
A Virtualization Approach for MIPS-based MPSoCs

Alexandra Aguiar, Carlos Moratelli, Marcos L.L. Sartori and Fabiano Hessel
Faculty of Informatics - PUCRS - Av. Ipiranga 6681, Porto Alegre, Brazil

Email: alexandra.aguiar@pucrs.br, {carlos.moratelli, marcos.sartori}@acad.pucrs.br, fabiano.hessel@pucrs.br

Abstract—Recently, virtualization techniques has been investi-
gated as an interesting approach for complex embedded systems
designs since they allow more secure systems, improve software
design quality and reduce costs. However, the need to meet
design constraints, mainly the real-time constraints, constitutes
one of the biggest challenges that may prevent the wide adoption
of virtualization in embedded systems. Industry designers and
researchers believe that the use of hardware support to virtual-
ization is a possible way of improving the system’s performance
and meeting its real-time constraints. In this paper we present our
virtualization-aware architecture intended for MIPS processors
with support to real-time applications. In our proposed approach
no changes are needed in the Guest OS since we implement a
full virtualization scheme. Real-time constraints are achieved by
mixing the full virtualization technique with hardware support
along with bare-metal application usage. Details of our virtualiza-
tion platform are presented and discussed in the paper. Results
demonstrate the effectiveness of our approach considering the
hardware impact in terms of area, the software performance
overhead, and the operating system port to allow its execution
in a virtualized environment.

I. INTRODUCTION

Nowadays new and exciting features are continually being
embedded in the consumer electronics devices, increasing
the number of functions and, consequently, the hardware
and software design complexity. Most of these features were
exclusively found only in general-purpose computers in the
past. Now, to develop and download new applications, or to
provide internet access through smart devices like a TV be-
came common features in current embedded products [1]. This
scenario pushes the industry designers and researchers to use
more and more software layers, like embedded middleware, to
achieve flexible and extensible platforms in order to respect
the strict time-to-market while guaranteeing constraints such
as energy consumption and real-time.

However, some design concerns are still present in this
new embedded systems scenario, such as the need for better
software design quality, software flexibility, maintenance and
security levels while still reducing manufacturing costs. In
this context, virtualization approaches, rather a successful
technique exclusively applied for years on general-purpose
computers, arises as a possible solution to minimize many of
these problems [2]. Nevertheless, typical embedded constraints
still prevent its wide adoption and much effort has been spent
in order to demonstrate that virtualization can improve the
overall system quality at a reasonable cost [3], [4], [5], [6], [7].

Among all these efforts to apply virtualization on embedded
systems (ES), the main implementation obstacles concern
some of their characteristics and needs, which can be often

conflicting with non-virtualized ESes. For example, Heiser [8]
highlights the need to run unmodified Guest OSes and appli-
cations besides providing strong spatial isolation to improve
security. In [9], the need for low overhead components are
said to be fundamental. The main problem, however, is that it
is very difficult to target all such constraints at once.

Another challenge lies in the fact that these conflicting needs
have a strong relationship with the hypervisor’s1 implemen-
tation that totally depends on the underlying hardware. The
architecture itself, and the characteristics of its Instruction-Set
Architecture (ISA) can make the use of embedded virtual-
ization either easier or harder [10]. For instance, following
the requirements for virtualizable ISAs defined by [10] the
x86 architecture struggles in supporting virtualization since
not all of its sensitive instructions cause traps when executing
in user mode. In embedded systems, different architecture
options are available and this fact is one additional obstacle
to implement virtualization approaches that ca be instantiate
in whole embedded systems. In this case, the designer needs
to make a choice and we chose to implement our solution
on a MIPS-based platform, since this architecture is widely
adopted, being present in video-games, e-readers, routers,
DVD recorders, set-top boxes, among others.

Besides, we can observe an increase of the software layers’
importance to many systems which use each more elabo-
rated and fully-functioned operating systems. Even though,
in some cases, the need to mix general-purpose and real-
time constrained applications can lead to other implementation
approaches. An example can be found in smart TVs where
high-level user interface must be managed to work along with
communication protocols, access the cloud and meet its real-
time constraints. In this case, a feasible approach consists of
using different OSes for general-purpose in the main processor
and an RTOS for specific functions using a co-processor. Still,
the OS itself can be built in a layered fashion enabling timing
constraints to be met. Moreover, it could be possible to isolate
the needed real-time behavior in single bare-metal applications
to be executed directly on the processor, with proper hardware
support.

This paper presents a virtualized platform that provides full
virtualization2 of virtual machines and real-time execution
of bare-metal applications. We use a MIPS-based platform,

1Hypervisor is the main controller of a virtualized platform and can also
be named as Virtual Machine Monitor.

2Full virtualization consists of successfully emulating and simulating the
underlying hardware for the virtual machines without requiring changes in
the Guest OS.

978-1-4673-4953-6/13/$31.00 ©2013 IEEE 611 14th Int'l Symposium on Quality Electronic Design

in which hardware modifications were performed to allow
better performance even when using full virtualization. The
real-time behavior is guaranteed by extending the hypervisor
presented previously in [11]. We use the concept of bare-metal
applications and include a real-time scheduling policy into our
hypervisor. Results show the efficiency of our virtualization
approach in terms of its overheads and the correct functioning
of real-time applications. Moreover, we present a case-study of
the adaptation of a consolidated research OS into our platform.

The remainder of the paper is organized as follows. Sec-
tion II shows some related work. Section III presents the
virtualization model we consider. Section IV describes the
hardware platform we’ve implemented and its virtualization
support. Section V presents the software strategies needed to
provide real-time. Section VI presents evaluation and discus-
sions regarding the proposed platform. Section VII has final
remarks of the paper and presents some future work.

II. RELATED WORK

Virtualization is a consolidated technique which dates back
more than 30 years, being primarily proposed by IBM.
Throughout the years, two main approaches have been adopted
to implement it successfully. In full virtualization an almost
complete simulation of the actual hardware is performed,
enabling Guest OSes to run unmodified. In paravirtualization
Guest OSes need to be specifically modified to run, aiming to
avoid the excessive amount of traps which occur when a Guest
OS tries to execute a privileged instruction (when executing
outside of its intended privilege ring).

However, full virtualization per se usually suffers from a
large overhead from the emulation of privileged instructions
while paravirtualization demands Guest OSes to be modified,
which can increase both engineering cost and system’s time to
market. Hence, a viable solution is the use of hardware support
for virtualization. For example, general-purpose processor
vendors such as Intel and AMD have released, respectively,
VT (Virtualization Technology) and SVM (Secure Virtual
Machine) virtualization support for the x86 architecture.

As much as for the embedded market, hardware-assisted
virtualization has recently been initiated. Intel itself has in-
troduced the Intel VT technology also for its embedded
processors [12]. In these case, many virtualization tasks are
performed in hardware, such as memory address translation,
which reduces the overhead and footprint of virtualization
software improving its performance. For instance, switching
between two OSes is significantly faster when memory address
translation is performed in hardware compared to software.
Still, it has unified the Intel VT along with the Intel AMT
technology that provides remote management and maintenance
capabilities, and Intel TXT that protects embedded devices and
virtual environments against rootkit and other system level
attacks, to provide the Intel vPro support aiming to reduce
the total cost of ownership (TCO) of ESes.

ARM has also introduced a virtualization support with
an extension for its ARM v7-A architecture [13]. Basically,
it consists of introducing a new execution mode for the

hypervisor with higher priority than the supervisor mode. This
enables the hypervisor to execute at a higher privilege level
than the Guest OSes, and the Guest OSes to execute with their
traditional operating system privileges, removing the need to
employ paravirtualization techniques. Still, improvements of
mechanisms to aid interrupt handling are available, with native
distinction of interrupt destined to secure monitor, hypervisors,
currently active Guest OSes or non-currently-active Guest
OSes. This dramatically reduces the complexity of handling
interrupts using software emulation techniques and shadow
structures inside the hypervisor. Finally, the provision of a
System MMU (Memory Management Unit) that aids memory
management and supports multiple translation contexts and
two levels of address translation and hardware acceleration
and abstraction.

Power.org (Power Architecture technology), announced vir-
tualization support in the release of Power Instruction Set
Architecture (ISA) Version 2.06 [14]. The document provides
support for virtualization and hypervisors including a new
guest mode and MMU extensions that enable the efficient
implementation of hypervisors on the embedded Power Ar-
chitecture platform. It allows a more efficient implementation
of virtualization, partitioning of embedded systems, isolation
of applications, and resource sharing.

Finally, it is possible to see that most of leading architec-
tures already count on some kind of virtualization support.
In our work, we describe a hardware-assisted virtualization
platform for MIPS-based processors. Since we are dealing
with a different architecture, it is not possible to fairly com-
pare our modifications with the ones suggested for the other
architectures. However, every hardware change intended for
virtualization support mainly focus in decreasing the number
of traps (possibly by adding another execution mode) and
adjusting memory related issues.

III. VIRTUALIZATION MODEL

Our virtualization model was firstly presented in [11] and it
is shown in Figure 1. On the physical level, we assume a bus-
based homogeneous MPSoC with a shared memory. Above the
CPUs we run the hypervisor, responsible for the creation and
management of each Application Domain Unit (ADU). Into
an ADU, applications can be mapped onto best-effort (non-
real-time) and real-time Virtual CPUs (VCPUs), according to
its needs.

In addition, an application domain can be heterogeneously
multiprocessed in the sense it can count on multiple Best-effort
VCPUs (BE-VCPUs) and Real-time VCPUs (RT-VCPUs), as
showed in the ADU element of Figure 1. Thus, a Guest OS
with proper multiprocessor support3 can be used for the best-
effort tasks. Besides, it is the responsible for instantiating an
RT-VCPU for each RT-Application it desires to execute.

Figure 2 shows the possible flexible mapping and partition-
ing model for virtualized architectures based in our model.

3For a single Guest OS of a given Application Domain to manage multiple
VCPUs, there is no model imposed restriction. However, this Guest OS must
be implemented to support multiple processing cores.

Fig. 1. Virtualization model and Application Domain for multiprocessed
embedded systems

Each application domain has a given task-set associated with
its VCPUs. From the VCPUs point of view, a single subset
of the entire domain’s task-set is available and is managed by
the domain’s Guest OS. This subset can be considered as the
VCPU’s task array. From the overall system point of view,
many VCPUs (best-effort and real-time) per domain can be
used as if in a matrix arrangement. Each matrix element is
independently mapped onto the CPUs. Since we are providing
a bus-based virtualization node, the CPUs can be represented
as an array of physical processors available in the system.
Thus, the separation provided by our virtualization model
can ease the dynamic mapping of tasks among VCPUs (if
supported by the Guest OS), VCPUs among CPUs, and even
tasks among CPUs.

Fig. 2. Flexible Mapping model for multiprocessed embedded systems with
real-time support

IV. HARDWARE PLATFORM AND VIRTUALIZATION
SUPPORT

In this section we present details regarding our hardware
base platform and the virtualization support we’ve added to it.

A. Hardware platform

The entire platform is described in VHDL language and
the main hardware modules are showed in Figure 3. We use
a Plasma MIPS CPU, which is a small synthesizable 32-
bit RISC microprocessor that supports an interrupt controller,
UART, SRAM or DDR SDRAM controller, and an Ethernet
controller obtained from Opencores.org [15]. The Plasma CPU
executes all MIPS ITM user mode instructions4 except for
unaligned load and store operations. In addition, the virtual-
ization capabilities added to the Plasma MIPS core resulted
in the vPlasma MIPS, to be detailed later in this section. We
adopted the Plasma processor since its VHDL description is
freely available at OpenCores.org, which allows us to modify
and prototype new versions of it. Also, it occupies small area,
consumes low-energy and does not contain extra features,
which makes it efficient to add only the structures needed to
perform virtualization. Moreover, besides a licensing scheme
that allows us to modify, Plasma has a software toolchain that
can also be adapted when needed.

Fig. 3. Virtualization Hardware Platform main modules.

We use a multiprocessed platform in which several CPUs
are interconnected through a Shared BUS that relies on a Bus
Arbiter. Each CPU has a local memory (Scratchpad Memory)
and an L1 Cache. CPUs have full visibility of all peripherals
available at the Shared BUS, including the Shared Memory,
where the ADUs are allocated. The hypervisor implements
access policies to peripherals and manages the MMU for each
processor, as better explained in Section V. The GPIO device
is useful for external communication. The UART is the main
platform’s communication device and implements a typical
16550 UART device. Finally, the Platform Controller is used
to generate interrupts among processors allowing preemptive
communication calls. Besides, it is responsible for either

4This means that some kernel mode instructions, such as rfe, are not
implemented in the core.

enabling or disabling cores. The platform has a hardwired-
enabled core responsible for booting the system and powering
the other cores up through the Platform Controller.

For inter CPU communication we use a 32-bit wide bus,
which is word addressable, byte writeable, single-cycle ar-
bitrated, half-duplex, and supports multiple masters (CPUs)
where just one can communicate over the bus at a time.
Decisions regarding the bus-owner at a given time are made
by the Bus Arbiter. When not in use, both data and address
bus’ signals remain at high impedance levels. The address
bus is always fed by the current master while the data bus is
bidirectional, and fed by the master on writes and by the slave
on reads. Writes can be performed at the granularity of bytes,
half word and words in any possible endianness on the same
bus, allowing mixed endian cores to execute without conflicts.
A read is always performed on full words. When multiple
devices request the bus at same time, the arbiter executes a
master selection algorithm in a round-robin fashion, giving
access to the next requesting device when the bus is free.

The L1 cache is a direct-mapped 1k-words cache organized
in two banks of 64x8 entries each. It is implemented using two
512x32 BRAMS to hold data and two 64x22 LUTRAMS to
hold the tags. Moreover, the cache implements the atomicity
of the LL/SC instruction pair resulting in a synchronization
mechanism between the processors.

B. Hardware virtualization support

Originally, the Plasma MIPS processor counts on only a
single full-privileged execution mode and does not count on
memory management, which is important for security and
isolation. Co-processor 0 (CP0) is responsible for controlling
interruptions and timer, and can only be accessed through
two special instructions: mfc0 and mtc0. Such instructions
are called sensitive [10] because their execution can change
the processor behaviour. Thus, it is needed a mechanism to
detect and trap such sensitive instructions and, to do that, three
key features are implemented in the CPU core: (i) Memory
Management Unit (MMU); (ii) Privileged Execution Mode,
and; (iii) ISA’s modification.

MMU. Our implementation is based on a 16-entry Transla-
tion Lookaside Buffer (TLB) and Figure 4 shows the MMU’s
block diagram.

When enabled, the MMU works by keeping the line of the
last successful translation for both instruction fetch and data
access into two 48-bit registers, named iTLB and dTLB for
instruction and data access purposes, respectively. Then, in
a scheme called L1 TLB, a comparator is used in order to
validate the translation. The L2 TLB unifies both instruction
and data and uses one 16x48 LUTRAM and three 4x28
LUTRAMs for its line tags. A successful search is performed
in up to 4 cycles: a 3-bit up-counter, enabled by a L1 TLB
miss, has its 2 lower bits used to address the row and the tag
memories, which outputs are compared with the current ASID
and virtual address in order to determinate the translation. The
combined 4-bit address is used to address the 16x48 LUTRAM
that feeds back the L1 TLB. The L2 TLB is responsible for

Fig. 4. MMU block diagram.

generating a TLB miss exception when none of the proposed
translations are valid. In this case, the hypervisor feeds the TLB
L2 using the tlbwi and tlbwr privileged instructions, specially
implemented to the vPlasma MIPS core. The MMU is disabled
either at reset or whenever a software trap is performed. When
desirable the MMU can be enabled using a special instruction
called jump register into virtual address (JR.V), which enables
the MMU and jumps to the requested address.

Privileged Execution Mode. In order to accomplish Popek
and Goldberg’s virtualization requirements [10] the core exe-
cution is divided in two distinct modes: kernel and user. Sen-
sitive instructions (mtc0, mfc0, tlbwi, tlbwr) can be executed
only in kernel mode (privileged). If an attempt to execute these
instructions in user mode occurs, an exception is generated and
the CPU enters into kernel mode, passing the control over to
the hypervisor. In kernel mode, the MMU is automatically
disabled so the hypevisor has full visibility of the Shared
Memory. The rfe instruction is used to return the processor
to its correct the state, that is, before the exception occurred.

ISA’s modification. We added new instructions to the
Plasma MIPS core ISA, in addition to tlbwi and tlbwr,
presented earlier. Figure 5 brings a sequence diagram that
shows software and hardware actions during an instruction
emulation.

Fig. 5. Guest OS privileged instruction execution.

Originally, MIPS I ISA contains a instruction pair to return

from exceptions: jr and rfe: jr jumps to address contained in
the specified register whilst rfe is used in the branch delay-
slot to return the processor to its prior state. However, this
behaviour prevents a correct virtualization from functioning
in MIPS I processors, since a register must be used to jump
to the exception return address, forcing the modification of
its original value, thus disrupting the normal operation of the
ADU.

To solve this problem we implemented a modified version
of the rfe instruction and added a new one to jump to a
virtual address, named jr.v. Also, a new register (register #30 at
CP0) was implemented as a shadow of the existing K0 MIPS
register5 (named k0 shadow). In this case, when a exception
occurs the last value of K0 is saved in the k0 shadow register
by the hypervisor. In the exception handling routine, registers
are saved by software normally and restored before the return.
However, K0 is used to indicate the return address to the jr.v
instruction. Such instruction is responsible for enabling the
MMU, meaning that the address stored at K0 corresponds to
the virtual address which indicates the exception return address
of the ADU. So, the modified version of the rfe instruction
assigns the value preserved at the k0 shadow into k0, keeping
register value consistency to the ADU.

V. VIRTUALIZATION SOFTWARE AND REAL-TIME

Figure 6 depicts a general view of our hypervisor composed
of the following modules: (i) Hardware Abstraction Layer
(HAL), used to isolate layers, such as domain and scheduler
from the further hardware details. It merges drivers interface,
along with device drivers implementation, besides handling
the VCPUs abstraction. The exception handler and other low
level facilities are implemented directly in assembly aiming
to obtain maximum performance; (ii) Memory-Mapped I/O
(MMIO), which manages the memory-mapped devices, includ-
ing the hypercalls’ subsystem; (iii) Application Domain Unit
(ADU) described in Section III; (iv) Real-time and Best-effort
schedulers, responsible to implement the EDF (for real-time
constraints) and best-effort scheduling policies; (v) Dispatcher,
responsible for dispatching the chosen VCPU to the physical
CPU; and (vi) Toolkit that reunites a collection of software
facilities, such as linked-list manipulation procedures.

Hypercalls. The hypervisor implements the hypercall con-
cept to allow an ADU to instantiate several VCPUs (RT-
or BE-). Hypercalls are widely used in paravirtualization
based approaches, where the Guest OS needs to be modified,
invoking hypercalls instead of using privileged instructions.
However, we use the full virtualization technique, where the
Guest OS does not need to be modified in order to be
virtualized, although it must use hypercalls only to perform
proper (BE- and RT-) VCPUs instantiation. It is important to
highlight that our technique does not require any modification
of the OS to be virtualized, thus saving engineering efforts and
time-to-market. However, the GuestOS needs to use hypercalls
only to create new VCPUs (BE- and RT-).

5K0 register is normally dedicated to kernel use.

Fig. 6. Hypervisor block diagram

The system starts with a fixed number of domains con-
figured previously by the designer, where each domain owns
at least one BE-VCPU. Then, dynamically, each domain can
manage its own VCPUs, as needed by the application. BE-
VCPUs need to have a priority parameter define for their
creation while RT-VCPUs require that real-time task model
parameters, such as deadline, period, and capacity are specified
to be properly handled by the hypervisor’s scheduler.

In practice, a hypercall consists of a write performed by the
Guest OS at a special memory address (0xFFFFE800) that
causes a trap to the hypervisor. We also use this technique
to emulate a shared peripheral, such as UART. The value
written at 0xFFFFE8000 must reflect the address of a struct
containing the new VCPU data, which contains parameters
such as capacity and period (for RT-VCPUs) and priority (for
BE-VCPUs).

The sequence flow that represents a Guest OS’s execution
of a hypercall to create a new RT-VCPU is depicted in the
sequence diagram of Figure 7. Initially, the create rtvcpu()
system call is used as the responsible to fulfil a given
struct (named create rtvcpu cmd) and write its address at
0xFFFFE800. Then, when the hypervisor assumes the exe-
cution its first action consists of determining the hypercall
type (in this case, an RT-VCPU creation). Next, the admission
control algorithm is executed and, if there is enough system
resources, the new RT-VCPU is accepted and assigned to a
physical processor. Then, a proper return (indicating either
success or failure) is sent back to the Guest OS, which follows
its own execution flow.

Scheduler. The hypervisor implements both Earliest Dead-
line First (EDF) policy [16] and Best-Effort policies to deal
with RT-VCPUs and BE-VCPUs, respectively. For the BE-
VCPUs implementation, a single global Best-Effort queue is
kept, while RT-VCPUs are kept in local individual queues per
processor. The EDF is the main hypervisor’s scheduler and it
has a higher execution priority than the best-effort scheduler,
which will not suffer from starvation since we use time
reservation for it. Figure 8 presents this two-level scheduling
scheme, where RT-VCPUs and BE-VCPUs are placed in

Fig. 7. Sequence diagram of RT-VCPU creation

different positions (global and local individual queues).

Fig. 8. Real-time and best-effort multiprocessed strategy

Scheduling Sample. In this example, we show how three
VCPUs are scheduled in a system with a single processor.
We have two RT-VCPUs and one BE-VCPU. For sake of
simplicity, we will keep the period equal to deadline, using
the EDF algorithm. We use the following real-time parameters
for RT-VCPUs (p stands for period, d stands for deadline and
c stands for capacity or worst-case execution time):

• RT-VCPU 0: p = 5, d = 5 and c = 3;
• RT-VCPU 1: p = 4, d = 4 and c = 1;
The overall system real-time utilization is determined by

the
∑

c
p of all RT-VCPUs. In this case, we have a real-time

utilization of 0.85 (35+ 1
4), it means that 85% of the system is

dedicated to the RT-VCPUs. The remainder 15% is dedicated
to BE-VCPUs.

Figure 9 shows the system scheduling when both RT-
VPCUs utilize all of the capacity assigned to them. RT-VCPU
1 is scheduled first due to its nearest deadline, followed by
RT-VCPU 0. BE-VCPU only starts executing at tick time 9,
when both RT-VCPUs are waiting for their release time.

Moreover, Figure 10 shows the scheduler behaviour when
RT-VPCU 0 releases itself from the processor, in an operation
we named Voluntary Preemption. In this case, RT-VCPU 0
yields the processor in the middle of time slice 3 and the best-
effort scheduler is invoked, scheduling BE-VCPU 0 until the
end of the time slice, where a preemption occurs. By the time
slice 7, another voluntary preemption happens, and BE-VCPU

Fig. 9. Real-time scheduling sample

0 is scheduled again. Finally, at time slice 9, both RT-VCPUs
0 and 1 are waiting for their release times, allowing BE-VCPU
to be scheduled again.

Fig. 10. Real-time scheduling sample with voluntary preemption

Time Reservation. To avoid starvation of BE-VCPUs, we
adopted a time reservation strategy. In the moment of their
creation, each ADU must indicate the system load capacity it
desires to use. From the ADU point of view, this share of the
system’s entire capacity is seen as its own entire capacity. All
the VCPUs (RT- and BE-) created by this ADU share its slice
of the entire system’s capacity. If a domain tries to allocate
more than its maximum capacity, new VCPUs will fail to be
created as they will not succeed through the admission control
algorithm.

Admission Control. Whenever an application domain re-
quests the creation of a new VCPU, the admission control
algorithm checks if there is available physical resources that
can satisfy that VCPU’s requirements. In the particular case
of SMP systems, even if there is enough free capacity in
the entire system, this may not guarantee the new VCPU’s
execution since this capacity is actually fragmented among
several physical CPUs. Thus, there is indeed an efficiency
issue regarding the local CPU queues usage, but with the
proper use of dynamic load balancing techniques this problem
can be reduced.

VI. EVALUATION AND DISCUSSION

A. Hardware evaluation

The VHDL description was synthesized to a Xilinx Virtex-
4 XC4VLX60 FPGA Device using ISE 13.2 software. We
performed three different synthesis in order to obtain the plat-
form area occupation: the pure vPlasma MIPS core (without
schatchpad and L1 cache), vPlasma processing node (with
schatchpad and L1 cache) and the entire platform with four
CPUs. Results are presented in Table I. The addition of the
L1 cache and scratchpad represents an increase of about 1%

TABLE I
SYNTHESIS RESULTS ON A XILINX VIRTEX-4 FPGA.

Number of oc-
cupied Slices

FPGA occu-
pation (%)

Pure vPlasma core 2.226 8
vPlasma processor 2.658 9
Entire Platform (4 CPUs + inter-
connection and memory)

11.087 41

Entire Platform (8 CPUs + inter-
connection and memory)

21.016 78

in the total area occupation. Such area is a small price to
pay considering the performance increase it brings. The entire
platform with four vPlasma processors occupied 41% of area,
and it is possible to synthesizes upto 8 processors in the
available FPGA with 78% of occupation area. It is important
to point out that each processor may contain more than one
virtual processor. In this case, for many embedded applications
that require high performance and therefore a high number
of processors (typically applications that are implemented by
NoCs), virtualization becomes an attractive alternative. Once
you use less area, power consumption is lower if compared
to a NoC approach, and the performance overhead does not
significantly affect the entire system performance.

B. Software evaluation

We have determined the overhead of our implementation
based in instruction counts for three different situations:
(i) privileged instructions emulation; (ii) context switching
(among virtual machines), and; (iii) device emulation (for
shared devices). For the first and second cases the Guest OS
execution causes a trap to the hypervisor. For the third case the
Guest OS is preempted by the hypervisor and, if convenient,
a new Guest OS is scheduled.

Thus, analysing the instruction count for all different in-
structions we emulated, we achieved an average of 230 in-
structions for the emulation of a privileged instruction.
We used the same technique to determine the overhead of
creating and deleting VCPUs (both BE and RT). For that, we
got an average of 840 instructions for the creation of a
new VCPU and of 712 instructions for the deletion of a
VCPU. The overhead of the emulation of a shared device was
determined. Our emulated device is a UART port dedicated
to communication to the external world. It represents a very
simple device, where reading or writing a byte from/to the
external word consists in an access to the 0xFFFFe000 address.
In this case, the shared memory-mapped device is not mapped
to a specific Guest OS, thus, a reading or writing performed
in this specific address causes a trap to the hypervisor, which
then emulates the device. The average overhead detected
is 245 instructions. Although this can be considered as a
very optimistic result, it is important to highlight that the
more complex the device is the higher overhead it contains.
Finally, we obtained the overheads of the EDF scheduler and
we detected an average of 612 instructions to preempt and
schedule a new VCPU using the EDF algorithm.

In order to validate our implementation, we elaborated
an experiment where we aim to demonstrate the correct
functioning of our virtualization system. The experiment con-
sists of a producer/consumer application, a classic example
of synchronization problems. Our producer/consumer imple-
mentation consists of a producer and a pool of consumers
that share a common, fixed-size ring buffer as the producer
allocates data in the ring buffer at a constant rate. In order to
simulate variable process time, the value allocated in the ring
buffer coincides with the number of time slices the consumer
needs to process it. The producer/consumer is monitored by
a BE-VCPU, known as management VCPU and the one
responsible to control the load of the system. The ring buffer
has a maximum configurable capacity of 50 integer elements.
The system starts with a domain containing the management
VCPU, a producer RT-VCPU and a consumer RT-VCPU.
The management VCPU is allowed to instantiate three more
consumers, putting the system to its maximum load, with four
consumers. Figure 11 illustrates this scenario.

Fig. 11. Producer-consumer virtualization scenario

Firstly, RT-VCPUs from 1 to 3 are instantiated and de-
stroyed dynamically by the management VCPU, which mon-
itors the ring buffer when its occupation exceeds 80%. If the
buffer occupation reaches 100%, the producer stops sampling.
Still, the producer has a fixed CPU time reservation of 20%.
Each consumer, when executing, gets 10% of CPU time. Thus,
the system starts with a 30% CPU usage rate, which can grow
until 60%, since 40% of system capacity is reserved to best-
effort tasks. Figure 12 illustrates this scenario. During start-up,
the buffer occupation increases, since the producer CPU time
is twice the consumers’ capacity (consumers need one time
slice for each buffer entry processing). Around time slice 470,
it is possible to see that the buffer reaches 80% of its max-
imum capacity occupation causing the management VCPU
to trigger three more consumers to avoid buffer saturation.
Then, the system utilization increases up to 60% as the buffer
occupation decreases rapidly. However, around time slice 420,
the producer starts generating data that takes two time slices
for the consumer to process. Thus, the system’s balance is
established, with an average of 33% of buffer occupation and
60% of system load. Still, around time slice 1700, the producer
starts generating data that takes 1 time slice for the consumer’s
treatment. Expectedly, the buffer occupation dwarfs. Then, the
management VCPU reacts to the buffer occupation lower than
40% and destroys two VCPUS. Then, the system gets balanced
again at a 40% CPU load rate.

Fig. 12. Producer-consumer execution

C. Case-study: porting HellfireOS to modified MIPS

HellfireOS (HFOS) [17] is a real-time, micro-kernel based,
highly customizable operational system. Suitable to run on
low memory constrained architectures, like typical critical
embedded systems. Primarily, it was designed to run on the
Plasma MIPS core. In order to support the core modifications,
some effort was necessary to modify the OS to the new
vPlasma MIPS core. However, once the HFOS is running on
the vPlasma MIPS, virtualize it is straightforward due to our
full virtualization approach.

HFOS was originally designed to run on MMU-less proces-
sors. Despite the fact that vPlasma MIPS implements a MMU,
HFOS does not need to be aware on it, since the MMU is
managed exclusively by the hypervisor. Besides, HFOS is not
affected by the new privileged execution mode. The hypervisor
always schedules a Guest OS placing the processor in user
mode.

Since the adaptations we performed in the Plasma processor
to provide virtualization follow the MIPS R3000 Application
Binary Interface (ABI) specifications, the OS modifications
also follow this specification. Basically, since the rfe in-
struction was added to vPlasma’s ISA, some modifications
were required on the exception handler routine. Moreover,
simply disabling interrupts to guarantee atomic execution of
instructions is no longer enough, and a system call primitive
(syscall) was implemented, allowing the OS to have similar
functionality. On the OS implementation level, modifications
concern exclusively the Hardware Abstraction Layer (HAL),
which is the only hardware-dependent layer of the operating
system. In addition, these modifications did not impact neither
the OS’s code size nor the data memory usage.

VII. FINAL REMARKS AND FUTURE WORK

In this paper we presented a virtualization-aware architec-
ture intended for multiprocessed embedded systems with real-
time support where no Guest OS change is required, based on
simple and constrained MIPS-like processors. We present the
virtualization model we used as well as some implementation
strategies concerning the hardware itself and software issues,
such as synchronization primitives, hypercalls and scheduling

for real-time. The main advantages of our approach are: (i)
the small hypervisor size; (ii) the absence of required Guest
OS’s changes; (iii) the strong secure domain offered when
hiding the hypervisor’s memory from virtual machines and
the virtual domains’ memories among themselves, and; (iv)
real-time support through EDF. We evaluated our platform
in terms of its hardware consistency and software overheads.
Besides, we show a case-study concerning the port of an
existing OS into our virtualized solution. Immediate future
work are focused in the improvement of the platform itself and
on the implementation of a dynamic load balancing technique.

ACKNOWLEDGMENT

The authors acknowledge the support granted by CNPq and
FAPESP to the INCT-SEC (National Institute of Science and
Technology - Embedded Critical Systems - Brazil), processes
573963/2008-8 and 08/57870-9.

REFERENCES

[1] Y. Zorian and E. Marinissen, “System chip test - how will it impact your
design,” in DAC’2000 - Design Automation Conference. Las Vegas,
EUA: ACM Press, Jun 2000.

[2] G. Heiser, “Virtualizing embedded systems - why bother?” Design
Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, 2011.

[3] “Mesovirtualization: lightweight virtualization technique for embedded
systems,” Software Technologies for Embedded and Ubiquitous . . . ,
2007.

[4] J. Brakensiek, A. Dröge, M. Botteck, H. Härtig, and A. Lackorzynski,
“Virtualization as an enabler for security in mobile devices,” IIES
’08: Proceedings of the 1st workshop on Isolation and integration in
embedded systems, 2008.

[5] D. Su, W. Chen, W. Huang, H. Shan, and Y. Jiang, “SmartVisor:
towards an efficient and compatible virtualization platform for embedded
system,” IIES ’09: Proceedings of the Second Workshop on Isolation and
Integration in Embedded Systems, 2009.

[6] A. Cohen and E. Rohou, “Processor virtualization and split compilation
for heterogeneous multicore embedded systems,” Design Automation
Conference (DAC), 2010 47th ACM/IEEE, 2010.

[7] M. Asberg, N. Forsberg, T. Nolte, and S. Kato, “Towards real-time
scheduling of virtual machines without kernel modifications,” Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Confer-
ence on, 2011.

[8] G. Heiser, “The role of virtualization in embedded systems,” . . . on
Isolation and integration in embedded systems, 2008.

[9] F. Armand and M. Gien, “A Practical Look at Micro-Kernels and Virtual
Machine Monitors,” in Consumer Communications and Networking
Conference, 2009. CCNC 2009. 6th IEEE, 2009.

[10] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–
421, 1974.

[11] “Omitted for blind review,” 2012.
[12] Intel Architecture Group, “Virtualization Technology Specification,”

http://www.intel.com/p/en US/embedded/hwsw/technology/virtualization,
2011.

[13] ARM Architecture Group, “Virtualization Extensions Architecture
Specification,” http://www.arm.com/products /processors/technologies/
virtualization-extensions.php, 2011.

[14] Power Organization Group, “PowerISA v2.06 - Virtualization
support,” https://www.power.org/resources/ downloads/virtualization
for Embedded Power Architecture.pdf, 2012.

[15] “Plasma - most mips i(tm) opcodes :: Overview,”
http://opencores.org/project,plasma, 2012, online; accessed 19-July-
2011.

[16] W. H. Hesselink and R. M. Tol, “Formal feasibility conditions for earliest
deadline first scheduling,” Tech. Rep., 1994.

[17] “Omitted for blind review.” 2010.

