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Fig. 1. Overview of our method: from a detected face (left), we build different structured graphs, guided by different learned shape models (middle). Each
graph will generate an initial estimative of the head-shoulder contour, defined by the path with maximum cost. The final contour is defined by the path with
maximum average energy (right).

Abstract—In this paper we propose a clustering-based learning
approach to improve an existing model for human head-shoulder
contour estimation. The contour estimation is guided by a learned
head-shoulder shape model, initialized automatically by a face
detector. A dataset with labeled data is used to create the head-
shoulder shape model and to quantitatively analyze the results. In
the proposed approach, geometric features are firstly extracted
from the learning dataset. Then, the number of shape models to
be learned is obtained by an unsupervised clustering algorithm.
In the segmentation stage, different graphs with an omega-like
shape are built around the detected face, related to each learned
shape model. A path with maximal cost, related to each graph,
defines a initial estimative of the head-shoulder contour. The
final estimation is given by the path with maximum average
energy. Experimental results indicate that the proposed technique
outperformed the original model, which is based on a single shape
model, learned in a more simple way. In addition, it achieved
comparable accuracy to other state-of-the-art models.

Keywords-human head-shoulder estimation; omega-shaped re-
gion; human segmentation.

I. INTRODUCTION

The automatic detection and segmentation of human sub-

jects in static images is still a challenge, due to several real

world factors, such as illumination conditions, shadows, occlu-

sions, background clutter, etc. It can also be challenging due to

problems associated to image quality, image noise, resolution,

or even related to factors associated to the dynamic of the

human being, such as the great variety of poses, appearance

and shapes. Automatic segmentation models can be widely

used in many computer vision based applications, including

surveillance systems, people counting, robotics, natural user

interfaces, photo analysis and editing and so on.

As related in the work of Li et al. [1], computer vision

methods focused on the upper part of the human body are

receiving significant attention in the last years. Whang et al. [2]

mentioned a special case of pedestrian detection, the head-

shoulder detection, which has its significance in scenes where

only the upper part of the body can be seen due to occlusion.

According to Xin et al. [3], head-shoulder segmentation is

an important part of face contextual region analysis for the

purpose of human recognition and tracking. In addition, as

mentioned by the authors, head-shoulder contour estimation

models can also be used to help the extraction of general

contextual information, such as gender [4], clothing appear-

ance (considered the most widely used cue for people re-

identification [5]) and hair style [6], which could be very useful

for people identification (usually related to soft-biometric

based applications [7], [8]), especially when the facial features

alone do not provide sufficient information.

Recently, Jacques et al. [9] proposed an approach for human

head-shoulder contour estimation in still images, captured in a

frontal pose. In their work, the contour is estimated by a path

in a graph with maximum cost energy. The graph construction

as well as the energy computation is guided by a learned

shape model. One drawback of such approach is the use of

one single shape model to capture and to estimate the human
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head-shoulder contour of a great variety of people, usually

with great variations in head shapes/poses, neck width/length

and shoulders orientations. Such variations can effectively

deteriorate their estimative when the adopted shape model is

very different from the head-shoulder contour related to the

person in the image under analysis.

In this work we improved the work of Jacques et al. [9]

for human head-shoulder contour estimation by using a more

sophisticated learning approach, derived from a clustering

algorithm, combined with a selecting scheme in the segmenta-

tion stage. The advantages of the proposed model (compared to

the original one) relies on the usage of different learned shape

models to capture and to estimate the human head-shoulder

contour, which consider a great variety of head shapes/poses,

neck width/length and shoulders orientations. We analyzed

quantitatively the results of the proposed approach using the

same dataset as in [9] and the same evaluation protocol,

achieving an improvement of 22.49% for the average measured

error, 48.03% for the minimum computed error and 7.61%

for the maximum error (when using grayscale images) and

an improvement of 20.63% for the average measured error,

45.98% for the minimum computed error and 6.81% for the

maximum error (when color images are employed), detailed

in Section IV. In addition, the results obtained by proposed

model were compared against two other state-of-the-art models

for human head-shoulder segmentation [10] and [3], achieving

8.03% and 7.5% of improvement, respectively.

The remainder of this paper is organized as follows. Sec-

tion II presents related work concerning head-shoulders de-

tection and segmentation approaches. The proposed technique

is described in Section III, and some experimental results are

provided in Section IV. Finally, conclusions and suggestions

for future work are given in Section V.

II. RELATED WORK

Much work has been done on head based human detection

and tracking last years (e.g., [1], [11], [12], [13]), with several

possible applications. On the other hand, automatic head-

shoulder segmentation models for still images seems to be

little explored.

Li et al. [1] proposed a method for rapid and robust head-

shoulder based human detection and tracking, which is an

improvement of their previous work [11]. The detection is

achieved by combining a Viola-Jones type classifier and a

local Histogram of Oriented Gradients (HOG) feature based

AdaBoost classifier, applied in predefined “Entrance” zones.

Then, each detected head-shoulder is tracked by a particle filter

tracker using local HOG features to model target’s appearance.

Zeng and Ma [12] proposed a robust and rapid head-

shoulder detector for people counting by combining multilevel

HOG with the multilevel Local Binary Pattern (LBP) as the

feature set. To further improve the detection performance,

Principal Components Analysis (PCA) is used to reduce the

dimension of the multilevel HOG-LBP feature set. Tu et

al. [13] introduced a robust and rapid head-shoulder detection

method for video applications, which is invariant to pose and

viewpoint, applied in a surveillance problem. The method

combines an attention-based foreground segmentation module

and a multiview head-shoulder detection cascade to achieve

high performance in both accuracy and speed.

In the work of Jacques et al. [9] an approach to estimate

the human head-shoulder contour in still images is proposed.

In their work, the contour estimation is guided by a learned

head-shoulder shape model, initialized by a face detector [14].

A graph is generated around the detected face with an omega-

like shape, and the estimated head-shoulder contour is defined

by a maximal cost path in the graph, given by a combination

of edge and geometric information. The model is scaled

according to the detected face size to be scale invariant.

In addition, the model is proposed to be robust when the

contour is partially occluded (e.g. by a large amounts of hair,

accessories and/or clothes).

Xin et al. [3] proposed an automatic head-shoulder seg-

mentation method for human photos based on graph cuts with

shape sketch constraint and border detection through learning.

The model is initialized by a face detector, which is used

to get the position and size of the human face. In addition,

a watershed algorithm is used to over segment the image

under analysis into superpixels, followed by an iterative shape

mask guided graph cut algorithm with sketch constraint that

is applied to the superpixel level graph to get a contour that

segments the head-shoulder from its background. The final

estimation is refined by a contour detection algorithm, which

is trained by AdaBoost.

Bu et al. [10] proposed a structural patches tiling procedure

to generate probabilistic masks which can guide semantic seg-

mentation, applied to a head-shoulder segmentation problem.

In this work a local patch structure classifier trained by random

forest is firstly applied to the input image in a sliding window

manner, followed by the construction of a Markov Random

Field (MRF) iteratively optimized to assemble a high quality

probabilistic mask from responses collected from the previous

stage. In the work of Mukherjee and Das [15], a model that

employs a set of four distinct descriptors for identifying the

features of the head, neck and shoulder regions of a person

in video sequences is proposed. In their work a head-neck-

shoulder signature is used to exploits inter person variations

in size and shape of people’s head, neck and shoulder regions.

The model is limited to video applications, due to adaptive

background modeling used to extract foreground regions.

Whang et al. [2] proposed an edge feature designed to

extract (predict) and enhance the head-shoulder contour and

suppress the other contours. The basic idea is that head-

shoulder contour can be predicted by filtering edge image

with edge patterns, which are generated from edge fragments

through a learning process. Li et al. [4] proposed a gender

recognition based on the head-shoulder information. In their

approach, the Partial Least Squares (PLS) method is employed

to learn a very low dimensional discriminative subspace (to

extract gradient, texture and orientation information from the

head-shoulder area) and a linear Support Vector Machine

(SVM) is used for classification.
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Considering methods that focus on extracting the precise

head-shoulder contour (and not just an estimate, such a

bounding box), the methods proposed in [3], [10] are the most

similar to the work proposed in [9]. However, it is important

to emphasize that they try to segment the whole foreground

object, which may include part of the clothes and hair, while

in [9] they try to segment the most omega-like head-shoulder

contour (for the sake of illustration, see Fig. 2), focusing on

a well known shape/feature of the human body.

(a) (b)

Fig. 2. Different goals: (a) foreground segmentation [3] and (b) the most
omega-like head-shoulder contour estimation [9].

III. PROPOSED MODEL

In this work we propose an improvement to the work of

Jacques et al. [9] for human head-shoulder contour estima-

tion. The improvement is achieved through two main steps.

Firstly, we propose a more sophisticated learning stage, which

includes feature extraction from labeled data and the usage

of an unsupervised clustering algorithm [16] to automatically

estimate the number of shape models to be generated. Given

the K-generated shape models, the initial head-shoulder con-

tour estimation, assigned to each shape model and generated

graph, is performed in the same way as in [9]. Finally, given

the K-initial estimated contours, the final estimative is defined

by a selecting scheme, which consider the computed average

energy of each initial estimative. The proposed improvement,

as well as the main steps related to the original work, used to

achieve the final segmentation, is described in details in the

next sections.

A. Head-Shoulder Shape Model Generation

As in the original work [9], the shape model of the head-

shoulder is generated based on ground truth data associated

to the adopted dataset. The dataset is composed by 402 RGB

images (256 images collected from public datasets [17], [18],

[19], 170 images of the dataset used in [10] and 24 images

generated in their work [9], gently sent by the authors), varying

in people ethnicity, appearances, shapes, views, orientations,

image resolution and scenes.

Following the same protocol as in the original work, the

dataset was divided into training and testing dataset, each

one with 1/3 and 2/3 (randomly chosen) of the 402 images,

respectively. In addition, each image of the dataset has an

associated ground truth data, defined by the contour points of

the expected person’s contour, manually formed. The ground

truth data is used to quantitatively analyze the results and

to create the head-shoulder’s shape models. To increase the

number of samples and to deal with small angles orientation

on the image plane, the ground truth data related to the training

set are also flipped in the y axis (vertical).

1) Feature Extraction: The first step of the head-shoulder

shape model generation is the feature extraction. In our model,

we propose to extract two geometric features from the labeled

data: in a general way, the distance from the center of the

face to the basis of the neck and the average orientation of the

shoulders. The first feature can be used to cope with different

neck lengths and the second one to cope with different

shoulder orientations, caused by the pose people assume or

even by the geometry of their body or clothes.

Firstly, we run a face detector [14] for each RGB image

of the training dataset, to get the center point Cf and radius

Rf of the face (Fig. 3(a)). For each detected face, a binary

image (illustrated in Fig. 3(b-c)) of its upper body is generated

from the points presented in the ground truth data. The binary

image is then divided into left and right sides, according to

Cf (illustrated by a dotted line in Fig. 3(b)).

Considering the left side, the binary points are projected

onto the vertical axis, generating a curve, which is smoothed

with an average filter (with length = 9, set experimentally),

illustrated in Fig. 3(d) by a blue line. From this smoothed

curve we compute M1, denoting the position of the first local

minimum, illustrated in Fig. 3(d) by a red circle (zoomed in

Fig. 3(e)), and compute the first derivative to extract angle in-

formation. Points in this smoothed curve with angle orientation

higher than a predefined threshold Tα (where Tα = 0.8391,

related to 40◦, set experimentally) are retrieved, illustrated

by blue dots in Fig. 3(d). So, the estimated left neck point

Np1 is defined by the nearest retrieved point in relation to

M1, positioned after M1 (it means, Np1 > M1), illustrated in

Fig. 3(d) by a red plus sign (zoomed in Fig. 3(e) for a better

visualization). In some situations there is no local minimum,

due to the curvature of the smoothed curve. In such situations

M1 is defined by the most left point of the smoothed curve

with orientation higher than Tα, positioned beyond Cf (in this

case, the threshold related to Cf is illustrated by a dotted line

in Fig. 3(d)).

The procedure described above is repeated for the right side

of the binary image to estimate its respective neck point Np2.

The extracted feature points, related to the neck (Np1 and Np2),

illustrated in Fig. 3(b) by green signs, are adjusted accordingly

to Cf . Then, the first extracted feature, used in the clustering

stage (described next), is defined by the distance (Nd) to the

center point Cf to the line that passes through Np1 and Np2,

normalized by Rf , illustrated by a blue line in Fig. 3(b).

The second extracted feature relates to the orientation of

the shoulders. As described in the extraction of the previous

feature, consider the smoothed curve, generated for the left

side by projecting the points of the binary image onto the

vertical axis. Similarly, the points of this curve with angle

orientation higher than Tα are retrieved. From these retrieved

points, the ones positioned before the respective neck point

Np1 (in relation to the horizontal axis) are removed, as well

as those positioned after Np1 with distance dc higher than
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Rf (where dc is the arc length measured from Np1). The

points satisfying such condition are sent to a curve fitting

algorithm, from which the shoulder orientation is derived.

Fig. 3(f) illustrates the output of the curve fitting algorithm

for the left shoulder.

To cope with clockwise and counterclockwise angle orien-

tations, as well as to reduce the number of features, the signal

of the estimated angle is ignored. The reduction of features is

desired in this case, as the combination of a very small number

of samples (as we are doing) with a high dimensional feature

space could forbid the generation of coherent shape models in

the clustering stage. Of course, the usage of a larger dataset

for learning could encourage the addition of features.

Finally, the procedure described to estimate the orientation

of the left shoulder is repeated for the right one and the average

angle orientation (Sα), considering both shoulders, is retrieved

as the second geometric extracted feature. Fig. 3(c) illustrates

the output of the curve fitting algorithm for both shoulders.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Feature extraction. (a) Input RGB image and the detected face; (b-c)
Binary image generated from the ground truth data, containing illustration of
some extracted features, such as the neck points and distance Nd in (b), and
shoulder orientations in (c); (d) Computed local minimum M1 (circle) and the
neck point Np1 (plus sign) for the left side of the binary image; (e) Zoom in
the rectangular region of image (d); (f) Output of the curve fitting algorithm
(red line), used to estimate the angle orientation of the left shoulder.

2) Determining the number of Clusters: Regarding the

clustering procedure, each image i of the learning dataset is

represented by a 2D feature vector fi, obtained by combining

the extracted geometric features Nd and Sα as below:

fi = (Nd,i, Sα,i), (1)

with Nd,i and Sα,i values being normalized according to Eq. 2

and Eq. 3, respectively.

Nd,i =
Nd,i −min(Nd)

max(Nd)−min(Nd)
(2)

Sα,i =
Sα,i −min(Sα)

max(Sα)−min(Sα)
(3)

Coherent shapes tend to produce similar feature vectors

f. Hence, a set of coherent shapes is expected to produce

a cluster in the 2D space, which is modeled as a Gaussian

probability distribution characterized by its mean vector and

covariance matrix. Since each cluster relates to a different

Gaussian function, the overall distribution considering all

feature vectors fi is a mixture of Gaussians. The number of

Gaussians in the mixture (which corresponds to the number

of clusters), as well as the distribution parameters of each

individual distribution can be obtained automatically through

an unsupervised clustering algorithm [16].

Given the number of clusters and their respective images

in the learning dataset, the shape model generation of each

cluster j is performed similarly to the original work [9], as

described next.

3) Clusters of Shape Models generation: The first step in

the shape model generation relates to image resizing. Firstly,

all binary images in the learning dataset are resized by a factor

fl = Ra

Rf
(where Ra is the average radius of all detected

faces in the learning dataset and Rf is the face radius of

the image under analysis). The reference point Rp,j of the

shape model (assigned to a specific cluster j) is defined by

the average of all center points Cf related to the cluster j.

All resized images (assigned to each cluster j) are projected

onto a plane, aligned by their respective face center Cf to

Rp,j , accumulating the value of each pixel. Such projection

generates the initial shape mask S0,j , as illustrated in Fig. 4(a).

Aiming to capture the essence of the expected contour of the

head-shoulder, the initial shape mask S0,j is thresholded by

an histogram analysis procedure, in the same way as in [9].

The thresholded image is illustrated in Fig. 4(b).

A morphological thinning operation is performed over the

thresholded image, from which pixels away from Rp,j more

than 3Ra, as well as undesired branches are ignored. The

resulted skeleton curve Ss,j (with 1 pixel-wide) is illustrated

in Fig. 4(c) (dilated for visualization purpose). The skeleton

curve Ss,j is used to build the final shape mask Sf,j , as well

as to guide the construction of the graph, as described in the

next section.

Finally, the final shape model Sf,j (Fig. 4(d)) related to each

cluster j is computed using a Gaussian function (as in [9]),

defined in Eq. 4.

Sf,j(x, y) = e
−Dt,j(x,y)2

(Ra/2)2 , (4)

where x, y are the spatial coordinates of each pixel, Dt,j

is the Distance Transform (computed using the skeleton Ss,j

illustrated in Fig. 4(c)), and the scale factor of the Gaussian is

given by Ra/2 (set based on experiments). The shape model

can be viewed as a prior confidence map on the location of

the upper body contour, and it is combined with image data

to obtain the final contour, as explained next.

Fig. 5 illustrates a few generated skeleton curves, using the

procedure described above.
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(a) (b) (c) (d)

Fig. 4. Shape model generation. (a) Initial shape model S0,j and the reference
point Rp,j ; (b) thresholded image; (c) skeleton image Ss,j and (d) final shape
mask Sf,j for a given class j.

Fig. 5. Illustration of different generated skeleton curves Ss,j and their
respective reference points Rp,j (dilated for visualization purpose).

B. Graph generation, weights of the edges and finding the
maximum cost path

The graph generation procedure, the way the edges of the

graph are weighted and how the best path is chosen are

performed in the same way as in [9]. In this section we

briefly describe the original approach (see [9] for a detailed

explanation).

Let G = (S,E) be a graph generated for a specific face

radius, consisting of a finite set S of vertices and a set of

edges E. The vertices form a grid-like structure, and they are

placed along a region where the contour of the head-shoulder

is expected to appear (Fig. 6(a)), which is defined by the

skeleton curve Ss,j previously computed (resized according

to fs, where fs =
Rf

Ra
), and aligned to Cf by Rp,j . The goal

of using in this stage fs instead of fl is to adapt the learned

shape model to the input image resolution. The number of the

levels, the length of each level of the graph, as well as the

number of vertices along the levels are set experimentally.

(a) (b)

Fig. 6. Illustration of the graph. (a) The green line represents the generated
skeleton curve Ss,j for a specific cluster j, whilst the blue lines illustrates
the levels of the graph; (b) a detailed illustration of the graph, with its nodes
and edges.

The edges of the graph relate to line segments connecting

two nodes belonging to adjacent levels. More precisely, each

node in a level m can be connected to the k = 3 (up to)

nearest nodes in the level m + 1, as illustrated in Fig. 6(b).

The weight w(ek) of each edge ek is computed as:

w(ek) =
1

qk

qk∑

j=1

Ek(xj , yj), (5)

where qk is the number of image pixels in a raster scan

along edge ek, Ek is the energy function, and (xj , yj) are the

coordinates of the pixels along such scan. The proposed energy

function is composed by several factors: edge, shape mask and

angular constraints. The energy map for pixels related to graph

edges is given by Eq. 6.

Ek(x, y) = |tk · ∇I(x, y)|Sf,j(x, y), (6)

where Sf,j is the shape model, resized according to fs, aligned

to the detected face center Cf of the person under analysis

by Rp,j (also scaled according to fs); tk is a unit vector

orthogonal to the measured graph edge (to prioritize contour

with similar orientation as the graph edge under analysis), and

∇I(x, y) is the discrete gradient image computed using the Di

Zenzo operator (for color images) or the luminance component

I of the original image (for grayscale images).

The silhouette of the head-shoulder is defined as the max-

imum cost path along the graph. Since the graph is acyclic,

such path can be computed using dynamic programming, as

in Dijkstra’s algorithm [20].

The procedure described above is used to obtain the best

path for a given graph, related to a specific cluster j. The

contribution of the proposed model, beyond the learning

stage, is to estimate the head-shoulder contour from different

estimated paths (computed from different graphs). In order

to achieve this goal, the energy of each path Pj (associated

to each cluster/graph j) is defined by the average energy

along such path. The final contour estimation is defined by the

path with maximum Pj energy. Fig. 7(a-c) illustrates different

graphs (generated from different skeleton curves Ss,j) and

their respective estimated contour, as well as the computed

average energy Pj (Fig. 7(d-f)).

IV. EXPERIMENTAL RESULTS

In this section we illustrate some results of the proposed

model, also presenting a quantitative comparison with the

work of Jacques et al. [9] and against two other state-of-the-art

models for human head-shoulder segmentation [10], [3].

In relation to [9], the same evaluation protocol was used to

make fair comparison, i.e. we randomly partition the dataset

intro training and testing datasets, with 1/3 of the images of

the dataset used for training and 2/3 for testing. The whole

procedure is repeated 5 times, regarding the proposed model,

and the results are presented in Table I, in terms of average

error (distance in pixels), standard deviation, minimum and

maximum error (measured errors assigned to the original work

were taken from [9]).
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(a) (b) (c)

(d) P1 = 0.2836 (e) P2 = 0.2226 (f) P3 = 0.1897

Fig. 7. Selecting the final head-shoulder contour. The best path, computed
for each graph, which has the maximum Pj energy, is assigned to the final
estimation. (a-c) Illustrate three generated graphs. In (d-f) their respective
estimated contours with respective Pj measured energy.

The estimated contour of each analyzed image (defined by

the path with maximum Pj energy) is a set of points, which is

confronted to the respective ground truth data using the mod-

ified Hausdorff Distance [21]. As mentioned in the original

work [9], the lengths of the estimated contour curve and the

ground truth might be different, increasing the measured error

even in very good estimations. To deal with this issue, two

line segments, r and g (illustrated in Fig. 8(a)) are created,

each one passing through the extremity points of each contour

curve (the estimated one and the ground truth, respectively),

and points below these line segments are ignored.

Experimental results were obtained by using two different

approaches to compute the energy map (∇I):

i) Computing the gradient using the luminance component

I of the input image;

ii) Using the Di Zenzo color edge detector, which computes

the gradient using RGB information.

Both approaches use the angle constraint combined with

the shape mask information (Sf,j), as proposed in [9]. The

results presented in Table I, regarding the proposed model,

were generated from an average number of clusters equals

to 13.9 (standard deviation = 2.13). As we can see in this

first experiment, the proposed model outperformed the original

work, achieving an improvement of 22.49% for the average

measured error and 48.03% for the minimum error (approach

i), and an improvement of 20.63% and 48.03% for the same

measured errors, respectively, regarding the approach ii.

TABLE I
COMPARING THE RESULTS OBTAINED BY THE ORIGINAL WORK [9] WITH

THE PROPOSED MODEL.

Approach Mean Std Min Max
i ([9]) 8.1893 6.1711 1.2743 43.9500
i (our) 6.3476 6.0711 0.6622 40.6049
ii ([9]) 7.9189 5.8889 1.3015 43.5504
ii (our) 6.2855 5.9632 0.7031 40.5859

The number of clusters used to estimate the head-shoulder

contour is hardly related to the computational cost, as well as

the size of each face under analysis. The cost is reported using

the two most predominant face radii intervals found in the

adopted dataset. If we consider the proposed model generates

one single cluster/graph, the computational cost1 varies from

about 0.26±0.05 seconds when Rf < 17 pixels to 1.46±0.15
seconds when Rf > 65 pixels. The computation time can

be multiplied by the number of used clusters, which could

increase undesirably if considered a large number of clusters.

In order to optimize the computational cost we conducted

a second experiment, in which up to Kn components of the

mixture with highest prior probability (mixture weigh) were

used in the shape model generation (as the number of cluster

is related to the number of components of the mixture, set

experimentally to Kn = {5, 3}). Table II summarizes the

obtained results for this second experiment. As we can see

in Table II, the proposed model have their accuracy decreased

after discarding several components of the mixture, but still

outperformed the original work (in terms of average and

minimal evaluated error, i.e., achieving an improvement of

9.87% for the average error, using Kn = 3, and 45.69% for

the minimum error, using Kn = 5, in the worst scenario).

TABLE II
MEASURED ERROR OBTAINED BY OUR MODEL, CONSIDERING THE Kn

COMPONENTS OF THE MIXTURE WITH HIGHER MIXTURE WEIGH.

Approach Kn Mean Std Min Max
i 5 6.5598 6.3420 0.6920 42.3141
ii 5 6.5018 6.3454 0.6920 42.3141
i 3 7.1163 6.6406 0.6271 42.3141
ii 3 7.1360 6.7281 0.5391 42.3141

Fig. 8 illustrates some obtained results by the original

work [9] (odd rows), compared to the proposed model (even

rows), both obtained from grayscale images (approach i).

Trying to compare the proposed model with the state-of-

the-art [10], [3] we conducted a third experiment, as described

next. Firstly, our dataset with 402 images were again divided

into training and testing. The testing dataset contains the 170
images sent by the authors of [10] (aiming to reproduce their

experiment, in which a testing dataset with 170 images was

used) and the training dataset contains the remaining 232
images. In a second stage, 11 clusters of head-shoulder shape

models were generated (as described in Sec. III-A) using

the training dataset. Finally, the segmentation is performed

over the testing dataset and the results are summarized in

Table III in terms of average precision (measured errors

assigned to [10], [3] were taken from [10]). In this evaluation,

the extremity points of the estimated contour (as well as

those from the generated ground truth data) were connected

and filled out to generate a blob (to compute the average

precision). As in the first experiment, the precision rate for

1Measured from a MATLAB implementation, using an HP xw8600 Work-
station, with an Intel Xeon processor, Core2 Quad, 2.83GHz and 3Gb of
memory (time to detect the faces and I/O procedures was not considered).
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Fig. 8. Qualitative comparison: odd rows show the results obtained by the
work of Jacques et al. [9] in red lines (ground truth in blue lines), whilst even
rows show obtained results by the proposed model (green lines).

each image was measured disregarding those points below the

line segments r and g (illustrated in Fig. 8(a)).

TABLE III
COMPARISON TO THE STATE-OF-THE-ART: AVERAGE PRECISION.

Our [10] [3]
92.30 85.44 85.86

It is important to emphasize that such evaluation is quite

similar to those made in [10]. The main difference here is

that we used our own ground truth data and ignored those

points below the line segments r and g, whereas in [10], [3]

the whole foreground object is considered. Our goal here is

to perform a fair comparison using a very similar protocol

(as defined in [10]). Fig. 9 illustrates a qualitative comparison

among these works. As we can see in Table III and Fig. 9, the

proposed model achieved satisfactory results, with comparable

accuracy, according to numbers and visual inspection, to the

state-of-the-art.

(a)

Fig. 9. From the left to right: input image, results obtained from [10], [3]
and by the proposed model (with ground truth illustrated by blue lines and
the estimated contour through the green ones), respectively.

V. FINAL CONSIDERATIONS

In this work we proposed an improvement to the work of

Jacques et al. [9] for human head-shoulder contour estimation.

The improvement relates to a more sophisticated learning ap-

proach, combined with a selection scheme in the segmentation

stage.
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The proposed model is initialized by a face detector, as in

the original approach, and the segmentation is given by a path

in a graph with maximal cost. In the learning stage, geometric

features are extracted from labeled data. Then, the number

of shape models to be learned, used in the segmentation

stage, is obtained by an unsupervised clustering algorithm.

Different graphs are built around the detected face, according

to the number of clusters. The final estimation is obtained by

selecting the path with maximum average energy, derived from

each graph. The proposed model achieved an improvement

of 22.49% when compared to the original work, regarding

the evaluated average error. In addition, experimental results

indicated that the proposed technique works well in non

trivial images, with comparable accuracy to the state-of-the-

art. Future work will concentrate on exploring appearance

features to increase the accuracy.
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