1024 MB 5 GB

We have in total nine physical machines and, based on

the resource capacities presented in Table I, we host 4 VMs

on each physical machine. The VM configurator deploys the

VMs onto the physical hosts, thus creating a virtualized Cloud

environment with up to 36 nodes capable of provisioning

resources to applications.

Figure 3 depicts the experimental testbed. The front-end

node serves as the control entity. It runs the components of

the proposed architecture. The testbed shows the processes of

provisioning a user application. The application is uploaded

through the front-end node and is executed on the computing

node. After the execution, the output is transferred back to the

front-end node.

Fig. 3. Experimental Testbed.

As shown in our testbed of Figure 3, we deploy the

components in two levels of hierarchies: i) in front-end node

and ii) in computing nodes. This separation makes the system

scalable because we run the management processes on the

front-end node and the actual application provisioning on

the computing nodes. The monitor agents, running on the

computing nodes, monitor the application metrics at execution,

and send back the monitored information to the front-end

node. The monitor agents are light weighted and consume little

computing capacity. With this setup, one can easily manage

many computing nodes.

B. Utility Function Definition

The effective measurement interval is an economic factor.

The goals of the provider are i) to achieve the maximal

profit; and ii) to maintain the agreed SLA objectives for the

applications while efficiently utilizing resources. The trade-off

between these two factors determines the effective measure-

ment interval. To derive such an interval, we define a utility

function (U) for the provider, which is based on experiences

gained from existing utility functions discussed by Lee et
al. [28]. The utility function considers on the one hand the

provider profit and on the other hand the cost associated with

the effort of detecting SLA violations and the penalty cost of

the violations. Equation 1 presents the utility function.

U =
∑

βε{customer}
Pc(β) ∗ Pt(β)− (μ ∗Mc +

∑

ψε{RT,TP}
α(ψ) ∗ Vp) (1)

where Pc is the service provisioning cost, Pt is the duration of

provisioning in minutes, μ is the number of measurements, Mc

is the measurement cost, α (ψ) is the number of detected SLA
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violations of the SLA objectives, RT is response time, TP is

throughput, and Vp is the SLA violation penalty. Pc * Pt is

equal to the provider profit. Defining the service provisioning

cost is subject to negotiations between the customer and the

service provider. In our experiments, we defined service pro-

visioning costs based on experiences from existing approaches

[27], [33]. This utility function is not a configuration for the

experimentations rather it will be used to analyze the achieved

results. The values of the parameters are different for each

customer/application type.

C. Experimental Workload with Real World Scenarios

Our experimental workload comprises applications based on

the Persistence of Vision Raytracer (POV-Ray) [23], which is a

ray tracing program available for several computing platforms.

For the experiments, we designed three workload applications

that can be executed sequentially or simultaneously on our

Cloud testbed environment. With the three workloads, we

cover different application behaviours thereby realizing het-

erogeneous load in the experiments. The workloads are based

on three POV-Ray applications with different characteristics

of time for rendering frames, as shown in Figure 4 and their

behaviour illustrated in Figure 5. Each workload contains

approximately 2000 tasks. Each task has an execution time

that varies from 10 to 40 seconds.

• Fish: rotation of a fish on water. Time for rendering

frames is variable.

• Box: approximation of a camera to an open box with

objects inside. Time for rendering frames increases during

execution.

• Vase: rotation of a vase with mirrors around. Time for

processing different frames is constant.

(a) Fish. (b) Box. (c) Vase.

Fig. 4. POV-Ray Application Animation Images.
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(b) Box.
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(c) Vase.

Fig. 5. Behaviour of Execution Time for Each POV-Ray Application.

Our architecture handles simultaneous customer provision-

ing. Therefore, the experiments contain three scenarios, where

each scenario has a given number of customers. These sce-

narios represents real world provisioning situations where a

provider is simultaneously provisioning one or multiple cus-

tomer applications using his Cloud resources. Furthermore, it

shows the ability of the CASViD architecture to independently

monitor the application performance of each customer.

Each customer has a distinct SLA document for his/her

workload application. The SLAs must be guaranteed for each

application to avoid costly SLA penalties. Table II presents

the SLA objectives for the applications. These SLA objectives

are defined based on historical data and experiences with these

specific application types. The response time is expressed in

seconds and the throughput in frames per second (f/s). Here,

response time means the time between the submission time

for executing an application and its completion. The customer

application stack to be provisioned on the Cloud environment

is made up of i) the SLA document specifying the quality of

service for the application and ii) the application files to be

executed.

TABLE II
SLA OBJECTIVE THRESHOLDS SPECIFICATION.

Scenario 1
SLA Parameter Customer1
Response Time 265s
Throughput 2.75 f/s

Scenario 2
SLA Parameter Customer1 Customer2
Response Time 430s 540s
Throughput 3.99 f/s 1.35 f/s

Scenario 3
SLA Parameter Customer1 Customer2 Customer3
Response Time 795s 430s 1030s
Throughput 0.965 f/s 2.31 f/s 0.709 f/s

D. Achieved Experimental Results

We defined and used five measurement intervals to monitor

the application workloads in this experiment. Table III shows

the achieved results of the three scenarios for each mea-

surement interval. The applications run for about 12 minutes

in scenario 1, 22 minutes in scenario 2, and 30 minutes in

scenario 3. The different execution length of the scenarios is

necessary to investigate the application behaviors in each case.

Table III shows the number of SLA violations detected

with each measurement interval for the two SLA parameters -

Response Time and Throughput. These two SLA parameters

are monitored in this evaluation because they define the

desirable quality of service for the POV-Ray applications.

In case of different application types, the parameters to be

monitored might differ.

In Table III the five seconds measurement intervals is a

reference interval meaning the current interval used by the

provider to monitor application executions. To explain the

results in the table for example in scenario 1, the customer ap-

plication provisioning length was 12 minutes. With 10 seconds

interval, we made 72 measurements within this provisioning

period. From these measurements, 51 response time SLA

violations and 16 throughput SLA violations were detected.

As shown in Table III, the number of detected SLA vio-

lations decreases as the measurement interval increases. This
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TABLE III
NUMBER OF DETECTED SLA VIOLATIONS.

Scenario 1
Intervals 5s 10s 20s 30s 60s

Nr. of Measurements 144 72 36 24 12

Customer1 Nr. of Violations
Response Time 112 51 17 9 4

SLA Parameter Throughput 54 16 4 3 1

Scenario 2
Intervals 5s 10s 20s 30s 60s

Nr. of Measurements 264 132 66 44 22

Customer1 Nr. of Violations
Response Time 49 20 11 5 3

SLA Parameter Throughput 128 54 27 16 4

Customer2 Nr. of Violations
Response Time 120 93 31 19 8

SLA Parameter Throughput 90 49 14 8 2

Scenario 3
Intervals 5s 10s 20s 30s 60s

Nr. of Measurements 360 180 90 60 30

Customer1 Nr. of Violations
Response Time 165 109 39 19 9

SLA Parameter Throughput 141 73 14 7 2

Customer2 Nr. of Violations
Response Time 128 80 40 27 13

SLA Parameter Throughput 137 92 42 26 12

Customer3 Nr. of Violations
Response Time 219 167 98 24 12

SLA Parameter Throughput 190 87 77 14 6

is due to the missed SLA violation detection in between the

measurement interval. It illustrates the risk involved with larger

measurement intervals. We analyze these results in a different

section to determine the effective measurement interval.

E. Monitoring Intrusion

One of the issues that are typically evaluated in a monitoring

system is its intrusion, i.e., what is the overhead incurred in

the system when the monitoring is used. The intrusion of

a monitoring system is usually related to the sampling or

measurement frequency used. Higher frequencies result in a

higher intrusion.

In order to evaluate the intrusion of CASViD monitor, we

executed the three POV-Ray workloads (Box, Fish and Vase),

measured the total execution time without monitoring, and

compared against the total execution time using the monitoring

system with different sampling frequencies. The sampling

frequencies were 1, 2, 3, 6 and 12 samples per minute, which

corresponds to 60, 30, 20, 10 and 5 seconds of interval between

samples.

The chart in Figure 6 shows the intrusion with each work-

load. We can observe that the intrusion in all workloads pre-

sented a linear behaviour in relation to the sampling frequency.

In all cases, the sampling frequency of 3 samples per minute

(20-second interval) produced an intrusion smaller than 1%,

resulting in a small impact in the workload performance.

Due to the linearity in the monitor’s intrusion, the sampling

frequency can be easily tuned to reach a desired intrusion

boundary.

In the next section, we analyze the achieved monitored

results whereby we consider the monitoring intrusiveness in

defining the cost of measurement to be used in the utility
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Fig. 6. CASViD Monitor’s Intrusion with Different Sampling Frequencies.

function presented in Equation 1 for the analysis.

F. Results Analysis

In this section, we first manually analyze the achieved

results to determine the effective measurement interval using

the utility function defined in Section V-B. Then, we demon-

strate the method to automatically determine this interval using

Algorithm 1 in Section III-C. The experimental scenarios are

analyzed separately.

The first scenario (Table II) deals with provisioning and

monitoring of one customer application. In this case the

customer pays a provisioning cost of $0.6 per minute (i.e., the

service price) and the provisioning time length is 12 minutes.

The SLA penalty cost is $0.04 and the measurement cost for

the system is $0.02. Note that the cost values are experimental

values. The idea is derived from existing approaches presented

in literature [27], [33].

Figure 7 presents the analyzed results of scenario 1. The

5-second interval is the reference measurement interval to

capture all SLA violations for the applications in each case.
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Fig. 7. Scenario 1 Analyzed Results.

The analyzed results show the net utility (in dollar) of

the provider with each measurement interval. The net utility

translates into the profit of the provider in provisioning the

customer application. The 10-second measurement interval has

the highest net utility and is considered the effective one. The

later intervals miss several SLA violations and thereby incur

high penalty cost.
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In Scenario 2 the provider provisions and monitors two

customer applications using their specified SLA objectives as

shown in Table II. The first customer pays a provisioning cost

of $0.5 per minute while the second customer pays $0.4 per

minute. SLA penalty cost of $0.045 was agreed for customer 1

and $0.038 for customer 2. The measurement cost is the same

for both applications and is specified to be $0.037. Applying

these values in the utility function of Equation 1 we achieve

the results presented in Figure 8.
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Fig. 8. Scenario 2 Analyzed Results.

As depicted in Figure 8, for customer 1, the 60-second

measurement interval has the highest net utility and in our

opinion the effective measurement interval for the provider to

adequately monitor the application of this customer. The other

intervals provide lesser utility for the provider. For customer 2,

the 10-second measurements interval proves to be the effective

one with the highest net utility. In this case it can be seen

that the reference measurement interval provides a negative

utility meaning that the provider loses revenues in his current

situation. Therefore, finding another measurement interval is

essential for the business continuity of the provider.
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Fig. 9. Scenario 3 Analyzed Results.

Scenario 3 consists of the provisioning and monitoring of

three different customer applications based on their respec-

tive SLA objectives. Customer 1 pays a provisioning cost

of $0.5 per minute and customer 2 pays $0.6 per minute

while customer 3 pays $0.4 per minute. The agreed SLA

penalty for customer 1 is $0.035, for customer 2 is $0.038,

and for customer 3 is $0.025. The customer applications

executes simultaneously on the testbed, thus there is only one

measurement cost of $0.03. Figure 9 presents the analyzed

results of this scenario. As shown in Figure 9, for customer

1 and 2, the 10-second measurement interval provides the

highest net utility and therefore is the effective interval for

the provider to cost-efficiently monitor the application of these

customers at runtime. In the case of customer 3, the 20-second

interval provides the highest net utility and is considered the

effective measurement interval for this customer applications.

Generally, the effective measurement interval determined by

the total net utility is a trade-off between the monitoring cost

and the number of detected SLA violation at runtime (see

Equation 1). The monitoring cost represents the efforts and

overheads in monitoring the applications while the number

of detected SLA violations determines the amount of penalty

cost the provider has to pay to the customer. Thus, these two

parameters express the efficiency and cost of monitoring an

application execution.
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Fig. 10. Behaviour of Provider Net Utility for the 10-sec Measurement
Interval.

Based on our experiments, the proposed architecture proved

to be efficient in monitoring and detecting application SLA

violation situations. As described in Section III-C, the effective

measurement interval depends on the application and its input

and has to be determined automatically. Figure 10 presents the

behavior of the provider net utility for the 10-second measure-

ment interval over the execution of the entire application of

scenario 1. This demonstrates the method to automatically find

the effective measurement interval. From the figure, it can be

observed that after 5 minutes, the metric gets steady. As the

net utility reaches this stability, it is possible to have a good

prediction on this metric for this interval. Therefore, by doing

so for other intervals, it is possible to automatically find the

one that provides best cost-benefit value for measuring and

detecting SLAs. The basic idea is that a user would specify

a range of possible intervals (based on personal experience

with the application/environment) and the monitoring architect

would detect the suitable measurement interval via Algorithm

1.

G. Applying CASViD in Large-Scale Environments

The experiments so far were performed in a real testbed

for a small scenario. To apply the CASViD architecture in

a large-scale Cloud environment, there are two challenges

to be addressed: (i) large number of users and (ii) many

application types. The issue of large number of users is

not trivial for monitoring and detecting SLA violations in

large-scale Clouds. This problem has been addressed with the

design of our monitoring framework. The separation of the
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monitoring activities from the analysis of the monitored results

as described in Section V-A makes our architecture scalable

and capable of usage in large-scale environments. The effi-

ciency of automatically determining the effective measurement

interval for many application types depends on the number of

concurrent request at each period of time. This issue has been

addressed with Algorithm 1 presented in Section III-C.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed an application monitoring architecture

(CASViD), which monitors and detects SLA violations at the

application layer. Application monitoring requires tools for the

whole application management lifecycle. Thus, we developed

tools for resource allocation, scheduling, and deployment.

We evaluated our architecture on a real Cloud testbed using

three types of image rendering application workloads with

heterogeneous behaviors necessary to investigate different ap-

plication provisioning scenarios and to determine the effective

measurement intervals to monitor the provisioning processes.

From our experiments, the proposed architecture is efficient

in monitoring and detecting single application SLA violation

situations. More applications, including multi-tier applications,

will be considered as future work. Furthermore, we observed

that one can automatically find the effective measurement

interval by sampling different ones and checking their net

utility values.

With the realization of CASViD, we achieved the capabil-

ities of monitoring and detecting SLA violations of single

customer applications being provisioned in a shared host.

This contributes to a more efficient management of Clouds,

especially in application provisioning, and reduces cost for

the customers in situations where the customer applications

do not require exclusive resources.

Based on our investigations on monitoring strategies and

SLA violation detection, we will integrate knowledge man-

agement techniques to propose reactive actions to prevent or

correct the SLA violation situations. Monitoring capabilities

facilitate best reactive actions, which contribute to our vision

of self manageable autonomic Cloud infrastructures.
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