
A Self-adaptable Distributed DFS Scheme for
NoC-based MPSoCs

Thiago da Rosa, Guilherme Guindani, Douglas Cardoso, Ney Calazans, Fernando G. Moraes
PUCRS – FACIN – Av. Ipiranga 6681 – Porto Alegre – 90619-900 – Brazil

{thiago.raupp, douglas.cardoso}@acad.pucrs.br, {guilherme.guindani, ney.calazans, fernando.moraes}@pucrs.br

ABSTRACT
As processor count in MPSoCs increases, the use of NoCs
becomes relevant, if not mandatory. However, power and energy
restrictions, especially in mobile applications, may render the
design of NoC-based MPSoCs over-constrained. The use of
traditional dynamic voltage and frequency scaling (DVFS)
techniques proved useful in several scenarios to save
energy/power, but it presents scaling problems and slow response
times. This work proposes a self-adaptable distributed dynamic
frequency scaling (DFS) scheme for NoC-based MPSoCs. It takes
into account the communication load and the utilization level of
each processor to dynamically change its operating frequency.
Frequency change decisions and clock generation are executed
locally to each processor. Clock generation is simple, based on
clock gating of a single global clock. The overhead of the scheme
is minimum, the range of generated clocks is wide, and the
response time is negligible. Experimental results with synthetic
applications shows that the proposed scheme has an average
execution time overhead below 7%, and may lead to considerable
power and energy savings, since it allows an average reduction of
27% on the total number of executed instructions. Evaluating the
proposed method with a real application, the execution time
overhead reached 13%, while the total number of executed
instructions was reduced by 64%.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced
technologies, VLSI; C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures (Multiprocessors) – Interconnection
architectures.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
DFS, MPSoC, NoC, power management technique.

1. INTRODUCTION
NoC-based MPSoCs provide massive computing power on a
single chip. Such devices can support the convergence of several

appliances (e.g. HDTV, multiple wireless communication
standards, media players, gaming, etc.). However, performance
and energy consumption are conflicting targets, and designers
have to select the best trade-off between performance and energy
for the set of applications the system will execute.

Energy consumption in CMOS circuits can be reduced by
controlling two main variables: the supplied voltage and the
operating frequency. The later has a linear impact on energy
consumption, and a given frequency can only be supported with
some minimum voltage supply. Voltage has a quadratic impact on
energy consumption. Accordingly, this is the most used factor to
reduce energy consumption. Controlling these two variables at
runtime is the basis of Dynamic Voltage and Frequency Scaling
(DVFS) techniques. These techniques can be controlled by
hardware components alone, by software algorithms, or by some
hybrid hardware-software configuration. On NoC-based MPSoCs,
the DVFS infrastructure can be introduced into the processing
element (PE), on the NoC router or in both.

This paper proposes and evaluates a new technique for Dynamic
Frequency Scaling (DFS) with fixed system voltage. The main
goal of this technique is to enable fast frequency switching
according to each processor’s workload and communication load.
The proposed DFS scheme is evaluated in a synthesizable NoC-
based MPSoC.
The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 presents the clock generation module.
Section 4 describes the target MPSoC architecture. The proposed
DFS controller and the required modifications to enable the DFS
scheme are presented in Section 5. Section 6 presents the
experimental setup and results. Finally, conclusions and future
works are drawn in Section 7.

2. RELATED WORK
This section review, in Table 1, the related work in DFVS applied
to processors and MPSoCs, comparing it to the proposed
technique. The target architecture of works [1] and [2] is a single
CPU, using a parameter monitored in hardware to take the DVFS
decisions. The first uses the supply current driven by the CPU to
adjust the frequency/voltage pair of the chip. The second one uses
the CPU temperature as monitoring parameter, with the DVFS
algorithm implemented in the Linux kernel. In [3] the architecture
is also a single CPU, but the monitoring parameter is the
application statistics, which are collected by a performance
monitoring unit and temperature sensors at runtime. Works [4],
[5], [6], and [7] target more than one CPU using a bus-based
interconnection infrastructure. Alimonda et. al. in [4] use the load
of communication queues between two processors to control the
DVFS scheme. In [6] and [7] the parameter which controls the
DVFS scheme comes from the tasks slacks and applications
profile, respectively.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBCCI’11, August 30-September 2, 2011, João Pessoa, Brazil.
Copyright 2011 ACM 978-1-4503-0828-1/11/08 ...$10.00

203

In [8] the Authors use synchronous islands, adopting an approach
named GRLS (Globally Ratiochronous-Local Synchronous). The
parameter to control the DVFS is the tasks’ deadlines.
A DVFS controlling scheme is proposed for NoCs in [9].
Similarly to [4] and [5], the monitoring parameter is the
communication load. However, in [9], the communication queues
are placed between each 2 neighbor routers and the voltage
scaling is done via power supply networks. Works [10], [11], [12],
[13] and [14] target NoC-based MPSoCs architectures. In [10],
the process variation is the parameter used to control DVFS
decisions. In [11] the monitoring parameters are temperature and
task synchronization, while in [12] the parameter monitored is the
communication latency. In both works the monitoring parameters
were modeled, and used to build an objective function, used by a
game theory algorithm to define the voltage and frequency levels.
In [13] the Authors use a metric to compute the suitable DVFS
level according to the application profile. Authors present DVFS
architecture for IPs integration within a GALS NoC in [14], where
the user is able to program the desirable voltage level of the IP in
the application.

As shown, DVFS schemes may use hardware or software
controlling parameters. Hardware parameters for controlling
DVFS include temperature, process variation, current and load in
communication buffers. Software parameters include application
profile and scheduling tasks. In terms of implementation, most
proposals employ software algorithms, releasing to the hardware
the monitoring process (when a hardware parameter is
monitored).

The present works proposes a DFS scheme, with fixed system
voltage, through hardware and software mechanisms. The
hardware mechanism obtains data from the Network Interface
(NI) and from the processor to parameterize the clock generation
module, setting the correct frequency for the NoC and PEs.
Software mechanisms are responsible for monitoring a set of
parameters, making them available to the hardware mechanism.

3. CLOCK GENERATION
The clock generation module uses as input a reference clock,
which consists in the highest frequency usable in the system as a

local clock. The principle of the clock generation process is to
achieve clock division by simply omitting selected cycles of the
reference clock, as Figure 1 illustrates: initially, inputs num and
den are natural numbers 2 and 5, respectively. This corresponds to
set the frequency of the clock generator to two-fifths (40%) of the
reference clock. In other words, for each den reference clock
cycles, num cycles are propagated to the output clock. According
to the DFS literature review, this is the first work to apply this
method to generate new frequencies in NoC-based MPSoCs.

2

5

1

10

ref. clock

num

den

restart

clock out
Figure 1 - Example of the proposed clock generation process.

Any frequency obtained by changing the num and den values can
be generated with the obvious exceptions (den=0 is not an
acceptable value, num=0 corresponds to a clock gating action and
the constraint num ≤ den must be respected). Before changing the
num and den values, the restart signal must be asserted to
momentarily stop the output clock and reinitialize internal
registers. After releasing restart, the new frequency, defined by
the modified values of num and den appears at the output.

This clock generation scheme translates into a simple logic that
can multiply the reference clock frequency by selected values
distributed evenly inside the closed interval [0,1]. The amount of
distinct values is dictated by the range of values assignable to num
and den, which amounts to define the size of internal registers
used to store these inside the clock generator.

A system using only this clock generation scheme is clearly
classifiable as ratiochronous [8], since any relation between two
frequencies in the system is a rational number. In the scheme, if
all clock edges of all clocks can be kept always in phase with the
corresponding edge of the reference clock, the system can simply
dispense the use of synchronizers. However, due to the use of one
clock generation module to each processor, keeping all clock
signals in phase may have a strong impact on clock distribution
control, and is ignored here to keep the clock generators simple.

Table 1 - DVFS state-of-the art comparison.
Author Architecture Monitoring Parameter Implementation

Pourshaghaghi [1]
2009 Single CPU CPU Supply Current Fuzzy Logic Controller in Hardware

Shu [2]
2010 Single CPU CPU Temperature Temperature Sensors and Software Algorithm

Salehi [3]
2010 Single CPU Application History Software Tracking Application Workload

Alimonda [4] [5]
2006/2009 Bus-Based MPSoC Queues Load Central Controller Hardware

Liu [6]
2009

2 CPUs, Bus-based
Interconnect Tasks Slacks Task Graph Unrolling Software

Kong [7]
2008 Bus-Based MPSoC Application Profile Software computes Suitable DVFS Level and Informs Controller Hardware

Chabloz [8]
2010 Synchronous Islands Tasks Deadlines GRLS scheme, Local clock generation

Yin [9]
2009 NoC Queues Load Voltage Selection via Transistors

Herbert [10]
2009 NoC-Based MPsoC Process Variation Off-line Calibration (Design Variability), Algorithms in Software

Puschini [11] [12]
2008/2009 NoC-Based MPSoC Temperature and Task

Synchronization/Latency Parameter Modeling, Game Theory Algorithm

Goossens [13]
2010 NoC-Based MPSoC Tasks Slacks Voltage and Frequency Scaling Hardware, Software to adjust the Controller

Beigné [14]
2008 NoC-Based MPSoC - Application chooses the IP Voltage Level

Proposed Work NoC-Based MPSoC Communication and CPU Load Local Clock Generation, Controller sets Correct Frequency Level. Software
updates Controller with Current CPU state.

204

In this way, synchronizers must be employed later to guarantee
reliable communication between two modules controlled by
distinct clock generation modules.
Figure 2 presents the block diagram of the clock generation
module. The module has two outputs: (i) clock_plasma, the
divided clock, used by PEs; (ii) clock_router, the half frequency
with a duty cycle of 50%, used by the NoC. The inputs num and
den are used to configure the clock generator. As the example
discussed, num represents the numerator of the fraction that
multiplies the reference clock, while den is the denominator of the
fraction.

clock_router

clock_plasma

restart

clock

reset

den

Q

QSET

CLR

D

x3

x4

x5

u1

x2

x1

f(x1...xn)

cont_num

cont_den

num
den
restart

clock

clock

num

clock buffer

clock buffer

Figure 2 - Clock generation module.

The main advantages of this clock generation module are the low
area overhead and a large set of generated frequencies. For
example, for num and den being 4-bit values the module takes
only 12 flip-flops, 31 LUTs and two clock buffers (BUFG) of a
Virtex-5 Xilinx FPGA. In this same example, 120 different
fractions can be formed. Although several of these correspond to a
same frequency (e.g. 1/1, 2/2 etc) still a large number of distinct
frequencies can be produced with small resolution for num and
den. In addition, the clock output is always stable, contrary to
what happens in standard DFS methods, where the time required
to stabilize a new frequency can be significant. In [15] it is also
presented a controller that can provide fast frequency switching.
However, the Authors use two extra PLLs in the proposed
scheme, which induces large area and power overhead. The
proposed module is also glitch free by construction. Such features
make the use of the proposed clock generator module appropriate
for distributed DFS in MPSoCs, where each PE may have its own
frequency according to its load.

Yet, the most recent technologies are restricting the supply
voltage scaling margins, which is the key component behind
power savings through DVFS [16]. Therefore, designing the
system to work at a fixed supply voltage, coupled to the DFS
method herein proposed, is an option to efficiently manage the
energy consumption in nanoscale technologies.

4. SYSTEM ARCHITECTURE
The reference MPSoC [17] is a homogeneous multiprocessing
NoC-Based MPSoC. Figure 3 shows an instance of this MPSoC.
The 2-D mesh NoC used in the reference MPSoC has the
following features: wormhole packet switching, flit width equal to
16 bits, XY routing algorithm, round-robin arbitration, input
buffers with 8-flits depth. Each PE includes the following
modules: (i) a 32-bit Plasma processor (a MIPS-like architecture);
(ii) a local memory (RAM); (iii) a DMA module, responsible for
transferring the task object code to the memory and messages
to/from the NoC to the local memory; (iv) a network interface
(NI). Two types of PEs are used: slave and master. Slave-PEs are
responsible for executing application tasks, while the Master-PE

is responsible for managing task mapping and system debug. The
task repository is an external memory, responsible to store all
object codes of applications that will eventually be executed.

MPSoC

Slave-PESlave-PE

Master-PE

N
et

w
or

k
In

te
rfa

ce

Slave-PE

PLASMA

DMA R
AMTa

sk
R

ep
os

ito
ry

NoC

Router

Router

Router

Router

Figure 3 - Block diagram of the MPSoC architecture.

Each slave processor runs a multitask microkernel that enables the
communication between tasks through send and receive
primitives, respectively called WritePipe() and ReadPipe(). Each
microkernel contains a vector, named pipe, which contains
messages to be exchanged between tasks. When a given task
executes a WritePipe(), the message is stored in the processor
communication pipe, and computation continues. On the other
side, when a given task executes a ReadPipe(), a system function
is executed. If the target task is located in the same processor, the
task executes a read in the communication pipe. If the task is
located in another processor, the microkernel sends a request
message through the NoC and the task enters in wait state. When
the message arrives from the network, the microkernel stops the
executing task and reschedules the waiting task. Thus, the
communication scheme employs non-blocking writes and
blocking reads.
The microkernel was modified in the present work to monitor the
CPU utilization and communication pipe occupancy, storing them
in new memory-mapped registers. By monitoring the microkernel
scheduler it is possible to evaluate the CPU utilization and by
monitoring the communication pipe occupation it is possible to
evaluate the communication load.

5. THE DFS CONTROLLER
The DFS controller computes the communication load and CPU
utilization level according to values provided by the microkernel.
Such values are used by the controller to define the PE frequency.
The controller always operates at the reference frequency (the
highest frequency in the system, used as input to the clock
generation module). As shown in Figure 4, the slave-PE feeds the
DFS controller with values stored in memory-mapped registers:

• pipe_ocup and req_msg: related to the communication load,
correspond to the number of messages stored in the
communication pipe (an integer value) and if there is request
for a message not yet produced by the processor (a Boolean
value).

• not_scheduled (Boolean values): when true, only the
microkernel is running, meaning that no task is being
executed; when false, at least one task is being executed. The
DFS controller may define the CPU utilization counting how
many clock cycles this signal is asserted, in a sampling period.

Due to the delay induced by the clock generation circuitry, the
clock phase at the outputs of the DFS controller is not the same of
the reference frequency. Therefore, synchronizers [18] are added
to capture the control signals generated by the Slave-PE module
(module synchronizers in Figure 4).

To cope with different clock phases and frequencies, the original
router-PE interface was also modified, adopting the GALS

205

paradigm. This is achieved by adapting the existing buffers in the
NoC and network interface to work as bisynchronous FIFOs [19]
(a minimum area overhead is introduced, corresponding to the
FIFO control signals).

DFS Controller

NI

FIFO

FIFO

FIFO GALS
FIFO

GALS
FIFO

Slave-PE

PLASMA

DMA R
AM

clock_plasma

FIFO

clock_router

not_scheduled,
pipe_ocup,
req_msg

Clock
Generation

synchronizers

FSM

reference
freqnum

den
restart

Router

Figure 4 - Router-PE GALS interface and the DFS controller

responsible for generating the router and PE frequencies.
The FSM represented in Figure 4 corresponds to the behavior
detailed in Table 2. The controller uses the clock generation
module, detailed in Section 0, to provide the two output clocks.
The role of the FSM is to choose the correct PE frequency, by
evaluating the following parameters:

• Pending message requests from other tasks. This situation
takes place when the processor is not producing data to the
consumer task (req_msg = 0).

• Occupancy of the pipe. If the communication pipe has a high
occupancy, the processor is producing messages at a higher
rate than the consumer tasks can consume, while the inverse
scenario means a lack of produced messages. Upper and lower
parameterizable thresholds define the high and low occupancy
states, respectively. Occupancy between these values defines
an operational state.

• CPU utilization. When the utilization is low the CPU is not
executing any task or tasks are blocked, e.g., waiting
message(s) from other tasks. When the utilization is high,
tasks are using the processor at the maximum rate. Two
parameterizable thresholds define high, low and operational
CPU utilization states.

Table 2 - DFS Controller behavior (↓/↑ mean decrease/
increase one frequency step, ↑↑ means increase two frequency
steps, = means keep frequency unchanged and - denotes don’t

care conditions).

Action in
frequency

Pending
Message

Current Pipe
Occupancy

Previous
Pipe

Occupancy

CPU
Utilization

1 - ↓ 0 high - -
2 - ↓ 0 operational low -
3 - ↓ 0 low - low
4 - = 0 operational operational -
5 - = 0 low - operational
6 - = 1 - - low
7 - ↑↑ 1 - - operat./high
8 - ↑ 0 low - high
9 - ↑ 0 operational high -

Frequency decreases in three situations: (i) the communication
pipe is almost full (action 1 of the Table 2); (ii) the
communication pipe occupation is increasing, i.e. in the previous

evaluation its state was low and the present state is operational
(action 2); (iii) the communication pipe occupation is almost
empty and the CPU usage is low, meaning that even at a lower
frequency the data in the communication pipe is being consumed
(action 3).

Frequency increases in three situations: (i) existence of pending
messages with operational or high CPU utilization (action 7) – the
clock generator increases in two steps the frequency; (ii) the
communication pipe is almost empty and the CPU has high
utilization (action 8); (iii) the communication pipe occupation is
dropping, meaning soon the processor can present lack of
messages, i.e. in the previous evaluation its state was high and the
present state it is operational (action 9).

When a given PE receives a message request, and it has data to
transmit, this PE goes to the reference frequency during the
message transmission. This action avoids stalling consumer PEs
operating at higher frequencies than the producer PEs.
The period between consecutive evaluations is also
parameterizable. In this work, the evaluation period corresponds
to four time slices. When an evaluation is triggered, the controller
stores the values generated by the microkernel, computing the
current communication pipe occupation and CPU utilization.

6. EXPERIMENTAL RESULTS
This section employs an instance of the reference MPSoC with 6
processors (1 Master-PE and 5 Slave-PEs) and a 3x2 NoC to
demonstrate the characteristics and advantages of the proposed
DFS scheme. NoC and Plasma peripherals (NI and DMA) are
described in VHDL, while an ISS model is used to describe
Plasma CPU and RAM. The simulations were performed in
ModelSim. Three applications, written in the C language, were
used to evaluate the proposed method:

a. Pipeline – Data-flow application with 3 tasks: producer,
worker, and consumer.

b. Communication – Application modeled with four tasks, with a
communication graph that has two tasks working in parallel.
Two initial tasks run in parallel, as producers, providing data
for the worker task, which sends data to the consumer task.

c. Partial MPEG filter – Real application used to evaluate the
performance of the proposed DFS controller. The partial
MPEG filter is composed by five tasks, modeled as a pipeline.

Applications (a) and (b) are synthetic, with execution time
emulated by a loop, with 100 messages being sent from the
producer task(s) to the other(s) task(s). The DFS controller was
parameterized to generate 9 different frequencies: 5, 10, 25, 40,
50, 60, 75, 90 and 100% of the reference frequency. In the graphs
presented in this Section, these frequencies are plotted in the y-
axis, with values ranging from 0 to 8.

6.1 Synthetic applications
Table 3 details the three simulated test cases for the Pipeline
application, and results are presented in Figure 5. The number of
executed instructions is reduced in average 32%, and the
execution time overhead ranges from 1.8 to 3.2%.
Obviously, the number of instructions to execute the applications
does not change when reducing the frequency. This reduction is
obtained from reducing the instructions executed by the
microkernel, e.g, execution of the scheduler when there is no task
being executed.

206

Table 3 - Pipeline Evaluation Scenarios.
Test
case

Data rate generation Number of executed machine
instructions (in thousands)

Producer Worker Consumer Without DFS With DFS
1 + ++ ++++ 24,482 16,049
2 ++++ ++ + 19,965 14,565
3 +++ + ++++ 23,227 15,022

In test case 1 the slowest task (in this work, the term slowest or
faster refers in fact to the data generation or consumption rate, not
to the task execution time) is the producer (continuous line in
Figure 5). As expected, the slowest task goes to the reference
frequency, and the fastest task (consumer - dashed line) goes to a
frequency proportional to the data generation rate (¼ of the
reference frequency). The worker task frequency stays between
the other two frequencies, varying two frequency steps when it
tries to read messages from the producer task, and the message is
not yet available.

In test case 2 the consumer is the slowest task. In this test case, the
consumer task reacts more slowly than test case 1, taking more
time to achieve the reference frequency. The consequence is that
the producer and the worker fill the respective communication
buffers, reducing their operating frequencies. Once the consumer
starts to consume data at the reference frequency, the system
stabilizes (between 50 to 80 ms after start).

In test case 3, the worker is the slowest task. The worker task
quickly reaches the reference frequency, due to the pending
requests coming from the consumer task. The producer task keeps
its initial frequency, since the consumption rate of the worker task
maintains the communication buffer in the operational state. The
consumer frequency is decreased due to the worker data
generation rate.

Table 4 details the three simulated test cases for the
Communication application, and results are presented in Figure 6.
The number of executed instruction is reduced in average 26%,
and the execution time overhead ranges from 2.8 to 6.9%.

Table 4 - Communication Evaluation Scenarios.
Test
case

Data rate generation Number of executed machine
instructions (in thousands)

Producer Worker Consumer Without DFS With DFS
1 ++ + ++++ 14,515 10,960
2 ++ ++++ + 23,011 13,933
3 + ++++ ++ 16,326 13,916

In test case 1 the worker task, which receives data from two
producer tasks, reaches the reference frequency, since it is the
slowest task. Note that the relationship between the worker and
consumer frequency is around two (worker frequency level equal
to 8 and consumer frequency level equal to 5), even if the
generation rate between them is four (Table 4 - test case 1). The
reason is that the worker receives data from 2 producers,
transmitting these data to the consumer.
In test case 2 the consumer is the slowest task, going to the
reference frequency. Also, both producers had their frequencies
increased to the reference level, due to pending messages
requested by the worker (the fastest task in this case). However, as
the consumer consumes data too slowly, the other three tasks
reach the minimal frequency due to the high communication pipe
occupancy (10 - 20 ms). The system achieves a steady state
between 60 to 80 ms.

The third test case quickly stabilizes, with the producer and
consumer working at the reference frequency, and the worker
operating at ¼ of the reference frequency. The data generation
rate relation between the three tasks explains this behavior.

6.2 MPEG
The result for the partial MPEG decoder is shown in Figure 7. In
this application iVLC is a CPU-intensive task. Tasks iQuant and
IDCT are simpler than iVLC. Tasks Start and Print are used to
initialize the system and to print the results, respectively. In this
test case, 200 frames were transmitted. The graphic in Figure 7
shows that only the task executing a high amount of computation
had its frequency increased to the reference frequency, while Print
and Start tasks had their frequency decreased to the lowest
frequency level. The execution time overhead, compared to the

Test Case 1 Test Case 2 Test Case 3

Figure 5 - Pipeline application. (1) Consumer as fastest task and producer as slowest. (2) Consumer as slowest task and producer
as fastest. (3) Worker as slowest task and consumer as fastest.

Test Case 1 Test Case 2 Test Case 3

Figure 6 - Communication. (a) Worker as slowest task and consumer as fastest task. (b) Worker as fastest task and consumer as
slowest task. (c) Producers as slowest tasks and worker as fastest task.

207

execution with the whole system at reference frequency was 13%.
The number of executed instructions is reduced in 64%.

When the whole system executes with no DFS scheme, the six
processors and the NoC operate at the reference frequency. On the
other hand, using the proposed DFS scheme, only one processor
operates at the reference frequency, while three other processors
and the NoC operate, in average, at half of the reference
frequency (including the Master-PE) and two processors operate
at the lowest frequency level.

7. CONCLUSION
This work proposes a new DFS scheme and evaluates it in a real
MPSoC platform. The frequency scaling scheme is based in the
communication load and CPU utilization of each MPSoC PE. A
clock generation module was designed to enable frequency
changing. This module presents a low-area overhead and requires
no stabilization time at each frequency switching.

Results show that the DFS scheme adjusts the processor
frequency according to the load injected into the network. As
shown in the MPEG benchmark, the CPU-intensive task has its
frequency increased to generate more data to the other tasks. The
limiting factor is the reference frequency. Once the tasks with
lower injection rate reach the reference frequency, the system
stabilizes, reducing the frequency of other tasks. Also, processors
with no scheduled tasks have their frequency reduced. The
proposed DFS method has a small impact in the total execution
time. Therefore, an important energy reduction is expected, since
few processors of the MPSoC operate at the reference frequency,
drastically reducing the number of executed instructions.

Future works include: (i) enhancements in the DFS controller to
dynamically adjust the evaluation time; (iii) evaluate the method
when more than one task is executed in the same processor; (iii)
evaluate the energy reduction obtained applying the method; (iv)
apply the same method to the NoC.

8. ACKNOWLEDGMENTS
The Authors acknowledge the support of CNPq and FAPERGS,
projects 301599/2009-2 and 10/0814-9, respectively.

9. REFERENCES
[1] Pourshaghaghi, H.R.; de Gyvez, J.P. "Dynamic voltage scaling based

on supply current tracking using fuzzy Logic controller". In: ICECS,
pp.779-782, 2009.

[2] Shu, L.; Li, X. "Temperature-aware energy minimization technique
through dynamic voltage frequency scaling for embedded systems".
In: ICETC, pp. 515-519, 2010.

[3] Salehi, M. E.; Samadi, M.; Najibi, M.; Afzali-Kusha, A.; Pedram,
M.; Fakhraie, S. M. "Dynamic Voltage and Frequency Scheduling
for Embedded Processors Considering Power/Performance
Tradeoffs." IEEE Transactions on VLSI Systems, in press, 2010.

[4] Alimonda, A.; Carta, S.; Acquaviva, A.; Pisano, A. "Non-Linear
Feedback Control for Energy Efficient On-Chip Streaming
Computation". In: IES, pp.1-8, 2006.

[5] Alimonda, A.; Carta, S.; Acquaviva, A.; Pisano, A.; Benini, L. "A
Feedback-Based Approach to DVFS in Data-Flow Applcations".
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 28, no. 11, pp. 1691-1704, 2009.

[6] Liu, S.; Qiu, M. "A Discrete Dynamic Voltage and Frequency
Scaling Algorithm Based on Task Graph Unrolling for
Multiprocessor System". In: Scalcom-Embeddedcom, pp.3-8, 2009.

[7] Kong, J.; Choi, J.; Choi, L.; Chung, S. W. "Low-Cost Application-
Aware DVFS for Multi-core Architecture". In: ICCIT, pp.106-111.
2008.

[8] Chabloz, J. M.; Hemani, A. "Distributed DVFS using rationally-
related frequencies and discrete voltage levels". In: ISLPED, pp.247-
252, 2010.

[9] Yin, A. W.; Guang, L.; Nigussie, E.; Liljeberg, P.; Isoaho, J.;
Tenhunen, H. "Architectural Exploration of Per-Core DVFS for
Energy-Constrained On-Chip Networks". In: DSD, pp.141-146,
2009.

[10] Herbert, S.; Marculescu, D. "Variation-aware dynamic voltage/
frequency scaling". In: HPCA, pp. 301-312, 2009.

[11] Puschini, D.; Clermidy, F.; Benoit, P.; Sassatelli, G.; Torres, L.
"Temperature-Aware Distributed Run-Time Optimization on MP-
SoC Using Game Theory". In: ISVLSI, pp. 375-380, 2008.

[12] Puschini, D.; Clermidy, F.; Benoit, P.; Sassatelli, G.; Torres, L.
"Adaptive energy-aware latency-constrained DVFS policy for
MPSoC". In: SOCC, pp. 89-92, 2009.

[13] Goossens, K.; She, D.; Milutinovic, A.; Molnos, A.; "Composable
Dynamic Voltage and Frequency Scaling and Power Management
for Dataflow Applications". In: DSD, pp. 107-114. 2010.

[14] Beigné, E.; Clermidy, S.; Miermont, P. “Dynamic Voltage and
Frequency Scaling Architecture for Units Integration within a GALS
NoC”. In NOCS, pp. 129-138, 2008.

[15] Tschanz, J. et. al. "Adaptative Frequency and Biasing Techniques for
Tolerance to Dynamic Temperature-Voltage Variations and Aging".
In: ISSCC, pp 292-293, 2007.

[16] Chakraborty, K.; Roy,S. "Topologically Homogeneous Power-
Performance Heterogeneous Multicore Systems". In: DATE, pp.
125-130, 2011.

[17] Carara, E., Oliveira, R., Calazans, N., Moraes, F. HeMPS - a
Framework for NoC-based MPSoC Generation. In: ISCAS, 2009,
pp.1345-1348.

[18] Sparso, J.; Furber, S. “Principles of Asynchronous Circuit Design –
A Systems Perspective”. Kluwer Academic Publishers, 2001, 337p.

[19] Panades, I.; Greiner, A. "Bi-Synchronous FIFO for Synchronous
Circuit Communication Well Suited for Network-on-Chip in GALS
Architectures". In: NOCS, pp.83-94, 2007.

Figure 7 - Partial MPEG filter execution for 200 frames.

208

