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ABSTRACT 
As processor count in MPSoCs increases, the use of NoCs 
becomes relevant, if not mandatory. However, power and energy 
restrictions, especially in mobile applications, may render the 
design of NoC-based MPSoCs over-constrained. The use of 
traditional dynamic voltage and frequency scaling (DVFS) 
techniques proved useful in several scenarios to save 
energy/power, but it presents scaling problems and slow response 
times. This work proposes a self-adaptable distributed dynamic 
frequency scaling (DFS) scheme for NoC-based MPSoCs. It takes 
into account the communication load and the utilization level of 
each processor to dynamically change its operating frequency. 
Frequency change decisions and clock generation are executed 
locally to each processor. Clock generation is simple, based on 
clock gating of a single global clock. The overhead of the scheme 
is minimum, the range of generated clocks is wide, and the 
response time is negligible. Experimental results with synthetic 
applications shows that the proposed scheme has an average 
execution time overhead below 7%, and may lead to considerable 
power and energy savings, since it allows an average reduction of 
27% on the total number of executed instructions. Evaluating the 
proposed method with a real application, the execution time 
overhead reached 13%, while the total number of executed 
instructions was reduced by 64%.   

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced 
technologies, VLSI; C.1.2 [Processor Architectures]: Multiple 
Data Stream Architectures (Multiprocessors) – Interconnection 
architectures. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
DFS, MPSoC, NoC, power management technique. 

1. INTRODUCTION 
NoC-based MPSoCs provide massive computing power on a 
single chip. Such devices can support the convergence of several 

appliances (e.g. HDTV, multiple wireless communication 
standards, media players, gaming, etc.). However, performance 
and energy consumption are conflicting targets, and designers 
have to select the best trade-off between performance and energy 
for the set of applications the system will execute. 

Energy consumption in CMOS circuits can be reduced by 
controlling two main variables: the supplied voltage and the 
operating frequency. The later has a linear impact on energy 
consumption, and a given frequency can only be supported with 
some minimum voltage supply. Voltage has a quadratic impact on 
energy consumption. Accordingly, this is the most used factor to 
reduce energy consumption. Controlling these two variables at 
runtime is the basis of Dynamic Voltage and Frequency Scaling 
(DVFS) techniques. These techniques can be controlled by 
hardware components alone, by software algorithms, or by some 
hybrid hardware-software configuration. On NoC-based MPSoCs, 
the DVFS infrastructure can be introduced into the processing 
element (PE), on the NoC router or in both.  

This paper proposes and evaluates a new technique for Dynamic 
Frequency Scaling (DFS) with fixed system voltage. The main 
goal of this technique is to enable fast frequency switching 
according to each processor’s workload and communication load. 
The proposed DFS scheme is evaluated in a synthesizable NoC-
based MPSoC. 
The rest of this paper is organized as follows. Section 2 reviews 
the related work. Section 3 presents the clock generation module. 
Section 4 describes the target MPSoC architecture. The proposed 
DFS controller and the required modifications to enable the DFS 
scheme are presented in Section 5. Section 6 presents the 
experimental setup and results. Finally, conclusions and future 
works are drawn in Section 7. 

2. RELATED WORK 
This section review, in Table 1, the related work in DFVS applied 
to processors and MPSoCs, comparing it to the proposed 
technique. The target architecture of works [1] and [2] is a single 
CPU, using a parameter monitored in hardware to take the DVFS 
decisions. The first uses the supply current driven by the CPU to 
adjust the frequency/voltage pair of the chip. The second one uses 
the CPU temperature as monitoring parameter, with the DVFS 
algorithm implemented in the Linux kernel. In [3] the architecture 
is also a single CPU, but the monitoring parameter is the 
application statistics, which are collected by a performance 
monitoring unit and temperature sensors at runtime. Works [4], 
[5], [6], and [7] target more than one CPU using a bus-based 
interconnection infrastructure. Alimonda et. al. in [4] use the load 
of communication queues between two processors to control the 
DVFS scheme. In [6] and [7] the parameter which controls the 
DVFS scheme comes from the tasks slacks and applications 
profile, respectively. 
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In [8] the Authors use synchronous islands, adopting an approach 
named GRLS (Globally Ratiochronous-Local Synchronous). The 
parameter to control the DVFS is the tasks’ deadlines.  
A DVFS controlling scheme is proposed for NoCs in [9]. 
Similarly to [4] and [5], the monitoring parameter is the 
communication load. However, in [9], the communication queues 
are placed between each 2 neighbor routers and the voltage 
scaling is done via power supply networks. Works [10], [11], [12], 
[13] and [14] target NoC-based MPSoCs architectures. In [10], 
the process variation is the parameter used to control DVFS 
decisions. In [11] the monitoring parameters are temperature and 
task synchronization, while in [12] the parameter monitored is the 
communication latency. In both works the monitoring parameters 
were modeled, and used to build an objective function, used by a 
game theory algorithm to define the voltage and frequency levels. 
In [13] the Authors use a metric to compute the suitable DVFS 
level according to the application profile. Authors present DVFS 
architecture for IPs integration within a GALS NoC in [14], where 
the user is able to program the desirable voltage level of the IP in 
the application.  

As shown, DVFS schemes may use hardware or software 
controlling parameters. Hardware parameters for controlling 
DVFS include temperature, process variation, current and load in 
communication buffers. Software parameters include application 
profile and scheduling tasks. In terms of implementation, most 
proposals employ software algorithms, releasing to the hardware 
the monitoring process (when a hardware parameter is 
monitored).  

The present works proposes a DFS scheme, with fixed system 
voltage, through hardware and software mechanisms. The 
hardware mechanism obtains data from the Network Interface 
(NI) and from the processor to parameterize the clock generation 
module, setting the correct frequency for the NoC and PEs. 
Software mechanisms are responsible for monitoring a set of 
parameters, making them available to the hardware mechanism.  

3. CLOCK GENERATION 
The clock generation module uses as input a reference clock, 
which consists in the highest frequency usable in the system as a 

local clock. The principle of the clock generation process is to 
achieve clock division by simply omitting selected cycles of the 
reference clock, as Figure 1 illustrates: initially, inputs num and 
den are natural numbers 2 and 5, respectively. This corresponds to 
set the frequency of the clock generator to two-fifths (40%) of the 
reference clock. In other words, for each den reference clock 
cycles, num cycles are propagated to the output clock. According 
to the DFS literature review, this is the first work to apply this 
method to generate new frequencies in NoC-based MPSoCs. 

2
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ref. clock

num

den

restart

clock out  
Figure 1 - Example of the proposed clock generation process.  

Any frequency obtained by changing the num and den values can 
be generated with the obvious exceptions (den=0 is not an 
acceptable value, num=0 corresponds to a clock gating action and 
the constraint num ≤ den must be respected). Before changing the 
num and den values, the restart signal must be asserted to 
momentarily stop the output clock and reinitialize internal 
registers. After releasing restart, the new frequency, defined by 
the modified values of num and den appears at the output. 

This clock generation scheme translates into a simple logic that 
can multiply the reference clock frequency by selected values 
distributed evenly inside the closed interval [0,1]. The amount of 
distinct values is dictated by the range of values assignable to num 
and den, which amounts to define the size of internal registers 
used to store these inside the clock generator. 

A system using only this clock generation scheme is clearly 
classifiable as ratiochronous [8], since any relation between two 
frequencies in the system is a rational number. In the scheme, if 
all clock edges of all clocks can be kept always in phase with the 
corresponding edge of the reference clock, the system can simply 
dispense the use of synchronizers. However, due to the use of one 
clock generation module to each processor, keeping all clock 
signals in phase may have a strong impact on clock distribution 
control, and is ignored here to keep the clock generators simple. 

Table 1 - DVFS state-of-the art comparison. 
Author Architecture Monitoring Parameter Implementation 

Pourshaghaghi [1] 
2009 Single CPU CPU Supply Current Fuzzy Logic Controller in Hardware 

Shu [2] 
2010 Single CPU CPU Temperature Temperature Sensors and Software Algorithm 

Salehi [3] 
2010 Single CPU Application History Software Tracking Application Workload 

Alimonda [4] [5] 
2006/2009 Bus-Based MPSoC Queues Load Central Controller Hardware 

Liu [6] 
2009 

2 CPUs, Bus-based 
Interconnect Tasks Slacks Task Graph Unrolling Software 

Kong [7] 
2008 Bus-Based MPSoC Application Profile Software computes Suitable DVFS Level and Informs Controller Hardware 

Chabloz [8] 
2010 Synchronous Islands Tasks Deadlines GRLS scheme, Local clock generation 

Yin [9] 
2009 NoC Queues Load  Voltage Selection via Transistors 

Herbert [10] 
2009 NoC-Based MPsoC Process Variation Off-line Calibration (Design Variability), Algorithms in Software 

Puschini [11] [12] 
2008/2009 NoC-Based MPSoC Temperature and Task 

Synchronization/Latency Parameter Modeling, Game Theory Algorithm 

Goossens [13] 
2010 NoC-Based MPSoC Tasks Slacks Voltage and Frequency Scaling Hardware, Software to adjust the Controller 

Beigné [14] 
2008 NoC-Based MPSoC - Application chooses the IP Voltage Level 

Proposed Work NoC-Based MPSoC Communication and CPU Load Local Clock Generation, Controller sets Correct Frequency Level. Software 
updates Controller with Current CPU state. 
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In this way, synchronizers must be employed later to guarantee 
reliable communication between two modules controlled by 
distinct clock generation modules. 
Figure 2 presents the block diagram of the clock generation 
module. The module has two outputs: (i) clock_plasma, the 
divided clock, used by PEs; (ii) clock_router, the half frequency 
with a duty cycle of 50%, used by the NoC. The inputs num and 
den are used to configure the clock generator. As the example 
discussed, num represents the numerator of the fraction that 
multiplies the reference clock, while den is the denominator of the 
fraction. 
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Figure 2 - Clock generation module. 

The main advantages of this clock generation module are the low 
area overhead and a large set of generated frequencies. For 
example, for num and den being 4-bit values the module takes 
only 12 flip-flops, 31 LUTs and two clock buffers (BUFG) of a 
Virtex-5 Xilinx FPGA. In this same example, 120 different 
fractions can be formed. Although several of these correspond to a 
same frequency (e.g. 1/1, 2/2 etc) still a large number of distinct 
frequencies can be produced with small resolution for num and 
den. In addition, the clock output is always stable, contrary to 
what happens in standard DFS methods, where the time required 
to stabilize a new frequency can be significant. In [15] it is also 
presented a controller that can provide fast frequency switching. 
However, the Authors use two extra PLLs in the proposed 
scheme, which induces large area and power overhead. The 
proposed module is also glitch free by construction. Such features 
make the use of the proposed clock generator module appropriate 
for distributed DFS in MPSoCs, where each PE may have its own 
frequency according to its load.  

Yet, the most recent technologies are restricting the supply 
voltage scaling margins, which is the key component behind 
power savings through DVFS [16]. Therefore, designing the 
system to work at a fixed supply voltage, coupled to the DFS 
method herein proposed, is an option to efficiently manage the 
energy consumption in nanoscale technologies. 

4. SYSTEM ARCHITECTURE 
The reference MPSoC [17] is a homogeneous multiprocessing 
NoC-Based MPSoC. Figure 3 shows an instance of this MPSoC. 
The 2-D mesh NoC used in the reference MPSoC has the 
following features: wormhole packet switching, flit width equal to 
16 bits, XY routing algorithm, round-robin arbitration, input 
buffers with 8-flits depth. Each PE includes the following 
modules: (i) a 32-bit Plasma processor (a MIPS-like architecture); 
(ii) a local memory (RAM); (iii) a DMA module, responsible for 
transferring the task object code to the memory and messages 
to/from the NoC to the local memory; (iv) a network interface 
(NI). Two types of PEs are used: slave and master. Slave-PEs are 
responsible for executing application tasks, while the Master-PE 

is responsible for managing task mapping and system debug. The 
task repository is an external memory, responsible to store all 
object codes of applications that will eventually be executed.  
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Figure 3 - Block diagram of the MPSoC architecture. 

Each slave processor runs a multitask microkernel that enables the 
communication between tasks through send and receive 
primitives, respectively called WritePipe() and ReadPipe(). Each 
microkernel contains a vector, named pipe, which contains 
messages to be exchanged between tasks. When a given task 
executes a WritePipe(), the message is stored in the processor 
communication pipe, and computation continues. On the other 
side, when a given task executes a ReadPipe(), a system function 
is executed. If the target task is located in the same processor, the 
task executes a read in the communication pipe. If the task is 
located in another processor, the microkernel sends a request 
message through the NoC and the task enters in wait state. When 
the message arrives from the network, the microkernel stops the 
executing task and reschedules the waiting task. Thus, the 
communication scheme employs non-blocking writes and 
blocking reads. 
The microkernel was modified in the present work to monitor the 
CPU utilization and communication pipe occupancy, storing them 
in new memory-mapped registers. By monitoring the microkernel 
scheduler it is possible to evaluate the CPU utilization and by 
monitoring the communication pipe occupation it is possible to 
evaluate the communication load. 

5. THE DFS CONTROLLER  
The DFS controller computes the communication load and CPU 
utilization level according to values provided by the microkernel. 
Such values are used by the controller to define the PE frequency. 
The controller always operates at the reference frequency (the 
highest frequency in the system, used as input to the clock 
generation module). As shown in Figure 4, the slave-PE feeds the 
DFS controller with values stored in memory-mapped registers: 

• pipe_ocup and req_msg: related to the communication load, 
correspond to the number of messages stored in the 
communication pipe (an integer value) and if there is request 
for a message not yet produced by the processor (a Boolean 
value). 

• not_scheduled (Boolean values): when true, only the 
microkernel is running, meaning that no task is being 
executed; when false, at least one task is being executed. The 
DFS controller may define the CPU utilization counting how 
many clock cycles this signal is asserted, in a sampling period. 

Due to the delay induced by the clock generation circuitry, the 
clock phase at the outputs of the DFS controller is not the same of 
the reference frequency. Therefore, synchronizers [18] are added 
to capture the control signals generated by the Slave-PE module 
(module synchronizers in Figure 4). 

To cope with different clock phases and frequencies, the original 
router-PE interface was also modified, adopting the GALS 
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paradigm. This is achieved by adapting the existing buffers in the 
NoC and network interface to work as bisynchronous FIFOs [19] 
(a minimum area overhead is introduced, corresponding to the 
FIFO control signals). 
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FIFO
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Figure 4 - Router-PE GALS interface and the DFS controller 

responsible for generating the router and PE frequencies. 
The FSM represented in Figure 4 corresponds to the behavior 
detailed in Table 2. The controller uses the clock generation 
module, detailed in Section 0, to provide the two output clocks. 
The role of the FSM is to choose the correct PE frequency, by 
evaluating the following parameters: 

• Pending message requests from other tasks. This situation 
takes place when the processor is not producing data to the 
consumer task (req_msg = 0).  

• Occupancy of the pipe. If the communication pipe has a high 
occupancy, the processor is producing messages at a higher 
rate than the consumer tasks can consume, while the inverse 
scenario means a lack of produced messages. Upper and lower 
parameterizable thresholds define the high and low occupancy 
states, respectively. Occupancy between these values defines 
an operational state. 

• CPU utilization. When the utilization is low the CPU is not 
executing any task or tasks are blocked, e.g., waiting 
message(s) from other tasks. When the utilization is high, 
tasks are using the processor at the maximum rate. Two 
parameterizable thresholds define high, low and operational 
CPU utilization states. 

Table 2 - DFS Controller behavior (↓/↑ mean decrease/ 
increase one frequency step, ↑↑ means increase two frequency 
steps, = means keep frequency unchanged and - denotes don’t 

care conditions). 

Action in 
frequency 

Pending 
Message 

Current Pipe 
Occupancy 

Previous 
Pipe 

Occupancy 

CPU 
Utilization 

1 -  ↓ 0 high - - 
2 -  ↓ 0 operational low - 
3 -  ↓ 0 low - low 
4 - = 0 operational operational - 
5 - = 0 low - operational 
6 - = 1 - - low 
7 - ↑↑ 1 - - operat./high 
8 -  ↑ 0 low - high 
9 -  ↑ 0 operational high - 

 

Frequency decreases in three situations: (i) the communication 
pipe is almost full (action 1 of the Table 2); (ii) the 
communication pipe occupation is increasing, i.e. in the previous 

evaluation its state was low and the present state is operational 
(action 2); (iii) the communication pipe occupation is almost 
empty and the CPU usage is low, meaning that even at a lower 
frequency the data in the communication pipe is being consumed 
(action 3). 

Frequency increases in three situations: (i) existence of pending 
messages with operational or high CPU utilization (action 7) – the 
clock generator increases in two steps the frequency; (ii) the 
communication pipe is almost empty and the CPU has high 
utilization (action 8); (iii) the communication pipe occupation is 
dropping, meaning soon the processor can present lack of 
messages, i.e. in the previous evaluation its state was high and the 
present state it is operational (action 9).  

When a given PE receives a message request, and it has data to 
transmit, this PE goes to the reference frequency during the 
message transmission. This action avoids stalling consumer PEs 
operating at higher frequencies than the producer PEs. 
The period between consecutive evaluations is also 
parameterizable. In this work, the evaluation period corresponds 
to four time slices. When an evaluation is triggered, the controller 
stores the values generated by the microkernel, computing the 
current communication pipe occupation and CPU utilization. 

6. EXPERIMENTAL RESULTS 
This section employs an instance of the reference MPSoC with 6 
processors (1 Master-PE and 5 Slave-PEs) and a 3x2 NoC to 
demonstrate the characteristics and advantages of the proposed 
DFS scheme. NoC and Plasma peripherals (NI and DMA) are 
described in VHDL, while an ISS model is used to describe 
Plasma CPU and RAM. The simulations were performed in 
ModelSim. Three applications, written in the C language, were 
used to evaluate the proposed method:  

a. Pipeline – Data-flow application with 3 tasks: producer, 
worker, and consumer. 

b. Communication – Application modeled with four tasks, with a 
communication graph that has two tasks working in parallel. 
Two initial tasks run in parallel, as producers, providing data 
for the worker task, which sends data to the consumer task. 

c. Partial MPEG filter – Real application used to evaluate the 
performance of the proposed DFS controller. The partial 
MPEG filter is composed by five tasks, modeled as a pipeline. 

Applications (a) and (b) are synthetic, with execution time 
emulated by a loop, with 100 messages being sent from the 
producer task(s) to the other(s) task(s). The DFS controller was 
parameterized to generate 9 different frequencies: 5, 10, 25, 40, 
50, 60, 75, 90 and 100% of the reference frequency. In the graphs 
presented in this Section, these frequencies are plotted in the y-
axis, with values ranging from 0 to 8. 

6.1 Synthetic applications 
Table 3 details the three simulated test cases for the Pipeline 
application, and results are presented in Figure 5. The number of 
executed instructions is reduced in average 32%, and the 
execution time overhead ranges from 1.8 to 3.2%. 
Obviously, the number of instructions to execute the applications 
does not change when reducing the frequency. This reduction is 
obtained from reducing the instructions executed by the 
microkernel, e.g, execution of the scheduler when there is no task 
being executed. 
 

206



Table 3 - Pipeline Evaluation Scenarios. 
Test 
case 

Data rate generation Number of executed machine 
instructions (in thousands) 

Producer  Worker Consumer  Without DFS With DFS 
1 + ++ ++++ 24,482 16,049 
2 ++++ ++ + 19,965 14,565 
3 +++ + ++++ 23,227 15,022 

In test case 1 the slowest  task (in this work, the term slowest or 
faster refers in fact to the data generation or consumption rate, not 
to the task execution time) is the producer (continuous line in 
Figure 5). As expected, the slowest task goes to the reference 
frequency, and the fastest task (consumer - dashed line) goes to a 
frequency proportional to the data generation rate (¼ of the 
reference frequency). The worker task frequency stays between 
the other two frequencies, varying two frequency steps when it 
tries to read messages from the producer task, and the message is 
not yet available.  

In test case 2 the consumer is the slowest task. In this test case, the 
consumer task reacts more slowly than test case 1, taking more 
time to achieve the reference frequency. The consequence is that 
the producer and the worker fill the respective communication 
buffers, reducing their operating frequencies. Once the consumer 
starts to consume data at the reference frequency, the system 
stabilizes (between 50 to 80 ms after start).  

In test case 3, the worker is the slowest task. The worker task 
quickly reaches the reference frequency, due to the pending 
requests coming from the consumer task. The producer task keeps 
its initial frequency, since the consumption rate of the worker task 
maintains the communication buffer in the operational state. The 
consumer frequency is decreased due to the worker data 
generation rate. 

Table 4 details the three simulated test cases for the 
Communication application, and results are presented in Figure 6. 
The number of executed instruction is reduced in average 26%, 
and the execution time overhead ranges from 2.8 to 6.9%. 

Table 4 - Communication Evaluation Scenarios. 
Test 
case 

Data rate generation Number of executed machine 
instructions (in thousands) 

Producer  Worker Consumer  Without DFS With DFS 
1 ++ + ++++ 14,515 10,960 
2 ++ ++++ + 23,011 13,933 
3 + ++++ ++ 16,326 13,916 

In test case 1 the worker task, which receives data from two 
producer tasks, reaches the reference frequency, since it is the 
slowest task. Note that the relationship between the worker and 
consumer frequency is around two (worker frequency level equal 
to 8 and consumer frequency level equal to 5), even if the 
generation rate between them is four (Table 4 - test case 1). The 
reason is that the worker receives data from 2 producers, 
transmitting these data to the consumer. 
In test case 2 the consumer is the slowest task, going to the 
reference frequency. Also, both producers had their frequencies 
increased to the reference level, due to pending messages 
requested by the worker (the fastest task in this case). However, as 
the consumer consumes data too slowly, the other three tasks 
reach the minimal frequency due to the high communication pipe 
occupancy (10 - 20 ms). The system achieves a steady state 
between 60 to 80 ms. 

The third test case quickly stabilizes, with the producer and 
consumer working at the reference frequency, and the worker 
operating at ¼ of the reference frequency. The data generation 
rate relation between the three tasks explains this behavior. 

6.2 MPEG 
The result for the partial MPEG decoder is shown in Figure 7. In 
this application iVLC is a CPU-intensive task. Tasks iQuant and 
IDCT are simpler than iVLC. Tasks Start and Print are used to 
initialize the system and to print the results, respectively. In this 
test case, 200 frames were transmitted. The graphic in Figure 7 
shows that only the task executing a high amount of computation 
had its frequency increased to the reference frequency, while Print 
and Start tasks had their frequency decreased to the lowest 
frequency level. The execution time overhead, compared to the 

 

   
Test Case 1 Test Case 2 Test Case 3 

Figure 5 - Pipeline application. (1) Consumer as fastest task and producer as slowest. (2) Consumer as slowest task and producer 
as fastest. (3) Worker as slowest task and consumer as fastest. 

 
 

 

   
Test Case 1 Test Case 2 Test Case 3 

Figure 6 - Communication. (a) Worker as slowest task and consumer as fastest task. (b) Worker as fastest task and consumer as 
slowest task. (c) Producers as slowest tasks and worker as fastest task. 
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execution with the whole system at reference frequency was 13%. 
The number of executed instructions is reduced in 64%. 

When the whole system executes with no DFS scheme, the six 
processors and the NoC operate at the reference frequency. On the 
other hand, using the proposed DFS scheme, only one processor 
operates at the reference frequency, while three other processors 
and the NoC operate, in average, at half of the reference 
frequency (including the Master-PE) and two processors operate 
at the lowest frequency level. 

7. CONCLUSION 
This work proposes a new DFS scheme and evaluates it in a real 
MPSoC platform. The frequency scaling scheme is based in the 
communication load and CPU utilization of each MPSoC PE. A 
clock generation module was designed to enable frequency 
changing. This module presents a low-area overhead and requires 
no stabilization time at each frequency switching. 

Results show that the DFS scheme adjusts the processor 
frequency according to the load injected into the network. As 
shown in the MPEG benchmark, the CPU-intensive task has its 
frequency increased to generate more data to the other tasks. The 
limiting factor is the reference frequency. Once the tasks with 
lower injection rate reach the reference frequency, the system 
stabilizes, reducing the frequency of other tasks. Also, processors 
with no scheduled tasks have their frequency reduced. The 
proposed DFS method has a small impact in the total execution 
time. Therefore, an important energy reduction is expected, since 
few processors of the MPSoC operate at the reference frequency, 
drastically reducing the number of executed instructions. 

Future works include: (i) enhancements in the DFS controller to 
dynamically adjust the evaluation time; (iii) evaluate the method 
when more than one task is executed in the same processor; (iii) 
evaluate the energy reduction obtained applying the method; (iv) 
apply the same method to the NoC. 
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Figure 7 - Partial MPEG filter execution for 200 frames. 
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