Do | Know What My Code is "Saying"?

A study on novice programmers’ perceptions of what reused source code may mean

Luana Miiller
PUCRS
Porto Alegre, RS
luana.muller@acad.pucrs.br

ABSTRACT

Software development practices rely extensively on reusing source
code written by other programmers. One of the recurring questions
about such practice is how much programmers, acting as users of
somebody else’s code, really understand about the source code that
they inject it in their own programs. The question is even more
important for novices, who are trying to learn what programming
is and how it should be practiced in larger scale. In this paper we
present the results of an ongoing research using a semiotic ap-
proach to investigate how programmers send and receive, through
messages inscribed in the source code of the programs they write or
reuse, implicit and explicit communication about what such source
code "means" to them and others. We carried out two studies with
novice programmers and results suggest that source code reuse
may impact the comprehension that programmers have about their
own source code. In addition, how it impacts their understanding
about the messages that are being communicated through their
programs.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI;
« Software and its engineering — Reusability;

KEYWORDS

Source code reuse, Semiotic Engineering, novice programmers,
metacommunication

ACM Reference Format:

Luana Miiller, Milene Selbach Silveira, and Clarisse Sieckenius de Souza.
2018. Do I Know What My Code is "Saying"?: A study on novice pro-
grammers’ perceptions of what reused source code may mean. In 17th
Brazilian Symposium on Human Factors in Computing Systems (IHC 2018),
October 22-26, 2018, Belém, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3274192.3274209

1 INTRODUCTION

While learning how to program, novice programmers need to face
the difficulties of learning how to think computationally [25]. Ac-
cording to Keheller and Pausch [14], apart from learning how to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IHC 2018, October 22-26, 2018, Belém, Brazil

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6601-4/18/10...$15.00
https://doi.org/10.1145/3274192.3274209

Milene Selbach Silveira
PUCRS
Porto Alegre, RS
milene.silveira@pucrs.br

Clarisse Sieckenius de Souza
PUC-Rio
Rio de Janeiro, RJ
clarisse@inf.puc-rio.br

create structured solutions to their problems and understanding
how programs are executed, novice programmers also need to deal
with syntax and commands from programming languages, and they
have problems to translate their intentions to the computer.

As an alternative to help them during this learning process,
novice programmers commonly use source code examples to sup-
port their activities, and several times, they opt for reusing this
code [19], integrating them into their own source code and per-
forming the necessary adjustments to achieve their goals.

In this paper we take a semiotic perspective on programming
and examine what novice programmers "communicate" through
their source code. Thus, programs are viewed as message-carrying
interfaces capable of communicating intent and content. As result,
programmers who reuse code become "users of somebody else’s
program(s)". Following the perspective of computers as media [5, 10,
13], in the computer-mediated communication (CMC) a system’s
interface communicates its designer’s intentions to users. Then, it
is the user’s task to interpret this source code and try to understand
the meanings of the designer’s message. This phenomenon is named
metacommunication and has been extensively investigated and
developed by Semiotic Engineering theory [5].

In the last decade the importance of Human-Centered Comput-
ing (HCC) [2, 4, 12] has been growing steadily. This area aims to
research design, development and deployment of several initia-
tives which involve the interaction between people and computers.
Therefore, it covers a set of methodologies applied to any situation
where people directly interact with computational artifacts [12].

In the case addressed by this paper, we observe that the source
code is acting as an interface [18], mediating the communication
between programmers, and, such as a traditional interface which
we should appropriate from to make a better use, we believe that
the interface represented by the source code of a software also
needs to be understood and appropriated by the programmers that
aims, somehow, use it.

The motivation for this research came from our own teaching
practices, where we often observe students injecting other pro-
grammers’ code into their programs. It is crucially important for
teachers and learners to understand how injected code is (or can
be) appropriated by novice programmers.

This motivation lead us to the following questions:

(1) Why and how do novice programmers choose to reuse source
code?

(2) Do they understand their own source code when it was built
reusing someone else’s code?

(3) Considering the possibility of being communicating with
someone through their systems, with whom do they believe
they are communicating?

https://doi.org/10.1145/3274192.3274209
https://doi.org/10.1145/3274192.3274209

IHC 2018, October 22-26, 2018, Belém, Brazil

(4) How do they interpret the message delivered through their
program’s source code to other users?

In this paper we present the results of two qualitative studies
carried out to answer these questions. We look at how novice pro-
grammers reuse source code, how they interpret them and how they
integrate them into their own source code. Finally, we discuss the
results in view of the importance of the program’s metacommunica-
tion comprehension by programmers, and the elements that might
help programmers, researchers and teachers to evaluate and ana-
lyze the levels of understanding and appropriation a programmer
has about a source code.

The following sections will present our Theoretical Backgrounds,
the Research Design and our Findings. Next, we present a Discus-
sion and Conclusions regarding to the results we found.

2 THEORETICAL BACKGROUND

In this section we present the theoretical background about source
code reuse and the role of source code examples, Semiotic Engi-
neering and appropriation.

2.1 Source code reuse and the role of source
code examples

While learning how to program, examples can be used for sev-
eral purposes, such as to introduce a programming language, to
develop an algorithm to solve a problem, or to demonstrate a pro-
gramming pattern [19]. Furthermore, examples are often used to
show the importance of some concepts. According to Malan and
Halland [16], students must comprehend the importance of the con-
cept, otherwise, they will continue programming without applying
this concept to their source code.

When solving a problem, students start by identifying the key-
words presented in the software specifications and they use these
words to try to identify problems previously solved [9]. In addi-
tion, nowadays the Internet offers to programmers a wide range of
contents that can be easily accessed, which may have source code
examples that fit to programmers’ intentions.

The use of examples is a continuous practice during program-
mers’ professional lives. Neal [19] observes that programmers with
several different levels of experience code by studying, reusing or
revising software (or parts of software) written by others. To bene-
fit from an example, programmers must to understand this source
code and the concepts embodied by it [1]. However, this example
provided to help the programmer to understand some concepts, is
often reused without fully understanding about what it does [15].

According to Hoadley [11], software reuse may occur in three
different ways: (1) as code invocation, that occurs when functions
and procedures are reused; (2) as code cloning, that occurs when
source code lines are copied from an example and they are changed
to achieve a new goal; and (3) templates reuse, which occurs when
learned patterns are applied to other situations. In addition, there
are other kinds of classifications to software reuse. One of these is
proposed by Sojer [22] who classifies source code reuse in two ways:
(1) snippet reuse, and (2) component reuse. The first approach is
equals to the code cloning approach. However, the author proposes
two branches to this, which can occur by code scavenging, that
is, the replication of several and continuous lines from a source

L. Miller et al.

code, or design scavenging, in other words, when a structure com-
posed by a large block of source code is used as a framework. The
second approach is about the reuse of components that were devel-
oped, tested and documented to this purpose, such as APIs. These
definitions complement one another, as we can observe in Figure 1.

Source code reuse

Code cloning
or

Code invocation snippet reuse

or
component reuse Code Design
Scavenging Scavenging

Figure 1: Source code reuse approaches

In this paper we are interested in the reuse of source code by
cloning, and we aim to understand how novice programmers per-
form this reuse, if and how they interpret the meaning of this source
code and how they integrate it to their own source code. We are
also interested understanding the metacommunicative impacts of
this reuse, based on the Semiotic Engineering theory, presented in
the next section.

2.2 Semiotic Engineering

Semiotic Engineering [5] is a semiotic theory mainly based on
Peirce’s [20] and Eco’s [8] theories. Its main study object is the
metacommunication process between producers (designers or de-
velopers) and software consumers (users). According to the theory,
metacommunication messages expressed by the interface must com-
municate how, when, where and why users should use this software.
These several purposes must be linked to the design views made
by designers and programmers who are the sender of this com-
municated message. This theory also offers an abstract model (or
template) about the content of this metacommunication, which can
be used as a support artifact when designing metacommunication
or when evaluating it:

"Here is my understanding of who you are, what I've learned you
want or need to do, in which preferred ways, and why. This is the
system that I have therefore designed for you, and this is the way you
can or should use it in order to fulfill a range of purposes that fall
within this vision'.

This metacommunication happens during consumers’ interac-
tion with the software’s interface. The interface represents produc-
ers during the interaction and enables their communication (medi-
ated by the software) with their consumers. The main difference
from Semiotic Engineering compared to other Human-Computer
Interaction (HCI) theories is that it postulates that software design-
ers and developers participate (mediated by the interface) in users’
interaction processes.

In this research we extended the metacommunication process to
software internal development layers, changing it from the HCI field
to the HCC field (where questions related to human interpretation

Do | Know What My Code is "Saying"?

and communication cover human processes, even if these subjects
are not final users, such as programmers, software architects, sys-
tem analysts, etc.) [12]. We studied how the metacommunication
process happens among programmers through the software source
code. Thus, there are two adaptations: the first refers to those who
receive the metacommunication (from now on, programmers in-
stead of final - and lay - users); and the second one refers to the
interface (from now on, a piece of code, with its textual facet and
its executable facet, instead of the interface module to final users).

2.3 Appropriation

From the sociocultural perspective, appropriation is defined as the
process of taking something that belongs to others and making it
one’s own [24]. From the technological perspective, appropriation
is defined as how users evaluate and adopt, adapt and integrate a
technology to their daily practices [3]. Nevertheless, appropriation
of technologies may not be interpreted as only a phenomenon that
occurs when the software is being used in its expected domain, but
also interpreted as a set of continuously activities performed by
users to make this software works in a new environment, taking
this artifact as a material and a significant object [23].

According to Dourish [7], appropriation is similar to customiza-
tion, though, it refers to the adoption of technology standards
and its transformation in a deeper level. Appropriation involves
customization (which means the explicit reconfiguration of a tech-
nology to make it fits to a specific need), but also may only involve
making use of a technology to a different purpose from which it
was developed to attend.

In a similar way that a technology is capable of shaping users’
practices, it is also shaped by the users. Carroll et al. [3] defined a
Model of Technology Appropriation, composed by three levels: the
first level starts in the moment that the technology is presented to
the users and they face the decision of use it or not. After choosing
to use this technology, users start the appropriation process in
which they test, evaluate and adapt this technology to their needs.
Finally, the last level occurs when users integrate this technology
to their practices and it is considered stabilized.

Within this scope, software source code are technologies and, by
this reason, users need to appropriate from them to make a better
use. In this paper we take the source code of a software not only as
words written in a programming language, through which we can
solve a computational problem. We observe it from the Semiotic
Engineering perspective, which considers software interfaces as
a mean of communication between the interface designer and its
users.

3 RESEARCH DESIGN

In order to investigate how novice programmers reuse a source code
from others and if this reuse affect their understanding about the
software they built, we conducted two qualitative studies, detailed
as follows !. These studies are part of a larger ongoing research
which aims to support novice programmers during the reuse of
source code.

Some steps from the studies will be omitted due to the fact that they are related to a
research about self-expression through source code [17] and they are not relevant to
the goals of this paper

IHC 2018, October 22-26, 2018, Belém, Brazil

3.1 Study One

3.1.1 Context and Goal. The study one was carried out with
the students from the introductory course about algorithms and
programming offered to the undergraduate programs of Computer
Science and Information Systems. The course’s teacher proposed
an exercise where students needed to build a program to manage a
bookstore. As an example, the teacher made available to students,
through the course’s website, a solution of this exercise. A couple
of weeks later the students should build a program to register users’
evaluations about educational games. We checked the delivered
programs, and we identified that some parts of the programs were
exactly like parts from the bookstore project. This fact led us to
wonder how appropriation process happens when programmers
reuse code.

The study’s goal was to understand general aspects about code
reuse. Furthermore, in the cases which the example was reused, we
aim to understand if the students comprehend their source code
and observe if they appropriate from it.

3.1.2 Study procedure. This study was conducted in two steps,
described as follows:

(1) Analysis of students’ delivered source code in order to check
if and how they reused the example: to analyze the source
code of the 23 students involved in the study, we used Moss?,
a tool provided by Stanford University, that calculates met-
rics on texts’ similarities. In our study these texts comprised
the source code from the students and the source code from
the Bookstore example. Then, we invited to an interview the
two novice programmers who produced source code that
were the most similar to the example, and the two novice
programmers who produced source code that were the least
similar to the example.

Interview with the four students selected according to re-
sults from the first step: during this interview we asked the
participants to (a) explain some chunks from their produced
source code’; (b) answer questions related to their initial
steps to develop a new software, when and why they look
for a source code example, how they search for a source
code example, and their perceptions about their program as
a mean of communication (related to that, we asked them
about who they might be communicating with); (c) fill out
the metacommunication template offered by the Semiotic
Engineering.

—
S
~

3.1.3 Participants’ profile. The profile of the participants we
interviewed is presented in Table 1.

Zhttps://theory.stanford.edu/ aiken/moss/
3Due to the size of the entire source code (between 585 and 4100 lines), we have
selected some representative sections of each.

IHC 2018, October 22-26, 2018, Belém, Brazil

Table 1: Study One interviewees’ profile

Participant Graduation Program Similarity index

S1P1 Computer Science 44%
S1P2 Mathematics 33%
S1P3 Computer Science 3%
S1P4 Information Systems 1%

3.2 Study Two

3.2.1 Context and Goal. The study was conducted during the
end of an introductory course about programming offered to stu-
dents of the Civil Engineering and Production Engineering un-
dergraduate programs. The goal of this study was to deepen our
knowledge about the subject.

The teacher shows as example a source code that calculate and
present the initial 20 terms from the Fibonacci sequence. This ex-
ample included a screen prototype responsible for presenting the
result to the user. Few classes later, she asks the students to develop
a program which calculates the sum of N initial terms from the
Fibonacci sequence, on which N is a number provided the pro-
gram’s user. We observed that the students reused the example
of the teacher, reusing even the screen prototype and keeping the
variable’s and component’s name patterns from the example.

3.2.2 Study procedure. This study was conducted in two steps,
described as follows*:

(1) Analysis of students’ delivered source code in order to check
if and how they reused the example: to analyze the source
code of the 30 students involved in the study, we used]Plag5
to analyze the similarity between the source code example
and the source code provided by the students. After, we
invited all the students to participate in an interview, six out
of 30 students agreed to engage in.

(2) Interview with the six students who accepted the invitation:
during this interview we asked the participants to (a) explain
their produced source code®; (b) answer questions related
to their initial steps to develop a new software, when and
why they look for a source code example, how they search
for a source code example, and their perceptions about their
program as a mean of communication. Related to that, we
asked them who they might be communicating with.

3.2.3 Participants’ profile. In this study the students were not
learning programming to make a career out of it. They were learning
how to program in order to support their daily problems.

About whose that participated from the interview, their profile
is presented in Table 2.

4 All participants agreed to participate off both research steps and they signed the
Informed Consent Form.

SAt the time we were conducting this study, the tool Moss, used in the previ-
ous study, was facing an instability. Due to that, in this study we used JPlag tool
(https://jplag.ipd kit.edu/), that, such as Moss, calculates metrics of text similarities.
The source code produced by them had less than 20 lines of code each.

L. Miller et al.

Table 2: Study Two interviewees’ profile

Participant Graduation Program Similarity index

S2P1 Civil Engineering 84%

S2P2 Civil Engineering 84%

S2P3 Civil Engineering 84%

S2P4 Production Engineering 71%

S2P5 Civil Engineering 22%

S2P6 Production Engineering 18%
4 FINDINGS

In this section we will present the results obtained from the studies.

4.1 Why and how novice programmers reuse a
source code

Related to how novice programmers search for source code exam-
ples, we found from Study One that they often search for examples
that the domain is similar to that of the application they are build-
ing. If they not find an example with this characteristic, then they
would search for examples that implement the internal operations
they need to develop. The interviewee S1P2 reported that he only
seeks for an example from the same application domain, though,
he justified that "I use a source code example as a base that can be
improved until the goal is achieved."” . He also mentioned that this
kind of examples can be used as a frame to help him to start building
his own application arguing that "many times this frame allows only
the replacement of objects by those that are pertinent to the required
subject".

Study Two shows us that novice programmers frequently use
examples provided by their teachers and source code previously
developed during classes. We summarize their searching approaches
and present in Figure 2.

Based on its domain

How

they search for
examples

Based on its operation

From the teacher

Figure 2: How novice programmers search for examples

Related to why they need examples (Figure 3), S1P3 mentioned
she uses examples to "understand the problem’s logic. If is a question
regarding the programming language, I will search for examples
which represent the situation, apart from the subject. If is a question
regarding the problem’s logic, I try to locate examples which can be
applied in the situation, apart from the programming language or
the subject.". Participant S1P4 mentioned he uses examples to "solve
some logic problems" and when he is stuck in a problem and he
considers that "all alternatives of code variations were tried".

"The sentences presented in this paper were translated from Portuguese by the authors.

Do | Know What My Code is "Saying"?

Some participants from Study Two mentioned that they use ex-
amples to understand the problem and to optimize their applications.
Regarding the need to understand the problem, S2P5 mentioned
that he may need an example to understand more about a load cell,
for instance, and "to know some of the variables the problem will
expose to me". Still about problem understanding, S2P2 told us: T
have the examples provided by the teacher during the classes, and
when I am developing an application, I take a look at teacher’s exam-
ple to check the logic used on it to achieve the results". About how
the examples are used, S2P4 mentioned that she uses it to improve
her source code (she refers to the use of examples to perform an
optimization): "I check [the example] and I work on what I have done.
In fact, at this time I already built the program, and then I fix it".

To understand the programming
language

Why

they need
examples

To understand the problem

To optimize the application

To help them when they are
stuck in a problem

Figure 3: Why novice programmers need examples

Regarding to the ways they use the examples, they can be used
as a framework, that might be modified and improved in order
to achieve an specific goal. As presented before, this strategy is
named design scavenging. During Study One, S1P1, S1P2 and S1P3
reported that they use example through the copying and pasting
strategy. However, S1P1 mentioned that, according to the example
being used, he may change his approach: "Small source code, which
require few changes, I reuse them, changing what is necessary. To
more complex source code, that are usually longer, I use them as a
reference. Although, even this way, I copy small parts of the example.".
The copy of small fragments of the example is defined as a code
scavenging approach.

Study Two has shown that novice programmers often reuse
source code by cloning them to their own source code. With regard
to that, S2P1 reported that "in the first few times I copy and paste,
however, after doing it several times, this gets etched in my brain,
and then, I do not need to copy anymore." This same participant also
mentioned that he used to perform the copying and pasting by
copying line by line, reading and writing the lines. According to
him, this is his approach to learn programming.

A different approach was observed in Study One. Participants
mentioned they use this source code as a reference to be consulted
when it is needed. The same approach of source code reuse was
mentioned during Study Two. About it, S2P3 reported: "it is easier
to me to use the source code as a reference, otherwise I let something
pass, like an operation or a variable that were not supposed to be there.
So, I use it only as a reference”. During this study, participant S2P1
mentioned that he reuses source code to save time. According to
him "during the class, we do not have much time, and sometimes the
teacher asks us several things that we have to do. However, when you
are trying to learn by yourself, using your free time, I believe you will

IHC 2018, October 22-26, 2018, Belém, Brazil

try to do differently from the teacher". Figure 4 presents a summary
of the ways novice programmers reuse source code.

As areference

How

they use
examples

By code cloning

as design scavenging,
if it is simple

as code scavenging,
if it is complex

Figure 4: How novice programmer use examples

Additionally, during Study Two, we observed a programming
approach, not related to reuse, but that corroborates with the pre-
vious observations which show that novice programmers often
not spend much time trying to understand what they are building.
The development of source code by trial and error approach was
mentioned by S2P4 "sometimes, I did not have a basis, so I had to
go by intuition. I was developing it by trial and error, coding and
fixing." Still about it, S2P6 mentioned "I develop in a way I think it
will works.".

4.2 How they understand their own source
code

During the studies One and Two, we asked the participants to
explain their source code. Regarding Study One, we had two partic-
ipants who performed a high reuse from the Bookstore source code.
Participant S1P1 was not sure about what his code does in several
moments. He could neither talk about the operation of selected
pieces of code nor from which part of the source code they come
from. His explanation was shallow and most of the time he was only
reading the code line by line, focusing on some details of syntax
and semantics, but not details related to the role of that piece of
code on his program.

On the other hand, S1P2, who had also a program that was very
similar to the Bookstore project, gave a totally different explanation.
His explanation was highly detailed, showing awareness of the role
and location of the pieces of code inside the entire program and
about the new lines inserted into it. This fact showed us a different
level of understanding in relation to S1P1, because S1P2 was not
only using the example code as a frame to create his own program,
but he was also able of extending it to add extra features.

About Study Two participants, from whose had source code
similar to the source code example (S2P1, S2P2, S2P3 and S2P4),
only S2P3 did not show traces of comprehension, not being able
to explain how his program works or explain how the Fibonacci
sequence is calculated. With regard to the remaining participants,
the one that caught our attention was S2P1, who started his ex-
planation telling: "I cannot talk too much about this one, because it
was practically copied, because she (the teacher) had already done it.
It would be a waste of time, because I had already understood how
the code was working, and I only had to add the sum operation and
nothing else.". Even so, this same participant was able to explain
several aspects of his source code.

IHC 2018, October 22-26, 2018, Belém, Brazil

4.3 With whom they believe they are
communicating

Another question we addressed during the interviews was regarding
the system as a mean of communication. We asked the participants
with who they could be communicating with through their sys-
tems and which characteristics they believed the receiver of this
communication could perceive.

About Study One, only participant S1P2 mentioned the possi-
bility of communication with another programmer. He reported
that he was communicating with "possible users or programmers
located in different parts of the world". Both participants S1P1 and
S1P3 reported they believed they were communicating to the users
of their systems. During Study Two, some participant mentioned
they were communicating with other programmers: I believe I am
communicating only with students from the same area as mine, or
someone who has questions and uses my source code as an example"
(S2P3). This participant complements by telling that "I believe that
programming must be clear and shared, I believe it can be used as an
example to other, such as it served to me". It calls our attention that
one of the participants mentioned that she was communicating
with nobody. However, when explaining the reason, she mentioned
the possibility of a communicative breakdown that could happens
while communicating with another programmer: I believe that
another person will not understand it, because I used X and Y" (S2P4).
The reused examples were using variables named X, Y and Z, and
some participants who reused them kept the nomenclature pattern
and, even believing that this pattern would make difficult to another
programmer to understand the content of such variable, the partic-
ipants did not change it. Additionally, S2P1 and S2P5 mentioned a
communication through the system’s interface: I believe that I am
communicating with the general audience, the clients" (S2P1) and "I
worry about the screens, I do not know if is this, but the main goal is
to make the person understand what is being done there” (S2P5).

Regarding the characteristics that the receiver of the message
could perceive, S1P1, S1P2 and S1P3 mentioned the ways the in-
formation is presented to the users. SIP2 mentioned that, while
asking some information to the users, he often use informal sen-
tences, similar to a communication with friends. S1P3 reported as
characteristics her writing style and the way she organized the sys-
tem. Although he mentioned that he believed to be communicating
with the user, S1P1 told that a meticulous person would use more
methods and controls, or a person with a broader view would think
of less likely problems, predicting this way unexpected situations.
These characteristics are more likely to be perceived by another
programmer who will read this source code than a final user who
will only use it.

Similar to that, participants from Study Two mentioned as per-
ceived characteristic the way that graphical items are presented
into the interface and they reported some coding characteristics,
such as code structure and variables’ nomenclature pattern.

4.4 How they interpret the message delivered
through their program’s source code

In the end of Study One, we invited the participants to fulfill the
metacommunication templates from Semiotic Engineering theory.
We split the template in four parts, as follows, and the participants

L. Miller et al.

should complete the four sentences from the template based on
their own developed programs:

e Here is my understanding of who you are...

e WhatI've learned you want or need to do, in which preferred
ways, and why...

o This is the system that I have therefore designed for you...

o This is the way you can or should use it in order to fulfill a
range of purposes that fall within this vision...

About the first sentence, which goal is to define the user who
would be interacting with the system, participants S1P2, S1P3 and
S1P4 were able to clearly identify the users they were communicat-
ing with, describing the user as "a person who was seeking for new
tools to didactical application” (S1P2), "an ordinary person, a student
or a teacher"(S1P3) or "a teacher evaluating a new teaching tool
or a research administrator analyzing the results of all evaluations”
(S1P4). We can observe in their sentences that they were aware that
the appraisers could be people involved with education (such as a
teacher or even a student). SIP4 who created different areas in his
program, considered the existence of a researcher who would ma-
nipulate the information inserted by appraisers. On the other hand,
S1P1 described the users from his application with a generic and
incorrect sentence: "somebody who works with register of games and
players". The application aims to register educational games and
teachers’ opinions regarding the games. However, the registration
of gamers was not required by the system’s specification and was
not developed in S1P1’s system.

Regarding "What I've learned you want or need to do, in which
preferred ways, and why", participants S1P2 and S1P3 reported that
their users "need to select an application that fits to their students’
needs and which has a satisfactory knowledge level to be clearly and
objectively conveyed to them, using a nice interface which calls the
students attention” (S1P2), and that their users "want to store and
handle information regarding games” (S1P3). Once again, S1P1’s
answer was generic and refers to nonexistent features from the
system: "to register games and gamers, to correlate the data taking
some parameters into consideration”.

Participants S1P2 and S1P4 reported that they designed "a system
which allows you to identify from where are the other users who are
using certain application, their ages, their qualifications and their
opinions about the application”, (S1P2) and a system with which
"the administrator can manage a small database regarding the par-
ticipants, being able to organize and transform these data into useful
information." (S1P4). This last mentioned participant created an
system with two modules: one for administrator, and other for
evaluators, and he complements his sentence, by adding that "to a
regular user, the system was projected to offer a simple and effective
way to expose his perceptions regarding the evaluated educational
tools".

The sentence reported by S1P2 draws attention to the fact that he
understood the kind of information his program is managing. If we
compare his sentence with the sentence from the other participants
(who all provided satisfactory answers), we can see that he was the
one who provided more details about what his program does, even
more than those who created a fully original program.

With respect to how the users can fulfill these systems purposes,
participants S1P2 claims that the system need to be "offered in

Do | Know What My Code is "Saying"?

educational institutions that have computer labs or that are developing
applications with this goal [development of educational games]", or
they can achieve it simply by following the menus (S1P3 and S1P4).
Regarding to the answers from S1P1, once again, it was vague, with
no details about the system’s features. He reported: "to insert the
ordered data and verify if there is any option related to what you want
to know". The answers from participants SIP1 were generic and
with few information about the system, and this characteristic was
observed in some S1P4 sentences too. However, the answers from
S1P2 and S1P3 were accurate, clear and objective, and showed their
ownership of the messages they were delivering to their users.

From these participants, S1P1 and S1P2 were those who reused
the example provided by the teacher as a framework, to build their
own source code. Although both have used the example in the
same way, we observe that S1P1 was not fully aware about the
message his application was delivering, and, he did not have full
understanding about how his own source code works.

About S1P1 messages, by taking the point of view from Semiotic
Engineering theory, we observe that the designer’s metacommu-
nication message delivered by the system’s interface to its users
is composed by two messages: the one from the Bookstore project
designer and the one from S1P1. However, despite these messages
complement each other, they are disconnected, once S1P1 did not
properly appropriated from the message used as basis to his system.
On the other hand, S1P2 showed that he was appropriate from the
message delivered by his system, and he was aware about how his
own systems works.

It draws our attention the fact that, when comparing the meta-
communication messages from all Study One’s participants, the
answers from S1P2 stands out, once his metacommunication mes-
sage was as accurate as those from the participants who built their
systems from the scratch. Differently from the S1P1 case, the mes-
sage delivered by S1P2’s system is also composed by the same two
messages, and in this case, the messages are connected to each
other.

This section presented the results we found through the per-
formed studies. We presented general aspects regarding source
code examples and reuse, such as how they search examples to help
them, why they need these examples and, when they decide by
reusing it, how this reused is done. We also addressed questions re-
garding communication, we found that novice programmers often
consider the possibility being communicating with other program-
mers through the source code in a scenario where their source code
are being used as an example. Besides that, we presented findings
about the impacts that source code reuse might have on the com-
prehension and the metacommunication that programmers have
about their own source code.

4.5 Discussion

The results of these studies could help us to deepen our under-
standing about the appropriation of source code during reuse. By
analyzing the results, we could identify three distinct scenarios. The
authorial scenario, in which are the participants who developed
their source code from the scratch. The non-authorial scenario,
composed by those participants that reused the example, but were
not aware about how it works and which is the metacommunication

IHC 2018, October 22-26, 2018, Belém, Brazil

message being delivered. Finally, a co-authorial scenario, composed
by those that, despite the reuse of an example, were aware about
how their source code works and the metacommunication message
being delivered.

Taking as example cases of reuse observed during Study One,
despite both S1P1 and S1P2 had widely used the example, they
showed different interpretations about the code they produced, and
the message they are communicating through this code.

As we observed, S1P2 had the same accuracy in his descrip-
tions (such as S1P3 and S1P4 who built their programs without
using the provided example). This participant was able to describe
the commands we showed them as a unique concept, according
to the command’s goal, and specify important details about their
metacommunication.

The results we found introduced a reflection about the differ-
ences presented by S1P1 and S1P2 during the Study One. Both
participants fulfilled their goals, by building a functional program
that executed the required tasks. However, S1P2 showed a more
precisely understanding about the program, as precise as the under-
standing of those who created the source code without any external
reference. Thus, we considered S1P2 a co-author of the program he
built with the example’s programmer (in this case the teacher). He
was not only reusing the code, he interpreted and understood its
operation, and then reused it, aware of several meanings encoded
inside this code.

During this research we reflected about the "meaning of the
meanings". It becomes clear that every piece of code, regardless its
creator, bears several meanings that will be decoded by the one
who will use it. This user is the one that will define what the code
means. Such signification, as well as appropriation of this code,
depend on the level of understanding the user has.

About levels of understanding, we can observe that there are:

o A low level, where a programmer only paraphrases or ex-
plains what the code does by "translating” it to a natural
language, line-by-line. This approach is named algorithmic
summarization [11]

e An intermediate level, where a programmer has an abstrac-
tion level on the program’s syntactic structure, being able
to explain a set of commands as a unique concept based on
this code’s goal. This approach is named abstract summa-
rization [11]. We observe that, in this level, there can occur
two sublevels:

— Without application domain references: it means that the
programmer knows what the code does. However, this pro-
grammer is not capable of identifying pragmatic aspects,
such as for what this code can be used.

— With application domain references: unlike the previous
one, the programmer in this level is capable of identifying
some aspects about the source code, such as application
domains and business rules to which it can be applied.

e An advanced level, where the programmer is not only able
to do an abstract summarization of the code, but also add
elements, which refer to the intentions associated to pro-
gramming. The level can present two sublevels:

— Without referring users’ intentions: it means that the pro-
grammer can identify message passed through a code and

IHC 2018, October 22-26, 2018, Belém, Brazil

the intentions encoded on it. However, the programmer is
not able to identify the user who is expected to consume
this message.

— Referring users’ intentions: Unlike the previous one, the
programmer in this level is capable of understanding the
intentions of the users who will consume this code, by
knowing who they are, what they expect and/or how they
intend to use the program.

About appropriation, it is not ontologically defensible if the pro-
grammer is not aware of the specific aspects of his development sit-
uation, since these aspects are connected to pragmatics. Therefore,
we understand that appropriation only happened from the level
Intermediate I of understanding. Before this level, the programmer
can manifest understanding, but not explicit appropriation.

Thus, we identified the levels of appropriation as only two pos-
sible ones:

o A lower level, which only happens when the programmer
is able to transfer the code to the user’s required domain,
but not to make explicit his own intentions or the intentions
that his user must have.

A higher level that will happen when the programmer is also
able to identify some elements related to the intentionality
behind the code (his own intentions or users’ intentions).
We also understand that programmers on Advanced I and
Advanced II levels have the same design acumen. The fact
that a programmer is not able to refer to intentional elements
related to the user will not make his appropriation "worse"
than the other case. It is possible that the program built
by this programmer has less usability or communicability;
however, it cannot be considered an appropriation problem.

In Table 3, we presented a set of elements to support the clas-
sification of understanding and appropriation levels, as described
before. These classifications can be used in order to analyze reuse
made by programming professionals or even programming students
or lay users.

Another result of this work was to show the metacommunica-
tion template from Semiotic Engineering, originally proposed to
build and/or evaluate interfaces, being used in a more HCC per-
spective. We used the template to support our investigation, which
showed us its potential and possible usage in research about reuse
by professionals, computer science students or even lay users who
use programming in order to achieve some task. Besides that, the
template is what made us able to observe how a programmer or
any kind of end-user sees the intentions he encoded in a program
and its source code. Moreover, information provided by the partici-
pants’ answers about the template was crucial during the research
to establish the understanding and appropriation levels we defined.

Regarding the understanding and appropriation during reuse
of code, we identified from each understanding and appropriation
level are the studies’ participants (those who reused the bookstore
code), according to the skills they presented during the studies.

From Study One, participant S1P1 and participant S1P2 were
those who reused the example provided by the teacher. S1P1’s expla-
nations regarding his system’s working process and regarding the
metacommunication template showed to us that he was able only
to perform an algorithmic summarization. Thus, we can classify his

L. Miller et al.

understanding level as low and his appropriation level as no appro-
priation. On the other hand, participant S1P3 not only provided an
abstract summarization, as he mentioned several aspects regarding
the business rules of his system. Besides that, this participant was
able to identify metacommunicative aspects of his system, refer-
ring to who its users would be and which could be their intentions
regarding the system being used. Based on this, we can classify his
understanding level as advanced II and his appropriation level as
higher.

Related to Study Two’s participants, those who reused the ex-
ample were S2P1, S2P2, S2P3 and S2P4. During this study, due to
the small size of the application they developed, we did not ask
them to fulfill the metacommunication template. Without this in-
formation we cannot establish if they were in advanced levels of
understanding or higher levels of appropriation. However, as we al-
ready mentioned, only S2P3 was not able to explain his own source.
In this case he did not provide an algorithmic summarization, but
he tried to perform the abstract summarization, without success.
Based on this, we frame this participant as low level of understanding
and no appropriation.

Regarding the remaining participants, they could perform an
abstract summarization, though in no moment they mentioned
anything regarding business rules, once the system specification
had only one goal. Therefore, we have no information to classify
them as more than an intermediate I level of understanding, and, no
appropriation.

As we have seen, the size of the system can impact how and
how much a programmer can appropriate from it. In addition, it
is important to highlight that we believe that their skills can vary
according to the program they are building. Factors such as knowl-
edge about a programming language, business rules or even the
time available to build the program can be important factors in
order to change their understanding and appropriation levels.

Taking into consideration the studies we carried out, we observe
through Study One and Study Two that the reuse of an example can
affect the comprehension programmers have about their own source
code, being able to observe cases in which they were not able to
explain how source code written by themselves work. Nonetheless,
these same studies showed other cases in which the programmers
were able to appropriate from the reused source code, incorporating
it to his own code and understanding the relations between it and
his own goals. We consider the appropriation as the final goal we
aim to achieve, in a scenario where programmers are aware about
how their source code work, even if they were written using the
"words" other programmers.

The studies showed that novice programmers often reuse source
code in several ways and for several reasons. Regarding the ways,
the reuse of source code occurs as design scavenging, when a large
block of source code is used as a framework to a new source code,
and occurs as code scavenging, when the programmer opts by
copying small blocks of source code. An interesting fact we observed
was that these programmers prefer to perform a copy line-by-line,
using the source code as a reference, avoiding this way the insertion
of unnecessary lines. Regarding the reasons, novice programmers
seek for examples that can support them understanding the problem
or can help them to optimize their source code. In addition, we
observe that some of these programmers are aware that in some

Do | Know What My Code is "Saying"?

IHC 2018, October 22-26, 2018, Belém, Brazil

Table 3: Appropriation classification according to understanding levels

Understanding Algorithmic Abstract Abstract summarization and Appropriation
level summarization summarization referring programmers’ intentions level
Without domain With domain Without users’ Without users’
references references intentions intentions

Low X No appropriation
Intermediate I X
Intermediate IT Lower
Advanced I X

Higher
Advanced II X g

Searching for the
appropriate

/;\ example \

The new source
code is an example
to a new situation

\ Making the new /

source code
available to others

Reusing the
example

Figure 5: Examples reuse cycle

situations the user of their source code will be another programmer,
who will use it as an example, and who will start a new cycle of
interpretation and comprehension of this source code (Figure 5).

5 CONCLUSIONS

Programmers use programming not only to solve problems, but
also to express something to consumers. This communicative pro-
cess is an uninterrupted cycle, since the programmer is always
changing roles between producer and consumer. Hence, we must
carefully address questions about appropriation in this specific con-
text since technology has become increasingly part of people’s life
and, consequently, there is a need of qualified professionals as well
as appropriate software.

This research presented the results of studies that are part of
ongoing research regarding how programmers reuse source code
from other programmers, using them to build their own programs.
It is necessary to comprehend how programmers understand and
how they appropriate from these codes, and the impacts their ways
to reuse code have over the quality of programs they are creating.
In order to conduct this investigation, we appropriated from the
Semiotic Engineering theory and its contributions to the HCC
area [6]. By this way, we observed source code as an interface,
which allows a conversation between the programmer who wrote
the source code being reused and the programmer who is reusing
it. Based on this perspective, we understand that this source code

carries an implicit speech which incorporates the programmer’s
intentions regarding how, whom, and where this source code can
be used.

Additionally, we presented conditions related to the impacts
reuse of code has. In all the cases we analyzed, the software de-
livered by the participants who performed reuse were functional
and, it was achieving its goals (even if some few mistakes). How-
ever, not all participants were aware of the message their software
was communicating. To support investigations regarding source
code reuse and its consequences, we presented a set of elements
that can help us identify a programmer’s syntax, semantics and
intentional understandings about a produced code, and, with this,
classify his appropriation about the program he built by code reuse.
The classification might be useful not only for helping researches,
but also for teachers, companies R&D and programmers themselves,
to help them to understand and to evaluate the code’s reuse made
by programmers. However, this requires further investigation. Fur-
thermore, it shows how the metacommunication message concept
from a semiotic theory proposed to HCI can be used in a different
context, bringing out human aspects of those who are responsible
for building computational artifacts we daily use.

We believe that our work can call programming teachers’ atten-
tion to the fact that we must taking into consideration the time the
students need to reflect about what they are doing. The process of
reflection about these materials (source code) is a necessary step
to solve a problem. Schon’s [21] perspective about design is that
there must be a reflection on action. When a designer starts his
work, he must identify and interpret all elements involved in his
development situation, and know all possibilities and limitations
of the technology he needs to use. The designer’s ideas must be
represented in some way, allowing him to talk with this material
by reflecting and expressing his new ideas, by questioning "and if
I define in this way?", or "it does not look good for me". The source
code being reused is one of these elements, and as mentioned be-
fore, programmers must know and understand its limitations and
appropriate from the code in order to make possible to reflect about
its role in their solutions.

Nonetheless, we would like to mention the work from Hoadley et
al. [11] which observes that, when performing as abstract summa-
rization the probability of reuse increases. Moreover, they observed
that sometimes programmers consider that an understanding in the
algorithmic level is enough. However, as we mentioned previously,

IHC 2018, October 22-26, 2018, Belém, Brazil

this understanding can be resumed as the capacity of translate
source code lines, which were written in a programming language,
to the natural language. We want to highlight that programmers
may not be able to perform this kind of summarization due the fact
they do not know how to do it. Therefore, to support these students
while the reusing activity we need to teach them how to perform
meaningful summarizations and provide tools and methods than
can support them during this activity.

As limitations of this research we highlight its educational per-
spective, once the studies were conducted with novice programmers
who were receiving college education. Therefore, our results may
not reflect the perceptions of self-taught programmers nor profes-
sional developers. Also, due to the fact we had a small number of
participants during the studies, it not not possible to perform a
predictive interpretation based on our results.

Finally, as next steps of this research we aim to work on the
development of an epistemic artifact to support programmers, spe-
cially the novice ones, during the source code reuse activity. Our
proposal is based on the use of the metacommunication template,
offered by the Semiotic Engineering theory [5], to support student
to generate meaning to source code they want to reuse.

With this, we hope to contribute to the HCC area by warning
these programmers while building their computational thinking
about the importance of comprehending the meanings of what they
are developing. We warn that this comprehension must be not re-
lated only to cognitive aspects, and it need to be extended to source
code metacommunicative aspects. We also hope to contribute to the
development of the process of teaching and learning programming,
presenting to programmers and teachers a perspective on which
programming can be treated as more that a way to solve problems,
but also a tool through which programmers can communicate with
each other and express themselves.

ACKNOWLEDGMENTS

We would like to thank all the participants, for the time provided
to this research. Clarisse S. de Souza thanks CNPq, the Brazilian
National Council for Scientific and Technological Development, for
partially supporting this research (Grant 304224/2017-0).

REFERENCES

[1] Eran Avidan and Dror G. Feitelson. 2017. Effects of Variable Names on Compre-
hension: An Empirical Study. In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC). 55-65. https://doi.org/10.1109/ICPC.2017.27

[2] Liam Bannon. 2011. Reimagining HCI: Toward a More Human-centered Perspec-
tive. interactions 18,4 (July 2011), 50-57. https://doi.org/10.1145/1978822.1978833

[3] Jennie Carrol, Steve Howard, Jane Peck, and John Murphy. 2002. A field study
of perceptions and use of mobile telephones by 16 to 22 years old. Journal of
Information Technology Theory and Application 4, 2 (2002), 49-61.

L. Miller et al.

[4] Sangil Choi. 2016. Understanding people with human activities and social interac-
tions for human-centered computing. Human-centric Computing and Information
Sciences 6,1 (05 Jul 2016), 9. https://doi.org/10.1186/s13673-016-0066- 1

[5] Clarisse Sieckenius de Souza. 2005. The Semiotic Engineering of Human-Computer
Interaction (Acting with Technology). The MIT Press.

[6] Clarisse Sieckenius de Souza, Renato F. de G. Cerqueira, Luiz Marques Afonso,
Rafael R. de M. Brandao, and Juliana S. J. Ferreira. 2016. Software Developers As
Users: Semiotic Investigations in Human-Centered Software Development (1st ed.).
Springer Publishing Company, Incorporated.

[7] Paul Dourish. 2003. The Appropriation of Interactive Technologies: Some Lessons
from Placeless Documents. Computer Supported Cooperative Work (CSCW) 12, 4
(01 Dec 2003), 465-490. https://doi.org/10.1023/A:1026149119426

[8] Umberto Eco. 1976. A Theory of Semiotics. Indiana University Press. https:

//books.google.com.br/books?id=BoXO4ItsuaMC
[9] Alessio Gaspar and Sarah Langevin. 2007. Restoring "Coding with Intention”

in Introductory Programming Courses. In Proceedings of the 8th ACM SIGITE
Conference on Information Technology Education (SIGITE *07). ACM, New York,
NY, USA, 91-98. https://doi.org/10.1145/1324302.1324323
Alexandra Georgakopoulou. 2011. Pragmatics in Practice. John Benjamins Pub-
lishing, 326.
Christopher M. Hoadley, Marcia C. Linn, Lydia M. Mann, and Michael J. Clancy.
1996. When and why do novice programmers reuse code? Ablex Publishing
Company, 109-130.
Alejandro Jaimes, Daniel Gatica-Perez, Thomas S. Huang, and Nicu Sebe. 2007.
Guest Editors’ Introduction: Human-Centered Computing-Toward a Human
Revolution. Computer 40 (05 2007), 30-34. https://doi.org/10.1109/MC.2007.169
[13] John Kammersgaard. 1988. Four Different Perspectives on Human-computer
Interaction. Int. . Man-Mach. Stud. 28, 4 (April 1988), 343-362. https://doi.org/
10.1016/S0020-7373(88)80017-8
Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers to Program-
ming: A Taxonomy of Programming Environments and Languages for Novice
Programmers. ACM Comput. Surv. 37, 2 (June 2005), 83-137. https://doi.org/10.
1145/1089733.1089734
Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the
Comprehension of Program Comprehension. ACM Trans. Softw. Eng. Methodol.
23, 4, Article 31 (Sept. 2014), 37 pages. https://doi.org/10.1145/2622669
Katherine Malan and Ken Halland. 2004. Examples That Can Do Harm in Learning
Programming. In Companion to the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’04).
ACM, New York, NY, USA, 83-87. https://doi.org/10.1145/1028664.1028702
Luana Miiller, Milene Selbach Silveira, and Clarisse Sieckenius de Souza. 2015.
Mine, Yours, Ours: Examples Reuse and the Self-expression of Programming
Students. In Proceedings of the 14th Brazilian Symposium on Human Factors in
Computing Systems (IHC ’15). ACM, New York, NY, USA, Article 30, 10 pages.
https://doi.org/10.1145/3148456.3148486
Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016. Pro-
grammers Are Users Too: Human-Centered Methods for Improving Programming
Tools. Computer 49, 7 (July 2016), 44-52. https://doi.org/10.1109/MC.2016.200
[19] Lisa R. Neal. 1989. A System for Example-based Programming. SIGCHI Bull. 20,
SI (March 1989), 63-68. https://doi.org/10.1145/67450.67464
Charles S. Peirce, Charles Hartshorne, and Paul Weiss. 1932. Collected Papers
of Charles Sanders Peirce. Belknap Press of Harvard University Press. https:
//books.google.com.br/books?id=udf WAAAAMAA]
Donald A. Schon. 2017. The Reflective Practitioner: How Professionals Think in Ac-
tion. Taylor & Francis. https://books.google.com.br/books?id=OT9BDgAAQBAJ
Manuel Sojer. 2010. Reusing Open Source Code: Value Creation and Value Appro-
priation Perspectives on Knowledge Reuse. Gabler Verlag. https://books.google.
com.br/books?id=-z60hspDTIAC
Gunnar Stevens, Volkmar Pipek, and Volker Wulf. 2009. Appropriation Infras-
tructure: Supporting the Design of Usages. Springer Berlin Heidelberg, Berlin,
Heidelberg, 50-69. https://doi.org/10.1007/978-3-642-00427-8_4
[24] James V. Wertsch. 1998. Mind as Action. Oxford University Press. https://books.
google.com.br/books?id=73Vv7Y3vf14C
[25] Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (March
2006), 33-35. https://doi.org/10.1145/1118178.1118215

[10

[11

[12

[14

[15

[16

[17

[18

[20

[21

[22

[23

https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1145/1978822.1978833
https://doi.org/10.1186/s13673-016-0066-1
https://doi.org/10.1023/A:1026149119426
https://books.google.com.br/books?id=BoXO4ItsuaMC
https://books.google.com.br/books?id=BoXO4ItsuaMC
https://doi.org/10.1145/1324302.1324323
https://doi.org/10.1109/MC.2007.169
https://doi.org/10.1016/S0020-7373(88)80017-8
https://doi.org/10.1016/S0020-7373(88)80017-8
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/2622669
https://doi.org/10.1145/1028664.1028702
https://doi.org/10.1145/3148456.3148486
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1145/67450.67464
https://books.google.com.br/books?id=u9fWAAAAMAAJ
https://books.google.com.br/books?id=u9fWAAAAMAAJ
https://books.google.com.br/books?id=OT9BDgAAQBAJ
https://books.google.com.br/books?id=-z60hspDTlAC
https://books.google.com.br/books?id=-z60hspDTlAC
https://doi.org/10.1007/978-3-642-00427-8_4
https://books.google.com.br/books?id=73Vv7Y3vf14C
https://books.google.com.br/books?id=73Vv7Y3vf14C
https://doi.org/10.1145/1118178.1118215

	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Source code reuse and the role of source code examples
	2.2 Semiotic Engineering
	2.3 Appropriation

	3 Research Design
	3.1 Study One
	3.2 Study Two

	4 Findings
	4.1 Why and how novice programmers reuse a source code
	4.2 How they understand their own source code
	4.3 With whom they believe they are communicating
	4.4 How they interpret the message delivered through their program’s source code
	4.5 Discussion

	5 Conclusions
	Acknowledgments
	References

