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PUCRS, Faculdade de Informática, Computer Science Graduate Program,

Fax: +555133203621, Av. Ipiranga, 6681, CEP: 90619-900 – Porto Alegre – Brazil

Email:{cleverson.ledur, dalvan.griebler}@acad.pucrs.br, {isabel.manssour, luiz.fernandes}@pucrs.br

Abstract—The amount of data generated worldwide associated
with geolocalization has exponentially increased over the last
decade due to social networks, population demographics, and the
popularization of Global Positioning Systems. Several methods
for geovisualization have already been developed, but many of
them are focused on a specific application or require learning
a variety of tools and programming languages. It becomes even
more difficult when users have to manage a large amount of
data because state-of-the-art alternatives require the use of third-
party pre-processing tools. We present a novel Domain-Specific
Language (DSL), which focuses on large data geovisualizations.
Through a compiler, we support automatic visualization gener-
ations and data pre-processing. The system takes advantage of
multi-core parallelism to speed-up data pre-processing abstractly.
Our experiments were designated to highlight the programming
effort and performance of our DSL. The results have shown a
considerable programming effort reduction and efficient paral-
lelism support with respect to the sequential version.

I. INTRODUCTION

Recently, big data has become of global interest in the
industries, academic institutions, and governments. In this
context, geo-referenced data has exponentially increased. The
McKinsey Global Institute presented that about 1 PByte of
geospatial data was produced in 2009 and predicted a 20%
annual growth. Also, 2.5 Exabytes of data is being generated
every day, with a significant percentage of spatial information
[1]. For example, Google produces about 25 PBytes of data
each day, the majority containing geospatial information in
pictures, videos, and maps [2].

Many visualization techniques are applied to geospatial
information using Geographic Information Systems (GIS),
programming libraries, and frameworks. Geospatial data visu-
alization can be useful for many things such as learning about
human behavior and avoiding traffic jams through mobile
applications [3]. Among the techniques of geospatial data
analysis, data visualization can help domain users to quickly
gain insights [4]. The tools available presently do not provide
the necessary abstractions in the pre-processing step of the
visualization pipeline [5]. Thus, even though data visualization
offers many benefits, its generation is still remains a chal-
lenge [6]. Domain users have difficulties dealing with a large
amount of data, since it demands high costs and a great deal
of programming effort to process and manipulate the raw data.

Pre-processing large amounts of data is a performance
problem in the related works as well (Section II). Parallel com-
puting may help to accelerate processing because it enables
applications, with well implemented parallel programming

techniques, to take advantage of parallel architectures [7].
Nevertheless, this is a difficult task, which requires specialized
skills regarding tools, methodologies, and modeling [8].

Our goal is to improve the geospatial visualization creation
experience by reducing the effort required for pre-processing
data and visualization implementation. Therefore, we imple-
mented a DSL to abstract complexities and let users focus
on gaining quick insights in the geospatial data domain. Our
DSL implements three modules to provide these benefits: a
code analyzer, data pre-processor, and visualization generator.
These modules abstract the complexities of all phases in the
visualization creation. We proposed our high-level description
language in [9], introducing our idea and the main problem.
In this paper, we extended the language and implemented its
multi-language code generation technique. Also, we provide
two novel visualization types, a compiler, and support to
automatic parallelism exploitation for multi-core systems.

The paper presents the following contributions:

• DSL-based approach implementation and its compiler for
abstracting all geospatial visualization steps;

• An efficient insertion of parallelism annotations in the
data pre-processor module that enables us to completely
abstract parallelism aspects from the DSL’s users;

• A set of experiments with different visualization types
and real world data sets with respect to [9].

The paper is organized as follows. Section II presents
related work. Section III introduces the DSL’s Language.
Section IV describes the DSL’s compiler implementation.
Section V presents the strategy used to support parallelism in
multi-core systems. The experiments, results, and discussion
are described in Section VI. Section VII concludes this paper.

II. RELATED WORK

There are visualization frameworks and tools that provide
different visualization techniques for geospatial data. For ex-
ample, GeoSpy [10] is a Web platform for geospatial visual-
ization that enables the creation of maps using less broadband
than traditional APIs. Titan [11], which provides data inges-
tion, processing, and visualization, and ParaView [12], which
allows scientists to visualize and analyze large data sets, are
limited to volumetric and scientific visualization types that are
offered by VTK.

Protovis [13] is an extensive graphical toolkit that offers
a high-level abstraction for creating general visualization, but
does not provide the creation of maps or data pre-processing
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abstraction. SksOpen [14], e.g., is a system that enables
efficient indexing, querying, and visualization of geospatial
data. However, it differs from our DSL since it has a limited
number of TerraFly visualizations, focusing on online data
processing and does not working locally with big data sets.

Some DSLs have enabled high-level and easy specification
for users. Vivaldi [15] provides volumetric processing and
visualization rendering through functions and mathematical
operators used in scientific visualization. Another DSL is
ViSlang [16], which is developed to enable the creation of
scientific visualizations. Its main contribution is allowing the
DSL to be extended using slangs. Diderot [17] simplifies
the implementation of parallel methods of biomedical image
analysis and visualization. Shadie [18] is a GPU-based volume
visualization DSL built around the concept of shaders: self-
contained descriptions of the desired visualization written in
a high-level Python-like language.

None of these DSLs (Vivaldi, ViSlang, Diderot, or Shadie)
support the generation of geospatial data visualization. On the
other hand, Superconductor [19] is a high-level language for
creating visualizations that aims to interact with large amounts
of data. It can offer geospatial data visualization and allows
for the use of the D3 library. However, users have to build
their visualizations from the scratch, specifying how data will
be mapped to visual representations. Our DSL facilitates the
creation of geospatial data visualization by providing a high-
level description language that abstracts computer program-
ming aspects such as variables, functions, data pre-processing,
and parallel programming.

III. GMAVIS IN A NUTSHELL

With the goal of simplifying the creation of visualiza-
tions for large-scale geospatial data, we propose an external
DSL that provides a high-level specification language called
GMaVis1. It enables users to express filter, classification, data
format, and visualization specifications. GMaVis has limited
expressiveness to reduce complexity and automatize deci-
sions and operations such as data pre-processing, visualization
zoom, and starting point location. Thus, it is easy and quick
for users to learn and use.

We used three real-world data sets to present the DSL
grammar through examples. The first was the YFCC100M data
set. It was provided by Yahoo Labs [20] and has about 54GB
of data, divided into ten files. It is a public multimedia data
set with 99.3 million images and 0.7 million videos, all from
Flickr and under Creative Commons licensing. The second
data set is about traffic accidents occurred in the city of Porto
Alegre, Brazil. It contains information about accident types,
vehicles involved, weather, date, time, severity, and location.
Finally, we used a data set with data about all the airports in
the world, with information about latitude and longitude, city,
country, and airport code.

Our first example is Listing 1 and its output is illus-
trated in Figure 1(a). The first statement in line 1 is a
visualization: declaration, where the visualization type
chosen to appear on the visualization is clusteredmap. In

1https://gmap.pucrs.br/gmavis/

addition, we also provide the implementation of heatmap and
markedmap. In Line 2 of Listing 1, the block settings
begin, which contains the declarations used to specify details
of the visual aspects. Also, it receives the fields where im-
portant attributes are located, such as latitude and longitude.
Lines 3 and 4 are being declare latitude and longitude
to inform the field values. This specifies the position in the
data set where this information can be found. Line 5 has a
marker-text to be display as a text on the marker when
the user clicks on it. The page-title declaration in Line
6 of Listing 1 informs the title which will be placed in the
visualization. In line 7 a size declaration is used to set
the visualization size it will occupy on the web page. This
declaration can also be the medium and small values.

There is also a data block from Line 9 to 15. It contains
declarations that specify the input files and filters. Users can
also include sub-blocks for data structure and classification.
In our example, an input file is declared in Line 10, receiving
a string with the system path to the file. This declaration
can repeat as many times as necessary to include the whole
data set. Furthermore, a structure sub-block is declared
in Line 11. It has a delimiter and an end-register
declaration specifying that a comma separates the values in
the input data set and that a newline character separates the
registers. This declaration can receive any character or the
defined keywords tab, comma, semicolon and newline.

1 v i s u a l i z a t i o n : c l u s t e r e d m a p ;
2 s e t t i n g s {
3 l a t i t u d e : f i e l d 7 ;
4 l o n g i t u d e : f i e l d 8 ;
5 marker−t e x t : f i e l d 1 f i e l d 2 ;
6 page− t i t l e : ” A i r p o r t s i n World ” ;
7 s i z e : f u l l ;
8 }
9 data {

10 f i l e : ” v i s c o d e s / a i r p o r t s . d a t a ” ;
11 s t r u c t u r e {
12 d e l i m i t e r : ’ , ’ ;
13 end−r e g i s t e r : n e w l i n e ;
14 }
15 }

Listing 1. GMaVis code for Clusteredmap (the result is in Figure 1(a)).

Figure 1(b) illustrates a heatmap that shows traffic accidents
in the city of Porto Alegre, Brazil. To generate this visual-
ization from Listing 1, we added in the settings block
a zoom-level declaration, defining where the visualization
starts using a greater zoom for the center point. This is a great
advantage with respect to Google Maps API, because GMaVis
automatically gives the initial central point visualization (lat-
itude and longitude). Moreover, as this visualization aims to
show only accidents where people were killed or injured, a
different file has to be provided (in line 10 of Listing 1) as
well as a filter must be specified after the structure block
to get only the right data. This specification receives logical
operations to apply over each data element. When true, the
data element is inserted in the output visualization. The logical
operators enable users to create logical operations, used in both
filters and classification. For our example, we used operator
is greater than twice. GMaVis also has or and and
operators to merge the two logical operations.
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(a) Clustered map showing airports in the world. (b) Heatmap showing accidents. (c) Markedmap for picture with equipment markers.

Fig. 1. Geopeatial visualization generations with GMaVis.

The markedmap visualization is illustrated in Figure 1(c)
and created through the code in Listing 2. This visualization
uses Yahoo Flickr data.We used marker-text declaration
by combining strings and fields values to insert the picture
into the box of each marker. As field 15 contains the URL
of the image, we inserted the image keyword to generate
the source link that will show the picture when users select a
marker, and Figure 1(c) shows how it looks. This visualization
has a date-format declaration in Line 14, inside the
structure sub-block. This declaration is always required
when a filter or class uses fields with a date. Currently, many
data sets use different formats of data around the world.
GMaVis overcomes this by enabling users to specify the
format that is being used in the input data. Therefore, users
can specify using the international format described in the ISO
8601. In data block, note that a classification sub-
block has a set of class declarations, with a string inside
parenthesis (that specifies the class description) and receives
a logical operation as a value. It will classify input data and
inform the visualization generator to use colored icons and a
legend to display markers.

1 v i s u a l i z a t i o n : markedmap ;
2 s e t t i n g s {
3 l a t i t u d e : f i e l d 1 2 ;
4 l o n g i t u d e : f i e l d 1 1 ;
5 marker−t e x t : ” Camera : ” f i e l d 6 image ( f i e l d 15) ;
6 page− t i t l e : ” P h o t o s by Camera Brand ” ;
7 s i z e : f u l l ;
8 }
9 data {

10 f i l e : ” y f c c 1 0 0 m d a t a s e t a l l ” ;
11 s t r u c t u r e {
12 d e l i m i t e r : t a b ;
13 end−r e g i s t e r : n e w l i n e ;
14 date−format : ”YYYY−MM−DD” ;
15 }
16 f i l t e r : f i e l d 4 i s be tween date ”2014−01−01” and

date ”2014−02−01” ;
17 c l a s s i f i c a t i o n {
18 c l a s s ( ” Canon ” ) : f i e l d 6 c o n t a i n s ” Canon ” ;
19 c l a s s ( ” Sony ” ) : f i e l d 6 c o n t a i n s ” Sony ” ;
20 c l a s s ( ” Nikon ” ) : f i e l d 6 c o n t a i n s ” Nikon ” ;
21 c l a s s ( ” P a n a s o n i c ” ) : f i e l d 6 c o n t a i n s ”

P a n a s o n i c ” ;
22 c l a s s ( ” Apple ” ) : f i e l d 6 c o n t a i n s ” Apple ” ;
23 c l a s s ( ” FUJI ” ) : f i e l d 6 c o n t a i n s ” FUJI ” ;
24 }
25 }

Listing 2. GMaVis code for Markedmap (the result is in Figure 1(c)).

IV. COMPILER IMPLEMENTATION

Our compiler recognizes the DSL source code and generates
geospatial data visualizations application code. We created it
by using Flex and Bison tools in C/C++ language. First of
all, the visualization source code is parsed. Then, the DSL’s
parser generates an Abstract Syntax Tree (AST) where it
saves relevant information such as input file paths, logical
operations, delimiters, visualization title, and size. The DSL
code generation is performed in two phases. First, it generates
the data pre-processor by creating a C++ file and compiling
this, generating an executable. The data pre-processor runs to
transform raw input data into the filtered and classified visual-
ization data. The second phase generates the final visualization
using HTML/Javascript and Google Maps API. Therefore, the
data visualization generator receives stored information and
generates the map visualization based on the AST. The next
sections will present the data pre-processor and visualization
generator modules.

A. Data Pre-processor

The data pre-processor module is responsible for transform-
ing input data, applying filtering and classification operations.
This module enabled our DSL to abstract the first phase of
visualization creation pipeline [5], preventing users from the
task of manually dealing with large data sets. It works by
receiving the input data, processing and saving an output file
with structured and formatted data. The main modules are
Read, Process and Write. They are defined along with other
operations in Table I.

TABLE I
THE DATA PRE-PROCESSOR OPERATIONS AND ITS DEFINITIONS.

Definition Description
F = {α1, α2, α3, ..., αn} F is a set of input files to be processed and α

represents a single file from a partitioned data set.
Split(α) It splits a data set file of F into N chunks.

D = {d1, d2, d3, ..., dn} D is a set of chunks of a single file. We can say
that D is the result of a Split(α) function.

Process(D) It processes a single file D of F
Read(d) It opens and reads a data chunk d of a α in F .
Filter(d) It filters a given data chunk d in D,producing a

set of registries to create the visualization.
Classify(...) It classifies the results of Filter(...).
Write(...) It saves the results of

∑n
i=1 Process(F ),

where F represents a set of files (α) in an output
file to be used in the visualization generation.

The DSL’s compiler uses details from the source code to
generate this data pre-processor by using C++ programming
language. We chose C++ because it enables us to create an
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application using a vast set of parallel programming interfaces
and enabling low-level improvements in memory management
and disk reading. The compiler starts by generating a file
called data_preprocessor.cpp. All code generated is
performed sequentially, including libraries, constants, and data
types. Moreover, relevant DSL source code information is
transformed and written in the file.

Figure 2 shows an example of the transformation flow
performed when parsing a filter sentence. Initially, Flex reads
the source code file and generates tokens. Each token is
illustrated by a circle shape in Figure 2. Then, Bison com-
bines these tokens according to the DSL’s grammar to build
the AST. For each node in the tree, Bison performs one
or more of the previously described actions. For example,
during the construction of the non-terminal node Logical
Operation, the compiler verifies the semantic value of the
received expression by checking the Integer Literal
node value to generate the data pre-processor function call.
In the final step, the compiler uses the information obtained
to generate data pre-processor code (illustrated inside the
rectangular shapes).

Fig. 2. Representation of the AST parsing.

Finally, we call the GCC compiler to create the executable
of our data pre-processor. After compilation, the DSLs’ com-
piler calls the data pre-processor and waits for it to perform
data transformations and output the preprocessed data. This
output is loaded into the visualization generator, which will
be explained in the next section.

B. Visualization Generator

This module receives the output data from the data pre-
processor and uses stored information from the source code.
The DSL’s parser provides information about details specified
in the setting block, such as size, title, marker text, and
visualization to be created. We specially subdivided the data
visualization generation module into four main operations. The
preprocessed data loading and parsing consists of parsing
and loading the output file that contains the pre-processed data.
Data consistency check performs a consistency check on all
the latitudes and longitudes to verify if there is a value using
non-numeric/pointers characters. Central point calculus gets
the maximum and minimum positions for both latitude and
longitude, using the middle point among them to give the

central point. Code generation creates the HTML file, using
the input data and all need information for the visualization.

The visualization generator creates the HTML file, printing
HTML, CSS, Javascript, and Google Maps API code based on
the specifications of the DSL’s source code. Our DSL does not
generate the visual elements from scratch, since we take ad-
vantage of Google Maps’ API, thus, simplifying the compiler’s
work. After the generation, the user is informed where the file
is located. Only then the visualization can be displayed using
a web browser. Users can interact with the visualization using
the mouse to zoom in/out and click on markers to display text
boxes. Also, heatmap visualization enables users to increase
and decrease the radius as well as change the visualization
colors. Finally, users can do everything that Google Maps’
API enables by default.

V. SUPPORTING PARALLELISM IN MULTI-CORE SYSTEMS

Preliminary performance results considering execution time
of three different data workloads have demonstrated that the
data pre-processor module has a high computational cost when
working with big files [9], [21]. To speed up performance and
enable efficient use of multi-core architectures, we provided
a parallel version of the data pre-processor module in this
paper. It works in a streaming fashion, performing like a
pipeline computation. We opted for SPar [22], since it pro-
vides a suitable interface for stream processing and a better
coding productivity than the state-of-the-art tools, requiring
only introducing the code annotations properly. Although
SPar provides a simple and high-level interface, programmers
have to correctly annotate the source code to achieve good
speed-up and correct results. The way to completely abstract
parallelism exploitation from the end-users is to introduce SPar
annotations during the DSL compilation time.

After performance tracing, we determined that the best
performance alternative was to introduce annotations in the
process function (Listing 3). It has an explicit pipeline where
each operation has data dependency on an earlier step. In this
case, it reads each chunk from the disk, filters, classifies, and
finally, writes the data in the output file.

1 f u n c t i o n p r o c e s s ( a r g s . . . ) {
2 Open ( i n f i l e ) ;

3 [ [ s p a r : : ToStream , s p a r : : I n p u t ( i n f i l e ) ] ]

4 whi le ( ! i n f i l e . e o f ( ) ) {
5 d s i z e = S p l i t ( i n f i l e ) ;

6 d = Read ( i n f i l e , d s i z e ) ;

7 [ [ s p a r : : S tage , s p a r : : I n p u t ( d ) , s p a r : : Outpu t ( c )

] ]{
8 f = F i l t e r ( d ) ;

9 c = C l a s s i f y ( f ) ;

10 }
11 [ [ s p a r : : S tage , s p a r : : I n p u t ( c ) ] ]{
12 Open ( o u t f i l e ) ;

13 Wr i t e ( c , o u t f i l e ) ;

14 C lose ( o u t f i l e ) ;

15 }
16 }
17 C lose ( i n f i l e ) ;

18 }
Listing 3. Representation of the process function with SPar.

301



Fig. 3. A comparison of the programming effort results.

Listing 3 illustrates a high-level coding representation of this
function, which already has the SPar annotations generated by
the GMaVis compiler. As we can observe, SPar required no
modifications in the original code. Note that the process
function behaves in a sequence of stages. The first annotation
is ToStream (Line 3) which defines the beginning of the
stream region and performs initial operations between Lines
4 and 6, including reading data (we consider this the first
stage). It consumes files and a set of other variables required
for calculating and controlling the processing of the real source
code. In Line 7, we inserted a Stage annotation which
consumes file chunks to be processed. This stage produces
a ‘string’ of data that was filtered and classified as output.
The last stage (annotated in Line 11) consumes this ‘string’
and writes it in the output file.

The GMaVis compiler is able to generate this SPar anno-
tation when the user includes the --parallel parameter
in the command line as an argument. This compilation flag
allows our compiler to known whether to compile the data pre-
processor module code with GCC or SPar compiler. The SPar
compiler performs the source-to-source code transformation
enabling stream parallelism. SPar overlaps processing by using
a pipeline strategy where Processor Units (PUs) perform
parallel operations, and there is a system thread per PU. More
than one operation is executed at the same time.

As the first Stage annotation in Listing 3 may pro-
cess stream elements independently, we can replicate it to
achieve a greater degree of parallelism. GMaVis generates
Replicate() in the attribute list of this stage when a
value is specified in the command line for --parallel
<number>. Unfortunatly, the last stage cannot be replicated
because it performs a state-full operation. SPar is able to
write results in order to guarantee correct visualizations,
although the previous stage works with simultaneous replicas.
We can observer that there is a non-linear pipeline behaving
through SPar, where all communication and threading models
are completely abstracted by their annotations. Therefore,
the replicated stage increases the parallelism, performing the
same operations (filter and classify) over different stream
items/chunks (di) in parallel, while still achieving parallelism
where the pipeline overlaps.

We enabled parallelism support for the data pre-processor

module with minimal changes in the GMaVis compiler, and
increasing the code generated by only 9%. As SPar is fully
compliant with C++14, there were no major difficulties with
language compatibility. The most challenging task was to
identify where and how to insert annotations efficiently and
deal with stage replication for achieving good performance.

VI. EXPERIMENTS AND DISCUSSION

Experiments were performed to evaluate and highlight the
programmability and performance of GMaVis. We used the
COCOMO model [23] to estimate the development time,
which is an indication for the programming effort. This model
takes into account the entire development cycle for generating
a visualization, including the initial process of planning,
coding, testing, documenting, and deploying it for users.
COCOMO named it as cost drivers to express the development
environment such as, developers’ knowledge, tools, team size,
product complexity, etc. They were calibrated once for all the
libraries using the following settings: RELY and CPLX were
set as very-low; AEXP was set as low; PCAP, LEXP, MODP,
and TOOL were set as very high. The remaining cost drivers
were set as nominal.

All performance experiments were run using different
replica numbers, where 15 repetitions were performed to
get the arithmetic mean. Our machine had two Intel Xeon
E5645 - 2.4GHz (Hyper-Threading) processors and 24GB of
RAM memory. Also, the operating system was Ubuntu 14.04.4
LTS (GNU/Linux 3.13.0-86-generic x86 64) and the data pre-
processor module was compiled with GCC-5.3.0 using -O3
optimization flag. Moreover, six visualizations were created
using the data sets presented in Subsection III. For each
type of visualization provided in the DSL, two visualizations
were created with the following characteristics: [Ctr-Airp]
Clusteredmap that shows the Airports in World; [Ctr-Comp]
Clusteredmap that presents markers with Flickr Photos tagged
with the word ”Computer”; [Hm-Airp] Heatmap that shows
the frequency of Airports in World; [Hm-Accid] Heatmap that
demonstrates the frequency of traffic accidents in Porto Alegre,
Brazil; [Mm-Dev] Markedmap with markers that represent
photos classified by the device camera used to take this;
[Mm-Accid] Markedmap with markers that represent traffic
accidents in Porto Alegre, Brazil.
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A. Programming Effort

Figure 3 presents the development time results obtained
through the COCOMO model. In these results, we used
five metrics: Main, Structuring, Filtering, Formatting and
Classifying. The Main code refers to the HTML/Javascrip-
t/library code of the visualization. The Structuring, Filter-
ing, Formatting and Classifying refers to the required code
to implement automatic data processing. Some visualization
compared in this evaluation did not required filtering and
classifying. We divided the data pre-processor module code
into these four operations to demonstrate this factor. Also, our
DSL presents only Main results because it abstracts all the
four data pre-processing steps, requiring users to implement
only the DSL code.

First, we must highlight that the development time results
can be considered very high for just coding. However, this
measurement considers the whole development software cycle.
It estimates the total development time, including planning,
coding, testing, documenting, and deploying the software.
Therefore, the first two graphs of Figure 3 (Hm-Airp and
Hm-Accid) concern Heatmap visualizations. They are not
implementing a classification and only Hm-Airp does not
require filtering due to the data set format. We can observe
that our DSL obtained better results than Google Maps API,
Leaflet, and OpenLayers, because it presents a lower estimated
development time. Also, we can see that Leaflet requires less
code to implement a map visualization than Google Maps
API and OpenLayers, since it abstracts HTML code to specify
visualization details like position and size.

Two applications for clustered map (Ctr-Airp and Ctr-
Comp) were measured. The effort for both the main and data
pre-processing were similar to Heatmap when compared to
the related solutions. In contrast, our DSL obtained a lower
development time estimation since it required fewer lines of
code and did not require additional implementations to process
data. Moreover, we can observe that Leaflet had a similar
result compared with OpenLayer and Google Maps API. This
result is due to the implementation, which does not abstract
the parameters like in Heatmap. Also, the clustered map
visualization is not a native visualization in Leaflet, requiring
the use of a plugin. Also, the application Ctr-Airp presented
less development time than Ctr-Comp, because filtering was
again not necessary in the data set.

The last results present the coding development time esti-
mation for two markedmap visualizations (Mm-Dev and Mm-
Accid). Unlike the previous visualizations, they use filtering
and classification, requiring more code because they include
the creation of mechanisms or the use of external software.
Both visualizations presented less development time in the
main code (which contains only the HTML/Javascript/library
code) for GMaVis. In this example, OpenLayers presented the
second lowest main code development time, since it required
less code to implement this kind of visualization. These
visualizations demonstrated the great advantage of GMaVis.

Moreover, even not considering the fact that GMaVis avoids
the implementation or use of external software to process data,
it improves the developing time on geospatial visualization

maps. These results are achieved because GMaVis does not
require the implementation of a set of programming elements,
such as functions, variables, methods, or any additional code.
Also, it requires fewer lines of code to implement most
visualizations analyzed, compared to other libraries, which can
be verified in Table II.

TABLE II
SOURCE LINES OF CODE FOR EACH APPLICATION.

Application Our DSL Google Maps OpenLayers Leaflet
Ctr-Airp 15 34 46 46

Ctr-Comp 17 34 28 39
Hm-Airp 15 42 29 24

Hm-Accid 17 41 34 24
Mm-Dev 25 34 22 27

Mm-Accid 21 43 24 27

B. Performance Results

In this section, we present a performance evaluation to
demonstrate that our parallelism support implementation was
targeted. We show the parallel processing gains with respect
to the sequential version of our data pre-processor in Table III.
First, taking into account that some applications presented
better execution times than others because they did not perform
filtering and classifying operations, requiring only reading,
parsing, and writing to the output file, thereby reducing the
processing (middle) stage presented in Section IV-A.

TABLE III
RESULTS OF DATA PRE-PROCESSOR IN SIX APPLICATIONS.

App. Input File Size
(MBytes)

Seq. Time
(sec.)

Best Time with Par-
allelism (sec.)

N. of
Repli.

Ctr-Airp
Large - 17275.57 424.86 155.59 (3.66 x faster) 4
Medium - 2879.26 62.48 19.55 (3.13x faster) 4
Small - 479.87 10.99 4.66 (4.24x faster) 4

Ctr-Comp
Large - 17192.59 293.41 99.34 (3.06x faster) 3
Medium - 2865.43 23.47 7.01 (3.39x faster) 4
Small - 477.57 4.14 1.69 (2.99x faster) 4

Hm-Accid
Large - 17272.83 358.85 118.41 (4.12x faster) 3
Medium - 2878.8 62.48 16.89 (3.30x faster) 4
Small - 479.8 10.99 3.30 (2.70x faster) 4

Hm-Airp
Large - 17275.57 428.45 158.12 (3.00x faster) 4
Medium - 2879.26 62.48 18.52 (3.69x faster) 4
Small - 479.87 10.99 4.38 (2.96x faster) 4

Mm-Accid
Large - 17272.83 428.45 118.71 (2.77x faster) 3
Medium - 2878.8 62.48 19.14 (3.06x faster) 4
Small - 479.8 10.99 4.01 (3.65x faster) 4

Mm-Dev
Large - 17192.59 293.63 98.96 (3.37x faster) 3
Medium - 2865.43 23.03 7.07 (3.07x faster) 4
Small - 477.57 4.13 1.66 (4.05x faster) 4

Our DSL’s parallel data pre-processor is faster than the
sequential version even in small data sets. In the best case
scenario, it increases performance for the Hm-Airp application
3.69 times, as can be seen in Table III. Mostly because the
Airport data set has 12 columns with a greater number of
registers than the other data sets that have about 40 columns.
Thus, the replicated stages will have more work to do over
the data chunk (stream item).

With the results of large input data size, we discovered that
the disk becomes a bottlenecked when the data pre-processor
module needs to read chunks frequently. Using a fixed chunk
size of 100MBytes, about 172 times the read routine will be
called in the large data set while 28 for medium and 4 in
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small. Also, this chuck size takes a considerable time to read.
Consequently, replicating the processing stage many times
does not mean an increase in the parallelism efficiency because
replicated stages need to wait for new chunks. We identified
that the chuck size plays an important role in the data pre-
processor module, where smaller chunk sizes keep the pipeline
stages always busy, mainly on large data sets. Therefore,
we concluded that changing the chunk size dynamically may
improve performance in some cases.

Concerning the medium input data size, we needed four
replicas to achieve the best execution times. Even though less
concurrent disk operations were performed, it needed more
replicates than the large workload due to the small number of
stream items. We achieved similar scalability with the small
workload as the number of replicates increased.

Our results demonstrated that parallelism exploitation is not
trivial in the data pre-processor module. In addition to varying
chunk sizes, other approaches could improve performance by
reducing the disk bottleneck. One is to optimize hardware by
deploying RAID as well as flash disk storage. Another way is
to implement a distributed file system such as HDFS (Hadoop
Distributed File System). The underlying performance is not
fully delivered by the SPar DSL. The experiments have shown
that it depends on the application constraints. Unfortunately,
the multi-core systems still do not have many alternatives to
solve disk bottlenecks, which imposes scalability restrictions.

VII. CONCLUSIONS AND FUTURE WORKS

This paper contributed by providing a new DSL that
abstracts complexities in the whole visualization pipeline,
including features of the data transformation step and does
not require users to handle data manually. The experiment
results showed that our DSL reduced the effort and SLOCs
to implement the three supported data visualizations (clus-
teredmap, heatmap, and markedmap). Compared to related
work, we simplified the implementation of geo-visualizations,
specially for large data sets. By using standard tools like
Bison and Flex, we were able to generate code for multiple
programming languages at the back-end (C++ for data pre-
processor module as well as HTML, JavaScript and CSS for
visualization generator). Thus, we have contributed with a new
compiler that automatically parsers the DSL and generates
the application code. Moreover, we completely abstracted the
parallelism aspects and made it work for multi-core systems.
This capability extension on our DSL enabled users to generate
faster visualizations.

For future works, we are expanding the provided visualiza-
tion techniques to offer the most commonly used geospatial
visualizations for big data analysis. We are considering the use
of other libraries, such as D3 to allow other interactions with
the visualization. Such improvements will add new features to
create filters and interactivity elements in the final visualiza-
tion. Furthermore, we plan to enable the distributed file system
support for data processing.
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